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Esta trabajo de título se centra en las extensiones en modelamiento de la optimización de la
línea de productos. Los comercios minoristas se enfrentan a muchas decisiones para optimizar
el proceso de satisfacción de la demanda de los clientes. Gracias a las tecnologías actuales,
las firmas pueden hacer uso de información diversa y relevante en su toma de decisiones. En
concreto, las empresas minoristas pueden incorporar a su proceso de optimización información
relativa a las decisiones de compra del cliente. Este tipo de estructura de problemas puede
modelarse mediante programación binivel, donde el líder está representado por la empresa
minorista y los seguidores por los clientes.

En concreto, en este trabajo se considera la localización de productos de una empresa
con múltiples tiendas teniendo en cuenta el precio de reserva de los clientes y el coste de
desplazamiento a una tienda. De este modo, los clientes pueden decidir viajar más lejos
para comprar un producto más barato o comprar un producto que no está disponible en las
tiendas más cercanas. Al tener esto en cuenta, se consigue que la asignación de productos se
ajuste más a las preferencias de los consumidores, disminuyendo la rotación de productos y
evitando mayores costes de inventario y/o descuentos en los productos. Un segundo problema
considerado en esta tesis es un problema de coalición de consumidores, en el que un conjunto
de consumidores decide agruparse para comprar productos aprovechando los precios al por
mayor. Los productos están disponibles en cestas, y cada cliente tiene un precio de reserva
diferente para ellos.

Formulamos ambos problemas como problemas de optimización de dos niveles y exploramos
estrategias de generación de cortes para resolver estos problemas hasta la optimalidad para
instancias del mundo real de forma eficiente. En particular, para el problema de localización
de productos, lo formulamos como un problema equivalente de un nivel y evaluamos métodos
de relajación lagrangiana y de generación de cortes para mejorar los tiempos computacionales.
Introducimos nuevos cortes para este problema de dos niveles que mejoran los tiempos
computacionales. Los experimentos computacionales sugieren que las desigualdades válidas
reducen la brecha de la relajación lineal, y que incrustadas en el árbol Branch and Bound
mejoran eficientemente el mejor algoritmo actual -la descomposición de Benders- conocido
para el caso de una tienda.

Para el problema de la coalición de clientes, el objetivo es realizar la formación de la
coalición. Además, se presenta una función general de precios al por mayor y una función de
precios escalonados. Se considera una descomposición de Benders para resolver instancias a
gran escala. Los experimentos computacionales establecen que añadir el corte de Benders en
el nodo raíz tiene el mejor rendimiento.
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This dissertation focuses on extensions of product line optimization modeling. Retail stores are
faced with many decisions to optimize the process of satisfying customer demand. Thanks to
current technologies, they can make use of diverse, relevant information in their decision making.
Specifically, retail companies can incorporate into their optimization process information
regarding the customer’s purchasing decisions. This type of problem structure can be modeled
by bi-level programming, where the leader is represented by the retail firm and the followers
are the customers.

In particular, in this paper, we consider the product localization of a firm with multiple
stores taking into account the customers’ reservation price and the cost of traveling to a
store. In this way, customers may decide to travel further to purchase a cheaper product or
buy a product that is not available in stores closer to them. By taking this into account, it
makes the allocation of products more in line with consumer preferences, decreasing product
turnover and avoiding higher inventory costs and/or product discounts. A second problem
considered in this dissertation is a consumer coalition problem, where a set of consumers
decide to group together to buy products taking advantage of wholesale prices. The products
are available in baskets, and each customer has a different reservation price for them.

We formulate both problems as bi-level optimization problems and explore cut generation
strategies to solve these problems to optimality for real-world instances efficiently. In particular,
for the product localization problem, we formulate it as an equivalent one-level problem
and evaluate Lagrangian relaxation and cut generation methods to improve computational
times. We introduce new cuts for this bi-level problem that improves computational times.
Computational experiments suggest that valid inequalities reduce the linear relaxation gap,
and embedded in Branch and Bound tree efficiently improve the best algorithm current
-benders decomposition- known to the case of one store.

For the customer coalition problem, the focus is to perform coalition formation. A general
wholesale pricing function and step price function is presented. A Benders Decomposition is
considered to solve large-scale instances. Computational experiments establish that adds the
benders cut in root node has the best yield.
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Introduction

The marketplace is where agents bargain to deal with transactions of goods or services,
usually through monetary resources. Nowadays, the marketplace can occur both in a physical
and digital environment with different challenges for its participants. The first is the conven-
tional marketplace, in which a company must decide what products and how many to allocate
in a specific store and what will be the price of every item in a competitive environment
[54]. Simultaneously, the customers need to move -or travel- to purchase the desired items,
perhaps in several stores, where they can adopt a comparing-shopper behavior, considering
the investment in time, transportation, and the actual price to be paid for the products at
the stores [46]. We can assume that the customers have different preferences for the products,
depending on variables such as tastes, quality, utility, performance, durability, distance to
store, price, etc. Additionally, those preferences change based on people’s age, gender, store
location, social-economic, education, among others. The aforementioned interaction of factors
partly depicts the existence of locations where many clustered companies -or brands - offer
substitute and complementary goods, competing with other retailers; this increases the offer
and demand at that marketplace [92]. From the point of view of the firm, the decision of
assortment and pricing must adapt to the customers’ preference, since a correct decision can
be decisive in decreasing the inventory cost and the need for price discounts, encouraging the
stockpile flow. Additionally, a scenario where the store price exceeds the reservation price (a
theoretical maximum price that a customer is willing to pay on a product) is possible. In
that case, if the customer can not purchase the product, it decreases the amount of prospects,
and if pricing becomes underestimated, a greater number of buyers can be obtained, although
the process would profit less than expected.

On the other hand, the digital format has its own challenges; first, it is necessary to
design a simple and attractive marketplace for customers with a diversity of products, brands,
prices and qualities; user-friendliness is also relevant and the possibility to apply different
search filters that allow a correct matching for categorization; and multiple payment methods.
This ability generates some of the digital marketplace advantages, which are the pricing and
assortment, which can be customized to each user’s needs, and the ability to use historically
recorded data from the millions of interactions among the users on the digital marketplace
platforms. Therefore, companies can collect diverse customer profiles and offer a particular
assortment and pricing for everyone. Additionally, the possibility of diverse designs for pricing
and assortment in these platforms is cheaper and more likely to yield better results than in
the conventional marketplace. Furthermore, the digital platform offers a new opportunity for
clients. From their perspective, these methods open new and favorable tools, such as simpler
and faster item comparison, which makes it possible to select products to buy from anywhere

1



in the world. Another favorable tool of digital platforms is the ability of buyers to associate
to have access to wholesale prices, improving the marketplace performance. With the rise of
social media, the opportunity of setting customer profiles appears as a challenge for retailers
for the coming decades, and this can generate solid benefits for brands, reducing marketing
costs and being able even to optimize the logistics involved.

In the two situations presented above, deciding the location and pricing of products
and taking into account the ability of clients to group in the pricing decisions, pricing and
assortment are significantly related decisions in the objective of maximizing net profit for
the retail. In particular, when there is a competitive market with a dominant company, if
there is a limit in pricing supremacy, the leading brand can increase the assortment benefits
from the cost advantage (i.e., by reducing the unit cost a product). Whereas the firm that
does not have a noticeable authority for pricing can reduce the assortment to balance the
cost-saving policies. In addition, in the case of an outstanding retailer with a large market
share, the brand can reduce the assortment when the products experience a highly asymmetric
popularity situation, assuming the firm focuses on the most fruitful segment [4].

From a mathematical perspective, the seller and the buyers’ interaction can be modeled
by bi-level programming. In a bi-level programming problem, two agents make decisions
that impact their individual private interests. In this setting, an agent called the leader
makes its decisions first. Then, the second agent, known as the follower, reacts optimizing
its own private interests taking into account the leader’s decision; therefore, the leader must
optimize its objective, assuming the follower will respond with its best reaction. In the
marketplace context, the point of sale –or store- is the leader and buyers –or customers- are
the followers [27]. In the specialized literature, diverse cases have been modeled through
bi-level programming: e.g., pricing of multiple products, involving a unit-demand and buyers
from a preferential rank [28]; location store problems under a buyers’ comparison-shopping
behavior [46], location store problems assuming varied buyers’ purposes to travel in duopoly
context [92] and an assortment of the products influenced by the buyers’ preferences for a
unit-demand environment [14], among others.

This thesis addresses two different problems: the challenges of assortment at the physical
marketplace and the buyers’ grouping on a digital marketplace. The first focuses on the
Product Line Optimization with multiple stores (PLOMS), where a brand –or company-
owning several stores and products has determined the assortment of the products to the stores
considering the customer’s preferences, thus reducing a virtual stockpile flow problem. The
second deals with the Combinatorial Coalition Structure Problem (CCSP), which consists of a
coordinator that decides how to group a set of customers that want to maximize their outcomes
in a marketplace where a brand offers a product or good that could be complementary or
substitute, in bundle formats.

Decomposition methods use the problem structure to decompose them into simpler opti-
mization problems. optimization problems can decompose into different types of subproblems,
depending on which constraints are removed, some being harder than others. Lagrangian
relaxation relaxes constraints using Lagrangian multipliers, which leads to obtaining simpler
problems. The Lagrangian relaxation finds the Lagrangian multipliers that provide the
tightest relaxation in an iterative process that alternates between updating the Lagrangian

2



multipliers and solving the simpler model until a stop criterion is reached. Moreover, some
problems consider a single constraint set connecting two variables, say x and y. A specific
cut generation strategy can be used to address problems with this structure. We consider
a partition where variable x is kept in the first stage or master problem, while variable y
is part of the subproblem. Each iteration consists of 1) solving the first stage problem, 2)
using this solution to solve the subproblems, 3) generate cuts from the optimal solution to
the subproblem, 4) add the generated cuts to the first stage problem in order to restart the
process until some stop criterion is reached.

This thesis introduces a bi-level programming model to PLOMS that can be collapsed in
a single level programming. To solve large-scale instances, we considered three approaches:
Lagrangian relaxation, bender decomposition and cuts generation. For the CCSP, a mathe-
matical programming model is presented that considers two types of pricing functions: an
arbitrary decreasing price for an increasing quantity and a ladder price. For large-scale
instances, a benders decomposition approach was applied to the ladder price function case.

Product Line Optimization with multiple stores
Stocktaking and product obsolescence costs have increasingly become significant in the

retail industry. Reducing these costs requires a fast circulation of the inventory, which depends,
in turn, on a good knowledge of the target customers’ preferences. In contrast, when the
products exhibited in stores do not match these preferences, a slow inventory replacement
could trigger a markdown to get rid of the older inventory and free storage capacity. Indeed,
matching the customer’s preferences to the right products, sizes, colors, and brands is essential
to avoid long-lasting storage of products that are not successful in terms of sales.

We address these issues in the case of a retailer which owns several stores and aims to select,
for every branch, a subset of imperfect substitute products, i.e., products that serve the same
customers’ needs but differ in colour, appearance, flavor, design or some other attribute. A
customer may have different reservation prices for these products but would purchase at most
one of them. Such a subset must be optimal to fit the space restrictions and the neighboring
purchasers’ preferences, which can be included as a smart sale strategy. According to this, we
allude to a JCPenney executive who stated that "assortments, allocations, discount pricing
and other measures of the sort are all linked and optimized together at his company" [57].

The items assortment problem has attracted much attention. In [61], the authors introduce
two formulations to support a retailer decisions on the composition of a set of similar products,
using heuristic algorithms to solve the problems. A review of the literature on product selection
is offered in [62], discussing cannibalization between products, different objectives, and buyers’
classification, according to their purchasing power. They state that, to that date, none of the
models had practical application. They also focus on the line of products from a manufacturer,
even though the work applies to a retailer. The models require knowledge of the allocation
of the products, considering the type of consumers in attribute space. The exhibition and
storage room is not an issue here. In [12], a ranking-based formulation is presented for the
Product Line Design (PLD) problem where the utilities generated by every customer are
entered in the formulation as a constraint. In [94], a comparison between different heuristics
for the PLD problem is performed. The authors present a new ranking-based formulation
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and solve it with Lagrangian Relaxation. These previously mentioned approaches [12] and
[94] are compared in [14], which also introduces a strong formulation for [12]. A Benders
Decomposition (BD), together with an efficient algorithm, is applied to solve the example,
where the master problem defines what the available products are, and a separable slave
problem solves each purchaser’s decision. The efficiency of the BD is evaluated on examples
with synthetic data, producing good results.

This study has not considered the case where the company has multiple stores. In the
multi-store case, the option is to repeat the assortment in every store or solve a specific
problem for each store. However, given that buyers’ preferences could depend on their location,
it is interesting to study a multi-store model. Moreover, in a multi-store case, it is possible
to incorporate the cost travel because buyers could travel farther to find a better price or
search for the product of greater preference. Therefore the firm must decide in which stores
to allocate the product and at what price to maximize the profit.

We illustrate the advantages of the PLOMS model that decides the locations and prices
of products in the multi-store case with a simple example, detailed in Tables 1 and 2. The
PLOMS model is compared with (i) a unique price in all stores, (ii) a separate problem for
each store, where prices are set subject to the buy decision of the closest set of customers
and (iii) the PLOMS model. The example considers one product, three stores with a single
capacity, and six customers which have reservation prices and take into account the travel
cost. In this instance there are three possible prices: 110, 100 and 90. The reservation price
and travel cost of buyers is presented in Table 1 and the buyers utility for the different prices
is in Table 2. The pricing in every store and earnings to the company obtained by adding
the prices of the items purchased, according to each strategy are the following: (i) for the
unique price strategy a price of 90 for all stores gives a profit of 540, (ii) the separate problem
strategy gives a price of 100 in both store m1 and the m2 and a price of 90 in m3 gives a profit
of 570, and (iii) the PLOMS strategy sets a price of 100 in m1, 110 in m2 and 90 in m3 giving
a total profit of 580. Notice in this example that a sub-optimal solution is obtained either
when ignoring the buyer decision as in (i - unique price) or when only the buy decision of
closest buyer as in (ii - separate problem). This example shows the advantage of considering
the allocation and pricing of assortment in every store in a single multi-store model.

Combinatorial Coalition Structure Problem

While the PLOMS addresses an important challenge in a traditional marketplace, the
marketplace has been evolving into digital platforms, opening new opportunities and greater
challenges for the companies. For instance, the latter has defined new bargaining schemes,
like different types of auctions offered in websites. An auction can be defined as a public sale,
where –in general- a seller offers a product or service and every buyer bids in order to obtain
that product or service, depending on certain rules that are well-known for the participants;
an auctioneer chooses the winning purchaser and the value that he or she must pay. When
buyers have high bargaining power, for example, if they could demand a large volume of
items a reverse auction to obtain the best price could take place. In this scenario, the buyer
announces the purchasing volume; each seller bids the price, and then, the auctioneer chooses
–under specific rules known for all- who is the winning bidder and the purchasing price.
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d

m1 m2 m3 r

c1 24 2 31 113
c2 10 9 23 118
c3 7 16 30 115
c4 8 22 6 107
c5 15 17 7 116
c6 13 24 5 104

Table 1: Reservation price r and
travel cost d of the buyers.

110 100 90

m1 m2 m3 m1 m2 m3 m1 m2 m3

c1 -21 1 -28 -11 11 -18 -1 21 -8
c2 -2 -1 -15 8 9 -5 18 19 5
c3 -2 -11 -25 8 -1 -15 18 9 -5
c4 -11 -25 -9 -1 -15 1 9 -5 11
c5 -9 -11 -1 1 -1 9 11 9 19
c6 -19 -30 -11 -9 -20 -1 1 -10 9

Table 2: Buyers utility for each price (r − p − d).
Unique price strategy (i) are numbers enclosed in
squares. Separate problem strategy (ii) are the num-
bers enclosed in circles. The PLOMS strategy (iii)
are the red numbers.

Consequently, the reverse auction model allows better bargaining from the purchaser,
which can occur when the buyer requires a large demand amount of items or goods. Therefore,
if many different buyers wish to obtain identical items, it would be beneficial to coordinate a
single larger purchase to reach the cheaper price per unit, rather than buying in separately
[21]. The evolution of e-commerce has improved the buyers’ grouping through platforms that
gather the clustered buyers’ preferences and divide them into coalitions so as to make a single
purchase, which reduces the cost per unit.

In this sense, the combinatorial reverse auction or group-buying problem involves a mixture
of varied bids on different combinations of items, according to their personal preferences [21].
If the buyers can buy several items at once, this enables them to purchase a bundle of items
from the lowest selling price [71]. The Combinatorial Coalition Formation Problem (CCFP) is
the problem of deciding how to group buyers with individual preferences to purchase bundles
so that the maximum social surplus is obtained [90].

The focus of this thesis is to solve the CCFP efficiently, i.e., how to form a group of buyers
when they buy in a bundle. A CCFP was studied in [89] where buyers pay for a bundle of
products that can be complement or substitute; buyers have reservation prices established
for bundles, and there exists a discount in the price of items according to the purchasing
size. Hence, in this situation, the coalition is for a bundle and not for a single item. To the
best of our knowledge there is no evidence of an efficient mathematical model to solve this
problem. For this reason, we suggest two formulations: integer programming for the case of a
non-increasing general price function and mixed-integer programming for the case of a ladder
cost function. We study the use of benders decomposition to solve large-scale instances of the
second formulation. Furthermore, to prove the performances of the methods, we conducted
computer experiments.

Contributions
This work aims to provide novel mathematical programming approaches for two relevant

issues for the marketplace: the optimal allocation and pricing of products for a firm with
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multiple stores considering the buyers’ preference, and optimal buyer group formation to
take advantage of wholesale prices for bundle purchases. We remark that despite this thesis
presenting diverse novel mathematical formulations to situations mentioned above, this thesis’s
main contributions are algorithmic.

For the first problem, we propose a Stackelberg game formulation for the multi-store case
with travel cost (PLOMS). Here the firm is the leader, and the buyers are followers. This
single-leader multi-follower game can be collapsed into a single level integer programming
formulation which, in the case of only one store, is equivalent to the model proposed in [61].
Additionally, we adapt a family of known valid inequalities that appear in [118] for the facility
location problem with buyer’s preference. We proposed the following decomposition methods
to solve this PLOMS

(i) Lagrangian relaxation: where the hard constraints relaxed are: the preference constraint,
the buy only one product constraint and linking constraint;

(ii) Benders decomposition: where extend the approach present in [14] for the multi-store
which is used as a benchmark; and

(iii) Cut generation: where both a cut and branch (C&B) and branch and cut (B&C)
approaches are investigated on how to add the valid inequalities efficiently.

Our extensive computational experiments show improvement over the current state of the
art using the C&B approach.

For the CCFP we introduced a nonlinear model when there is a non-increasing price
function as a function of quantity. Given the buyers are discrete, we can use an approximate
piece-wise linear function to transform it into linear integer programming. Moreover, a price
function in the form of a decreasing ladder often represents wholesale prices that can be
linearized through incremental [40] and multi-choice formulation [121] derived from mixed-
integer programming, besides a strengthened formulation. In order to solve the last model, a
Benders decomposition is presented, where the binaries and variables continuous variables
are contained into the master problem and slave problem, respectively. The slave problem is
separable in |K| sub-problems, where K is the products set. In order to generate the cuts, the
integer solution of the slave problem is analytically obtained while its linear relaxation with
an exact algorithm is solved. To add the cuts only to the root node (C&B) or along to the
branching tree (B&C) are studied. Computational results for large-scale instances show that
the (C&B) obtained the best results.

Thesis Structure
This doctoral thesis opens with Chapter 1, focusing on the literature review about bi-level

programming for localization problems and its main solution methods. In Chapter 2, the
PLOMS problem and a Lagrangian relaxation approach to solve it are described. The results
show that while these Lagrangian relaxation approaches efficiently solve the sub-problems,
it is possible to reach maximum optimality. Chapter 3 presents valid cuts for our topic and
an adaptation of the Benders decomposition used for the single-store instance. The results
are compared to a generation of cuts, and the results prove that it produces a better result
for the multi-store case. In Chapter 4, the CCFP explains mathematical programming stage.
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Two different types of the cost function are addressed: a general decreasing function and a
decreasing staircase function. For the second type of cost function, a Benders decomposition
can be considered. The results show that it is possible to solve large problems through this
approach. Finally, relevant conclusions, potentially associated works and future research
topics are shown in Chapter 5.
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Chapter 1

A Review and background

In this chapter, a revision of the literature performed in this doctoral research is summarised,
providing an insight background to aboard the problem treat in chapters follows. The Section
1.1 presents a general perspective to bi-level programming, such that the main theoretical
results, applications, and solution methods. The Section 1.2 presents some models to location
problems that can be developed since bi-level programming. In the Section 1.3, the general
concepts about the coalition problem are described. Finally, the last Section 1.4 boards the
solution methods to the large-scale used in the chapters following: Lagrangian relaxation and
cut generation.

1.1 Bilevel programming
In different real-life situations, the decision of two agents faces each other and can be

opposed. In certain cases, these agents have an asymmetric relationship, which means a
certain hierarchy exists between them. Therefore, an agent named leader can decide before
the other agent known as a follower. Then the follower makes his decision considering the
decision made by the leader. Such a situation can be modeled through bi-level programming.
In this case, part of the constraints of mathematical programming is another optimization
problem. Bi-level programming has been used in different contexts, such as balance in network
design, prices in networks, and energy distribution. The following presents the key concepts
and the main applications of Bilevel programming.

Suppose there are two decision-makers denoted by player P1 and player P2 where each
player’s decision affects, in some way, the decision of the other player. The objectives of both
players are opposed, and there exists an asymmetric relationship between them. Then, the
game is played sequentially, which means player P1 makes the first decision, then player P2
watches what P1 did and makes his decision.

The situation raised above exposes a phenomenon that is replicated in many real-life
situations, such as environmental policies, [10] design of transport networks [25], electricity
market [66], competitive in a duopoly market, in security strategies, among others. The first
to pose this situation mathematically was Stackelberg in 1934 [123]. In that work, he exposes
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a situation where two companies, a leader and a follower, sell a homogeneous product sharing
the same market. They must say how many products each enter the market. Decisions
are made sequentially, with the leader deciding first. This problem is currently known as
Stackelberg’s game and is part of what is known as Bi-level Programming.

A bi-level Programming Problem (BLPP) can be defined as a mathematical program where
part of the constraints of an optimization problem, known as the upper-level, is another
optimization problem known as the lower-level [110]. According to this definition, each level
has its objective function and set of constraints, i.e., each level represents the optimization
problem that each agent must solve. In general, it is not symmetrical between the two levels
since the upper-level has complete information about the lower-level problem (otherwise, it
is said that there is uncertainty). In comparison, the lower-level only observes the leader’s
decision and thus optimizes its strategy. Commonly the objectives of a private agent are
opposed to controlling authority.

There are certain advantages of formulating certain situations through a bi-level model
and not by a single level. In [114] mention three main advantages of bi-level formulations
compared to a single-level

(1) can be used to analyze two different objectives at the same time, which can even be
conflicting during the decision-making process.

(2) in practice, the bi-level multi-criteria decision-making method can better reflect this
situation.

(3) can explicitly represent mutual action between two players.

From a game theory point of view, BLPP can be considered a game where two players
decide according to a hierarchical order. The first player, called the leader, decides his strategy
and communicates to the second player, known as the follower. Then given the leader’s choice,
the follower chooses his best response. Therefore, the leader’s task is to determine the best
decision, considering the follower’s best response [79]. A general formulation of a bi-level
program is1:

min
xu∈Xu,
xl∈Xl

F (xu, xl)

s.t. G(xu, xl) ≤ 0
min
xl∈Xl

f(xu, xl)

s.t. g(xu, xl) ≤ 0

where xu ∈ Rn1 are the upper-level variables and xl ∈ Rn2 are the lower-level variables.
Similarly, the function F : Rn1 × Rn2 → R is the upper-level objective function and f :
Rn1 × Rn2 → R is the lower-level objective function. Meanwhile, g : Rn1 × Rn2 → Rm1 and
G : Rn1 × Rn2 → Rm2 are the upper-level and lower-level constraints respectively.

Definition 1.1.1 (Inducible Region) Let Ψ : Rn1 ×Rn2 be a map set of values,

Ψ(xu) =
{
xl : xl = arg min

xl∈Xl

{f(xu, xl) : g(xu, xl) ≤ 0}
}

(1.1)
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that represents the set of optimal solutions of the lower-level; then we can define the Inducible
Region as1:

IR = {(xu, x∗l ) : G(xu, x∗l ) ≤ 0, x∗l ∈ Ψ(xu)}

In general, we consider the assumption that for each upper-level solution, a lower-level
solution exists1: the set IR 6= ∅.

The main mathematical features of BLPP are:

• Let xl(xu) be the implicit way of representing the lower-level variable. If xl(xu) can be
represented explicitly, then the BLPP problem can be transformed into a single-level.
In general, this is not possible.

• If the optimal solution of the relaxed problem (without the lower-level objective function
f) is an IR point, then the solution is optimal for the BLPP.

• BLPP is inherently difficult to resolve, being typically non-convex and non-differentiable.
BLPP is a strongly NP-hard problem even for the simplest case, such as bi-level linear
programming [78].

• Even if F and f are continuous and G, g is compact, no solution can be found.

In case there are multiple optimal solutions for the lower level, the higher-level solution
is ambiguous. Two possibilities to solve this can be considered according to the behavior
of the follower that we assume. The follower can have two behaviors1: cooperative or non-
cooperative. In the first one, the leader selects the best solution concerning the follower’s
decision; this case is optimistic. On the other hand, if the leader has no chance to influence
or conjecture about the follower’s decision, he can assume that the follower will select the
worst solution concerning his objective function, then the leader must lessen the risk of such
selection. The latter is known as the leader’s pessimistic case and is more complicated than
the optimistic one because, in general, a min-max problem must be solved.

1.1.1 Optimistic case
In this case, given a set of multiple optimal solutions of the lower-level, the leader expects

the follower to play cooperatively, that is, select the optimal solution from the set Ψo(xu)
that obtains the best value of the objective function F . The follower decision function can be
expressed as follows.

ΨO(xu) = arg min
xl∈Xl

{F (xu, xl) : xl ∈ Ψ(xu)} (1.2)

Hence the lower-level can be replaced by:
xl = ΨO(xu) (1.3)

Given Φ = {(xu, xl) : G(xu, xl) ≤ 0, g(xu, xl) ≤ 0} we can ensure an optimal solution for the
optimistic case according to the following Theorem:

Theorem 1.1.1 If the functions F , f , G and g are smooth enough, if Φ 6= ∅; and compact,
and the Mangasarian-Fromowitz qualification constraints [1] is sustained at all points, then it
can be guaranteed that the bi-level problem, for the optimistic case, will have an optimum as
long as there is a feasible solution.
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1.1.2 Pessimist case
In this case, given a set of multiple optimal solutions of the lower-level, the leader waits

for that follower to play of cooperative way, i.e., that he select the optimal solution of the set
ΨP (xu) with the worst value of objective function F of the Leader. Therefore, the decision
function of the follower can be express in the following way.

ΨP (xu) = arg max
xl∈Xl

{F (xu, xl) : xl ∈ Ψ(xu)} (1.4)

Hence, the lower-level can be represented for:

xl = ΨP (xu)

For the optimistic case, a lower-level with a convex problem, it is possible to reduce the
bi-level problem a single-level used the correspondent variational inequalities of the lower-level
problem [110]. On the other hand, the pessimistic case obtaining is not possible a simple
single-level.

We can assure an optimal solution for the pessimistic case with the following theorem:

Theorem 1.1.2 If the functions F , f , G and g are sufficiently smooth, Φ 6= ∅; and compact,
the mapping of value sets ΨP , is semi-continuous for the entire upper-level decision vector,
then the problem is guaranteed to have an optimum for the pessimistic case of BLPP.

1.1.3 Bi-level programming applications
Given the characteristics of the bi-level programming mentioned above, this modeling

framework has been utilized in several applications [110]. Below is presented some applications
example:

• Stackelberg Security Games1: There exist two types of players, the Defender, and
the Attacker. There are n targets that could be attacked for Attacker, and the Defender
has m resources to protect it where n > m. There are a set of pure strategies for
each player where the Defender covers m of n targets. Later the Attacker observes
and attacked one target to optimize his reward. The payment function is determined
about pure strategy, i.e., if a target attacked is covered, then the Defender (Attacker)
obtained a reward (penalty), in counter case a penalty (reward). The payment expected
is obtained when it is extended to a mixed strategy. Therefore, the Defender commits a
mixed strategy considering the Attacker’s possible responses for maximized his utility.
Meanwhile, the Attacker observed the mixed strategy played by the Defender, and then
Attacker plays in response.

• Competitive Facilities Location Problem: In the classic models of location, there
is a firm that sells homogeneous products, and it must select a subset of facilities since a
set of locations possesses such that satisfies the demand of the clients that be assumed
inelastic. In this case, all the facilities belong to a firm. For the case, a Competitive
Facility Location Problem (CFLP) be had two firms that compete to capture a set of
clients to meet the objective, in general, are opposite. The client is allocated to the
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facility that gives a better utility. In other words, a firm captures a client if its facility is
more attractive to any other that has opened its competitor. Thus, we can model CFLP
as a Stackelberg game, where the leader decides where to open its facilities to maximize
its utility, considered the follower’s objective function as the consumers’ preferences.
Meanwhile, the follower gives the facilities opens for the leader and the consumers’
preferences, and it decided where to locate its facilities to maximize its utility.

• Equilibrium of network design: The aim is to select the arcs’ capacity in the
highways urban’ network design considered that the congestion produced in each of
them produces a delay the users. In this context, the paradox Braess [23] said that the
increase in the arcs’ capacity (or the number of arcs) could increase each user’s delay
the network. Due to this effect, the problem aims to find the best Equilibrium between
the expanse cost and the trip delay. In this way, network design decision impacts the
route selected for the users as in the yield of that network.

• Pricing problem in a network: The problem consists of given a network where a
subset of arcs has tolls and another subset of arcs without tolls. The tolls are located
by an authority. Moreover, there exist users trips for this network. Each user selects
the shortest path that minimizes his toll payments. In the basic version there is no
congestion. The more sophisticated versions, additionally, incorporate both the network
design and other tolls pricing. Besides, it has considered population concerns about
time perception and includes discrete choice models [26].

• Electricity sector: Every day the generator companies of electricity must select the
sale price and present them to the market operator. The operator of the market
makes the best purchase. In this way, each generator company aims at maximizing its
benefits. The market operator minimizes its cost, determined by the amount of energy
purchase, and the marginal price finally chosen. Each agent’s decision must satisfy
several constraints such as1: to assure the investment and the flow of energy, recourse
limits, satisfy the demand, limits in the rate of energy penetration rate, among others
[26]. For this case, models have been developen with multiple leaders and one follower.

• Pricing problems1: An important decision in retail is the pricing problem. The
retail aim is to maximize its utility. For this purpose, the retail must consider the
value that the clients give to its products. If omitting this information, the retailer can
overestimate the price, obtaining fewer sales and a lower rotation rate of its stock. On
the other hand, if the price is underestimated, it can have a higher demand, but the
profit will diminish. The firsts works on this line of research were developments in the
airline industry, on the subject of ticket pricing.

1.1.4 Solution methods
The following Section shows the main algorithms to solve bi-level programming problems.

Given the difficulty of the bi-level formulation, most of the algorithms are for the cases of
linear, quadratic, and convex models, of which lineal cases are the most studied [35].

Bi-level programming nonlinear.

• Karush-Kuhn-Tucker condition: One of the most common methods to solve BLPP
with a linear or quadratic lower-level is to replace that level by its Karush-Kuhn-Tucker
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conditions (KKT). On the semi-cooperative case, a formulation is obtained of a single-
level. For the case of a linear or convex quadratic functions, the Lagrangian constraint
is linear. Meanwhile, the complementary slackness condition increases the number
of constraints exponentially; therefore, this method tends to fail on a large-scale. A
strategy to solve this inconvenience is to use Branch and Bound. First, relax the
complementary slackness constraints in the root node and solve. If the solution does
not satisfy complementary slackness, two children are built, one when λi = 0 (where λ
is the vector of Lagrange multipliers ) as an additional constraint; and another with the
constraint gi = 0 (where gi represents the slack variable). As in each node a relaxed
problem is solved , each node’s optimal solution corresponds to a lower bound of the
sub-tree (in the case that upper-level is a minimization problem). Methods based in
that scheme have been used for BLPP, [51], quadratic-linear functions [9] and quadratic
problem [3, 43].

• Descent method: In this case, a descent direction is searched that decreases the
objective function of lower-level, saving the new feasible points; a feasible point is a
point that belongs to φ and is lower-level optimal. However, it is not simple to find a
feasible direction. If the lower-level has a unique solution then xl can be defined as an
implicit function of xl(xu), and in this way, the problem left only in terms of xu ∈ Rn1 .
The main difficulty is the gradient (or sub-gradient) availability in the objective function
[37] infeasible points. For this purpose, in [86] an approximation method of this gradient
is proposed. Meanwhile, in [106] the problem is formulated without constraints in
the upper-level, an auxiliary problem to find the descent direction. In [119] this work
is extended to bi-level convex quadratic programming (both objective functions are
quadratic and linear constraints).

• Penalty Methods: [1, 2] propose to replace the lower-level by the following penalty
problem:

min
xl

ρ(xu, xl, r) = f(xu, xl) + rφ(g(xu, xl)

where r is a positive scalar and φ is positive if xl belong the relative interior and +∞ if
xl belongs a the relative bound of xl : g(xu, xl) ≤ 0. However, each iteration must find a
global optimal of the modified problem that is not necessarily sufficiently easier than the
original problem [37]. Later, in [75] proposed a method of double penalty where they
replaced the objective function of the lower-level by the constraint ∇xlρ(xu, xl, r) = 0.
After each r, this new problem is solved to apply other penalty to the constraints.

Mixed-integer bi-level programming

• Extreme points: in the case of linear bi-level programming (L-BLPP), where all
functions are linear and the set X is a polyhedron, the set of solutions (in case it is not
empty) contains at least a vertex of the constraint set Φ ∩X. A simple method can be
devised to solve the L-BLPP based on enumerating the vertices. [29] proposed, for the
problem without constraints of the upper-level and a unique solution for the lower-level,
an algorithm that explores a decreasing number of lower-level problem bases. Numeric
experiments showed that it is relatively slow. Subsequently, [17] proposed the "K-th best
method". They considered the bases of Φ that order way increase respect the value of
the upper-level’s objective function. Finally, the kth lowest index corresponds to the
method’s global optimal finish. Others methods based on this idea are the proposed by
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[99, 34, 116].
• Lagrangian relaxation: [100] show a method based in Lagrangian relaxation for the

case in which both the lower-level and upper-level have continuous and binary variables
(xu, xl ∈ {0, 1} and x

′
u, x

′
l ≥ 0). Besides, the upper-level constraints do not depend on

the decision variables of the lower-level (i.e., G(xu) ≤ 0). The method has three steps.
First, it solves the upper-level without considering the lower-level objective function
to obtain the upper-level decision variables (xu). Second, given the first step’s results,
it fixes the variables (xu) and solves a Lagrangian relaxation of the lower-level. In
this case, they replace the constraint xl ∈ {0, 1} by xl ≤ x2

l obtaining an equivalent
formulation. The last constraint is relaxed to get the sub-problem. Then it has a
quadratic function objective and linear constraints. Finally, they generate a cut to
improve the feasible solution. They improved the current bounds available in known
instances of a competitive facilities location using this method.

• Decomposition techniques: [103] proposed a decomposition method based in Benders
Decomposition to a problem with upper-level MIP and continuous lower-level. The
process is decomposed in a Restricted Master Problem (RMP) and Slave Problem (SP).
Then, the algorithm begins to fix the values of integer variables and build the current
SP. The problem is reformulated to a linear MIP using the KKT conditions. The
solution to this problem gives information about the active constraints used for the
respective linear problem. The above gives an upper bound of the original problem
(in the maximization problem). The dual problem of the current linear problem is
used to build a cut to the RMP. Then, the RMP is solved and is obtained at a lower
level (in the case of maximization). Later, the optimality conditions are verified. If
the RMP feasible solution is updated, the lower-level otherwise, building a new SP
gives RMP solution. The key is that the SP is a linear bi-level that is solved through a
reformulation using the KKT conditions. In many cases, the process is inefficient and
has the wrong approximation for problems of large size. In [50] used is a method for
solving a traffic network design problem, while in [31] extends the method used in [103]
to solve a facility location problem with equal constraint.

1.2 Location problems
Location problems consists in locating a set of facilities to satisfy the demand of the clients

under a constraint set (e.g., facility capacity, each client must be served, each client must be
within a certain distance, etc.) such that the cost is minimized (installation costs, travel cost,
among others.). The location problem has been widely studied because, from a theoretical
perspective, it is an NP-hard problem has different methods have been developed to solve
it. It has great versatility to solve problems in both private and public sectors. Examples of
these are installing warehouses, production plants, landfills, fire stations, and health centers
[44]. The main variants of the location problem are briefly described below.

In general, when the facility’s production capacity is large enough to satisfy the total
demand, we can skip a capacity constraint. For this reason, the majority of problems have
uncapacitated and capacitated versions.

• P-median: Consists of minimizing the total distance between demand and their closest
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facility, given a fixed number of facilities to locate among candidate locations.
• Single Plant location Problem: Single Plant location Problem was introduced by

Kaufman & et. (1977) Kaufman et al. [80]. The aim is to select a subset of plants
from a set of possible locations and allocate a single open plant to the clients that
minimizes the location and allocation cost. In the classic version, both location and
allocation decisions are taken by a single agent; consequently, the criterion to location
and allocation are aligned [30].

• Set Covering: In this case, the aim is to minimize the number of facilities open to
serve all demand points. To this end, a customer can be served by more than one
installation. A version with capacity restriction is studied in [39].

• Maximum covering: Unlike the previous case, the number of facilities is limited, and
all the demand cannot be served, so it must select a fixed number k of facilities to cover
the maximum demand. As in the set covering, the covered clients can be served by
more than one facility.

The last two problems have neither fixed cost of installation nor travel cost between facility
and clients.

• Hub location: In this case, it is considered a network to locate a set of facilities
known as hubs. The aim is to find which non-hub node is allocated to each hub such
that it minimizes total transport cost between origin and destination into the network,
taking into account that trip between hubs has a lower unit cost. Instead of attending
each origin-destination pair with a unique arc, a network with hubs provides fewer
arcs that link each origin-destination pair taking advantage of scale economies. In a
single allocation hub location problem, each non-hub must be attended by a single
hub forming a star-shaped network. In the case of the multiple allocation hub location
problems, each trip between the origin-destination pair van use more than one path,
always through the hubs, decreasing the travel cost. Each origin-destination path has
at least a hub, and there exists a discount among all the hub’s pairs.

Besides the uncapacitated and capacitated problems described above, there exists stochastic
and dynamic versions. In the first, some items have uncertainty, e.g., demand, travel time,
among others. So, the uncertainty must be considered in the problem. In the second, it
incorporates changes in the time that can impact the change of open/closed facility or the
re-allocate of clients.

1.2.1 Bi-level location problems
Competitive facility location problem

In this case, the location problem incorporates the original model, the explicit presence of
competition where all agents share the same market. For this purpose, the good or product is
considered homogeneous . Hotelling (1929) [70] presented the first notions of the problem
considering a linear market with two firms, and the consumers distributed uniformly on the
line, been attended by their closest firm.

In general terms, the entry to the market of the agents can be simultaneous or sequential.
In simultaneous cases, first, the agents select where to open the facilities, and later, they

15



decide the production level or their prices. FIn the case sequential, a leader firm open its
facilities first, then follower firm opens facilities consider the leader’s decision.

The clients selection of a facility has been modeled by deterministic or random utility rules.
In the first case, the client is always attended by the firm that maximizes the customer’s
utility, determined by certain attributes, e.g., nearness. In the random utility case, the clients
select which facility attend with certain probability [126, 87].

Facilities location with user preferences

If the firm distributes the products to its clients or forces them to be served by a specific
plant, the non-competitive models make sense. However, if we consider that customers choose
where to get their services, they may want to go to any facility of their preference. Besides,
each customer may have preferences by age, tastes, work, among others. For this purpose,
models have been established that consider the customers’ preference, e.g., the Single Plant
Location with User Preferences (SPLP). The model was introduced by Hanjoul & Peeters
(1987) [64]. In [65] they propose a BLPP formulation that is transformed in different ways to
a single-level formulation obtaining in its strongest version the same formulation as Hanjoul &
Peeters. [30, 117] propose a new family of valid inequalities used in a Branch & Cut algorithm.

Another variant of this model was developed by Krarup et. (1983) [77] where the possible
set of installations is replaced by two levels, the upper one by deposits and the lower one by
satellites. It must be decided which deposits and satellites to open and which deposits-satellite
to serve each customer. The objective is to reduce costs. This version seeks to take advantage
of economies of scale in hierarchical networks’ design and operation [55].

[55] considered a two-level uncapacitated facility location problem with single assignment
constraints (TUFLP-S) where the upper-level selects the deposits, and the lower-level selects
the satellites. Each satellite can be attached to at most one deposit. They use Lagrangian
Relaxation along with a local search heuristic to obtain a higher and lower bound. Finally,
they embed that solution into a Branch and Bound. To update the multipliers, they use a
bundle method. As initial multipliers, they use the dual variables of the relaxed constraint.

Facilities location with partial external financing

In this case, part of the plant’s products is transported to an investor with a limited budget.
The investor receives the products and can lower the prices in order to maximize the profit.
In this way, a bi-level model can be elaborated where the upper-level corresponds to the
agent that locates the plant at minimum cost. At the lower level is the investor who seeks to
maximize its utility. So, in this case, the leader’s problem is an SPLP, and the follower solves
a knapsack problem [83].

[83] reduce the problem to a series of SPLP that allows obtaining a lower-level for the
leader’s objective function. Also, they design an exact algorithm and an approximation
algorithm.
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1.2.2 Multi-product location problem

The assortment selection problem consists in finding a product subset, and allocating
the products in the subset to a limited, integer number of shelves in a supermarket so that
revenues are maximized. It is addressed in [127]. The demand for the product depends on
shelf space, price, advertising, promotions, and store attraction, among other factors, and
a dynamic programming solution method is used. In [42], the authors use conjoint analysis
to decide the product assortment, based on each product’s fixed and variable costs, as well
as its cannibalization effects on other products, rather than storage and shelf space. Each
customer segment purchases the product that provides her with the best utility. The problem
is solved using a heuristic. Demand substitution means that a consumer prefers to buy a
product that is an imperfect substitute of her best choice, rather than not purchasing at all is
addressed in [125]. Their problem also considered exogenous demand, supplier selection, shelf
space limitations, and inventory management considerations. In [57], the product assortment
is optimized, together with the pricing and inventory decisions, not considering either space
limitations or preferences variation across the region of interest. They consider multiple
periods and customer segments and determine optimal prices and inventory levels for the
subset of products in each period. A deterministic utility function depends on the reservation
and selling prices and makes customers purchase their best choice. They also do the exercise
of calibrating consumers’ reservation prices. In [58], the optimal product assortments and
pricing for multiple product categories are found when these are complementary (nachos,
cheese spread, and guacamole). Consumers can choose to purchase the primary product
(nachos) and mix it with complementary categories (a brand of cheese spread or guacamole).
Customers choose according to a deterministic utility function.

The problem of assortment planning and pricing in a competitive setting is addressed in
[15] using a multinomial logit model for consumers’ demand. The paper [95] solves selecting
a mutual substitute product line by a retailer who also selects the price among a set of
discrete prices. They include limited shelf space and dynamic substitution, making consumers
purchase products that are not necessarily their best choice when unavailable. They consider
one line of products without differentiating by store and solve it using a genetic algorithm. In
[72] the authors optimize shelf-space planning in a store, taking into account products that
are substitutes of each other (e.g., different brands) and the effects of not listing products
or replacing them with other products, and the effect of these actions on demand for other
products. Their main problem is allocating products to shelves and deciding how much space
to allocate to each product.

A frequent practice is optimizing shelf space and determining a set of products to be
displayed that are not substitutes for each other, i.e., items that consumers could purchase
together [33]. Other authors that address the same problem with different variants are
[49, 72, 84, 73], who offer a review on the subject. A later review is presented by [85], which
states that "no dominant solution has yet emerged for assortment planning, so assortment
planning represents a wonderful opportunity for academia to contribute to enhancing retail
practice."

Reviews of planning of mutual substitute products assortment can be found in [108], on
the planning of product lines, and [97] on retail store operations, including a good Section
on product assortment. There exists commercial software, which solves product allocation
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problems to stores using simple thumb rules of thumb [73].

In [32], markdowns are dealt with. They assume multiple stores owned by different chains,
served by a single warehouse over a time horizon during which products can take different
discrete prices from a set. Store owners must follow a set of rules to maintain fair competition
and inventory turnover. There is just one product, and the demand is stochastic. von
Stackelberg pricing was the subject of [24], who assume customers that purchase sets of
products and are not capable of computing their exact utilities, as they are computationally
bounded.

Somewhat related is the competitive facility location problem [see 45]. However, the von
Stackelberg game players are the firms locating their stores instead of firms and customers.
For a review of bi-level models for competitive location, [see 5]. Finally, [16], address the
problem of product allocation among brick-and-mortar stores and online stores belonging
to the same chain. None of the reviewed papers considers customers’ geographical distribu-
tion, the possibility of customers purchasing at different stores, and the fact that different
stores belonging to the same retailer can offer different product lines with possibly different
markdowns.

1.3 Coalition problem
Diverse firms sell products whose price depends on the demand. A single customer cannot

usually take advantage of this fact because she would need a few units of the product.
However, buyers can agree to buy a large number of units and benefit from discounts.
Moreover, customers require not a single product, but several. In the last case, a mechanism
to reduce prices of several products is to form a coalition, i.e., put together many buyers
that wish to buy a similar set of products to do a unique purchase at a lower unit price.
Many platforms have been developed to coordinate the buyers with similar taste, assuming
the challenges to satisfy members of the coalition. This challenge is known in the operation
research literature as a coalition problem that contemplates two-stages: coalition formation
called Coalition Structure Generation (CSG) and defining the price paid by each buyer, which
is the solution of a cooperative game theory.

The process of coalition involves the following steps:

• Forming a coalition structure the agents are grouped, which is done endogenously (e.g.,
through some bargaining procedure) or exogenously (e.g., by a system designer). This
procedure is called coalition structure. Typically, the goal is to maximize welfare or
minimize the agents’ incentive to deviate from their coalitions.

• Solving the optimization problem of each coalition where the members of a coalition
should coordinate their activities such that the coalition’s performance is maximized.

• Dividing each coalition’s reward among its members, where they will need to agree on
how to divide these benefits amongst themselves. The distribution to reward must
satisfy certain desirable criteria such as fairness (where each agent’s reward reflects its
contribution to the game) or stability (where no group of agents can selfishly benefit by
forming their own coalition).
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In this circumstance, a solution concept specifies (i) allocating the agents to a coalition
and (ii) how the payoff of every coalition is divided among its members. Following that order,
first, we describe the coalition structure problem and later, the problem of the distribution to
the reward.

1.3.1 Coalition structure generation (CSG)
The CSG problem focuses on partitioning the agents’ set into mutually disjoint coalitions

so that the total reward from the resulting coalitions is maximized [102]. The CSG assumes
that there is a coordinator that designs the formation of the coalition and has three important
characteristics1: (i) the players are goal-directed and short life; (ii) the coordination is between
members of the same coalition, but not members of other coalitions, and in general (iii) the
organization structure is flat, i.e., there is no hierarchical order between agents [20]. Given its
difficult computational treatment, different algorithms as heuristic and exact methods have
been developed. Mathematically, it can be defined as follows.

Let A = {1, . . . , n} be a set of agents. The value of coalition S ⊆ A is given by a
characteristic function v : 2|A| → R. Without loss of generality, we assume ∀S ⊆ A, v(S) ≥ 0
and v(∅) = 0 holds. In [105] it is shown that it is possible to normalize the coalitions values so
that all values are non-negative, and that the obtained game is strategically equivalent to the
original game. Now, assume a set of allowed coalitions is given as AC ⊂ 2A. If coalition S is
not in AC, we assume the value of v(S) is −∞. Each agent belongs to exactly one coalition,
and some agents may be alone in their own coalitions. Considering this, formally, a CS can
defined as followed:

Definition 1.3.1 (Coalition Structure) CSS for agents S is a partition of S into disjoint
and exhaustive coalitions, where CSS = {S1, S2 . . . } satisfies the following conditions1:

∀i, Si ∈ AC, ∀i, j (i 6= j), Si ∩ Sj = ∅,
⋃

Si∈CSS

Si = S.

Another important task is how to define the value of each coalition correctly. For that,
the characteristic function is typically used. In this case, the value of the coalition only
depends on the coalition members. A partition function game is used. The partition function
game is given by a pair, (A, v), where A is the set of agents, and v is a function called the
characteristic function, that maps each coalition, C, to its value, v(C). Note that when the
value of a coalition incorporates externalities, that means the value does not depend only on
members of its proper coalition, but also members of other coalitions, and the models can not
be represented with characteristic functions. Formally: v : 2A → R. The partition function
game is given by a pair, (A,w), where A is the set of agents and w is a function called the
partition function that maps each embedded coalition, (C,CS), to its value, w(C,CS), and
w : EC → R. We will write w(C,CS) instead of w(C,CS) for brevity.

Note that if the characteristic function is super-additive, i.e., v(S1 ∪ S2) ≤ v(S1) + v(S2)
holds for any two disjoint coalition S1 and S2, and S1 ∩ S2 = ∅, solving the CSG becomes
trivial, because Super-additivity means that any pair of coalitions is better off by merging
into one. In fact, the grand coalition (the coalition of all agents) is optimal.
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From the point of view of mathematical programming, the coalition structure problem is
reducible to complete set partitioning (NP-hard problem) in which there exist a finite set of
elements, and every subset of them is associated with a value. The goal is to partition this
set into disjoint subsets to maximize the sum of subset values. Currently exists two main
approaches to solving this problem: dynamic programming and anytime algorithm.

1.3.2 Payoff Distribution
Besides the formation of CSG, various works have been center on how to distribute the

payoff. In this case, the solution concept is based on cooperative games. Unlike the non-
cooperative game, in the cooperative game there is no possibility of forcing alliance among
agents, although the agents can compete with each other in the coalition to improve their
benefits. The payoff distribution will depend on whether exists transferable utility or not.
To exemplify the idea consider a marketplace context where there exists a set of buyers who
have reservation prices about the items available by a firm and the items have any price
function. In the cases of the non-transferable utility, only can be members of a coalition the
players with a reservation price greater than the price of the item. In contrast, when there
exists transferable utility, the players with reservation prices less than payoff can belong in
a coalition if it helps to improve the coalition value, e.g., when there exists wholesale price
where the price depends on the size of the purchase.

The more interesting case is when there is utility. Now, there are two possible objectives
to be achieved: fairness and stability. The fairness searches that the payoff of agents reflect
its contribution to the game. Meanwhile, the stability searches that members of a coalition
have not an incentive for forming their own coalition. For fairness, a solution method has
been developed known as Shapley value [107] For fairness, Core [59] present a solution. The
problem of determining whether there exists a stable solution in NP-hard [38].

Shapley value

The fairness concept behind the distribution payoff relates to defining a fair payoff for
each player, commensurate with each player’s contribution to the value of the coalition.
Accordingly, Shapley proposed in 1953 [107] a measure to define each player’s coalition’s
contribution known as Shapley value. In order to establish this measure, one must first define
the marginal contribution as follows1:

mv
i (S) =

v(S)− v(S \ {i}), if i ∈ S;
v(S ∪ {i})− v(S), if i 6∈ S.

where the gain of incorporating the player i in the coalition S, is the contribution of player
i to the coalition S. Note that the marginal contribution can be calculated in all possible
permutations into the coalition. Therefore, it is possible to calculate each player’s average
contribution, known as the Shapley value. Formal definition as follows.

Definition 1.3.2 The Shapley value on a subset A of G(N) is a solution function φ on A
whose components φ1(v), φ2(v), . . . , φn(v) in the game v on A are defined by
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φi(v) =
∑
s1:i∈S

(s− 1)!(n− s)!
n! [v(S)− v(S \ {i})] (1.5)

where the sum of the global coalition S containing player i and s generically represents
the number of players in coalition S.

The Shapley value can be interpreted as the expected payoff to player i under a random-
ization scheme where the players’ arrival is equiprobable to coalition S. From another point
of view, the Shapley value can be calculated as the sum over all coalition S not containing
the player i, as presented below:

φi(v) =
∑
s1:i 6∈S

s!(n− s− 1)!
n! [v(S ∪ {i})− v(S)] (1.6)

Shapley values are used in a wide range of applications because, in part, it satisfies important
properties as

• Efficiency: if f1(v) + f2(v) + · · · fn(v) = v(N) for every v from A; is interpreted as a
combination of the feasibility (f1(v) + f2(v) + · · · fn(v) ≤ v(N)) i.e., the distribution
must be at most the total payoff of grand coalition, and collective rationality (f1(v) +
f2(v) + · · · fn(v) ≥ v(N)) that summary as distributed all value of coalition;

• Null player: function solution f satisfies fi(v) = 0 whenever v ∈ G(N) and i is a null
player;

• Equal treatment: if fi(v) = fj(v) for every v ∈ G(N) and every pair of players (i, j)
are interchangeable in v;

• Additivity: if f(u+ v) = f(u)f(v) for every pair of games u and v from G(N);
• Dummy player: if fi(v) = v({i}) whenever v ∈ G(n) and i is a dummy player in v;

and
• Anonymity: if for every permutation π of N , fi(πv) = fπ(i)(v) for very game v ∈ G(n)

and every player i ∈ N .

The Shapley value is a unique solution function that satisfies the first four properties, [107].

Core for coalition structure

A distribution payoff stability seeks to ensure that players have no incentive to leave the
grand coalition. To understand the concept, we need to define the kernel. A vector x ∈ Rn is
an imputation if it satisfies xt ≥ v(i) and ∑t xt = v(N). Thus, formally the kernel is defined
as:

Let i, j ∈ A, x = (x1, . . . , xn) is a payoff vector. Define δij(x) to be the maximal excess,
with respect to x of a coalition containing i but not j; i.e,

δij(x) = max{v(S)−
∑
k∈S

xk : S ⊂ A \ {j}, i ∈ S}
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then the kernel K(A, v) is the set of all imputations x such that, for any pair of players
(i, j) either:

• δij(x) = δji(x), or
• δij(x) > δji(x) and xj = v({j}), or
• δij(x) < δji(x) and xi = v({i}).

Definition 1.3.3 (Core for coalition structure) The core for the coalition structure CSA of
all agents A is the set of payoff vectors, where each element (denoted as y) satisfies the two
following conditions:

• ∀S ∈ AC, ∑i∈S yi ≤ v(S) (non-blocking condition)
• ∑

i∈A yi = V (CS∗) (efficiency condition)

In effect, an imputation belongs to the core if no coalition has an incentive to separate
from the grand coalition.

In addition, y is said to dominate x if yt > xt for all i ∈ S and ∑t∈S yt ∈ v(S). That
mean that y dominates x if it is best for all members of S and is feasible, i.e., ∑t∈S yt ≤ v(S).
Therefore, the Dominance Kernel DC(v) is the set of non-dominated imputations. Note that
x is dominated by y across the coalition S, so ∑t∈S xt <

∑
t∈S yt ≤ v(S). Therefore, x is not

in the kernel then it is possible to find an imputation y that dominates x.

Unfortunately, the core is sometimes empty; i.e., there are no imputations that are
not dominated. Also, determining whether there is a stable solution is NP-complete [38].
The first proposed concept of stability was by von Neumann and Morgenstern [96]. They
defined a stable solution as a set of imputations such that no imputation in the stable set
dominates another stable set, and if every imputation outside the stable set is dominated by
an imputation belonging to the stable set. Other solutions such as nucleolus, kernel, and the
related bargaining set to focus on minimizing the incentive for a coalition or an individual to
separate from the proposed assignment(s) [124].

1.3.3 Applications
Although this thesis addresses the coalition problem from a marketplace perspective, these

are not the only applications. There are a wide variety of applications of coalitions problems
such as1:

• autonomous sensors can improve their surveillance of certain area;
• virtual power plants can reduce the uncertainty of their expected energy outputs [20];
• cognitive radio networks can increase their throughput, and buyers can obtain lower

prices through bulk purchasing [111].
• teamwork formation to perform tasks. Each activity needs certain skills, and each player

has a different level for each skill ([115]).

For this thesis, the focus of the coalition problem is the buyer group forming. In this
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circumstance, there exists a set of buyers and a set of products that buyers wish to purchase.
The products have a wholesale price, but every buyer requires a few units. Hence, the buyers,
through the coordinator, can form groups to reach a better price. The coordinator recollects
all the necessary information (e.g., reservation price, preference, and amount required) to
define the coalition structure and distribution payoff according to the criteria of stability and
fairness.

A variant of this problem occurs when selling bundles of products known as Combinatorial
Coalition Formation (CCF). In [88] is presented a CCF where the clients can buy more than
a unit per item. In this case, the reservation price is per bundle, and the buyers can buy
more of one unit of the item. A virtual reservation price by each item is calculated and
then reflected in a bundle price. If the set of sub-coalitions are compatible, i.e., each buyer
belongs to all sub-coalition or none, a coalition is formed. Otherwise, they must then calculate
the reservation price again and find the sub coalition set until they are compatible. They
proved that if the algorithm finds a set of sub-coalitions compatible for linearly decreasing
price, the coalition found is optimal. Besides, they calculated the core with the respective
payoff for each buyer. Meanwhile, [89] shown a greedy algorithm to (CCF) that incorporate
goods complements or substitutes, and heterogeneous preference of buyers. They propose a
Coalition for bundles instead of products. The reservation price is for a bundle, not for an
item, reflecting if the items are complementary or substitute. The proof can be reduced to
Complete Set Partitioning, therefore, is NP-hard. Finally, they propose a cost-sharing that
accomplishes stable properties, which establish that buyers pay their reservation price if that
is less to price and value greater in another case which establishes to a particular method.

Additionally, others variants to the CSG include shipping cost [112] and location [98], limit
stock [74], such attribute in Social Network [22]. Also there could be constraints, for instance,
physical limitation, legal banishments, and social relationship [60], social ridesharing [18, 19].
Based on Myerson, consider the feasible set is restricted to a graph. Therefore each coalition
is associated with an undirected graph defined over the set of agents, and the coalition is
feasible only if the subgraph induced over the nodes in a coalition is connected [18, 122, 19].

1.4 Solution Method

1.4.1 Lagrangian relaxation

Lagrange’s method is based on the idea formulated by the mathematician Lagrange in 1785.
In optimization models, there are often some difficult constraints that make the problems
difficult to solve. If the difficult constraints are omitted, the sub-problem obtained can be
easily solved. However, the solution to this problem can be infeasible in the original problem.
To find a feasible solution to the original problem, we can penalize the subproblem each time
the difficult constraints are violated.

Using this idea, let us consider the following problem :
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(P1) z∗ = min
x≤0

cTx

s.t. Ax ≤ b

Dx ≤ d

where, c ∈ Rn, (A, b) and (D, d) are matrices m× (n+ 1) and r× (n+ 1) respectively and z∗ is
the optimal value of the problem solution (P1). Suppose that Ax ≤ b are difficult constraints
and Dx ≤ d are easy constraints.

We can relax the difficult constraints and penalize them in the objective function in case
they are violated. Then the objective function is as follows1:

L(λ, x) = min
x≥0,λ≥0

cTx+ λT (b− Ax)

Then, given a λ ∈ Rm
+ is to solve the sub-problem:

(P2) φ(λ) = max L(λ, x)
s.a. Dx ≤ d

where the function φ is known as the dual function and is determined by the sub-problem’s
optimal value. Now be a x feasible in (P1), some λ ∈ Rm and x∗ an optimal solution of (P1),
then it remains that:

φ(λ) ≤ L(λ, x) ≤ cTx y φ(λ) ≤ (λ, x∗) ≤ cTx∗ = z∗

Therefore, we have φ(z) ≤ z∗. By setting the value of λ and solving the sub-problem (P2),
we get a lower bound for the problem (P1). Therefore, we try to find the best lower bound φ∗
of z∗. Then, to find φ∗ we must select the λ that solves the Lagrangian Dual Problem (LDP):

φ∗ = max{φ(λ) : λ ≥ 0}
To find φ∗, there are different methods such as the sub-gradient method, volume method,
descent method, among others.

In case Ax = b, then the Lagrange multipliers are unconstrained, and then the dual
problem remains as:

φ∗ = max
λ∈Rm
{φ(λ)}

An important lagrangian relaxation theorem for integer problems was developed by Geof-
frion [56]. This theorem is based on the convex hull, denoted by conv((X)), of points in X
where the conv(X) is the set of all convex combinations of points in (X), i.e. :

conv(X) = {x : x =
∑
i

αix
i,
∑
i

αi = 1, αi ≥ 0, xi ∈ X,∀i}

Theorem 1.4.1 (Geoffrion, 1974) Let (P1), (P2), and (LDP) be the integer version described
above. Let φ∗ be the optimal solution value of the dual Lagrangian problem. Then:

φ∗ = min cTx

s.a. Ax ≤ b

x ∈ conv(X)
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The above theorem can be said that (LDP) is the convexification of the entire problem
(P1).

Lagrangian Relaxation vs. Linear Relaxation

Another relaxation that we have studied is linear relaxation (LP). As we previously studied
linear relaxation, it also gives us a measure of the integer problem. So a coherent question is
which of these relaxations is better?

Let us first look at the Lagrangian relaxation:

φ∗ = max{φ(λ) : λ ≥ 0}
= max{min{cTx+ λT (b− Ax) : Dx ≤ d, x ≥ 0 and integer}}
≥ max{min{cTx+ λT (b− Ax) : Dx ≤ d, x ≥ 0}} = ZLP

To see the latter let us consider the dual of the internal problem for which µ ∈ Rk is the
multiplier of the constraint Dx ≤ d, and the dual of the dual.

min cTx+ λT (b− Ax) Dual max λT b+ µTd Dual min cTx
s.a. Dx ≤ d → s.a. λTA+ µTD ≥ c → s.a. Ax ≤ b

x ≥ 0 λ, µ ≥ 0

We can observe that the linear relaxation (ZLP ) of the sub-problem (φ(λ)) is a lower level
of the Lagrangian relaxation (φ∗ ≥ ZLP ). If the linear relaxation gives us integer solutions,
then it is fulfilled by equality (i.e., both the optimum value of Lagrangian relaxation and the
optimum value of linear relaxation are equal (φ∗ = ZLP ). This case is known as the property
of integrality (linear relaxation obtains integer solutions). Given the above, we can conclude
that the level that gives us Lagrangian relaxation is at least as good as linear relaxation.

In general, we can say that for the case in which the variables are integer, the Lagrange
method can be more effective than linear relaxation in problems that have complicated
constraints [57] due to:

• LDP can take advantage of a special sub-problem structure to separate the sub-problem.
• The number of constraints is reduced in the sub-problem (compared to the original

problem).
• φ∗ can be tighter or at least as good as ZLP .
• A workable solution can be built from the solution of the sub-problem.

Finally, three fundamental questions must be answered when performing a Lagrangian
relaxation:

(1) What restrictions should we relax in order to get the best score?
(2) What are the best values of Lagrange multipliers?
(3) How can we obtain feasible (incumbent) solutions to the original problem?
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The first question depends on the structure of the problem. For example, with certain
relaxations, we can separate the original problem into two easier ones. It also depends, if
when relaxing the constraints, it obtains a subproblem with an integrality property (it should
not have this property because I can find a better level than the linear relaxation). Also, with
which relaxed constraint is obtained, an easier subproblem.

The second question depends on the methods we use to solve the LDP. In this work, we
focus on the subgradient method.

Finally, the third one again depends on the structure of the problem; however, heuristics
are used to find it in general.

Subgradient method

The subgradient method is an iterative method that in each step solves the sub-problem
(P2) and updates λ, ensuring that the new iteration belongs to a subgradient direction with
an appropriate step. In general, we can describe the subgradient method as follows [57]:

• Select starting point λ0 ≥ 0, n = 0
• Build a sequence of points {λn} ≥ 0 which eventually converges to the optimal solution

using the following rule:
λn+1 = max(0, λn + snd

n)

• n = n + 1 with sn a positive scalar is called step length and dn is a vector called the
direction of step, which must be determined in each iteration. In this case dn := b−Ax(n).

• Until some stop condition is reached.

Some stop criteria are |λ(k)| < ε or |b−Ax(k)| < ε (complementary slack) ZL(λ(k)−Z∗) < ε,
|λ(k) − λ(k−1)| < ε where ε is a small number defined in advance or some mix between them.

The simplest versions of the subgradient start with λ0 = 0. Other versions suggest starting
with the dual variables corresponding to the relaxed constraint.

In Held et al. (1974) [67] they show that the sufficient condition for the step to give us
convergence is as follows1: As k →∞, if

sk → 0 y
k∑
j=1

sj →∞

One formula often used to select the sk is

s2
k = βk(ZL(λ(k))− Z∗)

‖b− Ax(k)‖2
2

(1.7)

where βk ∈ (0, 2] and Z∗ is the best feasible solution found for the original problem. Usually
βk is initialized to 2 and halved if ZL(λk) does not change in some iterations.

The Kiev-method is a variant of the subgradient method that takes into account the
information from the last two iterations to actualize the Lagrange multipliers1:
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The Kiev-method is described below:

where 0 < β < 1 and δt = b− x(t). Let st be from the t iteration step,

st−1 = γt−1
z∗LB − zUB(λt−1)
‖Gt−1‖

with 0γt−1 ≤ 2. If st not changes into t iterations then γt = αγt−1 with 0 < α ≤ 1.

The optimal value of the sub-problem in each iteration can have an oscillating behavior.
To avoid that, in [57] several modulations to the subgradient are proposed to diminish this
effect. The main modulations are presented below.

To obtain a better convergence in [57], they suggest the following strategy. Let µk be the
Lagrange multiplier in the iteration of the k subgradient method. Then, from p iterations
of the subgradient method, they compare the best and the value obtained from zub. If the
difference is greater than 1%, then µ is reduced by half. To the contrary, if the difference is
less than 0.1%, then µ is increased by 50%. The above is summarised as follows1:

µk =


0.5µk−1, if UB − UB > 0.001 · UB,
1.5µk−1, if UB − UB < 0.0001 · UB,
µk−1, otherwise.

where UB = {ztUB : t = k − p+ 1, k − p+ 2, . . . , k}, UB = max(UB) and UB = min(UB).
The authors suggest p = 20 and µ0 = 0.1.

Volume method

Barahona and Anbil [7] introduced the volume method. This method is based on Definition
1.4.1, which shows that (LDP) is the convexification of the entire problem (P1). Thus, the
method seeks to find both α and λ.

Definition 1.4.1 (Near Optimal Solution) Suppose λ̂ ∈ Ω∗ = {λ̂ ∈ Rm
+ : φ(λ̂),∀λ ∈ Rn

+}
and let X = {x ∈ conv(X) : cx+ λ̂(b−Ax) ≤ cx+ λ̂(b−Ax),∀x conv(X)}. Then a x̂ ∈ X(λ̂)
is said to be the near optimum of the integer problem of (P1), if Ax̂ ≥ 0 and λ̂(Aλ̂− b) = 0.

The volume method, as well as the sub-gradient method, is iterative. One of the main
differences is that the volume method finds a primary solution close to the optimal.

Next, the volume method is described as it is presented in [57] :

Step 0 Set λ := λ0. Solve the sub-problem (P2). Let x be the solution of the sub-problem; and
λk+1 = max{0, λ+ skd

k}, k = 1.
Step 1 Determine direction, dk = b− Axk. Solve the sub-problem (P2). Let xk and φ(λk) be

the solutions obtained. Update x = αxk + (1− α)x to α ∈ (0, 1).
Step 2 If φ(λk) > λ, update λ and φ as

φ := φ(λk), λ := λk
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Then, k = k + 1.

The same step suggested in the subgradient method is used for the step:

sk = µk
z∗LB − φ
‖dk‖2

where 0 < k < 2. To update µk in [7] follow three types of iterations.

• Every time φ does not improve; it is counted as a red iteration. It is suggested that a
smaller step is needed.

• If φ(λk) > φ and dksk < 0 suggests that a longer step of dk should give a smaller value
of φλk. They call this type of iteration yellow.

• Finally, if φ(λk) > φ and dksk > 0 will follow a larger step. It’s known as a green
iteration.

Thus µk is updated as follows.

µk =


(0.66)µk−1, after a sequence of 20 red iterations
(1.1)µk−1, if the k-th iteration is green
µk−1, otherwise

.

To determine the value of α in [7] they suggest two strategies; fix the value by several iterations
and then decrease it under some criteria or solve the next problem of a dimension :

min
∥∥∥b− A(αxk − (1− α)x)

∥∥∥
s.t. a

10 ≤ α ≤ a

In [8] they start with a value of α = 0.1, in case that the last 100 iterations the value of
φ(λk) does not have an increment greater than 1% then it is reduced to half; otherwise, it is
maintained. The value of a is set if it is less than 10−5.

If x0, x1, . . . , xk is a sequence of solutions of the sub-problem (P2), then we have to

x = (1− α)k + (1− α)k−1αx1 + · · ·+ (1− α)αxk−1 + αxk

for α ∈ (0.1). In addition the coefficients xk, k = 0.1, . . . , k are also between 0 and 1:

α
k−1∑
i=0

(1− α)i + (1− α)k = 1

which can be demonstrated by induction in k with k = 1.2, . . . [57]. Therefore, x is convex
combination of {x0, x1, . . . , xk ⊂ X. Then from the theorem 2.3 it can be deduced that the
solution found by the volume method estimates the solution of (LDP).

Like the subgradient method the stop criterion is whether dk ≤ 0 and λ(b− Ax) = 0 in
this case x is the optimal solution of the problem (Q1) and λ is the optimal solution of (LDP).
In general, this criterion is relaxed to |b− Ax| < ε and |cx− b| < ε for a small ε value.
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1.4.2 Cut generation
Benders decomposition

Consider the following formulation with n integer variables and p continuous variables to
describe Benders Decomposition’s classic version.

min cTx+ hTy (1.8)
s.t. Ax = b (1.9)

Bx+Dy = b (1.10)
y ≥ 0 (1.11)
x ≥ 0 and integer (1.12)

with complicating variables x ∈ Rn1 , such to the constraint (1.9) where A ∈ Rm1×m2 is a
known matrix and b ∈ Rm1 . The set of constraint (1.10) connects the variables x and y where
B ∈ Rm2×n1 , D ∈ Rm2×n2 and d ∈ Rm2 . The objective function minimizes the total cost
with the cost vectors c ∈ Rn1 and h ∈ Rn2 . Fixing the values of the variables x, we obtain a
reformulated Linear Program (LP):

min
x∈X

{
cTx+ min

y≥0
{hTy : Dy = d−Bx}

}
(1.13)

where x is belongs to the set X = {x|Ax = b, x ≥ 0 and integer}. The inner problem called
subproblem (SP) is a continuous linear problem that can be reformulated considereing the
dual variable π associated with the constraint set Dy = d−Bx:

v(SP (x)) = max
π∈Rm2

{
πT (d−Bx) : πTD ≤ h

}
(1.14)

The primal and dual problem’s function optimal objective values are equivalent by strong
duality theorem. Then it is possible to replace the dual problem in (1.13). Then, the problem
is reformulated as follows:

min
x∈X

{
cTx+ max

π∈Rm2
{πT (d−Bx) : πTD ≤ h}

}
Note the feasible space F = {π|πTD ≤ h} of the dual problem does not depend of variable
x.It can use the extreme and rays extreme to define the polyhedra that describe the feasible
space F . Hence, if F is not empty, then the inner problem can be either unbounded or feasible
for any arbitrary choice of x. For the first case, given an extreme ray set Q of F , there is
a direction rq, q ∈ Q for which rTq (D − Bx) > 0. Thus, to avoid unbounded solutions, the
following cuts can be added to restrict the movement in this direction:

rTq (D −Bx) ≤ 0 ∀q ∈ Q (1.15)

The solution to F is a point πe, e ∈ E where E is a set of extreme points of F . Therefore, if
all cuts (1.15) are added to the outer problem and considering that the value of the inner
problem will be one of its extreme points, then the model (1.13) can be reformulated as1:

min
x∈X

cTx+ max
e∈E
{πTe (d−Bx)} (1.16)

s.t. rTq (d−Bx) ≤ 0 ∀q ∈ Q (1.17)
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Note that it is possible to reformulate the above model in a linear problem obtaining a MILP
with many constraints known as Benders Master Problem (MP).

(MP ) min cTx+ ν (1.18)
s.t. Ax = b (1.19)

ν ≥ πTe (d−Bx) ∀e ∈ E (1.20)
0 ≥ rTq (d−Bx) ∀q ∈ Q (1.21)
x ≥ 0 and integer (1.22)

Due to the large number of constraints generated by points and rays extreme of the set F , a
cut generation approach can be used to solve it efficiently. The method starts with a reduced
number of constraints, progressively adding the necessary cuts. It is possible to check the
current gap during the process to prove the convergence of the method. Indeed, in each
iteration, a relaxation to MP is solved, then the objective function is a valid lower bound of
the MP. On the other hand, if the solution x is feasible in the subproblem, then it is a feasible
point in the MP. Thus, the sum of both cTx and the objective solution associated with the
subproblem provides an upper bound to the MP. Following with the method, the relaxed
master problem (RMP) with a subset of constraint (1.20) and (1.21) are defined. Solving
RMP yields an optimal solution (x∗, ν∗). The model (1.14) is solved as a separate problem to
determine the most violated constraint by the current optimal solution is used.

(RMP ) min cTx+ ν (1.23)
s.t. Ax = b (1.24)

ν ≥ πTe (d−Bx) ∀e ∈ I1 ⊆ E (1.25)
0 ≥ rTq (d−Bx) ∀q ∈ I2 ⊆ Q (1.26)
x ≥ 0 and integer (1.27)

Thus, solving SP provides v(SP (x)) the value of optimal solution and λ = π, the optimal
solution that attains that value. One of the three following cases may occur:

1. If v(SP (x)) ≤ ν∗ then x∗ is an optimal solution to MP .
2. If v(SP (x)) > ν∗ then adding the constraint ν ≥ πT (d−Bx) to RMP and reoptimize.
3. if v(SP (x)) is unbounded then there exists an extreme ray r such that r(d−Bx∗) > 0.

Add r(d−Bx) ≤ 0 to RMP and reoptimize.

Unfortunately, in many cases, the cut generation presents slow convergence, mainly because
the cuts added are not tight enough, which increases the progressive number of constraints
increasing the computer time to solve each iteration. For this reason, many works aim to
find a smart way to select better cuts in each iteration for reducing computational time.
Other aspects that influence the performance of the method are ineffective initial iterations,
zigzagging behavior of the primal solutions and slow convergence at the end of the algorithm,
and upper bounds that remain unchanged in successive iterations because equivalent solutions
exist [101].

Particularly, the branch-and-cut embedded bender decomposition method sometimes
generates cuts that are not as tight, not improving the gap between the upper bound and
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the dual lower bound. In particular, the traditional cut generation scheme proposed by [82]
performs poorly because the dual lower bound computed at each iteration can be erratic,
resulting in slow convergence.

To improve this performance, stabilization procedures have been proposed at the root
node, whose purpose is to reduce the number of times the splitting problems are solved. It
has been studied that the convergence of the global strategy is highly dependent on the world
chosen to be separated at each iteration [48]. Therefore, one way to improve the performance
is by implementing a simple stabilization process as proposed by [11].

In this case, for the root node, we assume a fractional solution aout obtain of the master
problem, and a feasible solution ain for the original MILP. Then, instead of trying to separate
aout, one can try to separate an intermediate point between the aout and the feasible point ain
obtained by a convex combination of the two, i.e:

asep = λaout + (1− λ)ain

where λ ∈]0; 1]. Note that when λ = 1, it is equivalent to performing no stabilization. While
the smaller the value of lambda, the more aggressive the stabilization performed, since point
one introduced in the separation problems is closer to a feasible solution. Algorithm 1.4.2
shows the pseudocode of this stabilization procedure.

Algorithm 1 Cut loop stabilization procedure (4.8)
1: Input Current (fractional) solution aout, Feasible solution ain
2: Set value of λ ∈]0, 1]
3: Construct asep = λaout + (1− λ)ain
4: Solve the separation problem
5: if separation problem is unbounded then
6: Generate feasibility cut
7: elseGenerate optimality cut
8: end if
9: if ∃ generated cut which is violated by asep then

10: add cut to master problem
11: end if
12: if No cuts have been added then
13: Update ’interior’ point: ain = asep
14: end if

Similarly, the absence of stabilization can lead to slow convergence, as is the case with
Kelley’s scheme; too aggressive stabilization can cause one to spend too much time solving
separation subproblems that do not generate violated cuts. Therefore, it is important to
properly tune the value of lambda for good performance of the stabilization procedure.
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Chapter 2

Lagrangian relaxation for product line
optimization with multiples sites

To differentiate from others, retailers need to adjust their decisions according to the
customers’ demands and needs. Nowadays, seeing the amount of data collected, it is possible
to meet this challenge in different areas. The question that arises here, therefore, is how to
use this information. Particularly, companies have to decide where to allocate each product
- which is known as the Product Line Design Optimization (PDLO)- assuming that there
are varied preferences in each local area, such as taste, age, social, economic, or others. At
the same time, people may go to closest-from-home stores, searching for a lower price or
purchase the product they need, assuming the cost of travel. If the companies could use this
information, they would reduce possible inventory costs due to slow product turnover, which
may imply lower prices to increase turnover, this way, reducing its profits.

The aforementioned problem can be represented by an approach of bi-level programming,
which can frame the effects of two agents that must make decisions, directly affecting each
other and having conflict objectives. In this case, one agent makes the decision, first, and
the second agent acts accordingly. Given this, the firm decides to allocate the products in its
store; subsequently, each customer decides, assuming that they know where the product can
be found.

In this chapter we study the use of a Lagrangian relaxation solution method for the PLOMS
problem. We begin presenting the problem, its bi-level formulation and three different single-
level formulations in Section 2.1. In Section 2.2, the proposed solution methods are described.
Computational experiments that compare the different formulations and methods is explained
in Section 2.3. Finally, we present our conclusions and possible lines of future work in Section
2.4.

2.1 Problem definition and formulations
This section presents a description of the Product Line Optimization in Multiple Stores

(PLOMS) problem considered in this work. We provide three different formulations for the
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PLOMS problem and introduce valid inequalities that are used later.

2.1.1 Problem description
A company or brand owns a set J of stores geographically distributed throughout a region.

A set K indicates all products in a category, e.g., TV sets of specific screen size. All the
products in this set are imperfect substitutes of another one and differ in secondary features
and price. Let πj,k be the unit price of product k ∈ K at store j ∈ J . There are capacity
constraints, indicating that each store j ∈ J can display (and offer) up to pj products of the
set K.

Moreover, there is a set I of consumers or potential clients. The travel cost from consumer’s
location i and the target store j is dij . Each purchaser i ∈ I is interested only in those products
in a set Ki ⊂ K and has a reservation price rik per product k in Ki. The customers will buy
at most one unit of product at one store, provided that the full cost (price plus travel cost) of
the purchase does not exceed the reservation price for that product. Each consumer chooses
the product and store that maximises their utility (i.e., the surplus obtained), subtracting the
product’s full cost from the reservation price. The firm must then decide what products in K
to display at each store to maximise its revenue.

Tables 2.1 and 2.2 present the set and parameter notation used in this work.

Table 2.1: Set notation
I set of clients
J set of stores
K set of products
Ki set of products client i ∈ I is interested in

Table 2.2: Model parameters
dij round-trip distance between client i ∈ I and store j ∈ J
pj maximal number of products assigned to store j ∈ J
πj,k unit price for product k ∈ K in store j ∈ J
rik reservation price of client i ∈ I for product k ∈ K

2.1.2 Bilevel model formulation
This problem can be formulated as a linear bilevel program, where the company acting as

an upper-level decision-maker decides the allocation of products to each store. At the lower
level, the customers decide which products to purchase. For this purpose, let us first introduce
two sets of binary decision variables. For i ∈ I, j ∈ J , k ∈ Ki, xijk is a binary variable equal
to 1 if client i selects product k at mall j. For j ∈ J , k ∈ K, yjk is a binary variable equal to
1 if product k is present at mall j, 0 otherwise.

Then, we have the following bilevel optimization formulation with multiple independent
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followers:

max
∑
i∈I

∑
j∈J

∑
k∈Ki

πjkxijk (2.1a)

s.t.
∑
k∈K

yjk ≤ pj (j ∈ J ) (2.1b)

yjk ∈ {0, 1} (j ∈ J , k ∈ K) (2.1c)

for each i ∈ I we have
max

∑
j∈J

∑
k∈Ki

(rik − πjk − dij)xijk (2.1d)

s.t.
∑
j∈J

∑
k∈Ki

xijk ≤ 1 (2.1e)

xijk ≤ yjk (j ∈ J , k ∈ Ki) (2.1f)
xijk ∈ {0, 1} (i ∈ I, j ∈ J , k ∈ Ki) . (2.1g)

Here the upper level objective function (2.1a) maximizes the profit of the company subject
to constraint (2.1b) which limits the units to display in each store j ∈ J and the purchase
decision of each customer obtained from the lower level problem. For each i ∈ I, the lower
level maximizes the customers utility (2.1d) (i.e., the reservation price minus the price and
travel cost), subject to constraint (2.1e) that limit purchase to at most one product and
constraint (2.1f) that forces customer i to purchase product j in store k only if is available.
Meanwhile, the constraints (2.1c) and (2.1g) declare the binary nature of the variables y and
x, respectively.

Note that customer i ∈ I would not purchase a product for which the reservation price
rik is smaller than the price πjk plus the travel cost dij. It is interesting to remark that the
optimal solution would never have the same product in one store with different markdowns.
If one product had two prices in the same store, buyers would purchase only the least costly
option since it would give them the most utility. We can define the set of products/locations
that are attractive to customer i as: Ti = {(j, k)|rik − πjk − dij ≥ 0} . With this notation we
can set xijk = 0 if (j, k) 6∈ Ti. We can express (2.1a), (2.1d) and (2.1e) as:

∑
i∈I

∑
(j,k)∈Ti

πjkxijk

∑
(j,k)∈Ti

(rik − πjk − dij)xijk
∑

(j,k)∈Ti

xijk ≤ 1 .

Note that constraints (2.1f) are in the second level problem. If they were considered in the
first level problem, then the follower problem’s solution is independent of the leader decisions.
In this case, the first level problem is either feasible, with a value determined by the second
level problem, or there is no solution to the problem.
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2.1.3 Single-level model formulation
Since customers purchase at most one product, we assume they will purchase the product

with the best utility from the subset A = {(j, k)|yj,k = 1} of products available by the company
in each store, which means they will select the pair (j∗, k∗)i = arg max{rik − πjk − dij|(j, k) ∈
Ti∩A}. Considering this, we can establish an optimality constraint that identifies the purchase
decision of each customer and allows us to transform the bi-level model into a single-level
model

We now replace the second level optimization problem by setting constraints on the first
level and second level variables that force the second level variables to be optimal. For all
i ∈ I, we rank the pairs (j, k) ∈ Ti according to the following order relation:

(j, k) ≺ (j′, k′) if and only if rik − αjkπj,k − dij ≤ rik′ − αj′k′πj′,k′ − dij′

This means that (j′, k′) is greater than (j, k) if it provides a larger reward for customer
i ∈ I. Then, we define the set of preferred products to (j, k) ∈ Ti for client i ∈ I by
Bijk = {(j′, k′) ∈ Ti|(j, k) � (j′, k′)}. Note that (j, k) ∈ Bijk. Given a vector of integer
variables yjk for j ∈ J , k ∈ K, a vector x feasible for the second level problem (2.1d)-(2.1g)
is optimal for this problem if and only if it satisfies the following set of constraints:∑

(j′,k′)∈Bijk

xij′k′ ≥ yjk i ∈ I, (j, k) ∈ Ti (c-opt)

Alternatively, we define the set of products that are not preferable to (j, k) ∈ Ti for client i ∈ I,
that is Wijk = {(j′, k′) ∈ Ti|(j, k) � (j′, k′)}, so that Wijk ∩ Bijk = ∅ and Ti = Wijk ∪ Bijk.
The set of not preferable products, including (j, k), is denoted by W∗ijk = Wijk ∪ {(j, k)}.
Then, ∑

(j′,k′)∈Bijk

xij′k′ +
∑

(j′,k′)∈Wijk

xij′k′ ≥ yjk +∑
(j′,k′)∈Wijk

xij′k′ i ∈ I, (j, k) ∈ Ti
∑

(j′,k′)∈Ti

xij′k′ ≥ yjk +∑
(j′,k′)∈Wijk

xij′k′ i ∈ I, (j, k) ∈ Ti (2.2)

By constraints (2.1e), the left-hand side of (2.2) is smaller than or equal to 1, and the previous
set of constraints can be rewritten as

yjk +
∑

(j′,k′)∈Wijk

xij′k′ ≤ 1 (i ∈ I, (j, k) ∈ Ti) (c-opt-worse)

Finally, constraint (c-opt-worse) can be strengthened as follows:∑
(j′,k′)∈Wijk

xij′k′ +
∑

(j′,k′)∈Wii′jk

xi′j′k′ + yjk ≤ 1 (i, i′ ∈ I, (j, k) ∈ Ti) (c-opt-worse2)

where Wii′jk = Wi′jk ∩ Bijk. Note that this inequality is satisfied when ∑(j′,k′)∈Wijk
xij′k′ = 1,

because, in that case, for (j′, k′) and (j, k) ∈ Ti, it holds that yj′k′ = 0 ∀(j′, k′) � (j, k). Then,∑
(j′,k′)∈Wi′jk∩Bijk

xi′j′k′ = 0.

Although, logically, the previous three sets of constraints are equivalent, we later show that
these formulations lead to differences in solution times. This gives the following equivalent
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single-level integer programming formulation:

(M1) max ∑
i∈I

∑
(j,k)∈Ti

πj,kxijk (2.3a)
s.t. ∑

k∈K yjk ≤ pj (j ∈ J ), (2.3b)∑
(j′,k′)∈Bijk

xij′k′ ≥ yjk (i ∈ I, (j, k) ∈ Ti) (2.3c)
xijk ≤ yjk (i ∈ I, (j, k) ∈ Ti), (2.3d)∑

(j,k)∈Ti
xijk ≤ 1 (i ∈ I), (2.3e)

xijk ∈ {0, 1} (i ∈ I, (j, k) ∈ Ti), (2.3f)
yjk ∈ {0, 1} (j ∈ J , k ∈ K). (2.3g)

If constraint (2.3c) is replaced by constraint (c-opt-worse), the model becomes (M2), and
if the same constraint is replaced by constraint (c-opt-worse2), the model is (M3).

2.2 Lagrangian relaxation approach
Lagrangian relaxation (LR) has shown to be an efficient method when solving location

problems [55], [44]. The Lagrangian relaxation method relaxes a set of hard constraints,
the violation of which is penalised in the objective function by weighting them with the
Lagrangian multipliers. To find the best Lagrangian multipliers (Dual Lagrangian problem),
a popular approach is the subgradient method [63].

We propose and compare three variants of LR for model (M2). For these three variants,
we use the Kiev subgradient method described in Algorithm 2), which considers the last two
iterations to update the Lagrangian multiplier. We now describe this method, which is later
used as the function subgradient-method() in the full Lagrangian relaxation method:

Λt =ω if t = 0

Λt =Λt−1 − s0
δt

||δt||
if t = 1

Λt =Λt−1 − st−1
βδt−1 + (1− β)δt−2

||δt||
otherwise

where Λt is the Lagrangian multiplier vector in iteration t, ω represents the vector of dual
variables of the relaxed constraints, δt is the gradient in iteration t, and 0 < β < 1. Let
st be the step of the iteration t, st−1 = γt−1

z∗LB−zUB(Λt−1)
||gt−1|| where z∗LB be is the value of the

best lower bound (feasible), and zUB(Λt−1) is the value of the iteration’s upper bound. With
0 < γt−1 ≤ 2. If z∗LB does not change in t iterations, then γt = αγt−1 with 0 < α ≤ 1.

In Algorithm 2, no-improvement() is true if z∗LB has not improved in a preset number of
recent iterations (we used 30). {xUB, yUB} is the solution of LR() with the current vector
Λ of multipliers, and ZUB is its value. The function feasible() finds a feasible solution
{xLB, yLB}, with an objective value ZLB. Z∗LB is the best feasible solution found. In the
remainder of this Section, we describe three different ways of relaxing the PLOMS problem
and explain the feasibility heuristic used and.
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Algorithm 2 Lagrangian Relaxation method
Λ = Λ0 . dual variables of the relaxed constraints
t = 0, π = 0.1, stop = False
while t < tmax or stop = False do
{ZUB, (xUB, yUB)} = LR(Λ) . returns the solution of the iteration
δ = gradient(xUB, yUB) . calculates the gradient
{ZLB, (xLB, yLB)} = feasible(xUB, yUB) . returns a feasible solution
if ZLB > Z∗LB then

Z∗LB, {x∗LB, y∗LB} = ZLB, {xLB, yLB}
end if
if no-improvement() then

π = 0.9 · π
end if
if δ · Λ < ε then

stop = True
else

Λ = subgradient-method(ZUB, Z∗LB, δ) . Kiev-subgradient method
end if
t = t+ 1

end while

2.2.1 Lagrangian Relaxation LR1

In the first variant of Lagrangian relaxation we relax constraints (c-opt-worse) of formulation
(M2) and add them to the objective with nonnegative Lagrangian multipliers λijk. The
formulation of the Lagrangian relaxation (LR1) is

(LR1) L1(λ) =max
∑
i∈I

∑
(j,k)∈Ji

πjkxijk (2.4)

+
∑
i∈I

∑
(j,k)∈Ji

λijk

1−
∑

(j′,k′)∈Wijk

xij′k′ − yjk



=max


∑
i∈I

∑
(j,k)∈Ji


πjk − ∑

(j′k′)∈B̂ijk

λij′k′

xijk − λijkyjk

 (2.5)

+
∑
i∈I

∑
(j,k)∈Ji

λijk

subject to constraints (2.3b), (2.3d)-(2.3g), where B̂ijk = Bijk \ {(j, k)} is the set of pairs that
are strictly better than pair (j, k). This Lagrangian relaxation cannot be decomposed. The
optimal solution to (LR1) is found using Branch and Bound.

2.2.2 Lagrangian relaxation LR2

In this variant, constraints (c-opt-worse) and (2.3d) of formulation (M2) are relaxed and
weighted in the objective by nonnegative Lagrangian multipliers λijk and γijkl. The formulation
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of the Lagrangian relaxation (LR2) is

(LR2) L2(λ, γ) =max
∑
i∈I

∑
(j,k,l)∈Ji

πjkxijk +
∑
i∈I

∑
(j,k)∈Ji

γijk (yjk − xijk) (2.6)

+
∑
i∈I

∑
(j,k)∈Ji

λijk

1−
∑

(j′,k′)∈Wijk

xij′k′ − yjk



=max


∑
i∈I

∑
(j,k)∈Ji

πjk − ∑
j′k′∈B̂ijkl

λij′k′ − γijk

xijk
 (2.7)

+ max
∑
i∈I

∑
(j,k)∈Ji

(γijk − λijk) yjk

+
∑
i∈I

∑
(j,k)∈Ji

λijk

subject to constraints (2.3b), (2.3e)-(2.3g). Recall that B̂ijk = Bijk \ {(j, k)}.

This Lagrangian relaxation problem can be decomposed into separate subproblems, one
to decide the product allocation variables (yjk) and the other the customer choice variables
(xijk). The formulation of the subproblem for variables (x) is written as:

(LR2)xi
L2
xi

(λ, γ) = max
∑

(j,k)∈Ji

fxijkxijk (2.8)

subject to constraints (2.3e), (2.3f), where the index i is fixed for each subproblem and
fxijk = πjk−

∑
j′k′∈B̂ijkl

λij′k′ − γijk. The optimal solution to each subproblem (L2
xi
) is obtained

by making each customer i ∈ I choose the pair (j, k) ∈ Ji with the best value of fxijk.

The formulation of the subproblem (y) is as follows:

(LR2)yj
L2
yj

(λ, γ) = max
∑
i∈I

∑
(j,k)∈Ji

f yjkyjk ,

subject to constraints (2.3b), (2.3g), where the index j is fixed for each subproblem and
f yjk = γjk − λjk. The optimal solution to each subproblem (LR2

yj
) is found when the first

pj products with best f yjk > 0 values are selected for each store j ∈ J . Both subproblems
(LR2)xi

and (LR2)yj
have the integrality property; therefore, the optimal value of each (LR2)

is equal to the optimal value of its linear relaxation.

2.2.3 Lagrangian relaxation LR3

The last Lagrangian relaxation variant is obtained, relaxing (c-opt-worse) and (2.3e) from
formulation (M2), with nonnegative Lagrangian multipliers λijkl and θi. The formulation of

38



the Lagrangian relaxation (LR3) is

(LR3) L3(λ, θ) =max
∑
i∈I

∑
(j,k)∈Ti

πjkxijk +
∑
i∈I

θi

1−
∑

(j,k)∈Ji

xijk

 (2.9)

+
∑

(j,k)∈Ji

λijk

1−
∑

(j′,k′)∈Wijk

xij′k′ − yjkl



=max


∑
i∈I

∑
(j,k)∈Ji


πjk − ∑

(j′k′)∈B̂ijkl

λij′k′ − γijk

xijk

 (2.10)

−max
∑
i∈I

∑
(j,k)∈Ji

λijkyjk

+
∑
i∈I

θi +
∑

(j,k)∈Ji

λijk


subject to constraints (2.3b), (2.3d), (2.3f), (2.3g), where B̂ijkl = Bijk \ (j, k). To find the
optimal solution to the subproblem, for each pair (j, k) define

gyjk =
∑
i∈Tjk

max{πjk −
∑

(j′k′)∈B̂ijk

λij′k′ − θi, 0} − λijk

where Tjk = {i ∈ I|(j, k) ∈ Ti} represents the set of clients that have product k in store
j among their preferences. Then, for each j ∈ J , choose the pj products with best value
gyjk > 0. Once this is done, variables x are assigned as follows:

xijk =
1 if yjk = 1 and πjk −

∑
(j′k′)∈B̂ijk

λij′k′ − θi > 0
0 otherwise .

Note that the subproblem (LR3) has the integrality property. Therefore, the optimal value of
(LR3) is equal to the optimal value of the linear relaxation of the original problem.

We highlight that the Lagrangian relaxations for model (M1) are similar to those shown
above for (M2). In the previous experiments, we note that the results for (M1) are slightly
worse than those for (M2). For the case of (M3), in earlier computational experiments, the
multiplier update occupies a lot of time, harming the performance of the Lagrangian relaxation
method, which is explained by a large number of constraints (c-opt-worse2).

2.2.4 Feasible solution
The subgradient algorithm requires a feasible solution on each iteration to update the

Lagrangian multipliers. The heuristic describes below use the solution of the subproblem to
find a feasible solution.

Note that for the three formulations mentioned above, the set of pairs store/product
selected (yUB) is feasible at each iteration since satisfying the capacity constraint. Therefore,
we require only set up the purchasers’ decision to obtain a feasible solution, which means they
must decide what product and which store maximizes their utility. Hence, we define the set
the set of pair store/product Pa = {(j, k)|yUBjk = 1 (j, k) ∈ J × K} at the current iteration.
The customer choice procedure is illustrated in Algorithm 3.
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Algorithm 3 Feasibility heuristic
1: for i ∈ I do
2: Fi ← Pa ∩ Ti
3: for (j, k) ∈ order-clients(Fi) do . orders the couples in Fi by decreasing utility
4: (xLBijk , yLBjk )← (1, 1) . picks the best
5: break
6: end for
7: end for
8: ZLB ← objective(xLB, yLB) . returns the value of objective function

The feasible solution obtained by this heuristic is not a tight bound. Hence, two simple
local changes to improve it are used. In the first local change, we checked if eliminating a
duple (j, k) ∈ Pa improves the feasible solution. The second local change consists of checking
if adding a pair (i, j) to Pa improves the solution, provided that there is spare capacity at
store j. With these two simple local changes, we obtained a reasonable, feasible solution.

The feasible solution obtained by this heuristic is not a tight bound. Hence, two simple
local changes to improve it are used. In the first local change, we tested if removing a pair
(j, k) ∈ Pa improves the feasible solution. The second local change consists of checking if
adding a pair (i, j) to the set Pa improves the solution, provided that there is spare capacity at
store j. With these two simple local changes, we obtained a reasonable and feasible solution.

Furthermore, it is also possible to find a feasible solution by solving the original problem
without constraints (2.3b) and only for the set Pa. In the previous experiment, we observed
that the heuristic described above provides, in less time, a better solution than solving the
original reduced model to optimality.

2.3 Numerical Experiments

This Section presents computational results obtained with the original problem’s different
formulations and the Lagrangian relaxation approach. The experiments were run on an Intel
Xeon multicore machine with 16 gigabytes RAM running the CentOS release 6.7 and a Linux
operating system, with 32 processors running at 2.00 gigahertz. Note that GUROBI was set
to use a single processor, and multiple processes were run simultaneously on the machine.

2.3.1 Random instance

We first implemented a random instance generator, which we describe next. Let I be the
number of clients, J be number of products, K be number of stores, r and r be the minimum
and maximum reservation price respectively, and π and π be the minimum and maximum
price respectively. For each product k and client i, we chose rik ∈ {r, r} uniformly distributed.
For each store j and product k, we chose πjk ∈ {π, π}. The travel cost dij from client i to
store j was also randomly distributed in {d, d}. The distribution is uniform.
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2.3.2 Solving the Original problem
Recall that if a product is not attractive for any client then it is not considered. That is

the set of possible products is K = {k|∃i ∈ I, j ∈ J s.t. (j, k) ∈ Ti}. Before solving the three
formulations for the original problem ((M1), (M2) and (M3)), we perform the prepossessing
that decreases the number of constraints.

For the models (M1) ((M2)), the following prepossessing was applied:

• If |Wijk| = 0 (|Bijk| = Ti) then the pair (j, k) is the worst for client i. Then constraint
(2.3c) ((c-opt-worse)) becomes yjk ≤ 1, and it can be removed.

• If |Wijk| = |Ti| − 1 (|Bijk| = 1), then the pair (j, k) is the best option for client i. Then,
constraint (2.3c) ((c-opt-worse)) becomes yjk ≤ xijk, but by (2.1f) yjk ≥ xijk, and it can
be removed and replaced by the equivalent constraint yjk = xijk.

For the model (M3), the following prepossessing was applied:

• If |Wii′jk| = 0 and |Wijk| = 0, then the pair (j, k) is the worst for client i. Then
constraint (c-opt-worse2) becomes yjk ≤ 1, and it can be removed.

• If |Wii′jk| = 0 and |Wijk| 6= 0, then the constraint (c-opt-worse2) becomes equal to the
constraint (c-opt-worse) and can be removed.

• If |Wii′jk| 6= 0 and |Wijk| = 0, then the constraint (c-opt-worse2) becomes equal to the
constraint (c-opt-worse) and can be removed.

• If |Wijk| = |Ti| − 1 and |Wii′jk| = 0, then the pair (j, k) is the best option for client i.
Then, constraint (c-opt-worse2) becomes yjk ≤ xijk, but by (2.1f) yjk ≥ xijk, both are
removed and replaced by the equivalent constraint yjk = xijk.

Computational study

The MIPs were solved by GUROBI 7.5.1 in single-thread mode. The tests were run using
a limit of 60 minutes of CPU time. The codes were implemented in Python. In this case,
π = 400 and π = 1000; r = 500 and r = 2000; d = 10 and d = 100; d = 1 and d = 0.2 · |K|.

We solved instances with 200, 300 or 600 clients; 80 or 150 products; and 4 stores with at
most 5 products displayed in each store. For each problem size, we solved for 10 randomly
generated instances. We compare the solution quality and time for models (M1), (M2)
and (M3) in Table 2.3. We use the following notation: GAP is the average of gap of the
each instance where gap = 100UB−LB

LB
%; GAP is the average of gap of each instance where

gap = 100LB−LB
LB

%; GAP is the average of gap of each instance where gap = 100UB−LB
LB

%.
For a given instance, UB is the best upper-bound value found, LB is the best lower-bound
value found and LB is the best lower-bound value found between all models. Finally, tLP is
the average spent time (sec.) to obtain the optimal solution of the linear relaxation of the
model considered.

(M3) has the best GAP in all cases that obtain the solution; that is, it found the best upper
bound between all formulations. However, this model’s number of optimality constraints is
much larger than the corresponding number in models (M1) and (M2). Due to this large
number of constraints, the time required to obtain the linear relaxation solution is greater
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Table 2.3: Averages GAP, GAP , GAP and tLP (sec) for several test instances. |K| = 4 and
pj = 5 ∀j ∈ J .
Instance (M1) (M2) (M3)
|I| |J | GAP GAP GAP tLP GAP GAP GAP tLP GAP GAP GAP tLP

200 80 3.08 -0.19 2.88 11.21 2.00 -0.05 1.95 8.16 6.94 -4.05 1.28 332.12
200 150 3.62 -0.13 3.49 34.66 3.48 -0.24 3.24 27.72 3.01 -0.52 2.46 1206.09
300 80 4.24 -0.22 4.01 27.33 3.12 -0.02 3.10 27.14 2.31 -0.09 2.22 1 1383.68
300 150 5.46 -0.07 5.38 89.93 5.95 0.00 5.95 87.07 – – – 3575.15
600 80 6.05 -0.19 5.85 149.02 5.24 0.00 5.24 96.02 – – – 3600.00
600 150 7.50 0.17 7.68 545.80 7.03 0.31 7.36 503.80 – – – 3600.00

than the experiment’s time (3600 sec.).

Since in the results, model (M2) obtains a better GAP and GAP in almost all cases and
is faster linear relaxation than (M1), we use (M2) from now on. In the following Section, we
use Lagrangian relaxation on this model in three versions.

2.3.3 Lagrangian Relaxation approach
We run experiments using the same random test set described above. Table 2.4 shows the

summary of the computational experiments. We compared the results of formulation (M2)
with different Lagrangian approaches. Both LR2 and LR3 did not obtain good results due to
the integrality property. On the other hand, in the large instance, LR1 obtained better GAP
than (M2), but worse GAP than (M2); that is, the upper bound with LR1 is better than
(M2), but the lower bound is worse than (M2).

Table 2.4: Average comparison of GAP of the different Lagrangian relaxation formulations
with the MIP
Instance (M2) (LR1) (LR2) (LR3)
|I| |J | GAP GAP GAP GAP GAP GAP GAP GAP GAP GAP GAP GAP

200 80 2.00 -0.05 2.88 5.49 -1.25 4.17 11.83 -6.46 4.59 11.76 -6.41 4.59
200 150 3.48 -0.24 3.49 4.72 -1.33 3.32 15.00 -9.24 4.35 14.78 -9.08 4.35
300 80 3.12 -0.02 4.01 5.62 -1.47 4.06 12.98 -7.05 4.99 13.40 -7.40 4.99
300 150 5.95 0.00 5.38 4.90 -1.13 3.71 16.21 -8.97 5.78 16.29 -9.02 5.78
600 80 5.24 0.00 5.85 5.72 -1.69 3.92 14.28 -7.09 6.17 14.43 -7.22 5.85
600 150 7.03 0.31 7.36 2.81 -0.98 2.11 16.81 -7.15 6.23 16.83 -7.32 6.23

2.4 Conclusions
In most cases, the problems of assortment planning do not consider the cost of travel for

customers. Furthermore, most of the preliminary works considered that the brand covers only
one store. The model explained in this chapter incorporates the travel cost as part of the
purchaser’s utility and a company that covers more than one store. The customers can decide
to travel farther away to purchase at a lower price or perhaps obtain an unavailable product
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at their neighbouring store. Previously published models cannot embrace this behaviour, and,
in our thoughts, they lead to assortments that attract more customers. A bi-level formulation
is proposed, considering the interaction between the choice of the client and the brand. Due to
its structure, we can obtain a single level formulation. In this case, three different single-level
formulations are suggested.

The computer results exhibit that formulation (M3) is the tightest. However, it generates
a large number of constraints that make it inefficient on large-scale instances. Because of this
handicap in (M3), the model (M1) was chosen for large-scale development. A Lagrangian
relaxation approach is presented to resolve it. The computer results show that it yields
favourable results for large instances.

There are several directions to expand the research in this chapter. It was reasonable for
simplicity reasons to consider that clients buy at least one unit of the products. However,
it is more common that customers will buy different products. It is also interesting to
consider the case in which customers buy a bundle of products. There are several possibilities:
the purchases can pay for all of the products in the bundle in one mall or different malls
and incorporate the travel cost in their decision. From an algorithmic point of view, other
lines or research are related to methods that exploit the characteristics of the model (M3).
Additionally, extra preprocessing could be attempted in order to reduce redundant constraints
and the size and depth of the problem.
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Chapter 3

Cut generation to product line
optimisation with multiples site

3.1 Introduction1

In chapter 2, we introduced the multi-product location case. It describes the decision made
by a firm to allocate products in a group of stores, which hold a limited capacity to exhibit
them, along with the customers’ choice of buying the best and most useful product, including
its full reservation price, product and travel cost. Therein a bi-level formulation is presented,
which is collapsed to a single level formulation with mixed-integer optimisation.

In this chapter, we focus on the solution method through a single-level formulation. We
based this work on two main ideas. First, a ranking-based formulation is presented in [12]
for the Product Line Design (PLD) problem where each client’s utility is introduced in the
formulation as a constraint. These previous approaches [12] and [94] are compared in [14],
which also introduces a strong formulation for [12]. A Benders Decomposition (BD), together
with an efficient algorithm, is used to solve the problem, where the master problem defines
the available products, and a separated slave problem solves each client’s purchase decision.
The efficiency of the BD is evaluated on synthetic data, providing good results. Furthermore,
note that the structure of the PLOMS is similar to that of the Facility Location Problem with
Clients’ Preferences (FLPCP). In the FLPCP, the supplier should decide what facility to open,
considering that each client will choose the facility according to her preferences. Among the
main differences between FLPCP and PLOMS, it is remarkable that in the first, (i) facilities
have an opening cost; (ii) the clients can purchase at any facility and; (iii) the facilities have
unlimited capacity. Valid inequalities for the FLPCP are developed in [30] and [118], for their
use within a Branch & Cut solution procedure.

We adapt valid inequalities that have been used for the Facility Location problem with
Preferences to solve our problem using Branch and Cut (B&C) and Cut and Branch (C&B)

1This work has been partially funded by grants ANID-PFCHA/Doctorado Nacional/2016 # 21161328;
INRIA Associated Team BIPLOS; CONICYT PIA AFB180003; FONDECYT 1190064; Fonds de la Recherche
Scientifique -FNRS under Grant PDR T0098.18, and the the supercomputing infrastructure of the NLHPC
(ECM-02) of the Universidad de Chile. M.L.C. and H.X.
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methods. We compare the B&C and C&B with existing Benders’ decomposition methods
that have been used only for the single-store case.

Section 3.2 presents the problem together with some valid inequalities. In Section 3.3,
the proposed solution methods are described. Computer testing comparing the different
formulations and methods is presented in Section 3.4. Finally, we present our conclusions and
lines for future work in Section 3.5.

3.2 Valid inequalities
3.2. VALID INEQUALITIES

The collapsing of the two levels of the problem into one gives the following equivalent
single level integer programming formulation:

(M1) max ∑
i∈I

∑
(j,k)∈Ti

πj,kxijk (3.1a)
s.t. ∑

k∈K yjk ≤ pj (j ∈ J ), (3.1b)∑
(j′,k′)∈Bijk

xij′k′ ≥ yjk (i ∈ I, (j, k) ∈ Ti) (3.1c)
xijk ≤ yjk (i ∈ I, (j, k) ∈ Ti), (3.1d)∑

(j,k)∈Ti
xijk ≤ 1 (i ∈ I), (3.1e)

xijk ∈ {0, 1} (i ∈ I, (j, k) ∈ Ti), (3.1f)
yjk ∈ {0, 1} (j ∈ J , k ∈ K), (3.1g)

Remember that the set of constraints (3.1c) models the decision problem of the buyers,
representing the fact that they purchase the best available combination of product/location,
in terms of utility. In words, constraint (3.1c) requires that, given a buyer i and a combination
product/location (j, k), if the product k is available at store j, i.e., yk,l = 1, then the buyer
must purchase this product/location unless there is another combination with a better utility.
Considering the set Wijk, which is the complementary set of Bijk, constraint (3.1c) can be
replaced for the following constraint:

yjk +
∑

(j′,k′)∈Wijk

xij′k′ ≤ 1 i ∈ I, (j, k) ∈ Ti (3.2)

where, in contrast with the previous one, states that if the pair product/location (j, k) is
available, the buyers will choose no product/location with less utility than (j, k).

Here, we introduce additional valid inequalities for the PLOMS, which are constructed
considering the interaction of more than than one client i ∈ I, to help define tighter equivalent
formulations for the problem.

We strengthen constraint (3.2) by considering the set of product/locations that are worse
than (j, k) for a second client i′ but not for i. That is the set Wii′jk = Wi′jk ∩ Bijk. Using
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this set, similar to [30], we obtain the following set of stronger inequalities:∑
(j′,k′)∈Wijk

xij′k′ +
∑

(j′,k′)∈Wii′jk

xij′k′ + yjk ≤ 1 i, i′ ∈ I, (j, k) ∈ Ti . (3.3)

Note that this inequality is satisfied when ∑(j′,k′)∈Wijk
xij′k′ = 1, because in that case, yj̃,k̃ = 0

for any (j̃, k̃) � (j, k). This means that xij̃k̃ = 0 for any i ∈ I, giving ∑(j′,k′)∈Wi′jk∩Bijk
xij′k′ =

0.

Constraint (3.3) can be generalized to multiple clients, as shown in [30]. Given i1, . . . , is ∈ I,
and (j, k) ∈ Ti1 , then the following inequalities are valid for PLOMS:

∑
(j′,k′)∈Wi1jk

xi1j′k′ +
s∑
t=2

∑
(j′,k′)∈Bi1jk∩

(⋂t

q=2Wiqjk

)xitj′k′ + yjk ≤ 1 . (3.4)

Below, we present valid inequalities that do not arise from strengthening constraint (3.1c).
The next two sets of valid inequalities are stated in propositions that establish relationships
between two customers’ variables.

Considering the sets Bijk, Bi′jk of the best alternatives for (j, k) by customers i, i′, re-
spectively and Bi′jk ⊆ Bijk, if the purchaser i acquires the pair (j, k) means there exists no
pair (j′, k′) ∈ Bijk available, hence the purchaser i′ also acquires the pair (j, k) (because
Bi′jk ⊆ Bijk then there exists no either a product available with best utility for her). The
above is formalized in the following proposition.

Proposition 3.2.1 Let x, y be a feasible solution for M1. Then for i, i′ ∈ I, (j, k) ∈ Ti, we
have

xijk ≤ xi′jk if Bi′jk ⊆ Bijk (3.5)

Proof: Assume that Bi′jk ⊆ Bijk. If xijk = 1 then, with (3.1e), we have that xij′k′ = 0 for
all (j′, k′) ∈ Bijk \ {(j, k)}. This implies that yj′,k′ = 0 for all (j′, k′) ∈ Bijk \ {(j, k)} by using
(3.1c) and that Bij′k′ ⊆ Bijk \{(j, k)} for any such (j′, k′). From xijk = 1, (3.1d) and (3.1c) we
get 1 = yjk ≤

∑
(j′,k′)∈Bi′jk

xij′k′ . This is a contradiction, since (j′, k′) ∈ Bijk \ {(j, k)} by the
hypothesis and, as concluded above, yj′k′ = 0. Therefore xi′jk = 1 completing the proof.

Proposition 3.2.1 generalizes a result in [30] to the case in which the sets of preferred
products are different for each client. When Bijk = Bi′jk, this result can be obtained as a
corollary when repeating Proposition 3.2.1.

Corollary 1 Let x, y be a feasible solution for M1. Then for i, i′ ∈ I, j ∈ J , k ∈ K,

xijk = xi′jk if Bijk = Bi′jk (3.6)

The following result requires the definition of the set Bii′jk = Bijk ∩ Ti′ of product/location
pairs that are preferred to (j, k) for i that are profitable for i′. Note that this set Bii′jk is
empty if Ti ∩ Ti′ = ∅.
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Proposition 3.2.2 Let x, y be a feasible solution for M2. Then for i, i′ ∈ I, (j, k) ∈ Ti, we
have ∑

(j′,k′)∈Wijk

xij′k′ +
∑

(j′,k′)∈Bii′jk

xi′j′k′ ≤ 1 . (3.7)

Proof: Note that if Bii′jk = ∅, (3.7) is true, since it is implied by (3.1e). Let us assume,
therefore, that Bii′jk 6= ∅. If the first sum is equal to one, then there exists (j′, k′) ∈ Wijk

such that xij′k′ = 1. This means, considering (3.2) for (ĵ, k̂) � (j, k), that yĵk̂ = 0 for all
(ĵ, k̂) ∈ Bijk. In particular, yĵk̂ = 0 for all (ĵ, k̂) ∈ Bii′jk. This, and (3.1d) imply that the
second sum is zero. Consider now that the second sum is equal to one. Then, there exists
(j′, k′) ∈ Bii′jk ⊆ Bijk such that xi′j′k′ = 1. Because of (3.1d), yj′k′ = 1, and therefore xiĵk̂ = 0
for all (ĵ, k̂) ∈ Wij′k′ due to equation (3.2). This implies that the first sum is zero, since
(j′, k′) ∈ Bijk means Wijk ⊆ Wij′k′ .

Using the above valid inequalities, we construct two additional equivalent formulations
for the PLOMS. We note that (3.5) has at most ∑i∈I |Ti| total constraints, while (3.7) could
have up to |I|∑i∈I |Ti| total constraints.

We denote by M3 the problem that considers valid inequalities (3.5) and replaces (3.1c)
in M1 with (3.3). This formulation include constraints that model interactions between
pairs of consumers. We also define M4 as the problem that incorporates valid inequalities
(3.5) and replaces (3.1c) in M1 with (3.4), modeling interactions between sets of customers.
These formulations are summarized in Table 3.1. Since constraints (3.2), (3.3), and (3.4) are

Table 3.1: Summary of the different formulations
Model (3.1a) (3.1b) (3.1c) (3.1d) (3.1e) (3.2) (3.3) (3.4) (3.5)
M1 X X X X X
M2 X X X X X
M3 X X X X X X
M4 X X X X X X

increasingly stronger constraints, the corresponding formulations are tighter formulations
of the PLOMS. Our approach to solve large instances of M3 and M4 will consider subsets
of constraints (3.3) and (3.4), respectively. In addition, we consider the effect of including
inequalities (3.7) in these formulations. Since there is a large number of these constraints, we
add them using cutting plane approaches, similar to [118], as we see below.

3.3 Solution methods
3.3. SOLUTION METHODS

The formulations M2, M3 and M4 of the PLOMS problem introduced in the previous
table, represent mixed-integer problems that can be directly handled by a commercial solver.
To efficiently solve large instances, we investigate different decomposition strategies for the
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PLOMS. This Section presents a Benders decomposition strategy that is applicable to M2,
problem reductions for M3 and M4, and a cut generation method for inequalities (3.7). We
finalize with some variable and constraint simplifications for PLOMS.

3.3.1 Existing Benders decomposition method

[14] present a Benders decomposition approach, using a formulation which is similar to
M2, but applies when there is only one store. The master problem in the method prescribes
which products are to be placed in the store, letting the customer’s purchase decision as the
second stage problem, which is separable in |I| independent sub-problems.

An efficient algorithm to solve these sub-problems is presented. This solution method first
assigns to each client the available product with the highest price, using for each customer
a greedy algorithm to solve the dual problem, which generates the Bender’s Cuts that are
added as lazy constraints. To the best of our knowledge, this is the most efficient solution
method available for the one store problem, and we use this solution method as a benchmark
for the solution methods proposed here.

In order to adapt this Benders decomposition method to the multiple-store case, we let
the master problem solve the product availability problem in all stores and pass the solution
to the master problem; the sub-problems depend on each customer’s purchase decision. In
the case of the M2 formulation, these sub-problems remain separable in |I| sub-problems and
can still be solved efficiently, using the algorithm suggested in [14]. In this adaptation of the
Benders decomposition method, each sub-problem can generate a Benders’ optimality cut in
every iteration.

The fact that formulations M3 and M4 include constraints that involve multiple clients,
breaks the sub-problems separability and generates sub-problems that cannot be solved with
the method suggested in [14]. Adapting this solution method of solving these formulations in
the multiple-store case is not straightforward, and become a matter of future research. We
therefore, only consider this Benders decomposition method in formulation M2, and also refer
to it as M2-BD.

3.3.2 Cut generation methods

To reduce the problem size, here we introduce relaxations to problems M3 and M4 by
considering only a subset of constraints (3.3) and (3.4). We also present a cut generation
approach that gradually incorporates constraints (3.7). Cut generation approaches can either
be used to add cuts only at the root node of the branch and bound tree, known as a Cut
and Branch (C&B) approach or used to add cuts throughout the branch and bound tree as
needed, a Branch and Cut (B&C) approach.

The other potentially large set of constraints, (3.5), does not generate computational
difficulties in our experiments, either because they are preceding constraints or because the
condition Bi′jk ⊆ Bijk is difficult to satisfy.
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A subset of constraints (3.3)

Note that for a particular constraint (3.3) to be different from the constraints in (3.2),
it is necessary that Wii′jk 6= ∅. Given the definition of Wii′jk, this set can be large when
the attractive products for two customers overlap significantly. Therefore, the subsets of
constraints (3.3) that are selected, correspond to pairs of clients i, i′ ∈ I with i 6= i′ that have
a large set of common attractive product/locations, i.e. large cii′ = |Ti ∩ Ti′ |.

To find a set of pairs of clients that have a large number of common attractive product/lo-
cations we consider the following optimization problem.

max ∑
i∈I

∑
i′∈I
i 6=i′

ci,i′zi,i′

s.t. ∑
i′∈I
i 6=i′

(zi,i′ + zi′,i) = 1 (i ∈ I)

zi,i′ ∈ {0, 1} ((i, i′) ∈ I, i 6= i′).

The optimal solution for this optimization problem indicates which pair of clients are to be
used to build the subset of constraints (3.3). We include one such constraint for each pair
(i, i′) such that zi,i′ = 1. Note that the number of constraints generated are equal to the
number of constraints in (3.2), since we generated the constrains for (i, i′), (j, k) ∈ Ti and
(i, i′), (j, k) ∈ Ti′ .

A subset of constraints (3.4)

There is a set of constraints (3.4) for every possible group of clients {i1, . . . , ir}. To identify
which groups of them to use to generate the subset of (3.4), we used the following procedure,
introduced in [30].

1. Let (j, k) ∈ J × K and let C = {i1 ∈ I : ∃i2 ∈ I | Wi1jk ∩Wi2jk = ∅, Wi1jk ∩ Bi2jk 6=
∅, Wi2jk ∩ Bi1jk 6= ∅}.

2. We consider the graph obtained from associating a node to each element of C and
an edge to each pair (i1, i2) ∈ C × C such that Wi1jk ∩ Wi2jk = ∅, Wi1jk ∩ Bi2jk 6=
∅, Wi2jk ∩ Bi1jk 6= ∅.

3. We search for a clique {i1, . . . , ir} in this graph and replace the inequalities∑(j′,k′)∈Witjk
xitj′k′+

yjk ≤ 1 for t = 1, . . . , r, with the tighter inequality ∑r
t=1

∑
(j′k′)∈Witjk

xitj′k′ + yjk ≤ 1.
4. Nodes i1, . . . , ir are removed form the graph and the process is repeated with the

remaining nodes until a graph with no edges is obtained.

This procedure modifies constraints (3.2) in step 3 by replacing them with constraints of
the form (3.4). Since at every iteration we are introducing tighter constraints, the resulting
subset of (3.4) implied constraints (3.2).

Cut generation

For the cut generation strategy, we solve the problem M4 adding a subset of constraints
(3.7). Once a solution to this problem is obtained, we check whether any of the remaining
constraints (3.7) is violated. For each client, we generate at most one of the violated constraints,
including it in the formulation. Then, we re-optimize and repeat this procedure until the
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optimal solution satisfies all constraints (3.7). A similar cut generation strategy for constraints
(3.4) was not competitive.

A critical part in constructing an effective cut generation strategy is to be able to quickly
check if there are violated constraints. For the case of constraint (3.7) we begin by noticing
that it is not necessary to check all inequalities indexed in (j, k) ∈ Ti for a given pair i, i′ ∈ I.
For this, we define σi(j, k) as the position of pair (j, k) in the set of preferences Ti (in increasing
order with respect to the utility of client i). Define also, (j, k)imin = arg min

(j,k)∈S
{σi(j, k)} and

(j, k)i′max = arg max
(j,k)∈S∩Ti′

{σi(j, k)}, where S = {(j, k)|xijk > 0 (j, k) ∈ Ti}. We now show that for

any (j, k) 6∈ [(j, k)imin, (j, k)imax] variable x satisfies constraint (3.7).

By definition we have that xij′k′ = 0 for all (j′, k′) ∈ Wi(j,k)i
min

, which implies that∑
(j′k′)∈W

i(j,k)i
min

xij′k′ = 0 hence inequality (3.7) is satisfied. Likewise, xi′jk = 0 for all
(j, k) ∈ Bii′(j,k)i′

max
which implies that ∑(j′k′)∈B

ii′(j,k)i′
max

xij′k′ = 0, hence, inequality (3.7) is
satisfied.

The process of generating cuts by only verifying the range [(j, k)imin, (j, k)imax] for each
i, i′ ∈ I is described in Algorithm 7 below. Note that we add at most one valid inequality for
each client in each iteration. These inequalities were added to the problem as lazy constraints.

Algorithm 4 Cut generation
1: stop = True
2: for i ∈ I and stop = True do
3: S = {(j, k)|xijk > 0 (j, k) ∈ Ti}
4: jkimin = arg min

(j,k)∈S
{σi(j, k)}

5: jkimax = arg max
(j,k)∈S

{σi(j, k)}

6: if y(j,k)i
max < 1 then

7: for i′ ∈ I \ {i} do
8: (j, k)i′max = arg max

(j,k)∈S∩Ti′

{σi(j, k)}

9: for (ĵ, k̂) ∈ Ti ∩ [(j, k)imin, (j, k)i′max] do
10: if ∑(j′,k′)∈Wiĵk̂

xij′k′ = y(j,k)i
max

then
11: break
12: end if
13: if ∑(j′,k′)∈Wiĵk̂

xij′k′ +
∑

(j′,k′)∈Bii′ ĵk̂
xij′k′ ≤ 1 then

14: add cut(i, i′, ĵ, k̂)
15: stop = False
16: break
17: end if
18: end for
19: end for
20: end if
21: end for
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3.3.3 Problem preprocessing
To speed up the solution for these models, we remove or simplify the constraints that are

easy to check, reducing the problem size. In particular we conduct the following simplifications
for model M2:

• If |Wijk| = 0 (|Bijk| = Ti) then the pair (j, k) is the worst for client i. Constraint (3.2)
becomes yjk ≤ 1 and can be removed.

• If |Wijk| = |Ti| − 1 (|Bijk| = 1) then the pair (j, k) is the best option for client i.
Constraint (3.2) becomes yjk ≤ xijk, but by (3.1d) yjk ≥ xijk. Both constraints are
removed and replaced by yjk = xijk.

Similarly, we conducted the following simplification for model M3:

• If |Wii′jk| = 0 and |Wijk| = 0, then the pair (j, k) is the worst for client i. Constraint
(3.3) becomes yjk ≤ 1 and can be removed.

• If |Wii′jk| = 0 and |Wijk| 6= 0, then constraint (3.3) become equal to constraint (3.2)
and could be removed.

• If |Wii′jk| 6= 0 and |Wijk| = 0, then constraint (3.3) becomes equal to constraint (3.2)
and can be removed.

• If |Wijk| = |Ti| − 1 and |Wii′jk| = 0, then the pair (j, k) is the best option for client i.
Constraint (3.3) becomes yjk ≤ xijk, but by (3.1d) yjk ≥ xijk, so both are remove and
replace by yjk = xijk.

3.4 Computational experiments
3.4. COMPUTATIONAL EXPERIMENTS

We now present the computational tests. All the procedures and algorithms have been
written using the language Python and, for MIP problems, we used IBM ILOG CPLEX
version 12.9. The experiments were performed in an Intel Xeon 32 multicore processors,
2.00 GHz speed each and 128 GB of RAM, running the CentOS release 6.7 Linux operating
system. We begin by describing the synthetic data that was used in our experiments. Our
computational results explore the strength of the different formulations and the of existing
Benders decomposition strategies (SubSection 3.4.2), the effectiveness of the constraints
(3.7) in SubSection 3.4.3, and the comparison of the proposed decomposition methods and a
benchmark method on the multiple-store case (SubSection 3.4.4).

3.4.1 Instances: description
The data sets were adapted from Beasley’s OR-Library [11]. Values dij, rk and rki were

built, based on data files pmed10, pmed25 for the uncapacitated warehouse location problem.
|I| nodes were selected randomly as clients. To select |J | nodes as stores, we solved an
uncapacitated p-median problem. The travel cost between each client i and each store j
are trivial to obtain. The remaining parameters were determined as follows: πk ∈ [1.5d, 5d]
and rki ∈ [2di + π, 2di + π], where d is the average of all travel costs, π is the average of all
products prices; di and di the travel cost between the client i and the closest and farthest
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store, respectively. Finally, we fixed a capacity pj , which is the number of products to display,
arbitrarily for each store. Without loss of generality, we fixed all stores with equal capacity,
i.e pj = p ∀j ∈ J .

For the number of customers, stores, products, and capacities, we used the values |I| =
100, 160, 250, 400, |J | = 4, 8, 12, |K| = 20, 30, 40, 50, 80 and pj = p = 5, 10 ∀j ∈ J . We using
small values of capacities to be able to evaluate better the performance of the methods, as
preliminary experiments showed that large capacities decrease the computational time.

Each instance so defined, was run using five different scenarios. Table 3.4.1 shows statistics
of the generated instances, obtained over the five scenarios. The Table is divided in three
blocks displaying the same statistics for 4, 8 and 12 stores. Each block is divided in seven
columns. The first three show minimum, average and maximum number of clients (i) per
pair (j, k), i.e. (product, store), while columns four, five and six show the converse. Column
seven shows the average number of clients with the same set Ti.

Table 3.2: Statistics of generated instances
Instance 4 stores stores 8 stores 12

clients x (j.k) items x clients same
clients

clients x items items x clients same
clients

clients x items items x clients same
clients|I| |K| min avg max min avg max min avg max min avg max min avg max min avg max

100

20 12.2 20.8 28.4 12.2 16.6 28.0 0.6 12.0 20.5 29.2 12.0 32.8 84.0 0.2 11.2 20.5 28.8 11.2 32.8 56.0 0.2
30 11.4 20.6 29.8 11.4 24.7 40.0 0.0 11.0 20.7 29.6 11.0 49.8 120.0 0.0 11.0 20.7 30.4 11.0 49.6 80.0 0.2
40 10.8 20.7 31.4 10.8 33.2 55.6 0.0 9.2 20.3 30.2 9.2 64.9 164.8 0.0 8.6 20.3 30.8 8.6 64.9 109.6 0.0
50 12.2 21.5 31.6 12.2 43.0 72.0 0.0 8.4 20.8 33.8 8.4 83.3 209.8 0.0 9.8 20.8 32.6 9.8 83.3 143.6 0.0
80 10.2 21.1 34.6 10.2 67.4 110.4 0.0 7.6 20.3 31.6 7.6 130.1 327.4 0.0 8.8 20.3 32.2 8.8 130.1 216.4 0.0

160

20 22.8 34.1 45.4 22.8 17.1 28.0 1.6 20.2 33.6 45.4 20.2 33.6 84.0 1.0 19.6 33.6 45.8 19.6 33.6 56.0 1.4
30 19.6 32.1 43.0 19.6 24.1 40.0 0.2 17.8 30.9 43.0 17.8 46.3 120.0 0.0 17.8 30.9 42.6 17.8 46.3 79.8 0.0
40 21.4 33.7 46.0 21.4 33.7 56.0 0.0 15.2 32.5 45.4 15.2 65.1 167.4 0.0 18.6 32.5 46.8 18.6 65.1 110.6 0.0
50 22.2 34.3 46.4 22.2 42.9 72.0 0.0 16.6 33.5 45.8 16.6 83.7 213.0 0.0 19.2 33.5 46.8 19.2 83.7 143.6 0.0
80 21.6 34.2 49.4 21.6 68.4 111.4 0.0 15.4 33.5 48.0 15.4 133.8 326.0 0.0 17.8 33.5 46.4 17.8 133.8 217.6 0.0

250

20 30.8 52.3 67.2 30.8 16.7 28.0 3.4 33.4 51.3 66.6 33.4 32.8 84.0 3.6 31.4 51.3 67.4 31.4 32.8 56.0 2.6
30 30.4 49.6 66.2 30.4 23.8 40.0 0.0 28.2 49.4 67.0 28.2 47.4 120.0 0.0 30.0 49.4 66.8 30.0 47.4 80.0 0.0
40 33.2 50.8 71.4 33.2 32.5 56.0 0.0 28.8 50.2 69.8 28.8 64.2 168.0 0.0 31.6 50.2 69.0 31.6 64.2 112.0 0.0
50 32.6 52.5 73.2 32.6 42.0 72.0 0.0 27.0 52.6 71.4 27.0 84.2 214.2 0.0 28.0 52.6 71.2 28.0 84.2 143.0 0.0
80 28.6 51.3 72.0 28.6 65.7 109.8 0.0 27.0 51.7 71.2 27.0 132.4 327.4 0.0 29.6 51.7 71.0 29.6 132.4 220.4 0.0

400

20 56.6 81.0 103.4 56.6 16.2 28.0 10.0 51.2 79.6 103.8 51.2 31.9 84.0 8.0 53.0 79.6 103.4 53.0 31.9 56.0 10.8
30 51.2 78.5 100.6 51.2 23.6 40.0 0.4 50.4 78.7 104.2 50.4 47.2 120.0 0.2 49.2 78.7 103.4 49.2 47.2 80.0 0.4
40 52.8 80.7 105.2 52.8 32.3 56.0 0.0 47.2 80.2 104.4 47.2 64.1 168.0 0.0 52.0 80.2 108.2 52.0 64.1 112.0 0.0
50 54.2 83.7 108.0 54.2 41.8 71.8 0.0 52.8 83.6 107.6 52.8 83.6 216.0 0.0 52.4 83.6 106.6 52.4 83.6 143.8 0.0
80 52.8 82.3 107.4 52.8 65.8 111.6 0.0 49.8 82.0 108.6 49.8 131.2 333.6 0.0 49.6 82.0 107.8 49.6 131.2 222.2 0.0

We performed several experiments to compare our formulations and methods with each
other, and to compare these with the Benders Decomposition approach.

In the results below we denote each instance with its problem size, as either "|I|_|J |_|K|"
or “|I|_|K|" depending on what is being compared with. For each problem we consider 5
different random instances, all results presented are the average over these 5 instances.

The headers of the tables presenting the computational results use the following nomencla-
ture:

• |I|_|J |_|K| or |I|_|K|: Name of instance.
• GAP : average gap 100UB−LB

LB
%, where UB(LB) is the best upper(lower) bound.

• RGAP : average integrality gap 100LP−LB
LB

%, with LP = linear relaxation value.
• t(s) : average CPU processing time in seconds (total time).
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• Rt(s) : average CPU processing time in seconds of the linear relaxation.
• Ni : number of instances solved to full optimality.

3.4.2 Efficiency of problem formulation and benders decomposi-
tion on multi store instances

Table 3.3 shows the comparison between M2, M3 and M4 in terms of GAP , GAPLP and
TIME, using the default CPLEX’s Branch & Cut. The formulations M3 and M4 use the
subset of constraints described in Section 3.3. The results show that M4 dominates M3, which
in turn dominates M2 in terms of GAP . Except for three instances, M4 dominates M3 in
GAPLP , and M3 always dominates M2, suggesting that M4 has the tightest LP relaxation.
In terms of TIME, there is no clear winner.

Table 3.3: Comparison of GAP , RGAP and t(s) between the formulations M2. M3 and M4.
|J | = 4.
Instances (M2) (M3) (M4) Instances (M2) (M3) (M4)
|I|_|K| GAP RGAP t(s) GAP RGAP t(s) GAP RGAP t(s) |I|_|K| GAP RGAP t(s) GAP RGAP t(s) GAP RGAP t(s)
100-20 0.00 4.18 25 0.00 2.31 23 0.00 2.55 23 250-20 0.00 7.48 99 0.00 3.10 48 0.00 3.11 78
100-30 0.00 3.06 62 0.00 2.22 62 0.00 2.13 41 250-30 0.00 5.64 615 0.00 3.66 417 0.00 3.25 510
100-40 0.00 3.07 244 0.00 2.67 224 0.00 2.38 110 250-40 0.00 4.40 1389 0.00 3.62 1365 0.00 3.24 1073
100-50 0.00 1.82 423 0.00 1.60 113 0.00 1.49 86 250-50 2.06 5.11 3600 1.78 4.27 3600 0.78 3.75 3050
100-80 0.00 1.41 752 0.00 1.31 346 0.00 1.16 335 250-80 2.78 4.20 3600 2.50 3.59 3600 2.23 3.62 3600
160-20 0.00 5.17 33 0.00 2.61 56 0.00 2.59 54 400-20 0.00 8.17 269 0.00 3.30 286 0.00 3.17 556
160-30 0.00 3.89 278 0.00 2.92 348 0.00 2.72 174 400-30 0.49 6.33 1882 0.00 3.65 2013 0.00 3.40 2306
160-40 0.00 3.29 1220 0.00 2.71 675 0.00 2.47 611 400-40 2.25 5.77 3600 1.83 4.28 3600 1.11 3.61 3600
160-50 0.29 2.48 2124 0.09 2.23 1513 0.00 2.06 1049 400-50 3.13 5.16 3600 2.72 4.23 3600 1.74 3.57 3600
160-80 0.67 1.94 3094 0.25 1.76 2961 0.12 1.60 2455 400-80 3.75 4.72 3600 3.22 3.87 3600 2.26 3.02 3600

In Table 3.4 we compare the results obtained by different existing solution methods on the
M2 formulation. Column M2 indicates default CPLEX as before, column M2-CPLEX-BD is
CPLEX with its available Benders decomposition strategy, and M2-BD uses the algorithm
proposed in [14]. In the largest instances, the best results were those of M2-BD, while for
medium and small instances, the best results were obtained with M2-CPLEX-BD.

Table 3.4: Computational results of model M2. |J | = 4
Instances M2-CPLEX-BD M2-BD M2 Instances M2-CPLEX-BD M2-BD M2
|I|_|K| GAP Ni t(s) GAP Ni t(s) GAP Ni t(s) |I|_|K| GAP Ni t(s) GAP Ni t(s) GAP Ni t(s)
100-20 0.00 5 25 0.01 5 18 0.00 5 36 250-20 0.00 5 99 0.01 5 163 0.00 5 173
100-30 0.00 5 62 0.01 5 67 0.00 5 81 250-30 0.00 5 615 0.07 4 1.508 0.05 4 1.152
100-40 0.00 5 244 0.01 5 671 0.00 5 301 250-40 0.00 5 1.389 0.47 4 2.813 0.29 3 2.239
100-50 0.00 5 423 0.01 5 441 0.00 5 131 250-50 2.06 - 3.600 2.18 - 3.600 1.86 - 3.600
100-80 0.00 5 752 0.01 5 429 0.00 5 428 250-80 2.78 - 3.600 2.26 - 3.600 2.70 - 3.600
160-20 0.00 5 33 0.01 5 32 0.00 5 67 400-20 0.00 5 269 0.01 5 273 0.00 5 487
160-30 0.00 5 278 0.01 5 595 0.00 5 536 400-30 0.49 4 1.882 0.88 2 3.440 0.25 4 2.492
160-40 0.00 4 1.220 0.15 4 1.601 0.01 4 1.406 400-40 2.25 - 3.600 2.16 - 3.600 2.19 - 3.600
160-50 0.29 3 2.124 0.47 2 2.260 0.17 3 2.204 400-50 3.13 - 3.600 2.55 - 3.600 2.89 - 3.600
160-80 0.67 1 3.094 0.57 1 3.087 0.47 1 2.964 400-80 3.75 - 3.600 2.64 - 3.600 3.13 - 3.600

Comparing Tables 3.3 and 3.4, it is clear that the method that dominates in both GAP
and TIME (except for instance 400-4-20), is M4. This method even outperforms the Benders
decomposition approaches on multiple-store instances.
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3.4.3 The effectiveness of constraints (3.7)
To assess the effect of constraints (3.7), we added all of them to problem M3 for small

instances and compare the results in terms of gap, linear relaxation run time, and total
run time with solving problem M3 without these constraints. We slightly modified M3 by
adding all constraints (3.3), rather than a subset of them. We call this model M3*. We set
the product capacity of all stores to two. Table 3.5 compares model M3* with and without
constraints (3.7). Adding these constraints clearly reduces GAPLP and, although TIMELP
increases, the total solution TIME is reduced in the largest instances. We remark that we
did not use model M4 in this comparison, due to the high computer cost for generating all
the constraints (3.4).

Table 3.5: Comparison of RGAP , TIME and Rt(s) between formulations (M3) and (M3) plus
(3.7). |J | and store capacity p = 5

Instance M3* (M3*) + (3.7)

|I|_|K| RGAP TIME Rt(s) RGAP TIME Rt(s)

30-4-5 1.14 0.03 0.01 0.00 0.05 0.01
35-4-15 0.56 0.71 0.09 0.13 1.26 0.28
40-4-25 1.41 3.52 0.27 0.11 2.11 0.98
50-4-30 0.77 14.07 0.82 0.19 17.73 3.71
50-4-40 0.92 27.02 1.24 0.35 29.64 4.55
50-8-30 1.25 150.81 4.48 0.25 92.25 13.07
50-8-35 0.89 659.93 12.67 0.04 169.12 35.71
50-8-40 0.84 1127.90 15.61 0.14 365.75 46.05
50-8-45 0.92 1010.72 15.90 0.27 518.06 41.39
50-8-50 0.39 665.13 19.29 0.02 298.21 61.65

In Table 3.6 we explore the efficiency of valid inequalities (3.7) on large instances. In
this case we considered model M4 incorporating inequalities (3.7) using C&B (with CPLEX
default cuts turned off) and compared its gap, the number of solved instances, and solution
time with that solving model M4 and model M4o (with CPLEX default cuts off). We observe
that model M4o obtains a similar efficiency to model M4, showing that CPLEX default
inequalities do not significantly influence the solution of model M4 and that C&B, adding
cuts (3.7) at the root node, dominating both M4 and M4o.

We finish the evaluating the impact of constraint (3.7), solving the single store instances
in [14] with B&C and C&B and comparing it to the Benders’ method proposed in that paper.
As Table 3.7 shows, all methods arrived at the optimal solution. For the small and medium
instances, the C&B obtained the best results. When the number of clients exceeds 500, and
the number of products is 50 or more, the Benders’ method solves most of the instances,
faster.

3.4.4 Evaluation of decomposition methods on multi store instances
Considering that M2 with the Benders Decomposition approach of [14] is the best strategy

for the one store problem, we compare its results with the B&C and C&B approaches applied
to model M4 for multiple-store cases. Table 3.8 and Table 3.9 show the average GAP and
TIME over five instances for each |I|_|J |_|K| combination. In the three methods, we
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Table 3.6: Comparison of valid inequality (3.7) with default CPLEX cuts and C&B. Store
capacity p = 5
Instance |J | = 4 |J | = 8 |J | = 12

C&B (M4o) (M4) C&B (M4o) (M4) C&B (M4o) (M4)
|I|_|K| GAP TIME GAP TIME GAP TIME GAP TIME GAP TIME GAP TIME GAP TIME GAP TIME GAP TIME

100-20 0,00 2 0,00 20 0,00 23 0,00 3 0,08 1078 0,00 753 0,00 7 0,46 1934 0,41 1783
100-30 0,00 3 0,00 34 0,00 41 0,00 10 0,10 1650 0,00 1398 0,00 13 0,53 2913 0,59 3357
100-40 0,00 8 0,00 134 0,00 110 0,00 15 0,37 1900 0,38 2132 0,00 31 1,49 2649 1,69 3025
100-50 0,00 10 0,00 91 0,00 86 0,00 21 0,04 1606 0,03 1445 0,00 17 0,14 2364 0,14 2715
100-80 0,00 21 0,00 215 0,00 335 0,00 46 0,35 3125 0,36 3172 0,00 50 0,47 3600 0,54 3600
160-20 0,00 5 0,00 43 0,00 54 0,00 10 0,16 2304 0,28 2285 0,00 16 1,21 3367 1,29 3496
160-30 0,00 13 0,00 188 0,00 174 0,00 21 0,65 3460 0,72 3318 0,00 37 1,99 3600 2,01 3600
160-40 0,00 55 0,00 391 0,00 611 0,00 52 2,21 3600 2,16 3600 0,00 172 3,15 3600 3,21 3600
160-50 0,00 33 0,00 1148 0,00 1049 0,00 71 1,06 3308 0,87 3301 0,00 239 2,67 3600 2,98 3600
160-80 0,00 247 0,18 2435 0,12 2455 0,00 474 1,51 3600 1,73 3600 0,00 733 2,18 3600 2,81 3600
250-20 0,00 14 0,00 68 0,00 78 0,00 33 0,29 1223 0,14 1676 0,00 51 2,16 3600 2,38 3600
250-30 0,00 37 0,00 364 0,00 510 0,00 331 2,17 3550 2,35 3600 0,00 297 3,50 3600 3,83 3600
250-40 0,00 45 0,00 921 0,00 1073 0,00 661 2,35 3600 2,07 3600 0,00 318 3,89 3600 4,49 3600
250-50 0,00 718 0,72 3229 0,78 3050 0,00 491 3,33 3600 3,41 3600 0,00 1166 5,32 3600 5,01 3601
250-80 0,00 944 1,68 3600 2,23 3600 0,03 1703 3,40 3600 3,83 3601 0,12 2398 4,10 3601 11,90 3600
400-20 0,00 50 0,00 386 0,00 556 0,00 257 3,17 3029 2,85 3279 0,00 260 4,77 3600 5,00 3600
400-30 0,00 123 0,00 2189 0,00 2306 0,00 607 3,89 3600 3,64 3600 0,00 1044 5,73 3600 4,94 3601
400-40 0,00 308 0,99 3600 1,11 3600 0,00 636 4,10 3600 3,76 3600 0,03 1224 4,48 3600 4,24 3601
400-50 0,00 609 1,83 3600 1,74 3600 0,03 2360 3,68 3600 3,67 3601 2,71 2480 4,28 3601 4,10 3600
400-80 0,15 2745 2,55 3600 2,26 3600 0,48 3600 18,71 3601 25,45 3600 14,11 2 3600 16,21 3600 17,66 3600

Table 3.7: Comparison of run TIME of instances [14]. Stores number |J | = 1
Instance p = 5 p = 10 p = ∞
|I|_|K| (M2)-BD B&C C&B (M2)-BD B&C C&B (M2)-BD B&C C&B
100-20 0.67 0.17 0.10 0.62 0.17 0.08 0.64 0.17 0.07
200-20 1.25 0.51 0.29 1.19 0.55 0.33 1.13 0.51 0.19
500-20 3.00 8.97 1.27 2.90 3.94 0.71 2.69 4.22 0.60
1000-20 5.57 21.53 2.75 5.43 12.05 1.98 4.85 11.92 1.69
100-50 1.81 1.69 0.67 2.21 0.47 0.40 2.19 0.43 0.31
200-50 9.39 7.20 2.49 4.53 1.94 1.59 3.98 1.52 1.18
500-50 9.39 71.62 34.36 10.75 24.03 11.14 9.04 20.26 7.90
1000-50 20.14 323.08 328.47 23.20 128.84 112.09 19.17 71.83 101.68
100-100 5.48 6.27 3.39 7.73 2.03 2.02 8.23 1.65 1.35
200-100 14.27 30.66 20.15 45.81 20.97 11.7 13.25 9.68 6.58
100-200 19.08 21.52 18.29 24.50 18.98 15.33 30.91 10.28 7.97
200-200 33.22 94.98 77.72 50.83 65.40 54.24 55.11 35.07 23.92
500-200 73.76 1295.61 1154.98 194.86 598.24 577.19 128.45 315.86 248.01
1000-200 205.63 3600.67 7550.79 482.51 3029.24 6379.81 407.56 1571.28 2229.27
100-500 90.56 132.34 107.86 123.72 98.67 77.63 216.71 56.34 38.14
200-500 189.44 593.00 722.58 314.71 381.79 395.58 527.32 225.23 241.53
500-500 448.54 3523.83 3492.77 1106.05 3024.71 2748.98 1114.97 1634.18 954.68
500-100 25.16 344.96 301.00 32.65 104.55 122.22 30.20 57.94 73.91
1000-100 60.73 1733.49 2339.39 54.41 367.52 334.23 51.57 283.97 223.27

deactivated any cuts generated by default in CPLEX, and used as cut the valid inequality
(3.7). The best results were obtained by C&B in terms of GAP and TIME. In fact, this
approach obtained the optimal solution for most instances.

As Table 3.8 and Table 3.9 show, as the store capacity increases, the time required to solve
the problem tends to decrease. The problem solved to full optimality within the one-hour
time limit in almost all cases using the B&C and C&B approaches, except in the few cases of
the largest instances, where these two methods are able to solve one more instance than the
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Table 3.8: Comparison of GAP and run TIMEs. Store capacity p = 5
Instance |J |= 4 |J | = 8 |J | = 12

C&B (M2)-BD B&C C&B (M2)-BD B&C C&B (M2)-BD B&C
|I|_|K| GAP Ni TIME GAP Ni TIME GAP Ni TIME GAP Ni TIME GAP Ni TIME GAP Ni TIME GAP Ni TIME GAP Ni TIME GAP Ni TIME

100-20 0,00 5 2 0,01 5 17 0,00 5 17 0,00 5 3 0,01 5 1214 0,14 4 1135 0,00 5 7 1,13 1 3224 0,61 3 2571
100-30 0,00 5 3 0,01 5 91 0,00 5 36 0,00 5 10 1,17 1 3026 0,07 3 1979 0,00 5 13 1,48 0 3600 0,33 3 2968
100-40 0,00 5 8 0,05 4 1009 0,00 5 127 0,00 5 15 1,70 2 2937 0,37 3 1789 0,00 5 31 2,58 0 3600 1,60 2 2609
100-50 0,00 5 10 0,07 4 794 0,00 5 65 0,00 5 21 0,92 1 3212 0,03 4 1536 0,00 5 17 2,46 1 3440 0,13 3 2457
100-80 0,00 5 21 0,01 5 1274 0,01 5 298 0,00 5 46 0,77 1 2931 0,39 2 3099 0,00 5 50 0,87 0 3600 0,42 0 3600
160-20 0,00 5 5 0,01 5 33 0,00 5 37 0,00 5 10 2,41 0 3600 0,23 3 2282 0,00 5 16 3,57 0 3600 1,38 1 3368
160-30 0,00 5 13 0,01 5 710 0,00 5 185 0,00 5 21 3,78 0 3600 0,75 1 3407 0,00 5 37 3,86 0 3600 2,10 0 3600
160-40 0,00 5 55 0,25 3 1861 0,00 5 443 0,00 5 52 2,14 0 3600 2,25 0 3600 0,00 5 172 1,30 0 3600 2,80 0 3600
160-50 0,00 5 33 0,28 2 2273 0,00 5 1069 0,00 5 71 1,19 0 3600 1,02 1 3373 0,00 5 239 3,21 0 3600 2,50 0 3600
160-80 0,00 5 247 0,61 1 3165 0,11 3 2156 0,00 5 474 1,93 0 3600 1,43 0 3600 0,00 5 733 2,77 0 3600 2,47 0 3600
250-20 0,00 5 14 0,01 5 124 0,00 5 61 0,00 5 33 1,09 2 2974 0,21 4 1325 0,00 5 51 4,30 0 3600 1,87 0 3600
250-30 0,00 5 37 0,23 4 1486 0,00 5 301 0,00 5 331 4,49 0 3600 2,18 0 3600 0,00 5 297 5,08 0 3600 3,59 0 3600
250-40 0,00 5 45 0,70 2 3021 0,00 5 1043 0,00 5 661 4,84 1 2963 2,49 0 3600 0,00 5 318 4,85 0 3600 4,07 0 3600
250-50 0,00 5 718 2,34 0 3600 0,72 2 3449 0,00 5 491 4,05 0 3600 3,37 0 3600 0,00 5 1166 6,68 0 3600 4,92 0 3600
250-80 0,00 5 944 2,31 0 3600 1,74 0 3600 0,03 4 1703 5,78 0 3600 3,02 0 3600 0,12 3 2398 7,11 0 3600 4,32 0 3600
400-20 0,00 5 50 0,01 5 377 0,00 5 264 0,00 5 257 5,49 0 3600 3,12 1 2988 0,00 5 260 4,42 0 3600 4,82 1 3404
400-30 0,00 5 123 1,05 0 3600 0,00 5 1715 0,00 5 607 4,27 0 3600 3,91 0 3600 0,00 4 1044 5,50 0 3600 5,72 0 3600
400-40 0,00 5 308 2,48 0 3600 0,80 0 3600 0,00 5 636 4,88 0 3600 4,19 0 3600 0,03 4 1224 5,77 0 3600 4,48 0 3600
400-50 0,00 5 609 2,70 0 3600 1,66 0 3600 0,03 3 2360 3,27 0 3600 3,71 0 3600 2,71 3 2480 4,26 0 3600 4,61 0 3600
400-80 0,15 2 2745 2,56 0 3600 2,56 0 3600 0,48 0 3600 5,97 0 3600 9,23 0 3600 14,113 0 3600 7,38 0 3600 17,74 0 3600

M2-BD.

Table 3.9: Comparison of GAP and run TIMEs. Store capacity p = 10
Instance |J | = 4 |J | = 8 |J | = 12

C&B M2-BD B&C C&B M2-BD B&C C&B M2-BD B&C
|I|_|K| GAP Ni TIME GAP Ni TIME GAP Ni TIME GAP Ni TIME GAP Ni TIME GAP Ni TIME GAP Ni TIME GAP Ni TIME GAP Ni TIME

100-20 0.00 5 1 0.00 5 0 0.00 5 15 0.00 5 3 0.00 5 2 0.10 4 966 0.00 5 6 0.00 5 7 0.55 3 2585
100-30 0.00 5 2 0.00 5 1 0.00 5 26 0.00 5 8 0.01 5 12 0.11 3 1892 0.00 5 11 0.00 5 16 0.51 2 2811
100-40 0.00 5 5 0.00 5 4 0.00 2 94 0.00 5 11 0.00 5 16 0.35 v3 1756 0.00 5 25 0.00 5 134 1.64 2 2616
100-50 0.00 5 4 0.00 5 2 0.00 5 37 0.00 5 13 0.00 5 29 0.02 4 1427 0.00 5 17 0.00 5 8 0.13 3 1952
100-80 0.00 5 9 0.00 5 18 0.00 5 143 0.00 5 29 0.00 5 5 0.32 2 2872 0.00 5 36 0.00 5 37 0.42 0 3600
160-20 0.00 5 3 0.00 5 2 0.00 5 27 0.00 5 9 0.01 5 10 0.14 3 2204 0.00 5 16 0.00 5 53 1.29 1 3428
160-30 0.00 5 5 0.00 5 3 0.00 5 102 0.00 5 15 0.00 5 117 0.73 2 3532 0.00 5 41 0.00 5 193 2.12 0 3600
160-40 0.00 5 18 0.00 5 34 0.00 5 401 0.00 5 47 0.00 5 41 2.06 0 3600 0.00 5 121 0.01 5 161 3.05 0 3600
160-50 0.00 5 13 0.00 5 11 0.00 5 574 0.00 5 37 0.01 5 266 0.95 1 2193 0.00 5 146 0.01 5 430 2.51 0 3600
160-80 0.00 5 46 0.01 5 125 0.09 4 1847 0.00 5 204 0.06 4 1358 1.36 0 3600 0.00 5 331 0.13 2 2840 2.42 0 3600
250-20 0.00 5 9 0.00 5 3 0.00 5 39 0.00 5 29 0.00 5 10 0.15 4 1275 0.00 5 49 0.00 5 27 2.18 0 3600
250-30 0.00 5 25 0.00 5 11 0.00 5 187 0.00 5 339 0.00 5 110 2.18 1 3533 0.00 5 316 0.01 5 324 3.57 0 3600
250-40 0.00 5 23 0.00 5 23 0.00 5 612 0.00 5 257 0.00 5 122 2.23 0 3600 0.00 5 222 0.00 5 676 4.44 0 3600
250-50 0.00 5 213 0.00 5 420 0.56 3 2924 0.00 5 313 0.00 5 382 3.15 0 3600 0.00 5 651 0.00 5 210 5.12 0 3600
250-80 0.00 5 212 0.01 5 532 0.93 0 3600 0.00 5 843 0.79 5 1062 2.52 0 3600 0.03 4 1431 0.01 4 1909 3.34 0 3600
400-20 0.00 5 48 0.00 5 17 0.00 5 191 0.00 5 256 0.00 5 335 3.05 1 2978 0.00 5 251 0.11 3 1790 4.81 1 3395
400-30 0.00 5 87 0.00 5 49 0.01 4 1750 0.00 5 536 0.00 5 888 3.95 0 3600 0.00 5 981 0.08 3 2130 5.69 0 3600
400-40 0.00 5 156 0.00 5 91 0.47 1 3503 0.00 5 333 0.19 2 2423 3.94 0 3600 0.03 4 1115 0.32 1 3257 4.54 0 3600
400-50 0.00 5 424 0.01 5 394 1.16 1 3556 0.02 4 1359 0.32 2 2539 3.77 0 3600 0.12 3 2320 1.23 1 3197 4.41 0 3600
400-80 0.00 5 733 0.00 5 932 1.34 0 3600 0.30 2 2715 6.44 0 4012 10.61 0 3600 7.42 1 3576 12.28 0 3600

3.5 Conclusions
3.5. CONCLUSIONS

We adapted valid inequalities of the FLPCP to our problem, to improve the LP relaxation.
As the number of valid inequalities is large, we use B&C and C&B strategies to solve the
problem. The numerical experiments were done using published data, including that in [14].
These experiments show that our approach not only solves a previously unsolved problem, but
it also obtains better results in synthetic data than the best approach known so far, proposed
in [14]. For one store, using synthetic data in [14], the Benders decomposition algorithm
solved the instances with 500 and 1000 clients, faster.

There are several pathways to expand the research in this chapter. For products in the
category of appliances, it is reasonable to consider that customers purchase at most one unit.
For other categories of products, however, e.g., clothing, consumers can buy a bundle of
products [47], which is an extension worth exploring. For this extension, there are several
possibilities: the customer can purchase either all the products in the bundle in one store
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or she can visit several stores, purchasing part of the bundle in each of them. The travel
cost will be included in the customer’s decision. Adding temporal decisions of both of the
consumer and the firm, to include inventory, product obsolescence, and markdown pricing,
can be considered in future research.

57



Chapter 4

Mixed-Integer Programming for
Combinatorial Coalition Formation
Problem

4.1 Introduction1

Digital marketplaces or e-marketplaces have contributed to greater interaction between
purchasers and merchants since they facilitate global deals and enable the later to provide
goods, services to a higher number of buyers without geographical or timing restrictions. The
benefits of the e-marketplaces allow the sellers, on the one hand, to enlarge the demand and
increase their sales, and on the other hand, the buyers obtain a greater supply variety that lets
them select better prices, quality, features, or faster delivery of their products. In this context,
an opportunity from e-commerce is to offer wholesale products, i.e., to sell a large number of
products in an exclusive exchange with a discount on the unit price [74]. Wholesale pricing
has several benefits to the merchant or seller, such as less marketing costs than selling through
retailers, a focus on coordinating the logistics, and increasing the market share. Although
there are several benefits for the buyers, these are frequently unable or unwilling to purchase
a large volume of products, reducing their bargaining power. To skip this limitation, the
buyers can attempt to form groups to take advantage of the wholesale price, where the price
per unit to be paid depends on the number of buyers in a cluster.

Technology has simplified the buyers’ coordination through platforms that make it possible
for groups to purchase specific products. Normally in such platforms, a coordinator collects
certain buyer information, such as reservation price, their preferences on products and quantity.
With this data, it is possible to calculate the purchasing group and to allocate the profit
to every member. Buyers can then accept the coalition or not; should they decline, the
coordinator will recalculate again until an agreement is reached [113, 91].

1This work has been partially funded by grants ANID-PFCHA/Doctorado Nacional/2016 # 21161328;
INRIA Associated Team BIPLOS; CONICYT PIA AFB180003; FONDECYT 1190064; Fonds de la Recherche
Scientifique -FNRS under Grant PDR T0098.18, and the the supercomputing infrastructure of the NLHPC
(ECM-02) of the Universidad de Chile. M.L.C. and H.X.
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Furthermore, buyers may wish to purchase more than one item. Because of this there
exist bundles with more than one item or service at a more attractive price than if it were
sold separately [47]. Hence, retail can extract the surplus from different customers by simply
incorporating substitutes and complementary products. In addition, retail can offer bundles
with low-demand products together with high-demand items, reducing the corresponding
stockpiles and inventory costs. Under these conditions, [88] considers a Combinatorial Coalition
Formation (CCF) problem where buyers can buy more than one unit of a product and declare
a reservation price for bundles. A virtual reservation price for each item is calculated, and
then it is divided into sub coalitions per item. If the set of subcoalitions are compatible, i.e.,
each buyer belongs to all subcoalitions or none, they complete a coalition. Afterwards, a
calculation of the reservation price must be made, again, and the sub coalition set is to be
found until they are compatible. All of this proves that in the case of a decreasing linear
price in the number of products, once this algorithm finds a set of compatible subcoalitions,
the coalitions to be found are optimal. Moreover, there is a calculation of the core with the
corresponding payoff for each buyer. In addition, checking if a core for the optimal coalition
structure exists or not is NP-complete unless its value is explicitly provided. Hence, [76]
presents an integer programming (IP) method to check core-non-emptiness. They defined
the algorithm CoreP that finds the value of the coalition V (CS∗) by solving an IP and later
checks if the value V (CS∗) can be divided without coalition members deviating by solving a
linear programming (LP) problem. They also propose an exact algorithm called CoreD, which
utilizes the dual problem of the linear relaxation of the above IP problem, and, they introduce
a weak ε− core to find a second-best payoff vector when the core is empty. Computational
experimental showed that CoreD is superior to CoreP when the core is empty. In [89] there is
a CCF in which the reservation price is for a bundle confirming if the items are complementary
or substitute, considered a heterogeneous preference of buyers. In contrast to the previously
mentioned work, there is a proposal of a coalition for bundles instead of products. Through
this, it is proven that the CCF problem reduces to the Complete Set Partitioning, which
is NP-hard. A greedy algorithm is therefore proposed for the CCF problem. Finally, they
proposed a cost-sharing rule to allocate the payment for each member of coalitions. This rule
must satisfy the budget balance (the total payment at least cover the total cost), individual
rationality (all individual payments are at most reserve prices), and ensure the stability of
coalitions, in this case, avoiding deviations within each bundle coalition.

Wholesale prices are widely used in retail to represent discounts applied to large volume
sales. Such discounts are applied when the volume sold reaches a certain threshold. It is
therefore natural to represent the wholesale price of each unit of product as a decreasing
step function of the volume purchased. In this case, the price is a constant within ranges
of purchase volume. In general, a step function is a piece-wise linear function, for which
there exist three types formulations in the literature: namely the multiple-choice model, the
incremental cost formulation, and the convex combination model [40]. We note that it is
possible to approximate any nonlinear function with a piece-wise linear function, where the
accuracy depends on the size of its linear segments.

In order to solve generic problems with piece-wise linear functions [41] proposes using a
special ordered set of type 2 (SOS2). A set of binary variables are said to be SOS2 when at
most two adjacent variables are nonzero. In [120] the branch-and-cut algorithm for LPs with
piece-wise linear continuous costs is extended to the lower semicontinuous case. They also
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extend the SOS2 formulation for LPs with piece-wise linear continuous costs to the lower
semicontinuous case. The extension of such formulations to the multivariate nonseparable
case is studied in [121]. The paper [81] studies the polyhedral structure of piecewise linear
optimization problems and derives strong valid inequalities.

The piece-wise linear function has been applied used in many real-life applications. For
instance, the multi-choice model has been used in multi-commodity network flow problem
[109], transportation costs [36], facility location problem [68], capacitated location problem
with freight cost discount [53], and network design [52], to name a few. The incremental
model, in turn, has been applied in facility location problem [69], capacitated local access
network problem [104], multi-commodity network design with piecewise cost [13]. A step cost
function is used as edge weights to represent economies of scale in [104]. Two formulations
are considered to represent this cost functions, based on the incremental and the multi-choice
models.

We introduce two different MIP formulations to solve the CCF. The first formulation
involves a generic non-increasing pricing function. With this purpose, the function is discretised,
according to the number of customers –or buyers. Therefore, the size of such formulation
quickly increases in the number of variables, which deepnds on the number of participants.
The second formulation applies a step function, which is widely implemented in wholesalers
and embraces what is shown in [121]. Moreover, strengthened procedures are included for
each instance. Finally, we demonstrate a Benders Decomposition approach to solve the step
prices model. Computational results and its performance show that this is a bona fide method
to solve the problem.

The chapter is organised as follows: Section 4.2 introduces the problem, the bi-level
formulation, three different single-level formulations, and some valid inequalities. In Section
4.3, the suggested solution methods are described. Computer testing that compares the
different formulations and methods is presented in Section 4.4. Finally, we give our conclusions
and expansion lines of eventual work in Section 4.5.

4.2 Problem definition and formulations
4.2. PROBLEM DEFINITION AND FORMULATIONS

This Section presents a description of the Combinatorial Coalition Formation Problem
(CCF) we propose. We provide two different formulations for CCF: the first can be used
for any price function, while the second is for the step price function only. Moreover, we
introduce valid inequalities that strengthen the formulations.

4.2.1 Problem description
Suppose that a market offers multiple products with non-additive values (i.e., items may be

complementary or substitute). A set K of products k is available as well as a set B of different
bundles. Each bundle bi ∈ B is defined as a nonempty set of products such that bi ⊆ K.
Let pk(n) be a non-increasing function of the price where n is the number of buyers of the
product k. In addition, there exists a coordinator who groups together a set J of consumers
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or potential buyers j wishing to take advantage of the wholesale price. Each buyer j wishes to
buy at most one bundle bi ∈ Bj where Bj ⊂ B. They have heterogeneous preferences over the
items k in the bundles. Each consumer j ∈ J has a reservation price ri,j for bundle bi ∈ Bj.

A product coalition Ck is defined as the set of buyers who purchase product k and the
price of item K is consequently pk(|Ck|). Homologously, a bundle coalition Cbi

is the group of
buyers who buy the bundle bi. Hence we can defined Ck = ∪bi3kCbi

. Therefore, a coalition
configuration denoted by C is a set of bundle coalitions Cbi

bi ∈ B such that each consumer
j belongs to at most one bundle coalition. The surplus v(C) of coalition configuration C is
defined as:

v(C) =
∑
bi∈B

 ∑
j∈Cbi

ri,j −
∑
k∈bi

pk(|Ck|)|Ck|


The coordinator must decide which bundle to propose to each consumer to maximize the
surplus obtained by subtracting the bundles’ total cost from the sum of the reservation prices.
In this case, the utility transfer is essential because the coalition configuration obtained has
a non-negative utility. Therefore, although some coalition members could have negative
individual utility, their participation helps the prices to reduce enough for receiving greater
social welfare, not possible to obtain without their participation. After coalitions formation,
the coordinator must determine the payoff of each member of each coalition, according to
some criterion (typically of fairness or stability). For instance, [89] used the cost-share as a
stability criterion. The members with negative individual utility are assigned their reservation
prices -getting a zero utility- and the rest of the participants receive the payoff with the
remained surplus.

Table 4.1 and 4.2 provide set and parameter notations, respectively.

Table 4.1: Notation (sets)
J set of buyers
K set of products
B set of bundles
Bj set of the bundles of customer j

Table 4.2: Notation (parameters)
ri,j

reservation price of client j ∈ J
for bundle bi ∈ Bj

pk(n) unit price for product k ∈ K
with demand n

Example

We present a small illustrative instance of Combinatorial Coalition Formation in [89].
Assume four buyers a, b, c and d are offered three items g1, g2 and g3, which are camera A,
camera B and a flash memory, respectively. The cameras are considered substitutes (though
not necessarily perfect substitutes), while any camera and the memory card are complementary
goods. Table 4.3 shows the reservation prices of the buyers, while Table 4.4 provides the
price-quantity curve for each item, as it specifies the unit price per item as a non-increasing
discrete function of the quantity. Now, assume that the bundle coalitions are configured as
follows: C2,3 = {a, b} for g2,3, and C2 = {c, d} for g2. Notice that this is equivalent to the set
of item coalitions: C̃2 = {a, b, c, d} for g2, and C̃3 = {a, b} for g3. Given this configuration,
no buying group is formed for g1, the resulting price for g2 is 350 (four buyers), and that
for g3 is 40 (two buyers). Thus, the unit price of the bundle g2,3 is 350 + 40 = 390. Then,
the total cost of C2,3 is 2 · 390 = 780, and the cost of the C2 is 2 · 350 = 750. Therefore,

61



the surplus of the bundle coalition C2,3 is 385 + 405 − 780 = 10, and the surplus of C2 is
355 + 360− 700 = 15. Finally, the total surplus of the coalition configuration is 10 + 15 = 25.

Table 4.3: Buyers’ reservation prices
g1 g2 g3 g1,3 g2,3 g1,2 g1,2,3

a 150 350 20 380 385 500 545
b 380 365 25 400 405 600 650
c 0 355 0 0 360 355 360
d 360 360 0 365 370 510 525

Table 4.4: Price function
Volume (units)

1 2 3 4 ≥ 5
g1 340 340 320 320 320
g2 365 365 365 350 340
g3 40 40 38 38 35

Computational complexity

We set first define the decision version of problem CCF as follows:

Instance: A set J of buyers, a set K of products, and a set B = {b1, . . . , b|B|} of bundles
where bi ⊆ K. Each buyer j ∈ J has a reservation price ri,j for the bundle bi. The unit price
of product k is pk(|S|) where |S| is number of buyers that purchase product k. An integer
number M .

Question: Does there exist a coalition structure C = {Cb1 , . . . , Cb|B|} with Cbi
⊂ J for all

bi ∈ B and Cbi
∩ Cbi′

= ∅, for all i, i′ ∈ I and

whose value

v(C) =
∑
bi∈B

 ∑
j∈Cbi

ri,j −
∑
k∈bi

pk(|Ck|)|Ck|


is at least M?

Theorem 4.2.1 Problem CCF is NP-complete even if all bundles are singletons.

Proof. First, it is easy to see that the decision version of Problem CCF belongs to NP. Indeed,
given a coalition structure C, its value V (C) can be computed in polynomial time.

Then, to prove that Problem CCF is NP-hard we show that Set Packing Problem reduces
polynomially to CCF. First, we define Problem Set Packing (SP) as follows :

• Instance : A collection S of finite sets Si, i = 1, . . . ,m and an integer M .
• Question : Does S contains M mutually disjoint sets?

Given an instance of SP, we construct a instance of CCF as follows. The set of buyers
J = ∪mi=1Si and the set of bundles B contains m bundles bj that are all distinct singletons.
We define the reservation price ri,j of buyer j for bundle bi and the price function pi(k) as
follows :

Remark that as J is the set of customers, J 6= ∅ and |J | ≥ |Si| then 2 · |I| > (|Si|+1)/|Si|.
Hence, we can define our problem as ∀i determine a coalition Ci such that each customer
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ri,j =
{ |Si|+2
|Si| if j ∈ Si
0 if j /∈ Si

; pi(k) =
{

2 · |I| if k < |Si|
|Si|+1
|Si| if k ≥ |Si|

belongs to at most one coalition and the value of coalition structure is:

v(C) =
m∑
i=1

∑
i∈Ci

ri,j − pi(|Ci|)|Ci|
 ≥ B

We now show that there exists a coalition structure C with value V (C) ≥ B iff there exist
M mutually disjoint sets in {Si}. Let define the contribution v(Ci) of product i to the value
V (C) of a coalition structure as

v(Ci) =
∑
j∈Ci

ri,j − pi(|Ci|)|Ci|

We prove that v(Ci) is equal to 1 if Ci = Si and is negative otherwise.

We consider three different possible cases as follows.

(i) if |Ci| ≥ |Si|+ 1 then

v(Ci) =
∑

j∈Ci∩Si

ri,j − pi(|Ci|)|Ci| = |Ci ∩ Si|
|Si|+ 2
|Si|

− |Si|+ 1
|Si|

|Ci|

≤ |Si|
|Si|+ 2
|Si|

− (|Si|+ 1)2

|Si|
= −1
|Si|

< 0.

where the inequality is obtained since |Ci ∩ Si| ≤ |Si| and |Ci| ≥ |Si|+ 1.
(ii) if |Ci| ≤ |Si| − 1 then

= |Si|+ 2−
(

1 + 2
|Si|

)
− 2|I| =

= |Si|+ 1− 2
|Si|
− 2|I| < |Si|+ 1− 2|I| ≤ 1− |I| < 0

where the first inequality is obtained since |Ci ∩ Si| ≤ |Si| − 1. The last inequality is obtained due to
|Ci| ≤ |I|.

(iii) if |Ci| = |Si| and Ci 6= Si then v(Ci) = |Ci∩Si| |Si|+2
|Si| −

|Si|+1
|Si| |Si| as Ci 6= Si implies |Ci∩Si| ≤ |Si|−1.

Hence,

v(Ci) ≤ (|Si| − 1)(|Si|+ 2)
|Si|

− |Si| − 1 = |Si|+ 2− 1− 2
|Si|
− |Si| − 1 = −2

|Si|
< 0

Finally, if Ci = Si then

v(Ci) = |Si|
|Si + 2|
|Si|

− |Si + 1|
|Si|

|Si| = |Si|+ 2− |Si| − 1 = 1.

Therefore, there exists a Set Packing with B sets if and only if there exists a set of coalition
with total value B.
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4.2.2 Model formulation
The combinatorial coalition formation problem can be formulated as a mathematical

programming problem. We propose two different formulations. The first can be used for
general non-increasing price functions while the second can be used for price step functions
only. We begin introducing a nonlinear optimization formulation for the coalition formation
problem which will be our starting point.

A nonlinear optimization formulation

We define binary variables yi,j that take the value one when the customer j purchases
bundle bi and zero otherwise. We also consider a continuous variable zk that indicates the
number of customers that purchase product k, which corresponds to the size of the coalition
Ck. The coalition formation problem can be stated as

(NLP ) max
∑
j∈J

∑
bi∈Bj

ri,jyi,j −
∑
k∈K

pk(zk)zk (4.1a)

s.t.
∑
bi∈Bj

yi,j ≤ 1 (j ∈ J ), (4.1b)
∑
j∈J

∑
bi∈Bj

bi3k

yi,j = zk (k ∈ K), (4.1c)

yi,j ∈ {0, 1} (bi ∈ Bj), (j ∈ J ), (4.1d)
zk ≥ 0 (k ∈ K). (4.1e)

Here the objective function maximizes the social utility (4.1a). Constraints (4.1b) indicate
that every customer can buy at most one bundle, and constraints (4.1c) determine the
number of customers who buy each product k. The model above is a nonlinear mixed-integer
optimization problem, where the nonlinearity is due to the total purchase cost in the objective
function.

Given that customer purchasing decisions are integer, the total amount of each product k
that is sold, zk is also an integer, and therefore the values of product prices that are observed
turn out to be a discrete group of prices. Let us denote by pk,l the unit price of product k if
l units of that product are sold. This means that these price values can be determined in
O(|J ||K|) time. We remark that when the price function of each product is constant, i.e.
pk,l = pk, for all possible l, then (NLP) is a mixed integer linear optimization problem and
the optimal coalition structure is obtained by assigning each customer to the bundle that
maximizes the difference between her reservation price for this bundle and the sum of the
prices of the products constituting the bundle.

Considering these observations, we now present two mixed integer linear formulations
of the coalition formation problem. The first formulation, Generic Price Function (GPF)
formulation, can be used for any price function pk(zk). In many cases, given its simplicity,
the retailer uses wholesale prices that follow a non-increasing step function, where the price
remains constant in a purchase range. Once it exceeds the upper limit of the range, the
price is reduced and remains constant until the next limit. Although the (GPF) can model
this type of function, the number of binary variables it uses may be greater than necessary.
Therefore, given the particular structure of the piecewise constant decreasing price function,
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we introduce the Step Price Function (SPF) formulation based on the work [40] who proposed
the multiple-choice model.

Generic Price Function formulation
Given that number of purchases of every product is integer, we define a binary variable

xk,l that is equal to 1 if l customers purchase product k and 0 otherwise, for k ∈ K and
l ∈ L = {1, 2, · · · , |J |}. We use these binary variables to reformulate the problem (NLP) as
an linear mixed-integer model, called Generic Price Function (GPF), adding the following set
of constraints for each product k ∈ K: ∑

l∈L

l · xk,l = zk, (4.2a)∑
l∈L

xk,l ≤ 1, (4.2b)

xk,l ≥ 0 . (4.2c)

Then the nonlinear terms pk(zk)zk in the objective function of (NLP) can be replaced by
the following linear expression p(zk)zk = ∑

l∈L
lpk,lxk,l.

Step Price Function formulation

For this case, given a product k ∈ K we establish a collection of purchase size thresholds
ak,1, · · · , ak,Lk

and corresponding prices dk,1 > dk,2 > · · · > dLk
. The set of indices of the

different segments of the price function of product k is denoted by Lk = {1, · · · , Lk}. By
definition, we set ak,0 = 0 for each product k ∈ K. Therefore, given that zk buyers purchase
product k, where zk belongs to the interval [ak,l, ak,l+1), the price of product k that these
buyers pay is defined as pk(zk) = dk,l. Figure 4.2.2 illustrates a step price function with this
notation.

0 ak,1ak,2 · · · ak,Lk−1 zk ak,Lk

dk,1

dk,2

...
dk,Lk−1

dk,Lk

. . .
pk(zk) = dk,Lk−1

buyers

p(·)

Figure 4.1: Step price function representation

The multi-choice-model [6] uses binary variable sk,l to identify the interval in the price
function that is active. That is sk,l = 1 if zk ∈ [ak,l−1, ak,l) for k ∈ K and l ∈ Lk. The model
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also uses variable z̃k,l to decompose zk the total purchases of product k into the intervals of
the step function, and finally ϕk a nonnegative variable that represents the total cost paid
for product k. With these variables, we can express the coalition formation problem given a
step price function as a mixed integer linear optimization problem. We do so by replacing
p(zk)zk = ϕk in the objective function and adding constraints (4.3a)-(4.3e) below for every
product k ∈ K. ∑

l∈Lk

z̃k,l = zk (4.3a)
∑
l∈Lk

sk,l = 1 k ∈ K, (4.3b)

ak,l−1sk,l ≤ z̃k,l k ∈ K, l ∈ Lk, (4.3c)
ak,lsk,l ≥ z̃k,l k ∈ K, l ∈ Lk, (4.3d)

dk,lzk − (1− sk,l)M ≤ ϕk k ∈ K, l ∈ Lk . (4.3e)

Constraint (4.3a) establishes the relation between zk and z̃k,l. Constraint (4.3b) forces that
just one interval l ∈ Lk must be active; constraints (4.3c) and (4.3d) limit the value z̃k,l to
the bounds of the interval l ∈ Lk, while the constraint (4.3e) rescues the total cost ϕk of the
product k ∈ K. Notice that the big-M value can be set to dk,Lk

. It is well known that big-M
constraints lead to poor LP relaxations and long computational times, therefore we consider
reformulations of this constraint.

We present computational results for two variants of multi-choice version of the coalition
formation problem, (SPF1) and (SPF2), depending on how they modify the big-M constraint
(4.3e).

• We refer to (SPF1) (for Step Price Function formulation 1) when we replace constraint
(4.3e) with ∑

l∈Lk

dk,lz̃k,l = ϕk k ∈ K . (4.3e-1)

We note that constraint (4.3b) means that only one variable sk,l with l ∈ Lk can be
active for each product k, therefore z̃k,l is equal zero for all intervals, except the active
one (the one with sk,l = 1). Which shows that (4.3e-1) is equivalent to (4.3e).

• We refer to (SPF2) (for Step Price Function formulation 2) when we replace constraint
(4.3e) with

dk,lzk +
Lk∑

l′=l+1
(dk,l′ − dk,l)ak,l′sk,l′ ≤ ϕk k ∈ K, l ∈ Lk . (4.3e-2)

This equivalent formulation is obtained by strengthening constraint (4.3e) by considering
the difference between the price of the interval l and the sum of variation of price respect
the set of intervals less to l.

Our computational experiments show that both (SPF1) and (SPF2) perform better than the
formulation with the original big-M constraint (4.3e).

There is an alternative formulation for the case with piecewise constant step function,
known as the incremental model [93]. We present this version of the coalition formation
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problem here for completeness. In the incremental model variable z̃k,l ∈ [0, ak,l − ak,l−1] and
binary variable sk,j = 1 for all 1 ≤ j ≤ l with l such that zk ∈ (ak,l−1, ak,l]. Hence constraint
(4.3b) is no longer valid. In the incremental model formulation we replace constraints (4.3b) -
(4.3e) for each product by the following set of constraints:

∑
l∈Lk

z̃k,l = zk (4.4a)

(ak,l − ak,l−1) · sk,l+1 ≤ z̃k,l l ∈ Lk (4.4b)
(ak,l − ak,l−1) · sk,l ≥ z̃k,l l ∈ Lk (4.4c)

dk,lzk − (1 + sk,l − sk,l+1) ·M ≤ ϕk l ∈ Lk (4.4d)

Again, the big M can be tightened by using dk,Lk
for every l ∈ Lk and a similar reformulations

to (4.3e-2) of this constraint can be used. We note that both, the multiple-choice model and
the incremental model, consider the same number of total variables, while the multiple-choice
model adds∑k∈K 4·Lk+2 constraints and the incremental model adds∑k∈K 3·Lk+1 additional
constraints to (NLP). Recall that Lk = |Lk|. Our preliminary computational results show
that both the incremental model and multiple-choice model have a similar performance. We
therefore work in the rest of this thesis with the multiple-choice model as it is easier to develop
Benders decomposition methods for this model.

4.3 Solution methods
4.3. SOLUTION METHODS

The formulations (GPF) and (SPF) for the CCF presented above are mixed-integer
optimization problems that can solve small instances in a reasonable time by a commercial
solver. However, real world applications can involve instances with many buyers, products,
and bundles that must be solved quickly. Hence, it is necessary to develop algorithms to
efficiently find optimal solutions. We focus on an exact decomposition based solution method,
in contrast to previous works that have proposed heuristic methods [88, 89, 76]. In particular,
we now present a Bender’s decomposition strategy for formulation (SPF1).

First, we rewrite the model (SPF1) in order to remove the auxiliary variables ϕ and z. We
replace variable ϕ in the objective according to equation (4.3e-1) and substitute the variable
z using the equation (4.3a) obtaining the following formulation:
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(RSPF1) max
∑
j∈J

∑
bi∈Bj

ri,jyi,j −
∑
k∈K

∑
l∈Lk

dklz̃k,l (4.5a)

s.t.
∑
j∈J

∑
bi∈Bj
bi∈k

yi,j =
∑
l∈Lk

z̃k,l k ∈ K, (4.5b)

∑
bi∈Bj

yi,j ≤ 1 j ∈ J , (4.5c)

∑
l∈Lk

sk,l = 1 k ∈ K, (4.5d)

ak,l−1sk,l ≤ z̃k,l k ∈ K, l ∈ Lk, (4.5e)
ak,lsk,l ≥ z̃k,l k ∈ K, l ∈ Lk, (4.5f)
sk,l ∈ {0, 1} k ∈ K, l ∈ Lk, (4.5g)
yi,j ∈ {0, 1} bi ∈ Bj , j ∈ J . (4.5h)
z̃k,l ≥ 0 k ∈ K, l ∈ Lk. (4.5i)

Note that due to constraints (4.5b), (4.5c), (4.5e), and (4.5f) the following constraints for
k ∈ K always holds in the master problem.∑

l∈Lk

sk,lak,l−1 ≤
∑
j∈J

∑
bi∈Bj
bi∈k

yi,j ≤
∑
l∈Lk

sk,lak,l . (4.6)

Notice that Benders decomposition applies naturally in (RSPF1) because the integer variables
(s,y) and continuous variables z̃ can be separated leaving the integer variables in the first
stage and delaying the continuous variables. Therefore, the master problem decides what
bundle each customer purchases and to what price interval the total purchases of each product
fall into. The second level problem determines the units sold per product; it can split into a
subproblem for each product. To the best of our knowledge, benders decomposition has not
been applied previously in CCF. Hence, the master problem becomes:

max
∑
j∈J

∑
bi∈Bj

ri,jyi,j −
∑
k∈K

ξk, (4.7a)

s.t.
∑

bi∈Bj

yi,j ≤ 1 j ∈ J , (4.7b)

∑
l∈Lk

sk,l = 1 k ∈ K, (4.7c)

∑
l∈Lk

sk,lak,l−1 ≤
∑
j∈J

∑
bi∈Bj
bi∈k

yi,j k ∈ K, (4.7d)

∑
j∈J

∑
bi∈Bj
bi3k

yi,j ≤
∑
l∈Lk

sk,lak,l k ∈ K, (4.7e)

αe
k

∑
bi∈Bj
bi3k

yi,j +
∑
l∈Lk

βe
k,lak,lsk,l +

∑
l∈Lk

γe
k,lak,l−1sk,l ≤ ξk k ∈ K, e ∈ Ek, (4.7f)

αr
k

∑
bi∈Bj
bi3k

yi,j +
∑
l∈Lk

βr
k,lak,lsk,l +

∑
l∈Lk

γr
k,lak,l−1sk,l ≥ 0 k ∈ K, r ∈ Rk, (4.7g)

yi,j ∈ {0, 1} bi ∈ Bj , j ∈ J , (4.7h)
sk,l ∈ {0, 1} k ∈ K, l ∈ Lk. (4.7i)
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Here, for each k ∈ K, the sets Ek and Rk denote the extreme points and extreme rays,
respectively, of the polyhedron that defines the feasible region of the second stage problem
described below. Due to the sets of extreme points and extreme rays being large, a cut
generation algorithm is used to gradually add these constraints.

On the other side, given (ŝ, ŷ, ξ̂) a feasible solution to master problem, the second stage
problem is separable in |K| sub-problems which we present below:

Gk(y, s) = min
z̃k

∑
l∈Lk

dk,lz̃k,l, (4.8a)

s.t.
∑
j∈J

∑
bi∈Bj
bi∈k

ŷi,j =
∑
l∈Lk

z̃k,l (4.8b)

ak,l−1ŝk,l ≤ z̃k,l l ∈ Lk, (4.8c)
ak,lŝk,l ≥ z̃k,l l ∈ Lk, (4.8d)
z̃k,l ≥ 0 l ∈ Lk. (4.8e)

The cuts for the master problem are obtained as the objective function of the dual of this
second level problem evaluated in the optimal solution. The dual of this second level problem
is:

DGk(α, β, γ) = max
αk,βk,γk

αkYk +
∑
l∈Lk

βk,lak,lŝk,l +
∑
l∈Lk

γk,lak,l−1ŝk,l (4.9a)

s.t. αk + βk,l + γk,l ≤ dk,l (l ∈ Lk), (4.9b)
βk,l ≤ 0 (l ∈ Lk), (4.9c)
γk,l ≥ 0 (l ∈ Lk). (4.9d)

Here, (α,γ,β) are the dual variables of constraints (4.8b), (4.8c) and (4.8d) respectively and
let Yk denote the units sold of product k, given by

Yk =
∑
j∈J

∑
bi∈Bj
bi∈k

ŷi,j for k ∈ K . (4.10)

Note that constraints (4.7d) and (4.7e) ensure that there exists a feasible solution for problem
(4.8) and therefore the master problem will not use feasibility cuts (4.7g). Since the second
stage problem and its dual are always feasible, then for every master problem solution (ŝ, ŷ, ξ̂),
there is an optimal extreme point for the dual second stage problem. If ξ̂k 6≥ Gk(ŝ, ŷ)) then
this optimal extreme point gives an optimality cut (4.7f) that is added to master problem.

Proposition 4.3.1 below gives an analytical expression for the primal solution of the second
stage problem, while Proposition 4.3.2 does the same for the optimal solution for the second
stage problem. These results help reduce computational time of a Benders decomposition
implementation.

Proposition 4.3.1 Given (ŝ, ŷ, ξ̂) feasible for Problem (4.7). Let k ∈ K, Yk from (4.10),
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and define l∗ = arg maxl∈Lk
{ŝk,l}. Then the optimal solution to Problem (4.8) is

z̃∗k,l =
{
Yk l = l∗

0 o/w

with an optimal solution value equal to Gk(s, y) = Ykdk,l∗ .

The proof of Proposition 4.3.1 is straightforward, and amounts to verifying that the proposed
solution is the only feasible solution.

Proposition 4.3.2 Given (ŝ, ŷ, ξ̂) feasible for Problem (4.7) and Yk from (4.10), then the
optimal solution to problem (4.9) is given by

αk = dk,l∗ , (4.11a)

βk,l =
dk,l − dk,l∗ if l > l∗,

0 otherwise.
∀l ∈ Lk, (4.11b)

γk,l = 0 ∀l ∈ Lk. (4.11c)

with l∗ = arg maxl∈Lk
{ŝk,l} and the optimal solution value equals

DGk(α, β, γ) = Ykαk = Ykdk,l∗

Proof. The proof is divided into two steps: first, we show that the proposed solution is
feasible and then we show that the objective value of the proposed solution is exactly dk,l∗Yk,
which is the optimal objective of the primal problem.

• Feasible: Observe that dk,1 > dk,2 > · · · > dLk
. Thus, we need verify constraint

Constraint (4.9b). For l ≤ l∗, we have that

αk + βk,l + γk,l = dk,l∗ + 0 + 0
≤ dk,l

and for l > l∗, then we have that

αk + βk,l + γk,l = dk,l∗ + (dk,l − dk,l∗) + 0
= dk,l

Moreover, how γk,l = 0 ∀l ∈ Lk the before, also satisfy the constraint (??). This
concludes our proof of the feasibility (αk,βk,γk).

• Objective function: Observe that βk,l∗ = 0. Thus, we have that

αk

 ∑
bi∈Bj
k∈bi

yi,j

+
∑
l∈Lk

βk,l(bk,lsk,l) +
∑

l∈Lk\{1}
γk,l(bk,l−1sk,l) = dk,l∗Yk + 0 + 0

= dk,l∗Yk

which is exactly the optimal value of the primal problem. Thus, it follows that
(αk,βk,γk).
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For the case of the linear relaxation of the master problem (4.7), it is also possible to obtain
the exact solution by way of an efficient use of the Algorithm 5. In this context, the procedure
is as follows. Given the purchase size Yk of product k, we establish as base the interval
lower bound for all intervals with a value ŝk,l > 0, i.e. ak,l−1ŝk,l = z̃k,l. Then sequentially,
decreasing in l from index Lk to 1, we increase each z̃k,l by min{Yk − Zk, ak,lŝk,l − z̃k,l} where
Zk accumulates the updated value of z̃k,l up to this point. We repeat this procedure until
Zk = Yk. When this procedure stops then the last step l∗ is identified and completed.

Algorithm 5 Greedy Algorithm for Solving Problems (4.8)
1: Require: ŝk, Yk from (4.10), set Lk ordered s.t. dk,Lk

< · · · < dk,1
2: z̃k,l = ak,l−1ŝk,l for all l ∈ Lk and Zk = ∑

l∈Lk
z̃k,l

3: for l ∈ {Lk, . . . , 1} do
4: z̃k,l = z̃k,l + min{Yk − Zk, ak,lŝk,l − z̃k,l}
5: Zk = Zk + min{Yk − Zk, ak,lŝk,l − z̃k,l}
6: if Zk = Yk then
7: Gk = ∑

l∈Lk

z̃k,ldk,l

8: l∗k ← l
9: break

10: end if
11: end for

After obtaining the l∗k from Algorithm 5 we apply the Algorithm 6 to get the dual variables.
Similar to the MIP of problem (4.7) we establish nonzero dual variables different to l∗k. The
idea is to add cuts that incorporate both variables (s,y) in the master problem. Therefore,
we give the value αk = dk,l∗

k
. Note that l∗k can make constraint (4.8c) active or inactive, so

for simplicity, we establish the associated dual variables are equal to zero. Additionally, the
constraints (4.8d) with l∗k > l and sk,l > 0 are inactive then the dual variable βk,l = 0 for
l∗k > l. On the other hand, the constraints (4.8c) are active then γk,l > 0 l∗k > l. Similarly, the
constraints (4.8c) with l∗k < l and sk,l > 0 are inactive then the dual variable βk,l < 0 l∗k > l
and the constraints (4.8d) are inactive then γk,l = 0 for l∗k < l.

Algorithm 6 Greedy Algorithm for Solving Problems (4.9)
1: Require: sk, l∗k obtained since the Algorithm , Yk = ∑

j∈J
∑
bi∈Bj
bi3k

yi,j

2: αk = dk,l∗
k
, βk = γk = 0 for all l ∈ Lk

3: for l ∈ {1, . . . , Lk} do
4: if l > l∗k then
5: βk,l = dk,l − dk,l∗

k

6: else if l < l∗k then
7: γk,l = dk,l∗

k
− dk,l

8: end if
9: end for
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Theorem 4.3.1 Let z̃ be the solution produced by Algorithm 5, and let (α,β,γ) be the
solution produced by Algorithm 6. Then,

• y is feasible for the primal problem (4.8);
• (α,β,γ) is feasible for the dual problem (4.9); and
• the two solutions are optimal for their respective problems.

Proof. We proceed in three stages. First, we show that z is primal feasible. Second, we show
that (α,β,γ) is dual feasible. Finally, we show that two solutions satisfy complementary
slackness, which establishes that are optimal.

• Primal feasibility
Note that constraints (4.8c) and (4.8d) are never violated in the algorithm. Since these
constraints are never violated, the slackness associated with the inequality constraint
are never negative. We only need to verify that constraint (4.8b) is satisfied, i.e, that
the sum of the z̃k,l variables equals Yk.
Observe that we begin with Sk = ∑

l∈Lk
sk,lbk,l−1, then if Sk = Yk the algorithm

terminates. If Sk < Yk we complete the rest. In decreasing order in Lk (so that
dk,Lk

> dk,Lk−1 > · · · dk,1), we increase z̃k,l by min{Yk − Sk, bk,lsk,l − bk,l−1sk,l} i.e., we
increase z̃k,l so that either Yk is reached or the maximum quantity available in interval l
is reached. In case of the first option the algorithm terminates; in case of the second
option, we continue with the following interval. Observe that when sk,l = 0 this interval
does not participate in the sum and can be omitted.

• Dual feasibility
By definition to Algorithm 6, we have that

αk = dk,l∗ and βk,l∗ = γk,l∗ = 0

The dual constraints are :

αk + βk,l + γk,l ≤ dk,l l ∈ Lk, (4.12a)
βk,l ≤ 0 l ∈ Lk, (4.12b)
γk,l ≥ 0 l ∈ Lk. (4.12c)

Following the initial definition, when Algorithm (6) terminates, we obtain γk,l = 0
and βk,l = dk,l − dk,l∗ ≤ 0 for all l ∈ {1, . . . , l∗}. Analogously, we get βk,l = 0 and
γk,l = dk,l − dk,l∗ ≥ 0 for all l ∈ {l∗, . . . , Lk}. Notice that this definition ensures all
constrains are active. Consequently, the dual is feasible.

• Complementary slackness The complementary slackness conditions are:

αk ·

∑
j∈J

∑
bi∈Bj
k∈bi

yi,j −
∑
l∈Lk

z̃k,l

 = 0, (4.13a)

βk,l · (bl−1sk,l − z̃k,l) = 0, (4.13b)
γk,l · (blsk, − z̃k,l) = 0, (4.13c)

ẑk,l · (αk + βk,l + γk,l − dk,l) = 0 (4.13d)
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Equation (4.13a) is satisfied due to (4.8b). Similarly, the solution (α, β, γ) obtained
from Algorithm (6) satisfies by construction constraints (4.9b) with equality, implying
that equation (4.13d) is satisfied. In addition, this solution satisfies equations (4.13b)
and (4.13c) since γk,l = 0 for all l ∈ {1, . . . , l∗ − 1} and bk,lsk,l = z̃k,l otherwise, and
βk,l = 0 if l ∈ {l∗, . . . , Lk} with bk,l−1sk,l = z̃k,l otherwise. Then, since complementary
slackness holds, the primal and dual solutions are optimal.

We note that the solution method works for a combinatorial coalition formation problem
with capacity constraints on products. We can add the capacity constraints to the models
described above in two ways: indirectly and directly. First, we can modify the price function,
adding a value large enough for quantities greater than the product’s capacity. Another
alternative is to add the a capacity constraint to the master problem as the following inequality:∑

j∈J

∑
bi∈Bj
bi∈k

yi,j ≤ capk k ∈ K, (cap-SPF)

where capk is the capacity available of product k, k ∈ K.

4.4 Computational experiments
4.4. COMPUTATIONAL EXPERIMENTS

In this Section, we present the computational tests performed. All procedures and
algorithms have been written using the language Python and, for MIP problems, we used
GUROBI version 9.1. In Section 4.4.1 we describe the synthetic data that was used in our
experiments, and Section 4.4.2, we present the results of our experiments.

4.4.1 Instances: description
We now describe the generation of instances used for our computational experiment. Due

to the fact that SPF supports only a step price function, we compare the performance of both
GPF as SPF for this type of price function. Therefore, we describe below the reservation price,
the function price, and finally, the bundle formation considered. The instances considered are
based on the experiment set used in [89] for Combinatorial Coalition Formation.

Reservation prices: the reservation price depends on the size of the bundle, rather than
on which products are contained. We establish the willingness to pay for the bundle bi of
purchaser j as ri,j ∈ [r · kα, r · kα] where r and r are the lower and upper bounds of the
reservation price for a single item, k is the number of items in the bundle, and α > 0 indicate
if the products in a bundle are substitutes or complements. In this manner, α = 1 represents
that the customer is indifferent to buying a bundle or buying the items in the bundle separately.
On the other hand, α > 1 represents when the buyers prefer to buy the items as a bundle to a
subset of them, i.e., the products are complementary. In contrast, when α < 1 the reservation
price of purchasing the items as a bundle is less than buying a subset of them, i.e., the items
are substitutes.
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Price-quantity curve: describes the price drop between ph to pl as a function of increase
in quantity. We assume the price drops from ph to pl regularly, i.e., each decreasing step is
coming after the same increase in the order quantity and resulting in equal price reductions.
We denote the Number of steps by Rk ∈ [R,R] where R and R are the minimum and maximum
number of steps respectively. The Price Decrease Rate (PDR) is defined as the ratio of price
reduction to the quantitative increase over each step. We defined PDR ∈ [PDR,PDR]
are the minimum and maximum steps respectively. The PDR determines how steep is the
quantity discount, i.e., with a higher PDR, more buyers can purchase in the buying group.
We note that with more steps on the price curve, the buying group’s formation is easier as
even a small increase in the sold quantity can drive down the price.

Bundle formation: we randomly choose |B| sets from the full list of possible permutations
with a maximum length Q of the |K| products with Q < |K|. In previous experiments, we
observed that instances with overlaps between bundles are harder to solve. Hence, in order
the exploit possible overlap between bundles, we set up the bundle size to six and assume
that there exist two essential products that are mutual substitutes. Specifically, given these
two products, one of them is necessarily selected randomly in each bundle. For instance, we
suppose a set K = {k1, k2, k3, k4, k5} where k1 and k2 are essential. If the bundle size is three,
then the possible bundles of the set B are {k1, k3, k4}, {k1, k3, k5}, {k1, k4, k5}, {k2, k3, k4},
{k2, k3, k5} and {k2, k4, k5}.

For our experiments we used the following values r = 80, r = 130 , |J | = {100, 150, 200,
300, 500, 1000}; |B| = {15, 31, 62, 93, 124, 155, 207}; pl = 70 , ph = 100; |K| = 15; Q = 5 as
maximum number of products for bundles with α = {0.5, 0.55, . . . 1.25, 1.30} and R = 4 and
R = 10. We generated 100 random instances for each set of values of the parameters described
above. The headers of the Tables have the following meanings:

• Instance: Name of instance;
• GAP: average gap 100UB−LB

LB
%, where UB(LB) is the best upper(lower) bound;

• RGAP : average integrality gap 100LP−LB
LB

%, with LP = linear relaxation value;
• Sol: number of instances that reached optimal solution during the maximum time of

experiment;
• t(s) : average CPU time in seconds (Total time).

4.4.2 Comparison between the different formulations
Table 4.5 shows the computational performance of the different formulations. As expected,

the computational performance of formulation (GPF) is worse than (SPF1) and (SPF2).
Although (SPF1) and (SPF2) reformulation has the same linear relaxation, the (SPF2)
obtained a better GAP than (SPF1), and additionally, no higher computational cost is
perceived. At the same time, (SPF2) presented the best value in the majority of all indexes
studied of the three.

On the other side, note that the number of constraints and variables generated for (GPF)
is higher than in (SPF1) and (SPF2), which may impact the algorithms’ processing time.
However (GPF) can be used for any function price even if it is nonincreasing; hence it is
useful when buyers are few. Despite (SPF) being a model to represent step price functions,
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since purchase quantities are integer, (SPF) can represent any non-increasing function by
considering unit length intervals.

Table 4.5: Comparison of GAP, RGAP and t(s) between the formulations GPF and SPF.
|K| = 12

SP1 SPF2 GPF SP1 SPF2 GPF
Instance GAP RGAP t(s) Sol GAP RGAP t(s) Sol GAP RGAP t(s) Sol Instance GAP RGAP t(s) Sol GAP RGAP t(s) Sol GAP RGAP t(s) Sol
100-62 0.337 13.524 1,949 82 0.016 13.516 1,412 98 7.345 14.435 3,600 - 300-62 0.052 0.998 553 91 0.020 0.995 291 98 0.565 1.023 1,962 53
100-93 0.261 9.627 1,966 78 0.019 9.621 1,151 99 9.224 11.157 3,600 - 300-93 9.346 12.191 3,563 4 8.790 12.051 3,556 4 11.527 12.169 3,600 -
100-124 0.254 8.768 2,294 79 0.066 8.756 1,690 95 8.598 10.109 3,600 - 300-124 8.345 10.928 3,588 2 10.171 12.256 3,536 7 11.066 11.422 3,600 -
100-155 0.214 7.842 2,476 85 0.020 7.835 1,867 99 7.757 9.005 3,600 - 300-155 10.002 11.782 3,604 - 11.247 12.918 3,580 4 11.036 11.318 3,600 -
100-207 0.693 6.769 3,150 63 0.021 6.740 2,331 99 6.665 7.701 3,600 - 300-207 10.874 11.950 3,585 2 9.523 11.828 3,419 21 10.377 10.568 3,601 -
150-62 0.579 8.977 2,444 56 0.116 8.949 1,539 91 6.211 9.363 3,600 - 500-62 0.000 0.002 1 100 0.000 0.002 1 100 0.000 0.002 3 100
150-93 1.130 9.586 2,907 53 0.119 9.538 2,059 95 10.779 11.929 3,600 - 500-93 13.037 15.074 3,582 2 13.178 14.606 3,585 1 12.471 12.838 3,601 -
150-124 2.829 8.917 3,262 32 1.076 8.732 2,817 64 9.022 10.162 3,600 - 500-124 15.037 15.686 3,603 - 13.570 14.437 3,602 - 11.252 11.514 3,602 -
150-155 3.447 7.816 3,349 20 1.516 7.704 3,002 56 8.177 9.038 3,600 - 500-155 14.436 15.136 3,603 - 14.389 15.261 3,585 2 10.964 11.151 3,655 -
150-207 4.177 7.382 3,374 14 3.743 7.419 3,064 31 8.607 9.184 3,600 - 500-207 14.512 15.162 3,595 1 14.085 14.977 3,571 3 10.209 10.343 3,691 -
200-62 0.210 5.466 1,887 67 0.064 5.463 920 93 3.361 5.713 3,486 4 1000-62 0.000 0.000 1 100 0.000 0.000 1 100 0.000 0.000 3 100
200-93 5.230 10.336 3,387 14 2.815 9.934 3,130 39 10.370 11.415 3,600 - 1000-93 13.346 14.907 3,581 2 12.495 14.258 3,582 2 13.336 13.633 3,602 -
200-124 5.234 9.228 3,499 10 5.347 9.732 3,232 27 9.588 10.277 3,600 - 1000-124 16.404 16.706 3,608 - 16.206 16.506 3,603 - 12.969 13.190 3,602 -
200-155 5.480 8.722 3,516 9 5.507 8.872 3,444 14 9.182 9.652 3,600 - 1000-155 16.287 16.528 3,607 - 17.078 17.321 3,603 - 13.449 13.626 3,600 -
200-207 5.485 7.866 3,562 5 5.191 8.282 3,310 23 9.094 9.391 3,600 - 1000-207 16.296 16.461 3,604 - 19.507 19.668 3,602 - 11.300 11.423 3,600 -

4.4.3 Evaluation of Bender’s decomposition
We studied three different ways to add the Benders cut into the Branch and Bound (B&B)

tree: the traditional version of Branch and Cut (B&C) where it is possible to add the cuts
in all nodes; the reduced version of Branch and Cut (B&C2) where cuts are added only
in the incumbent nodes (nodes with integer solution), and Cut and Branch (C&B) where
the cuts are applied only in the root node, i.e., Benders decomposition is used only in the
linear relaxation. Cuts are added as lazy constraints to the subproblems generated in each
tree node of the B&B method, using the callback environment provided for GUROBI. All
GUROBI default cuts were turned off to prove the efficiency of the Benders cuts. The results
of the computational experiment are shown in Table 4.6. It is important to note that the
methods we study incorporate the stabilization scheme described in section ??. To construct
the feasible solution of the stabilization scheme, we consider, given a fractional solution, that
each customer selects the bundle with a fractional value closest to one. We note that the
C&B obtained the best performance in most cases reducing the GAP, the t(s), and solved a
greater number of instances optimally than the alternative methods.

Table 4.6: Comparison of GAP and t(s) between of Benders Decomposition approach for
SPF. |K| = 12

RSPF-CB RSPF-BD2 RSPF-BD RSPF-CB RSPF-BD2 RSPF-BD
Instance GAP t(s) Sol GAP t(s) Sol GAP t(s) Sol Instance GAP t(s) Sol GAP t(s) Sol GAP t(s) Sol
100-62 0.005 177 100 0.010 455 99 0.008 446 99 300-62 0.002 17 100 0.000 34 100 0.000 33 100
100-93 0.006 280 100 0.000 565 100 0.000 550 100 300-93 0.077 1,210 96 0.451 2,079 78 0.431 2,021 80
100-124 0.007 439 100 0.028 946 98 0.022 900 98 300-124 0.136 1,674 94 0.910 2,685 59 0.828 2,665 60
100-155 0.006 500 100 0.032 1,046 98 0.022 959 99 300-155 0.274 1,867 86 0.960 2,801 57 0.937 2,754 57
100-207 0.006 669 100 0.065 1,349 96 0.063 1,329 96 300-207 0.671 2,335 70 1.608 2,991 36 1.614 2,991 35
150-62 0.006 248 100 0.053 558 96 0.052 551 96 500-62 0.001 6 100 0.000 5 100 0.000 4 100
150-93 0.006 545 100 0.075 1,069 96 0.077 1,022 96 500-93 0.553 2,092 80 1.424 3,013 46 1.341 2,972 49
150-124 0.006 715 100 0.112 1,449 92 0.103 1,410 94 500-124 0.994 2,616 61 1.910 3,177 33 1.763 3,139 37
150-155 0.006 770 100 0.081 1,486 95 0.089 1,449 95 500-155 1.532 3,050 46 2.626 3,442 14 2.514 3,423 15
150-207 0.021 1,140 99 0.332 1,955 81 0.306 1,903 83 500-207 2.100 3,184 29 2.920 3,499 11 2.935 3,488 10
200-62 0.004 54 100 0.000 118 100 0.000 115 100 1000-62 0.000 17 100 0.000 7 100 0.000 7 100
200-93 0.007 865 100 0.158 1,621 90 0.164 1,573 91 1000-93 2.852 3,298 23 4.127 3,547 7 4.079 3,540 7
200-124 0.056 1,088 97 0.364 1,917 83 0.351 1,899 84 1000-124 3.138 3,432 16 4.177 3,565 4 4.017 3,569 3
200-155 0.081 1,332 95 0.543 2,281 70 0.511 2,239 73 1000-155 3.684 3,478 9 4.213 3,556 4 4.134 3,550 4
200-207 0.206 1,611 91 0.704 2,435 66 0.700 2,437 66 1000-207 3.381 3,492 9 4.339 3,555 5 4.281 3,560 5
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The analysis shows that there does not exist a clear difference of yield between B&C
and B&C2. We can explain the results considering the number of possible cuts that can
generate each method. Indeed, we remark that the benders cuts generated are equivalent
to strengthened constraint (4.3e-1). Hence, the possible cuts that we can add are |K| × Lk.
Therefore, once the cuts are added in the root node, the number of additional cuts that can
be generated is minimal.

Figure ?? shows the mean gap and the percentage of optimally resolved instances by
instance size (|J |, |B|) obtained for B&C and C&B. Note that instances up to 1000 clients
have been resolved. We can observe that the higher the number of clients and bundles, the
more complex the instances are, with the increase in bundles complicating the problem more
than the increase in buyers. Still, both the B&C and C&B methods optimally solve instances
within1000 customers and 62 bundles. Moreover, at most instance sizes, C&B can solve some
percentage (except with 1000 customers and more than 155 bundles). Furthermore, C&B
obtain the best gap in all instances, with a mean gap less to 6% for instances within 1000
purchases.
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Figure 4.2: Barplot upper represents the mean gap of each method by size, and lower barplot
represents the percentage of solved instances by size.

In addition, we study the effect of incorporating a stabilization scheme and initial solution
on the performance of the C&B and B&C methods. We propose a simple warm start where
each customer chooses the bundle with the best reserve price. Subsequently, we prove a local
change by removing customers that can improve the solution. In the first part, let us see
how including stabilization affects these methods. The results obtained in Figure 4.3 show
that the use of stabilization in both methods does not reduce the number of nodes explored.
However, Figure 4.4 shows that more solutions are solved optimally in the set study time
(one hour) when stabilization is included. At the same time, Figure 4.5 shows that when one
adds a stabilization scheme, the methods obtained a higher percentage of instances solved
close of optimal and for the remaining instances are reduced the gap. Therefore, for this case,
although including stabilization does not apparently decrease the number of nodes explored,
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it allows us to go deeper into more efficient nodes that help us to improve better solutions in
a shorter time.
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Figure 4.3: The percentage of solved instances with a number nodes less or equal to that
corresponding abscissas is represented for each methods.

On the other hand, we observe that for both cases, if one just gives it an initial solution
without doing stabilization, the methods worsen its overall performance. Meanwhile, when
we include a warm start to the stabilization scheme improves the performance of B&C. In
contrast, for C&B, the opposite is true, i.e., it is not useful to combine with a warm start.
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Figure 4.4: The percentage of solved instances in an time less or equal to that corresponding
abscissas is represented for each methods.

Finally, we can deduce that results described a clear advantage in the yield obtained of
C&B over B&C. In Figure 4.3 it is shown that C&B must explore a higher number of nodes

77



for solving the MILP. Furthermore, in Figure 4.4 show that the percentage of instances solved
before one hour is double for C&B than B&B (over 60% for the case of C&B and less than
30% for B&C). In the same sense, Figure 4.5 determines that 80% of the instances solved
with C&B obtain a gap of less than 30% within one hour. While that for B&C only a 40%
of instances reach the same percentage of the gap.
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Figure 4.5: The percentage of instances with a gap less or equal to that corresponding abscissas
is represented for each methods.

4.5 Conclusions
4.5. CONCLUSIONS

Nowadays, the constant expansion of the internet and the number of users worldwide have
boosted the digital marketplace’s growth, which invites new forms of interaction between
purchasers and all types of merchants. For example, sellers can offer wholesale products
at a lower price, but not necessarily the buyers wish to or can purchase a large number of
items. Thus, the purchasers with a similar preference can be grouped to buy together to
take advantage of a wholesale price. In these circumstances, a coordinator can divide a set of
buyers with heterogeneous preferences interested in obtaining a better price, according to
each member’s reservation price. This problem is known as the coalition formation problem
in related literature, which seeks to divide an set of agents into a disjoint subset to maximize
the total reward.

In this scenario, we used a Combinatorial Coalition Formation problem, where the products
are offered in bundles, and each customer is willing to buy at most one bundle. Thus, every
purchaser has a reservation price for any of them, which –at the same time- depends on
whether they are complementary or substitute. This decision problem may be simplified to a
Set Packing Problem which is a NP-hard problem. As an additional complication, the pricing
function depends on the size of the purchase. However, the coalition applies to each bundle
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because the buyers purchase bundles, causing difficulties in establishing a clear definition of
the value in the coalition structure.

From of point of view of sellers, wholesale pricing helps reduce the inventory cost, involves
savings in marketing cost, and preserves or increases their market power. Additionally, in
the bundle, the sellers can reduce the inventory of items difficult to sell by selling them in
conjunction with higher turnover products.

In this chapter, we presented mixed-integer optimization models for the Coalition Formation
Problem. We showed a general price function (GPF) formulation and a step price function
(SPF). The first formulation uses a binary variable for every purchase size, discretizing the cost
function, obtaining a value for the linear coalition. Due to the step price function widely used
to model price wholesale, we introduced a multi-choice model for SPF. Given its structure, it
is possible to apply a Benders decomposition approach.

The computer experience shows that the (SPF) has a better performance than the (GPF)
for the step formulation. This occurs since the number of variables generated in an (SPF) is
lower than in (GPF). An interesting theoretical outcome suggests that the cut produced by the
Benders Decomposition approach becomes equal to a valid inequality proposed. Additionally,
the experiments revealed a higher performance from the Cut and Branch than from the
Branch and Cut procedures. This phenomenon arises from the fact that the cuts generated at
the root nodes are not tight enough, producing growth in the size of the problem solved in
each node.
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Chapter 5

Conclusion

The marketplace is a space for bargaining among sellers and buyers. On one side, sellers
must decide pricing, assortment, markdown, location, store, and distribution. On the other
side, the buyers must decide what, when, how much, and where to purchase. Depending on
the time and gain or loss required, these can be tactical, operative, or strategic decisions.
Given the complexity of many of these decisions, it is desirable to develop tools to catch the
main attributes and help make better choices.

Consequently, mathematical programming has developed diverse models that simulate
agents’ behavior, allowing decision makers to study and interpret outcomes, which are then
used to inform decisions. The more agents and decisions are included in these mathematical
programming models, the more complex and challenging to solve these models become.
Hence, it is crucial to explore more sophisticated models and efficient algorithms to solve
them in a reasonable time. Along this line, decomposition methods attempt to split the
problem’s formulation into simpler models that are embedded inside an efficient solution
scheme. For instance, Lagrangian relaxation, cut generation, and bender decomposition have
shown advantages in solving problems, particularly in mixed-integer programming.

This thesis aims to address two essential sub-fields in the marketplace and e-marketplace
through assortment problem and coalition formation problem, respectively, from the point of
view of mathematical programming models and algorithmic developments for their efficient
solution. The first problem focuses on traditional marketplaces where companies face limited
physical space in the stores to exhibit line products, especially in slower-moving consumer
goods, e.g., TVs, washing machines, refrigerators. Therefore, knowing what items to exhibit
would reduce the risk of a slow turnover. Futhermore, considering buyers’ purchase decisions
is essential for an efficient location and pricing decision. Nowadays, with market studies, it is
possible to quantify variables that influence the buyers’ decision, such as willingness to pay
and travel costs to acquire the products. With that, it is possible to simulate the buyers’
behavior when facing different assortments in each store, establishing the firm’s best decision.

On the other hand, in many cases, companies offer discounts for volume purchases; however,
customers may not necessarily be able to access them, either because they do not have the
economic capacity or need fewer units. Hence, one way to access this benefit is taking
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e-marketplaces to buy together in groups or coalitions of customers with similar preferences.
Consequently, the second problem aims to establish coalitions of buyers to take advantage
of wholesale prices. In this case, it is considered that customers want to buy a bundle of
products, where the price of each product depends on the number of people who buy it.
Therefore, the problem consists of selecting the best structure of customer coalitions so as to
maximize social welfare.

5.1 Contributions

Contributions for PLOMS

• Model for PLOMS: the traditional models for the Line Product Design problem has
considered the multiple store and geographical dimension. For the first case, earlier
works suggest solving a model in every store or repeat the same assortment in all of them.
For the second case, notice that the customer could have different preferences among
areas. Hence, they can travel further, assuming a travel cost, to acquire a lower-price
product or when a product is unavailable at the closest store. This work proposed a
novel model to Line Product Design with multiple stores and the travel cost of buyers.
We proposed a bi-level model to represent this behavior, where the leader is a firm and
followers are the customers. Given that a customer purchases at most one product and
knows its utility, it is possible to define an order of the preferences in the choice pair
product/location. This determines the set of better (and worse) alternatives to a given
product/location; consequently, the second level problem can be transformed into a set
of constraints that allow it to collapse in a single-level optimization problem. Besides,
the PLOMS can consider pricing decisions in each store by repeating the items with
discrete prices. Notice that given that customers are rational, the products available
would only have one price in each store. At the same time, the formulation can consider
that a bundle of products are purchased in only one store. We can consider bundles like
a product, hence obtaining a set of preferences and rescuing the single-level formulation.

• Algorithm for PLOMS: this work provided three different decomposition methods
to solve the PLOMS: (i) Lagrangian relaxation, (ii) the Bender decomposition, and
(iii) cuts generation. For (i) the Lagrangian methods we considered three different
relaxation approaches, the first relaxes the worst preference constraint, the second the
worst preference constraint and the linking constraint, and the third method the worst
preference constraint and the limit purchase constraint. The last two relaxations split the
problem into efficient sub-problems as they satisfy the integrality property, while the sub-
problem of the first relaxation is a Single Location Problem that is hard to solve. The (ii)
Bender decomposition, which has been used to solve the version single-store, is studied
to extend this efficient solution method to multiple stores. The (iii) cuts generation,
since PLOMS is similar to FCPL, then we adapt its family of valid inequalities from
FCPL to PLOMS. For the latter case, we tested adding valid inequalities using B&C
and C&B. To validate the results, we used the bender decomposition as a benchmark.
Computational experiments showed that C&B has better results, improving the current
results.

Therefore, there are three main contribution for the PLOMS model: extend the model to

81



multiple stores including the travel cost in customer decision, a family of valid inequalities
for this problem, and improving solution methods with a C&B approach that improves on
current practice.

Contributions for CCF

• Model for CCF: (i) general price function; the model assumes a non-increasing function
that can model different discount strategies depending on the number of buyers. The
formulation is a compact integer programming in which the number of variables increases
with the number of buyers and are difficult to solve. We provide a strengthened linear
relaxation; (ii) function ladder price, the model considers a function ladder price,
a common profile price that uses the wholesale. The formulation is mixed-integer
programming that uses a discrete variable to active the echelon belongs to the number
of buyers. The model admits a decomposition method that split the continuous and
discrete variables. Besides, we include strengthening to improve linear relaxation.

• Algorithm for CCF: the mixed-integer programming to ladder price function allows
a Benders decomposition approach to split the integer and continuous variables. By
adding a simple constraint, only optimality cuts are necessary in Bender’s decomposition.
The subproblem can be solved analytically. The computational experiments show that
the approach can obtain optimal solutions for instances with up to two hundred buyers.

5.2 Future work
For the Multiple Location Product Problem, a strong assumption is that the buyers acquire

at most one product. Although for the slower moving consumer goods, e.g., TV or washing
machine, it is reasonable; often the customer wishes to purchase a bundle of items either in a
single store or various stores. Furthermore, the products can be complementary or substitute
depending on the items, where business decisions will probably be different. New models and
solution methods should be investigated to incorporate these realistic aspects to the problem.
Being able to include bundle purchases is of interest both from the mathematical point of
view and from practice.

This study incorporated only one firm that sells; hence, adding competition is another
relevant problem. In a first approach, it is possible to consider a leader firm and another
follower. In this case, the models are a three-level formulation; leader, follower, and consumer.
Assuming the model provided in this thesis, it is possible to collapse the consumer choice
model into the follower optimization problem leading to a bilevel modelof the two agents. In
order to solve this, it is necessary to apply methods in bilevel programming, as presented in
Chapter 2.

Besides, including temporal issues can approximate further the model to the real world.
The sellers must decide where and when to allocate the products, pricing considering the
inventory cost and obsolescence in a time window. In contrast, the buyers can decide to
wait to find a better price or to wait until the product becomes available in the closest store,
given his willingness to pay and patience. Additionally, the buyers could buy under a certain
probability; therefore, each agent will maximize their excepted utility.
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For the Combinatorial Coalition Formation Problem, this thesis covered the buyers’ side.
Thus, it would be interesting to investigate this problem from the seller’s perspective when
faced group of buyers that can form coalitions. This problem can be modeled as a Stackelberg
game in which the firm is the leader, and the customers are the followers; therefore, the
firm proposes a price function depending on the size of the purchase; subsequently, with this
information, the buyer groups purchase a particular bundle. Furthermore, the products that
are bundled together in a bundle could also be part of the decision as another extension of
the model.

Besides, it is possible to incorporate decisions depending on time, such as the buyers’
arrival and the deadline for coalition formation where the fairness and stability solutions
are different. The outcomes will change whether consider the choice online, which depended
on how to arrive at the buyers, or offline, where all the information is revealed beforehand.
Comparing both approaches is an attractive investigation for the future.
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Appendix

5.2.1 Stabilization root node

The purpose of a stabilization procedure is to reduce the number of times we have to solve
the separation problems before we conclude solving each node, i.e., the stabilization procedure
ensures a quicker closing of the gap between the upper bound and the dual lower bound.

The classical Kelley scheme, [Kelley, 1960] for cut generating, which is known to have a
very bad performance. The reason for this bad performance is that the dual lower bound
calculated at each iteration can be very erratic, and as a result, the process has a somewhat
slow convergence. Authors as [Fischetti et al., 2016b] have noted that a point out that the
convergence behavior of the overall cut strategy greatly depends on the point chosen to
be separated at each iteration and, as such, the performance of this cut loop can be easily
improved by implementing a simple in-out stabilization procedure like the one shown in
[Ben-Ameur and Neto, 2007].

In general, at a given root node iteration, suppose one has a (fractional) solution, aout,
obtained from solving the master problem, and a feasible solution for the original MILP,
ain. Then, at that iteration, rather than attempting to separate aout, one can separate the
following ‘intermediate’ point instead:

asep = λain + (1− λ)aout

where lambda ]0; 1]. Note that when = 1, this amounts to not performing any stabilization,
and the lower the value of, the more aggressive the stabilization performed becomes, in the
sense that the point that one feeds into the separation problems is closer to a feasible solution.
Algorithm 3 shows pseudocode for this stabilization procedure.

Note that it is important to adequately tune the value for a good performance of the
stabilization procedure. As in Kelley’s scheme, no stabilization can lead to slow convergence,
but an over-aggressive stabilization can lead to too much time spent on solving separation
subproblems that do not generate violated cuts.
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Algorithm 7 Cut generation
1: stop = True
2: for i ∈ I and stop = True do
3: S = {(j, k)|xijk > 0 (j, k) ∈ Ti}
4: jkimin = arg min

(j,k)∈S
{σi(j, k)}

5: jkimax = arg max
(j,k)∈S

{σi(j, k)}

6: if y(j,k)i
max < 1 then

7: for i′ ∈ I \ {i} do
8: (j, k)i′max = arg max

(j,k)∈S∩Ti′

{σi(j, k)}

9: for (ĵ, k̂) ∈ Ti ∩ [(j, k)imin, (j, k)i′max] do
10: if ∑(j′,k′)∈Wiĵk̂

xij′k′ = y(j,k)i
max

then
11: break
12: end if
13: if ∑(j′,k′)∈Wiĵk̂

xij′k′ +
∑

(j′,k′)∈Bii′ ĵk̂
xi′j′k′ ≤ 1 then

14: add cut(i, i′, ĵ, k̂)
15: stop = False
16: break
17: end if
18: end for
19: end for
20: end if
21: end for

Algorithm 8 Greedy Algorithm for Solving Problems (4.8) without constraint (4.6)
1: Require: sk, Yk = ∑

bi∈Bj
k∈bi

yi,j, set Lk is ordering s.t. dk,|Lk| < · · · < dk,1

2: z̃k,l = bk,l−1sk,l for all l ∈ {2, . . . , |Lk|} and z̃k,1 = 0
3: Zk = ∑

l∈Lk

z̃k,l , Zk = ∑
l∈Lk

bk,lsk,l

4: if Zk > Yk or Zk < Yk then
5: Gk =∞
6: break
7: else
8: for l ∈ {|Lk|, . . . , 1} do
9: z̃k,l = z̃k,l +min{Yk − Zk, bk,lsk,l − z̃k,l}

10: Zk = Zk +min{Yk − Zk, bk,lsk,l − z̃k,l}
11: if Gk = Yk then
12: Gk = ∑

l∈Lk

z̃k,ldk,l

13: l∗k ← l
14: break
15: end if
16: end for
17: end if
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Algorithm 9 Greedy Algorithm for Solving Problems (4.9) without constraint (4.6)
1: Require: sk, l∗k obtained since the Algorithm , Yk = ∑

bi∈Bj
k∈bi

yi,j

2: Sk = ∑
l∈Lk

sk,lbk,l, Sk = ∑
l∈Lk\{1} sk,lbk,l−1

3: if Sk < Yk then
4: αk = −1
5: γk,l = 1 for all l ∈ {2, . . . , |Lk|}
6: else if Sk > Yk then
7: αk = 1
8: βk,l = −1 for all l ∈ {1, . . . , |Lk|}
9: else
10: Sk = ∑

l∈Lk
sk,lbk,l, Sk = ∑

l∈Lk\{1} sk,lbk,l−1
11: αk = dk,l∗

k

12: βk = 0 for all l ∈ {1, . . . , |Lk|}
13: γk = 0 for all l ∈ {2, . . . , |Lk|}
14: for l ∈ {1, . . . , |Lk|} do
15: if l > l∗k and sk,l > 0 then
16: βk,l = dk,l − dk,l∗

k

17: else if l < l∗k and sk,l > 0 and l > 1 then
18: γk,l = dk,l∗

k
− dk,l

19: end if
20: end for
21: end if

5.2.2 Primal feasible heuristic
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