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STATISTICAL PROPERTIES OF A NON-POLARIZED ACTIVE TISSUE

Esta tesis tiene como objetivo desarrollar un marco teórico para analizar las propiedades
de tejido epiteliales, entendiéndolos como un ejemplo de materia activa. Comprender su
comportamiento mecánico es de interés para biólogos, físicos, y otros. Varios trabajos han
explotado la idea de actividad polarizada incorporando fuerzas internas que producen, por
ejemplo, migración celular. Aquí, en cambio, utilizamos un sistema no polarizado, donde la
dirección de los movimientos está dada por las interacciones entre los elementos, y donde se
consideran nuevos términos escalares de actividad.

Utilizando el modelo de vértices, encontramos analíticamente inestabilidades caracterizadas
por el acoplamiento de ciertos modos de deformación cuando incorporamos homogéneamente
esfuerzos sobre el tejido, o actividad celular. Mostramos un excelente acuerdo con simulaciones
numéricas donde la no convexidad celular es un representante geométrico de las inestabilidades.
Cuando la actividad está localizada en una sola célula del sistema, imitando las contracciones
apicales que se observan en distintos procesos biológicos, se observan distintas respuestas
geométricas dependiendo de la zona celular que es activa: si es la zona medial, la célula activa
toma forma anisotrópica, mientras que si es el perímetro entonces tiende a tomar una forma
isotrópica. Aplicamos este análisis al estudio de pulsos de contracción apicales observados
experimentalmente durante eventos de división celular frustrados en etapas tempranas del
desarrollo del pez anual Austrolebias nigripinnis. A partir de un proceso de optimización de
observables geométricos, somos capaces de discriminar el tipo de actividad que mejor describe
la evolución del sistema, además de obtener el mejor ajuste de los parámetros del modelo,
tanto globales como particulares de cada evento activo.

Para comparar entre micro y macro-escala, describimos un modelo continuo documentado
en la literatura que nace a partir del modelo de vértices, obteniendo así un tensor de
esfuerzos continuo. Incorporamos actividad celular tanto medial como perimetral en una
zona activa definida por una función Gaussiana, y estudiamos los estados de equilibrio
mecánico y la dinámica del sistema, mediante el modelo continuo y simulaciones numéricas del
modelo de vértices. Evidenciamos excelentes acuerdos entre ambas descripciones al considerar
reescalamientos de las escalas temporales y de la contractilidad activa perimetral.

Para analizar la auto-organización, realizamos simulaciones numéricas de un tejido no
polarizado fluctuante, donde la actividad está inspirada en la continua regeneración del
citoesqueleto. Calculamos diversos factores de estructura estáticos, encontrando una
separación de escalas que permite discernir entre la escala microscópica y la macroscópica del
modelo. Además, la respuesta muestra ondas de compresión en el régimen de gran longitud
de onda y la aparición de una cascada de energía inversa.

Al final de la tesis se presentan las conclusiones generales y la perspectiva a futuro del
tema de estudio.
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STATISTICAL PROPERTIES OF A NON-POLARIZED ACTIVE TISSUE

This thesis aims to develop a framework to analyze the properties of epithelial tissues, taking
them as an example of active matter. Understanding their mechanical behavior is of interest
for biologists, physicists, and others. Several works have exploited the idea of polarized
activity as an internal force, producing, for example, cellular migration. Here, instead, we
use a non-polarized system in which the interaction between the elements gives the direction
of motion and where novel active scalar terms are considered.

By performing analytical calculations using the vertex model, we find instabilities charac-
terized by the coupling of some particular deformation modes that appear when the system
is under stress or when cellular activity is considered, both applied homogeneously. We show
an excellent agreement with numerical simulation, where the non-convexity of the cells is
a geometrical proxy of the instabilities. When we consider activity in a single cell of the
system, mimicking apical constrictions observed in several biological processes, we observe
different geometrical responses depending on which cellular region is the active one: if it is
the medial region, the active cell takes an anisotropic shape; if it is the perimeter, then the
active cell tends to get an isotropic shape. We apply this analysis to the study of apical con-
traction pulses observed experimentally on frustrated cellular divisions in the blastula stage
of the annual killifish Austrolebias nigripinnis. From an optimization process of geometrical
observables, we can discriminate the type of activity that better describes the evolution of
the system and also obtain the best fit of all parameters of the vertex model, globals, and
specific for each active event.

To compare the micro and macro-scale, we describe a continuum model reported in the
literature, inspired by the vertex model, obtaining a continuum version of the stress tensor.
We include the cellular activity in the model, both medial and perimeter, in an active Gaus-
sian region and study the states in mechanical equilibrium and the dynamical evolution of
the system, both with the continuum model and numerical simulations of the vertex model.
We show an excellent agreement between both descriptions when rescaling the time-scales
between them, and the active contractility of the perimeter.

To analyze the self-organization, we perform numerical simulations of a non-polarized-
fluctuating tissue, in which activity is inspired in the continuum reconstruction of the cy-
toskeleton. We calculate several static structure factors and find a scale separation that
differentiates between a micro and a macro-scale in the model. Also, the response shows
compression waves in the long-wavelength regime and an inverse energy cascade.

In the end, we present the general conclusions of our work and its perspective in the future.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Active Matter

Recently, a new field in physics called active matter has attracted multidisciplinary scientists.
The systems treated in this area are those composed of interacting units capable of using
energy from the environment or stored energy, and turn it into motion [1, 2, 3, 4, 5]. In virtue
of such an extensive definition, different kind of systems enter this field. Active Brownian
particles, flagellated microswimmers, swimming bacteria, living cells, epithelial monolayers,
self catalytic colloids, bird flocks, fish school, and even human crowds are part of the vast
studied systems. This increases the importance of making advances in this field, since new
frameworks and methods could be applied to a huge amount of systems.

The continuous energy consumption of the units turns these systems into prototypes of
non-equilibrium problems, in which the energy input is local. Thus, it is necessary to go be-
yond the usual ideas of free-energy, detailed balance, and time-reversal symmetry. To study
active systems, tools from non-equilibrium statistical mechanics, soft matter, and hydrody-
namics are used [4].

These systems can be separated based on the nature of the activity, in vectorial or polar
activity, and scalar activity. In the vectorial or polar activity, there is a privileged direction of
self-propulsion at the unit level (e.g., cellular migration and swimming bacteria), generating
in some cases a global polarization as in Vicsek’s model [1]. On the other hand, in the scalar
activity, the units move in a direction given by the interaction with the other units (e.g.,
isotropically covered active colloids). Most of the investigations in active matter deal with
systems in which the activity enters as a vectorial quantity [1, 2, 6].

This thesis is written in the context of the Millennium Nucleus Physics of Active Matter,
led by Rodrigo Soto, Maria Luisa Cordero, and Felipe Barra, where they propose several
questions about developing active matter as a field in physics [7].
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1.1.2 Epithelial tissues as active systems

Epithelial tissues, also called simply epithelia, are sheets made of epithelial cells tightly
bounded, letting no space in between. They cover surfaces, separating two environments,
hence generating a polarized organization perpendicular to the surfaces and also to the di-
rection of motion of the cells. An epithelial cell can be schematized by a prism, with an
apical surface (contact-free), a basal surface (in contact with a substrate), and a lateral sur-
face (Figs. 1.1 and 1.2-A). In the border of the apical side, there are cell-cell linkages, called
adherens junctions. They can be distributed continuously, creating a belt, or discretely (blue
segments in Fig. 1.2-D)-E)-F). There is a 200nm thin structure, called actomyosin cortex,
beneath the cell membranes. This structure, consisting of cross-linked actin filaments inter-
acting with myosin motors, is responsible for generating active stresses [8, 5]. Due to the
physical contact between cells through cell-cell junctions, these forces can propagate through
the tissue, generating mechanical stress on larger scales. Other sources of stress are cellular
elongation (on cellular divisions) and extrusions, external traction, and active cell rearrange-
ments. It is important to consider that these systems are complex ones involving several
time scales. The common time scales for the reconstruction of adhesion molecules are tens
of minutes; for actin 1min; for actin cross-linkers and myosin motors seconds [9, 10, 11].

Some general functions of the epithelial tissues are protection, secretion, and absorption.
They are involved in many biological processes. In particular, our interest is related to
embryonic development and morphogenesis – the creation of structural form. Some examples
of these kinds of tissues are the epidermis, the surfaces of the eyes, and the surfaces of the
hollow tubes and sacs through digestive, respiratory, reproductive, and urinary tracts [12].

There are several types of epithelia. They are classified by cell shape and amount of
layers. Regarding the number of layers, simple epithelia are the ones formed by a monolayer;
stratified epithelia, being multilayered; pseudo-stratified epithelia, the ones whose cells are
in contact with the basement membrane, but only some of them have an exposed apical
side. The latter have just one layer, but due to the localization of their nuclei, they give the
impression of being stratified (see Fig. 1.1).

Figure 1.1: The three basic types of epithelia. In a) it is schematized the apical surface (free-
contact side) and the basal membrane (in contact with a substrate), showing the polarity at
a cellular level. Figure taken from Ref. [13, p. 201].

2



Figure 1.2: Models of apical constriction. (A) Scheme of an epithelial cell. (B) Apical–basal
cross-section of cells undergoing apical constriction (pink). Apical constriction facilitates
the bending/folding of epithelia. (C) Apical surface view of apical constriction. (D) The
purse-string model of apical constriction. The actomyosin localized at the circumferential
region generates contractile forces parallel to the cell surface. (E) The meshwork model
of apical constriction. The actomyosin localized at the medial region generates contractile
forces perpendicular to the cell surface, pulling discrete adherens junction sites inward to
constrict the cell. (F) Ratchet model of apical constriction. Distinct phases of contraction
and stabilization achieve an apical constriction. Figure taken from Ref. [14].

1.1.3 Austrolebias nigripinnis: early developmental stages

The LEO laboratory, led by Prof. Miguel Concha, at Faculty of Medicine of the Universidad
de Chile [15, 16] has developed microscopy techniques to study the developmental stages of
fish, in a controlled way, following the motion of each cell. Cellular motion in this system
is slow, such that cell contractions and rearrangements take times in the scale of hours and
hence can be observed with detail. A particular experiment carried out in LEO inspired this
thesis.

In vivo observations using developing embryos of the annual killifish Austrolebias nigrip-
innis (A. nigripinnis) have uncovered a series of transient and apparently unsynchronized
events, lasting 1.5-3.5h, (16 in the experiment) of apical constriction within the epithelial

3



enveloping cell layer (EVL) at the blastula stage (pre-epiboly) [17]. The active constrictions,
that are normal in the development of these fish, are characterized by an initial phase of fast
and short contraction followed by a relaxation period in which the original apical shape and
size are recovered. As these apical constriction events are associated with a duplication of
the number of nuclei per cell, it has been proposed they correspond to events of cytokinetic
mitotic failures [17]. The same phenomenon is observed in other experiments, as well. One
of such apical constriction events of EVL cells is shown in Fig. 1.3.

There is a biological concern in understanding how cells get into these active contractions
related to frustrated cellular division. Mainly, there is interest in testing if the mechanics
in the system, with possibly active terms, can reproduce the experimental data and then
predict certain behaviors to test in the laboratory.
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Figure 1.3: A) Temporal progression of epithelial cell shape changes during blastula stages
of Austrolebias nigripinnis from 48 to 59 hpf (hours post fertilization). Epithelial polygonal
EVL cells are denoted in green and those with notable constriction through the timescale
considered are shown in red. B) Temporal evolution of cell shape changes referring to cell
area (A, top), anisotropy (Q, middle) and perimeter (P , bottom) that characterize apical
constriction in the target cell marked by a black arrow in A) and C). The parameter anisotropy
was estimated as Q = b/a, where a and b (with a > b) are the principal semi-axes of the
ellipse that better fit to the cell (for more details see Ch. 3). (C) Representative confocal
microscopy-derived planar projections images of single EVL cells suffering transient events of
apical constriction. The duration of the complete image sequence of cell shape changes is 3h
and has been divided in three major steps including pre-constriction (a-b); active constriction
(c-d) and relaxation period leading to shape recovery (e-f). A hallmark of the pre-constriction
step is the accumulation of F-actin in nuclei (increase in nuclear fluorescence indicated by
an arrow). Images shown in C) were captured using a representative A. nigripinnis embryo
microinjected with lifeact-GFP [18].
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1.1.4 Apical cellular contractions

Our view about epithelia has changed dramatically over the years from static and rigid cel-
lular structures functioning as simple mechanical barriers to highly dynamic supra-cellular
arrangements of polarized cells actively involved in morphogenetic processes [19, 20]. Ex-
amples of morphogenesis involving dynamic epithelia extend to many living organisms and
include, among others, germ band elongation and gastrulation in Drosophila [21, 22], neural
tube formation in Xenopus laevis [23], and convergent and extension movements in teleost
fish [19]. Cells within epithelia are maintained in close contact with each other by cell-cell
adhesion complexes, and the dynamic regulation of the cytoskeleton mold their shape and
behavior in response to both external and internal biomechanical factors [24, 25]. Among the
most relevant epithelial cell shape changes that promote tissue remodeling in a wide range
of homeostatic and developmental contexts is apical constriction, the process by which the
apical surface of the cell contracts, causing the cell to take on a wedged shape [26]. At the
molecular level, apical constriction is regulated primarily by the contraction and flows of ac-
tomyosin networks present at the apical side of the cell. Though this mechanism is operating
at a single cell level, it has been documented that events of apical constriction are highly coor-
dinated at the supra-cellular level within epithelia. In accordance, forces generated by apical
constriction are transmitted to surrounding cells through cell-cell adhesion complexes and
contribute to significant macroscopic deformation of tissues [27]. Conversely, the mechanical
environment imposed by neighbouring cells can regulate the dynamics of apical constriction
[26]. Apical constriction can be continuous or pulsed [28, 29], and different force-dependent
mechanisms have been proposed to drive this process, including the purse-string, meshwork,
and ratchet models [14]. A brief description of each model is provided below.

Purse-string model

In this model, the contraction force is generated by an actomyosin ring localized in the
internal perimeter of the cell – the junctional region – such that the resultant forces are
aligned with the sides of the cell, (Fig. 1.2-D).

Meshwork model

In this model, the contraction force is generated by the actomyosin network localized in
the central zone of the apical side – medial region. As this actin meshwork is connected
to adhesion sites –adherens junction – localized in the borders of the cells, its contraction
generates an inward force that pulls these sites into the cell, producing the apical constriction,
(Fig. 1.2-E).

Ratchet model

In this model, the net apical constriction of a cell is achieved by discrete steps, each one
consisting of an apical constriction phase of the medioapical actomyosin meshwork, followed
by a stabilization phase, (Fig. 1.2-F).

The first and second models differ in the localization of the activity, i.e., which region
generates the constriction. Both describe a continuum constriction. The third model, instead,
describes a discrete behavior.

6



1.2 Computational models of epithelial tissues
There are two prominent families of modeling methods for epithelial tissues – cell-based or
lattice-based, and off-lattice methods [30].

Cell-based models use meshes, in two or three dimensions, in which the units (cells), or
part of them, are allowed to move following specific rules. Some of these models allow one
cell per site – cellular automaton models – and others multiple cells per site – lattice gas
cellular automaton. These systems are efficient for simulating large numbers of cells, but
describing with adequate resolution the individual cell morphologies is beyond their scope.
One on-lattice solution comes from the Cellular Potts models, which use several lattice sites
to represent each cell.

Off-lattice methods, by contrast, do not follow a specific mesh for moving. There are the
ones that focus on describing the cellular volume and others that describe the cell boundaries.
Boundary-based models can achieve different resolutions, going from low – in Vertex models
– to high resolution – in Front tracking models – increasing the computational cost in the
process.

A description of the Vertex and Cellular Potts models is given in the following.

1.2.1 Vertex model

The vertex model is an off-lattice boundary-focused computational method, initially proposed
to study foams and soap bubbles [31, 32], but already used extensively to describe tissues.
Some recent applications include the study of tissue elongation and epithelial packing in the
Drosophila wing epithelium [33, 34], neural tube closure in Xenopus [35] and also rigidity
transitions in biological tissues [36].

L

a) b)

Figure 1.4: a) Diagram of three cells in three-dimensions, with height L. In green are the
apical (up) and the basal (bottom) surfaces. In red, the shared faces between two cells.
In blue, the entire lateral surface of one cell. b) Diagram of the apical side of a 7-cells
planar tissue. In colors are represented the 3 interesting cellular regions, following the same
representation as in a). Note that the red color is immediately in the interface between two
cells, while the blue one corresponds at the inner cellular perimeter.

The three-dimensional model considers each cell as a polyhedron in which we can distin-
guish the apical and basal surface (in green in Fig. 1.4-a) from the lateral surface (in blue in
Fig. 1.4-a). Surfaces in contact between cells play a particular role in cellular adhesion (in
red in Fig. 1.4-a).

7



In this model, the position of the vertices evolves variationally, following a general energy
functional given by [37, 38, 39, 40]

E3D =
∑

c

KV

2
(Vc − V0c)

2 +
∑

c

KLSL,c +
∑

c

KBSB,c + uapical, (1.1)

where the first, second and third sums are over the c cells, and the fourth term accounts for
an apical energy term

uapical =
∑

c

KP

2
(Pc − P0c)

2 +
∑

e

Kele. (1.2)

Vc , Sl,c, Sb,c, and Pc, are the volume, lateral surface, basal surface, and apical perimeter of the
c cell, respectively, while V0c and P0c are target values for the respective quantities. le is the
length of the apical side e shared between two cells. The factors 1/2 are commonly used to
keep the typical form of elastic energies. Each term in Eqs. (1.1) and (1.2) has a biophysical
interpretation. In Eq. (1.1), the first term, proportional to a volume elastic modulus KV ,
represents the three-dimensional incompressibility; the second, proportional to the elastic
modulus KL, represents the surface tension on the lateral surface; the third, proportional to
the elastic modulus KB, represents the surface tension on the basal surface. In Eq. (1.2),
the first term represents the elastic energy of a spring lying in the apical border of each cell,
mimicking a contractile actomyosin ring, with elastic constant KP ; the second, proportional
to the elastic modulus Ke, also interpreted as a constant line tension, represents the adhesion
energy cost. The elastic parameters KV , KL, KB, KP , and Ke, are usually considered uniform
and constant (intensive parameters).

When the tissue under study has similar apical and basal surfaces and a height approx-
imately constant L , as in Fig. 1.4-a), the apical side of the tissue can be studied by using
the following energy functional

E2D =
∑

c

KVL
2

2

(
Vc
L
− V0c

L

)2

+
∑

c

KL
SL,c
L

+ uapical, (1.3)

=
∑

c

KVL
2

2

(
AcL

L
− A0cL

L

)2

+
∑

c

KLPc +
∑

c

KP

2
(Pc − P0c)

2 +
∑

e

Kele, (1.4)

=
∑

c

KVL
2

2
(Ac − A0c)

2 +
∑

c

KP

2
(Pc − P0c)

2 +
∑

e

Kele +
∑

c

KLPc, (1.5)

where now each cell is considered as a polygon with area Ac (target area A0c) and perimeter Pc
(target perimeter P0c), in green and blue in Fig. 1.4-b), respectively. By defining KA = KVL

2

and joining the third and fourth sums as a single sum, we obtain the most usual form of the
model, sum over the pair of adjacent vertices i and j with J = Ke +2KL, we obtain the most
usual form of the model,

E2D =
∑

c

KA

2
(Ac − A0c)

2 +
∑

c

KP

2
(Pc − P0c)

2 + J
∑

〈i,j〉

lij, (1.6)
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where J = Ke + 2KL, and lij is the apical cell edge shared by those vertices. With the
new definitions, the first term, proportional to an area elastic modulus KA, represents the
three-dimensional incompressibility and the resistance to height fluctuations; KP maintains
its previous interpretation; J , represents the adhesion between two cells. In the literature,
the parameters KA and KP are assumed to be positive, while there is no restriction on the
sign of J [41, 42].

In Ref. [38] they do not restrict the cellular height L to be constant, and instead use a
confinement energy of Gaussian polymers. They conclude that for tissues with low lateral
adhesion, the two-dimensional apical vertex model is a valid approximation for squamous
cells (L� 〈lij〉).

In most of what is published, the target parameters A0c and P0c are considered uniform
quantities, defined as the average area and perimeter of all cells, respectively. With this
consideration, it is convenient to write the energy functional by using the relative change in
area and perimeter

Ẽ2D =
∑

c

KAA
2
0

2

(
Ac − A0

A0

)2

+
∑

c

KPP
2
0

2

(
Pc − P0

P0

)2

+ J
∑

〈i,j〉

lij, (1.7)

=
∑

c

K̃A

2

(
Ac − A0

A0

)2

+
∑

c

K̃P

2

(
Pc − P0

P0

)2

+ J
∑

〈i,j〉

lij, (1.8)

where now K̃A and K̃P are constant and uniform. In this simplified version, the first and
second sum represent energy costs related to apical strain.

The position of the apical vertices ri, evolve as

dri

dt
= −γ ∂E

∂ri

, (1.9)

where γ is a mobility that can be absorbed in KA, KP and J , setting them with units
of relaxation rates times different powers of length. The direction of the velocities over a
vertex i are shown in Fig. A.1. In the literature, not all the parameters of Eq. (1.5) are
considered free. Since J can be absorbed in P0c by redefining the perimeter of equilibrium as
P̃0c = P0c−J/(2KP ), under some assumptions as periodic boundary conditions and constant
values of the equilibrium parameters, some researchers consider P0c = 0 [33, 41, 43] and
others J = 0 [44]. There are also researchers that use A0c and P0c given by a certain relation.

In some cases, a good approximation results from considering the cells as Voronoi polygons
characterized by the positions of their centers, which also evolve variationally [45, 46].

Extensions of the model are the non-planar [47] and the bubbly vertex model [48]. The
latter allows to describe cells with curved sides.

Using the two-dimensional vertex model it has been found a rigidity transition (liquid-to-
solid transition) in confluent tissues. In passive tissues (with no cellular motility) described
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with homogenous target parameters [36], the order parameter is given by p0 = P̃0/
√
A0, called

the shape factor. The transition occurs at p0 = p0∗ ≈ 3.81, which correspond to the shape
factor with P̃0 and A0 given by the perimeter and area of a regular pentagon. For lower values
the tissue behaves as a rigid material, while for higher values it behaves as a soft material. A
shape index defined as pc = Pc/

√
Ac can be measured experimentally for each cell in a tissue.

They also found that the mean value 〈pc〉c = p̄ is also an order parameter: p̄ = p0∗ ≈ 3.81
for rigid (jammed) tissues, while p̄ becomes larger than p0∗ for soft (unjammed) tissues.

Some time before, Staple et al. [43] found an ordered-to-disordered transition at p0 ∼ 3.72,
which correspond to the shape factor with P̃0 and A0 given by the perimeter and area of a
regular hexagon, by analyzing the ground states (the most relaxed network configurations)
of the vertex model. They explained the transition by performing a linear stability analysis.
Since biological tissues are usually very disordered, it was not clear that this transition was
relevant.

1.2.2 Cellular Potts model

The cellular Potts model (CPM) is a computational method to simulate cells and tissues,
initially proposed as a two-dimensional cell-based lattice model [49], inspired in the Ising
model. Applications include the study of processes as wound healing [50], cell migration [51],
and cell rearrangement [52]. It is also applied in other fields as foams [53].

In the classical two dimensional model, each cell is considered as a domain of the lattice
defined by having the same value of the spin σi in each site. This value is updated for a
random site probabilistically, following a Monte Carlo approach with an energy functional
that in a general form is given by

E =
∑

c

KA

2
(Ac − A0)2 +

KP

2

∑

c

(Pc − P0)2 −
∑

〈i,j〉

Jσiσja
(
1− δσiσj

)
, (1.10)

where the first and second sums are over the c cells; the third sum is over the adjacent sites
i and j; δσiσj is the Kronecker delta; and a is the size of the unit cell of the lattice. The
parameters KA, KP , Ac, Pc, A0c and P0c have the same representation as in the Vertex model
described before. The presence of an external medium can be incorporated by assigning
σi = 0 in a region. This way, the term Jσiσj can represent the adhesion coefficient between
different cells and between a cell and the medium.

In every simulation step, a random site is chosen. If it belongs to an interface between two
cells, its spin changes from σi to σj (the value of the adjacent cell) with a probability which
expression depends on an effective tissue temperature T related to the membrane fluctuations
driven by the cytoskeleton [52]. For T > 0:

Pσi→σj =

{
exp(−∆E/kBT ) , if ∆E > 0,

1 , if ∆E ≤ 0,
(1.11)

where kB is the Boltzmann constant. In the limit of T = 0, it is usually used that Pσi→σj =
0.5 if ∆E = 0.
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1.3 Theoretical models

1.3.1 Vectorial activity

During development and wound healing, epithelial tissues are dynamically remodeled through
cell division, growth, and cellular rearrangements. Also, cellular migration is a relevant
phenomenon in these situations. Numerous works have focused on modeling these systems.
Since these cellular processes impose privileged directions, they are included in the models
as vectorial activities.

In Ref. [54], for example, they proposed an active vertex model (considers cellular motil-
ity), in which the cellular centers are the degrees of freedom, and the tissue is obtained by
performing Delaunay and Voronoi tessellations. The essence of the model is the one we de-
scribed before but now considering an extra term in the right hand side of Eq. 1.9, v0n̂i,
representing an active polarized self-propulsion. The magnitude v0 is considered constant,
and n̂i is a polarity unit vector that undergoes random rotational diffusion. Keeping constant
the rotational diffusion Dr, they find that the order parameter of the transition, varying p0

and v0, is given by p̄, with p̄ ≈ 3.81 in the solid phase and p̄ > 3.81. They analyze the
transition for different values of Dr, obtaining that in all cases the limit with v0 → 0 (non
motile cells) converges in p0∗ ≈ 3.81.

Other works with modified versions of the vertex model, including activity in a vectorial
and polarized way, can be found in Refs. [55] and [56].

1.3.2 Active gels

Due to the active character of the epithelial tissues, given by their units (cells) capacity of
consuming free-energy and transforming it into motion, several out-of-equilibrium properties
can appear. Much interest has emerged in developing hydrodynamic theories for tissues to
study these universal aspects at a large-scale.

Active gel is the term used to refer to a soft material in which detailed balance is broken
locally [57]. The network of actomyosin of the cells, which plays an essential role in the
mechanical behavior, is under continuous reconstruction at the expense of free-energy con-
sumption, breaking the time-reversal symmetry, the reason why it can be studied under the
formalisms developed in these kinds of models.

There are several ways of constructing a theory of gels. One is to identify the slow
variables treated as fields at a mesoscopic scale and the conserved quantities and symmetries
of the system. Then, one can perturb a given state keeping all the terms that respect the
symmetries up to first order. This procedure is limited to small perturbations, which can be a
huge limitation for a given system. Another way of developing these theories is to start with a
microscopic theory and, by performing coarse-graining, obtain a large-scale set of equations.
In Refs. [6] and [47], for example, they develop continuous theories for tissues motivated
by the vertex model (discrete perspective) planar and non-planar, respectively. At a stress
tensor level, the active gels acquire a new term called active stress, which characterizes the
system’s activity. An important note about these models is their universal character since any
other system having the same symmetries should be described by the same hydrodynamic-like
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equations.

A fascinating work is the one of Czajkowski (Ref. [58]), where they develop a hydrodynamic
theory for tissues, coupling the cell shape and the cell motility and polarization. They find
homogeneous and patterned states, like asters and banding, arising in the system due to
different instabilities.

1.4 Research aims and objectives
As was described before, many works on epithelial tissues treat them as active systems in
both discrete and continuum ways. These works have helped to understand the laws inside
these biological systems and indirectly in other active matter systems. Nevertheless, most of
them consider motile polarized tissues, where each cell has a privileged direction of motion,
and there is a driving active force associated. Other kinds of activities usually studied are the
cellular divisions and cellular rearrangements, both of vectorial characterization. We focus
our attention on studying an active system that is non-polarized and where the activity
is included in scalar variables. Also, following works in the literature, we propose including
fluctuations in the system related to biophysical interpretations. Motivated by the experiment
described before of the annual fish in which active contractile pulses are seen, we propose as
the general objective (GO) of this thesis to develop and characterize a model for epithelial
tissues that includes scalar cellular activity capable of generating apical constrictions.

The specific objectives are:

SO1. To model a discrete active fluctuating non-polarized tissue.
SO2. To characterize the response of a tissue under a localized active contraction pulse.
SO3. To characterize the collective fluctuations.
SO4. To model at macro-scales and perform a mapping between micro and macro-scales.
SO5. To apply the models to experimental observations in the annual fish.

1.5 Thesis overview
The present thesis consists of seven chapters. In the current chapter, we introduce the
motivation of this work. Mainly, we present an overview of epithelial tissues as active systems;
describe some computational models in use in the literature, and briefly explain several works
in the field. Also, we describe a particular experiment realized in the Faculty of Medicine of
the Universidad de Chile, which served as a motivation to our main objective.

Chapter 2 describes the general model for a discrete active fluctuating non-polarized tissue.
We use the basic two-dimensional version of the vertex model, plus functions representing
the fluctuations (mimicking the continuum reconstruction of the cytoskeleton) and the scalar
activity on the system. Two particular active functions are described: i) proportional to
Dirac delta functions (impulsive activity) and ii) contraction pulses.

Chapter 3 presents a theoretical and computational analysis of our model’s stability, con-
sidering impulsive active functions, and also epithelial tissues subject to applied stresses.
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This chapter corresponds to a published work, "Vertex model instabilities for tissues subject
to cellular activity or applied stresses", Ref. [59]. The main conclusion is that when cells
modify their equilibrium perimeter or are subject to external stresses, the tissue becomes
unstable with deformations that couple pure-shear or deviatoric modes, with rotation and
expansion modes. We find, from the results of numerical simulations, that at short times
the instabilities cause an increase in the cellular ellipticity, and for longer times cells become
non-convex.

Chapter 4 presents the study of apical contractions using our model, both entirely and up
to first order in the activity (and hence deformation). The results suggest that medial activity
generates anisotropic cell shapes, while inner perimeter activity tends to cause isotropic
cell shapes. We also explore the consideration of plasticity in the model, and find that
sufficiently slow processes of medial contractile activity, compared with the elasticity and
plasticity characteristic times, can achieve cell shapes less elongated. Also, for sufficiently
slow processes of perimeter contractile activity, the biggest level of contraction is reached.
This chapter is part of a submitted article, "Modelling of active contraction pulses in epithelial
cells using the vertex model", Ref. [60], and its new version "Geometrical characterisation of
active contraction pulses in epithelial cells using the vertex model" (not submitted yet).

Chapter 5 presents the model’s computational application to study the active apical con-
tractile pulses observed during cellular mitotic events within the epithelial enveloping cell
layer in the developing annual killifish Austrolebias nigripinnis, described in Chapter 1. We
report a quantitative characterization of the pulses, using the analysis of Chapter 4. A global
fit of all parameters of the vertex model is provided. This chapter is also part of the submit-
ted article, "Modelling of active contraction pulses in epithelial cells using the vertex model",
and its new version "Geometrical characterisation of active contraction pulses in epithelial
cells using the vertex model" (not submitted yet).

Chapter 6 presents the mean stress of the tissue, starting from the vertex model, as
usually done in literature, by defining pressure and tension terms. We show that this result
corresponds to the zeroth order stress we derived in Chapter 3 (and Ref. [59]). Then, we
review a continuum model which uses a 2×2 texture matrixM as a field. We incorporate an
active region on the model by considering a Gaussian function that changes the equilibrium
areas (medial activity) and the equilibrium perimeters (perimeter activity) of some cells. We
compare the states obtained by the continuum model with those from numerical simulations
using the vertex model. We also proposed a dynamical description of the continuum model
and compare it with the simulations.

Chapter 7 describes the static structure factors for the velocity, contraction, change of
anisotropy, and orientation angle for a fluctuating non-polarized tissue. We find a scale
separation that informs us about the system’s hydrodynamic scale from the analysis of the
structure factors. We also report compression waves for the long-wavelength regime and
inverse energy cascades. We obtain that the contraction and orientation are properties cor-
related in space, at a distance of 17 cells approximately. This chapter presents important
information for choosing good candidates when writing a hydrodynamic theory for these
systems.
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Chapter 2

Our model: its ingredients

This chapter describes the discrete model of an active fluctuating non-polarized tissue. It
explains the addition of fluctuations due to the cytoskeleton’s continued regeneration, cellular
activity, and memory or plasticity in the usual vertex model.

2.1 Vertex model for a two-dimensional planar tissue

One of our motivations is concerned with applying our results to experiments managing
biological tissues. Currently used techniques allow manipulating exogenous genes to make
the cell nuclei, membrane, or network fluorescent. In particular, it is possible to follow the
evolution of the network formed by the tissue, understanding it as a set made of vertices
and topology relations between them. With this focus, a cell-based boundary-focused model
described by the vertices – the vertex model – is chosen. For simplicity, and as in many
works, we assume that the tissue is a simple epithelia, planar and has resistance to height
fluctuations, such that the planar version of the two-dimensional model, described before, is
optime.

As described in Ch. 1, the energy functional is given by

E =
∑

c

KA

2
(Ac − A0c)

2 +
KP

2

∑

c

(Pc − P0c)
2 + J

∑

〈i,j〉

lij. (2.1)

To conserve the biophysical meaning of each term in Eq. (2.1), and since we will add
memory or plasticity over the equilibrium parameters, we keep both J and P0. We consider
A0c and P0c given initially by the geometry in an initial instant. Then, our functional has
three free parameters: KA, KP , and J .

Finally, the evolution of the position of each vertex, ri, is given by
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dri

dt
= −γ ∂E

∂ri

, (2.2)

where γ represents a mobility that we absorb in the elastic parameters KA, KP and J . The
explicit form of equations of motion given by (2.2) can be found in App. A.

2.2 Active and fluctuating vertex model, with plasticity
or memory

For the purposes of this thesis, we consider only scalar activity, i.e., we do not treat cellular
divisions nor cell rearrangements. We propose the inclusion of the cellular activity as rates of
creation of actomyosin in different regions of the cells – medial and perimetral– represented in
the terms fAc and fPc in the evolution equations of A0c and P0c, respectively. We also consider
an internal memory (in tissues with periodic boundary conditions) or plasticity (in tissues
with free boundary, as in the killifish experiment) by allowing the equilibrium parameters to
relax in time. Considering these two ingredients, the equations look as follow

dA0c

dt
= (medial memory/plasticity) + fAc(t), (2.3)

dP0c

dt
= (perimeter memory/plasticity) + fPc(t). (2.4)

The memory terms used in tissues with periodic boundary condition in this thesis are
inspired in the Kelvin model of viscoelasticity (see App. B). They are given by

medial memory =− νA (A0c − A00c) , (2.5)
perimeter memory =− νP (P0c − P00c) , (2.6)

where A00c and P00c are the initial values of the equilibrium area and perimeter, respectively.
This means that after ending the cellular activity (fAc(t) = fPc(t) = 0), the target values will
recover their initial values, ending their dynamical evolution (see App. B).

The plasticity terms, that are used when modeling the pre-epiboly of the Annual killifish
(tissue with free boundary condition under expansion), are inspired in the Maxwell model of
viscoelasticity (see App. B). They are given by

medial plasticity =− νA (A0c − Ac) , (2.7)
perimeter plasticity =− νP (P0c − Pc) . (2.8)

15



In this case, even if there is no cellular activity (fAc(t) = fPc(t) = 0), the target values
A0c and P0c will continue relaxing toward the instantaneous values of area and perimeter,
respectively. Also, if the force that produces the expansion of a plastic tissue (as in the pre-
epiboly of the Annual killifish) is suddenly removed, the system will not recover the initial
configuration, as observed in experiments using laser ablation.

Additionally, the continuum reconstruction of the cytoskeleton modifies the equilibrium
parameters. We include these fluctuations by adding noise in the case of the tissues with
memory, obtaining

dA0c

dt
= −νA (A0c − A00c) + fAc(t) +

√
2DAξAc(t), (2.9)

dP0c

dt
= −νP (P0c − P00c) + fPc(t) +

√
2DP ξPc(t), (2.10)

where DA and DP are noise intensities, and ξAc and ξPc are gaussian white noises, i.e.,
〈ξαc(t)〉 = 0,∀t, and 〈ξαc(t)ξα′c′ (t

′)〉 = δα,α′δc,c′δ(t− t′), with α = {A,P}.

When we include these kind of fluctuations in the plastic tissues, big cells tend to go bigger
and small cells tend to go smaller, which make A0c and P0c to be increasing of decreasing all
the time. Then, we do not study plastic fluctuating tissues, but only fluctuating tissues with
memory.

2.3 Fluctuating tissues with memory and impulsive ac-
tivity

One simple case of activity to consider when studying fluctuating tissues with memory (Kelvin
model), is when the functions are proportional to Dirac delta functions as fAc(t) = λAA00cδ(t)
and fPc(t) = λPP00cδ(t), which we call impulsive activity. Considering that near t = 0 nor
the memory or the fluctuations al acting, from t = 0− to t = 0+, we have

dA0c

dt
=λAA00cδ(t). (2.11)

By integrating over the time, between t = 0− and t = 0+, we obtain
∫ 0+

0−
dA0c =λAA00c

∫ 0+

0−
δ(t)dt,

A0c(t = 0+)− A0c(t = 0−) =λAA00c. (2.12)
(2.13)

Then, this impulsive activity is exactly the same as considering an instantaneous change in
the target values as
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A0c(t) =

{
A0c(t = 0−) , if t = 0−

A0c(t = 0−) + λAA00c , if t = 0+ (2.14)

and analogous for perimeter activity, where λA and λP define the amount of creation of target
material in the medial and perimeter regions, respectively. Then, the equations for t > 0+

are Ornstein-Uhlenbeck processes

dA0c

dt
=− νA [A0c + λAA00c − A00c] +

√
2DAξAc(t), (2.15)

dP0c

dt
=− νP [P0c + λPP00c − P00c] +

√
2DP ξPc(t), (2.16)

whose numerical solutions are

A0c(t+ ∆t) = A0c(t)− νA [A0c(t)− A00c (1− λA)] ∆t+
√

2DA∆tN(0,1)(t) (2.17)

P0c(t+ ∆t) = P0c(t)− νP [P0c(t)− P00c (1− λP )] ∆t+
√

2DP∆tN(0,1)(t) (2.18)

where N(0,1)(t) is an uncorrelated normal random variable, with zero mean and unitary
variance.

Equations (2.17) and (2.18) are the most general ones. However, during this thesis we do
not analyze fluctuations and impulsive activity at the same time.

This impulsive activity proportional to a delta function in time, is analogue to change
directly the equilibrium parameters initially as A0c → A0c (1 + λA) and P0c → P0c (1 + λP ).
However, we choose the previous method because it can be later generalized as in the following
section. Also, this redefinition of the target values can be translated to a redefinition in the
shape index (described in 1.2.1), as

p0c =
P̃0c√
A0c

=
P0c − J/(2KP )√

A0c

→ P0c (1 + λP )− J/(2KP )√
A0c

√
1 + λA

. (2.19)

2.4 Active contraction pulses
To study active contraction pulses, as those seen in the pre-epibolia of the annual fish, we
propose mixtures of sinusoidal functions for the active terms fA(t) and fP (t). For the general
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case, we only ask for the functions to integrate zero in time. Going back to the meaning
of these functions, they simulate rates of destruction of cellular structural material (that
will cause the contraction) followed by a stage with a term of creation of cellular structural
material (that will cause the expansion), recovering, in principle, the original size. However,
the plasticity of the system may change that final size.

A general function fA(t) or fP (t) where t0 is the starting time for the activity, and δ1 and
δ2 are the duration of the destruction and creation phases, respectively, can be written as
fA(t) = A0(t = 0)f(t) or fP (t) = P0(t = 0)f(t), with f(t) a function that looks like Fig. 2.1.

f(t) =





0 , if t < t0 ∨ t > t0 + δ1 + δ2

−C1 sin (π (t− t0) /δ1) , if t > t0 ∧ t < t0 + δ1

C2 sin (π (t− t0 − δ1) /δ2) , if t > t0 + δ1 ∧ t < t0 + δ1 + δ2

(2.20)

By imposing the condition of conservation of the structural material, we obtain a relation
between the amplitudes,

C2 = C1δ1/δ2. (2.21)

δ2

−C1

C2

t0 δ1
t

Figure 2.1: Scheme of the active function f(t) for a contraction pulse. The starting time of
the activity is given by t0. The duration of the destruction and creation phases are δ1 and δ2,
respectively. C1 and C2 are the amplitudes of the sinusoidal function in each phase, related
by Eq. (2.21).
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Chapter 3

Instabilities for tissues subject to cellular
activity or applied stresses

In this chapter we show that quite generally, when cells modify their equilibrium perimeter
due to their activity, or the tissue is subject to external stresses, the tissue becomes unstable
with deformations that couple pure-shear or deviatoric modes, with rotation and expansion
modes. For short times, these instabilities deform cells increasing their ellipticity while,
at longer times, cells become non-convex, indicating that the vertex model ceases to be
a valid description for tissues under these conditions. The agreement between the analytic
calculations performed for a regular hexagonal tissue and the simulations of disordered tissues
is excellent due to the homogenization of the tissue at long wavelengths.

In Refs. [33, 43], the vertex model was used to obtain the phase diagram of the ground
state (the most relaxed network configuration) of a proliferating tissue, initially made of
a regular hexagonal packing. They find a phase transition induced by cell division in the
parameter space [J/(KAA

3/2
0c ), KP/(KAA0c)]. One phase corresponds to a single ground state,

with regular hexagonal packing geometry, while the other phase corresponds to a network
with many soft deformation modes, where the hexagonal packing looses stability.

Here, we develop a general framework to study the stability of tissues subject to cell
activity and externally applied stresses. Neither cell division nor cell rearrangements are
considered, as a matter of simplicity. This is the case of some experiments [61, 62, 17] and
previous analytical calculations [43, 63, 44]. Also, topological events are non-linear and,
therefore, they are not relevant to describe the emergence of the instabilities.

We use the vertex model, where the degrees of freedom are the positions of the vertices
ri, with the energy functional specified previously, Eq. (2.1), and A0c and P0c given by the
initial geometry of each cell. The elastic coefficients KA and KP are assumed to be positive,
and penalize deviations from the reference areas and perimeters, while there is no restriction
on the sign of J , as has been discussed in the literature [41, 42]. The equation of motion of
the vertices are given by Eq. (A.2).
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3.1 Tissue under cell activity
We consider a regular tissue composed of N identical hexagonal cells of side a, for which
A0c = 3

√
3a2/2 and P0c = 6a, for all cells c. We consider cellular activity proportional

to a delta function, as discussed in 2.3. Then, we let the equilibrium perimeter change as
P0c → (1 + λP )P0c (with λP > 0 for expansions and λP < 0 for contractions). Similarly, a
change in the actomyosin activity in the medioapical side of the cells imply changes in the
equilibrium cell areas, A0c → (1 + λA)A0c. As discussed in 2.3, this cellular activity changes
the value of the shape factor p0 = P̃0c/

√
A0c, where P̃0c = P0c − ja/(2p), as

p0 =
P0c√
A0c

− J

2KP

√
A0c

→ P0c√
A0c

(1 + λP )√
1 + λA

− J

2KP

√
A0c

1√
1 + λA

. (3.1)

As a first case, we consider homogeneous modifications of the tissue (uniform λP and
λA), modeling large portions of the tissue that change as in Ref. [62], and we investigate
the stability and rigidity of this tissue, allowing it to fluctuate. The vertex positions are
now given by (I + εU) r

[0]
i , where ε � 1, and U is a general 2 × 2 matrix of components

uik, characterizing the fluctuations. Computing contributions up to O(ε2), the energy of the
tissue may be written as

E =
2∑

i=0

εi
(
E

(i)
A + E

(i)
P + E

(i)
J

)
, (3.2)

where the superscripts represent the order of each term in the expansion, and EA, EP and
EJ are the contributions proportional to KA, KP and J , respectively. The full expressions
are given in App. C.1.

The stress tensor is σik = ∂E
∂uik

. It has a zeroth order contribution derived from E(1),

σ
(0)
ik = 2

√
2Ê

(
2

9
j − λA −

8

3
pλP

)
δik, (3.3)

that represents the total stress, with passive and active contributions, needed to maintain
the deformed configuration. Here, we defined the energy scale Ê = NKAA

2
0/2 and the

dimensionless parameters p = KP/(a
2KA) and j = J/(a3KA), which are the ratios between

the characteristic time of the surface elasticity and the ones related to the perimeter and
adhesion elasticity, respectively.

For general fluctuations, U can be expanded in Fourier modes. When computing the total
energy of the tissue, the linear terms in ε cancel by spatial integration, leaving only the
reference energy and the quadratic terms in the fluctuations. In physical terms, the linear
contribution is eliminated by the application of a uniform external stress σ(0)

ik by other tissues
that act as a frame, imposing rigid boundary conditions. Furthermore, in the limit of small
wavevectors k, the dominant contribution comes from the case of homogeneous U , plus small
corrections proportional to k2, which we neglect henceforth. Hence, to analyze the stability
of the tissue under long wavelength fluctuations, we have to determine whether the quadratic
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form for homogeneous U is positive definite. Expressing U as a linear combination of four
basic deformation modes,

U1 =
1√
2

(
−1 0
0 1

)
[deviatoric], U2 =

1√
2

(
0 1
1 0

)
[pure shear], (3.4)

U3 =
1√
2

(
0 −1
1 0

)
[rotation], U4 =

1√
2

(
1 0
0 1

)
[expansion],

as U =
∑4

i=1 viUi, the energy can be expanded as E(2) = Ê
∑4

i,j=1 µijvivj. In the case where
the deformation is due to cell activity, the µ-matrix is diagonal with

µ11 = µ22 =
j

9
+ λA −

4pλP
3

, (3.5)

µ33 =
2j

9
− λA −

8pλP
3

, (3.6)

µ44 = 2 +
8p

3
− λA, (3.7)

where we used the expressions of App. C.1. It is important to recall that since we are
analyzing the deformations of a planar hexagonal lattice, the elastic properties are isotropic,
and the choice of the orientation of the hexagons does not change the previous results [64,
p. 40].

The deformation modes U1 and U2 are both shears, although in different directions. Con-
sequently, their eigenvalues, which are associated to the shear modulus, are equal. Negative
values of the diagonal terms signal the development of an instability of the corresponding
mode, in a single cell description. For example, large positive values of λA (cell expansion),
would give rise to unstable rotation and expansion modes, while for large negative values of
λA (cell compression), the deviatoric and pure shear modes become unstable.

At a tissue level, however, due to the confluent property, pure modes are not allowed.
Indeed, consider for example the Fourier mode where the new vertex positions are given by
x′ = x+ ε sin(2πx/L) cos(2πy/L) and y′ = y− ε sin(2πy/L) cos(2πx/L), shown in Fig. 3.1-a.
Depending on the position, some cells experience deviatoric deformations (in yellow), while
others rotate (in red). Similarly, for the Fourier mode x′ = x + ε cos(2πx/L) sin(2πy/L)
and y′ = y + ε cos(2πy/L) sin(2πx/L), shown in Fig. 3.1-b, pure shear modes (in green)
coexist with expansion modes (in blue). Simple uniaxial deformations with a sinusoidal
amplitudes also couple the deviatoric and expansion modes. Complementary to the long
wavelength fluctuations, it is possible that the boundaries between neighboring cells move
inside a supercell (analogous to optical phonons in solids) as shown in Figs. 3.1-c and d.
Again, different modes coexist. The confluent property with the periodic boundary conditions
frustrate the emergence of pure deformation modes. The use of fixed boundary conditions
leads to the same frustration.

This unavoidable coexistence of modes implies that even though a deformation mode may
seem to be unstable at the cell level, the total energy of the tissue should be computed as
the sum of the different contributions that, at the end, may result to be positive definite. A
detailed study of the stability of a tissue that considers the coexistence of modes is given in
Section 3.4. We provide here a qualitative argument to obtain the stability limit from the
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2

superscripts represent the order of each term in the expansion,
and EA, EP and EJ are the contributions proportional to KA, KP
and J, respectively (see Supplementary Material). The stress
tensor is sik = ∂E

∂uik
. It has a zeroth order contribution derived

from E(1), s (0)
ik = Ê

⇣
4
9

p
2 j�2

p
2g� 16

3

p
2p f

⌘
dik, where

we defined the dimensionless parameters p = KP/(a2KA) and
j = J/(a3KA), and the energy scale Ê = NKAA2

0/2. It repre-
sents the active stress needed to maintain the deformed con-
figuration. From the next order expansion, it is possible to
determine the elastic constants.

For general fluctuations, U can be expanded in Fourier
modes. When computing the total energy of the tissue, the
linear terms in e cancel by spatial integration, leaving only
the reference energy and the quadratic terms in the fluctua-
tions. In physical terms, the linear contribution is eliminated
by the application of a uniform external stress s (0)

ik by other
tissues that act as a frame, imposing rigid boundary condi-
tions. Furthermore, in the limit of small wavevectors k, the
dominant contribution comes from the case of homogeneous
U , plus small corrections proportional to k2, which we neglect
henceforth. Hence, to analyze the stability of the tissue under
long wavelength fluctuations, we have to determine whether
the quadratic form for homogeneous U is positive definite.
Expressing U as a linear combination of four basic deforma-
tion modes,

U1 =

✓
�1 0
0 1

◆
[deviatoric], U2 =

✓
0 1
1 0

◆
[pure shear],

(3)

U3 =

✓
0 �1
1 0

◆
[rotation], U4 =

✓
1 0
0 1

◆
[expansion],

as U = Â4
i=1 viUi, the energy can be expanded as E(2) =

Ê Â4
i, j=1 µi jviv j. In the case where the deformation is due to

cell activity, the µ-matrix is diagonal with (see Supplementary
Material)

µ11 = µ22 =
j
9

+g� 4p f
3

, (4)

µ33 =
2 j
9
�g� 8p f

3
,µ44 = 2+

8p
3

�g. (5)

The deformation modes U1 and U2 are both shears, although
in different directions. Consequently, their eigenvalues which
are associated to the shear modulus, are equal. Negative val-
ues of the diagonal terms signal the development of an insta-
bility of the corresponding mode, in a single cell description.
For example, large positive values of g (cell expansion), would
give rise to unstable rotation and expansion modes, while for
large negative values of g (cell compression), the deviatoric
and pure shear modes become unstable.

At a tissue level, however, due to the confluent prop-
erty, pure modes are not allowed. Indeed, consider for
example the Fourier mode where the new vertex positions
are given by x0 = x + e sin(2px/L)cos(2py/L) and y0 = y�

e sin(2py/L)cos(2px/L), which is shown in Fig. 1a. De-
pending on the position, some cells experience deviatoric de-
formations (in yellow), while others rotate (in red). Simi-
larly, for the Fourier mode x0 = x + e cos(2px/L)sin(2py/L)
and y0 = y+ e cos(2py/L)sin(2px/L), shown in Fig. 1b, pure
shear modes (in green) coexist with expansion modes (in
blue). Simple uniaxial deformations with a sinusoidal ampli-
tudes also couple the deviatoric and expansion modes. Com-
plementary to the long wavelength fluctuations, it is possible
that the boundaries between neighboring cells move inside a
supercell (analogous to optical phonons in solids) as shown in
Figs. 1c and d. Again, different modes coexist. The conflu-
ent property with the periodic boundary conditions frustrate
the emergence of pure deformation modes. The use of fixed
boundary conditions leads to the same frustration.

a) b)

c) d)

FIG. 1. Representation of tissue fluctuations where cells sub-
ject to different deformation modes coexist. Long wavelength
fluctuations a) x0 = x + e sin(2px/L)cos(2py/L) and y0 = y �
e sin(2py/L)cos(2px/L), and b) x0 = x + e cos(2px/L)sin(2py/L)
and y0 = y + e cos(2py/L)sin(2px/L). c) and d) fluctuations where
the boundaries between neighbor cells move inside a supercell. Cells
with well defined deformation modes are colored: yellow for devia-
toric, green for pure shear, red for rotation, and blue for expansion.
For simplicity, square cells are used in the presentation.

This unavoidable coexistence of modes implies that even
though a deformation mode may seem to be unstable at the
cell level, the total energy of the tissue should be computed
as the sum of the different contributions that, at the end, may
result to be positive definite. A detailed study of the stability
of a tissue where the cells are deformed by activity is given in
the Supplementary Material, we provide here a more qualita-
tive argument to obtain the stability limit from the behavior of
individual cells. As the deviatoric and pure shear modes share
the same value in the µ-matrix, the total energy of the tissue
fluctuations shown in Figs. 1a and c are equal, with a prefactor
equal to µ11 + µ33 = j/3� 4p f . An instability is hence pre-

Figure 3.1: Representation of tissue fluctuations where cells subject to different deformation
modes coexist. For simplicity, square cells are used in the presentation. Also, we show
curved cells to make easier the observation of the fluctuation. Long wavelength fluctuations
a) x′ = x + ε sin(2πx/L) cos(2πy/L) and y′ = y − ε sin(2πy/L) cos(2πx/L), and b) x′ =
x + ε cos(2πx/L) sin(2πy/L) and y′ = y + ε cos(2πy/L) sin(2πx/L). Curved cells are shown
to make easier the observation of the fluctuations. c) and d) fluctuations where the boundaries
between neighbor cells move inside a supercell. Cells with well defined deformation modes are
colored: yellow for deviatoric, green for pure shear, red for rotation, and blue for expansion.

behavior of individual cells. As the deviatoric and pure shear modes share the same value in
the µ-matrix, the total energy of the tissue fluctuations shown in Figs. 3.1-a and c are equal,
with a prefactor equal to µ11 +µ33 = j/3−4pλP . An instability is hence predicted to develop
for λP > j/(12p). Notably, when λA = 0, the shape factor is given by

p0 →
P0c√
A0c

(1 + λP )− ja

2p

1√
A0c

, (3.8)

→ P0c√
A0c

(1 + λP )− j(6a)

12p

1√
A0c

, (3.9)

→ P0c√
A0c

(
1 + λP −

j

12p

)
, (3.10)

which is p0 = P0c/
√
A0c ≈ 3.72 (regular hexagon) at the predicted instability, and takes

higher values toward the unstable predicted region. Then, the instability corresponds to the
ordered-to-disordered transition reported by Staple et al. [43]. Interestingly, this instability
is reached by passive tissues (λA = λP = 0) when considering negative values of j. Also, when
λA = 0, the instability is predicted to take place when the shear modulus (i.e. µ11 or µ22)
vanishes, as was observed in Ref. [43]. However, when the target area has changed (λA 6= 0),
the vanishing of the shear modulus does not signal the development of unstable modes.

To validate the predictions in actual situations, we simulate both regular and irregular
tissues. Regular hexagonal tissues are made of N = 3000 cells arranged in a box of size
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Lx = 50
√

3a and Ly = 90a with periodic boundary conditions. In order to avoid artificial
effects due to the lattice perfections, a Gaussian noise is added to all the vertex positions
in both directions, with standard deviation equals to 0.1a. Irregular tissues are built as
Voronoi cells, where the positions of N = 3000 center points are generated by a Monte Carlo
simulation of hard disks in a box of equal size as for the regular tissue. The diameter of
the disks govern the degree of dispersion of the cells. We consider an area fraction equals
to 0.71, below the freezing transition, to obtain a reproducible disordered tessellation with
moderate dispersion in cell sizes. The irregular tissues are made of polygons of different
sizes and number of sides, implying variance in the equilibrium areas and perimeters, A0c

and P0c. The deviatoric and pure shear modes manifest in the elongation of cells, which we
characterize by the flattening parameter

f = (a− b)/(a+ b), (3.11)

computed for each cell in terms of its principal semi-axes a and b, calculated as the square
root of the eigenvalues of the texture matrix

Mc =
2

nc

∑

i∈c

(ri − rc)⊗ (ri − rc) , (3.12)

where the sum is over the nc vertices conforming the cell with positions ri, and rc is the
center of the cell. In Ref. [59] we use another expression that does not change any analysis.
Simulations are performed solving numerically the equations of motion Eq. (A.2), which are
worked out in the App. A [Eqs. (A.3), (A.13), (A.14), and (A.15)].

3.2 Short and long time scales
By performing a simple dimensional analysis we can obtain the relevant time scales of the
dynamics, and define useful short time and long time values, τs and τl, respectively. The first
one allows us to detect the beginning of the instability, while the second allows the non-linear
terms, which saturate the eventual instabilities, to act.

We analyze the energy of a single hexagonal cell of equilibrium side a0. At time t = 0
it is deformed isotropically such that the new side is a = a0 + a1, with a1 � a0. The area
(equilibrium area) and perimeter (equilibrium perimeter) are 3

√
3a2/2 (3

√
3a2

0/2) and 6a
(6a0), respectively. To simplify, we consider J = 0, in which case the energy of the cell is

E =
KA

2

27

4

(
2a0a1 + a2

1

)2
+
KP

2
(6a1)2 . (3.13)

According to the dynamics of the vertex model, the cell side evolves as

ȧ1 ∼ −
∂E

∂a1

= −
[

27

4
KA

(
2a0a1 + a2

1

)
(2a0 + 2a1) + 36KPa1

]
,

= −
[(

27

τA
+

36

τP

)
a1 +

(81/2)

τA

a2
1

a0

+
(27/2)

τA

a3
1

a2
0

]
, (3.14)

where we define τA = 1/(KAa
2
0) and τP = 1/(KP ). With the selection of units such that

KA = a0 = 1, we have that τA = 1 and τP = 1/p, which is of order 1. Hence,

ȧ1 ∼ −
a1

1/ (27 + 36)
− a2

1

2/81
− a3

1

2/27
. (3.15)
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Obviously, for a confluent tissue, the linear and non-linear terms change, and there are
parameters for which the coefficients change their sign and tissue is stable. Nevertheless,
the present analysis allows us to extract the relaxation time scales. The shortest gives the
linear evolution, τ1 ≈ 0.016, and the other two describe the non-linear terms τ2 ≈ 0.025 and
τ3 ≈ 0.074. If we consider the short time τs = 0.025, the unstable modes will have grown
exponentially, allowing us to identify their effect in the form of a change in ellipticity. For
the long time τl = 0.5, the non-linear terms have played a role and the system could have
reach a steady state if the non-linear terms saturate the instability.

In the simulations, the differential equations are integrated using the Euler integration
method, for various values of KP and J , fixing units such that KA = 1 and a = 1. The
time step was fixed to dt = 0.005 and we study the system up to t = 0.5. We use values of
λA,P that are consistent in the order of magnitude with experiments using laser ablation and
biochemical perturbations [33, 65, 62].

Figure 3.2 shows the results for disordered tissues, for fixed positive perimeter change
λP = 1/2, considering λA = ±1/2. The change of the standard deviation of the flattening
parameter after few time steps, displays an important increase precisely where the instability
is predicted (Figs. 3.2-a and b). For larger times, an important fraction of the polygons
become non-convex as a consequence of the instability (Figs. 3.2-e and f). The non-linear
dynamics does not saturate the instability and, from a practical point of view, this implies
that the vertex model ceases to be a valid description of tissues when these instabilities
develop. Nevertheless, the non-convexity can be used as a proxy of the instability and, for a
continuous quantification, one minus the mean value of the area of each cell divided by the
area of the respective convex hull is presented in Figs. 3.2-c and d. For convex polygons, this
order parameter vanishes, while positive values indicate that non-convex polygons appear.
Importantly, the line at which the shear modulus vanishes —obtained when neglecting the
coupling of modes— fails to predict the instability. For the cases shown in Figs. 3.1-b and d,
the energy for the tissue has a prefactor that becomes negative when pλP > 3/2 + 2p+ j/12,
requiring an extremely large increase of the equilibrium perimeter, except if j is negative.
Consequently, these modes are hardly seen and are hidden by other more unstable modes.

Figures 3.3 and 3.4 show the results for ordered tissues, for λP = 1/2 (predicted line:
j = 6p) and λP = −1/2 (predicted line: j = −6p), respectively. Although the detailed
geometry of the cells changes, the flattening parameter and the measure of non-convexity
agree remarkable well between regular and irregular tissues, showing that the long wavelength
approximation is valid. From Figs. 3.3-b and 3.4-b it is seen that λP = −1/2 achieves lower
values for the standard deviation of the flattening parameter, which results in more rounded
cells [Fig. 3.4-f-(II) versus Fig. 3.3-f-(II)].

The agreement with the analytical prediction is excellent, both when regular and irregular
tissues are simulated. For cells of equal equilibrium area and complete contraction of the
perimeter (λP = −1), the transition line in Refs. [33, 43] is reproduced. Two important
differences with their work is i) the use of a fixed size box and ii) the constant topology in
simulations, generating at long times non-convex polygons instead of soft networks.
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Figure 3.2: Tissue instabilities obtained in simulations of N = 3000 irregular cells under
the action of cell activity: modification of the equilibrium perimeter with λP = 1/2 and the
equilibrium area with λA = 1/2 (left) and λA = −1/2 (right). Top: change of the standard
deviation of the flattening parameter after a short time, t = 0.025: ∆σ = σf (t = 0.025) −
σf (t = 0). Negative values indicate cells become more uniform. Middle: 1−〈Ac/ACH

c 〉, where
Ac are the cell areas, ACH

c the areas of the respective convex hulls, and the average is taken
over all the cells, computed after a longer time, t = 0.5. Units are fixed such that KA = 1 and
a = 1. The thick white line and the thin yellow line are the analytical curves obtained when
assuming or neglecting coupling of modes, respectively. Instabilities are predicted to the right
of the lines. Note that in panels b) and d), the thin yellow line is close to the top-left corner.
Stable and unstable regions, considering the coupling of modes, are labeled as ST and UST,
respectively. Bottom (e) and f)): Examples of a section of an irregular tissue for each case of
cell activity, indicating (I) the initial configuration at t = 0, and the final configurations at
t = 0.5, for the cases of the (II) green-disk/stable and (III) red-square/unstable markers. The
results are the average of six different irregular tissues, generated with the same parameters.

3.3 Tissue under pre-stress

In addition to cellular activity, the tissue can be subject to a pre-stress generated by the action
of neighboring cells or tissues, fixed boundary conditions, an actomyosin network, or the drag
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Figure 3.3: Tissue instabilities obtained in simulations of N = 3000 hexagonal cells with 10%
of Gaussian noise over the regular positions (left) and irregular cells (right) (three different
tissues considered), under cell target perimeter activity, with λP = +1/2 and λA = 0. Same
representation as in Fig. 3.2.

by another expanding tissue located in an adjacent layer, causing it to get pre-deformed. To
model a pre-stressed tissue, we perform an affine transformation by changing the vertices
positions as r

[0]
i → Λr

[0]
i , where Λ is the 2 × 2 matrix associated to the pre-deformation.

Adding fluctuations, the vertex positions are now given by (I + εU) Λr
[0]
i .

As for the cell activity, we consider homogeneous deformations of the tissue (uniform
Λ) and perturbations U in the small wavevector limit, and we analyze first the different
deformation modes independently, without dealing with their coupling. For an hexagonal
cell, it is found that

E
(2)
A = Ê

[
det(Λ)2tr(U)2 + 2det(Λ) (det(Λ)− 1) det(U)

]
. (3.16)

The expressions for E(2)
P and E

(2)
J are more involved but numerically it is found that

they are always positive definite for all pre-deformations, when KP and J are positive (see
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Figure 3.4: Tissue instabilities obtained in simulations of N = 3000 hexagonal cells with 10%
of Gaussian noise over the regular positions (left) and irregular cells (right) (three different
tissues considered), under cell target perimeter activity, with λP = −1/2 and λA = 0. Same
representation as in Fig. 3.2.

App. C.2 for the full expressions). We conclude, then, that negative J could give rise to
instabilities for any pre-strain. The case of E(2)

A requires more analysis. From the expression
for E(2)

A , it is found that fluctuations with det(U) = 0 are always stable. Using the expansion
U =

∑4
i=1 viUi, E

(2)
A is diagonal with elements

µA11 =µA22 = −µA33 = −λ̄, (3.17)

µA44 =
81

8
det(Λ) [det(Λ)− 1/3] , (3.18)

with

λ̄ =
27

8
[det(Λ)− 1]det(Λ). (3.19)

Note that whenever det(Λ) 6= 0, either µA11,A22 or µA33 are negative, giving rise to possible
unstable modes. When det(Λ) > 1 (for example, under a pre-expansion), µA11,A22 are negative
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and the deviatoric and pure shear modes may be unstable. Also, when 0 < det(Λ) < 1 (for
example, under a compression pre-deformation), µA33 is negative and the rotation mode
may be unstable. To fully determine the stability, we must consider the perimeter and edge
contributions to the energy, as well as the mode couplings.

For isotropic pre-strain Λ = (1 + h)I (h > 0 for expansions and −1 < h < 0 for compres-
sions), the complete µ-matrix is diagonal, with

µ11 = µ22 = (1 + h)(−2h− 3h2 − h3 + 4hp/3 + j/9), (3.20)
µ33 = (1 + h)(2h+ 3h2 + h3 + 8hp/3 + 2j/9), (3.21)
µ44 = (1 + h)(2 + 8h+ 9h2 + 3h3 + 8p/3 + 8hp/3). (3.22)

The stability of the relevant global mode is, therefore, described by µ11 +µ33 = (1+h)(4hp+
j/3), which can become negative for a wide range of parameters when the tissue is under
compression. Simulations are performed, using the methods described in Sec. 3.1, for an
isotropic compression of 50%. Fig. 3.5-left shows an excellent agreement with the analytical
calculations that predict the instability line at j = 6p. Again, the instability manifests in an
increase of the eccentricity and, at longer times, the appearance of non-convex polygons.

3.4 Anisotropic pre-stresses

Finally, in vivo or in vitro tissues are in general subject to anisotropic external deformations
[66, 65, 67], causing the µ-matrix to be non-diagonal. The relevant global modes are obtained
as follows. For an extended tissue, the fluctuation is expanded in Fourier modes:

r′ = r +
∑

k

akeik·r. (3.23)

From the Jacobian of this transformation, the local deformation matrix is computed as
uαβ(x, y) = ikαakβeik·r. Expanding it as U(x, y) =

∑4
i=1 vi(x, y)Ui, a local energy density

is obtained,

e(x, y) = (Ê/L2)
4∑

i,j=1

µijvi(x, y)vj(x, y). (3.24)

Finally, the total energy of the tissue is

E =

∫
dx dy e(x, y) =

∑

k

2∑

α,β=1

k2eαβ(k̂)akαa
∗
kβ, (3.25)

where we used that vi(x, y) are linear combinations of the Fourier coefficients ak and that
the Fourier modes decouple if the tissue is homogeneous on the large scale. The matrix eαβ
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Figure 3.5: Tissue instabilities obtained in simulations of N = 3000 irregular cells in tis-
sues under 50% isotropic contraction (left), and under 60% horizontal contraction plus 40%
vertical expansion (right). Same representation as in Fig. 3.2.

is a 2× 2 matrix with real coefficients.

e11 =
1

4

{
(µ13 + µ24) sin 2θ + (µ11 − 2µ14 + µ44) cos2 θ

+ [(µ22 − 2µ23 + µ33) sin θ − 2(µ12 + µ34) cos θ] sin θ
}
, (3.26)

e12 =e21 =
1

8

{
2[−µ13 + µ24 + (−µ12 + µ34) cos 2θ]

+ (−µ11 + µ22 − µ33 + µ44) sin 2θ
}
, (3.27)

e22 =
1

4

{
(µ22 + 2µ23 + µ33) cos2 θ + (µ11 + 2µ14 + µ44) sin2 θ

+ (µ12 + µ13 + µ24 + µ34) sin 2θ
}
. (3.28)

where we used that the µ-matrix is symmetric. The stability of the tissue, considering the
confluent and periodic conditions, is then obtained from the eigenvalues of the e-matrix, which
depend only on the direction k̂ of the wavevector. If at least one eigenvalue is negative, the
tissue develop long wavelength instabilities. When the µ-matrix is diagonal, and using that
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µ11 = µ22, it is found that the eigenvalues of eαβ do not depend on θ and they are given
by 1

4
(µ11 + µ33) and 1

4
(µ11 + µ44), which corroborates the simple analysis for the coupling of

modes described in Section 3.1.

3.5 Examples of non-diagonal µ-matrices
Anisotropic pre-deformations generate non-diagonal µ-matrices. Using the expressions in
App. C it is possible to derive the µ-matrix for different cases. Here, we present some
examples where the resulting matrix is non-diagonal, needing the analysis described in Sec. 3.4
to determine the unstable modes.

For an anisotropic deformation, characterized by a 60% horizontal contraction and 40%

vertical expansion, Λ =

(
0.4 0
0 1.4

)
, the µ-matrix µ60/40 is equal to




0.246 + 0.019j + 1.090p 0 0 1.632p
0 0.246 + 0.193j − 0.110p −0.143 + 0.081p 0
0 −0.143j + 0.081p −0.246 + 0.212j − 0.121p 0

1.632p 0 0 0.381 + 2.420p


 .

(3.29)
The transition line is given by j = 0.569p. Simulation results for irregular tissues can be seen
in Fig. 3.5-right. The agreement is again excellent when the non-convexity proxy is used.
The flattening parameter does not signal the instability because, for this case there is no
manifestation in the change of ellipticity as a result of the coupling of all modes.

For a tissue under a pure deviatoric deformation, Λ =

(
0.5 0
0 1.5

)
, the µ-matrix µdev is

equal to



0.188 + 0.027j + 1.150p 0 0 1.824p
0 0.188 + 0.206j + 0.120p −0.145j − 0.085p 0
0 −0.145j − 0.085p −0.188 + 0.233j + 0.136p 0

1.824p 0 0 0.938 + 2.932p


 .

(3.30)
The associated matrix edev is obtained [Eqs. (3.26), (3.27), and (3.28)] and we compute the
curve in parameter space where the minimum eigenvalue of edev changes its sign. Equivalently
we search when the determinant vanishes, finding the linear relation j = −0.583p. Note that,
although the Λ and µ matrices are similar to the previous case, the transition line is radically
different. Simulation results for irregular tissues can be seen in Fig. 3.6.

Finally, for a tissue subject to a pure shear pre-deformation, Λ =

(
1 0.5

0.5 1

)
, the µ-matrix

µps is



0.19 + 0.16j + 0.13p 0.03j + 0.15p 0.16j + 0.12p 0.18p
0.03j + 0.15p 0.19 + 0.08j + 1.48p −0.01j − 0.01p 2.07p
0.16j + 0.12p −0.01j − 0.01p −0.19 + 0.24j + 0.18p 0

0.18p 2.07p 0 0.94 + 3.02p


 .

(3.31)
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The line at which the minimum eigenvalue of eps changes its sign is given by j = −0.769p.
Simulation results for irregular tissues can be seen in Fig. 3.6.

a) b)
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Figure 3.6: Transition line at which the minimum eigenvalue of the associated e-matrix
changes its sign, for a tissue under a) 50% deviatoric pre-stress and b) 50% pure shear pre-
stress. The gray areas correspond to the unstable part of the parameter space. Sections of an
irregular tissue are shown for each case, indicating the initial configuration (top), at t = 0,
and the final configurations, at t = 0.5, for the cases of the marked black dots, one stable
(middle) and other unstable (bottom).

Our analysis from this chapter shows that stressed tissues described by the two-dimensional
vertex model present instabilities in which the cells deform to increase their ellipticity, to later
become non-convex. These stresses can be generated by the cellular activity when the actin
ring on the perimeter of the cells changes its size or they can be external, when the tissue
is pre-stressed. In any of these cases the tissue is unstable for a wide range of the model
parameters.

The presence of the predicted instabilities is a stringent test of the vertex model to de-
scribe biological tissues, which under many conditions are subject to internal and external
stresses. For example, in developing tissues, processes like invaginations, cell extrusion and
division generate stresses. Uniaxial pulling can be generated by other tissues [68] or driven
experimentally [69, 44, 62]. Also, biochemical signals can alter in large regions the activity
of the tissue [62]. These and other configurations, with different external stresses, should
be investigated to verify if the predicted instabilities take place and if they can act as seeds
to instabilities in developing tissues. In the mechanobiological approach, forces and insta-
bilities launch the tissue transformations during development that are necessary to generate
structures and organs [70, 71]. If the vertex or similar models correctly describe the tissue
dynamics, internal or external stresses can trigger the instabilities described in this chapter,
which can initiate tissue transformation processes.

In this work we restricted the analysis to two-dimensional planar dynamics. Further stud-
ies are needed to analyze how the deformation modes couple with motion in the third dimen-
sion when the planar restriction is removed. For example, buckling instabilities generating
wrinkles, could relax stresses instead of generating non-convex polygons.

This chapter corresponds to a published work, "Vertex model instabilities for tissues sub-
ject to cellular activity or applied stresses", Ref. [59].
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Chapter 4

Geometrical characterization of active
contraction pulses in epithelial cells using
the vertex model

Several models have been proposed to describe the dynamics of epithelial tissues undergoing
morphogenetic changes driven by apical constriction pulses, which differ in where the con-
striction is applied, either at the perimeter or medial regions. To help discriminate between
these models, using the vertex model for epithelial dynamics, we analyzed the impact of
where the constriction is applied on the final geometry of the active cell that is reducing its
apical size. We find that medial activity, characterized by a reduction in the reference area
in the vertex model, induces symmetry breaking and generates anisotropic cell shapes, while
isotropic cell shapes occur when the reference perimeter in the model is reduced. Larger
contractions are achieved when the elasticity of the active region dominates. When plastic-
ity is included, sufficiently slow processes of medial contractile activity, compared with the
elasticity and plasticity characteristic times, can achieve cell shapes less elongated. Also, for
sufficiently slow processes of perimeter contractile activity, the biggest level of contraction is
reached. Finally, we apply the model to describe the active apical contractile pulses observed
during cellular mitotic events within the epithelial enveloping cell layer in the developing
annual killifish Austrolebias nigripinnis, being able to quantitatively describe the temporal
evolution of cell shape changes when perimeter activity and area plasticity are included. A
global fit of all parameters of the vertex model is provided.

To describe the tissue dynamics we use the vertex model with the energy functional
specified previously, Eq. (2.1), under the same considerations that in Ch. 3. Throughout this
chapter, the cell contractile activity is included by incorporating variations of the reference
quantities of a target cell, such that A0c → (1− λA)A0c or P0c → (1− λP )P0c, while for the
rest of the cells A0c and P0c keep their initial value. The dimensionless parameters λA and λP
represent the activity in the medial and perimeter cellular regions, respectively. This model
allows us to characterize the final shape of active cell in terms of the net achieved contraction
and anisotropy. We do not study the case of contractions achieved by the ratchet model.

Because of the peripheral and medial localization of the purse string and meshwork mech-
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anisms, it has been proposed that they might be most effective at generating isotropic and
anisotropic tensile forces, respectively [14]. In Ref. [39], they have developed a 3D vertex
model with two apical energy terms mimicking a belt and a mesh, finding different char-
acterizations in the simulations of epithelial tubes that they relate to different anisotropic
deformability: belt preserves isotropic apical cell shapes, while the mesh does not. However,
there is no complete characterization of the possible scenarios for the evolution of tissues
when the different models are incorporated as active cellular processes to describe the apical
constriction events. Here, we show that analyzing the evolution of the cell geometry, it is
possible to determine if the constriction is applied in the perimeter or medial region.

To describe and compare the apical constriction events produced either by perimeter or
medial activity, we characterize the geometry of the active cell before and in the middle of
the pulse, which is easily accessible in experiments.

4.1 Isolated active hexagonal cell
As the first case of study, we consider a single hexagonal cell of side a, initially in its reg-
ular shape, with the vertices positions given by r[0], and for which its equilibrium area and
perimeter are given by A0 = 3

√
3a2/2 and P0 = 6a, respectively. We use the dimensionless

parameters, p = KP/(a
2KA) and j = J/(a3KA). We analyze the cases of cell activity with

λA = 0.5 or λP = 0.5, and characterize the response when we allow the cell to deform. These
activity values are consistent in the order of magnitude with experiments that measure the
changes of actin and myosin during pulsed contractions [72, 73, 74].

To obtain the area and perimeter of the deformed cell, we perform an affine transformation
with respect to the centre of the cell by changing the vertex positions as r[0]

i → (I + U) r
[0]
i ,

where U is a general 2 × 2 matrix of components uik, characterizing the deformation. Ex-
pressing U as a linear combination of four deformation modes,

U1 =
1√
2

(
−1 0
0 1

)
[deviatoric], U2 =

1√
2

(
0 1
1 0

)
[pure shear], (4.1)

U3 =
1√
2

(
0 −1
1 0

)
[rotation], U4 =

1√
2

(
−1 0
0 −1

)
[contraction],

as U =
∑4

i=1 viUi, the new area, Af , and perimeter, Pf , can be written as functions of the four
amplitudes vi. Then, the variation of the energy between the initial geometrical state and the
deformed one, can be written as ∆E = Êe(v1, v2, v3, v4), where Ê = KAA

2
0/2 is the energy

scale and e is a nonlinear but analytic function (see App. D for the expressions). Fig. 4.1 shows
geometrical representations of the effect of different deformations over a regular hexagonal
cell. The rotation mode produces a global rotation of the cell and, for large amplitudes, an
increase in size. As the model is isotropic, the energy does not depend on the global rotation
and the change in size can be absorbed in the amplitude of mode U4. Hence, without loss of
generality, we can consider ν3 = 0 in what follows.

We calculate the set of amplitudes (v∗1, v
∗
2, v
∗
4) that minimizes the energy variation. Figure

4.2 shows the amplitude of each deformation mode as a response to cell activity, for the cases
λA = 0.5 (with λP = 0) and λP = 0.5 (with λA = 0), respectively. Each plot considers p and
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NoneOnly: v1 = 0.5 v2 = 0.5 v3 = 0.5 v4 = 0.5

v1 = v2 = v3 = 0,

A)

B) I)

II) v4 = 0.5

v1 = v2 = v4 = 0.5, v3 = 0

Figure 4.1: A) Scheme of a regular hexagonal cell under different deformations when consid-
ering just one mode (none, deviatoric, pure shear, rotation and contraction), with amplitude
values vi equal to 0.5. B) Scheme of a regular hexagonal cell under two different deforma-
tions combining different modes. B-I) Typical deformation of Fig. 4.2-left. B-II) Typical
deformation of Fig. 4.2-right.

j ∈ [0.01, 1] in logarithmic scales, such that the adhesion effect is never dominant and, in the
left half of each plot (p ∈ [0.01, 0.1]), the medial elasticity dominates, while in the right half
(p ∈ [0.1, 1]), the perimeter elasticity dominates, as explained in detail in App. D.

The amplitude of the deviatoric and pure shear modes, which are responsible for breaking
the isotropy of the system, are null in the case of activity in the perimeter. Hence, cell activity
in the inner cellular border might generate isotropic cell shapes, while cell activity in the
medial region might generate anisotropic cell shapes. This geometrical result is expected for
an isolated cell that begins with a regular shape and responds to the decrease in A0 or P0. To
evolve toward the new preferred area (under medial activity) without changing considerably
the perimeter, the cell has to break the symmetry and elongate in a given direction. On
the other hand, to evolve toward the new preferred perimeter (under perimeter activity)
minimizing the change in area, the cell has to keep the isotropic shape. The amplitude of
the contraction modes are similar for the medial and perimeter activity. For each case, the
contraction response is higher in the region of parameters in which the dominant elasticity is
the one of the medial region (left half of each plot in Fig. 4.2) and of the perimeter (right half
of each plot in Fig. 4.2), respectively. These observations suggest that the net contraction
and the degree of anisotropy of the final shape are significant observables for characterizing
a cell under this kind of cellular activity.

4.2 Active cell embedded in a tissue

At a tissue level, due to the confluent property, competition between cells takes place. To
study the response of a tissue when one of the cells in the tissue actively contracts, and to
determine if the perimeter and medial activities produce different geometrical responses, we
consider three numerical approaches. First, in the case of small contractions, we look for the
steady solution of Eqs. (A.2), which correspond to minimizing the energy functional Eq. (A.1).
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Figure 4.2: Amplitude of each deformation mode v∗i that appear as a response of an isolated
regular hexagonal cell under the modification of the equilibrium area, with λA = 0.5 and
λP = 0 (left), and equilibrium perimeter, with λA = 0 and λP = 0.5 (right).

The linearized equations allow us to identify to main results, independently of the intensity
of the contraction. Secondly, we solve the temporal evolution of the full non-linear equations
Eqs. (A.2) for quite intense contractile activities, which gives besides the final state, the
temporal scale needed to reach it. Finally, we consider plasticity in the dynamics, meaning
that overstretched cells reconstruct their apical actomyosin network resulting in adaptation
of the reference areas and perimeters A0c and P0c. In all cases, we use periodic boundary
conditions. To gain statistical accuracy in the analysis of each numerical approach, we run
ns simulations, each time applying the contraction to a different cell, which is monitored
to measure the change in its geometry. The amount ns is given by {48, 25, 25}, for each
numerical analysis, respectively. In the first one, the amount correspond to the total number
of cells, while for the second and third one, to a 5% of the cells.

We analyze two geometrical variables: the net contraction Rc and the change on anisotropy
Qc, of the final state with respect to the relaxed state of the cell, defined as

Rc =
A

(relax)
c − A(final)

c

A
(relax)
c

, (4.2)

Qc =
b

(relax)
c

a
(relax)
c

− b
(final)
c

a
(final)
c

, (4.3)

where ac and bc correspond to the principal semi-axes of the ellipse that better fits the
cell c, with a > b, calculated as in Ch. 3. Figure 4.3 shows geometrical representations of
an hexagonal cell with different values of contraction R and change of anisotropy Q, when
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considering that the relaxed shape corresponds to the regular hexagon (figure with values
R = 0 and Q = 0).

R = 0 R = 0.5 R = 0.9

Q = 0.5

Q = 0.9

Q = 0

Figure 4.3: Scheme of a hexagonal cell, whose relaxed configuration corresponds to the regular
hexagon, with different values of contraction R and change of anisotropy Q. Depending on
the orientation of the principal axes of the texture matrix, different possibilities are obtained
for a given value fo R and Q. For simplicity, two are presented, with the axes oriented
horizontally or vertically.

Throughout this section, time is measured in the natural units t̂ = 1/(a2KA) and, when-
ever necessary, units are fixed such that KA = 1 and a = 1. Finally, the time step used for
the numerical integration of the dynamical equations is dt = 0.01.

4.2.1 Linear response

For this analysis, we consider tissues composed of 48 cells in a box of size Lx = 6
√

3a and
Ly = 12a with periodic boundary conditions. The tissue is built as Voronoi cells, where the
positions of 48 central points are generated by a Montecarlo simulation of hard disks. The
diameter of the disks governs the degree of dispersion of the cells and we consider an area
fraction equals 0.71, below the freezing transition, to obtain a disordered tessellation with
moderate dispersion [59]. This irregular tissue presents a larger disorder, with variability in
the number of sides, as well as in the reference areas and perimeters. The generated lattice
is considered as the initial configuration from where we calculate the initial values of the
reference areas and perimeters, A0c and P0c, used in the model. Finally, given the initial
positions, we first solve Eqs. (A.2) without considering activity term for various values of KP

and J for a relaxation time trelax = 1, to reach equilibrium (relaxed) configurations.

On the relaxed tissue, we modify the value of A0c or P0c to a randomly selected cell in each
simulation and we write the set of linear equations ∂E

∂ri
= 0 that determine the equilibrium

positions, which are linearized considering small values of λA/P and small displacements. The
linear order equations of the vertex model can be found in App. E. The resulting matrix is ill-
conditioned, needing the use of the Singular Value Decomposition (SVD) method. Figures
4.4 and 4.5 show the results for the irregular tissue, with λA = 0.1 (and λP = 0) and
λP = 0.1 (and λA = 0), respectively. Statistical values are calculated by alternately applying
the contraction to the whole set of 48 cells (one at a time, in different simulations).
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Figure 4.4: Analysis of the cellular linear response on a tissue composed of 48 irregular cells,
where the averages and standard deviations are obtained by alternately applying a medial
contraction with λA = 0.1 and λP = 0 over the 48 cells of the tissue. Mean values and
standard deviations of the net contraction R (top) and change of anisotropy Q (bottom) of
the cells with respect to the relaxed configuration (trelax = 1), respectively.
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Figure 4.5: Same as in Fig. 4.4, when a perimeter contraction with λA = 0 and λP = 0.1 is
applied.

We obtain a clear distinction in the linear response depending on the localization of
the activity. We find that medial activity tends to elongate cells (Qc > 0), while inner
perimeter activity tends to make the cells more isotropic (Qc < 0). Although the mean
cellular contraction takes similar values with both activities, however the dependence with
j is different. For medial activity it decreases for higher values of j, while for perimeter
activity it is independent on the values of j. Interestingly, the standard deviation of change
of anisotropy is of the same order as the mean value, while for the net contraction, it , is one
order of magnitude smaller than the mean value. This reflects the high (low) dependence of
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the initial geometrical condition on the change of anisotropy (net contraction).

4.2.2 Non-linear dynamic response

For larger deformations, we perform numerical simulations, solving Eqs. (A.2), using disor-
dered tissues of 494 cells arranged in a box of size Lx = 19

√
3a and Ly = 39a with periodic

boundary conditions. Again, irregular tissues are built as in Sect. 4.2.1.

We solve Eqs. (A.2) for various values of KP and J . For all the simulations, we initially
perform a relaxation phase, for trelax = 5, to obtain the stationary configuration (relaxed
state) of the tissue. This configuration depends on the values of j and p.Then, we apply the
activity and study the system for a period ∆tactive = 10. Figures 4.6-A and 4.7-A correspond
to the disordered tissues, showing the mean values and standard deviations of R and Q at
tfinal = 10 (measured from the inclusion of activity). The medial and perimeter contractions,
with λA = 0.5 (and λP = 0) and λP = 0.5 (and λA = 0), respectively are applied to a single
cell in the tissue. The statistical properties are obtained by repeatedly changing the cell
where the activity is applied, using ns = 25 cells chosen at random (5% of the cells in the
tissue).

Again, it is obtained that i) perimeter activities generate final cellular shapes that are
more isotropic as compared to the medial activity, ii) the net contraction is higher in the
region of parameters where the type of elasticity that dominates (i.e., medial or perimeter) is
the same as that of the type of applied activity, and iii) the net average contraction achieved
by perimeter activity is independent of j, confirming the results obtained with single cells
and the linear dynamics. By fitting an exponential function to the temporal evolution of Rc

and Qc for each of cells, we obtain characteristic relaxation times τR and τQ, respectively,
which are later averaged over the cells, for each point in the p-j parameter space (Figs. 4.6-
A and 4.7-A). We find that, on average, for both activities, the relaxation of the change
of anisotropy is slower than for the contraction. Also, the final net contraction (change of
anisotropy) is achieved faster with perimeter (medial) activity than with medial (perimeter)
activity, on average.
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Figure 4.6: Analysis of the cellular response to medial contraction with λA = 0.5 and λP = 0
obtained by simulating tissues of 494 irregular cells up to tfinal = 10. A) Mean value (left),
standard deviation (middle), and characteristic time (right) of the net contraction R (up)
and change of anisotropy Q (bottom) of the contractile cells, respectively. B) and C) Mean
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The temporal evolution for selected values of parameters, shown with a grey circle and black
square are shown in Fig. 4.8. In A) no plasticity is considered, while in B) νA = 1 and νP = 0,
and in C) νA = 0 and νP = 1.
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4.2.3 Plasticity

As mentioned, tissues present plastic behavior, where for a sustained applied stress, yielding
takes place. At the macroscopic level, it is described with active gels models [75, 76], where
viscoelastic terms are included. In the vertex model, we include plasticity by allowing the
reference areas and perimeters to evolve, according the present value of the deformation.
Namely, we add to the model the following dynamical equations

dA0c

dt
= −νA (A0c − Ac) , (4.4)

dP0c

dt
= −νP (P0c − Pc) , (4.5)

where νA and νP give the plastic relaxation rates, which are related to the reconstruction
time of the actomyosin network. These equations are equivalent to the Maxwell model of
viscoelasticity.

Again, we simulate for tfinal = 10. Figures 4.8 and 4.9 show the temporal evolution of
Rc and Qc for a given cell in the irregular tissue when the plastic evolution of the area
and perimeter are switched on or off. When plasticity is considered, the evolution can be
non-monotonic, with Rc and Qc decaying slowly to the initial values.

For a more systematic analysis, we perform a statistical analysis considering the tempo-
ral evolution for irregular tissues, where ns = 25 cells are chosen at random to apply the
contraction. Three quantities are computed: i) the mean value of the net contraction and
change of anisotropy with respect to the relaxed configuration, both at tfinal = 10, 〈R〉 and
〈Q〉, respectively; ii) the average maximum values of the two previous quantities, 〈Rmax〉 and
〈Qmax〉; and iii) the average time at which the maximum values are achieved, 〈τRmax〉 and
〈τQmax〉. The results are shown in Figs. 4.6-B (λA = 0.5, νA = 1), 4.6-C (λA = 0.5, νP = 1),
4.7-B (λP = 0.5, νA = 1), and 4.7-C (λP = 0.5, νP = 1).

We find that when plasticity is on the same variable as the activity (e.g., both on the
perimeter), on average the evolution of the cellular contraction has a maximum at a short
time (t ∼ 1) and then decays (examples of these overshooting behaviors are seen in Figs.
4.8 and 4.9). Also, the maximum values are smaller than in the non-plastic model. On the
contrary, if plasticity is on one variable and the activity on the other (e.g., plasticity on the
area and activity on the perimeter), the evolution of the cellular contraction is on average a
monotonically increasing function and reaches higher values with less variability than in the
non-plastic case.

For the change of cellular anisotropy, in the case of medial activity, we obtain smaller
values than in the non-plastic model, for both kinds of plasticities. There are even some
points in the p-j space, when the medial region is plastic, with negative values, meaning
that cells become more isotropic, contrary to the case without plasticity. In the case of
perimeter activity, Q increases on average for both kinds of plasticities. When the plasticity
is in the equilibrium area, most of the p-j space where the perimeter (medial) elasticity
dominates has positive (negative) values of anisotropy, while when the plasticity is in the
equilibrium perimeter, most of the p-j space has negative values of anisotropy, for both
regimes of elasticity. In general, addition of plasticity in the perimeter region can generate a
high degree of homogeneity in the geometrical response in the p-j space.
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Figure 4.8: Temporal evolution of the geometrical variables for a selected cell in an irregular
tissue, with parameters (p = 0.02, j = 0.1) (up), and (p = 0.5, j = 0.1) (bottom). A-C) Net
contraction R (up) and change of anisotropy Q (bottom), both measured with respect to
the relaxed configuration at trelax = 5 after a medial contraction with λA = 0.5 and λP = 0.
Three cases are considered: no plasticities (blue), with plasticity in the medial region (green),
and with plasticity in the perimeter (orange). B-D) Section of the irregular tissue for each
case of cell activity and plasticity, indicating (I) the relaxed configuration at trelax = 5, and
the finals configurations at t = 10, for the cases of (II) no plasticity, (III) medial plasticity
only with νA = 0, and (IV) perimeter plasticity only with νP = 0.

In summary, the net contraction achieved with perimeter activity can be even larger if
plasticity in the medial region is added in slow processes (compared with the characteristic
times of elasticity and plasticity), at the expense of elongating slightly the cells. This com-
bination (perimeter activity and medial plasticity) in the dynamics is the one that produces
the maximum level of contraction.
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applied.
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Our successive analysis (one isolated active cell, an active cell embedded in a tissue with
linear response and full non-linear dynamics) showed that apical constrictions described by
the two-dimensional vertex model where the activity enter as modifications of the equilibrium
parameters, present different geometrical characterization that depends on the cellular region
taken as the active zone. For medial or perimeter activity, cells contract more efficiently when
the elasticity is dominated by the active region. This feature is robust and maintained when
plasticities are considered in the system. For the anisotropy, in the non-plastic case, when the
inner perimeter of the cell is active, cells tend to achieve circular shapes with the contraction,
while when the medial region of the cell is active they reached elongated shapes. This feature,
in contrast, does not hold when the medial region is plastic, in which case an active perimeter
can generate elongated shapes.
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Chapter 5

Application: Austrolebias nigripinnis
pre-epiboly stage

In this chapter we study the mechanical behavior of the cells that form the epithelial tissue
present in the pre-epiboly stage in the experiment of the annual fish Austrolebias nigripinnis
performed by the LEO laboratory, at the Faculty of Medicine of the Universidad de Chile,
reported in Ref. [17]. In particular, we test if the mathematical model analyzed in Ch. 4 is
accurate to study the active contractile pulses.

We are able to quantitatively fit the pulses of 15 cells with a reduced number of parameters
(4 global parameters and 3 specific parameters per cell), of one experiment. Also, the analysis
shows that the pulses, in which cells contract keeping roughly isotropic shapes, and thus
reducing both their areas and perimeters, are better described with activity only in the
perimeter of the cells and plasticity on the areas.

5.1 Experimental information

In the experiment carried out at the LEO laboratory, the pre-epiboly started 48 hours post
fertilization (hpf), and finished at 56 − 58 hpf. At the beginning of the pre-epiboly the
system has an approximately spherical shape with radius R = 590µm. Inside of the sphere
there is a yolk that contains nutritional components; over it, in the north pole, also called
animal pole, there is an epithelial enveloping cell layer (EVL) composed of 68 cells, with
mean side l0 ∼ 50µm ∼ 0.1R, that covers a small part of the sphere (12%), whose thickness
is h ∼ 5µm. During the pre-epiboly the epithelial cells rearrange, decreasing their height and
inducing an expansion of the epithelial tissue over the sphere, covering ∼ 15% of the sphere.
In this process, it is observed that 16 cells (in red, in Fig. 1.3) suffer active contractile pulses,
in a non-correlated way, with lasting times between 1.5 and 3.5h. These constrictions are
characterised by an initial phase of fast and short contraction followed by a relaxation period
in which the original apical shape and size are recovered. As these apical constriction events
are associated with a duplication of the number of nuclei per cell it has been proposed they
correspond to events of cytokinetic mitotic failures [17]. Using the EVL of annual killifish
at the blastula stage for modeling apical constriction has at least two major advantages in
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comparison with other developing epithelia. First, at this phase the EVL is composed of
a small and fixed number of cells of considerable size. Second, no major morphogenetic
movements occur during the events of apical constriction. These apical constriction events
are therefore suitable for the presented analysis in Ch. 4.

The LEO laboratory provided us the data of the position of the vertices of the cells in the
tissue acquired every 0.2h. In the initial time of the experiment they are able to capture the
information of all the vertices (Fig. 1.3-A-Up). Then, due to the motion of the system, some
most external vertices get out of the microscopical view. By the end of the experiment the
visible vertices are the ones shown in Fig. 1.3-A-Bottom.

In the pre-epiboly we have the complete data of 59 cells. Fig. 1.3 shows the three di-
mensional reconstruction of the experimental configuration of the tissue at the beginning
(information of the entire tissue) and at the end of the pre-epiboly (information of 59 cells).
Fig. 5.1 shows the polygon side distribution. This distribution does not change in time due
to the lack of cellular divisions or cellular extrusions. Fig. 5.2 shows the distribution of the
experimental cell areas and perimeters at t = 48 hpf and t = 59 hpf. The cell perimeters are
calculated by taking the euclidian distances (not the geodesics) between the vertices, which
is a good approximation (with lower computational cost) given that the mean side of the
cells is l0 ∼ 0.1R. The areas are calculated using the triangularization method with respect
to the center Rc of each c cell, computed as the mean position between all the vertices, and
considering the normal vector as n̂c = R̂c. The anisotropies are calculated similar as in Ch. 3,
by computing the eigenvalues of the texture matrix, Eq. (3.12). However, this time Mc is a
3× 3 matrix, with eigenvalues a2, b2 and c2. a, b and c are the respective principal semi-axes
of and ellipsoid, with c, the minimum eigenvalues, representing the height of the cell, while
a and b represent the two dimensional approximation of the apical surface to an ellipse. The
anisotropy is finally defined as Qc = b/a.

Figure 5.3 shows the evolution of the area Ac, anisotropy Qc and perimeter Pc of four
active cells, during the pre-epiboly. The curves of Ac and Pc show a passive linear behavior
plus the contraction event, while Qc has a more noisy linear behavior. On the other hand,
Fig. 5.4 shows the evolution of these quantities of four non active cells, during the pre-epiboly.
It is clearer the linear behavior of Ac and Pc and how noisy Qc is. Some cells form the border
show more complex behaviors. For example, cells in Fig. 5.5 seem to decrease the area and
stop the increment of the perimeter at some time. Also, some experimental points escape
from the expected behavior. Since the data is taken from a microscope located upside, there
could be some errors in the measurement of the most external vertices. Then, we decide to fix
the motion on the most external vertices of the tissue whose positions are measured during
the entire experiment to the values given by the experiment. This procedure leaves us with
an effective tissue, presented in Fig. 5.6, which border motion is known experimentally, every
0.2h. In the simulations we use a linear interpolation of the data to obtain the motion every
∆t, which is the time step for the numerical integration of the vertex equations of motion.
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and at t = 58 hpf (right). Red dashed lines (and legends) indicate the mean values of each
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5.2 Computational model

5.2.1 Vertex model geometrically constrained

Since the thickness of each cell is much less than the mean cell side, h � l0, the apical
two-dimensional vertex model is a good representation of the entire system. We consider
the initial value of the equilibrium parameters given by the geometry in the initial time, i.e,
A0c(t = 0) = Ac(t = 0) and P0c(t = 0) = Pc(t = 0). Since we want the initial configuration to
be the one in equilibrium, we keep J = 0 (the adhesion term). Then, the energy functional
that we use, for the effective tissue of 39 cells, is

E =
KA

2

39∑

c=1

(Ac − A0c)
2 +

KP

2

39∑

c=1

(Pc − P0c)
2, (5.1)

where KA and KJ play the roles already described in Ch. 1. The two term considers sums
over all the cells.

The non-planar vertex model usually assume an extra bending energy cost given by

Eb = KB

∑

〈c,c′〉

(1− n̂c · n̂c′) , (5.2)

where the sum run over all the adjacent cells c and c′, with n̂c and n̂c′ the respective normal
vectors. However, we show a simple analysis that tells us Eb → 0 in our system. The
dot product between the normal vectors is equal to cos (θc,c′), with this angle being the one
between the two center vectors Rc and Rc′ . Assuming the centers are at distance dc,c′ = 2l0,
and hence dc,c′ � R, the previous angle is small, θc,c′ � 1. Then, cos (θc,c′) ≈ 1 − θ2

c,c′/2.
Finally, since dc,c′ = Rθc,c′ we obtain the following relation

n̂c · n̂c′ ≈ 1− 1

2

(
dc,c′

R

)2

→ 1. (5.3)

Then, going back to Eq. (5.2), we can see this extra term is negligible in our system.

The equations of motion are obtained variationally, using the positions of the apical ver-
tices ri. Since in this experiment the tissue is over a spherical surface with radius R = 590µm,
we use the Lagrange method considering the restriction c = R/|ri| − 1 = R/ri − 1, and λ as
the Lagrange multiplier, such that

dri

dt
= −∂E

∂ri

− λ ∂c
∂ri

, (5.4)

dc

dt
=
∂c

∂t
+
∂c

∂ri

· dri

dt
= 0, (5.5)

∂c

∂ri

= −R
r2

i

r̂i. (5.6)
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From Eq. (5.5) we can see ∂c
∂ri

and dri
dt

are orthogonal. Multiplying Eq. (5.4) by ∂c
∂ri

, it
follows that

0 =− ∂E

∂ri

· ∂c
∂ri

− λ
(
∂c

∂ri

)2

, (5.7)

λ =
−∂E
∂ri
· ∂c
∂ri(

∂c
∂ri

)2 . (5.8)

Replacing Eq. (5.6) in Eq. (5.8), we obtain

λ =

R
r2i

∂E
∂ri
· r̂i

R2

r4i

=
r2

i

R

∂E

∂ri

· r̂i. (5.9)

Finally, the equation of motions are given by

dri

dt
= −∂E

∂ri

+

(
∂E

∂ri

· r̂i

)
r̂i. (5.10)

Considering the Euler method of integration in the numerical simulations, we obtain the
positions in the step N + 1 as a function of the position in the previous step N ,

r
(N+1)
i =r

(N)
i − ∂E

∂r
(N)
i

∆t+

(
∂E

∂r
(N)
i

· r̂(N)
i

)
r̂

(N)
i ∆t, (5.11)

where r
(N)
i = Rr̂

(N)
i and r

(N+1)
i = Rr̂

(N+1)
i .

However, if we consider Eq. (5.11) up to O (∆t), and define

r̃i
(N+1) = r

(N)
i − ∂E

∂r
(N)
i

∆t, (5.12)

which corresponds to the solution using the Euler method without considering the Lagrange
multiplier, we obtain

r
(N+1)
i = R

r̃i
(N+1)

r̃i
(N+1)

, (5.13)

which is the form implemented in the numerical simulations.
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5.2.2 Pre-epiboly cellular rearrangements and active contraction
pulses

Motivated on the evolution of the area and perimeter of some cells after the active contraction
events, as for example cell C17 in Fig. 5.3, we include plasticity in the model. The plasticity
and activity enters as discussed in Ch. 2. Then, the equilibrium parameters of each cell (A0c

and P0c) relax plastically towards the instantaneous values (Ac and Pc).

From the experimental data we see that the evolution of the areas and perimeters is
approximately linear (Fig. 5.4). Then, a natural guess for the evolution of the equilibrium
parameters is also linear,

A0c(t = 0) ≈ A0c(t = 0)(1 +mAt),

P0c(t = 0) ≈ P0c(t = 0)(1 +mP t), (5.14)

where mA and mP account for the expansion due to the decrease of the cellular height.

Hence, the equations for the evolution of the equilibrium areas and perimeters are given
by

dA0c

dt
= −νA (A0c − Ac) + fAc(t) + A0c(t = 0)mA, (5.15)

dP0c

dt
= −νP (P0c − Pc) + fPc(t) + P0c(t = 0)mP , (5.16)

with the active functions fAc and fPc as combinations of sinusoidal functions in the active
time interval as described in Sec. 2.4:

f(t) =





0 , if t < t0 and t > t0 + δ1 + δ2

−C1 sin (π (t− t0) /δ1) , if t > t0 and t < t0 + δ1

C2 sin (π (t− t0 − δ1) /δ2) , if t > t0 + δ1 and t < t0 + δ1 + δ2

(5.17)

We choose to use the fraction δ = δ1/(δ1 + δ2), where δ1 and δ2 are the duration of the
destruction and creation of cellular structural material phases, to describe an active pulse.

5.3 Fist stage of optimization: pseudo-passive system
First, we simulate the pre-epiboly of the tissue with the evolutiion of the vertices of the active
cells and those on the border of the analyzed portion given by the experimental measures.
Hence, only the black vertices in Fig. 5.7-A are free to move following the dynamic of the
vertex model geometrically constrained. Then, in this first stage of the optimization we do
not consider the active functions fAc and fPc ; we treat the system as a pseudo-passive tissue
(we do consider the expansion of the tissue due to the change in the cellular height). We
perform an optimization that allows us to get first values for some parameters of the model,
as will be explained in the following.
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Flow chart

A)

B)

C)

Figure 5.7: Effective tissue composed of 39 cells used in the optimisation process. In black
color we show the vertices that are free to move following Eqs. (A.2), while the rest of the
vertices move following the experimental data. A) First optimisation processes that helps
to find an initial guess of the passive parameters. B) Active-cell-by-active-cell optimisations.
C) Last optimisation considering the simplified model.

We define the dimensionless parameter p = KP/(KAl
2
0), as in Ch. 3. Also, we consider

τA = 1/(KAl
2
0) ∼ 1h, with l0 = 50µm, and p ∈ [0, 5]. In the simulations we let 1/τA ∈

[0h−1, 5h−1], too. That way, the three relaxation rates associated to each elastic parameter
have similar values, and we will be working on similar ranges that in previous chapters. For
the plasticity parameters, we estimate values ∼ 1h−1, since the active events take times of
the order of ∼ 1h (Fig. 5.3). Finally, for the seed values of the rearrangement parameters we
choose 0.05h−1 and 0.1h−1 for mA, and mP = mA/2, given that both areas and perimeters
evolve in a linear way experimentally, and then mP should be smaller than mA.

More specifically, the seed values for the parameters of the model, all of them in h−1, are

KAl
2
0 = [1, 2, 3, 4, 5] ,

KP = [1, 2, 3, 4, 5] ,

νA = [0.2, 0.7, 1.2] ,

νP = [0.2, 0.7, 1.2] ,

mA = [0.05, 0.1] ,

mP =mA/2. (5.18)

We use these seeds to create 450 different sets of parameters called initial conditions. We use
each of these initial conditions as starter parameters to model the pre-epiboly following the
procedure specified in the Sec. 5.2, using a time step ∆t = 0.01, for the numerical integration.
We have learned from previous chapters that the achieved cellular geometry (area, anisotropy)
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varies depending on the localization of the cellular activity. In this particular case we use
two observables: the cellular area and the cellular perimeter. We choose to use the perimeter
instead of the anisotropy due to their smoother behavior (see Figs. 5.3, 5.4 and 5.5).

For each set of initial conditions we follow the next steps:

Step 1 We simulate the pre-epiboly using a set of initial conditions and save the geometri-
cal information of the cells (areas and perimeters) every 20∆t, to compare with the
experimental data. For that, we define the functions

∆A =
nt=55∑

t=1

nc=24∑

c=1

(
Asim
c − Aexp

c

)2

ntncĀ2
, (5.19)

∆P =
nt=55∑

t=1

nc=24∑

c=1

(
P sim
c − P exp

c

)2

ntncP̄ 2
, (5.20)

where the first sum, in both expressions, is over the amount of data times to compare
(nt = 55) and the second sum, in both expressions, is over the 24 non-active cells of
the effective tissue. Ā = 7658.8µm2 is the initial experimental mean cell area, and
P̄ = 334.5µm is the initial experimental mean cell perimeter (see Fig. 5.2). In the
optimization code we use the functional OPT = ∆A + 6∆P , where the factor 6 was
chosen such that both terms have similar importance.

Step 2 We vary the parameters KAl
2
0, KP , νA, νP ,mA as γ → γ′ = γ(1 + 0.1ξ), and mP as

mP → mA
′(1 + 0.5ξ), with ξ a random number between −1 and 1, chosen from a

uniform distribution. We simulate the pre-epiboly using the new set of parameters,
and calculate the new value of OPT→ OPT′. If OPT′ > OPT, situation called failure,
we come back to the previous set of parameters; if OPT′ < OPT, situation called
success, we save the new values.

Step 3 We repeat Step 2 200 times.

From all the simulations (90450 = 450 initial conditions ×201 simulations of pre-epiboly
characterized as success or failure), 2148 are successes. From Fig. 5.8 we can see there is
no preference for a particular region of the parameter of space. It is important to note
that we force the system to choose mP always smaller than mA; it is not a result from the
optimization. From this analysis we do not get a meaningful best set of parameters, but we
do obtain an initial set that will act as a seed to perform other optimizations. It is important
to remember that the plasticity is specially observed in the cellular geometrical evolution
during the active contractions, hence we expect νA and νP to change when studying the
active events. The minimum value of OPT is obtained with

[
KAl

2
0, KP , νA, νP ,mA,mP

]
= [5.75, 5.16, 0.72, 1.14, 0.05, 0.01] . (5.21)

5.4 Second stage of optimization: active events
In this stage we let free, as degrees of freedom, only the vertices that belong to one particular
active cell (black vertices in Fig. 5.7-B) and the positions of all the other vertices are fixed
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Figure 5.8: Results of the first stage of optimization. The color corresponds to the value of
OPT for the 2148 successes (of 90450 total simulations).

to the experimental values. We search the best parameters that reproduce the active event
when considering medial activity (fAc , but no fPc) or perimeter activity (fPc , but no fAc).
In both cases, we fix initially, by looking at the experimental curves, the initial time t0
of the active functions and the total duration of the pulse δT = δ1 + δ2. We perform the
procedure for c={C37, C44, C32}, which are the cases shown in Fig. 5.7-B. During this stage
of optimization we keep fix [KAl

2
0, KP ,mA,mP ] = [5.75, 5.16, 0.05, 0.01], and optimize νA and

νP (global parameters), and Cc
1 and δc (for each cell from the set c).

5.4.1 Active cell C37

The cell C37 is the only active one surrounded entirely by non-active cells. That is the
reason why we choose it as the first active cell to study. During these simulations the cell
C37 is complete free, the cells C24, C36, C42, C50, C47, and C38 are half-free, and the rest
follow the experimental evolution. We fix tC370 = 3.3 and δC371 + δC372 = 1.6, by looking at the
experimental curve of the cell C37 (Fig. 5.9).

We create 20 initial conditions, starting from
[
νA = 0.72, νP = 1.14, CC37

1 = 1, δC37 = 0.5
]
,

varying each parameter 20 times as γ → γ(1 + 0.05ξ), where ξ is a random number between
−1 and 1, chosen from a uniform distribution.

For each set of initial conditions we follow the next steps, first considering medial activity
(fAc , but no fPc), and later considering perimeter activity (fPc , but no fAc):

Step 1 We simulate the pre-epiboly using the fix parameters described before and a set of initial
conditions, and save the geometrical information of the cells (areas and perimeters)
every 20∆t, to compare with the experimental data. For that, we use the Eqs. (5.20),
where now we use nc = 7 (1 free cell + 6 half-free cells). Again, in the optimization
code we use the functional OPT = ∆A+ 6∆P .

Step 2 We vary the parameters νA, νP , CC37
1 , δC37 as γ → γ′ = γ(1 + 0.05ξ), with ξ a random

number between −1 and 1, chosen from a uniform distribution. We simulate the pre-
epiboly using the new set of parameters, and calculate the new value of OPT→ OPT′. If
OPT′ > OPT, situation called failure, we come back to the previous set of parameters;
if OPT′ < OPT, situation called success, we save the new values.

Step 3 We repeat Step 2 500 times.
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The results of the numerical optimization for each case of activity (medial or inner perime-
ter) are presented in Fig. 5.10. We obtain that for both kind of activities, the minimum values
of OPT are obtained with νA > νP . With respect to the amplitude CC37

1 and the fraction of
time of destruction of material δC37, in average there is not relevant changes form the initial
condition in the case of medial activity. Instead, for inner perimeter activity, the amplitud
decrease ∼ 30%. The lowest value of OPT for each kind of activity are achieved with the
following sets of parameters

Medial activity:
[
νA, νP , C

C37
1 , δC37

]
= [1.02, 0.27, 1.02, 0.47] , (5.22)

Inner perimeter activity:
[
νA, νP , C

C37
1 , δC37

]
= [1.31, 0.26, 0.72, 0.46] . (5.23)
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Figure 5.9: Evolution of the numerical (thick line) and experimental (thin line with points)
area and perimeter of the active cell C37 and its neighbors C36, C42, C50, C47, C38, and
C24, when simulating the pre-epiboly letting free, as degrees of freedom, only the vertices
that belong to the cell C37. Left: medial activity (Eq. (5.22)). Right: inner perimeter
activity (Eq. (5.23)).
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Figure 5.10: Results of the second stage of optimization for the active cell C37. Up: medial
activity. Bottom: inner perimeter activity. The color corresponds to the value of OPT for
the 1049 (up) and 964 (bottom) successes (of 10020 total simulations).

Figure 5.9 shows the numerical and experimental evolution of the area and perimeter of
the cell C37 and its neighbors for both sets of parameters (Eqs. (5.22) and (5.23)). We
obtain that inner perimeter activity produces a geometrical evolution of the active cell very
close to the experimental data. Instead, medial activity is capable of achieving a similar area
contraction, however the perimeter does not evolve as in the experiment. This observation
is in direct relation with the results of Ch. 4, i.e., large enough amplitude CC37

1 may produce
the expected area contraction accompanied by the increase of the anisotropy of the cellular
shape. The fact that the best set is with inner perimeter activity, with νA one order of
magnitude larger than νP , is also in concordance with the results of Ch. 4, since we showed
that this combination is the one that achieves the major area contraction with the minor
change of anisotropy.

5.4.2 Active cell C44

After the analysis of the only active cell surrounded by non-active ones, we proceed to
analyze the active cell C44 because it is surrounded by five non-active cells and two active
cells. However, the active contraction events of the cells C30 and C32 have already finished
by the time C44 starts its own contraction, as can be seen in Fig. 5.11. We perform the same
procedure already described for the study of the active event of C37. However, this time
we consider two different seeds from where we create the 20 initial conditions, depending
on the localization of the activity. The seeds for CC44

1 and δC44 are chosen by a previous
hand testing. For medial activity the seed is

[
νA = 1.02, νP = 0.27, CC44

1 = 1.75, δC37 = 0.5
]
.

For inner perimeter activity the seed is
[
νA = 1.31, νP = 0.26, CC44

1 = 1.4, δC37 = 0.5
]
. We

fix tC440 = 7.6 and δC441 + δC442 = 1.8, by looking at the experimental curve of the cell C37
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(Fig. 5.11).
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Figure 5.11: Evolution of the numerical (thick line) and experimental (thin line with points)
area and perimeter of the active cell C44 and its neighbors C38, C48, C53, C54, C40 , C30,
and C32, when simulating the pre-epiboly using the effective tissue with the motion of the
vertices given by the experimental values except for the ones that form the cell C44. Left:
medial activity (Eq. (5.24)). Right: inner perimeter activity (Eq. (5.25)).

Figure 5.12 shows the results of the optimizations. We obtain that for both kind of
activities the plasticity parameters increase, maintaining the relation νA > νP . With respect
to the amplitude CC44

1 and the time of destruction of material δC441 , in average there is not
relevant changes form the initial condition in the case of medial activity. Instead, for inner
perimeter activity, CC44

1 increases while δC441 decreases. The lowest value of OPT for each
kind of activity are achieved with the following sets of parameters

Medial activity:
[
νA, νP , C

C44
1 , δC44

]
= [2.16, 1.63, 1.54, 0.53] , (5.24)

Inner perimeter activity:
[
νA, νP , C

C44
1 , δC44

]
= [4.15, 0.82, 1.63, 0.31] . (5.25)

Figure 5.11 shows the numerical and experimental evolution of the area and perimeter of
the cell C44 and its neighbors for the both previous sets of parameters. Just as in the case
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Figure 5.12: Results of the second stage of optimization for the active cell C44. Up: medial
activity. Bottom: inner perimeter activity. The color corresponds to the value of OPT for
the 1158 (up) and 670 (bottom) successes (of 10020 total simulations).

of C37, we obtain that inner perimeter activity generates good geometrical evolutions, both
of area and perimeter, while medial activity is not capable of modeling the experimental
behavior of the perimeter.

5.4.3 Active cell C32

We choose one more cell, C32, to compare both optimizations using medial and inner perime-
ter cellular activity. This time, the seeds are

[
νA = 2.16, νP = 1.63, CC32

1 = 0.8, δC32 = 0.5
]
,

for medial activity, and
[
νA = 4.15, νP = 0.82, CC32

1 = 0.45, δC32 = 0.5
]
, for perimeter activ-

ity. We fix tC320 = 2.0 and δC321 + δC322 = 1.4, by looking at the experimental curve of the cell
C37 (Fig. 5.13).

Figure 5.14 shows the results of the optimizations. We obtain that for both kind of
activities the plasticity parameters decrease, maintaining the relation νA > νP . With respect
to the amplitude CC44

1 and the fraction of time of destruction of material δC44, in average
there is not relevant changes form the initial condition in both cases. The lowest value of
OPT for each kind of activity are achieved with the following sets of parameters
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Figure 5.13: Evolution of the numerical (thick line) and experimental (thin line with points)
area and perimeter of the active cell C32 and its neighbors C31, C38, C44, C30, and C20,
when simulating the pre-epiboly using the effective tissue with the motion of the vertices
given by the experimental values except for the ones that form the cell C44. Left: medial
activity (Eq. (5.26)). Right: inner perimeter activity (Eq. (5.27)).

Medial activity:
[
νA, νP , C

C32
1 , δC32

]
= [2.13, 0.97, 0.67, 0.46] , (5.26)

Inner perimeter activity:
[
νA, νP , C

C32
1 , δC32

]
= [4.08, 0.37, 0.37, 0.44] . (5.27)

Figure 5.13 shows the numerical and experimental evolution of the area and perimeter of
the cell C32 and its neighbors for the both previous sets of parameters. Just as in the case of
C37 and C44, we obtain that inner perimeter activity generates good geometrical evolutions,
both of area and perimeter, while medial activity is not capable of modeling the experimental
behavior of the perimeter.
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Figure 5.14: Results of the second stage of optimization for the active cell C32. Up: medial
activity. Bottom: inner perimeter activity. The color corresponds to the value of OPT for
the 273 (up) and 479 (bottom) successes (of 10020 total simulations).

5.4.4 All active cells

We have shown for three active cells C37, C44, and C32, that activity in the perimeter of
equilibrium plus νA > νP is needed in our model to achieve the experimental cellular geometry
in the active events. We model the rest of the active cells following a similar procedure than
before, just considering inner perimeter activity. We optimize several cells (adjacent) at the
same time: (C19, C25, C19), (C12, C14, C17), (C28, C33, C39), (C22, C30) and (C31).

An important note is that cells C14, C39 and C31 take a long time in coming back to the
size they had before the apical constriction. Given that experimental observation, the seed
value for their fraction of time of destruction of perimeter material is set to 0.05.

We find that in almost all the cases the values of plasticity stay close to νA ∼ 3.5 and
νP ∼ 0.5, except for the case of C31, in which the best values are 0.49 and 0.01, respectively.

Then, we simulate the pre-epiboly with the previously obtained parameters for all the
active pulses, considering the vertices from the active cells as free ones (degrees of freedom),
and using νA = 3.5 and νP = 0.5. In this simulation the cell C44, which performs the bigger
constriction, suffers a big change of anisotropy making the polygon non-convex by the end
of the active event. Others cells also go through non-convex shapes. This problem is solved
by setting νP = 0 and mP = 0.
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5.5 Third stage of optimization: Simplified model

All the previous considerations leave the dynamic equations of the equilibrium parameters
as

dA0c

dt
= −νA (A0c − Ac) + A0c(t = 0)mA, (5.28)

dP0c

dt
= fPc(t). (5.29)

Since by definition fPc(t) is built to integrate zero, then this election satisfies no net
variation of the perimeter of equilibrium.

Also, since most of the optimized values of δ are close to 0.5 (except for the tree cells C14,
C39 and C31), we decide to fix δ = 0.5 for all cells. Hence, fPc is modeled as a complete cycle
of a unique sine function, allowing to reduce the number of parameters in the optimization.

Finally, we run a last optimization considering the above simplifications, and letting free
all the inner vertices of the 39-cells effective tissue (black vertices in Fig. 5.7-C).

With the increment of the degrees of freedom and the changes described before, the
previous active parameters are not the best ones one could use as seed. By inspection
(modifying by hand) we obtain a set that generates a lower value of OPT. From this set,
we create 10 initial conditions of the form [KAl

2
0, KP , νA,mA], and perform an optimization

process. We fix initially, by looking at the experimental curves, the initial time t0 and the
total duration δT = δ1 + δ2, of each active event (see Tab. 5.1).

For each set of initial conditions we follow the next steps:

Step 1 We simulate the pre-epiboly using a set of initial conditions and save the geometrical
information of the cells (areas and perimeters) every 20∆t, to compare with the exper-
imental data. For that, we use the Eqs. (5.20). Again, in the optimization code we use
the functional OPT = ∆A+ 6∆P .

Step 2 We vary the parameters KAl
2
0, KP ,mA, νA and all the amplitudes C1, as γ → γ′ = γ(1+

0.1ξ), with ξ a random number between −1 and 1, chosen from a uniform distribution.
We simulate the pre-epiboly using the new set of parameters, and calculate the new
value of OPT→ OPT′. If OPT′ > OPT, situation called failure, we come back to the
previous set of parameters; if OPT′ < OPT, situation called success, we save the new
values.

Step 3 We repeat Step 2 10000 times.

The global optimized parameters are KAl
2
0 = 6.25 h−1, KP = 4.82 h−1, νA = 3.20 h−1,

and mA = 0.05 h−1, and the optimized amplitude C1 for each pulse are given in Tab. 5.1.
With the previous values we obtain p = 0.77, which correspond to a region in which the
perimeter elasticity dominates. Also, the characteristic times of plasticity and elasticity are
related by τνA ∼ 2τKA

∼ 2τKP
∼ 20 min. Then, in this experiment the contractile events,
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that have mean duration of 2.6 h, are considerable slow compared to the plastic and elastic
characteristic times of the dynamic.

The geometrical evolution of the active cells are in Fig. 5.15.

Cell t0[h] (δ1 + δ2)[h] C1[µm/h]

C12 0.40 3.00 0.19
C14 3.80 7.00 0.10
C17 2.00 2.00 0.44
C19 0.20 1.60 0.38
C22 3.60 2.10 0.53
C25 3.80 2.00 0.45
C28 0.00 2.00 0.33
C29 3.60 3.60 0.27
C30 3.50 1.80 0.62
C31 4.00 4.00 0.12
C32 2.00 1.20 0.43
C33 6.30 2.20 0.56
C37 3.20 1.60 0.75
C39 6.00 2.00 0.32
C44 6.80 2.50 0.67

Table 5.1: Parameters characterizing each pulse, where the perimeter active functions are
given by fPc = −C1 sin(2π(t − t0)/δT ) for 0 ≤ t − t0 ≤ δT . The start times t0 and pulse
durations δT are fixed by the experiments, while the pulse amplitudes C1 are fitted to best
reproduce the experimental evolution of the areas and perimeters.

The application of our modeling to the active contractile pulses extending through blastula
stages of the annual killifish A. nigripinnis is highly illustrative. We were able to quantita-
tively fit the pulses of 15 cells with a reduced number of parameters (4 global parameters –
KA, KP , νA,mA – and 3 specifics parameters per cell – t0, δT , C1). It is important to recall
that the values for t0 and δT , for each active event, are fixed initially by looking at the experi-
mental data, and are not optimized parameters. Also, the analysis showed that the pulses, in
which cells contract keeping roughly isotropic shaped, and thus reducing both their areas and
perimeters, are better described with activity only in the perimeter of the cells and plasticity
on the areas. We recall that by comparing the cell areas and perimeters, which are simple
geometrical observables that are easily accessible, it is possible to discriminate between the
two possible sources of activity and, also, to fit all the relevant parameters. The presented
methodology provides a practical and quantitative perspective of how apical constrictions
occur in other systems. Also, offers a method to measure different parameter used in the
vertex or similar models in many biological systems. It remains an interesting perspective
to relate the measured parameters to the relevant biophysical processes taking place in the
cells and tissues.
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Figure 5.15: Geometrical evolution of the active cells in the pre-epiboly simulation using
the active parameters from Tab. 5.1, with fix δ = 0.5, νA = 3.20h−1, νP = 0h−1,mP =
0h−1,mA = 0.05h−1, KAl

2
0 = 6.25h−1, KP = 4.82h−1 for all the cells. For each cell, in red

(orange) is shown the normalized numerical (experimental) area, and in blue (skyblue) is
shown the normalized numerical (experimental) perimeter.
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Chapter 6

From discrete to continuum

In this chapter we compare a discrete description using the vertex model, as in previous
chapters, with a continuum one which use a texture tensor M as a field. In particular, we
study the cases of an initially homogenous isotropic tissue with a Gaussian active region of
different sizes. We compare some geometrical observables in the steady state between the
continuum description and numerical simulations using ordered and low-disordered tissues.
Also, we propose an equation to describe the temporal evolution of the system and show how
it compares to the one obtained in the numerical simulations using the vertex model with an
ordered tissue.

6.1 Discrete stress tensor
We begin by obtaining an expression for the mean stress of a tissue that is usually used in
literature (see for example Ref. [77]). Starting from the functional energy of the vertex model

E =
∑

c

KA

2
(Ac − A0c)

2 +
KP

2

∑

c

(Pc − P0c)
2 + J

∑

〈i,j〉

lij, (6.1)

one can obtain the equations of motion for a vertex with position ri (Eqs. (A.3), (A.13),
(A.14), and (A.15)). This way, the force over a vertex i can be written as a sum of a force
that appears due to each cell at which it belongs to, fi =

∑
c fi

c, with

fi
c =

KA

2
(Ac − A0c) (ric−1,ic+1 × ẑ) +

(
KP (Pc − P0c) +

J

2

)(
ric+1,i

ric+1,i

+
ric−1,i

ric−1,i

)
, (6.2)

where the vertices ic + 1 and ic − 1 correspond to the next and previous vertex to i, in
clockwise counting, belonging to cell c. We can think the tissue as composed by two kind of
particles – vertex-like and cellular-like particles – with no interaction between the vertices-
like ones, and with fi

c being the force that the cellular-like particle c exerts on the vertex-like
particle i. Then, noting that the evolution of the system relies entirely on the inter-particle
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interactions, we can obtain an averaged in space single-cell stress tensor from kinetic theory
(Ref. [78, p. 26]) given by

σc = −
∑

i Ri
c ⊗ fi

c

Ac
, (6.3)

where the sum is over all the vertices that form the cell c, and Ri
c = ri− rc. With this result

for a single-cell, we can calculate a mean tissue stress tensor given by

σT =

∑
c σcAc∑
cAc

. (6.4)

Using Eqs. (6.2) and (6.3), one obtains

σcAc = KA (Ac − A0c)Ac1 +

(
KP (Pc − P0c) +

J

2

)∑

i

ri+1,i ⊗ ri+1,i

ri+1,i

, (6.5)

Then, the mean tissue stress is given by

σT =
1∑
cAc


∑

c

−ScAc1 +
∑

〈i,j〉

Tij
ri,j ⊗ ri,j

ri,j


 , (6.6)

where we have defined a pressure Sc and a tension Tij by

Sc = −KA (Ac − Ac0) , (6.7)

Tij = KP

(
Pijc,1 + Pijc,2 − Pij0c,1 − Pij0c,2

)
+ J. (6.8)

Pijc,1 and Pijc,2 are the perimeters of the two cells that share the border formed by the
vertices i and j, and Pij0c,1 and Pij0c,2 are the equilibrium perimeters of those two cells.
From here, we can see that if we consider a tissue made of regular hexagonal cells of side a,
and if Ac = Ac0 and Pc = Pc0 for every c cell, then the stress tensor of a single-cell obeys
σc0A0c = 3

2
Ja1, and then the tissue stress will be given by

σ0 =
NcAc0

3
2
Ja

NcA0c

1 =
3

2
Ja1, (6.9)
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which is exactly the zeroth order stress that we obtained in Ch. 3 for a passive tissue, and
we already know it represents the stress needed to maintain that configuration. Also, if
we assume a sudden change in the actomyosin activity such that P0c → (1 + λP )P0c and
A0c → (1 + λA)A0c, for every c cell, the stress tensor will look like

σ
(act)
0 =

(
−27

4
a4KAλA − 18a2KPλP +

3

2
Ja

)
1, (6.10)

which again, is exactly the zeroth order stress that we obtained in Ch. 3 for an active tissue.

6.2 M tensor as a field
Previously, on Ch. 3, we defined the texture matrix of a c cell (Eq. (3.12)) to represent an
ellipse shape, from where we can calculate the cellular anisotropy in terms of the flattering
parameter. This symmetric matrix has three degrees of freedom that allow to describe the
elliptical-shape approximation: the two semi-axes, a and b (with a > b), and the orientational
angle φ. In its diagonal form, its eigenvalues are a2 and b2. Since the determinant and the
trace are invariant quantities, we have that |Mc| = a2b2, and TrMc = a2 +b2. In the elliptical-
shape approximation the cellular area can be written as Ac = π|Mc|1/2. The expression for
the perimeter of an ellipse is complicated. However, a simple expression is valid in the case
of a ≈ b (with b/a > 0.7), in which case the elliptical-shape approximation the cellular
perimeter can be written as Pc = π

√
2TrMc.

Now, we can write the vertex model energy functional in terms ofMc, for the case of small
anisotropy as

E =
∑

c

KA

2

(
π|Mc|1/2 − A0

)2
+
KP

2

∑

c

(
π
√

2TrMc − P0

)2

, (6.11)

where we assume the adhesion term to be zero, and that the target parameters are equal for
all the cells, for simplicity.

We can perform a coarse-graining over the discrete perspective of the tissue to obtain a
smooth symmetric tensor field M(r), which will represent the shape at a tissue scale. We
can define a energy density, per unit area, as

f(M) =
1

π|M |1/2
[
KA

2

(
π|M |1/2 − A0

)2
+
KP

2

(
π
√

2TrM − P0

)2
]
, (6.12)

with the total elastic energy now given by F =
∫
f (M(r)) dr, exactly as in Ref. [6]. We

follow the ideas from this reference to obtain an elastic stress tensor, and then we analyze
the equilibrium solutions that appear when incorporating cellular activity.

In the same direction, in Ref. [58] they use a tensor called Shape Tensor, very similar to
the texture matrix Mc, to develop a continuum mean-field theory for motile and non-motile
tissues.
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Since M is a symmetric tensor, it can be usefully factorized as M = M0ecΘ, where M0

and c are scalar fields, representing the coarse-grained cell area and anisotropy, respectively,
and Θ is a trace-less tensor given by

Θ =

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
, (6.13)

that satisfies Θ2 = 1, where the angle θ represents the direction of the major semi axis of the
ellipse-shape approximation. Positive values for c mean elongation along the radial direction,
while negative ones mean elongation along the angular direction. Also, |c| and the semi-axes
a and b are related by cosh(c) = (a2 + b2)/(2ab), and then c = 0 means circular shape.

With these considerations,

M =M0

∞∑

k=0

ck

k!
Θk

=M0

∞∑

k=0

c(2k)

(2k)!
Θ(2k) +M0

∞∑

k=0

c(2k+1)

(2k + 1)!
Θ(2k+1)

=M0

∞∑

k=0

c(2k)

(2k)!
1 +M0

∞∑

k=0

c(2k+1)

(2k + 1)!
Θ

=M0 [cosh (c) 1 + sinh (c) Θ] , (6.14)

and then |M | = M2
0 and TrM = 2M0 cosh (c).

6.3 Elastic stress tensor

We start by calculating how the tensor M changes if there is a displacement field in the
system. Let’s go back to the discrete perspective of the tissue, and assume a displacement
field u(r), such that a vertex that used to be at r is now in the position r′ = r + u(r). This
means that given a displacement field, the center of the cell c changes as rc → r′c and its
texture matrix Mc changes as

Mc →M ′
c =

2

nc

∑

i∈c

(r′i − r′c)⊗ (r′i − r′c) . (6.15)

Also, let’s consider that u(r) varies little in the distance between the vertices that define
a given cell and its center position. This way, the quantity ri − rc, with i a vertex form
the cell c, can be treated as an infinitesimal element dric, such that it transforms as dric →
dr′ic = (1 +∇u) dric, , where the term ∇u (gradient of a vector) is a 2×2 tensor that in index
notation looks like ∂juiei ⊗ ej. With all these considerations, the texture matrix changes as
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Mc →M ′
c =

2

nc

∑

i∈c

dr′ic ⊗ dr′ic

=
2

nc

∑

i∈c

[(1 +∇u) dric]⊗ [(1 +∇u) dric]

= Mc +
2

nc

∑

i∈c

[(∇u) dric]⊗ dric +
1

nc

∑

i∈c

dric ⊗ [(∇u) dric]

= Mc +
2

nc

∑

i∈c

[(∇u) dric]⊗ dric +

(
1

nc

∑

i∈c

[(∇u) dric]⊗ dric

)T

, (6.16)

where the term [(∇u) dric]⊗ dric has the shape (Ab)⊗ b, and in index notation

[(Ab)⊗ b]ij = (Ab)i bj = Ailblbj, (6.17)

[A (b⊗ b)]ij =Ail (b⊗ b)lj = Ailblbj, (6.18)

and hence [(∇u) dric]⊗ dric = (∇u) [dric ⊗ dric], and since Mc is symmetric we obtain

Mc →M ′
c = Mc + (∇u)Mc +Mc (∇u)T . (6.19)

Is important to remember that this new M ′
c is defined with a new cellular center r′c =

rc + u(rc), which means that when performing the coarse-graining, we obtain

M ′(r + u) = M(r) + (∇u)M(r) +M(r) (∇u)T . (6.20)

By changing r + u → r, and performing a Taylor expansion on the right hand side up to
O(|∇u|), we finally obtain

M ′(r) = M(r)− u · ∇M(r) + (∇u)M(r) +M(r) (∇u)T . (6.21)

If there is a displacement field u, then the field M changes (δM = M ′ −M), and hence
F changes as δF = F (M ′) − F (M). Then, considering the following notation of the scalar
inner product of two second order tensors A and B

A : B = (Aijei ⊗ ej) : (Bklek ⊗ el) = AijBklδikδjl = AijBij, (6.22)
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we get

δF =

∫
∂f

∂M
: δMdr,

=

∫
∂f

∂M
:
[
−u · ∇M(r) + (∇u)M(r) +M(r) (∇u)T

]
dr. (6.23)

Now the idea is to write the argument of the integral as ( ...) : ∇u, where the left term is
going to represent the elastic stress tensor.

We re-write term by term, using index notation, as

∂f

∂M
: [−u · ∇M ] =− ∂f

∂Mij

uk
∂Mij

∂xk
= − ∂f

∂xk
uk = −∂fuk

∂xk
+ f

∂uk
∂xk

=−∇ · (fu) + fδij
∂uj
∂xi

= −∇ · (fu) + f1 : ∇u, (6.24)

∂f

∂M
: [(∇u)M ] =

∂f

∂Mij

∂ui

∂xl
Mlj =

∂f

∂Mij

MT
jl

∂ui

∂xl
=

∂f

∂M
MT : ∇u, (6.25)

∂f

∂M
:
[
M (∇u)T

]
=

∂f

∂Mij

Mil
∂ul
∂xj

T

=
∂f

∂Mji

T

Mil
∂uj
∂xl

=

(
∂f

∂M

)T

M : ∇u. (6.26)

One can finally write

δF =

∫
∂f

∂M
: δMdr,

=

∫ [
−∇ · (fu) +

(
f1 +

∂f

∂M
MT +

(
∂f

∂M

)T

M

)
: ∇u

]
dr. (6.27)

The first term vanishes at the boundary of the system, and using the fact that M is
symmetric, the elastic stress tensor σe is given by

σe = f1 + 2
∂f

∂M
M (6.28)

To calculate σe, we need to previously calculate the following relations

∂TrM
∂M

=
∂ (M11 +M22)

∂M
=
∂ (M11 +M22)

∂Mij

ei ⊗ ej = 1, (6.29)

∂|M |
∂M

=
∂ (M11M22 −M12M21)

∂M
=

(
M22 −M21

−M12 M11

)
=

(
M22 −M12

−M21 M11

)
= |M |M−1,

(6.30)
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and then

∂f

∂M
=− 1

2

1

π|M |1/2

[
KA

2

(
π|M |1/2 − A0c

)2
+
KP

2

∑

c

(
π
√

2TrM − P0c

)2
]
M−1

+
KA

2

(
π|M |1/2 − A0c

)
M−1 +

1

|M |1/2KP

(
π − P0c√

2TrM

)
1 (6.31)

2
∂f

∂M
M =− 1

π|M |1/2

[
KA

2

(
π|M |1/2 − A0

)2
+
KP

2

∑

c

(
π
√

2TrM − P0

)2
]

1

+KA

(
π|M |1/2 − A0

)
1 +

2

|M |1/2KP

(
π − P0√

2TrM

)
M (6.32)

σe = KA

(
π|M |1/2 − A0

)
1 +

2

|M |1/2KP

(
π − P0√

2TrM

)
M (6.33)

In the Ref. [6] they use a similar form of the previous stress tensor into an hydrodynamic
system of equations (force balance, kinematic and cell number balance) of epithelial tissues
in which the cells can rearrange. They also include activity phenomenologically using a
thermodynamic formalism. They apply the model to study analytically the passive relaxation
following an axial stretching with constant rate over an initially homogenous tissue, the
deformation of a tissue due to the active internal forces, and the generation of shear flow. In all
the applications they assume for simplicity that the two-dimensional tissue is incompressible
(M0 is constant) and spatial homogeneity of all relevant fields. They also compare the steady
state found by using their continuum description and simulations using the vertex model, in
the case of passive tissues under uniaxial elongations.

In the next sections we consider tissues where the activity is considered as changes in the
target parameters, exactly as in the previous sections. We study active epithelial tissues using
a continuum description where the activity is related to biological processes at the cellular
level. We consider inhomogeneous cellular activity distributions and analyze their steady
state and also their temporal evolution, and compare the results with the ones obtained with
simulations of the vertex model.

6.4 Centered active force: steady state
We consider a tissue initially at equilibrium characterized by an homogenous M field, with
M0(r) = m0 = A0/π, c(r) = 0 and Θ = Θ(θ = 0), which is subject to an active process that
changes the target parameters as A0 → A0 [1 + αAκ(r)] and P0 → P0 [1 + αPκ(r)], where
κ(r) is a function that describes the inhomogeneity of the cellular activity in the tissue. We
will study the new equilibrium state, characterized by new expressions of M0, c and Θ. We
propose the Gaussian function κ(r) = e

−r2

2R2 , where R is the standard deviation that represent

71



the range of the active function. The maximum changes occur at r = 0, where κ(r = 0) = 1,
and then the target values are given by A0 → A0 (1 + αA) and P0 → P0 (1 + αP ). Then, αA
and αP have the interpretation of contractility, and we allow them to take values from −1
to ∞: negative values represent the reduction of the target parameters (contractions), while
positive ones represent the increase of them (expansions).

We begin by analyzing the case of medial activity. The total stress tensor σ is given by
σ = σe−KAA0αAκ(r)1, where the last term corresponds to an isotropic active stress tensor.
The mechanical equilibrium will be reached when ∇ · σ = 0, i.e., when

∇ · σe = KAA0αA
∂κ(r)

∂r
r̂. (6.34)

Given the symmetries of our initial system and the radial force, we expect the displacement
field to has the form u = u(r)r̂, with the coarse-grained orientations, in good approximation,
given by the θ-polar angle, and M0 = M0(r) and c = c(r). Then, we decide to work in polar
coordinates, such that the new representation of M is

M =

(
M0ec 0

0 M0e−c

)
, (6.35)

and the divergence of the elastic stress tensor σe is given by

∇ · σe =

(
∂σe

rr

∂r
+

1

r

[
σe
rr − σe

θθ
])

r̂. (6.36)

Then from Eq. (6.34) we obtain

∂σe
rr

∂r
+

1

r

(
σe
rr − σe

θθ
)

=−KAA0αe
−r2

2R2 r. (6.37)

Using in Eq. (6.21) that the initial value of the texture matrix is M(r) = m01 and that
the final value (M ′(r)) due to the displacement field is given by right hand side of Eq. (6.35),
we obtain

M0

(
ec 0
0 e−c

)
=

(
1 + 2du

dr
0

0 1 + 2u
r

)
, (6.38)

from where we get useful expressions of the scalar fieldsM0 and c in terms of the displacement
field, given by
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M0(r) =m0

√(
1 +

2u

r

)(
1 + 2

du

dr

)
, (6.39)

cosh [c (r)] =
m0

M0(r)

(
du

dr
+
u

r
+ 1

)
, (6.40)

sinh [c (r)] =
m0

M0(r)

(
du

dr
− u

r

)
. (6.41)

We replace the expressions (6.39), (6.40) and (6.41) in Eq. (6.33), and then use it to solve
Eq. (6.37) numerically, by imposing that the displacement field is zero at the origin and also
at infinity. More specifically, Fig. 6.1 shows the results for the case of KA = KP = 1, R = 1
and αA = ±1, when imposing that u(r) vanishes at r = 30.
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Figure 6.1: Spatial dependence of the active function (κ), displacement field (u), contraction
(πM0−A0), anisotropy (c) and radial and angular semi-axes of M (dd and dr, respectively),
considering the initially homogeneous system defined by KA = KP = 1, A0 = 1, under
centered medial activity characterized by R = 1, and αA = −1 in a), and αA = 1 in b).
In c) and d) are the geometrical representation of the cellular shape for different distances
x, derived from the M field, in black (homogeneous initial configuration) and in red (final
solution due to activity), for the cases of αA = −1 and αA = 1, respectively. The cells have
been shown at half their size to avoid overlapping.

Figure 6.1 shows the expected behavior for the anisotropy: when the active region gets
contracted c takes positive values, i.e., cells get elongated in the radial direction; when the
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active region gets expanded c takes negative values, i.e., cells get elongated in the angular
direction. The contractile response (πM0 −A0) remains localized in the active region, while
the cellular anisotropy c changes in both the active and a small part of the non-active region.

When, instead, we consider perimeter activity, the stress tensor is given by σ = σe −
KPP0αP

[
κ(r)/

√
cosh (c)M3

0

]
M , and the equilibrium condition gives

∇ · σe = KPP0αP

[
∂

∂r

(
κ(r)√

cosh (c)M0

ec

)
+

2

r

sinh (c)κ(r)√
cosh (c)M0

]
r̂, (6.42)

and then using the same Gaussian function for κ(r) as before, we obtain

∂σe
rr

∂r
+

1

r

(
σe
rr − σe

θθ
)

=KPP0αP


 ∂

∂r


e

−r2

2R2 [cosh (c) + sinh (c)]√
cosh (c)M0


+

2

r

sinh (c) e
−r2

2R2

√
cosh (c)M0


 .

(6.43)

We solve Eq. (6.43) numerically, imposing again that u(r) vanishes at zero and at infinity.
Fig. 6.2 shows the results for the case of KA = KP = 1, R = 1 and αP = ±0.3, when imposing
that u(r) vanishes at r = 30.

Figure 6.2 shows the same qualitative behavior of the contraction and anisotropy than the
Fig. 6.1 (medial activity). From Figs. 6.1 and 6.2 we obtain that perimeter activity achieves
bigger levels of contraction with smaller values of contractility, which is an observation we
also reported in Ch. 4, when modeling active contraction pulses in localized epithelial cells
using the vertex model.

6.4.1 Comparison with simulations

We compare the solutions of this continuum description with numerical simulations performed
using ordered and low-disordered tissues. These systems use a box of size Lx = 50

√
3a

and Ly = 90a, and contain 3000 cells. In particular, ordered tissues are made of perfect

hexagonal cells of side a =
√

2/
√

3, such that they have unitary area. That regular lattice
defines the equilibrium parameters. Low-disordered tissues are created by adding a 10%
of Gaussian noise over the regular shape (Fig. 6.7-A)-up). That configuration defines the
equilibrium parameters in this case. However, this is not the state over which we apply the
active Gaussian function. First, we perform a relaxation phase, for trelax = 5, to obtain the
stationary configuration of the tissue (Fig. 6.7-A)-bottom). This relaxed state is the initial
condition for the low-ordered tissues simulations.

To consider the same boundary conditions in both descriptions (discrete and continuum),
we decide to establish a rigid boundary at Rbox = 12

√
2
√

3a = 24, measured from the center
of the active region (maximum of the κ-function). In the numerical solution of the ODE this
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Figure 6.2: Same representation as in Fig. 6.1, with perimeter activity characterized by
αP = −0.3 and αP = 0.3.

means we will impose that the displacement u(r) vanishes at r = Rbox. In the simulations
using the vertex model, this means we will fix the motion of vertices whose distance from the
active center is greater than Rbox.

In the simulations, the differential equations are integrated using the Euler integration

method, fixing units such that KA = KP = J = 1 and a =
√

2/
√

3. We include the adhesion
term J to avoid instabilities that may arise when considering J = 0. To include this term
in the ODE solutions, we redefine the equilibrium perimeter as P0c − J/(2KP ), which is a
correct decision since there is no plasticity considered in our simulations (as discussed in
Ch. 4). The time step was fixed to dt = 0.01, and we study the system up to t = 200 to
ensure that it reaches a steady state. We use values of αA = −0.5 and αP = −0.1, mimicking
a contraction in an active region, as in the simulations of Ch. 4. The used values of A0 and
P0 in the ODE are the ones of the ordered tissue in the vertex model simulations.

Figures 6.3 and 6.4 show the results for the spatial distribution of the displacement u given
by the continuum description, the radial and tangential displacements, ur and uφ, given by
the simulations with an ordered tissue, and the change of area ∆A and anisotropy c, for both
models, for the cases of medial activity with αA = −0.5 and αP = 0, and perimeter activity
with αA = 0 and αP = −0.1, respectively, with R = 0.4 and R = 4. The areas are calculated
directly from M in the continuum framework. In the simulations, we calculate them by
using the triangularization method. In the case of anisotropies, in both descriptions, they
are calculated from M . We assignee the sign of c in the simulations by considering positive
when the orientational angle of a cell is closer to the radial direction than to the angular
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one, and negative sign in the other case. We show that the qualitative agreement between
both descriptions is excellent, being slightly better for larger values of R. We observe that i)
the maximum area change (∆Amax) is reached at r = 0, in both descriptions; ii) the change
of area changes of sign, meaning that if one region gets contracted, then another one has to
get expanded, due to the conservation of the total area of the box, in both descriptions; iii)
the anisotropy has a well-defined maximum value in the continuum description, but in the
simulations with the ordered tissue it presents noise due to the hexagonal lattice and to the
way we decide to calculate c; iv) the averaged tangential displacement in the simulations is
null; v) the displacement obtained by solving the ODE has a well-defined minimum. The
radial displacement of the simulations has noise due to the hexagonal lattice.

To get a quantitative comparison between the models for different sizes of the active region
(different values of R in the κ-function), we calculate three observables: i) the maximum area
change (∆Amax), ii) the minimum (radial) displacement (urmin), and iii) the distance at which
the (radial) displacement is minimum (r.urmin).

A0: R=0.4, R=4 c

Figure 6.3: Left: Spatial distribution of the radial and tangential displacements, ur and uφ,
the change of area ∆A and anisotropy c obtained with the numerical simulations using the
ordered tissue for the case of medial activity with αA = −0.5 and αP = 0, for R = 0.4 (up)
and R = 4 (bottom). Right: Spatial distribution of the displacement u, the change of area
∆A and anisotropy c, obtained by solving the ODE from the continuum description for the
same activity cases.
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P0: R=0.4, R=4, c 
Cambio a alpha_P=0.1

Figure 6.4: Same representation as in Fig. 6.3, when considering perimeter activity with
αA = 0 and αP = −0.1.

Figures 6.5 and 6.6-A show the comparison of the three previously mentioned observables,
using the numerical simulations results of the ordered tissue, for both medial (αA = −0.5
and αP = 0) and perimeter (αA = 0 and αP = −0.1) activity, respectively.
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Figure 6.5: Up: Comparison of the maximum area change (∆Amax) (left), the minimum
(radial) displacement (urmin) (middle), and the distance at which the (radial) displacement
is minimum (r.urmin) (right), between the ODE solution (in black) and the numerical simula-
tions using vertex model with the ordered tissue (in red), for the case of medial activity with
αA = −0.5 and αP = 0. Bottom: Error for each observable O = {∆Amax, urmin, r.urmin},
defined 100|(Oode − Osim)/Oode|. The error points of urmin at R = {0.2, 0.4} (not shown in
the figure) are around 240 and 70%, respectively.
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Fig1 (A0,P0) de hexágonos, actividad con A0-P0, P0-0.5 por J=1
dAmax calculado con área de 
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Figure 6.6: Same representation as in Fig. 6.5, for the case of perimeter activity with αA = 0
and αP = −0.1, for both descriptions (A)), and αA = 0 and αP = −0.1 in the simulations and
αA = 0 and αP = −0.105 in the ODE (B)). In A), the error points of urmin at R = {0.2, 0.4}
(not shown in the figure) are around 280 and 80%, respectively. In B), the error points of
urmin at R = {0.2, 0.4} (not shown in the figure) are around 260 and 80%, respectively.

When the medial region is the active one, the maximum area change (∆Amax) is underes-
timated by the continuum description by less than 3.6%, for values of R ∈ (0.2, 6). The error
of the distance at which the (radial) displacement is minimum (r.urmin), and the error for its
value (urmin), decrease in average for larger values of R. For R > 2, the error of urmin take
values smaller than 5%. For R > 3, the error of r.urmin take values smaller than 10%. Then,
the continuum description is quantitatively accurate for reproducing the numerical results
using the vertex model when studying the steady-state reached by an ordered tissue com-
posed of cells with unitary area, with medial activity in a Gaussian region of size (standard
deviation) R > 3.

When the cellular perimeter is active, the maximum area change (∆Amax) is overestimated
by the continuum description by errors between 4% and 8%, for values of R ∈ (0.2, 6). As
in the case of medial activity, the errors of urmin and r.urmin decrease in average for larger
values of R. For R > 2.5, the error of urmin take values smaller than 10%. For R > 3.5, the
error of r.urmin take values smaller than 10%. By inspection, we obtain a better fit between
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the two descriptions when we use different parameters of perimeter activity. Fig. 6.6-B
shows the comparison of the three observables, obtained from the numerical simulations of
an ordered tissue using αA = 0 and αP sim = −0.1, and by solving the ODE using αA = 0
and αP ode = −0.105. With this consideration, r.urmin maintain the same values as before,
but ∆Amax and urmin decrease their errors considerably. For R > 0.2, the errors of ∆Amax
take values smaller than 1%. For R > 2.5, the errors of urmin take values smaller than
5%. We conclude that the continuum description is highly accurate, in quantitative terms,
in the case of perimeter activity in a Gaussian region of size (standard deviation) R > 2.5,
when considering different parameters of contractility between both descriptions, with the
continuum-contractility being 5% stronger than de discrete one.

We find that the distance at which the (radial) displacement is minimum (r.urmin) when
using an ordered tissue is independent of the kind of activity and the value of the contrac-
tility. In both cases (Figs. 6.5 and 6.6) we obtain the same results. The steps seen in the
quantification of this observable are due to the discretization of the space in the numerical
calculations.

Figure 6.7-B) shows the results for the spatial distribution of the displacement u, the
change of area ∆A and the anisotropy c given by the continuum description, plus the radial
and tangential displacements, ur and uφ, the change of area ∆A and the change of anisotropy
∆c, given by the averaged response of 30 different simulations. In each simulation we choose
a different origin of the Gaussian function, using the low-disordered tissue, for the cases of
medial activity with αA = −0.5 and αP = 0 and perimeter activity with αA = 0, αP sim =
−0.1 and αP ode = {−0.1,−0.105}, with R = 4. In the simulations, we define the variations
∆A and ∆c with respect to the relaxed state. We obtain a great agreement between both
descriptions for medial and perimeter activity as in the ordered tissue. Also, the fit is better
when we consider different contractilities for the continuum and the discrete frameworks: 5%
bigger the continuum than the discrete one. We show that the change of anisotropy has
many deviations from the mean response, as expected for the way we calculate it (just as
in the ordered tissue). The change of area and the radial displacement have low variations
from the mean responses, and hence the three observables quantified in the ordered tissue
are equally interesting here.

Figure 6.8 shows the comparison of the i) the maximum area change (∆Amax), ii) the min-
imum (radial) displacement (urmin), and iii) the distance at which the (radial) displacement
is minimum (r.urmin), using the numerical simulations results of the low-disordered tissue,
for both medial activity with αA = −0.5 and αP = 0 and perimeter activity with αA = 0,
αP sim = −0.1 and αP ode = {−0.1,−0.105}. The averaged response from the simulations fits
the ODE solution excellently when using the change of 5% in the perimeter contractility for
the continuum description. We find that the distance at which the (radial) displacement is
minimum (r.urmin) is independent of the kind of activity, and the value of the contractility,
just as for the ordered tissue. Also, the error of the maximum area change (∆Amax) for small
R is less than in the ordered tissue.
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Sim semides A0 (0.5), P0 (0.1) CBF: R=4

A) B)

Figure 6.7: A) Section of the low-disordered tissue. Up: the initially disordered state from
which we define the values of the equilibrium areas and perimeters. Bottom: relaxed disor-
dered state over which we apply the Gaussian activity, obtained after trelax = 5. B) Spatial
distribution of the displacement u, the change of area ∆A and the anisotropy c given by
the continuum description, and also the radial and tangential displacements, ur and uφ, the
change of area ∆A and the change of anisotropy ∆c, given by the simulations using the
averaged response of 30 different simulations changing the origin of the Gaussian function
in the low-disordered tissue, for the cases of medial activity with αA = −0.5 and αP = 0
(up), perimeter activity with αA = 0 and αP = −0.1 (middle), and perimeter activity with
αA = 0, αP sim = −0.1, and αP ode = −0.105 (bottom), with R = 4.
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Fig3 (A0,P0) de hexágonos, actividad con A0-P0, P0-0.5 por J=1
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Figure 6.8: Comparison of the maximum area change (∆Amax) (left), the minimum (radial)
displacement (urmin) (middle), and the distance at which the (radial) displacement is mini-
mum (r.urmin) (right), between the ODE solution (in black and blue) and the mean response
of 30 different simulations in which we change the origin of the Gaussian function, using
the low-disordered tissue (points in red), for the case of medial activity with αA = −0.5
and αP = 0 (up), and perimeter activity with αA = 0, αP sim = −0.1, and αP ode = −0.105
(bottom).
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6.5 Centered active force: temporal evolution
We propose a basic over-dumped dynamical equation for the displacement using the elastic
tensor previously found for each case of activity (medial and perimeter), given by

du(r, t)

dt
= ∇ · σ(r, t). (6.44)

We solve this equation numerically, using as boundary conditions u(0, t) = u(r, 0) =
u(Rbox, t) = 0, and compare the temporal evolution of the same three observables as in the
static case with respect to the vertex model simulations using the ordered tissue, for three
different values of R: 4, 5, and 6.

6.5.1 Comparison with simulations

We find that the evolutions in the numerical simulations are slower than the evolutions
obtained from solving the ODE for both medial and perimeter activity. We decide to plot
the information using different timescales for both descriptions. In particular, Figs. 6.9 and
6.10 change the simulation timescale to t′ = 0.45t, which is a value found by inspection.
In 6.10 we also consider the two different perimeter contractility parameters described in
the previous section. The non-smooth behavior of the r.urmin observable is given by the
discretization of the space in the calculations. We observe a highly accurate agreement
between the evolution of these observables in the two descriptions.

The proposed continuum equation for the temporal evolution of the tissue with an active
Gaussian region reproduces with high precision the evolution generated by the numerical
simulations of an ordered tissue. Different time-scales are used between the models, with
a factor of 0.45, being the continuum description the fastest. We have no explanation for
this factor. Also, different parameters of perimeter activity are used, being 5% stronger the
active contractility of the continuum description.
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Fig4 (A0,P0) de hexágonos, actividad con A0-P0, P0-0.5 por J=1 
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Figure 6.9: Temporal evolution of the maximum area change (∆Amax) (left), the minimum
(radial) displacement (urmin) (middle), and the distance at which the (radial) displacement
is minimum (r.urmin) (right), between the ODE solution (in black) and the numerical sim-
ulations using vertex model with the ordered tissue (in red), for the case of medial activity
with αA = −0.5 and αP = 0, for R = 4 (up), R = 5 (middle), and R = 6 (bottom). The
simulation time-scale is changed to t′ = γt, with γ=0.45.
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Fig4 (A0,P0) de hexágonos, actividad con A0-P0, P0-0.5 por J=1 
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Figure 6.10: Same representation as in Fig. 6.9, when considering perimeter activity with
αA = 0 and αP sim = −0.1 in the numerical simulations, and αA = 0 and αP ode = −0.105 in
the ODE.
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Chapter 7

Structure factors in active tissues

With the model described in the earlier sections, we characterize the response of a non-
polarized plastic tissue under fluctuations induced by activity introduced at a cellular level.
We do not perform any external stress on the system. From numerical simulations using
different tissues, we study the behavior of the static structure factor of the velocity field. We
find a scale separation, which informs us about the system’s hydrodynamic scale, compression
waves for the long-wavelength regime, and inverse energy cascade. We also study other
structure factors related to the cells’ geometrical properties, as contraction, anisotropy, and
orientation.

7.1 Static structure factor: velocity field
We define the velocity field as

v (r) =
∑

i

viδ (r− ri) , (7.1)

where the sum in over all the vertices of the tissue, and ri and vi correspond to the position
and velocity of the vertex i, respectively. In Fourier space, the field is given by

ṽ (k) =
∑

j

vje
ik·rj . (7.2)

From the previous expression we can define the parallel and perpendicular terms of this
field, also called longitudinal and transverse, with respect to the wave-vector k, as

ṽ‖ (k) =
∑

j

(
vj · k̂

)
[cos (k · rj) + i sin (k · rj)] , (7.3)
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ṽ⊥ (k) =
∑

j

[
vj − (vj · k̂)k̂

]
· q̂k̂ [cos (k · rj) + i sin (k · rj)] , (7.4)

where k̂ = k/|k| and q̂k̂ is obtained by rotating k̂ in 90◦.

Since our tissue is non-polarized, we expect the mean value of the expressions Eqs. (7.3)
and (7.4), over different realizations, to be null. However, an interesting quantity – related
to the energy of the system – is the mean value of the module squared. This way, we define a
parallel and a perpendicular static structure factor for the velocity normalized by the number
of vertices Nv, S‖ and S⊥, respectively, given by

S‖ (k) =
1

Nv

〈[∑

i

(
vi · k̂

)
cos (k · ri)

]2

+

[∑

i

(
vi · k̂

)
sin (k · ri)

]2〉
, (7.5)

S⊥ (k) =
1

Nv

〈[∑

i

(
vi − (vi · k̂)k̂

)
· q̂k̂ cos (k · ri)

]2

+

[∑

i

(
vi − (vi · k̂)k̂

)
· q̂k̂ sin (k · ri)

]2〉
. (7.6)

These quantities are directly related to the kinetic energy of the system. When looking in
the wave-vector space or direct space, they inform about the transfer energy between different
scales.

7.2 General considerations for the simulations
In this part, we perform numerical simulations to study the response of a non-polarized
tissue, with memory (as described in Ch. 2), under fluctuations that enters as creation of
equilibrium area and perimeter. We do not perform any deformation or external stress on the
system, so we assume that the evolution of the equilibrium perimeters is around the initial
values, A00c and P00c, for the area and perimeter, respectively. Then, the equations look like

dA0c

dt
= −νA (A0c − A00c) +

√
2DAcξAc , (7.7)

dP0c

dt
= −νP (P0c − P00c) +

√
2DPcξPc . (7.8)
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We define DAc = 1
2

(dAA00c)
2 and DPc = 1

2
(dPP00c)

2, and decide to simplify the system by
taking dA = dP = d = 0.1. We use a fixed set of elastic parameters that represent a stable
system, KA = 1, KP = 1 and J = 1, keeping νA = νP = 1. For the numerical integration we
use the Euler method with a dt = 0.01.

From the previous chapters, we have seen that the contraction R and the change of
anisotropy Q of each cell are important functions to describe the response of the tissue under
activity, reason why for every simulation we also show the behavior of them. For a c cell,
these quantities are given by

Rc =
A0c(t = 0)− Ac
A0c(t = 0)

, (7.9)

Qc =
bc(t = 0)

ac(t = 0)
− bc
ac
, (7.10)

where ac and bc have the same meaning as in Ch. 3 (Sec. 3.1).

To study the structure factor of the velocity field, we use five tissues (Tab. 7.1): ordered
and disordered, with different number of cells. Disordered tissues are created following the
procedure specified in Ch. 3. All of them obey periodic boundary conditions. For the analysis
we use 40 snapshots, evenly spaced, between t = 5 and t = 25. The evolution from t = 0 to
t = 5 is considered as a relaxation stage.

Tissue Lx Ly Nº cells Shape of cells

T1.1 19
√

3 39 494 Regular hexagons of unitary side

T1.2 19
√

3 39 494 Disordered

T2.1 50
√

3 90 3000 Regular hexagons of unitary side

T2.2 50
√

3 90 3000 Disordered

T3 30 30 900 Squares of unitary side

Table 7.1: Different tissues considered for numerical simulations.

For every tissue, we define the possible wave-vectors as k = kxx̂ + kyŷ, where

kx =
2π

Lx
m, ky =

2π

Ly
n (7.11)
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with m,n ∈ Z, and Lx and Ly described in Tab. 7.1.

We are interested in the response of the tissue in scales from one cell – where energy is
injected – to several cells. This allows us to compute only up to a specific value of kx and ky
(k ∼ 2π for squared cells and k ∼ π for hexagonal cells) since larger ones would tell us about
the microscopical network topology.

Figures 7.1, 7.2, 7.3, 7.4, 7.5 show the temporal fluctuations of the two target parameters,
and the evolution of the cellular contraction and change on anisotropy of all the cells in the
simulations of each tissue (Tab. 7.1). The four quantities fluctuate in limited ranges. The
figures also show the spatial distribution of these quantities at t = 10.

From the ordered tissues, Figs. 7.6, 7.8 and 7.10 we see that there exists a critical wavevec-
tor k∗ that separates two regimes: a long-wavelength regime with an isotropic response and a
small wavelength regime with an anisotropic response. In the long-wavelength regime there
are longitudinal waves (compressional waves). Instead, perpendicular waves are null. Tissues
made of regular hexagons that only differ in the number of cells (Figs. 7.6 and 7.8) produce
similar results for the structure factors of the velocity fields, with a smoother curve in the
bigger tissue (Fig. 7.8). When comparing the results from a tissue made of regular hexagons
versus squares, we find that in the intensity of the longitudinal structure factor S‖ is bigger
in the first case (∼ 1.67 times the one from the tissue made of squares).

From the disordered tissues, Figs. 7.7 and 7.9, we obtain that both regimes – small and
large wavelength – produce isotropic responses. Unlike the ordered case, there are perpendic-
ular waves in the small wavelength regime but always smaller than the compressional waves.
The critical wavevector k∗ that describes the scale separation is within the range found for
the ordered tissue, due to the homogenization induced by the disorder. The results for both
disordered tissues are similar, with a smoother curve in the bigger tissue (Fig. 7.9).
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In Figs. 7.11-a and b we show, as an approximation, the zone (red zone) covered by the
critical wavevector k∗ for a tissue made of square and hexagonal cells, respectively. Note
that two red circles are shown for each case, giving a range for k∗, due to the non-isotropic
geometry of S‖ (k). In both cases, the red zone is of the order of one cell. Also, in the same
figure, the green zones represent, as an approximation, the region covered by the wavelength
that produces the maximum intensity of compressional waves. All this information tells us
about the presence of an inverse energy cascade. The input of energy on a small scale –
one cell – is producing movements with high fluctuations in the velocities on a larger scale.
For disordered tissues, the critical wavevector k∗ that describe the scale separation is within
the range found for the hexagonal ordered tissue, due to the homogenization induced by the
disorder. The zone covered by k∗ is still of the order of one cell (Fig. 7.11-c), and the green
zone remains unchanged.

7.3 Structure factors of cellular fields: SR, SQ and Sφ

We also study other structure factors, using specific geometrical properties of the cells as
the contraction Rc and the change of anisotropy QC , previously defined, and the angle of
orientation φc, defined as the angle form by x̂ and ac (major axis vector). For this part, we
use rc as the position of the center of the cell c.

We define the following fields,

R(r) =
∑

c

Rcδ(r− rc) =⇒ R̃(k) =
∑

c

Rce
ik·rc , (7.12)

Q(r) =
∑

c

Qcδ(r− rc) =⇒ Q̃(k) =
∑

c

Qce
ik·rc , (7.13)

φ(r) =
∑

c

e2iφcδ(r− rc) =⇒ φ̃(k) =
∑

c

e2iφceik·rc , (7.14)

where the sums are over the cells c, and we use the factor e2iφc since the orientation is defined
by an apolar axis, and hence φc ≡ φc + π.

We study the following structure factors, normalized by the number of cells Nc,

SR (k) =
1

Nc

〈|R̃− 〈R̃〉|2〉, (7.15)

SQ (k) =
1

Nc

〈|Q̃− 〈Q̃〉|2〉, (7.16)

Sφ (k) =
1

Nc

〈|φ̃− 〈φ̃〉|2〉. (7.17)

Figure 7.12 shows the results for the regular tissue T2.1. We can see that the contraction
structure factor SR is a random variable, but uniform in average in all the analyzed k-space,
which tells us that the correlation function of the net contraction field is a delta function in
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r-space. That is to say, the contraction of each cell is an uncorrelated characteristic. SQ,
associated to the anisotropy, has a small and not well-defined peak for small k. At (kx, ky =
0, 0) and at some points with k ∼ 4 the anisotropy structure factor take values of the order
of 107. This happens since the wavevectors k1 = (0,±4π/3) and k2 = (±2π/

√
3,±2π/3)}

are vector of the reciprocal lattice. This can been seen by defining two principal vectors of
the lattice that form the cellular centers, a1 = (

√
3, 0) and a2 = (

√
3/2, 3/2). Then, two

reciprocal vector are b1 = (2π/
√

3) and b2 = (0, 4π/3), i.e., biaj = 2πδij. Finally, k1 and k2

are linear combinations of the style n1b1 + n2b2, with n1, n2 integers.

In average, it looks uniform from the scale of one cell to several cells. Then, the change of
the anisotropy of cells might also be considered as an uncorrelated variable. The orientation
structure factor Sφ changes from isotropic to anisotropic at k ∼ 1.5 (λ ∼ 4.2, with λ the
wavelength), which is similar to the wavevector at which the intensity of the longitudinal
structure factor S‖ is maximum. Also, a peak of intensity is obtained at k ∼ 0.9 (λ ∼ 7).

Figure 7.13 shows the results for the irregular tissue T2.2. Now, SR has a maximum of
intensity for small k, k ∼ 0.2 ( λ ∼ 31.4). Sφ remains with a peak for small k, now moved to
an even smaller value of k (very similar to the one of SR). SQ now has a maximum at k ∼ 4,
which correspond to the cellular characteristic length and, also to the critical wavevector we
found in the analysis of the longitudinal structure factor S‖. For smaller k, in average, SQ
maintain the uniform character.

Unlike the case of the longitudinal and transversal structure factors that the only difference
between the results in ordered and disordered tissues is the smoothness of the curves, the
structure factors related with the cellular contraction SR, the change of cellular anisotropy
SQ, and the cellular orientation Sφ, change qualitatively and quantitively.

Taking all the information together, we obtain that in ordered tissues the input of activity
at a cellular level causes compression waves in a larger scale. The maximum of kinetic energy
is produced with fluctuations characterized by wavevectors around k ∼ 1.5. The motion
of the vertices produces local cellular contractions and changes of cellular anisotropy, with
no correlation between cells. However, there is a clear correlation in the cellular orientation,
with a characteristic wavevector also around k ∼ 1.5. In the case of disordered tissues, beside
the compression waves with a maximum around k ∼ 1.5, the input of cellular activity also
causes perpendicular waves, with values of one order of magnitud smaller. The correlation in
the cellular orientation is still present, but the characteristic wavevector is moved to smaller
values (k ∼ 0.2 ⇐⇒ λ ∼ 31.4 ⇐⇒ ∼ 17 cells). For the same wavevector, now appears
a correlation in the cellular contraction. The values of SQ are two orders of magnitude
larger than in the ordered tissue, and now this structure factor has a clear correlation at
the scale of input of energy. These results conclude that geometrical quantities related to
the contraction and orientation are good candidates for being treated as fields in a long-
wavelength hydrodynamic theory of our system.
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a) b)

c) d)

e)

g)

T1_1 d=0.1

f )

h)

Figure 7.1: Numerical simulations results for the Tissue 1.1, composed of 494 regular hexag-
onal cells of unitary side, with fluctuations characterized by d = 0.1, elastic parameters
KA = 1, KP = 1 and J = 1, and memory parameters νA = νP = 1. a)-b) Time evolution
of the equilibrium areas and perimeters, normalized by their initial values, minus one. c)-d)
Time evolution of the contraction R and change of anisotropy Q of each cell. e)-h) Color
maps of the quantities shown in a)-d) at t = 10. The black thick curves shown in a)-d)
correspond to the evolution of the cell pointed with the black arrow in e), that has a thick
black contour in e)-h).
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a) b)

c) d)

e) f )

g) h)

T1_2 d=0.1

Figure 7.2: Numerical simulations results for the Tissue 1.2, composed of 494 cells of various
polygons, with fluctuations characterized by d = 0.1, elastic parameters KA = 1, KP = 1 and
J = 1, and memory parameters νA = νP = 1. Same representation as in Fig.7.1.
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a) b)

c) d)

e) f )

g) h)

T2_1 d=0.1

Figure 7.3: Numerical simulations results for the Tissue 2.1, composed of 3000 regular hexag-
onal cells of unitary side, with fluctuations characterized by d = 0.1, elastic parameters
KA = 1, KP = 1 and J = 1, and memory parameters νA = νP = 1. Same representation as
in Fig.7.1.
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a) b)

c) d)

e) f )

g) h)

T2_2 d=0.1

Figure 7.4: Numerical simulations results for the Tissue 2.2, composed of 3000 cells of various
polygons, with fluctuations characterized by d = 0.1, elastic parameters KA = 1, KP = 1 and
J = 1, and memory parameters νA = νP = 1. Same representation as in Fig.7.1.
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a) b)

c) d)

e) f )

g) h)

T3 d=0.1

Figure 7.5: Numerical simulations results for the Tissue 3, composed of 900 regular squared
cells of unitary side, with fluctuations characterized by d = 0.1, elastic parameters KA =
1, KP = 1 and J = 1, and memory parameters νA = νP = 1. Same representation as in
Fig.7.1.
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a)

c)

T1_1 d=0.1

b)

d)

Figure 7.6: Numerical simulations results for the Tissue 1.1, composed of 494 regular hexag-
onal cells of unitary side, with fluctuations characterized by d = 0.1, elastic parameters
KA = 1, KP = 1 and J = 1, and memory parameters νA = νP = 1. a)-b) Two representa-
tions of the parallel component of the static structure factor of the velocity field, calculated
using 25 snapshots, evenly spaced, between t = 5 and t = 25. Black points in b) are the mean
value calculated from the orange points, using a moving window of ∆k = 0.1. c)-d) Two
representations of the perpendicular component of the static structure factor of the velocity
field, following the same protocol as for a)-b).
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a) b)

c) d)

T1_2 d=0.1

Figure 7.7: Numerical simulations results for the Tissue 1.2, composed of 494 cells of various
polygons, with fluctuations characterized by d = 0.1, elastic parameters KA = 1, KP = 1 and
J = 1, and memory parameters νA = νP = 1. Same representation as in Fig.7.6.
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a) b)

c) d)

T2_1 d=0.1

Figure 7.8: Numerical simulations results for the Tissue 2.1, composed of 3000 regular hexag-
onal cells of unitary side, with fluctuations characterized by d = 0.1, elastic parameters
KA = 1, KP = 1 and J = 1, and memory parameters νA = νP = 1. Same representation as
in Fig.7.6.
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a) b)

c) d)

T2_2 d=0.1

Figure 7.9: Numerical simulations results for the Tissue 2.2, composed of 3000 cells of various
polygons, with fluctuations characterized by d = 0.1, elastic parameters KA = 1, KP = 1 and
J = 1, and memory parameters νA = νP = 1. Same representation as in Fig.7.6.
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a) b)

c) d)

T3 d=0.1

Figure 7.10: Numerical simulations results for the Tissue 3, composed of 900 regular squared
cells of unitary side, with fluctuations characterized by d = 0.1, elastic parameters KA =
1, KP = 1 and J = 1, and memory parameters νA = νP = 1. Same representation as in
Fig.7.6.

a) b) c)

Figure 7.11: A brief summary of the scale separation for the tissues a) T3, b) T2.1, and c)
T2.2, described in Tab. 7.1. The red zones indicate the approximate critical wavevector k∗
that separates small and long wavelength regimes. For ordered tissues, a) and b), it also
separates isotropic from the anisotropic response. The green zones indicate the approximate
wavelength at which the intensity of the longitudinal structure factor S‖ is maximum.
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a) b) c)

d) e) f )

T2_1 d=0.1

Figure 7.12: Numerical simulations results for the Tissue 2.1, composed of 3000 regular
hexagonal cells of unitary side, with fluctuations characterized by d = 0.1, elastic parameters
KA = 1, KP = 1 and J = 1, and memory parameters νA = νP = 1. a-d) Two representa-
tions of the static structure factor of contraction SR. b-e) Two representations of the static
structure factor of anisotropy SQ. White dots in b) correspond to higher values, of the order
of 107; the respective k correspond to vectors of the reciprocal lattice. Those points are not
shown in e). c-f) Two representations of the static structure factor of contraction Sφ. For all
the figures, the quantities were calculated using 25 snapshots, evenly spaced, between t = 5
and t = 25.
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a) b) c)

d) e) f )

T2_2 d=0.1

Figure 7.13: Numerical simulations results for the Tissue 2.2, composed of 3000 cells of various
polygons, with fluctuations characterized by d = 0.1, elastic parameters KA = 1, KP = 1
and J = 1, and memory parameters νA = νP = 1. Same representation as in Fig. 7.12. For
(kx, ky) = (0, 0), SQ is of the order of 107. That point is shown in white in b) and does not
appear in e).
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Conclusions

During the last decades epithelial tissues, an example of active matter, have been analyzed
using models initially proposed for foams and bubbles in physics. In this thesis we describe
two-dimensional planar epithelial tissues physically, using a model in which no direction of
motion is imposed, and hence where the activity enters as a scalar quantity. We use a simple
system in which neither cell division nor cell rearrangements are considered, which is the case
seen in some biological experiments.

Using the vertex model, we showed that when the perimeter region of the cells is active, or
the tissue is subject to different external stresses, the tissue becomes unstable with deforma-
tions that couple certain modes. When there is no activity in the medial zone, the instability
is directly related to a vanishing shear modulus, and we obtain the same threshold reported
in literature. We expect that these instabilities will be tested in experiments, as a tool for
validating the use of the vertex model to correctly describe these biological systems. These
results are published in the article "Vertex model instabilities for tissues subject to cellular
activity or applied stresses", Ref. [59]. A natural path to take for expanding our analysis
is to remove the planar restriction, giving the tissue the possibility of going into buckling
instabilities as a way of releasing stresses.

We considered localized continuous activity in a single cell of a tissue, as seen in several
experiment in which apical constrictions occur, and described the local response using geo-
metrical observables that are feasible of measuring in some experiments. If the medial region
is active, then the active cell takes an anisotropic shape; if the perimeter is active then the
active cell tends to get an isotropic shape. In literature there is also a pulsatile model to
describe the mechanism of apical constrictions, that we did not consider. A detailed study
using that dynamic is not present in literature. We applied the analysis of the geometrical
response to study the active contraction pulses observed in the epithelial tissue of the annual
killifish Austrolebias nigripinnis during the blastula stage. We were able to discriminate be-
tween different models of apical constrictions and also obtained the best fit of all parameters
of the vertex model, globals, and specific for each active event. This serves as a motivation
for new experiments, with the focus on relating the parameters of our model to biophysical
processes of cells and tissues. These methods can be applied to other biological systems
as well. These results are published in the article "Modelling of active contraction pulses
in epithelial cells using the vertex model", Ref. [60], and are also part of the new version
"Geometrical characterisation of active contraction pulses in epithelial cells using the vertex
model" (not submitted yet). In some experiments involving epithelial tissues, interfaces be-
tween cells are considerably curved. We expect our model can be expanded to study cellular
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activity in those systems.

We studied the cases of medial and perimeter activity in an active Gaussian region of
the tissue by performing numerical simulations using the vertex model, using ordered and
low disordered tissues. We calculated quantities related to contraction and displacement,
in the steady state, and showed and excellent agreement with a continuum description that
assumes small cellular ellipticity. Besides, we compared the temporal evolution of the same
observables for ordered tissues and obtained an excellent agreement when rescaling the time
scales. In the case of perimeter activity, a small change (5%) in the activity parameter
between both description is needed to obtain a better fit. Current results of simulations
using low-disordered and highly-disordered tissues are encouraging. To prepare a manuscript
about these findings, we are now testing our results in other active regions (not Gaussian).

With the aim to analyze the self-organization on fluctuating non-polarized active tissues,
we performed numerical simulations variating the target parameters of the vertex model,
mimicking the continuum reconstruction of the cytoskeleton. Using statistical methods,
we showed a scale separation between the micro and macro-scale of the model. We found
compression waves in the long-wavelength regime and an inverse energy cascade. We expect
this information will be useful to construct a continuum model of fluctuating tissues. An
intensive analysis in other regions of the space of parameters in search of other collective
motion is needed.

In brief, this particular example of active matter evolves due to interaction between units
(cells), and since the system is confluent (there is no empty space between cells), geometry
appears as an important tool to characterize it, which is what we did in this theses. Impor-
tantly, cellular geometry is easily accessible in several experiments, and therefore we expect
some of the results of this theses will be tested in the future.
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Appendix A

Vertex model: Equations of motion

The energy functional of the vertex model is given by

E =
∑

c

KA

2
(Ac − A0c)

2 +
KP

2

∑

c

(Pc − P0c)
2 + J

∑

〈i,j〉

lij, (A.1)

and the equations of motion for each vertex position ri are

dri

dt
= −γ ∂E

∂ri

. (A.2)

We can write

dri

dt
=

dri

dt

(A)

+
dri

dt

(P )

+
dri

dt

(J)

, (A.3)

where each term is the one proportional to KA, KP and J , respectively.

Assuming a polygon of N vertices, we calculate its area using the triangularization method

111



with respect to the vertex v1.

Ac =−
N−1∑

j=2

1

2
ẑ · (rj,1 × rj+1,1) ,

=−
N−1∑

j=2

1

2
ẑ · [(rj − r1)× (rj+1 − r1)] ,

=
N−1∑

j=2

1

2
ẑ · [−rj × rj+1 + r1 × (rj+1 − rj)] ,

=
N−1∑

j=2

1

2
ẑ · [−rj × rj+1] +

1

2
ẑ · [r1 × (rN − r2)] , (A.4)

where we used that the tissue is in the x-y plane, with the vertices in each cell ordered
clockwise, and we defined ri,j = ri − rj and ri,j = |ri,j|. To compute the energy gradients,
it is convenient to use this expression considering any vertex as the chosen one to make the
triangularization, i.e., we replace r1 → ri, r2 → ri+1 and rN → ri−1 (cyclic vertex numbering
is used, i.e. N + 1 ≡ 1 and −1 ≡ N),

Ac =
N−1∑

j 6=i

1

2
ẑ · [−rj × rj+1] +

1

2
ẑ · [ri × (ri−1 − ri+1)] . (A.5)

Then,

∇iAc =
1

2
∇i (ẑ · [ri × (ri−1 − ri+1)]) =

1

2
∇i [xi (yi−1 − yi+1)− yi (xi−1 − xi+1)] , (A.6)

=
1

2
(yi−1 − yi+1) x̂− 1

2
(xi−1 − xi+1) ŷ =

1

2
ri−1,i+1 × ẑ. (A.7)

Also, the perimeter and its gradient with respect to the position of the vertex i of the
same polygon are given by

Pc =
N∑

j=1

|rj+1,j|, (A.8)

∇iPc =∇i (|ri+1,i|+ |ri−1,i|) ,
=− ri+1,i

ri+1,i

− ri−1,i

ri−1,i

. (A.9)

Finally, the length in the third term and its gradient are

lij =|rj,i|, (A.10)
∇ilij =∇i|rj,i|, (A.11)

=− rj,i
rj,i
. (A.12)
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Then, the different terms in Eq. (A.3) are

dri

dt

(A)

= −
∑

c

KA (Ac − A0c)∇iAc,

= −
∑

c

KA (Ac − A0c)
1

2
(ric−1,ic+1 × ẑ) ,

=
∑

c

KA (Ac − Ac0)
1

2
(ric+1,ic−1 × ẑ) , (A.13)

dri

dt

(P )

= −
∑

c

KP (Pc − P0c)∇iPc,

=
∑

c

KP (Pc − P0c)

(
ric+1,i

ric+1,i

+
ric−1,i

ric−1,i

)
, (A.14)

dri

dt

(J)

= −
∑

〈i,j〉

J∇ilij,

=
∑

〈i,j〉

J
rj,i
rj,i
, (A.15)

where Eqs. (A.13) and (A.14) consider a sum over the cells to which the vertex i belongs
to, and ic + 1 and ic − 1 refer to the next and previous vertex to i, in clockwise counting,
belonging to cell c. Also, (A.15) considers a sum over the vertices j that are adjacent to the
vertex i.

It is important to note that when we assume that the system obeys periodic boundary
conditions, the term given by (A.15) can also be written as a sum over the cells at which the
vertex i belongs to,

dri

dt

(J)

= −
∑

c

J

2
∇iPc,

=
∑

c

J

2

(
ric+1,i

ric+1,i

+
ric−1,i

ric−1,i

)
. (A.16)

If the tissue is made of hexagonal cells, then each sum described above is over three cells.
For the case of square cells is over fours cells.
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i

Figure A.1: Direction of the forces over the vertex i due to changes in the area and perimeter
of the shaded cell, in green and blue arrows, respectively. In red are the directions of the
force due to changes in the length of the shared borders of the shaded cell with the unshaded
ones.
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Appendix B

Models of viscoelasticity

During this thesis, two different models of viscoelasticity for the target parameters of the
vertex model are used: the Maxwell model and the Kelvin model. This means that A0c

and P0c have properties of elasticity (at short times) and viscosity (at longer times). The
representation of both models can be seen in Fig. B.1. The Maxwell (Kelvin) model is
represented by a viscous dashpot defined by a damping coefficient γ connected in series (in
parallel) with an elastic spring defined by an elastic constant k and a natural length l0. In the
case of the Maxwell model we will use that l0 = 0. In the next, we will write the equations
for A0c, but analogous equations are valid for P0c.

γ k, l0 = 0

k, l0

γ

F

F

a)

b)

Figure B.1: Diagrams two models of viscoelasticity: a) Maxwell model, and b) Kelvin model.
The dashpot are defined by a damping coefficient γ, and the elastic springs by an elastic
constant k and a natural length l0. In a) we consider l0 = 0. In both cases, the system is
attached in the left end, and a force F is acting in the right end.

B.0.1 Maxwell model

At the moment of applying the force F in the right end of the system in Fig. B.1-a), the
spring will elongate fast. Instead, the elongation of the dashpot will be slowly. We will call
x the position of a particular point q between the dashpot and the spring, and y to the
position where F is applied. The initial elongation of the spring will induce a force that
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will compensate F , given by F1 = −k(y − x). Over q there will be acting the elastic force
F2 = k(y − x) to the right, and a viscous force F3 = −γẋ to the left. With these forces, and
considering that the inertial effects are neglected, we obtain

γẋ =k(y − x),

ẋ =− k

γ
(y − x). (B.1)

Performing the following changes x→ A0c, y → Ac and k/γ → νA, we obtain

dA0c

dt
=− νA (A0c − Ac) , (B.2)

which is the model of plasticity described in Ch. 2.

If the force F is maintained over time, the system is plastically deformed.

B.0.2 Kelvin model

At the moment of applying the force F in the right end of the system in Fig. B.1-b), the
elastic spring and the viscous dashpot elongate the same. Calling x to the elongation, the
forces done by the spring and the dashpot during the elongation are given by F1 = −k(x− l0)
and F2 = −γẋ, respectively. Considering that the inertial effects are neglected, we obtain

0 =− γẋ− k(x− l0) + F,

ẋ =− k

γ
(x− l0) +

F

γ
. (B.3)

Performing the following changes x→ A0c, l0 → A00c, k/γ → νA, and F/γ → F̃ , we obtain

dA0c

dt
=− νA (A0c − A00c) + F̃ , (B.4)

which is the model of memory described in Ch. 2, with F̃ mimicking the effects of the temporal
activity function fAc(t) or the cellular fluctuations.

If we consider that while the system is elongated, F suddenly stops acting on the system,
which would be the case in a non-fluctuating system were the temporal activity functions
are already finished, then two forces act on the right end: F1 = −k(x − l0) and F2 = −γẋ.
Then, the temporal evolution of x is given by

ẋ =− k

γ
(x− l0),

x(t) =l0 + Ae−(k/γ)t, (B.5)

from where we see that if t→∞, then x(t)→ l0.
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Appendix C

Energy expressions for fluctuation tissues

For the analytic calculations, we consider a regular tissue composed of N identical regular
hexagonal cells of side a, for which the target cell area and perimeter for all cells are A0c =
3
√

3a2/2 and P0c = 6a, respectively.

C.1 Tissue under cell activity

Cell activity is included as homogeneous modifications of the equilibrium perimeters, P0c →
(1 + λP )P0c and equilibrium areas A0c → (1 + λA)A0c, with λP , λA > 0 for expansions and
λP , λA < 0 for contractions.

We define A(1)
c as the area of the cell c with fluctuations characterized by the matrix U ,

A(1)
c =

(
1 + εtr (U) + ε2det (U)

)
A0c. (C.1)

Then, when considering an activity modulated by λA, the term of the energy proportional
to KA is given by

EA =
∑

c

KA

2

[
A(1)
c − (1 + λA)A0c

]2
,

=
∑

c

KA

2
A2

0c

[
−λA + εtr (U) + ε2det (U)

]2
. (C.2)

Hence, the zeroth, first, and second order terms of EA are

E
(0)
A =

∑

c

KA

2
A2

0cλ
2
A, (C.3)

E
(1)
A = −

∑

c

KAA
2
0ctr (U)λA, (C.4)

E
(2)
A =

∑

c

KA

2
A2

0c

[
tr (U)2 − 2det (U)λA

]
. (C.5)
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We define P (1)
c as the perimeter of the cell c with fluctuations characterized by the matrix

U ,

P (1)
c =

[
1 +

1

2
εtr (U) +

1

8
ε2det (U) +

3

16
ε2tr

(
UTU

)
− 1

8
ε2tr (U)2

]
P0c. (C.6)

Then, when considering an activity modulated by λP , the term of the energy proportional
to KP is given by

EP =
∑

c

KP

2

[
P (1)
c − (1 + λP )P0c

]2
,

=
∑

c

KP

2
P 2

0c

[
−λP +

1

2
εtr (U) +

1

8
ε2det (U) +

3

16
ε2tr

(
UTU

)
− 1

8
ε2tr (U)2

]2

. (C.7)

The zeroth, first, and second order terms of EP are therefore given by

E
(0)
P =

∑

c

KP

2
P 2

0cλ
2
P , (C.8)

E
(1)
P = −

∑

c

KP

2
P 2

0ctr (U)λP , (C.9)

E
(2)
P =

∑

c

KP

8
P 2

0c

[
(1 + λP ) tr (U)2 − λPdet (U)− 3

2
λP tr

(
UTU

)]
. (C.10)

Finally, the adhesion contribution to the energy is

EJ =
∑

c

J

2
P (1)
c , (C.11)

where P (1)
c is given in Eq. (C.6). As a result, the zeroth, first, and second order terms of EJ

are given by

E
(0)
J =

∑

c

J

4
P0c, (C.12)

E
(1)
J =

∑

c

J

4
P0ctr (U) , (C.13)

E
(2)
J =

∑

c

J

16
P0c

[
det (U) +

3

2
tr
(
UTU

)
− tr (U)2

]
. (C.14)

Eqs. (C.1) and (C.6) can be obtained using Mathematica.

C.2 Tissue under stress
Now, we study the same energy contributions, but when the tissue is subject to a homoge-
neous strain, such that all the vertices change their position as r[0]

i → Λr
[0]
i , where Λ is a 2×2

matrix that gives account of the pre-deformation.
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In a similar way as in the previous section we can define A(1)
c and P (1)

c , representing the
area and perimeter of the cell c, that was initially a regular hexagon with area A0c and
perimeter P0c, which is now subject to a given strain characterized by the matrix Λ. Then,
we define A(2)

c and P (2)
c as the values when we allow fluctuations, modulated by the matrix

U , in the system.

A(1)
c =det (Λ)A0c, (C.15)

A(2)
c =

[
1 + εtr (U) + ε2det (U)

]
A(1)
c . (C.16)

The expressions for P (1)
c and P (2)

c are more complicated to write in terms of the matrices
Λ and U . In general terms, considering that the six vertices of the hexagon have positions
ri, we obtain:

P (1)
c =

6∑

i=1

P (1)
ci
, (C.17)

P (1)
ci

=
√
α2

i + β2
i , (C.18)

P (2)
c =P (1)

c + εM (1)
c + ε2M (2)

c , (C.19)

with

αi = λxxxi+1,i
(0) + λxyyi+1,i

(0), (C.20)

βi = λyxxi+1,i
(0) + λyyyi+1,i

(0), (C.21)

where we use ri+1,1 = ri+1− ri, assuming the vertices ordered clockwise. The terms M (1)
c and

M
(2)
c are given by

M (1)
c =

6∑

i=1

1

P
(1)
ci

[
α2

i uxx + β2
i uyy + αiβi (uxy + uyx)

]
, (C.22)

M (2)
c =

6∑

i=1

1

P
(1)
ci

[
u2
xx

(
α2

i

2
− α4

i

2P
(1)2
ci

)
+ u2

yy

(
β2

i

2
− β4

i

2P
(1)2
ci

)

+ u2
xy

(
β2

i

2
− α2

i β
2
i

2P
(1)2
ci

)
+ u2

yx

(
α2

i

2
− α2

i β
2
i

2P
(1)2
ci

)

+ uxxuxy

(
αiβi −

α3
i βi

P
(1)2
ci

)
+ uyyuyx

(
αiβi −

αiβ
3
i

P
(1)2
ci

)

+ uxxuyx

(
− α

3
i βi

P
(1)2
ci

)
+ uyyuxy

(
− α

3
i βi

P
(1)2
ci

)

+uxxuyy

(
−α

2
i β

2
i

P
(1)2
ci

)
+ uxyuyx

(
−α

2
i β

2
i

P
(1)2
ci

)]
. (C.23)

Now, following a similar procedure as in the previous section we can compute all the
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energy contributions. The contribution proportional to KA is

EA =
∑

c

KA

2

(
A(2)
c − A0c

)2
,

=
∑

c

KA

2
A2

0c

[(
1 + εtr (U) + ε2det (U)

)
det (Λ)− 1

]2
,

=
∑

c

KA

2
A2

0c

[
det (Λ)− 1 +

(
εtr (U) + ε2det (U)

)
det (Λ)

]2
, (C.24)

where we obtain that the zeroth, first, and second order terms of EA are given by

E
(0)
A =

∑

c

KA

2
A2

0c (det (Λ)− 1)2 , (C.25)

E
(1)
A =

∑

c

KAA
2
0cdet (Λ) [det (Λ)− 1] tr (U) , (C.26)

E
(2)
A =

∑

c

KA

2
A2

0c

[
det (Λ)2 tr (U)2 + 2det (Λ) (det (Λ)− 1) det (U)

]
. (C.27)

Similarly, for the term proportional to KP ,

EP =
∑

c

KP

2

(
P (2)
c − P0c

)2
,

=
∑

c

KP

2

(
P (1)
c − P0c + εM (1)

c + ε2M (2)
c

)2
, (C.28)

and the zeroth, first, and second order terms of EP are given by

E
(0)
P =

∑

c

KP

2

(
P (1)
c − P0c

)2
, (C.29)

E
(1)
P =

∑

c

KP

(
P (1)
c − P0c

)
M (1)

c , (C.30)

E
(2)
P =

∑

c

KP

2

[
2
(
P (1)
c − P0c

)
M (2)

c +M (1)
c

2
]
. (C.31)

Finally, the zeroth, first, and second order terms of EJ are

E
(0)
J =

∑

c

J

2
P (1)
c , E

(1)
J =

∑

c

J

2
M (1)

c , E
(2)
J =

∑

c

J

2
M (2)

c . (C.32)
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Appendix D

Vertex model: Isolated active hexagonal
cell

We consider a single regular hexagonal cells of side a, for which the preferred and initial cell
area and perimeter are Ai = A0 = 3

√
3a2/2 and Pi = P0 = 6a, respectively. Activity is

included as modifications of the target parameters, A0 → (1− λA)A0 and P0 → (1− λP )P0,
with λA, λP ∈ [0, 1]. By using the energy functional of the vertex model, Eq. (A.1), we get
an initial value of the energy

Ei =
1

2
KAλ

2
AA

2
0 +

1

2
KPλ

2
PP

2
0 +

1

2
JP0, (D.1)

where we have kept the adhesion term (half of it, inspired in Eq. (A.16)) even when we are
considering an isolated cell to allow the system to have equilibrium perimeter values different
from P0.

Later, we allow the cell to deform, such that new vertex positions are given by (I + U) r
[0]
i ,

where U is a general 2× 2 matrix of components uik, and r
[0]
i are the position of the vertices

of the regular hexagon. We can write U as a linear combination:

U =
4∑

i=1

viUi, (D.2)

where Ui correspond to one of the four deformation modes
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U1 =
1√
2



−1 0

0 1


 [deviatoric], U2 =

1√
2




0 1

1 0


 [pure shear], (D.3)

U3 =
1√
2




0 −1

1 0


 [rotation], U4 =

1√
2



−1 0

0 −1


 [contraction],

and vi are the amplitudes.

With these considerations, the new area and perimeter of the cell are given by

Af =
3
√

3a2

4

(
2− v2

1 − v2
2 + v2

3 − 2
√

2v4 + v2
4

)
, (D.4)

Pf =
a

2

(√(
2−
√

2 [v1 + v4]−
√

6 [v2 − v3]
)2

+
(

2
√

3−
√

2 [v2 + v3]−
√

6 [v4 − v1]
)2
)

+
a

2

(√(
2−
√

2 [v1 + v4]−
√

6 [v3 − v2]
)2

+
(

2
√

3 +
√

2 [v2 + v3]−
√

6 [v4 − v1]
)2
)

+
√

2a

√
2− 2

√
2 (v1 + v4) + (v1 + v4)2 + (v2 + v3)2. (D.5)

A final energy, considering the deformed cellular shape, can be computed as

Ef =
1

2
KA (Af − A0 [1− λA])2 +

1

2
KP (Pf − P0 [1− λP ])2 +

1

2
JPf

=
1

2
KA ([Af − A0] + A0λA)2 +

1

2
KP ([Pf − P0] + P0λP )2 +

1

2
JPf

=
1

2
KA (Af − A0)2 +KA (Af − A0)A0λA +

1

2
KP (Pf − P0)2 +KP (Pf − P0)P0λP

(D.6)

+ Ei +
1

2
J (Pf − P0) . (D.7)

The variation of the energy can be written as ∆E = Ef − Ei,

∆E =
1

2
KA (Af − A0)2 +

1

2
KP (Pf − P0)2 +

1

2
J (Pf − P0)

+KA (Af − A0)A0λA +KP (Pf − P0)P0λP . (D.8)

The right hand side of Eq. (D.8) is a function of the amplitudes vi, with i = {1, 2, 3, 4},
and then can be written as ∆E = Êe (v1, v2, v4, v3), with Ê = KAA

2
0/2, as shown in the

following
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∆E =
1

2
KAA

2
0

[(
Af
A0

− 1

)2

+
KPP

2
0

KAA2
0

(
Pf
P0

− 1

)2

+
JP0

KAA2
0

(
Pf
P0

− 1

)]

+
1

2
KAA

2
0

[
2

(
Af
A0

− 1

)
λA +

2KPP
2
0

KAA2
0

(
Pf
P0

− 1

)
λP

]
(D.9)

Using that A0 = 3
√

3a2/2 and P0 = 6a,

P0/A
2
0 =8/(9a3), (D.10)

P 2
0 /A

2
0 =16/(3a2), (D.11)

and the definition of the dimensionless parameters p = KP/(a
2KA) and j = J/(a3KA),

we have

∆E = Ê

[(
Af
A0

− 1

)2

+
16

3
p

(
Pf
P0

− 1

)2

+
8

9
j

(
Pf
P0

− 1

)]

+ Ê

[
2

(
Af
A0

− 1

)
λA +

32

3
p

(
Pf
P0

− 1

)
λP

]
. (D.12)

Finally, the function e that we minimize in the main text is given by

e =

(
Af
A0

− 1

)2

+
16

3
p

(
Pf
P0

− 1

)2

+
8

9
j

(
Pf
P0

− 1

)

+ 2

(
Af
A0

− 1

)
λA +

32

3
p

(
Pf
P0

− 1

)
λP , (D.13)

with Af and Pf given by Eqs. (D.4) and (D.5).

We can separate e as the sum of three terms,

eA =2λA

(
Af
A0

− 1

)
+

(
Af
A0

− 1

)2

, (D.14)

eP =
32

3
pλP

(
Pf
P0

− 1

)
+

16

3
p

(
Pf
P0

− 1

)2

, (D.15)

eJ =
8

9
j

(
Pf
P0

− 1

)
, (D.16)

where eA and eP have an active and a passive term. We can see that there will be a compe-
tition between medial, perimeter, and adhesion terms to reach the final cellular shape. The
three components act with similar order of energy when 1 ∼ j ∼ 10p (j ∼ 1 and p ∼ 0.1).
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We choose to use p ∈ [0.01, 1] and j ∈ [0.01, 1] (in logarithmic scales), such that the
effect of the adhesion is never dominant (to avoid instabilities of the energy functional). In
the region j ∈ [0.01, 0.1] the medial terms dominate and in j ∈ [0.1, 1] the perimeter terms
dominate.
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Appendix E

Vertex active model: Linear order
equations of motion

Considering a tissue that obeys periodic boundary conditions, formed by cells with preferred
areas and perimeters given by A0c and P0c, respectively, and with the position of the vertices
r

[0]
i initially in an equilibrium configuration (and A[0]

c and P [0]
c the initial area and perimeter,

respectively), we study the linear order equation of the vertices forming the system when
assuming that the equilibrium parameters changes as A0c → A0c+εA1c and P0c → P0c+εP1c,
and hence the positions get modified as r[0]

i + εui with ui characterizing the displacement of
the vertex i. We write the equation of motions derivated from the vertex model (Eqs. (A.13),
(A.14) and (A.15)) at O (ε). Since the initial configuration is an equilibrium one, the zeroth
order is cancelled automatically.

In the following calculations the ε will not be included, for simplicity.

Starting from the second line in Eq. (A.4), taking 1→ i, and considering ui = vix̂+wiŷ,we
write the area of the c cell up to first order in the displacements,

Ac =−
N−1∑

j=2

1

2
ẑ · [(rj − ri)× (rj+1 − ri)] ,

=−
N−1∑

j=2

1

2
ẑ ·
[(

r
[0]
j,i + uj,i

)
×
(
r

[0]
j+1,i + uj+1,i

)]

=A[0]
c −

N−1∑

j=2

1

2
ẑ ·
[
r

[0]
j,i × uj+1,i + uj,i × r

[0]
j+1,i

]

=A[0]
c −

N−1∑

j=2

1

2

[
x

[0]
j,iwj+1,i − y[0]

j,i vj+1,i + vj,iy
[0]
j+1,i − wj,ix[0]

j+1,i

]

=A[0]
c −

N−1∑

j=2

1

2

[
−viy

[0]
j+1,j + wix

[0]
j+1,j + vjy

[0]
j+1,i − vj+1y

[0]
j,i − wjx[0]

j+1,i + wj+1x
[0]
j,i

]
. (E.1)
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On the other hand, the Eq. (A.7) is now given

∇iAc =
1

2

[
r

[0]
i−1,i+1 + ui−1,i+1

]
× ẑ

=
1

2

[
y

[0]
i−1,i+1 + wi−1,i+1

]
x̂− 1

2

[
x

[0]
i−1,i+1 + vi−1,i+1

]
ŷ. (E.2)

Finally, the equation of motion proportional to KA at O (ε) is given by

dri

dt

(A)

=−
∑

c

KA (Ac − A0c − A1c)∇iAc,

=−
∑

c

KA (Ac − A0c)∇iAc +
∑

c

KAA1c∇iAc,

=−
∑

c

KA

2

(
A[0]
c − A0c

)
[(wi−1 − wi+1) x̂− (vi−1 − vi+1) ŷ]

−
∑

c

KA

4

N−1∑
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[
viy

[0]
j+1,j − wix

[0]
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[0]
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[0]
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[0]
j,i

]

[
y

[0]
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i−1,i+1ŷ
]

+
∑

c

KA

2
A1c

[
y

[0]
i−1,i+1x̂− x[0]

i−1,i+1ŷ
]
. (E.3)

Now, let’s see from Eq. (A.8) how the perimeter of the cell c changes,

Pc =
N∑

j=1

|rj+1,j| =
N∑

j=1

|r[0]
j+1,j + uj+1,j|,

=
N∑

j=1

√(
x

[0]
j+1,j + vj+1,j

)2

+
(
y

[0]
j+1,j + wj+1,j

)2

,

=
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j=1

√
r

[0]
j+1,j

2
+ 2x

[0]
j+1,jvj+1,j + 2y

[0]
j+1,jwj+1,j + vj+1,j

2 + wj+1,j
2,

=
N∑

j=1

r
[0]
j+1,j


1 +

x
[0]
j+1,jvj+1,j

r
[0]
j+1,j

2 +
y

[0]
j+1,jwj+1,j

r
[0]
j+1,j
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
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=P [0]
c +
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j+1,jvj+1,j
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[0]
j+1,j

+
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[0]
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=P [0]
c +
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−vj
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j+1,j

+
x

[0]
j−1,j

r
[0]
j−1,j

]
− wj

[
y

[0]
j+1,j

r
[0]
j+1,j

+
y

[0]
j−1,j

r
[0]
j−1,j

])
. (E.4)

126



The gradient of the perimeter, Eq. (A.9), is be given by

∇iPc =−
(
r

[0]
i+1,i

r
[0]
i+1,i
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r

[0]
i−1,i
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(E.5)

Hence, the equation of motion proportional to KP at O (ε) is given by

dri

dt

(P )

= −
∑
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KP (Pc − P0c − P1c)∇iPc,

= −
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. (E.6)

Similarly, the force proportional to J , in a system that obeys periodic boundary conditions
Eq. (A.16), at O (ε) is given by,

dri

dt

(J)

= −
∑

c

J

2
∇iPc,

=
∑

c

J

2
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−ui

[
1

r
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i+1,i
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i−1,i
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1
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. (E.7)
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