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Evidence accumulated so far indicates that circulating levels of microRNAs (miRNAs)
are associated with several pathologies. Therefore, differential expression of
extracellular miRNAs exhibits promising potential for screening and diagnosis
purposes. We evaluated plasma miRNAs in response to the lipid-lowering drug
atorvastatin in patients with hypercholesterolemia (HC) and controls. Methods: We
selected miRNAs based on previous data reported by our group and also by
employing bioinformatics tools to identify 10 miRNAs related to cholesterol
metabolism and statin response genes. Following miRNA identification, we
determined plasma levels of miRNA-17-5p, miRNA-30c-5p, miRNA-24-3p,
miRNA-33a-5p, miRNA-33b-5p, miRNA-29a-3p, miRNA-29b-3p, miRNA-454-3p,
miRNA-590-3p and miRNA-27a-3p in 20 HC patients before and after 1 month of
20 mg/day atorvastatin treatment, evaluating the same miRNA set in a group of 20
healthy subjects, and employing qRT-PCR to determine differential miRNAs
expression. Results: HC individuals showed significant overexpression of miRNA-
30c-5p and miRNA-29b-3p vs. NL (p � 0.0008 and p � 0.0001, respectively). Once
cholesterol-lowering treatment was concluded, HC individuals showed a substantial
increase of three extracellular miRNAs (miRNA-24-3p, miRNA-590, and miRNA-
33b-5p), the latter elevated more than 37-fold (p � 0.0082). Conclusion: Data
suggest that circulating miRNA-30c-5p and miRNA-29b-3p are associated with
hypercholesterolemia. Also, atorvastatin induces a strong elevation of miRNA-33b-
5p levels in HC individuals, which could indicate an important function that this miRNA
may exert upon atorvastatin therapy. Additional studies are needed to clarify the role
of this particular miRNA in statin treatment.
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INTRODUCTION

Ever since the discovery that miRNAs can circulate in the
extracellular medium with extraordinary stability, there has
been substantial interest in identifying these molecules as non-
invasive biomarkers for several problematic pathologies to public
health, such as cardiovascular disease. Advancements made so far
show that miRNAs are not only expressed differently between a
varied number of conditions, but their ability to be measured in
diverse bodily fluids such as serum or plasma, urine, tears, breast
milk, amniotic fluid, cerebrospinal fluid, saliva, and semen show
promise for screening, diagnosis, prognosis, and follow-up
purposes.

It is well-established that abnormal lipid accumulation sets an
atherogenic milieu (Summerhill and et al., 2019), and to date,
numerous miRNAs have been reported to be involved in lipid
metabolism (Fernández-Hernando et al., 2011; Aryal et al., 2017).
We previously showed that miRNAs expression is altered in vitro
(Zambrano et al., 2015) and in vivo (Zambrano et al., 2018)
following statin treatment, a lipid-lowering drug of widespread
use that also reduces the cardiovascular risk (Garcia-Gil et al.,
2018). However, the improvement in lipid profiles is usually
underachieved, as almost half of the patients undergoing statins
will show a suboptimal response to these drugs (Gitt et al., 2012;
Akyea et al., 2019). Moreover, very little is known about the
potential use of miRNAs as biomarkers of poor response to statin
therapy, which would ultimately help detect patients not meeting
appropriate LDL-C reduction goals. Therefore, we carried out
bioinformatics and relative expression studies to determine
circulating miRNAs in healthy subjects and patients with
hypercholesterolemia undergoing treatment with 20 mg/day
atorvastatin for one month, to identify candidate miRNAs as
potential therapeutic targets.

MATERIALS AND METHODS

Subjects
A total of forty individuals were selected for this study. Twenty
subjects were normolipidemic and comprised the control group,
whereas 20 were hypercholesterolemic patients treated with
20 mg/day atorvastatin for 1 month. Biochemical profiles were
performed on all patients, and the treated group was sampled
before and after completion of the lipid-lowering treatment. The
patients were recruited from public health centers. Blood samples
were then processed to separate the plasma, which was frozen for
further analysis. The Ethics Committee of University of La
Frontera (Protocol #045_17) approved the study protocol. All
subjects gave their written informed consent to participate from
this investigation.

Biochemical Analyses
To establish plasma lipid levels before and after atorvastatin
treatment, blood collection was performed by direct venous
puncture following an overnight fast using EDTA tubes. Total
cholesterol, HDL cholesterol (HDL-C) and triglycerides (TG)
were measured by routine enzymatic-colorimetric methods. LDL

cholesterol (LDL-C) was calculated using the Friedewald
equation when TG levels were not above 400 mg/dl.

Selection of miRNAs
As aforementioned, we based the current selection of ten
circulating miRNAs on previous data obtained by our group
(Zambrano et al., 2015; Zambrano et al., 2018). Briefly, in the first
report, we identified deregulated miRNAs by analyzing their
expression profile in HepG2 cells treated during 24 h with
different statins. In the second study, we employed multiple
bioinformatic tools such as TargetScan, miRanda, DianaLab,
MicroCosm, and PicTar to narrow down the previous in vitro
miRNA data, evaluating a subset of 84 miRNAs potentially
associated with 28 key genes involved in cholesterol
metabolism and statin response in subjects undergoing
1 month of different low-dose statins. In the present study, we
crossed our previous results and updated the selection criteria by
running Pharmaco miR, a miRNA pharmacogenomics database
that identifies associations of miRNAs and both the genes they
regulate and the drugs annotated, to finally select the ten most
probably dysregulated miRNAs in patients with
hypercholesterolemia following a 20 mg/day atorvastatin dose
for 4 weeks and controls.

RNA Extraction
Circulating miRNAs were extracted using the miRNeasy serum/
plasma kit (Quiagen, Hilden, Germany) according to the
manufacturer’s instruction, using 200 µl of plasma. miR-39 of
C. elegans was incorporated as a spike-in control to normalize
quantification (1.6 × 108 copies/µl). RNA concentration and
purity were determined by spectrophotometry (Infinite® 200
PRO NanoQuant) using the 260 nm/280 nm absorbance ratio.
The samples were diluted to a concentration of 5 ng/μL and
stored at −80°C for ulterior use.

Reverse Transcription
The cDNA synthesis was performed using the TaqMan™

Advanced miRNA cDNA synthesis kit. The protocol carried
out consisted of four steps: 1) polyadenylation, 2) ligation of
adapters, 3) retrotransciption and 4) miRNAs obtention.
Afterward, miRNAs obtained were stored at −20°C for later use.

qPCR Expression Analyses
Each sample was diluted to 1:10 with ultrapure water. The PCR
Mix was prepared in sufficient quantity for each assay, for the
identification of miRNA-17-5p, miRNA-30c-5p, miRNA-24p-3p,
miRNA-33a-5p, miRNA-33b-5p, miRNA-29a-3p, miRNA-29b-
3p, miRNA-454-3p, miRNA-590-3p and miRNA-27-3p
following the manufacturer’s protocol.

Interaction Network of Differentially
Expressed miRNAs
To generate the interaction network of selected miRNAs, we
employed miRTargetLink 2.0 (Kern and et al., 2021), a tool
containing experimentally validated interactions on human
microRNA-mRNA pairs. Data shown correspond to miRNA-
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target interactions with strong support, i.e., validated
experimentally by reporter assay, western blot, qPCR,
microarray, and/or next-generation sequencing experiments.
The software obtains miRNAs annotations from the latest
version of miRBase (v.22.1), while the experimentally validated
targets are retrieved from miRTarBase (v.8) (Huang et al., 2020)
and miRATBase (Kern et al., 2021). miRTargetLink 2.0 can be
freely accessible from the following link (https://ccb-compute.cs.
uni-saarland.de/mirtargetlink2/).

Statistical Analysis
Data were analyzed using GraphPad Prism version 5.00 for
Windows (GraphPad Software, San Diego, CA, United States).
Normal distribution was assessed using D’Agostino-Pearson
testing. As data came from a limited set of ten miRNAs,
correction for multiple testing was not employed, and
differential miRNA expression was calculated using 2−ΔCT to
compare normolipidemic and hypercholesterolemic subjects. The
Mann-Whitney test was applied for unpaired data and the
Wilcoxon test for paired data. A p-value <0.05 was considered
statistically significant.

RESULTS

Clinical Data, Plasma Lipids and Statin
Response
Table 1 shows anthropometric data and lipid profiles of
normolipidemic (NL) and hypercholesterolemic (HC) patients
before and after 20 mg/day of atorvastatin during a 4-weeks
period. Significant differences were observed for all lipid levels
except for HDL-C.

Expression of Circulating miRNAs
Associated With Cholesterol Metabolism
and Response to Statins
We found two extracellular miRNAs differentially expressed
between normolipidemic (NL) and hypercholesterolemic (HC)
individuals. Figure 1 shows the fold change of miRNA-30c and
miRNA-29b in these subjects. The rest of the miRNAs evaluated
did not show significant differences between the study groups.

Expression of Circulating miRNAs in
Hypercholesterolemic (HC) Patients and
Response to Atorvastatin Treatment
According to the expression of extracellular miRNAs in patients
at the beginning and post-treatment, significant differences were
observed for miRNA-33-5p, miRNA-24-3p and miRNA-590.
Table 2 illustrates the relative expression of miRNAs before
and after 1 month with atorvastatin (20 mg/day).

Correlation of miRNAs and Lipid Reduction
Table 3 shows the correlation between basal circulating miRNAs
and the reduction percentage (%) of LDL-C following 1 month of
treatment with a 20 mg/day atorvastatin dose. All miRNAs
showed positive correlation with LDL-C reductions, but only
five (miRNA-30c, miRNA-29a, miRNA-454, miRNA-24-3p and
miRNA-590) were statistically significant. Supplementary
Figure S1 displays the correlation of circulating miRNAs and
LDL-C reduction.

Predicted Interactions of Deregulated
miRNAs
We found five deregulated miRNAs, two of them were
overexpressed in hypercholesterolemic vs. normal subjects
(miRNA-30c-5p and miRNA-29b-3p), while three were
significantly upregulated in HC patients after concluding
atorvastatin treatment (miRNA-24-3p, miRNA-590, and
miRNA-33b-5p). Importantly, miRNA-33b-5p showed a
substantial 37-fold increase since treatment initiation.
Figure 2 shows a network of validated mRNA targets for
miRNA-33b-5p. Additional miRNA-mRNA pairs interaction
networks from the remaining deregulated miRNAs are
presented as supplementary material (Supplementary
Figures S2–S5).

DISCUSSION

The LDL-C lowering efficacy for a 20 mg atorvastatin dose is
reported to be around 42% (Adams et al., 2015). In our study, half
of the patients did not achieve this goal, and a quarter showed

TABLE 1 |Clinical, demographics and plasma lipid levels before and after treatment with atorvastatin (20 mg/day/4 weeks) of normolipidemic (NL) and hypercholesterolemic
(HC) individuals.

Parameter NL HC HC post-treatment % Change p-value

Female/Male 15/5 15/5 — — -—
Age (years) 31.2 ± 7.3 47.3 ± 11.3 — — —

BMI (kg/m2) 26.4 ± 4.4 27.0 ± 3.0 — — —

Total cholesterol (mg/dl) 151.3 ± 28.4 239.3 ± 28.2 158.1 ± 33.4 34.1 ± 10.7 <0.001
LDL-cholesterol (mg/dl) 87.5 ± 17.4 176.0 ± 15.5 96.1 ± 29.9 44.6 ± 14.0 <0.001
HDL-cholesterol (mg/dl) 50.6 ± 19.7 44.4 ± 10.0 41.2 ± 9.4 6.4 ± 14.9 0.056
Triglycerides (mg/dl) 80.2 ± 30.5 150.4 ± 66.2 121.6 ± 55.4 10.9 ± 37.8 <0.05
VLDL-cholesterol (mg/dl) 17.0 ± 6.5 27.0 ± 7.0 21.6 ± 6.2 15.0 ± 36.7 <0.05

Values expressed as mean ± standard deviation, n, number of subjects; BMI: body mass index, LDL-C: low-density lipoprotein cholesterol, HDL-C: High-density lipoprotein cholesterol,
VLDL: Very low-density lipoprotein cholesterol.
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LDL-C reductions lower than 27%. This highly heterogeneous
response to statins is well documented (Karlson et al., 2016) and is
consistent with previous reports made by our group (Rosales
et al., 2012). As for miRNAs, we observed an up-regulation of two
miRNAs, i.e., miRNA-30c and miRNA-29b, between patients
having abnormally high cholesterol levels vs. healthy subjects.
Previously, Soh and colleagues reported that miRNA-30c reduce
lipid synthesis and LDL-precursors due to its interaction with the
3-UTR of the microsomal triglyceride transfer protein (MTP)
(Soh et al., 2013), a protein central for lipoprotein assembly and
production of LDL precursors. Hence, miRNA-30c contributes to
control hepatic and plasma lipids by decreasing hyperlipidemia,
which is a likely explanation of why this miRNA is elevated in
hypercholesterolemic individuals. Moreover, Sodi et al. reported a
significant and positive correlation between miRNA-30c with
total cholesterol (TC) and LDL-C (Sodi et al., 2017), which
further demonstrates an important regulatory role for this
miRNA in lipid homeostasis. Authors also showed that
pravastatin but not rosuvastatin increased serum miRNA-30c,
which points toward a dissimilar effect of statins on miRNAs
expression, even though both statins assessed share a hydrophilic
nature. One reason supporting this differential regulation could

be the differing treatment periods (1-year pravastatin vs. 8-weeks
rosuvastatin). Likewise, we have previously reported that
different statins produce variable effects on miRNA expression
(Zambrano et al., 2015; Zambrano et al., 2018). This distinctive
effect has also been documented at different levels of gene
regulation (Leszczynska et al., 2011). As far as we know, this
is the first study disclosing the relationship between miRNA-30c
and atorvastatin treatment.

Themost considerable finding observed is a 37-fold increase of
miRNA-33b, together with a significant elevation of circulating
miRNA-590 and miRNA-24-3p levels in HC patients upon
completion of atorvastatin treatment. The miRNA-33b is part
of the miRNA-33 family, formed by miRNAs 33a and 33b. This
pair represent one of the most widely characterized miRNA
mediators involved in lipid homeostasis. Both are intronic
miRNAs differing by 2-nucleotides, but unlike miRNA-33a,
miRNA-33b is encoded within the sterol regulatory element-
binding protein-1 (SREBP1), a transcription factor implicated in
fatty acid metabolism. Existing data connecting miRNA-33b and
statins are abundant. Reports show that miRNA-33b is co-
transcribed along SREBP1, working coordinately to control
lipid levels (Marquart et al., 2010; Najafi-Shoushtari et al.,
2010; Rayner et al., 2010; Davalos et al., 2011). Regarding
statins, investigations display mixt outcomes. In 2012, Takwi
et al. showed an upregulation of miRNA-33b expression
following lovastatin treatment of medulloblastoma cells (Takwi
et al., 2012). 4 years later, Zhang and colleagues demonstrated
that pitavastatin reverted the oxLDL-mediated suppression of
miRNA-33b in human THP-1 cells (Zhang et al., 2016).
Additional evidence supporting a relation between statins and
miRNA-33 came from studying statin-naïve subjects with
metabolic syndrome (MetS) (Chen et al., 2016). The authors
showed that MetS subjects had significantly higher plasma values
of miRNA-33 than their healthy controls counterparts.
Afterward, MetS subjects treated with atorvastatin or
pitavastatin experimented an additional increase in circulating
miRNA-33 levels. Moreover, when studying the murine
macrophage cell line RAW264.7 and bone marrow-derived
macrophages (BMDM), authors found a dose-dependent up-
regulation of miRNA-33 in both cell lysates and medium,

FIGURE 1 | Expression of circulating miRNA-30c and miRNA-29b in hypercholesterolemic patients vs. controls. *Mann-Whitney test. C. elegans miRNA-39 was
used as a normalizing control. The values of the threshold cycle (Ct) of each miRNA, normalized against this sequence (ΔCt �Ct target miRNA—Ct endogenous control),
the plasma expression levels of these miRNAs were calculated according to 2−ΔCt method. The total number of samples analyzed was 20 for each study group.

TABLE 2 | Circulating miRNA levels in hypercholesterolemic (HC) subjects before
and following 20 mg/day/4 weeks atorvastatin treatment.

miRNA HC basal HC post-treatment p-value*

miR-17-5p 1 ± 1.583 4.727 ± 8.082 0.1297
miR-30c 1 ± 1.314 0.789 ± 1.140 0.7983
miR-33a-5p 1 ± 1.408 4.230 ± 9.728 0.2413
miR-33b-5p 1 ± 1.644 37.479 ± 111.932 0.0082
miR-29a 1 ± 1.466 3.057 ± 7.289 0.4900
miR-29b 1 ± 1.189 3.031 ± 4.002 0.0799
miR-454 1 ± 1.389 2.750 ± 3.968 0.2253
miR-24-3p 1 ± 1.271 4.815 ± 6.527 0.0494
miR-590 1 ± 1.791 9.207 ± 12.656 0.0047
miR-27a-3p 1 ± 2.239 2.161 ± 3.597 0.1336

*Wilcoxon matched-pairs signed rank test. The plasma expression levels of these
miRNAs were calculated according to 2 - ΔΔCt [ΔΔCt � Ct Basal (target miRNA—Ct
endogenous control)—Ct treatment (target miRNA—Ct endogenous control)].
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regardless of the statin used. Our previous assessment of statin
treatment on miRNAs from hepatocellular carcinoma cells
(HepG2) revealed that neither miRNA-33a nor miRNA-33b
was affected by low-dose atorvastatin or simvastatin
(Zambrano et al., 2015). However, in peripheral blood
mononuclear cells (PBMC) (Zambrano et al., 2018), we
observed that atorvastatin but not simvastatin repressed the
cellular miRNA-33b content in humans, representing a
contrasting outcome from the MetS cohort. Nonetheless,
several differences must be underlined, especially regarding the
subjects investigated. First, in the study from (Chen et al., 2016),
included individuals were defined by traditional MetS criteria,
none of which considers high LDL-C levels, while we specifically
included individuals having elevated LDL-C concentrations
according to clinical characteristics from both studies (MetS:
155 mg/dl; PBMC: 182 mg/dl). Second, our cohort was treated
during 1 month with a 10 mg/day statin dose after a thirty-day
wash-out period, vs. the 3-months statin therapy for statin-naïve
MetS individuals. In addition to the dissimilar ethnic background

between Taiwanese and Brazilians, and the fact that we did not
evaluate circulating miRNAs, another critical difference is
represented by the cellular model employed. While we studied
a variety of peripheral cells containing a single, rounded nucleus
such as lymphocytes and monocytes i.e., PBMC, (Chen et al.,
2016) specifically assessed macrophages. Even though
macrophages are differentiated from monocytes, macrophages
represent a very specialized and highly heterogeneous cellular
type with a distinct phenotype and functionality than monocytes
due to their particularly active role as one of the first lines of
immune defense. Lastly, our study evaluated the miRNA-33
family separately, i.e., miRNA-33a and miRNA-33b, in
contrast to what was displayed by (Chen et al., 2016), where
they showed that the upregulation induced by atorvastatin
affected miRNA-33 generally, making its specific impact on
miRNA-33a or 33-b indistinguishable from one another.

On the other hand, the evidence surrounding the role that
miRNA-590 and miRNA-24-3p portray in statin therapy is
scarce. Studies confer miRNA-590 a function in lipid

FIGURE 2 | Network of validated gene targets for miRNA-33b-5p. ABCA1: ATP binding cassette subfamily A member one; BCL2: B-cell lymphoma two
Apoptosis Regulator; CREB1: cAMP responsive element binding protein one; G6PC: glucose-6-phosphatase, catalytic; HMGA2: High Mobility Group AT-Hook two;
MYC: MYC Proto-Oncogene, BHLH Transcription Factor; PCK1: Phosphoenolpyruvate carboxykinase one; PIM1: Proto-Oncogene, Serine/Threonine Kinase;RORA:
RAR Related Orphan Receptor A; SRC: SRC Proto-Oncogene, Non-Receptor Tyrosine Kinase; TWIST1: Twist Family BHLH Transcription Factor 1; XIAP:
X-linked inhibitor of apoptosis; ZEB1: zinc finger E-box binding homeobox 1.
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homeostasis by inhibiting lipoprotein lipase (LPL), an enzyme
that degrades circulating triglycerides, resulting in attenuated
lipid accumulation in human THP-1 macrophages (He et al.,
2014). Regarding statins, we previously showed that Brazilian
patients not meeting their expected LDL-C reduction goal
following 10 mg/day atorvastatin had a significant
downregulation of this particular miRNA in PBMC
(Zambrano et al., 2018). Conversely, the present study’s data
revealed a >9-fold increase in circulating levels of miRNA-590
following 20 mg/day atorvastatin. This conflicting miRNA
behavior is not clear, but one key difference is that presently,
we did not assess miRNA performance according to subgroups of
LDL-C goals achievements. Besides, we evaluated extracellular
rather than intracellular miRNAs. In the case of miRNA-24-3p,
studies show that its expression is significantly increased in the
livers of high-fat diet-treated mice (Ng et al., 2014). The same
study revealed insulin-induced gene 1 (Insig1) -a lipogenesis
inhibitor-as a validated target of miRNA-24. Therefore,
elevated miRNA-24 levels decrease hepatic lipid accumulation
via Insig1 up-regulation. In the same way, Wang et al. (Wang
et al., 2018) showed that obesity-induced miRNA-24
overexpression inhibited Scavenger Receptor B1 (SR-B1), a
member of the CD36 family of scavenger receptors B that
facilitates selective cholesterol uptake from high-density
lipoproteins (HDL). Additionally, miRNA-24 increased the
expression of important genes related to cholesterol synthesis,
such as 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase
(HMGCR) and sterol regulatory element-binding protein 2
(SREBF2). Therefore, miRNA-24 assists in regulating
cholesterol homeostasis and steroidogenesis by repressing
HDL uptake in HepG2 cells. However, its role regarding statin
therapy remains to be clarified.

One of the main limitations of the present study is its small
sample size, preventing us from reporting more robust
conclusions. Even though it did not restrict the successful

identification of extracellular miRNA deregulation, our
preliminary data should be interpreted in light of the
limited cohort evaluated. We emphasize the need for
additional in-depth stratified analysis on larger population
and functional studies in different models to clarify
further the relationship between statins and miRNAs, as
they represent promising candidates for therapeutic
manipulation.
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