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RESUMEN

El ritmo alfa es un patrón de actividad eléctrica revelado por registros de elec-

troencefalografía (EEG), el cual fue primeramente descrito por el Dr. Berger en

individuos despiertos con los ojos cerrados, desapareciendo cuando los sujetos abren

los ojos. La caracterización habitual de este fenómeno muestra actividad específica

en el espacio y tiempo, distinguida como aumento de la potencia del espectro en

la banda alfa (8-13 Hz) de señales obtenidas desde la región occipital del cuero ca-

belludo. Sin embargo, esta caracterización no permite realizar afirmación ninguna

acerca de la dinámica de las poblaciones neuronales participantes. El análisis de la

envolvente ofrece una herramienta para evaluar dicho comportamiento a partir de

señales de EEG. En particular, este metodo se basa en el hecho de que el coeficiente

de variación de la envolvente (CVE) de un proceso Gaussiano es una constante de

la naturaleza igual a
√

(4− π)/π ≈ 0.523. Registros asincrónicos muestran un CVE

cercano a esta constante, mientras que procesos sincronicos son detectados como

desviaciones significatives de este valor de referencia. El análisis demostró que el

ritmo alfa se comporta como un proceso Gaussiano y sincrónico debido a variabil-

idad intra e intersujeto. En cambio, la observación inicial de Berger respecto del

cambio de energía entre condiciones experimentales se mantuvo independientemente

de los valores de CVE involucrados. En luz de estos resultados, las implicancias para

los campos del EEG y el análisis de señales son discutidas.
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ABSTRACT

The alpha rhythm is an electrical activity pattern revealed by electroencephalog-

raphy (EEG) recordings, which was first described by Dr. Berger in awake sub-

jects with their eyes closed, disappearing when subjects open their eyes. The usual

characterization of this phenomenon shows specific temporal and spatial activity,

distinguished as an increase of the spectral power in the alpha band (8-13[Hz]) in

signals obtained from the occipital region of the scalp. Nevertheless, this character-

ization allows making no assertion about the dynamics of the participating neural

populations. The envelope analysis offers a tool to evaluate such behavior from EEG

signals. In particular, this method is based on the fact that the coefficient of vari-

ation of the envelope (CVE) of a Gaussian process is a universal constant equal to√
(4− π)/π ≈ 0.523. Asynchronous recordings show a CVE close to this constant,

while synchronous processes are detected as significant deviations from this reference

value. The analysis demonstrated that the alpha rhythm behaves as a Gaussian and

a synchronous process due to intra- and inter-subject variability. On the other hand,

Berger’s initial observation regarding the energy change between experimental con-

ditions held regardless of the CVE values involved. In light of these results, the

implications for the EEG and signal analysis fields are discussed.
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INTRODUCTION

The human alpha rhythm was the first phenomenon to be described in the field

of electroencephalography (EEG) (Berger, 1929), and thus it resides at the very foun-

dation of the discipline. While the alpha rhythm is at the heart of basic and clinical

EEG research, its origin is still a matter of debate. Interestingly, in spite of massive

research efforts encompassing many decades, the temporal dynamics of the underly-

ing neural populations contributing to this rhythm, and to EEG in general, has not

been clearly identified and characterized (Cohen, 2017). Therefore, a better under-

standing of the temporal dynamics of the alpha rhythm generator is of significant

importance for the field of EEG research. Here, I will advance in this question by

expanding an intuition of Dı́az et al. (2007) that uses the coefficient of variation of

the envelope (CVE) to characterize amplitude modulation patterns, thus discriminat-

ing between Gaussian and synchronous dynamics. My contribution will be centered

on using the envelope analysis to test this viewpoint — an analysis that crucially

depends on the concept of a signal envelope (a concept not usually used in current

neuroscience).

1
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1.1 Electroencephalography

EEG is the study of the brain’s electrical fields by means of electrodes placed on

the scalp surface (Niedermeyer and Lopes da Silva, 2005). As a research tool, EEG

offers information about brain function at a macroscopic scale with high temporal

resolution (1 ms) and low cost implementation, characteristics that make it the pre-

ferred method in applications such as medical imaging, human-computer interaction,

seizure detection, among others (ibid.). Thus, even though the origin of the disci-

pline is traced back to the 1920s, EEG is today an active field of research in the

advancement of the understanding of both normal and abnormal brain dynamics

(Cohen, 2017).

1.1.1 Origin and Development of EEG

Human EEG has its origin in the works of Dr. Hans Berger (1873-1941), a German

psychiatrist working at University of Jena before and after World War I (Gloor,

1969). While the study of animal brain electrical activity had already been developed

— the first report was published by Lord Richard Caton (1842-1926) in 1875 (Caton,

1875) — Berger studied for the first time signals recorded from the scalp of human

subjects using a D’Arsonval galvanometer. In “Über das elektrenkephalogramm des

menschen” (About the human electroencephalogram) (Berger, 1929), he reported

two types of electrical activity, one of high amplitude and low frequency and other

of low amplitude and high frequency. The first signal was present when the subjects



3

kept their eyes closed and the second one when they had their eyes open. Dr.

Berger dubbed these two rhythms alpha and beta, respectively (Buzsáki, 2006).

Subsequently, he released many more reports based on data from patients under

different conditions, such as epilepsy, psychosis, and anesthesia (reviewed by Gloor,

1969).

Nevertheless, history tells us that Mr. Berger’s work was not deemed trustworthy

by some of his colleagues (Niedermeyer, 2005a). First of all, he trained as a clinician,

and physiologists looked down upon his capacity to conduct experiments properly

(Gloor, 1969). Additionally, his work was published in German, a trait that rendered

it difficult to access (ibid.). Perhaps more egregious was Berger’s metaphysics. His

real intention behind the study of brain electricity was to explore the mind-body

connection and to find what he called psychic energy; an enterprise preposterous for

many (Millett, 2001).

In this context, the work of Lord Edgar Douglas Adrian (1889-1977) was pivotal

for the acceptance of Berger’s results. Adrian, a quintessential Cambridge Don, was

one of the most eminent electrophysiologists of his time. In fact, he was awarded in

1932, together with Sir Charles Sherrington (1857-1952), the Nobel Prize in Physiol-

ogy or Medicine “for their discoveries regarding the functions of neurons”, specially

the famous all or none law regarding neuronal firing (Grant, 2006). Adrian repeated

Berger’s experiments making several important contributions to the field. First, he

confirmed that waves of around 10 [Hz] can be recorded from human subjects under

the conditions specified by Berger (Adrian and Matthews, 1934a). This replication
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brought about the acceptance of Berger’s claims by the scientific community (Lopes

da Silva, 1991). Second, while Berger considered the alpha rhythm to emerge from

the entire cortex, Adrian provided evidence to locate the origin at the occipital cortex

(Adrian and Matthews, 1934a) — a point confirmed by a subsequent report (Adrian

and Yamagiwa, 1935). Furthermore, Adrian interpreted that the emergence of the

human alpha rhythm is triggered by the synchronized activity of the underlying

neural population, and conversely that its disappearance happens when this popu-

lation enters into a desynchronized regime (Adrian and Matthews, 1934a; Hodgkin,

1979). More importantly, this claim became the fundamental interpretation for EEG

phenomena (Pfurtscheller and Lopes da Silva, 1999; Rao and Edwards, 2008).

In the following years, many European and American EEG groups quickly de-

veloped, and finally electroencephalography emerged as a well-defined field of study

(Niedermeyer, 2005a). In 1935 the first 3-channel EEG machine was built at Harvard

Medical School (Grass, 1984), and in 1938 the Fourier transform of EEG recordings

was obtained (Grass and Gibbs, 1938). Several applications for EEG also emerged,

while some researchers delineated the electrical activity during epileptic seizures

(Gibbs et al., 1935), others characterized the EEG during sleep (Loomis et al., 1935).

By the 50s, electroencephalography was already a widespread practice, both as basic

and clinical science (Niedermeyer, 2005a).
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1.1.2 The EEG Signal

The origin of the EEG signal resides in the postsynaptic currents of populations

of pyramidal neurons in the neocortex (Lopes da Silva and van Rotterdam, 2005).

Evidence for EEG cortical origin was provided early by Adrian. He recorded simul-

taneously from electrodes placed directly on the cortical surface and from subcortical

electrodes. He found that the EEG signal was present when recorded from the cor-

tical surface and was not measured in white matter (Adrian and Matthews, 1934b).

The postsynaptic and pyramidal origin is substantiated by pharmacological and elec-

trophysiological evidence (Avitan et al., 2009). For instance, Purpura and Grundfest

(1956) reported that the use of d-tubocurarine in cat abolishes evoked dendritic

activity in cortical cells, with the concomitant disappearance of cortical surface sig-

nals. In the same model, Jasper and Stefanis (1965) studied the pyramidal tract and

found that the cortical surface signals were not affected by individual pyramidal cell

discharges, but they were elicited by thalamic and antidromic stimulation and were

in phase with dendritic activity.

The postsynaptic activity of pyramidal cells produces a current dipole. When

an excitatory postsynaptic potential takes place, current enters into the cell at some

point in the somatodendritic compartment and, as a necessary consequence, current

must exit the cell at distant locations. The opposite occurs when an inhibitory

postsynaptic potential is elicited. The currents that are produced away from the

active postsynaptic sites are called return currents. The zone where current enters
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the cell is called a sink, and the zone where current exits the cell is called a source

(Buzsáki et al., 2012; Nunez and Srinivasan, 2006) (Figure 1.1). The current dipoles

generated by pyramidal cells have been dubbed open fields, following the description

of Lorente De Nó (1947), because it “permits the spread of the current in the volume

of the brain”. This dynamic of concurrent current source and sink constitutes a

current dipole. These current dipoles generate current waves that are conducted

through the brain, skull and scalp until they reach the electrodes, producing the

signals in the EEG recordings (Nunez and Srinivasan, 2006).

Figure 1.1: Cortical dipole generation. Cortical dipoles are generated by the con-
current activity of pyramidal cells. Sites where current enters into the cells are named
sinks (light blue background), and points where current exits the cells are named
sources (dark blue background). The activity of individual cells add up to generate
a macroscopic dipole, whose polarity is defined by the type of synapse involved.

On the contrary, subcortical sources are considered to contribute very little to the

EEG signal (Attal et al., 2012; Nunez and Srinivasan, 2006). This is substantiated by
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at least two different characteristics of subcortical sources. First, subcortical sources

are located relatively away from the scalp surface. Concurrent recordings using intra-

cortical and scalp electrodes have showed that intracortical currents are attenuated

in their way to the scalp (Cooper et al., 1965). Thus, subcortical structures pro-

duce much smaller EEG signals compared to neocortical sources. Additionally, some

subcortical sources have cytoarchitectures that make them produce closed fields, as

opposed to the open fields previously described. Theoretically, these closed fields

produce voltages V = 0 outside the structure (Klee and Rall, 1977). Closed fields

are formed when neurons are arranged radially. For instance, the superior olive pref-

erentially contain somata in the periphery of the nucleus and dendrites in the central

region. When superior olive neurons are active, most of the current arising from the

current dipoles stays inside the structure (Lorente De Nó, 1947). In recent years,

however, some researchers have presented evidence for the presence of subcortical

activity in EEG signals, relying on tools such as high density EEG (Seeber et al.,

2019) or newly developed algorithms (Krishnaswamy et al., 2017).

The electrical activity measured at the scalp results from the summed activity of

numerous neurons. This summation is brought about by both spatial and temporal

variables. When pyramidal cells in a gyrus are stimulated, the current dipoles they

generate add up together producing a radial dipole whose magnitude is sufficiently

large to be measured at the scalp. Similarly, neurons located in sulci and fissures form

tangential dipoles but their orientation and depth produce a lower signal compared

to radial dipoles (Nunez and Srinivasan, 2006). Cooper et al. (1965) suggested that
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at least a cortical area of 6 [cm2] is necessary to produce a measurable signal, but

later studies have reported estimations ≈ 4 [cm2] (as reviewed by Riera et al., 2012).

Additionally, current dipoles can be summed in time. While n synchronous neurons

generate a signal whose magnitude is proportional to n, a signal emerging from n

asynchronous neurons has a magnitude proportional to
√
n (Elul, 1972). Overall,

spatial and temporal summation generate voltage signals in the range of 10-100 [µV]

at the scalp surface of a normal individual (Niedermeyer, 2005b).

1.2 Temporal EEG dynamics

The temporal dynamics of the underlying neural populations that give birth to the

EEG signal has been a focus of research since Lord Adrian’s seminal work on the

human alpha rhythm. Adrian interpreted that the emergence of the alpha rhythm is

triggered by the synchronized activity of the underlying neural population (Adrian

and Matthews, 1934a; Hodgkin, 1979). This claim became the standard interpreta-

tion for EEG phenomena (Pfurtscheller and Lopes da Silva, 1999; Rao and Edwards,

2008), and thus the existence of EEG signals emerging from asynchronous popula-

tions has been constantly dismissed in the EEG field (see for instance Cohen, 2017).

Nonetheless, since the 1960s, researchers in the West began to think that the EEG

signal may be the random addition of elementary oscillators, a formulation that

requires the EEG signal have some properties of Gaussian noise. Additionally, ar-

rhythmic EEG activity, non-Gaussian signals that do not present periodicity, have
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only recently received attention and studied in the context of the greater framework

of scale-invariant (scale-free) phenomena (He, 2014).

1.2.1 Brain waves

Brain waves — also called brain oscillations or brain rhythms — are rhythmic, pe-

riodic EEG patterns that are considered to emerge from synchronous activity in

neocortex patches (Steriade et al., 1990). Being rhythmic, these signals present a

distinctive periodic, sinusoidal morphology and are thought to be exclusively asso-

ciated with peaks in the spectral profile (Buzsáki et al., 2013). The origin of brain

waves is attributed to both single neuron features and brain network dynamics. At

the cellular level, extensive in vitro and in vivo evidence shows that pyramidal and

thalamic cells oscillate at preferred frequencies due to the conductances present in

their somatodendritic and axonal compartments. These cells also present resonance:

they respond preferentially to presynaptic trains of specific frequencies (Hutcheon

and Yarom, 2000; Llinás, 1988). In addition, there are two main hypothesis that

explain the origin of EEG brain waves from networks of neuronal elements: thala-

mocortical and cortico-cortical networks. Some brain waves have been shown to be

produced by thalamocortical projections from pacemaker cells. The delta rhythm,

a 1-4 [Hz] pattern observed during NREM sleep, is produced in the neocortex by

influence of thalamic cells that intrinsically oscillate at frequencies in the same band

(Steriade et al., 1993a). Slow oscillations, a rhythmic signal of frequency <1[Hz],

appear concurrently with delta waves during NREM sleep. Nevertheless, this signal
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is immune to thalamic ablation, and thus it is believed to be originated by cortico-

cortical networks (Steriade et al., 1993b; Steriade et al., 1993c). As a first theoretical

approximation, brain waves have been proposed to emerge from the synchronous ac-

tivity of a population of coupled oscillators (Breakspear et al., 2010).

1.2.2 Gaussian EEG signals

Gaussian EEG signals correspond to signals whose amplitude values follow a Gaus-

sian distribution. Theoretically, Gaussian signals also display a broadband, flat

spectrum, and therefore have been named white Gaussian noise (WGN) (Schwartz

et al., 1995). This class of signals have only been sporadically reported in the EEG

literature. In a pioneer study, Elul (1969) studied 2[s] epochs recorded either in

an idle state or during a mental arithmetic task. He calculated the experimental

amplitude probability distribution of these epochs and compared it with the Gaus-

sian distribution using the chi-square goodness of fit test, finding a closer fit during

the idle state than during the mental task. Additional tools such as Kolmogorov-

Smirnov test or autoregressive models have been used with varying results (Gonen

and Tcheslavski, 2012; McEwen and Anderson, 1975). Nevertheless, as Gaussian

signals emerge from asynchronous populations (Elul, 1969), the existence of those

signals has been constantly disregarded under the assumption that the amplitude of

a signal emerging from such a population is either zero or, at best, too weak to be

measured at the scalp (Cohen, 2017; Elul, 1972; Lachaux et al., 1999; Singer, 1999).

On the contrary, formal analysis shows that the signals emerging from a population
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of asynchronous oscillators have an amplitude proportional to
√
n (Elul, 1972); a fact

that was pointed out early in the EEG literature by Dr. Koiti Motokawa (Motokawa

and Mita, 1942; Motokawa, 1943; Tasaki, 1971) but was ignored as Motokawa’s work

was published in German in a Japanese journal during World War II (Dı́az et al.,

2018; Rao and Edwards, 2008). Thus, EEG Gaussianity reports are interesting as

they call into question mistaken notions about signal generation and pave the way

to study the functions of asynchronous populations in brain dynamics.

1.2.3 Arrhythmic EEG

EEG signals display a spectrum that contains a well-known broadband 1/f compo-

nent described by a power-law function 1/fβ (linear after logarithmic transforma-

tion), where β is called the power-law exponent. As this function is characteristic

of scale-invariant (or scale-free) dynamics which have no distinctive temporal scale

(Khaluf et al., 2017), signals contributing to the 1/f spectral component have been

dubbed arrhythmic EEG signals (He, 2014). Signals with distinctive sharp-edged

waveform display a broadband 1/f spectral profile (Kramer et al., 2008). Unfortu-

nately, these signals were first recognized in the field of electronics as “flicker noise”

(Milotti, 2002), and thus scale-invariant brain signals have been historically disre-

garded as instrumental noise (He, 2014). Experimental evidence, however, shows

that the power-law exponent of EEG signals varies under different behavioral condi-

tions (Dehghani et al., 2010) and anesthetics (Colombo et al., 2019), suggesting that

arrhythmic EEG signals are not noise but reflect relevant underlying brain processes.
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Figure 1.2: Spectral profiles of temporal EEG dynamics. Temporal EEG dynamics
can be characterized in the frequency domain by their spectral profiles. Notice
that both axes are log-transformed. Brain waves are considered to be exclusively
connected to peaks in the spectrum (solid trace). Broadband Gaussian signals display
a flat spectrum (dotted trace), and arrhythmic or scale-invariant signals show a 1/f
profile that appears linear after logarithmic transformation (dashed trace).

1.3 Temporal EEG models: weakly coupled oscil-

lators systems

A system of weakly coupled oscillators (WCO) consists of a population of limit-

cycle oscillators that vibrate at their own natural frequencies and weakly interact

with each other (i.e. they are coupled) (Izhikevich and Kuramoto, 2006). WCO

models are particularly relevant to study EEG signal generation as they have been
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widely used to model cortical activity (Breakspear et al., 2010; Schultheiss et al.,

2012). Limit-cycle oscillators are self-sustained, dissipative entities that display a

distinctive period, amplitude and waveform (Winfree, 1967). In other words, their

trajectories form a closed loop in phase space (x, dx/dt) and return to it even after

an external perturbation. Since oscillators are weakly coupled, the system does not

significantly alter the limit-cycle of each oscillator. Nonetheless, as a whole the entire

system can display different dynamics depending on the coupling strength and the

distribution of the natural frequencies. These behaviors include synchrony, where

all oscillators reach the same frequency, as well as asynchrony, where all oscillators

vibrate independently (Strogatz, 2018). The famous cybernetician Norbert Wiener

was the first researcher to study mathematically the collective behavior of a popula-

tion of WCO, linking synchronization dynamics to the neural mechanism underlying

the human alpha rhythm (Strogatz, 1994; Wiener, 1948). Nonetheless, Dr. Arthur

Winfree was the first to propose a model of WCO to explain the rhythmic behavior

of biological phenomena such as heart pacemakers or fireflies’ synchronized flashing

(Winfree, 1967).

1.3.1 Kuramoto model

The Kuramodo model is a WCO model proposed by Dr. Yoshiki Kuramoto (Ku-

ramoto, 1975). Inspired by Dr. Winfree’s work (Kuramoto and Nishikawa, 1987),

Kuramoto proposed a model that consists of a system of limit-cycle phase oscilla-

tors, where each phase oscillator θ is represented by the following ordinary differential
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equation (Strogatz, 2000):

θ̇i = ωi +
K

N

N∑
j=1

sin(θj − θi) , i = 1, ..., N (1.1)

Where:

θ̇i = the first time derivative of the ith oscillator.

ωi = the natural frequency of the ith oscillator.

K = the coupling constant.

N = the total number of oscillators.

In this model, each oscillator vibrates with constant amplitude at its own natu-

ral frequency ωi, while the entire system follows a distribution of frequencies g(ω).

Additionally, each oscillator interacts with all others in an all-to-all coupling pro-

portional to the coupling constant K and to the sine of the phase difference between

oscillators by the term
∑N

j=1 sin(θj − θi). The collective behavior of the whole sys-

tem can be characterized by its centroid vector, also known in this context as the

order parameter (ibid.):

reiψ =
1

N

N∑
j=1

eiθj (1.2)

Where:

r = the amplitude envelope of the order parameter.

ψ = the phase of the order parameter.

N = the total number of oscillators.

Remarkably, each oscillator’s equation (Equation 1.1) can be re-written to re-
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place the all-to-all interaction term K
N

∑N
j=1 sin(θj − θi) using the order parameter

(Strogatz, 2000):

θ̇i = ωi +Kr ∗ sin(ψ − θi) , i = 1, ..., N (1.3)

In this expression, it can be seen that all oscillators are coupled with each other

implicitly and the order parameter pulls the phase of all oscillators towards its own

phase ψ (ibid.); a phenomenon known as the slaving principle (Haken, 1996).

The Kuramoto model exhibits three different population regimes: frequency lock-

ing, partial locking, and incoherence. These regimes arise depending on the natural

frequency distribution and the coupling constant of the population. For a given

frequency distribution g(ω), there is a critical coupling value Kc (Strogatz, 2000):

Kc =
2

πg(0)
(1.4)

Thus, for coupling constant values K < Kc, oscillators are uncoupled and os-

cillate at their own natural frequencies. Hence, the system follows the incoherence

regime. For K ≈ Kc the system enters into partial synchronization. Many oscillators

synchronize, while others oscillate independently. As K increases further, more and

more oscillators are recruited and the system becomes fully locked (Acebrón et al.,

2005). For this reason, the amplitude envelope of the order parameter r becomes

a measure of coherence in the system. When r → 1, oscillators tend to be totally
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in-phase and the entire system is fully synchronized. Conversely, when r revolves

around values closer to 0, oscillators tend to vibrate at their own natural frequencies

and the system behaves asynchronously (Strogatz, 2000). The Kuramoto model is

a key framework in the EEG field because of its potential to simulate cortical oscil-

lations, and thus has been extended to introduce more biologically-oriented features

(such as bi-dimensional arrangements) that make it a better model for brain dynam-

ics (Breakspear et al., 2010; Cumin and Unsworth, 2007). In fact, Dr. Kuramoto

himself highlighted that the order parameter during a synchronized regime displays

a spectrum similar to the human alpha rhythm’s (Kuramoto, 1975).

1.3.2 Matthews–Mirollo–Strogatz model

The Matthews–Mirollo–Strogatz model (MMS model) is a system of WCO where each

element is a limit-cycle oscillator of varying phase and amplitude. Each oscillator

z is described in the complex plane by the following ordinary differential equation

(Matthews et al., 1991; Matthews and Strogatz, 1990):

dzj
dt

= (1− |zj |2 + iωj)zj +
K

N

N∑
i=1

(zi − zj) (1.5)

Where:
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dzj/dt = the first time derivative of the jth oscillator.

ωj = the natural frequency of the jth oscillator.

K = the coupling constant.

N = the total number of oscillators.

Each oscillator z in this model varies in amplitude and phase in the complex

plane at its own natural frequency ω, while the frequencies of all oscillators follow a

distribution g(ω) with bandwidth ∆. Also, every oscillator is coupled with all others

by the term K
N

∑N
i=1(zi− zj). As in the Kuramoto model, the behavior of the entire

system can be described by the order parameter as (Matthews et al., 1991):

z = Reiϕ =
1

N

N∑
j=1

zj (1.6)

Where:

R = the amplitude envelope of the order parameter.

ϕ = the phase of the order parameter.

N = the total number of oscillators.

The equation for each oscillator (Equation 1.5) can be re-written using the order

parameter as (ibid.):

dzj
dt

= (1− |zj |2 + iωj)zj +K(z̄ − zj) (1.7)

Again, all oscillators are coupled with each other through the order parameter.
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The MMS model displays several distinctive regimes depending on both the coupling

constant K and the bandwidth ∆ of the frequency distribution g(ω). Stable states

(as time→ ∞) include, as in the Kuramoto model, frequency locking, partial locking

and incoherence. Also, a novel fourth stable state appears: amplitude death, where

oscillators are tightly coupled, the bandwidth of the system is relatively high, and

the order parameter ends up having an amplitude equal to 0. In addition, several

unsteady states exist for a subset of K and ∆ (Matthews et al., 1991). Thus, the

MMS model contains all behaviors present in the Kuramoto model. In fact, the

Kuramoto model happens to be a particular case of the MMS model (ibid.). The

MMS model has also been applied to the study of neural processes (Dı́az et al., 2007;

Rudrauf et al., 2006).

1.4 Human Alpha Rhythm

The human alpha rhythm is a EEG signal of variable frequency in the range 8-13

[Hz], which appears when individuals are wakeful and resting with the eyes closed

and disappears when the eyes are open or under attentional processes. Thus, the

alpha rhythm is considered to be a resting-state electroencephalography (rs-EEG)

phenomenon. This signal can be recorded in the occipital area of the scalp with a

magnitude usually under 50 [µV ] (Kane et al., 2017). The alpha rhythm was first

described by Dr. Berger himself (see Figure 1.3) (Berger, 1929) but his report failed

to produce widespread interest and acceptance (Gloor, 1969). Only after Adrian and
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Matthews (1934a) published a thorough examination of the phenomenon this signal

was accepted by the scientific community (see Figure 1.4). In fact, these authors’

report describes the most important features of the human alpha rhythm.

Figure 1.3: Dr. Hans Berger’s alpha rhythm recordings. Upper trace: Alpha
rhythm signal. Lower trace: base time 10 [Hz]. Extracted from Berger (1929) with
permission.

Figure 1.4: Lord Adrian’s alpha rhythm recordings. Extracted from Adrian and
Matthews (1934a) with permission.

1.4.1 Interindividual differences

Differences among individuals have been reported for some characteristics of the al-

pha rhythm. First of all, some individuals may simply not present alpha rhythm,

a feature reported early in Lord Adrian and Matthews’ work. While Adrian had

a normal alpha rhythm, this signal was seldom obtained if not at all in Matthews’
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recordings (Adrian and Matthews, 1934a). The magnitude of the rhythm is variable,

and values from 5 to 100 [µV] have been reported for different subjects (Niedermeyer

and Lopes da Silva, 2005, p. 169). Moreover, differences have been found in the am-

plitude modulation of the rhythm. Adrian and Matthews described that the alpha

rhythm follows a characteristic regime of temporal power fluctuation and named

this behavior “waxing and waning” or “pulsating” activity. Nonetheless, Davis and

Davis (1936) reported as many as four distinct amplitude modulation patterns dis-

tinguishable by time percentage of alpha power presence. Contrary to Adrian and

Matthews’ results, these authors report a modulation regime where little or no wan-

ing is present. This variety of amplitude modulation regimes has been described by

several researchers as well (Mimura, 1971; Niedermeyer and Lopes da Silva, 2005,

p. 171; Schroeder and Barr, 2000).

1.4.2 Neural Generator

The generator of the alpha rhythm is located in the occipital area of the cortex.

Adrian and Matthews offered evidence for the intracranial origin using several con-

trols. A possible origin from eyes movements was dismissed by recording from scalp

electrodes under different ocular tasks. In the same line, the activity from facial and

neck muscles was discarded due to the absence of the target signal under changes

of posture and muscular contraction (Adrian and Matthews, 1934a). In addition,

evidence in favor of the cortical origin was provided by spatial screening of the sig-

nal magnitude on both normal and trephined individuals. Also, electrodes placed
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on the occipital region of the scalp were found to provide the maximum magnitude

values (Adrian and Matthews, 1934a). Then, Adrian and Yamagiwa (1935) further

explored the signal topography by spatial screening along the sagital and transverse

planes. Using just 4 electrodes, they reported that in fact there are two alpha gen-

erators in the occipital area, one generator in each hemisphere. This result was

later supported by multichannel EEG data (Lehmann, 1971). Intracranial electroen-

cephalography (iEEG) studies in dogs have reported that the most uncontaminated

and strongest alpha rhythm signals can be recorded from the mesial surface of the

occipital lobe, over the calcarine cortex (Lopes da Silva et al., 1973), and that the

alpha rhythm generator corresponds to a dipole whose center is located near layer

V of the visual cortex (Lopes da Silva and Van Leeuwen, 1977).

1.4.3 Generator dynamics

The dynamics of the alpha rhythm generator has not been completely elucidated.

Adrian and Matthews described that the rhythm’s natural frequency can be mod-

ified by direct stimulation of the retina using a flickering light field of the desired

new frequency and reported successful induction to frequencies between 7-25[Hz],

a result that has been replicated by others as well (Gebber et al., 1999; Toman,

1941). These features, together with the high energy of the signal, led Adrian and

Matthews to propose that the alpha rhythm emerges from a group of neurons beat-

ing synchronously, while its fading when the eyes are opened reflects a change into

a asynchronous regime (Adrian and Matthews, 1934a). This synchrony/asynchrony
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interpretation has permeated the field ever since, and today it has been conceptu-

alized as event-related synchronization (ERS) and event-related desynchronization

(ERD) (Pfurtscheller and Lopes da Silva, 1999). In the same line, the famous cy-

bernetician Norbert Wiener suggested that the alpha rhythm generator behaves as

a synchronized population of nonlinear coupled oscillators (Strogatz, 1994; Wiener,

1948).

Nevertheless, some authors have found Gaussian characteristics in the alpha

rhythm signal. Saunders (1963) studied “well-developed” epochs of alpha rhythm

and compared the experimental distribution of the magnitude values to the Gaussian

distribution and found a close similitude. Similarly, Dick and Vaughn (1970) relied

on alpha rhythm epochs but examined the envelope of each segment, which was

estimated by the complex demodulation method (Ktonas and Papp, 1980). They

compared the distribution of the magnitude values of the envelope to the Rayleigh

distribution and found a close fit. The Rayleigh distribution describes the magnitude

of the envelope of a Gaussian signal (Schwartz et al., 1995). This type of evidence

led some researches to propose that the alpha rhythm generator may be regarded

as an alpha filter (Lopes da Silva et al., 1973). In other words, the alpha rhythm

generator would receive WGN input and would filter it in the alpha band. This

interpretation of the generator as a narrowband bandpass filter can be traced back

to Prast (1949).



23

1.5 Envelope Analysis

The envelope analysis of a signal s(t) relies on the study of its envelope function (also

known as amplitude envelope) and the coefficient of variation of the envelope (CVE)

to characterize the dynamics of the population of unitary elements that generates

it. The envelope function A(t) receives its name because it actually “envelops” the

signal s(t) (Figure 1.5), thus representing the instantaneous amplitude of s(t), and

is calculated using the Hilbert transform (HT) as (Cohen, 1995):

A(t) =
√
s2(t) +H[s(t)]2 (1.8)

Figure 1.5: Envelope function. The signal s(t) (grey trace) and its envelope A(t)
(black trace) are shown. The envelope function is the instantaneous amplitude of
s(t). Notice how A(t) follows the local maxima of s(t) over time enveloping s(t).
Notice also that s(t) is a zero-mean signal, and thus its coefficient of variation is
not defined. On the other hand, the envelope A(t) is always non-negative and its
coefficient of variation can be calculated.
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This method was developed by Dı́az et al. (2018) relying on rat EEG and capital-

izing on previous work done by Dı́az et al. (2007) in vertebrate olfactory epitelium.

Thus, the envelope analysis was introduced as EEG envelope analysis (EnvEEG),

which is the interpretation adopted in this work as well. Nevertheless, it is worth

noting that applications in other research fields are yet to be explored.

A signal generated by the sum of a large number of independent variables should

have the characteristics of WGN (Elul, 1972). This signal exhibits unique features.

In particular, the CVE of a continuous-time zero-mean WGN signal is equal to√
(4− π)/π (Schwartz et al., 1995). Therefore, this parameter can be used as a fin-

gerprint of Gaussianity to evaluate if a particular signal is produced by a population

of asynchronous oscillators. As previously mentioned in section 1.2, the possibility

of detecting Gaussianity is of great importance in EEG as asynchronous signals have

been repeatedly dismissed in the field. Nonetheless, the CVE for discrete-time zero-

mean WGN is not unique and its distribution must be calculated in silico. This

distribution allows making a 99% confidence interval to assess the null hypothesis of

Gaussianity as H0 : CV E = CV EGaussian. Thus, any deviation from Gaussian CVE

is connected with different non-Gaussian, and therefore synchronous dynamics. Ad-

ditionally, the mean of the envelope (ME) is also measured to estimate signal energy.

CVE and ME represent two fundamental signal parameters and can be combined to

produce a new phase-space: the envelope characterization space (EnvSpace). This

space unifies generator dynamics, energy and signal morphology in a single frame-

work for EEG signal classification (Dı́az et al., 2018).
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1.5.1 CVE for ideal signals

Gaussian signals

From a statistical point of view, a stationary signal s(t) produced by the sum of

a large number of independent variables follows a Gaussian distribution with mean

equal to zero and variance σ2 (Cramér, 1970). This signal is known as WGN and its

probability density function (PDF) is (Schwartz et al., 1995):

p(x) =
1√
2πσ2

e
−x2
2σ2 (1.9)

WGN displays a flat spectrum and its envelope exhibits a particular PDF, which

can be derived analytically (ibid.). To calculate the PDF for the envelope of a

Gaussian signal, first the HT of the signal must be calculated. Given that the HT is

a linear operator (King, 2009, p. 145), and that the result of a linear operation on

a Gaussian random variable is itself a Gaussian random variable, H[s(t)] follows a

Gaussian PDF with equal mean and variance. Additionally, the signal and its HT

are independent (Schwartz et al., 1995). Thus, following the definition of envelope in

Equation 1.8, it can be seen that the PDF for the envelope function is
√
x2 + y2 being

x and y two independent zero-mean Gaussian random variables. This distribution

corresponds to the Rayleigh distribution (Papoulis and Pillai, 2002):

p(x) =
x

σ2
e
−(x)2

2σ2 (1.10)
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The coefficient of variation for the entire family of Rayleigh distributions is√
(4− π)/π (Papoulis and Pillai, 2002, p. 162), and it corresponds to the CVE

of the envelope of a zero-mean WGN signal. This value holds for both white noise

and any of its filtered bands (Schwartz et al., 1995). This result, however, does not

hold for discrete WGN of arbitrary length. Therefore, the envelope analysis of dis-

crete signals (such as EEG) requires the in silico estimation of the CVE probability

density function for discrete WGN (Dı́az et al., 2018).

CVE for weakly coupled oscillators systems

In exploring the validity of CVE in the study of neural dynamics, Dı́az et al. (2007)

studied the CVE of signals generated from simulations of both the Kuramoto model

and the MMS model in order to evaluate the CVE as a signal descriptor. In the

process, they executed a screening of the MMS model phase space and reported that

the CVE characterized each type of behavior emerging from this model.

Asynchronous signals showed CVE values similar to WGN. The researchers sim-

ulated a Kuramoto system of 25 oscillators in a frequency band equal to 30±1.5[Hz].

Incoherence in the system was induced setting the coupling value K to zero, finding

that the CVE of the resultant signal varied closely around ≈ 0.523. For asynchronous

signals coming from the MMS model, they reported that the CVE stays close to 0.523

even though this model allows for variations in amplitude.

Deviations from Gaussianity were also characterized by CVE. Low-CVE signals

were found to emerge from phase-locking dynamics. In their Kuramoto model sim-
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ulation, the researchers set the coupling constant K to increasing values, which

consistently produced lower CVE values as the coupling constant K increased. The

MMS model screening linked low-CVE values to phase-locking as well. High-CVE

values were found during simulations of the MMS model only and were linked to

unsteady behaviors that emerge from combinations of medium coupling constant

K and bandwidth ∆. These high-CVE signals were characterized by pulsating or

phasic morphologies.

1.5.2 Implementation

The envelope function is obtained from the calculation of the analytic representa-

tion of the signal. The analytic signal of s(t), denoted here as z(t), is a complex

representation of a real-valued signal and was introduced by Gabor (1946). In this

representation, the real part is the signal s(t) itself, while the imaginary part is the

HT of the signal:

z(t) =s(t) + jH[s(t)] (1.11a)

=zReal(t) + jzImag(t) (1.11b)

Where the second term H[s(t)], the Hilbert transform, applies a shift of π
2 to

every negative frequency component and a shift of −π
2 to every positive frequency

component, and it is calculated as a Cauchy principal value (King, 2009):
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H[s(t)] =
1

π
P

∫ ∞

−∞

s(y)

t− y
dy (1.12)

Alternatively, the analytic signal can be expressed in the frequency domain as a

piecewise function based on the Fourier transform (FT) of s(t), denoted as ŝ. ẑ(ω)

is defined as follows (Marple, 1999):

ẑ(ω) =



2ŝ(ω) for f > 0

ŝ(ω) for f = 0

0 for f < 0

(1.13)

As the analytic signal is a complex signal, it can be expressed using polar coor-

dinates and the Euler’s formula as:

z(t) = A(t)ejϕ(t) (1.14)

Where A(t) is the envelope (or amplitude envelope) function and ϕ(t) is the phase

function and are calculated as (Cohen, 1995, p. 27):

A(t) =
√
s(t)2 +H[s(t)]2 =

√
zReal(t)2 + zImag(t)2 (1.15a)

ϕ(t) = arctan

(
H[s(t)]

s(t)

)
= arctan

(
zImag(t)

zReal(t)

)
(1.15b)
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Then, the coefficient of variation of the envelope is calculated as the standard

deviation divided by the mean:

CV E =
σA(t)

µA(t)
(1.16)

As EEG signals are analyzed as discrete representations of continuous physiolog-

ical signals, EnvEEG requires discrete implementations of the previously described

operations. A continuous signal s(t) sampled with frequency f results in a discrete

signal s[n] = s(nT ), where T = 1
f . The discrete analytic representation is here

denoted as z[n]. To obtain this new signal, one could be tempted to calculate the

discrete Hilbert transform of s[n], which is defined as (King, 2009, p. 660):

HD[s[n]] =
1

π

∞∑
m=−∞

s[m]

n−m
,m ̸= n (1.17)

Nevertheless, the calculation of z[n] is usually implemented in the frequency do-

main using the discrete Fourier transform (DFT), due to computational efficiency.

This procedure uses the Fast Fourier Transform, an algorithm for fast DFT compu-

tation, and follows the definition of the analytic signal expressed in Equation 1.13.

Essentially, the procedure calculates the DFT of the discrete signal s[n], “sets to

zero” the values for the negative frequencies of ŝ[n], and doubles the values for the

positive frequencies. Afterwards, it computes the inverse discrete Fourier transform

(IDFT) of the “modified” ŝ[n], obtaining the discrete analytic representation z[n]

(Marple, 1999).
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With z[n] at hand, the discrete envelope(or amplitude envelope) function of s[n]

is defined as:

A[n] =
√
zReal[n]2 + zImag[n]2 (1.18)

It must be stated, however, that the use of DFT-IDFT computation includes

intrinsic errors in the estimation of z[n]. As a consequence, this procedure introduces

spurious effects at both ends of the envelope function (Luo et al., 2009). Then, as in

Equation 1.16, the coefficient of variation of the discrete envelope is calculated as:

CV E =
σA[n]

µA[n]
(1.19)

Additionally, to apply the envelope analysis to EEG signals, some extra proce-

dures must be included before the envelope calculation. EEG signals are tradition-

ally classified into different frequency sub-bands, and many phenomena can only

be properly characterized once they are isolated in the frequency domain. Thus,

the signal must be filtered in accordance with the actual phenomenon under study

(Niedermeyer, 2005b). To account for EEG nonstationarity, an approximation of

stationarity is also implemented by epoching the signal into segments of arbitrary

length (Barlow, 1985); a widely applied strategy in EEG signal processing (Mitra and

Pesaran, 1999). Then, the subsequent envelope analysis is applied to each segment,

which produces a bivariate time series of CVE and ME values. This time series en-

ables the monitoring of the time-variant dynamics of the envelope parameters and are

used to create the envelope characterization space. The basic pipeline for EnvEEG
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implementation is shown in Figure 1.6. Finally, since the value
√

(4− π)/π only

holds for continuous WGN, the CVE distribution of filtered and discrete zero-mean

WGN must be calculated to assess Gaussianity. This surrogate data is obtained by

numerical simulations and depends on three parameters: epoch length, bandwidth,

and sampling frequency. These parameters must be set equal to the empirical pa-

rameters values during the simulation, which involves the following steps:

1. Take epoch length ∗ sampling rate samples from N (0, σ2) to obtain a simu-

lated discrete WGN epoch.

2. Filter the WGN epoch in the desired bandwidth using the same filter applied

to the experimental data.

3. Calculate the envelope of the filtered WGN epoch.

4. Remove both tails of the envelope (to control for spurious effects) and calculate

the CVE.

5. Repeat steps 1, 2, 3, and 4 a million times to approximate the PDF for the

CVE of discrete zero-mean WGN.

Note that Dı́az et al. (2018) also used Fourier transform phase randomization

(Theiler et al., 1992) to simulate the CVE distribution, but they obtained simi-

lar results and opted for the procedure just delineated. From this distribution, a

1 − α% confidence interval for a given significance value α is created to assess the

null hypothesis H0 : CV Eepoch = CV EGaussian, and three different CVE classes
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are established: low-CVE (CV E < α/2), mid-CVE (α/2 ≤ CV E ≤ α/2), and

high-CVE (α/2 < CV E). Additionally, these three CVE classes feature distinctive

morphologies: rhythmic (low-CVE), Gaussian (mid-CVE), and phasic (high-CVE)

(see Figure 1.7).

Figure 1.6: EEG envelope analysis basic pipeline. After the signal is digitized and
filtered as needed, the data follow two parallel paths. (I) The envelope is calculated
for the whole signal and both are displayed to visualize amplitude, amplitude mod-
ulation and signal morphology. (II) The data is divided in epochs and the envelope
is calculated for each epoch. Then, the coefficient of variation of the envelope (CVE)
and the mean of the envelope (ME) are calculated. The ME is log-transformed and
normalized. Finally, the (CVE,log(ME)[z−score]) points are plotted in the envelope
characterization space. Note that the whole pipeline can be used for all traditional
EEG sub-bands independently.
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Figure 1.7: Gaussian CVE distribution, CVE classes, and their distinctive mor-
phologies. The CVE distribution for discrete white Gaussian noise is obtained in
silico. The Gaussian CVE distribution allows making a 1-α% confidence interval to
assess the null hypothesis of Gaussianity (α is the significance level). Dashed lines
mark the lower and upper limits of the Gaussianity confidence interval, and the dot-
ted line shows the mean of the surrogate distribution (approximately

√
(4− π)/π).

Thus, three CVE classes are established: low-CVE (purple), mid-CVE (salmon), and
high-CVE (gold). CVE classes are characterized by distinctive signal morphologies.
Low-CVE signals (upper trace) are synchronous, wave-like signals, while mid-CVE
signals (middle trace) display a Gaussian noise profile. High-CVE signals (lower
trace) are synchronous, non-sinusoidal but phasic and resemble pulsating ripples.

1.5.3 Envelope characterization space

The envelope characterization space is a 2D phase space composed of the coeffi-

cient of variation of the envelope and the mean of the envelope, which represent

two fundamental aspects of the signal: morphology (CVE) and energy (ME). Since

the CVE is a dimensionless parameter, it is relevant to explore how CVE and ME

correlate. Ideally, the values of ME must be log-transformed and normalized to ac-

count for setup diversity. The CVE is also linked to different generator dynamics.
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Low-CVE values have been shown to emerge from frequency-locking dynamics in

weakly coupled oscillators models, while mid-CVE values represent white Gaussian

noise. High-CVE values have been shown to emerge from unsteady states in weakly

coupled oscillator systems. Thus, the EnvSpace condenses generator dynamics, en-

ergy, and signal morphology in a single framework. The 1− α% confidence interval

of Gaussianity is also included. An schematic of the envelope characterization space

is shown in Figure 1.8.

Figure 1.8: Envelope characterization space. The coefficient of variation of the
envelope (CVE) and the mean of the envelope (ME) are combined in a novel 2D phase
space for EEG signal classification. CVE and ME are fundamental signal parameters
representing morphology and energy, respectively. ME values are log-transformed
and normalized ([z-score]) to account for setup differences. The central dotted line
represents the mean of the surrogate Gaussian CVE distribution, while the Gaussian
CVE confidence interval (both dashed lines) defines the mid-CVE region (salmon).
Consequently, the low-CVE region (purple) and the high-CVE region (gold) are also
established.
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1.6 Hypothesis

• The envelope analysis characterizes the human alpha rhythm as a Gaussian

process, thus reflecting its absence and presence in resting-state electroen-

cephalography recordings.

1.7 Objectives

1.7.1 General objective

• Characterize the absence and presence of the human alpha rhythm by envelope

analysis.

1.7.2 Specific objectives

• Obtain resting-state human EEG recordings under eyes-open and eyes-closed

conditions from open access massive databases.

• Develop source code to apply the envelope analysis to the resting-state EEG

recordings.

• Apply the envelope analysis to the resting-state EEG recordings.



MATERIALS AND METHODS

2.1 Data

2.1.1 EEG data

The rs-EEG recordings from the Leipzig study for mind-body-emotion interactions

(LEMON) dataset (Babayan et al., 2019) were used to study the human alpha

rhythm signal at the scalp level. This is a cross-sectional, multi-measure dataset col-

lected in the Max Planck Institute ecosystem and published in Scientific data(https:

//www.nature.com/sdata/), an open-access, peer-reviewed journal published by the

Nature Publishing Group. The study protocol was in accordance with the decla-

ration of Helsinki(Association et al., 2001). All subjects provided written consent

prior to assessments and were screened and excluded for drug use, cardiovascular,

neurological and psychiatric conditions.

rs-EEG recordings from 216 subjects were obtained in an electrically shielded

and sound-attenuated room using 62 active electrodes: 1 electrooculography channel

and 61 EEG channels following the 10-10 system (Oostenveld and Praamstra, 2001).

The FCz electrode was established as the reference channel and the ground was

36
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attached to the sternum. The amplitude resolution was set to 0.1 [µV ] and electrode

impedance was kept under 5 [kΩ]. The signals were recorded using an antialiasing

bandpass filter between 0.015[Hz] and 1[kHz] and digitized at 2500 samples per

second. Each subject’s continuous recording included 16 60[s] blocks, 8 EO blocks

and 8 EC blocks. These 16 blocks were interleaved and recordings started with the

EC condition. The subjects were seated in front of a computer screen to receive

directions for opening and closing their eyes.

Data from 13 participants was excluded due to low data quality and defective

metadata. Recordings from the remaining 203 subjects was preprocessed as follows.

The data was decimated from 2500[Hz] to 250[Hz] and bandpass filtered between 1-

45[Hz] with a 8th order Butterworth filter. The recordings were split into EO and EC

conditions for further processing. Outlier channels were rejected and time intervals

with extreme deflection or frequency bursts were removed by visual inspection.

From the preprocessed data, the recordings from two individuals were discarded

as spurious interval removal resulted in highly discontinuous time series. The sex

and age information of the remaining 201 subjects is shown in Table 2.1. Only

the channels O1, Oz and O2 from each subject were used for further manipulation.

Figure 2.1 shows the channel length distribution after preprocessing. Channel length

was 474.825±9.296[s] for the EC condition (blue) and 469.441±13.202[s] for the EO

condition (orange).
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Sex

♂ ♀
145 81

Age

20-25 25-30 30-35 35-40 55-60 60-65 65-70 70-75 75-80

79 61 13 1 4 18 25 21 4

Table 2.1: Demographic information of the 201 subjects included in the analysis.

Figure 2.1: Recording length after spurious interval removal. Channel length was
474.825±9.296[s] for the EC condition (blue) and 469.441±13.202[s] for the EO con-
dition (orange).
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2.1.2 Synthetic EEG data from a population of weakly cou-

pled oscillators

As Dı́az et al. (2007) reported that the CVE characterized every behavior in the

MMS model, three synthetic EEG signals were created based on signals emerging

from this model. An instance of the model was simulated following Matthews et

al. (1991, Section 3, Numerical results). Simulations were implemented using the

DifferentialEquations.jl package (Rackauckas and Nie, 2017). A system of 800 oscil-

lators was simulated, where natural frequencies followed a uniform distribution with

bandwidth ∆ = 0.8. These frequencies were calculated as stated in (Matthews et al.,

1991, Table 1). A 72 [s] solution was obtained numerically by a fourth-order Runge-

Kutta method (Butcher, 1996) with a timestep of 1/250 for three different coupling

constant K values: 1.1 (phase-locking), 0.1 (incoherence), and 0.90(chaos/unsteady

state). A single 24[s] epoch for each case was selected, and to these epochs white

Gaussian noise and 1/f noise(pink noise) was added to artificially introduce the clas-

sic EEG spectrum background. 6000 values were sampled from N (0, 0.05) to create

zero mean WGN epochs with the same epoch length and sampling frequency as the

experimental data. A WGN epoch was added to each simulated epoch to add a

flat spectral component to the synthetic data. Similarly, pink noise was obtained

filtering a WGN epoch using the filter design reported by (Corsini and Saletti, 1988),

effectively introducing a 1/f spectral component in the frequency band of interest.
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2.1.3 iEEG data

Besides the EEG data, an iEEG dataset was also analyzed to further study the

human alpha rhythm generator dynamics. The atlas of the normal intracranial

electroencephalogram (AN-iEEG) dataset (Frauscher et al., 2018) is a massive resting-

state intracranial electroencephalography (rs-iEEG) dataset collected from subjects

who underwent evaluation for epilepsy surgery at three different locations: Montreal

Neurological Institute and Hospital, Centre Hospitalier de l’Université de Montréal,

and Grenoble-Alpes University Hospital. The AN-iEEG dataset was published in

Brain: A Journal of Neurology (https://academic.oup.com/brain), a peer-reviewed

journal published by Oxford University Press.

iEEG signals were recorded while subjects remained awake and resting with their

eyes closed. As the data comes from epileptic patients, iEEG channels were selected

under several inclusion criteria to exclude epileptic activity. Stereotactic EEG and

subdural strips and grids were used to acquire the recordings at the different loca-

tions. MRI was used to reference all electrodes locations to the ICBM152 model;

a unified framework for brain mapping (Fonov et al., 2011; Mazziotta et al., 2001).

60[s] sections were visually selected from each subject individual recordings. The sig-

nals were filtered at 0.5-80[Hz] using a finite impulse response (FIR) filter and were

downsampled to 200[Hz](unless that was the original sampling frequency). Power-

line noise was reduced using an adaptive filter. From this dataset, only signals tagged

as coming from occipital regions were used in the analysis. The following tags were
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included: superior and middle occipital gyri; inferior occipital gyrus and occipital

pole; cuneus; calcarine cortex; lingual gyrus and occipital fusiform gyrus.

2.2 EEG envelope analysis

The pipeline reported by Dı́az et al. (2018) was applied to the rs-EEG data. All

procedures were implemented using the Julia programming language (Bezanson et

al., 2017) (https://julialang.org). The pipeline is shown in Figure 2.1.

Filtering and epoching

The data was filtered in the alpha band using a zero phase infinite impulse response

(IIR) filter, in particular a 2nd order bidirectional Butterworth filter. This type of

filter introduces zero delay in the time domain to each frequency component, and

thus contributes to conserve the signal waveform. It is implemented by two successive

applications of filtering and reversion of the original signal (Kormylo and Jain, 1974).

The filter’s impulse response and step response are shown in Figure 2.3. Similarly,

a Bode plot is presented in Figure 2.4 to visualize its frequency response. Given

that the phase response is constant and zero, only the magnitude response is shown.

Each channel was divided into 24[s] epochs (6000 points per epoch) with an overlap

of 50%. This amounts to 22893 epochs for the EC condition and 22634 for the EO

condition.
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Figure 2.2: Pipeline applied to LEMON dataset EEG recordings. (1) Raw sig-
nal. 16 blocks of 60 seconds, 8 eyes-closed blocks and 8 eyes-open blocks, were
recorded at 2500 [Hz]. The blocks were interleaved and the recording started with
eyes closed. (2) Concatenation of eyes-closed and eyes-open blocks. The resul-
tant signals were downsampled to 250[Hz] and bandpass-filtered between 1-45[Hz]
with a 8th order Butterworth filter.(3) Spurious time intervals were removed by
visual inspection. PCA and ICA was applied for further artifact removal.(4) Only
O1, Oz, and O2 channels were using for further manipulation. The alpha band (8-
13[Hz]) was isolated by bidirectional filtering using a 2nd order Butterworth filter.
The data was divided in 24[s] epochs with an overlap of 12[s]. (5) The envelope
(env =

√
s2 +H[s]2) was calculated from these 24[s] epochs. 2[s] segments were

excised from both tails, resulting in 20[s] envelopes. (6) The coefficient of variation
of the envelope (CVE) and the mean of the envelope (ME) were estimated. (7) The
envelope characterization space (EnvSpace) was constructed using (CVE,ME) values
from all subjects. The logarithm of the ME values were calculated and normalized
with reference to each subject, each channel mean and standard deviation. (8) The
centroid of the (CVE,log(ME)[z−score]) cloud was estimated for each subject, each
channel data for both conditions. A single vector was traced from the eyes-open cen-
troid to the eyes-closed centroid as a measure of overall change between conditions
in the EnvSpace.
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Figure 2.3: Filter time response. The impulse response (black solid trace) and the
step response (gray dashed trace) of the bidirectional 2nd order Butterworth filter.
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Figure 2.4: Filter frequency response. The magnitude response shows that the
-3dB cutoff frequencies are 7.5 and 13.1. The phase response is constant and zero,
and thus is not shown.

Envelope parameters estimation

The analytic signal was computed for each epoch as in Equation 1.13 and its envelope

was obtained using Equation 1.18. 2[s] segments were excised from each tail of the

estimated envelope to correct for spurious effects due to both filtering and analytic

signal computation. From these 20[s] envelopes, the coefficient of variation of the

envelope was calculated as in Equation 1.19, as well as the mean of the envelope.
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Gaussian CVE probabilistic model, CVE classes, and experimental CVE

distributions

To obtain the PDF for the CVE of discrete WGN. 106 instances of a 6000 points

epoch were simulated, with each point sampled from a normal standard distribution

N (0, 1). The number of points was set to match the experimental data epoch length

and sampling frequency. These in silico generated epochs were processed as described

for the experimental data. The same filter was applied to filter the WGN epochs

in the alpha band. The envelope was calculated, 2[s] segments were cut from both

ends, and the CVE and ME values were computed. Then, the PDF for the CVE

values of these alpha-filtered zero mean WGN epochs was calculated. The 0.005

and 0.995 quantiles were estimated to obtain the lower and upper limits of a 99%

confidence interval to assess the null hypothesis H0 : CV Eepoch = CV EGaussian.

Thus, the three CVE classes were established as: CV E < 0.5%(low CVE), 0.5% ≤

CV E ≤ 99.5%(mid CVE), and 99.5% < CV E(high CVE). For clarity, these CVE

classes were color-coded following the buda color scheme (Crameri, 2018) as purple

(low-CVE), salmon (mid-CVE), and gold (high-CVE). The CVE distribution and the

percentage of values lying in each CVE class were calculated for both experimental

conditions. The experimental conditions were also color-coded as blue for EC data

and orange for EO data.
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Envelope characterization space: scatterplots, density maps, and vector

fields

To construct the EnvSpace, the ME values for each subject, each channel data were

log-transformed and normalized (represented as [z − score]) using each channel’s

mean and standard deviation. The resultant bivariate (CV E, log(ME)[z − score])

time series for both experimental conditions were plotted in the envelope character-

ization space as scatterplots. The alpha channel was set to 50% to highlight cluster

density. Additionally, 2D histograms were constructed using a 500x500 matrix. The

rows and columns of these 2 matrices were filtered using a 51-coefficient binomial ker-

nel. The resultant matrices were visualized using an alternating color-white palette

to obtain a contour-like plot of the 2D histograms. Also, the overall change between

conditions was examined computing the EC centroid and the EO centroid for each

subject, each channel data. A single vector was traced from the EO centroid to

the EC centroid, and these were depicted as a white dot and as the arrow head,

respectively. Vectors were classified depending on the value of the EC centroid CVE

coordinate and were color-coded following the CVE class color code (alpha channel

was set to 50%), creating a vector field inside the EnvSpace where channels were

classified depending on their overall CVE behavior.
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Experimental condition, spectrogram and CVEgram.

Time-frequency analysis was applied to a 960[s] channel (no interval removal) to

compare the time-varying spectral profile of the human alpha rhythm with its CVE

fluctuations. The EO and EC data was first reconcatenated to recover the original

interleaved protocol. Then, the data was segmented in 20[s] epochs with 50% of

overlap and processed according to Prerau et al. (2017) to produce a multitaper

spectrogram. The time-bandwidth value was set to 10[s] and 20 tapers were used,

defining a frequency resolution of 0.5[Hz]. Only frequencies in the interval [1,20]

were kept and spectral power was log-transformed and color-coded (dark blue <

cyan < yellow < dark red). The multitaper spectrogram was set into a common

temporal reference together with the temporal CVE fluctuations and the changes in

experimental condition to visualize the correlation between these three variables.

Fourier analysis/EEG envelope analysis comparison

One raw representative epoch from each CVE class during the EC condition was

selected for re-analysis using both Fourier analysis and EEG envelope analysis. Be-

fore filtering, the spectral profile of each epoch was computed. After filtering, the

envelope, CVE and ME were calculated for these three alpha-filtered experimental

epochs. ME values were log-transformed and normalized to re-obtain the EnvSpace.

The resultant spectral profiles and (CVE,log(ME)[z-score]) points were color-coded

based on CVE class and visualized along with the alpha-filtered epochs (and their re-
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spective envelopes) for comparison. The same procedure was applied to the synthetic

EEG signals coming from a population of weakly coupled nonlinear oscillators.

2.3 iEEG envelope analysis

To implement the iEEG envelope analysis (EnviEEG), rs-iEEG data was treated

identically to the rs-EEG, with some exceptions. The Gaussian CVE probabilistic

model was recalculated using a sampling frequency equal to 200[Hz] to match the

AN-iEEG sampling frequency. Filtering, epoching, and envelope parameters esti-

mation remained untouched. Overall, 416 rs-iEEG epochs were analyzed. While

constructing the EnvSpace, ME values were log-transformed but not normalized as

AN-iEEG contains EC data only. To compare Fourier analysis with iEEG envelope

analysis, three representative epochs recorded from the calcarine cortex were selected

and re-analyzed using both methods.



RESULTS

3.1 EEG envelope analysis

3.1.1 Surrogate and experimental CVE distributions

The experimental CVE distributions for both conditions are shown in Figure 3.1

(black traces), along with the surrogate Gaussian CVE distribution (gray traces,

both panels). The 99% confidence interval for Gaussianity is [0.460,0.586], meaning

that any epoch whose CVE lies inside this interval is considered to be indistinguish-

able from white Gaussian noise. Most epochs in the eyes-closed CVE distribution

display either a mid-CVE or a high-CVE profile (44.33% and 46.1%, respectively),

showing that Gaussian and phasic epochs predominate in the alpha-filtered occipital

recordings of the LEMON dataset subjects when they rest with their eyes closed.

There is also a substantial contribution of low-CVE, rhythmic signals (9.56%). On

the contrary, the low-CVE contribution to the eyes-open CVE distribution is negli-

gible (0.56%, as expected from pure noise), while most epochs lie in the mid-CVE

(55.59%) and high-CVE (43.85%) regions.

49
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Figure 3.1: CVE distributions for surrogate and experimental EEG data. The sur-
rogate Gaussian CVE distribution (gray traces, both panels) is bell-like and narrow
around its mean value 0.520(dotted line); as expected close to

√
(4− π)/π. The

lower and upper limit of the 99% confidence interval for Gaussianity (dashed lines)
are 0.460 and 0.586, respectively. For EC epochs (blue), 44.33% are in the Gaussian
class, while 9.57% and 46.1% present low and high CVE values, respectively. For
EO epochs(orange), 55.59% are Gaussian, 43.85% show high CVE values, and only
0.56% present low CVE values.

3.1.2 Envelope characterization space: scatterplots, density

maps, and vector fields

The scatterplot between the CVE and the ME values of alpha-filtered epochs in

both experimental conditions is shown in Figure 3.2. The eyes-closed data(blue)

presents low energy epochs that are mostly associated with Gaussian CVE values

and show energy values similar to the eyes-open data (orange). On the other hand,

high energy epochs are found in all three CVE classes. Low-CVE epochs cluster

around 1 standard deviation above the mean, while high-CVE epochs show a broader

distribution in the high energy region. Similarly, Gaussian CVE epochs lie across

the high energy region, and they reach the highest energy profile in the EC data. On
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the contrary, mid-CVE epochs in the EO data are mostly found in the lower energy

zone, together with high-CVE epochs as well. Low-CVE epochs are almost absent

during the EO condition.

Figure 3.2: EEG envelope characterization space scatterplots. CVE values and ME
values (log-transformed and normalized) for eyes-closed(blue) and eyes-open (orange)
data are visualized in the envelope characterization space. Low energy EC data is
mostly contained in the Gaussian region, but high energy epochs are associated
with all three CVE classes. EC low-CVE epochs group around 1 standard deviation
above the mean, while high energy mid-CVE and high-CVE epochs are more broadly
distributed. Most EO epochs are low energy epochs associated with either mid-
CVE and high-CVE values. Dashed lines represent the 99% confidence interval for
Gaussianity, while the dotted line marks the mean of the surrogate Gaussian CVE
distribution. Marker alpha channel was set to 50% to highlight cluster density.

The density map in Figure 3.3 reveals the underlying clustering pattern of the ex-

perimental data in EnvSpace. The experimental joint distributions of (CV E, log(ME)[z−
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score]) values for both conditions were smoothed using a binomial kernel to obtain

a contour-like visualization. The experimental bivariate distributions are unimodal

during both conditions. While EC data clearly clusters around the Gaussian re-

gion, 1 standard deviation above the mean energy, EO data also group around the

mid-CVE region but 1 standard deviation below the mean energy.

Figure 3.3: EEG envelope characterization space density maps. The joint probabil-
ity distributions of (CV E, log(ME)[z−score]) values for eyes-closed (blue) and eyes-
open(orange) are both unimodal and centered around the Gaussian region. While
both Gaussian, the EC centroid is located 1 standard deviation above the mean en-
ergy, and the EO centroid is located 1 standard deviation below the mean energy.
Dashed lines represent the 99% confidence interval for Gaussianity, while the dotted
line marks the mean of the surrogate Gaussian CVE distribution. Distributions were
plotted using a color-white palette to obtain a contour-like visualization.

The analysis of each subject, each channel data mirrors the results found for the

entire population at the individual channel level. Vectors were traced from the EO

centroid to the EC centroid of each channel time series in the EnvSpace and classified

by their EC centroid CVE coordinate (Figure 3.4). Thus, these vectors represent

the overall change in EnvSpace from the EO to the EC condition. The amount of
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vectors in each CVE class roughly resembles the EC CVE distribution, while most

EO centroids display either a mid-CVE or high-CVE profile. The presence of low-

CVE channels reveals that some recordings are intrinsically rhythmic and that the

≈ 10% of low-CVE epochs during the EC condition is not simply due to marginal

accumulation during Gaussian and high-CVE processes. Remarkably, most vectors

show a overall change in energy of about 2 standard deviations regardless of the CVE

values involved. This energy change between conditions at the single channel level

resembles the result obtained at the population level (density maps, Figure 3.3).
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Figure 3.4: EEG envelope characterization space vector fields. Vectors were traced
from the EO centroid (white dot) to the EC centroid (arrowhead) of each channel
data. Each vector was classified according to its EC centroid CVE coordinate. While
EO centriods are confined to the mid-CVE and high-CVE regions, EC centroids are
distributed in all CVE classes. Noticeably, most vectors show an overall change
in energy of about 2 standard deviations regardless of the CVE values involved.
Dashed lines represent the 99% confidence interval for Gaussianity, while the dotted
line marks the mean of the surrogate Gaussian CVE distribution. Alpha channel
was set to 50% to highlight cluster density.

3.1.3 Relation between experimental condition, spectrogram,

and CVE

A closer look into the time-varying behavior of spectrum and CVE further supports

that a increase in alpha energy correlates with all different CVE classes. A single
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recording (channel O1) that suffered no interval removal during the preprocessing

stage and whose eyes-closed centroid lies in the high-CVE region was explored set-

ting the behavioral condition, spectra, and CVE into a common temporal frame

(Figure 3.5, left panel). While epochs of all CVE classes are found during this 960[s]

continuous recording. Regardless of their particular CVE, all epochs show an in-

creased alpha power during the EC blocks. Epochs in the edge between behavioral

conditions show a very high CVE value, but this is to be dismissed as an artifact

because these epochs contain data from both conditions, thus appearing pulsating.

Three representative EC epochs are marked with their respective CVE color code in

the CVEgram, and they are shown together with their CVE for further inspection

(Figure 3.5, right panel). Maximum amplitude is 30-40[µV] for all epochs. While the

Gaussian epoch shows a CVE close to
√

(4− π)/π, the non-Gaussian epochs present

CVE values far away from the limits of the 99% confidence interval for Gaussianity.

Accordingly, it can be seen that the low-CVE epoch is distinctively rhythmic, and

the high-CVE epoch is obviously pulsating, as expected.
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Figure 3.5: Temporal covariation between experimental condition, spectrogram,
and CVE. Left panel, from top to bottom: experimental condition, multitaper spec-
trogram, and CVEgram of 960[s] continuous recording. All EC blocks correlate with
an increase in alpha band energy regardless of their CVE value. Three representative
epochs (one for each CVE class) are marked in the CVEgram and plotted together
with their respective CVE (right panel). The Gaussian epoch shows a CVE close to√

(4− π)/π, while the low-CVE and the high-CVE epochs are distinctively rhyth-
mic and pulsating, respectively. Dashed lines represent the 99% confidence interval
for Gaussianity, while the dotted line marks the mean of the surrogate Gaussian
CVE distribution.

3.1.4 Fourier analysis/EEG envelope analysis comparison

The human alpha rhythm has been historically identified by its spectral profile, while

a similar spectrum has also been found in phase-locking signals emerging from pop-

ulations of weakly coupled oscillators. Thus, it seems appropriate to compare the

spectral and CVE profiles of synthetic alpha-like signals (Figure 3.6) and experimen-



57

tal eyes-closed rs-EEG recordings (Figure 3.7). A population of 800 MMS model os-

cillators was simulated to obtain signals from three different regimes: phase-locking,

incoherence, and chaos. Also, white noise and pink noise was added to artificially

introduce the classic EEG spectral background. The synthetic EEG signals were

alpha-filtered and classified according to their CVE (Figure 3.6.a). While these three

epochs present different CVE values, their pre-filtering spectra (Figure 3.6.b) are very

similar, although the phase-locking signal presents the highest and the incoherence

signal the lowest energy at ≈ 10[Hz]. In the EnvSpace (Figure 3.6.c), the three syn-

thetic epochs can be easily distinguished by their CVE. Similarly, three experimental

alpha-filtered epochs (same epochs in Figure 3.5) are shown in Figure 3.7.a . The

pre-filtering spectra (Figure 3.7.b) are almost indistinguishable from each other, and

the canonical peak at ≈ 10[Hz] is much broader than the synthetic one (Figure 3.6.b).

While the spectral profile cannot discriminate between these epochs alone, they can

be clearly distinguished by their CVE values in the EnvSpace(Figure 3.7.c).
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Figure 3.6: Fourier/EnvEEG comparison for synthetic EEG signals. Three syn-
thetic EEG epochs (one for each CVE class) coming from a population of weakly
coupled nonlinear oscillators were analyzed by Fourier analysis and EEG envelope
analysis. (a) The three alpha-filtered epochs (and their respective envelopes in
black) show the expected signal morphology. (b) All epochs contain high energy
at ≈ 10[Hz] and their spectra are very similar, even though the low-CVE epochs
contains the highest energy and the mid-CVE the lowest. (c) The epochs can be
clearly distinguished by their CVE in the envelope characterization space. Dashed
lines represent the 99% confidence interval for Gaussianity, while the dotted line
marks the mean of the surrogate Gaussian CVE distribution.

Figure 3.7: Fourier/EnvEEG comparison for experimental EEG signals. Three
experimental eyes-closed EEG epochs (one for each CVE class, same epochs dis-
played in Figure 3.5) coming from a O1 channel were analyzed by Fourier analysis
and EEG envelope analysis. (a) The three alpha-filtered epochs (and their respec-
tive envelopes in black) show the expected signal morphology. (b) While all epochs
contain high energy at ≈ 10[Hz], their spectra are almost indistinguishable from
each other. (c) The epochs can be clearly distinguished by their CVE in the enve-
lope characterization space. Dashed lines represent the 99% confidence interval for
Gaussianity, while the dotted line marks the mean of the surrogate Gaussian CVE
distribution.
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3.2 iEEG envelope analysis

3.2.1 Surrogate CVE distribution

The surrogate Gaussian CVE distribution for the AN-iEEG data was estimated

using the same epoch length and filter applied to the LEMON data, but matching the

AN-iEEG sampling frequency. The resultant 99% confidence interval for Gaussianity

is [0.460,0.587], while the mean of the surrogate Gaussian CVE distribution is 0.520.

3.2.2 Envelope characterization space: scatterplots

Data from all iEEG occipital recordings is visualized in the EnvSpace (Figure 3.8,

left panel). Most epochs are Gaussian, while a small percentage lies in both non-

Gaussian regions. Energy values were not normalized because the AN-iEEG data

contains EC data only. Thus, relative differences in epoch energy among subjects

are not evident here. Additionally, as iEEG data has been shown to vary between

recordings millimeters apart (Cooper et al., 1965), rs-iEEG data coming from the

calcarine cortex was analyzed independently (Figure 3.9, right panel). The calcarine

cortex is of special importance as the purest alpha rhythm signals have been reported

to come from this structure in dogs (Lopes da Silva et al., 1973). Calcarine cortex

epochs are also clearly grouped in the Gaussian region, and the amount of non-

Gaussian epochs is negligible.
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Figure 3.8: iEEG envelope characterization space scatterplots. CVE values and
ME values (log-transformed) for all occipital recordings (left panel) group mainly
in the Gaussian region, while a small amount is distributed in both non-Gaussian
regions. Notice that ME values were not normalized, and thus relative difference
in energy is not evident here. Calcarine cortex data is shown independently (right
panel). Most epochs are Gaussian. Non-Gaussian epochs are almost absent. Dashed
lines represent the 99% confidence interval for Gaussianity, while the dotted line
marks the mean of the surrogate Gaussian CVE distribution. Marker alpha channel
was set to 50% to highlight cluster density.

3.2.3 Fourier analysis/iEEG envelope analysis comparison

Three representative rs-iEEG epochs recorded at the calcarine cortex were analyzed

using both Fourier and EnviEEG (Figure 3.9). The three alpha-filtered epochs (one

for each CVE class) are shown in Figure 3.9.a, while their pre-filtering spectra are

depicted in Figure 3.9.b. These spectra are almost identical; the same trend was
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observed in the synthetic and experimental EEG data (Figure 3.6 and Figure 3.7).

Nonetheless, the spectral peak in the alpha band seems to be much broader than

the EEG spectral counterpart. Again, these three experimental epochs are easily

recognized in the EnvSpace by their CVE (Figure 3.9.c). Notice that epochs come

from different subjects, and thus the difference in energy is not comparable.

Figure 3.9: Fourier/EnviEEG comparison for experimental iEEG signals. Three
experimental eyes-closed iEEG epochs(one for each CVE class) coming from the cal-
carine cortex were analyzed by Fourier analysis and iEEG envelope analysis. (a)
The three alpha-filtered epochs (and their respective envelopes in black) show the
expected signal morphology. (b) Their spectra are almost indistinguishable from
each other. While all epochs contain high energy at ≈ 10[Hz], the spectral peak
is much broader than the EEG counterpart. (c) The epochs can be clearly distin-
guished by their CVE in the envelope characterization space. Dashed lines represent
the 99% confidence interval for Gaussianity, while the dotted line marks the mean
of the surrogate Gaussian CVE distribution.



DISCUSSION

This work aimed to characterize the human alpha rhythm using a novel signal

analysis method: the envelope analysis. This method relies on the study of coefficient

of variation of the envelope to detect both Gaussian and synchronous processes. The

main motivation behind this endeavor was, on the one hand, the extensive literature

around the topic of neural synchronization, and how this concept was created at

the very cradle of the EEG field by Lord Adrian while studying the human alpha

rhythm. On the other hand, there is also a group, albeit sometimes dismissed, of

researchers that dared to go against the stream and advocated for the recognition

of Gaussian EEG phenomena, thus pointing out the resemblance between Gaussian

noise and the alpha rhythm. Interestingly, this perspective also emerged early in the

field with the work of renowned Japanese scientist Dr. Koiti Motokawa. Somehow,

Gaussianity detection in time series has had its ups and downs, never reaching a

decisive point, and thus Adrian’s and Motokawa’s approaches have never encountered

a firm reference point for further discussion. In order to contribute to the final

elucidation of this debate, I studied the human alpha rhythm using the envelope

analysis.
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Some points about the method require a closer observation. While the origin of

the EnvEEG can be traced back to Motokawa’s report on the Rayleigh distribution

in EEG data (Motokawa, 1943; Rao and Edwards, 2008), it was Dick and Vaughn

(1970) who realized that the study of the time-varying behavior of the human alpha

rhythm envelope could be used to assess Gaussianity. They proposed to segment

the filtered signal to follow the changes of the variance or standard deviation of the

envelope over time. Thus, EnvEEG relies on this segmentation strategy to approx-

imate a stationary process. This segmentation strategy, however, is not free from

drawbacks. In general, it is not know how long EEG stationary epochs are as this

feature changes between experimental conditions Barlow (1985). While the epoch

length used in this work may not be completely appropriate, the results of Dı́az

et al. (2018) in rat EEG are reassuring as CVE displayed a high degree of constancy

in different behavioral conditions. Also, visual inspection of alpha rhythm epochs

showed that they are very stable over the period selected. Another crucial point is

that the surrogate Gaussian CVE distribution necessary to apply the EnvEEG de-

pends on both epoch length and bandwidth (as well as sampling frequency), shorter

epochs and narrower bandwidths producing a higher variance in this distribution.

Therefore, CVE Gaussianity detection in itself involves uncertainty about where in

the time-frequency domain Gaussianity is taking place. This is, of course, expected

as the same scenario is well-known in Fourier analysis and its applications (Folland

and Sitaram, 1997). EEG Gaussianity reports have advanced divergent results pre-

cisely because they have used different combinations of epoch length and sampling
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frequency (McEwen and Anderson, 1975), while different bandwidth effects are hard

to assess as filter characteristics are seldom reported. Previous studies have in fact

reported Gaussianity in alpha rhythm signals using different combinations of these

three parameters (Dick and Vaughn, 1970; Saunders, 1963). While this diversity

does not necessarily invalidate their claims, it is important to keep these subtleties

in mind when comparing their results with the results of this work.

As the LEMON dataset contains rs-EEG recordings of over 200 subjects, it is

particularly helpful to explore inter-individual differences in human alpha rhythm

signals. Strong differences in alpha rhythm amplitude modulation patterns among

subjects is a fact both early recognized and surprisingly ignored in the EEG liter-

ature. Although this may seem a small detail, it is of fundamental importance as

Gaussian and synchronous regimes display distinct amplitude modulation patterns

— a feature that is captured and quantified by the CVE. Accordingly, the human

alpha rhythm was shown to be sometimes a Gaussian or a synchronous signal by

its CVE hallmark. Furthermore, different recordings showed a marked preference

toward either low-CVE, mid-CVE, or high-CVE values, in clear accordance with

early reports of different alpha modulation patterns and suggesting generator dy-

namics may be an individual trait. Remarkably, the change between eyes-open and

eyes-closed conditions was not reflected as a change in CVE but was mirrored by

a approximately constant change in energy regardless of the CVE values involved

both at the single-channel and the population level, showing that the distinctive

alpha rhythm’s high energy profile can be produced by different generator dynam-
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ics. Nonetheless, these claims should be taken with caution as the LEMON rs-EEG

signals underwent a process of interval removal that, while minimal, may introduce

spurious effects into CVE estimates. In any case, the analysis of an untouched con-

tinuous recording showed that Gaussian and synchronous dynamics may coexist at

the scalp level in a single subject. More importantly, the simultaneous use of Fourier

analysis and EnvEEG revealed that experimental epochs from all CVE classes con-

tain the canonical spectral peak at ≈ 10[Hz], demonstrating that the very same result

can be produced by rhythms, pulsating ripples, and Gaussian noise.

This result has important implications for the EEG field. The mainstream in-

terpretation attributes the appearance of the alpha rhythm signal to event-related

synchronization, and its disappearance when subject open their eyes to event-related

desynchronization, while the envelope analysis is showing that this is not the case.

This interpretation rests upon two widely accepted assumptions: (i) that only syn-

chronous process can attain amplitudes sufficiently large to be measured at the scalp

and (ii) that asynchronous process are self-destructive as randomly distributed phases

tend to cancel each other, producing a zero amplitude signal. On the contrary, it is

almost impossible that the phases of oscillators in an uncoupled population cancel

each other as this accounts for only one from the infinite amount of phase combina-

tions in the system. In fact, amplitude death is a well-described regime that only

takes place in weakly coupled oscillators systems with relatively high coupling con-

stants (Saxena et al., 2012). Certainly, synchronous signals do generate relatively

high amplitude signals. The amplitude of a signal, however, cannot account com-
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pletely for the underlying neural generator as the amount of neural elements recruited

into the process can change over time (Elul, 1972). This is the reason behind the

need for an scale-independent parameter such as the CVE. Hence, envelope analysis

puts Gaussianity and synchronization in a single framework, opening the door for

the concurrent monitoring of these two dichotomous brain dynamics in EEG signals.

The same one-to-many relation between spectrum and CVE was also observed

in synthetic EEG signals coming from the Matthews–Mirollo–Strogatz model. The

fact that frequency-locking Matthews–Mirollo–Strogatz model signals display the

canonical spectral peak at ≈ 10[Hz] is not unexpected, as Kuramoto himself pointed

out the relation between his model and the human alpha rhythm (Kuramoto, 1975).

Surprisingly, this spectral profile was also present in incoherence and chaos signals;

two process that differ substantial in terms of coupling constant and signal waveform.

This apparent paradox can be easily explained considering the nature of the Fourier

transform. The Fourier transform represents a signal as a linear sum of complex

sinusoids, each Fourier component having an amplitude and a phase. Thus, the

complex sinusoids that constitute the Fourier transform in all three CVE classes

have a relatively high amplitude ≈ 10[Hz], but their phase profiles are different.

This multiplicity of time domain features that are indistinguishable looking at the

spectral profile alone has been already recognized in the neurosciences (Jones, 2016),

and CVE offers an avenue for its detection and quantification.

The analysis of the AN-iEEG dataset revealed some differences when compared

to the EEG data. The occipital rs-iEEG signals showed a strong clustering in the
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Gaussian region, as opposed to the broader presence of low-CVE and high-CVE

epochs in the occipital channels of the LEMON dataset, but it is worth noticing

that for the former the sample size is much smaller. Interestingly, the data recorded

from the calcarine cortex was almost purely Gaussian, raising the question about

whether the large proportion of synchronous epochs detected at the scalp level were

a byproduct of volume conduction. Also important is that rs-iEEG data displayed a

broader spectral peak than the EC rs-EEG data, even though the skull is considered

to not be a temporal filter, and thus this broader profile may reflect the purity

of the signal recorded (Pfurtscheller and Cooper, 1975). In any case, the neural

structure responsible for the generation of the human alpha rhythm is still not known.

While it is remarkable that weakly coupled oscillators systems can generate data that

resemble alpha rhythm signals both from the Fourier and envelope perspective, the

actual relation between neural networks and weakly coupled oscillators systems is,

however, yet to be defined (Breakspear et al., 2010).

Future studies regarding the alpha rhythm’s CVE hallmark should trade scope

for precision and focus on the concurrent measurement of EEG and iEEG signals

from the visual cortex under resting-state conditions. Additionally, the same method

could be used to characterize the filtering properties of the skull-meninges-skin sys-

tem and its effects in the Fourier phase profile and CVE hallmark. Finally, the

envelope analysis itself could be applied to other EEG, local field potential, and

magnetoencephalography signals to better our understanding of Gaussian and syn-

chronous dynamics in the nervous system.



CONCLUSIONS

In this thesis I took the intuition of using the coefficient of variation of the

envelope of neural signals as a valuable classification parameter and applied it to

human EEG (Dı́az et al., 2007). Usually EEG epochs, lasting from few seconds

to minutes, are only classified according to their energy spectrum (i.e. the energy

content in small frequency bands). Nonetheless, the use of the coefficient of variation

of the envelope opens a new dimension to analysis by incorporating the amplitude

modulation profile of an epoch as an important descriptor specially when coupled

with its energy. Thus, I have extended the analysis presented by Dı́az et al. (2018)

in the rat to human EEG and have shown how the envelope characterization space

can effectively be used to interpret human EEG.
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Figure 5.1: Summary of main results. The human alpha rhythm displays Gaussian
and synchronous amplitude modulation patterns as revealed by the CVE. Gaussian,
phasic, and rhythmic profiles — the three different dynamics detectable using CVE
— were observed in alpha rhythm epochs, even though these same epochs showed
very similar spectra, thus demonstrating that CVE captures signal information that
is lost using spectral analysis alone.
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