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ABSTRACT The existing uncertainties during the operation of processes could strongly affect the perfor-
mance of forecasting systems, control strategies and fault detection systems when they are not considered
in the design. Because of that, the study of uncertainty quantification has gained more attention among
the researchers during past decades. From this field of study, the prediction intervals arise as one of the
techniquesmost used in literature to represent the effect of uncertainty over the future process behavior. Thus,
researchers have focused on developing prediction intervals based on the use of fuzzy systems and neural
networks, thanks to their usefulness for represent a wide range of processes as universal approximators.
In this work, a review of the state-of-the-art of methodologies for prediction interval modelling based on
fuzzy systems and neural networks is presented. The main characteristics of each method for prediction
interval construction are presented and some recommendations are given for selecting the most appropriate
method for specific applications. To illustrate the advantages of these methodologies, a comparative analysis
of selected methods of prediction intervals is presented, using a benchmark series and real data from solar
power generation of a microgrid.

INDEX TERMS Prediction intervals, fuzzy interval, neural network intervals, uncertainty.

I. INTRODUCTION
The use of fuzzy logic systems (FLS) and neural net-
works (NNs) has proliferated in the literature for themodeling
of systems and time series. Since both types of models are
known as universal approximators that can identify relation-
ships between inputs and target (outputs) variables, they are
generally used when the system or the time series to be mod-
eled follows nonlinear dynamics [1]. Although FLS and NN
exhibit adequate performance to obtain the expected value of
these kind of systems, uncertainty is not typically quantified
by these modelling approaches. However, information on the
dispersion of the output of the model provides more informa-
tion about the phenomena. and more useful information from
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a decision-making point of view than the models with only
expected values [2], [3].

Prediction intervals have been proposed to address the
problematic of quantifying prediction uncertainty. A predic-
tion interval establishes a range around the output of the
model, representing the uncertainty present in the system.
The main motivation for the construction of prediction inter-
vals is to quantify the uncertainty in the point prediction
to provide information about the uncertainty and enable the
consideration of multiple scenarios for the best and worst
conditions of the system [4].

Usually the width of the prediction interval increases with
the prediction horizon due to the coupling effect and prop-
agation of the different sources of uncertainty in the model.
In several applications, such as the implementation of fore-
casting systems, control strategies, fault detection methods
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or decision support systems, where decisions are taken based
on the predicted future behavior of the modeled system, it is
desired that the prediction intervals are as precise as possible.
Therefore, the aim to prediction interval construction is to
find the narrowest intervals possible that contain a desired
percentage of measured data over the future time horizon.

Considering the importance of FLS and NN for the mod-
eling of nonlinear systems and time series, several methods
have been proposed in order to construct an appropriate pre-
diction interval based on these models. The main contribution
of this paper is to analyze and compare features and the
performance of the methods for construction of prediction
intervals based on FLS and NN reported in the special-
ized literature. In order to evaluate the prediction intervals
performance, several methods are compared based on two
dynamical nonlinear systems implemented: modified Chen
series and solar power generation data from Milan. Finally,
the characteristics and applicability of each discussed meth-
ods are presented.

The remainder of this paper is organized as follows:
Section II presents the fundamentals of prediction intervals.
Sequential and direct methods for both fuzzy and neural
prediction intervals construction are described in section III
and IV respectively. The characteristics and a discussion of
the methods are presented in section V. Section VI presents
the results of a benchmark test and case study from solar
power generation of a microgrid. The last section provides
the main conclusions.

II. FUNDAMENTALS OF PREDICTION INTERVALS
A. SOURCES OF UNCERTAINTY IN SYSTEM MODELING
In order to fully understand the information provided by
Prediction Intervals, it is important to study what are the
possible causes of uncertainty in dynamical systemmodeling,
and on what phenomena they can originate.

In theory, predictive modeling assumes that all observa-
tions are generated by a data generating function f (x) com-
bined with and additive noise [4]–[6]

y = f (x)+ ε, (1)

where ε is a zero mean random variable called data noise
that is responsible for introducing uncertainty modeling into
predictivemodels in the form of aleatory uncertainty, whose
origin can be traced to the exclusion of complicated variables
from the model which cannot be determined with sufficient
precision, or due to the presence of inherently stochastic
processes in the observed system or data obtention procedure.

Based on this formulation, predictive models attempt to
produce an estimate f̂ (x) of the data generating function in
order to calculate predictions of the expected value of the
system. The model of f̂ (x) is often referred to as crisp model.
This procedure introduces an additional form of uncertainty,
known as epistemic uncertainty, since the crisp model is
only an approximation of the true data generating function.
Assuming both types of uncertainty are independent, the total

variance of observations can be expressed as

σ 2
total = σ

2
model + σ

2
data (2)

where σ 2
model is attributed to epistemic uncertainty and σ 2

data
is attributed to aleatory uncertainty.

Since the factors contributing to epistemic uncertainty can
vary greatly, some authors [7] have proposed subsequent
classifications for this term:

1) Model misspecification: Uncertainty determined by
how close the estimate f̂ (x) can approximate the real
data generating function f (x) under optimal parameter
and data conditions

2) Training data uncertainty:Uncertainty over how rep-
resentative the training data is with respect to the whole
input distribution, and how sensitive the model can be
to unseen samples

3) Parameter uncertainty: Uncertainty on the values of
the model parameters due to local minima stagnation
or premature termination.

It is important to note that since total uncertainty can come
frommany diverse sources, the expression can be highly com-
plex and difficult to quantify, which is why interval modeling
has been proposed as a solution to this problem.

B. TYPES OF INTERVALS AND PREDICTION INTERVAL
METHODS
Regarding to interval models it is important to differentiate
confidence intervals from prediction intervals.

Strictly speaking, f̂ (x) is a prediction of f (x), the true
regression mean of y as shown in (1). A confidence inter-
val (CI) is an estimate, obtained from observed data, of an
interval where the true mean of f (x) must lie with a given
confidence. In this sense, the CI deals with the uncertainty of
f̂ (x) to estimate f (x), i.e. the epistemic uncertainty. A predic-
tion interval (PI), on the other hand, quantifies the uncertainty
of using f̂ (x) to predict y; it defines an interval where the
observations of y must fall inside the interval with a given
probability. Therefore, in addition to the epistemic uncer-
tainty, the PI must also account for the aleatory uncertainty.

According to the concepts above, a CI is based on the
characteristics of P(f (x)|f̂ (x)), and a PI is based on the char-
acteristics of P(y|f̂ (x)). It is easy to see that PIs are wider than
CIs. In this work the focus is on PIs as we are interested in
the uncertainty of using f̂ (x) for predicting y.

The reason for the focus on intervalmodels, PIs in this case,
is that they are a useful and practical tool for expressing the
uncertainty of the predictions with the minimum information.
Only three outputs are needed: an upper bound (ȳ), the lower
bound (y) and the coverage probability (PICP, as it will be
defined later). This is enough to inform the most probable
range and the probability of enclosure. In contrast, probability
density functions (PDFs) contains exact information about
the uncertainty. However, in practice, only particular distribu-
tions can be described with few parameters. For the general
case, a large number of points is needed to approximate
(up to a grid precision) the PDFs. Therefore, PIs are the
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most understandable uncertainty quantification mechanism
that uses few parameters in the general case.

There is a wide variety of methods to construct PIs. For
this, we want to find the lower and upper bounds y, ȳ so that
y ∈ [y, ȳ] with probability 1− p, i.e.

P(y ≤ y ≤ ȳ) = 1− p. (3)

A basic method to find these bounds relies on the use of
the PDF of y, which is assumed known. If the probabil-
ity that y is outside this interval is chosen to be the same
above and below the interval, the bounds can be found as
y = F−1(p/2) and ȳ = F−1(1 − p/2), where F−1( · ) is
the inverse of the distribution function of y. This can be
performed with known parametric PDFs or with PDFs with
any non-parametric estimation. However, in practice a PDF
cannot be estimated perfectly, and therefore therewill be error
propagation when computing the interval. For this reason,
if one is only interested in the PI and does not need all the
information in the PDF, it is more convenient to use a method
that estimates the PI without needing a known PDF.

C. NOTATION FOR DYNAMICAL SYSTEMS
In this review we focus on methods based on computational
intelligence that directly construct the PIs for dynamical sys-
tems, in particular those based on fuzzy models and neural
networks. Here, in order to establish the notation to be used
for the inputs variables of the different methods to be covered,
it is assumed that the system to bemodeled follows a dynamic
described by a nonlinear autoregressive exogenous model
(NARX), i.e. the output of the system is given by

y(k) = f (zk ), (4)

where zk is the input vector of size nz, composed by the past
ny outputs y and the past nu exogenous variables u, such that
the input vector is defined as

zk =
[
y(k − 1), y(k − 2), . . . , y(k − ny),

u(k − 1), u(k − 2), . . . , u(k − nu)]T . (5)

D. PREDICTION INTERVAL METRICS
Several metrics have been used in the literature to design,
validate and compare the effectiveness of prediction intervals.
The most standard metrics, which will be used in this work,
are presented next.

The prediction error of the crisp model is one of the most
important factors that affects the behavior of the uncertainty
band. In order to represent the accuracy of the predictive
model, the root mean square error (RMSE)

RMSE =

√√√√ 1
N

N∑
k=1

(y(k)− ŷ(zk ))2, (6)

is selected in this work as the metric for representing the
accuracy of the predictive model. In (6), N is the number of
data selected for the computation of this metric, y(k) is the
real measurement of the system of signal output, and ŷ(zk )) is

the predicted value given by the identified model when the
input vector zk is received.

The interval width and coverage level are remaining most
important metrics. In [4], [8], the Prediction Interval Normal-
ized Averaged Width (PINAW) and the Prediction Interval
Coverage Probability (PICP) are defined respectively for rep-
resenting those factors, based on the following expressions:

PINAW =
1
NR

N∑
k=1

(
y(zk )− y(zk )

)
, (7)

where

R = max {y(k)} −min {y(k)} (8)

is the range of values of the training data, and

PICP =
1
N

N∑
k=1

ck , (9)

where

ck =

{
1, if y(zk ) ≤ yk ≤ y(zk )
0, otherwise

(10)

indicates if the interval given by the bounds [y(zk ), y(zk )],
contains the real measure of y(k).

E. CLASSIFICATION OF METHODS FOR THIS SURVEY
Given that there is a wide variety of methods for PI construc-
tion as discussed above, a proper classification of themethods
to be included in this survey is in place. This classification
will be based on two main criteria: (i) type of model used to
describe the prediction interval, and (ii) the type of training
procedure for PI construction.

Given the scope of this survey, the type of base model
used for the PI methods defines the following division con-
sidered for this paper: (a) methods based on fuzzy models,
and (b) methods based on neural networks.

On the other hand, considering the type of training, first
categorization corresponds to Sequential methods, which
receives a previously identified base crisp model that esti-
mates f (x) and then uses it to constructed the PI in a sub-
sequent step. The second category, which will be referred to
as Direct methods, perform the construction of the interval
models in parallel with the crisp model identification. There-
fore, a previously identified model is not required for this
case. In this type ofmethods, the training process of themodel
incorporates the calculations to estimate the uncertainty band
of the predictions, so that the models obtained are capable of
directly outputting a prediction interval without the need of
additional steps.

This classification scheme is shown in Table 1. According
to it, the methods studied in the context of this work are
presented in the following order: the sequential and direct
methods developed based on fuzzy models are presented first
in section III. Then, the sequential and direct methods based
on neural networks are described in section IV.
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TABLE 1. Classification of PI construction methods considered for this
survey.

III. FUZZY PREDICTION INTERVALS
A. BACKGROUND
Rule-based FLS are considered for solving a broad range
of problems, from forecasting, to classification, control, etc.
Because of this, the use of prediction intervals based on these
models arises as an important way to include information
about uncertainty in the implementation of forecasting sys-
tems and control strategies.

Among rule-based fuzzy models, the formulation pre-
sented by [9] arise as one of the most used structure for rule
base fuzzy modeling. The fuzzy model of Takagi and Sugeno
of this formulation is represented by the weighted sum of
several linear models, as shown as follows

Rule r: If zk is Ar , then: ŷr (zk ) = [1 zTk ]θr , (11)

ŷ(zk ) =
m∑
r=1

βr (zk )ŷr (zk ) (12)

where zk is the input vector of the fuzzy model at instant k
(see equation (5)), Ar is a fuzzy set (antecedents) and ŷr is
the output of the local model (consequences) for rule r .
The model consists of m rules so that r = 1, . . . ,m.
For each rule r in (11), θr is the parameter vector, which
can be obtained using a suitable regression algorithm, and
βr (z) corresponds to the degree of activation of the rule. The
values of βr (z) are calculated from the membership func-
tions (MF) of the fuzzy sets which are part of the antecedents
of the rule r.

In order to consider the effect of uncertainties in the model
identification, the type-2 fuzzy models presented in [10] arise
as an appropriate extension of the fuzzy rule-based models.
In this case, type-2 fuzzy sets, which are originally introduced
in [11], are used for the antecedents of the rules. Thus,
as shown in Figure 1, a type-2 fuzzy set A has a membership
function defined by two different values, corresponding to its
upper and lower limits (µA(x) and µA(x) respectively).
The value of the membership function lies inside this gray

area bounded by µ
A
(x), µA(x), which is denominated in

literature as the domain of uncertainty of A (DOU(A)) or the
footprint of uncertainty ofA (FOU(A)). Due to the use of these
type-2 fuzzy sets the local outputs of the rules are now defined
by an upper and lower value. Note that, this kind ofmodels are
suited for the later implementation of the prediction intervals.

Fuzzy models have also been implemented in the literature
as fuzzy neural networks (FNN) [12], [13]. These imple-
mentations result from the adaptation of TS fuzzy models
to the artificial neural networks structure. The stages defined
for TS models are handled by different layers of the neural

FIGURE 1. Type-2 membership function.

network in FNNs, such that each of the antecedents and the
consequences of the rules have their own neurons associated.

In the specialized literature, several methods based on
Takagi-Sugeno fuzzy models have been proposed in order
to obtain a Prediction Interval. As mentioned in section II-E,
those methods are classified by the type of training procedure
for its construction.

The fuzzy interval models of both categories, correspond-
ing to sequential and direct methods, are reviewed below.

B. SEQUENTIAL METHODS
1) COVARIANCE METHOD
In [14], the upper and lower bounds that define the interval
are constructed based on the error covariance of each rule
of the Takagi-Sugeno fuzzy model. This strategy of fuzzy
PI design is referred in the literature as the covariance method
and it is based on the work done by Škrjanc in [15]. For an
input vector zk , the bounds of the local model r , for each
measurement k are defined as

yr (zk ) = ŷr (zk )+ αIr (zk ), (13)

y
r
(zk ) = ŷr (zk )− αIr (zk ). (14)

where α is a tuning parameter and Ir is an estimate of the
variance of ŷr . The estimate Ir is given by

Ir (zk ) = σ̂r
(
I + ψT

r (zk )
[
9r9

T
r

]−1
ψr (zk )

)1/2

, (15)

where I is an identity matrix of appropriate size;
σ̂ 2
r I is the variance of the noise signal; and 9r =

[ψr (z1), . . . , ψr (zM )]T is the regression matrix that contains
the regression vectors (past values of ψT

r (z) = [1 zTk ] in the
TS fuzzy model) for theM samples of a training dataset.
This method of fuzzy prediction interval design resembles

the defuzzification stage performed in the aforementioned
methods, which follow the idea presented in (12). Here,
a global value for the estimated variance of ŷ is obtained as

I(zk ) =
m∑
r=1

βr (zk )Ir (zk ). (16)
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Thus, the bounds of the global output of the fuzzy interval
model is given by

y(zk ) = ŷ(zk )+ αI(zk ), (17)

y(zk ) = ŷ(zk )− αI(zk ). (18)

This method for the prediction interval construction has the
main advantage of a low computational cost for obtaining the
interval. This is because the uncertainty is estimated directly
by the given covariance formula. Thus, the main complexity
of this method lies in the search of the proper values for
the tuning parameters α. On the other hand, this interval
structure presents a weakness in differentiating the effect of
internal and external sources of uncertainty. This is a clear
disadvantage of this method, because the performance of the
prediction interval will be negatively affected when trying to
model a systemwith exogenous input variables that have their
own uncertainty.

This method has been applied in [14] for the forecasting
of renewable generation and demand data from an installed
microgrid and in [16] for the robust control of a solar collector
field. Also, in [17] is applied in a fault detection system for
an aircraft, and in [18] is used for an implementation of an
indoor localization algorithm.

Additionally, some versions of this method have been
developed in order to reduce the interval width. For exam-
ple, in [19] different tuning parameters were proposed for
the upper and lower bounds (α and α respectively), achiev-
ing a non-symmetrical interval around the prediction value.
This version of the method has been applied in [19] for
the identification of intervals for traffic measurements, and
in [20], [21] for the forecasting of renewable generation
and demand data from an installed microgrid. Later, a third
version of this method was proposed in [22], where the tuning
parameters can also vary depending of the instant k when the
predictions are made (αk ). This is done in order to adjust the
interval width to the specific cases of signals with uncertainty
behaviors strongly dependent on the time of day, such as the
cases of solar generation and occupancy level of offices. This
version was only used in [22] for a robust predictive control
design applied on a climatization system.

2) METHOD BASED ON INTERVAL FUZZY NUMBER FOR THE
OUTPUT UNCERTAINTY
In [23], an interval is proposed from a Takagi-Sugeno fuzzy
model. In that case, after that the model is identified, a single
interval fuzzy number is added in order to approximate the
model uncertainties present in the output of the system. That
interval was later denoted in [24] as A1-C1 Takagi-Sugeno
(TS), because is defined by type-1 antecedents and conse-
quences. This interval is defined in [23] as

yr = fr (x)+ a, a ∈ A0 =
{
a0,∈ [a0, a0], µA(t)

}
, (19)

where yr is the output and fr is the local model identified,
both for each rule r . Also in (19), A0 is a type-1 fuzzy set
defined by the bounds [a0, a0] (which are obtained from

the knowledge of the uncertainties given by the error of the
model) and the membership function µA(t).
This method presents its low computational cost to obtain

the interval as its main advantage. This is because the con-
struction of the interval is reduced to identifying a single
fuzzy number. However, this feature also causes the main
disadvantage of this method, which is that its use is very situ-
ational. A reliable prediction interval can be generated when
external disturbances act as the only source of uncertainty
affecting the system.

The intervals obtained with this method have been applied
for the forecasting of solar power generation in [23], [24].

3) METHOD BASED ON FUZZY NUMBERS (SEQUENTIAL
VERSION)
In the work [2], another version of fuzzy interval is pro-
posed, based on the idea of intervals fuzzy numbers presented
in [25]. In this method, the parameters of the consequences
are defined by fuzzy numbers, thus, the output of the fuzzy
interval for each rule r is given by the bounds

y(zk ) =
nz∑
i=1

g(i)r z
(i)
k + g

(0)
r +

nz∑
i=1

s(i)r |z
(i)
k | + s

(0)
r , (20)

y(zk ) =
nz∑
i=1

g(i)r z
(i)
k + g

(0)
r −

nz∑
i=1

s(i)r |z
(i)
k | − s

(0)
r , (21)

where zk is the input vector of the fuzzy model at instant k .
In (20)-(21), g(i)r are the mean values and s(i)r ,s(i)r are the
spread values of the parameter θ (i)r which is associated to the
i-th component of zk . Then, the global bounds of the fuzzy
interval are obtained as

y(zk ) =
m∑
r=1

βr (zk )yr (zk ), (22)

y(zk ) =
m∑
r=1

βr (zk )yr (zk ), (23)

In the direct version of this method, the fuzzy model has
already been identified, so the mean values of the parameters
g(i)r are assumed known. Thus, the interval identification con-
sist in obtaining the spread values (s(i)r , s(i)r ) from solving the
following optimization problem:

min
sr ,sr

PINAW

s.t. PICP = (1− α)%, (24)

The equality constraint PICP = (1 − α)% is a hard
constraint, and due to the nonlinear characteristic of the opti-
mization problem (24), it could be difficult to solve with the
typical algorithms. With the purpose of relaxing this equality
constraint, a version of the optimization problem is proposed
in [2], which includes that constraint as a barrier function.
Such that, the interval identification can also be defined by
the following optimization problem:

min
si,si

J = η1PINAW+ exp{−η2 [PICP− (1− α)]}. (25)
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This method for the prediction interval construction
presents an increment of the computational cost when com-
pared with the previous methods, due to the higher number of
parameters that need to be identified. This inclusion of more
parameters, like the separated spread values, allows to obtain
more precise prediction intervals when dealing with systems
with complex uncertainty behavior (such as non-Gaussian or
heteroscedastic noise).

This interval method based on fuzzy numbers was applied
in the case study presented in [2], which consists in the fore-
casting of the load in a microgrid and the energy consumption
in some residential dwellings.

4) METHOD BASED ON α-LEVEL CUTS OF THE OUTPUT
In the work of [26] a Mamdani fuzzy logic system based on
α-level cuts of the output is presented to generate the predic-
tion intervals. An α-cut of a fuzzy set A is a crisp set Aα that
contains all the elements in U that have membership values
in A greater than or equal to α, that is [27],

Aα = {x ∈ U | µA(x) ≥ (α)}. (26)

The general idea to obtain the prediction interval based on
alpha-cut (α) approach is to decompose output fuzzy sets into
a collection of crisp sets related together via the α levels [28].
Therefore, Alpha cuts on Mamdani Fuzzy logic system based
output fuzzy sets (commonly defuzzified to a crisp number)
are used to provide this prediction interval using the following
4-step process [26]:

• FLS Desing: A Mamdani FLS is designed to obtain
the expected value of the system prediction. Standard
approaches to FLS prediction are applied.

• Generating Output Fuzzy Sets: After constructing the
standard Mamdani FLS, the inferencing over the input
Fuzzy Sets and the rules are processed with conventional
operators. By implementing the selected operators in the
inference step, the output Fuzzy Sets of the Mamdani
FLSs are generated.

• Defining alpha-cut level: There are several options to
select an appropriate level of α for a given application.
In general, the higher the selected value of α, the more
narrow the output prediction interval. However, some
α levels (those which are greater than the height of the
output Fuzzy Set) may not result in any prediction inter-
val output (alpha-cut is an empty set). In addition, some
α levels may lead the traditional centroid defuzzifica-
tion results falling outside of the generated prediction
intervals.

• Generate alpha cut and centroid based outputs: Based
on the selected α-level, the support is used as the pre-
diction interval. Thereafter, a defuzzification technique
is implemented on the gathered output set and a crisp
value is calculated.

The proposed method was explored using both synthetic
(Chaotic Mackey-Glass) and smart-grid specific real-world
(wind power) time series datasets for one-step ahead.

With the sequential methods based on the fuzzy models
already covered in this review, now the intervals of the sec-
ond category aforementioned (the direct methods) will be
explained below.

C. DIRECT METHODS
1) MIN-MAX METHOD
The main idea of this kind of methods was introduced in [29],
where a min-max method is proposed for identifying the
bounds of the fuzzy interval. Then, the interval is obtained by
the identification of two different fuzzy functions, called the
upper and lower functions (f (z) and f (z) respectively), which
are found by solving the following min-max optimization
problems:

min
f

max
zi∈Z
|yi − f (zi)| subject to yi − f (zi) ≤ 0, ∀i, (27)

min
f

max
zi∈Z
|yi − f (zi)| subject to yi − f (zi) ≥ 0, ∀i, (28)

where zi is the i-th sample of the training dataset Z , and yi is
the i-th measured output. Thus, the bounds of the prediction
interval asociated to the input zk are given by

y = f (zk ) =
m∑
r=1

βr (zk )θ rzk , (29)

y = f (zk ) =
m∑
r=1

βr (zk )θ rzk , (30)

where θ r and θ r are the parameter vectors of the fuzzy
functions obtained in (27) and (28) respectively.

The advantage of this method is its great flexibility for
modeling the behavior of prediction error variance. This fea-
ture is present thanks to the identification of two different
models for representing the bounds of the prediction uncer-
tainty. However, the use of two computationally min-max
problems, increases the requirements that the selected opti-
mization algorithm must meet in order to obtain accurate
results. Furthermore, this method does not offer a direct
mechanism to properly sets the expected values for the width
and coverage level of the intervals. Thus, if a specific cover-
age level is wanted for the prediction interval, some variations
of the (27)-(28) should be developed first.

The min-max method was applied to the fault detec-
tion problem over various type of systems. In [30] this
method was used to detect the fault in a Motor-Generator
Plant, in [31]–[33] the formulation of a fault-detection sys-
tem for a nonlinear system with uncertain parameters, and
in [34] this method was used for the construction of a belief
rule-based model for the identification problem of uncertain
nonlinear systems. Also, in [35]–[37] the fuzzy intervals
based in this method were used in the implementation of
a robust control strategy and in [36]–[38] were applied in
the estimation of time-series related with renewable energy
systems.

23362 VOLUME 9, 2021



O. Cartagena et al.: Review on Fuzzy and Neural Prediction Interval Modelling for Nonlinear Dynamical Systems

2) METHOD BASED ON INTERVAL-VALUED DATA
In [39] another version of fuzzy interval models was pro-
posed, based in the use of interval arithmetic for the mod-
eling of an interval valued output. Under this formulation,
the output signal Y to be modeled must be an interval-valued
data defined by a center and a radius, i.e. Y = (Ya,Yc).
In this approach, and following the formulation of TS fuzzy
models (11)-(12), different local models are identified for the
interval-valued output. Thus, for each rule r , the respective
local model has the form

Ŷr (zk ) = θTr zk , (31)

where each component of the vector θTr = [θ (0)r , . . . , θ
(n)
r ]

are interval-valued parameters defined by a corresponding
center a(i)r and a radius c(i)r , such that

θ (i)r = (a(i)r , c
(i)
r ). (32)

Note that, this definition of the model is only valid when
the input vector zk is made up of crisp values. However,
the dynamical interval Takagi-Sugeno fuzzy model proposed
in [39] considers a mixed typed identification problem (there,
zk can be made up of interval-valued and crisp data). Consid-
ering this, the local rules presented in (31) can be rewritten as
follows:

If Y (k − 1) is Ar,1, . . . ,Y (k − nY ) is Ar,nY , u(k − 1) is
Br,1, . . . , u(k − nu) is Br,nu , then:

Ŷr (zk ) = Pr,0 +
nY∑
j=1

Y (k − j) ◦ Pr,j

+

nu∑
l=1

u(k − l)Pr,nY+l, (33)

where Ar,i and Br,i are the fuzzy sets associated to
Y (k−j) and u(k−j) respectively. Note that, since Y (k−j) is an
interval-valued data, Ar,i must be composed by two different
fuzzy sets, such that, one is associated to the center value of
Y (k − j) (denoted as Aar,i), meanwhile the other correspond
to its radius (denoted as Acr,i). Also in (33), the values Pr,i
for i = 1, . . . , nY are the crisp components of the parameter
vector θr which multiply the interval-valued data Y (k − i).
On the other hand, the values Pr,nY+l for l = 1, . . . , nu are
the interval-valued parameters that multiply the crisp input
variable u(k − l).
In order to obtain the prediction interval, the operator
◦ included in (33) is proposed from the interval arith-
metic developed in [39]. That operator is defined for an
interval-valued data (a, c) and a vector xT = [x11, x12,
x21, x22, . . . , xn1, xn2] as follows

(a, c) ◦ x =

(ax11, c|x12|)...

(axn1, c|xn2|)

 . (34)

Following the formulation of the global output of the
Takagi-Sugeno fuzzy model presented in (12), the output of

the proposed interval is represented by

Ŷ (zk ) =
m∑
r=1

βr Ŷr (zk ) (35)

This interval method has the low computational cost for
the training process as its main advantage. This low cost is
presented because the method uses data which are already
been characterized by an interval, so the identified model
gives directly the bounds for the predictions thanks to the
interval arithmetic. Due to that, this interval construction
method is similar in complexity to the identification process
of a classic fuzzy TS model. However, this interval structure
has the difference of a large quantity of parameters that need
to be identified. On the other hand, because this method
requires the use of interval-valued data, its applicability is
restricted to the availability of these types of signals.

This interval method presented in (35) is applied in [39]
for the identification of a nonlinear system. A similar strat-
egy was followed in the works of [40], [41], where a fuzzy
model is identified for an interval-valued data characterized
by confidence intervals obtained from an electro-mechanical
throttle valve using the Chebyshev’s inequality.

3) METHOD BASED ON FUZZY NUMBERS (DIRECT
VERSION)
In the work [42], an alternative version of the method based
on intervals fuzzy numbers is proposed. The parameters of the
consequences are defined by fuzzy numbers, thus, the output
of the fuzzy interval for each rule r is given by the bounds

yr (zk ) =
nz∑
i=1

g(i)r z
(i)
k + g

(0)
r +

nz∑
i=1

s(i)r |z
(i)
k | + s

(0)
r , (36)

y
r
(zk ) =

nz∑
i=1

g(i)r z
(i)
k + g

(0)
r −

nz∑
i=1

s(i)r |z
(i)
k | − s

(0)
r , (37)

where g(i)r are the mean values and s(i)r are the spread values
of the parameter θ (i)r . Then, the global bounds of the fuzzy
interval are given by the same bounds (22)-(23) used in the
sequential version of this method.

In this version of the method, the construction of the
interval fuzzy model, considers the identification of both
values g(i)r and s(i)r performed at the same time (without
the classical identification of the TS model required in the
sequential version). In order to achieve that, an optimization
problem is proposed in [42], which minimize the following
multi-objective cost function,

V = η1 MSE+ η2 PINAW+ η3 (ν(PICP− PICPD))2,

(38)

where PICPD is the desired coverage probability for the
prediction interval, ν regulates the size of the allowed PICP
error and η1, η2, and η3 are weighing factors. Because the
optimization is nonlinear, the problem is solved in [42] using
the Particle Swarm Optimization (PSO) and the Improved
Teaching Learning Based Optimization.
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This method shares the potential to achieve the same ben-
efits as its sequential version. The main difference of this
version is its complexity for the training process. This occurs
because the method performs the obtaining of the model
and the prediction interval at the same time, under the same
procedure.

This interval based on fuzzy numbers was applied only in
the case study presented in [42], where a load forecasting in
a microgrid is performed.

4) METHOD BASED ON TYPE-2 TAKAGI & SUGENO MODELS
In the specialized literature, prediction intervals have been
implemented based on type-2 Takagi & Sugeno models.
According to [43], the interval type-2 (IT2) fuzzy systems can
be implemented by using type-2 fuzzy sets as antecedents of
the rules. Due to that, two activation degrees can be obtained
for each rule, β

r
(zk ) and βr (zk ), which work as the lower and

upper limits of the membership functions. Also, the conse-
quences of the rules are defined by the parameter vector θr
that corresponds to an interval type-1 fuzzy number, i.e. each
component is defined by an upper and lower bounds (θ

(i)
and

θ (i) respectively). Considering that, the limits for each rule
can be computed as follows:

yr (zk ) = θ
(0)
r + θ

(1)
r z(1)k + . . .+ θ

(n)
r z(nz)k , (39)

y
r
(zk ) = θ (0)r + θ

(1)
r z(1)k + . . .+ θ

(n)
r z(nz)k . (40)

Based on the limits identified for each rule, there are two
ways to compute the global bounds of the IT2 fuzzy model.
The unnormalized way considers the following global bounds
for the model

y(zk ) =
m∑
r=1

β
r
(zk )yr (zk ), (41)

y(zk ) =
m∑
r=1

βr (zk )yr (zk ), (42)

while the normalized version computes the global limits as
follows

y(zk ) =

∑U
r=1 βr

(zk )yr (zk )+
∑m

r=U+1 βr (zk )yr (zk )∑L
r=1 βr

(zk )+
∑m

r=L+1 βr (zk )
, (43)

y(zk ) =

∑L
r=1 βr (zk )yr (zk )+

∑m
r=L+1 βr

(zk )yr (zk )∑L
r=1 βr (zk )+

∑m
r=L+1 βr

(zk )
, (44)

where L,U are the switch points given by the Karnik-Mendel
Algorithm [44]. Under this formulation, the prediction inter-
val can be finally obtained by solving an optimization prob-
lem, similar as performed in (24), where the parameters of the
membership functions β

r
(zk ), βr (zk ), and the consequences

θ r , θ r , are the optimization variables.
This prediction interval method arises as the most com-

plete methodology for characterizing the uncertainty of the
predictions. This is because this interval structure allows
to differentiate between the uncertainty present in the input
variables (by the implementation of type-2 fuzzy sets for

the antecedents) and the error associated with the accuracy
of the identified model (by the use of interval type-1 fuzzy
parameters). However, this feature also provokes the high
computational cost for training of this method, due to the
large number of parameters that must be identified, consid-
ering that each of them considerably affects the functioning
of the model.

The IT2 TS fuzzy models have been widely used in liter-
ature for the forecasting of different types of signals (see as
example [45]–[49], [49]). However, the scope of this review
focuses on the application of this fuzzy models as prediction
intervals.

The IT2 TS fuzzy models have been mainly applied as
prediction intervals in several cases related with the modeling
of renewable energy systems. For example, in [23], [24]
these intervals were used for the modeling of solar power,
in [50]–[53] were used for wind power forecasting, and also
in [52] were used to characterize the loads in a microgrid.

5) METHOD BASED ON FUZZY NEURAL NETWORKS
Despite the use of type-2 fuzzy sets in the formulation of
IT2 TS fuzzy models, its use in the literature is mainly
focused on the construction of prediction intervals based on
fuzzy neural networks.

Following the main ideas of IT2 TS models, as previously
mentioned, the fuzzy neural networks can be implemented by
the use of type-2 fuzzy sets in the membership layer (this is
analog to the use of type-2 fuzzy sets as antecedents in the
IT2 TS model). Also, the rule layer of the fuzzy neural net-
work can be defined by type-1 fuzzy numbers (similar idea to
the use of type-1 consequences in the IT2 TSmodels). Finally,
the bounds of this prediction interval are then given by the
output values of the neurons in the new Type-reduction layer.
The structure resulting from the combination of the fuzzy
neural network with the concepts of type-2 fuzzy models,
is shown on Figure 2.

FIGURE 2. Interval Type-2 fuzzy neural network example.

This structure is denoted in the specialized literature as
the Interval Type-2 Fuzzy Neural Network (IT2FNN), and
has been applied in several cases of modeling systems. For
example, the IT2FNN were used for the modeling of chaotic
time series and nonlinear systems in [54]–[59]. Another spe-
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cific applications include the uses for the modeling of an
antilock braking systems in [60] and for wind power forecast-
ing in [61]. Additionally, the work [62] presents an overview
of this kind of prediction intervals used for the prediction of
chaotic time series.

Note that, this interval method could be considered as
an extension of the Type-2 Takagi Sugeno fuzzy models,
because its implementation follows almost the same identifi-
cation process. Each element that conforms the type-2 fuzzy
models is now a different neuron, so the construction of this
model lies in the task of obtaining the accurate neurons in
order to achieve the expected response. This can be per-
formed by a similar optimization as done with the previous
type-2 fuzzy models. Because of that, this interval method
shares the same characteristics with the original type-2 fuzzy
models.

6) JOINT SUPERVISION METHOD
The Joint Supervision Method is based on two conflicting
goals: Predictions must both be as close as possible to the
expected (crisp) value, and the PI must be wide enough
to comply with imposed coverage probability restrictions.
The version of this method that uses fuzzy models is pro-
posed in [63], where an adaptation of the joint supervision
method, previously developed for neural networks in [64],
is performed.

In [63] this method uses a fuzzy model with 3 outputs,
where two of them are associated to the upper and lower
interval bounds, while the third output corresponds to the
expected target value.

For the training procedure, a different cost function is used
for each output (y, ŷ, y). First, all model outputs share anMSE
cost component to minimize prediction error. On the other
hand, the outputs associated to the interval bounds introduce
an additional MSE cost that is applied only when data points
fall outside the predicted interval

L =
1
N

N∑
k=1

(yk − y(zk ))2 + λ
1
N

N∑
k=1

ReLU2(yk − y(zk ))

(45)

L̂ =
1
N

N∑
k=1

(yk − ŷ(zk ))2 (46)

L =
1
N

N∑
k=1

(yk − y(zk ))2 + λ
1
N

N∑
k=1

ReLU2(y(zk )− yk )

(47)

where

ReLU (x) =

{
0, if x < 0
x, if x ≥ 0

(48)

and λ is a hyperparameter that must be tuned for each individ-
ual experiment through an iterative process. On each iteration
of that tuning process, a new Joint Supervision model is

trained with a given λ value, which continues evolving until
the model complies with the desired interval coverage level.

The main advantage of the Joint Supervision Method is
the simplicity of its cost function, when compared with the
optimizations performed during the training process of others
direct methods based on fuzzy models. However, this training
process still has a high computational cost due to the need
to identify a new model for each value of λ tested. This
version of the method is only applied in [63] for temperature
forecasting. There, it is attempted to reduce the effect of the
high computational associated to the training procedure by
performing a logarithmic search for the hyperparameter λ.
With the prediction intervals based on fuzzy model already

covered, next section continues with the presentation of the
methods that use neural networks as its model base.

IV. NEURAL PREDICTION INTERVALS
A. BACKGROUND
Neural Network (NN) predictive models are artificial
intelligence-based regression techniques that have seen con-
tinuous research and improvement since their original con-
ception. Currently, neural network architectures can be
divided between traditional models, which are based on small
and shallow networks, and modern, Deep Learning-based
models, which have caused a strong surge in research interest
for these algorithms.

Among traditional architectures, Multi-Layer Percep-
tron (MLP) predictive models stand out as the most heavily
researched alternative. They consist of an input layer, fol-
lowed by a small (usually one) number of hidden layers, and
a final output layer with a linear activation function. Under
this formulation and assuming only one hidden layer is used,
total model output can be expressed as follows

ŷ(zk ) =
Nh∑
j=1

wj

(
f

( nz∑
i=1

wjiz
(i)
k + bj

))
+ b (49)

where zk is the input vector of the neural network at instant
k (see equation (5)), Nh is the number of neurons in the
hidden layer, wj is the weight that connects the jth hidden
neuron with the output, wji is the weight that connects the ith

input neuron with the jth hidden neuron, ny and nu represent
the input vector length according to the notation presented
in equation (5), z(i)k is the ith component of input vector zk ,
bj is the bias parameter associated with the jth hidden neuron,
b is the bias associated with the output neuron, and f (·) is
a nonlinear activation function, which is usually set as a
hyperbolic tangent or the sigmoid function S(x) = 1

1+e−x .
Currently, on the field of NN-based prediction interval mod-
eling, a great majority of the existing literature is based on this
architecture [8], [64]–[67].

On the other hand, modern architectures have focused on
the research of different, more complex networks that are
more suited for predictive modeling, such as recurrent net-
works [68], which are known for being capable of naturally
modeling data with temporal dynamic behavior, and deep
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neural architectures, which have achieved better performance
than traditional networks by allowing the use of denser mod-
els. Among these architectures, both shallow and deep Long
Short-Term Memory (LSTM) networks [69] stand out as a
popular alternative in predictive modeling that is also starting
to see applications in prediction interval modeling [7], [70].

Aside from their structure, neural models can also vary
on their training procedure. Since most of the modern work
in literature is based on Deep Learning architectures, which
require fast and efficient training algorithms due to the sheer
amount of parameters they have, the most commonly used
technique consists in stochastic gradient descent optimization
with the help of the Backpropagation algorithm. This means
the cost function’s gradient must be constantly calculated,
which demands the use of simple and differentiable functions,
such as Mean Square Error (MSE).

However, while the previous statement is true in the field
of neural predictive modeling, NN-based prediction inter-
val models may require a more flexible approach. This is
because interval models rely on modified network archi-
tectures adapted to produce a more informative output in
the shape of interval upper and lower bounds, resulting in
an increase in model complexity. Because of this, some
methods must introduce more complex, nonlinear, or even
non-differentiable cost functions whose derivative cannot
be calculated in a closed form. Therefore, even though the
stochastic gradient descent approach has proven to obtain
good results while minimizing computational costs, research
on neural interval models has also focused on evolutionary
computing solutions, such as Genetic Algorithms [65] and
Particle Swarm Optimization [66], [67]. Additionally, some
niche cases also exist where the prediction interval con-
struction method does not allow for any of these solutions,
and instead requires a specific training methodology, such
as Bayesian approaches [71], which rely on Markov Chain
Monte Carlo sampling algorithms.

The following subsections show a review of the neural
interval models that can be found in the specialized litera-
ture. As mentioned in section II-E, these methods have been
categorized into sequential and direct methods.

B. SEQUENTIAL METHODS
1) DELTA METHOD
This method [72] uses a strategy consisting of using classical
nonlinear regression theory to obtain an approximation of the
prediction uncertainty. This can be done through the calcula-
tion of the Taylor series expansion of the mean square error
network cost function. After this, assuming the noise variance
is homogeneous and normally distributed, total prediction
variance for each prediction can be represented as

σ 2
tot (zk ) = σ

2
ε (1+ g

T
0 (J

T (zk )J (zk ))−1g0) (50)

where g0 represents the NN model parameters (weights and
biases), J (zk ) is the network’s Jacobian matrix evaluated on
input sample zk , and σε is the data noise variance, which can

be obtained from

σ 2
ε =

1
N

N∑
k=1

(yk − ŷ(zk ))2 (51)

where yk represents the training data point for sample k , and
ŷ(zk ) is the model prediction for input sample zk .

After calculating this value, the (1− α)% confidence pre-
diction interval can be built, assuming it is symmetrical and
Gaussian, as

y(zk ) = ŷ(zk )+ t
1− α2
n−p σtot (zk ) (52)

y(zk ) = ŷ(zk )− t
1− α2
n−p σtot (zk ) (53)

where n is the number of input samples that were used to
train the model, p is the number of network parameters, and
t
1− α2
n−p represents the α

2 quantile of a Student’s t-distribution
cummulative distribution function with n − p degrees of
freedom.

Due to relying on the assumption that the uncertainty
must be homogeneous and Gaussian, this method can fail to
produce quality PIs for applications where data noise varies
through time. Additionally, since the Delta Method requires
the calculation of the model Jacobian matrix, PI calcula-
tion can be computationally expensive, which can make this
method unfeasible for some online applications.

This method has seen applications in electricity load fore-
casting [72], solder paste deposition process monitoring [73],
indoor temperature and relative humidity prediction [74],
groundwater quality monitoring [75] and travel time
prediction [76].

Finally, some versions of this method have been reported in
literature that improve its performance. For example, in [77],
the authors propose the inclusion of a weight decay term
into the network cost function to prevent overfitting, while
in [78] Khosravi et al. propose training a Delta method
interval model where PICP and PINAW (shown in
equations (7)-(10)) are used for neural network architecture
optimization and in [79] a new cost function is proposed,
which strives to minimize PI width while trying to keep
parameters as close as possible to the values that do not
violate the Delta Method’s assumptions. However, despite
these improvements, the main limitations of this method still
remain.

2) BAYESIAN METHOD
The Bayesian Method involves treating the Neural Network
model as a Bayesian Estimator [71], [80], [81], which means
that the neural network weights are modeled as a probability
distribution instead of single values, so that prediction uncer-
tainty, and consequently PIs, can be intuitively derived from
this distribution.

To optimize model parameters, the Bayesian Method
attempts to estimate a posterior distribution for the network
weightsw given the training data points zk by applying Bayes’
Theorem. Using this strategy, it is possible to obtain an
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expression that is proportional to the desired posterior distri-
bution, after which a Markov Chain Monte Carlo algorithm
can be used to estimate the real posterior via a sampling
procedure [71].

Once the approximate posterior is determined, total error
variance can be easily calculated as

σ 2
tot (zk ) = σ

2
D + σ

2
wMP (zk ) (54)

=
1
β
+∇ ŷTwMP (zk )(H

MP)−1∇ ŷwMP (zk ) (55)

where σ 2
D is the data noise variance, wMP represents the

Maximum a Posteriori network weights, ∇ ŷwMP (zk ) is the
network gradient with respect to parameters wMP evaluated
on input sample zk , and HMP is the model Hessian matrix.
Finally, by specifying a desired coverage probability,

a PI can be constructed by calculating the corresponding
quantiles from the posterior distribution [4], [71]

y(zk ) = ŷ(zk )+ q1−
α
2 σtot (zk ) (56)

y(zk ) = ŷ(zk )− q1−
α
2 σtot (zk ) (57)

where q1−
α
2 is the 1− α

2 quantile of the normalized posterior
distribution.

Despite having reported a performance better than that
of the traditional Delta Method and having an understand-
able mathematical foundation based on Bayesian statistics,
the calculation of the Hessian Matrix makes the Bayesian
Method computationally demanding, which hinders its appli-
cability to real problems. This in turn translates into a small
number of applications in literature, mainly electricity load
forecasting [82], potential evapotranspiration forecasting [83]
and bus travel time prediction [76].

3) MEAN-VARIANCE ESTIMATION METHOD (MVEM)
The MVEM [84] proposes a PI can be built if two
NNs are trained sequentially: One for estimating point pre-
dictions (NNy), and one for estimating prediction error
variance (NNσ ).

The methodology used to train this model is to first train
network NNy with a mean square error loss like any standard
neural model. Then, network NNσ is trained to estimate error
variance σ 2

k between each prediction ŷ(zk ) and target yk data
pairs. This is achieved by considering a log-likelihood cost
function

C(y, ŷ) =
1
2

N∑
k=1

(
log(σ̂ 2(zk ))+

(yk − ŷ(zk ))2

σ̂ 2(zk )

)
(58)

Finally, after obtaining predictors σ̂ 2(zk ) and ŷ(zk ), a PI can
be built the same way as the Bayesian Method:

y(zk ) = ŷ(zk )+ q1−
α
2 σ̂ (zk ) (59)

y(zk ) = ŷ(zk )− q1−
α
2 σ̂ (zk ) (60)

Since the MVEM estimates prediction uncertainty from
the output of a Neural Network, it is less computationally
demanding than the Delta and Bayesian methods, while also

being capable of adapting to non-homogeneous noises thanks
to neural networks being universal approximators. Neverthe-
less, its main drawback is that MVEM relies on the assump-
tion that model NNy accurately estimates the true ground
truth data points yk . This is because the log-likelihood cost
proposed in equation (58) assumes prediction error is nor-
mally distributed with mean ŷ(zk ), which means that model
NNy is being treated as an unbiased estimator of the real
expected value of data points yk .

This method has seen applications in wind power forecast-
ing [85], exchange rate forecasting [86], remaining useful life
prediction [87], stock market index forecasting and landslide
displacement prediction [88].

Finally, some versions of this method have been reported
in literature that improve its performance. First, in [85], a new
technique was proposed to train the prediction error variance
network NNσ by fine-tuning the weights using a Coverage
Width-based Criterion (CWC) cost, which can be calculated
as

CWC = PINAW {1+ γ (PICP) exp (η(µ− PICP))} , (61)

where γ (PICP) is represented as

γ =

{
0 PICP ≥ µ,
1 PICP < µ.

(62)

Here, η and µ are two hyperparameters that control the
behavior of the metric CWC. It is important to note that µ
represents the nominal coverage level of the interval, while
η establishes the weight of the penalization for the situations
where the PICP does not reach its desired values.

Another version is proposed in [88] which uses an Echo
State Network, a type of recurrent neural network, as a
baseline model. Since recurrent architectures are a dynamic
modelling technique, this variation reported better variance
estimations on time series prediction tasks.

4) BOOTSTRAP METHOD
The bootstrap method [5] combines an ensemble Neural
Network model with strategic sampling techniques in order
to estimate both model predictions and prediction uncer-
tainty with more precision than standard methods based on
single-model predictions [89].

In the field of neural modeling, ensemble models consist in
a series of methodologies that allow the usage of many neural
networks to jointly solve a problem [90]. Among the different
types of existing ensemble models, the bootstrap technique
stands out due to its ability to quantify the ensemble’s predic-
tion uncertainty [89]. Even though several bootstrap versions
exist to accomplish this goal, the basic algorithm can be
described as follows:

1) Sample total data into S training subsets through a
uniform sampling with replacement method.

2) Train one NN model for each of the resampled subsets
(for a total of S models)
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3) Once each model has been trained, the total output of
the ensemble can be calculated as

ŷ(zk ) =
1

S − 1

S∑
s=1

ŷs(zk ) (63)

where ŷ(zk ) is the total ensemble prediction for input
sample zk and ŷs(zk ) is the prediction of the sth

NN model for input sample zk
Once the ensemble has been trained, the bootstrap method

proposes that epistemic uncertainty σ 2
ŷ can be estimated

from the variance in the outputs of the individual networks
as

σ̂ 2
ŷ (zk ) =

1
S

S∑
s=1

(ŷs(zk )− ŷ(zk ))2 (64)

After this, aleatory uncertainty is estimated by training
a new network σ̂ 2

D(zk ) to fit an estimator of the remaining
residuals

r̂2(zk ) = max
([
yk − ŷvalidation(zk )

]2
− σ̂ 2

ŷ (zk ), 0
)

(65)

where yk is the training data point for sample k and

ŷvalidation(zk ) =

∑S
s=1 qs(zk )ŷs(zk )∑S

s=1 qs(zk )
(66)

qs(zk ) =

{
1, zk is in the validation set of model s
0, otherwise

(67)

This final training step is achieved by using a negative
loglikelihood cost function similar to equation (58):

C(r̂2) =
1
2

N∑
k=1

(
log(σ̂ 2

D(zk ))+
r̂2(zk )

σ̂ 2
D(zk )

)
(68)

Finally, once both uncertainties have been estimated, a PI
can be constructed in a similar fashion to other sequential
methods

σ̂ 2
tot (zk ) = σ

2
D + σ

2
ŷ (69)

y(zk ) = ŷ(zk )+ t
1− α2
S σ̂ (zk ) (70)

y(zk ) = ŷ(zk )− t
1− α2
S σ̂ (zk ) (71)

where tS represents the α2 quantile of a Student’s t-distribution
CDF with S degrees of freedom.

Since the Bootstrap Method requires several models to be
trained, it is more computationally expensive than MVEM,
although this has minimal impact on the evaluation phase,
which can make Bootstrap a feasible solution for online
problems. Additionally, since this method can potentially
estimate more precise predictions, results can be better than
traditional MVEM, although this hypothesis relies on that
each of the S NN models in the ensemble have been trained
with sufficient data. Finally, it is important to note that due to
the way it is trained, the Bootstrap Method is the only neural

interval method capable of separating epistemic and aleatory
uncertainty components.

Thismethod has been applied inmany different fields, such
as estimation of mean wave overtopping discharge for coastal
structures [91], wind power forecasting [51], [92], lake level
forecasting [93], bus travel time prediction [94], nuclear tran-
sient feedwater flow prediction [95], degradation estimation
of components subject to fatigue load [96], electricity price
forecasting [97], nickel-based superalloy design [98], aerosol
optical depth retrieval [99]

Some versions have also been reported for this method.
First, in [100] a more accurate estimate for epistemic uncer-
tainty is proposed by dividing the ensemble into M smaller
ensembles, so that a set ofM predictions is obtained for each
input sample zk

ξ = {ŷiens(zk )}
M
i=1 (72)

from which a set of P bootstrap re-samples can be obtained
as

4 = {ξ∗j }
P
j=1 (73)

ξ∗j = {ŷ
j1
ens(zk ), . . . , ŷ

jM
ens(zk )} (74)

so that epistemic uncertainty can be finally calculated as

σ 2
ŷ (zk ) =

1
P

P∑
j=1

σ ∗
2

j (zk ) (75)

where

σ 2∗
j (zk ) =

1
M

M∑
i=1

(
ŷjiens(zk )− ŷ

j(zk )
)2

(76)

ŷj(zk ) =
1
M

M∑
i=1

ŷjiens(zk ) (77)

On the other hand, in [101] a different method for the
estimation of aleatory uncertainty σ 2

D is proposed by training
a neural network using the CWC cost function shown in
equation (61) using a Simulated Annealing algorithm.

5) COVARIANCE METHOD
The Covariance Method [14], [102] is very similar to the
Delta Method but takes a more statistical approach based on
the work done by Škrjanc and Sáez et al. on fuzzy interval
models [14], [15].

For this method to work, first a standard 3-Layer Per-
ceptron model must be trained, so that predictions can be
estimated as shown in equation (49)

Using this notation and considering a hyperbolic tangent
activation function, hidden neuron output vector Zk and
model parameter vector θ can be defined as

Zk = [Z1k , . . . ,ZNhk , 1] (78)

θ = [w1, . . . ,wNh , b] (79)
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where

Zjk = tanh

( nz∑
i=1

wjiz
(i)
k + bj

)
(80)

ŷ(zk ) = ZTk θ (81)

After this, assuming prediction error is homogeneous and
normally distributed, an expression can be calculated for
prediction error variance

σk = σe(1+ ZTk (Z
∗Z∗T )−1Zk )

1
2 (82)

where σe represents the data noise variance, ZTk is calculated
using validation input data, and Z∗ is the matrix of all hidden
neuron outputs Zk for each sample of the training set.

Finally, a PI can be built as

y(zk ) = ŷ(zk )+ ασk (83)

y(zk ) = ŷ(zk )− ασk (84)

where α is a tunable parameter that needs to be adjusted
through an iterative process to accommodate for desired PI
coverage probability.

As it can be noted in equations (50) and (82), the Covari-
ance Method has a similar uncertainty quantification
approach to the Delta Method, where the difference lies in
that the Delta Method proposes a parameter-driven method-
ology to calculate prediction error variance, while the Covari-
ance Method uses a data-driven estimation. This similarities
mean that both methods also share the same limitations,
which is the reliance on the assumption that prediction error
is homogeneous and Gaussian. Additionally, it is important
to note that the incorporation of an iterative process into the
training procedure makes this method more computationally
expensive than the Delta Method.

This method has seen applications on electricity load fore-
casting [64].

6) FUZZY NUMBERS METHOD
The Fuzzy Numbers Method [2], similar as done in the fuzzy
version showcased in section III-B3, proposes that a PI can
be constructed by using a modified Neural Network where
the network weights are modeled as interval fuzzy numbers.
This means that, using the notation presented in (49) and (80),
output weights wj are now represented by its mean (g(j)) and
two spread (s(j), s(j)) values.
In order to train a model using this method, two identifica-

tion routines must be executed: The first training procedure
is responsible for identifying mean (g(j)) parameters, and
consists of a traditional setup for NN regression consisting
of least means square optimization through Stochastic Gra-
dient Descent via the Backpropagation algorithm. The sec-
ond procedure consists on training the network to identify
spread (s(j), s(j)) parameters, which are obtained by solving an
unconstrained optimization problem shown in equation (25)
where the objective function resembles the form of the
CWC metric presented in (61).

Then, the upper and lower bounds for the PI model y, y,
are calculated using similar equations to those used in the
version of this method based on fuzzy models. Thus, for this
case (20)-(21) are rewritten as

y(zk ) =
Nh∑
j=1

g(j)Z (j)
k + g

(0)
+

Nh∑
j=1

s(j)|Z (j)
k | + s

(0) (85)

y(zk ) =
Nh∑
j=1

g(j)Z (j)
k + g

(0)
−

Nh∑
j=1

s(j)|Z (j)
k | + s

(0) (86)

where Z (j)
k are the same outputs of the hidden layer presented

in (80).
Due to the introduction of separate spread parameters (s, s)

and making no assumptions on uncertainty behavior, this
version of the method is capable of obtaining precise inter-
vals even when analyzing systems with complex uncertainty
behavior (such as non-Gaussian or heteroscedastic noise).
However, this increase in model robustness comes at the com-
putational cost of having to train three times more parameters
than a standard neural model.

This method has seen applications mainly in electricity
load forecasting problems [2].

C. DIRECT METHODS
1) LOWER UPPER BOUND ESTIMATION (LUBE)
This method proposes a solution for PI construction where
a single NN model with a modified architecture is directly
trained to predict the upper and lower bounds of the
interval [8].

The proposed network used for this method consists of
a model similar to a traditional architecture, but where
two units are used on the output layer. This means that
some model parameters will be shared among both outputs,
which makes them incompatible with a traditional back-
propagation training routine. In order to solve this problem,
multiple-output networks calculate the gradient of the shared
weights as the mean between the gradient derived from each
model output.

Afterwards, this method proposes to train the multiple-
output architecture by using the Coverage Width-Based Cri-
terion (CWC) equation presented in (61) as a loss function.

It is important to note that LUBE has consistently reported
better and faster performance than all other sequential inter-
val methods, which is why most of the recent investigation
efforts dedicated to Neural PI models have been to improve
the optimization procedure for the LUBE method. Since the
CWC cost function is highly nonlinear, a wide range of non-
conventional optimization algorithms have been tried, such as
Simulated Annealing [8], Particle Swarm Optimization [66],
and Genetic Algorithms [65], and even multi-objective evo-
lutionary computation [67].

This method has seen applications in wind power fore-
casting [51], [66], [103], wind speed forecasting [104],
[105], solar power forecasting [67], [106], electricity load
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forecasting [66], [107]–[109], streamflow discharge forecast-
ing [110], landslide displacement prediction [111], reactor
temperature prediction [112], [113], flood forecasting [114],
[115] and electric arc furnace reactive power compensation
estimation [116]

Reported variations for this method mainly consist of
the inclusion of techniques such as additional feature
selection [109], model ensembles [109], [112] and
multi-objective optimization [117]. However, in [107] a
different variation is proposed in the shape of a modified
CWC cost function, where the PINAW term is replaced by
a PI Normalized Root-mean-square Width (PINRW):

PINRW =
1
R

√√√√ 1
N

N∑
k=1

(
y(zk )− y(zk )

)2
(87)

where R is calculated as shown in equation (8). This modifi-
cation was proposed to create an interval cost function which
more closely resembles the behavior of a mean square error
loss by imposing a heavier penalization on big forecasting
errors.

Additionally, in [115] a different replacement for the
PINAW term is proposed as Prediction Interval Average Rel-
ative Width (PIARW)

PIARW =
1
N

N∑
k=1

(
y(zk )− y(zk )

)
yk

(88)

where yk is the target data for sample k . This work also pro-
poses the inclusion of the Prediction Interval Symmetry (PIS)
metric

PIS =
1
N

N∑
k=1

∣∣∣yk − y(zk )+y(zk )
2

∣∣∣
y(zk )− y(zk )

(89)

so that the new Coverage Width Symmetry-based Crite-
rion (CWSC) cost can be calculated as

CWSC = γ (PIS)eη3(PIS−µ2) + η2PIARW

+γ (PICP)e−η1(PICP−µ1) (90)

These modifications were proposed in an attempt to allow
the LUBE method to make a more informed optimization
by supplying full access to the training data points yk on
the cost function, while also giving importance to optimiz-
ing the model crisp prediction through the inclusion of the
PIS component.

2) JOINT SUPERVISION
The Joint Supervision Method, as mentioned before in
section III-C6 proposes the identification of one singular
model composed by 3 outputs. This version of the method
proposed in [64], uses a singular neural network as a base
model, where two of its outputs will be used for the upper
and lower interval bounds, while the third output will be
associated to the predicted crisp value.

The training procedure follows the same steps described
in section II-E for the fuzzy version of this method, solv-
ing the same cost functions presented in (45)-(47) for each
NN output (y, ŷ, y).
The main advantage of the Joint Supervision Method over

other Direct Methods is that the simplicity of its cost function
allows the use of Stochastic Gradient Descent algorithms for
optimization, which have been highly optimized for neural
network training, resulting in much faster PI construction.
Despite this decrease in computational cost, the inclusion
of a hyperparameter λ, which must be optimized through a
logarithmic search algorithm, into the model loss functions
(see equations (45) and (47)) introduces the necessity of
having to retrain the model several times in order to obtain
an optimal solution. This is because, on each iteration of the
λ hyperparameter logarithmic seach, a new Joint Supervision
model must be trained using a different λ value for the cost
function. This has a direct impact on model training times,
which makes the Joint Supervision Method unable to fully
take advantage of its simple cost function.

This method has seen applications mainly on load forecast-
ing problems [64], [70].

3) QUALITY DRIVEN (QD) METHOD
The QD Method [7] proposed an improvement over the
LUBE method through the introduction of a new, simplified
cost function

LQD = MPIWcapt + λ
n

α(1− α)
max(0, (1− α)− PICP)2

(91)

where λ is a hyperparameter that does not depend on the
dataset nor the desired coverage probability, n is the total
amount of data points, (1− α) is the desired PI coverage
probability, andMPIWcapt stands for Captured Mean Predic-
tion Interval Width

MPIWcapt =

∑N
k=1(y(zk )− y(zk ))ik∑N

k=1 ik
(92)

where

ik =

{
1, if y(zk ) ≤ yk ≤ y(zk )
0, otherwise

(93)

Using this procedure, the QD Method theoretically can
build PIs using Stochastic Gradient Descent-based optimiza-
tion, which makes it a faster alternative to LUBE while still
retaining its interval quality. Additionally, the inclusion of the
α parameter into the model cost function allows this method
to explicitly introduce the desired coverage probability into
the network training, which erases the need for a hyperparam-
eter tuning procedure, unlike the Joint Supervision method.
However, the performance of this method is limited because
the proposed modifications to the LUBE cost function rely
on the assumption that training data is independent and
identically distributed, which is incompatible with dynamical
system modeling.
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Despite the reported advantages for this method, due to its
novelty there are still no reported applications in literature
which can corroborate experimental results with artificial
datasets.

4) BAYES BY BACKPROP (BBB) METHOD
The BBB Method [118] proposes an algorithm that can be
used to train Bayesian networks (where weights are modeled
as probability distributions, as presented in the Bayesian
Method) without having to resort to MCMC techniques and
Hessian matrix calculations. This is achieved by proposing a
modified backpropagation algorithm that is both compatible
with Bayesian networks and can converge to a variational
posterior of the weight distribution.

The BBB algorithm consists on applying the local repa-
rameterization trick [119] to slightly alter the mean and stan-
dard deviation parameters of the weights on each iteration

θ = (µ, σ 2) (94)

ε ∼ N (0, 1) (95)

f (ε) = w = µ+ σ · ε (96)

where θ is the vector of all network weights,µ is the vector of
all network means, and σ is the vector of all network standard
deviations. Using this technique, a gradient can be calculated
and consequently the network parameters can be updated as

∇µ =
∂f
∂w
+
∂f
∂µ

(97)

∇σ =
∂f
∂w

ε

σ
+
∂f
∂σ

(98)

µ ← (µ− α∇µ) (99)

σ ← (σ − α∇σ ) (100)

Once the final posterior distribution is obtained, prediction
uncertainty can be calculated by making several predictions
for each input sample: Since network weights act as proba-
bility distributions, they are constantly reevaluated for each
new prediction instance according to equation (96). Using
this data, mean and standard deviation statistics can be cal-
culated for the model prediction. Finally, a PI can be built
by computing the corresponding quantile from the prediction
distribution.

5) RANDOMIZED PRIOR FUNCTIONS METHOD
This method introduces a Bayesian approach for uncertainty
estimation that does not require for network weights to be
modeled as probability distributions [120]. Instead, the Ran-
domized Prior Functions Method proposes a modified net-
work architecture where total model predictions are obtained
by adding the result of two separate networks: A regular,
trainable network NNreg, and a ‘‘prior’’, randomly-initialized
non-trainable network NNprior , so that

ŷtot (zk ) = ŷreg(zk )+ ŷprior (zk ) (101)

where network NNprior plays a role similar to the prior dis-
tribution defined in Bayesian inference, since it controls the
model behavior in regions with higher uncertainty. This intu-
ition is furtherly studied in the original article by proving that
there is, in fact, a connection between generating a predic-
tion using this architecture and sampling from the posterior
distribution. This way, PIs can be estimated by first approx-
imating the model posterior through repeated sampling by
generating several model predictions, and then computing the
corresponding quantile.

Although this method reported satisfactory results on
its original publication [120], additional experiments are
required to verify how its performance compares to other
existing methods.

V. CHARACTERISTICS AND DISCUSSION OF METHODS
In this section, the main characteristics of the pre-
sented fuzzy and neural prediction intervals mentioned in
sections III and IV are discussed.

In order to compare the performance and applicability of
each of the presented methods, it is necessary to observe the
main characteristics that distinguish each model, such as the
methodology used to generate interval outputs, the number of
parameters, the identification procedure, and the assumptions
on the behavior of uncertainty. To facilitate this analysis,
a summary of themain characteristics of each interval method
is shown in Tables 2 for fuzzy sequential methods, 3 for
fuzzy direct methods, 4 for neural sequential methods, and
5 for neural direct methods. In these tables, when
specifying the number of parameters of each method,
the notations presented in equations (5) and (49) were
used.

For the case of interval methods based on fuzzy models,
the number of parameters is affected by the structure of
the base model. To perform a uniform quantification of this
variable, an assumption is taken first. For the antecedents
of the fuzzy models, fuzzy sets with Gaussian membership
degrees are assumed to be used, thus for each input vari-
ables the mean and variance of the Gaussian distributions are
considered as parameters. In summary, each local model has
its own set of parameters for antecedents and consequences,
thus the total quantity of parameters to be considered for both
antecedents and consequences of the fuzzy model, increases
proportionally with number of rules r .
It is important to note that, due to the different methodolo-

gies used by each model to quantify its computational cost,
this variable was indirectly handled in the tables according
to three criteria: The number of additional parameters intro-
duced to the model structure by the interval method (compu-
tational cost increaseswith number of parameters), the type of
optimization method that has to be used for parameter identi-
fication (gradient based methods have a lower computational
cost than nonlinear alternatives), and the number of times a
newmodel has to be trained to converge to an optimal solution
(computational cost increases with the number of models and
training repetitions).
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TABLE 2. Characteristics of the fuzzy prediction intervals based on
sequential methods.

Based on these tables, both fuzzy and neural direct methods
tend to have a higher computational cost and number of
parameters than sequential methods. This tendency can be
explained since sequential methods rely mostly on a previous
trained base model, so the training procedure is only applied
for obtaining those parameters which are directly involved in
the calculation of the PI. Instead, direct methods incorporate
both the predictive model training and the interval model
training into a single procedure, which can introduce some
complexities (for example, in neural methods such as LUBE
which cannot be trained with traditional neural network opti-
mization algorithms, or fuzzy methods that consider larger
quantities of parameters by including the concepts of type-2
fuzzy sets). The only exceptions among sequential methods
to this tendency to have a lower computational cost than
the direct methods, are those prediction intervals that do
not rely on simplifications or assumptions on the behavior
of uncertainty, such as the Bayesian Method and the Fuzzy
Numbers Method.

Another aspect that can be noted is that the selection of the
most suited interval model for any experiment depends on
the characteristics of the application on which it will be used.
Variables such as computational time available, uncertainty
behavior (howmany assumptions can be made without losing
too much performance), and interval informativeness (how
much useful information the interval provides) may be the
more relevant when making this decision.

Additionally, among all reported interval methods, there
exist three models which can be applied on both fuzzy and
neural architectures: The covariance method, the fuzzy num-
bers method, and the joint supervision method. Although the
main fundamentals are shared among both versions, some dif-
ferences can still be appreciated on these methods. Regarding
the covariance method, its main difference can be noted by

observing equations (15), (16) and (82) where it can be seen
that the fuzzy version of this method estimates prediction
uncertainty on each of the fuzzy rules of the base model,
and then calculates the total uncertainty as the weighted
sum of each local estimation, while the neural version relies
on a single calculation for uncertainty estimation. On the
other hand, regarding the methods based on fuzzy numbers,
its main difference lies in the type of parameters that are
modeled as fuzzy numbers. On one hand, in the fuzzy version
the method is applied to the consequence parameters, which
means that the spread values can take advantage of the non-
linearities of the base model. On the other hand, the neural
version only considers the use of fuzzy numbers for the
weight values of the final layer. And the interval parameters
cannot take advantage of the neural network nonlinearities
since the output layer of neural networks considered by the
methods does not use a nonlinear activation function. Finally,
regarding the joint supervision method, its main difference
can be appreciated in its training routine, where the neural
method uses gradient descent-based methods which have
been optimized for robust and efficient neural network train-
ing, while reported applications with the fuzzy method rely
on evolutionary computation methods, that could increase its
computational cost.

The following subsections will proceed to discuss the char-
acteristics pertaining exclusively to methods based on fuzzy
models, and later to methods based on neural models.

A. FUZZY PREDICTION INTERVALS
From the several fuzzy methods reported in this literature
review, the versions based on type-2 fuzzy models and
IT2 fuzzy neural networks stand out as the best suited meth-
ods for the identification and differentiation of the effects of
internal and external sources of uncertainty. This is due to
the structure of this kind of models, where part of the exter-
nal uncertainty (mainly those associated to external inputs)
can be represented by the use of type-2 fuzzy sets in the
antecedents of the rules, while the internal uncertainty of
the system can be handled by both, the rest of the type-2
antecedents and the type-1 consequences. Despite the fact
that the other reported sequential methods cannot normally
make this differentiation, some of them have the potential to
separate their effect, such as the Covariance Method.

Considering the requirements of the specific application,
the selection of the best suited interval method may vary.
This decision depends on factors such as the type of data
that is available and how detailed the estimations of the
effects of internal and external uncertainty are desired. For
example, if the model training data already contains interval
measurements, the more suited alternative corresponds to the
Interval-valued method, which is adapted for that type of data
and then applies the ideas of interval arithmetic. On the other
hand, if the application requires a detailed characterization of
the effect of different types of uncertainty, the most appro-
priate choice corresponds to methods based on type-2 fuzzy
models. Additionally, if the requirements of the user related
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TABLE 3. Characteristics of the fuzzy prediction intervals based on direct
methods.

to detailed characterization are not as demanding, it is more
recommended the use of the min-max method, the covariance
method or the methods based on fuzzy numbers. This is
because despite their simple structure, they are still useful for
giving a general information of the total uncertainty present in
the prediction of the modeled signal. In summary, below are
included some general comments regarding the applicability
of each method:

1) CovarianceMethod:Thismethod is suitable for appli-
cations which require solutions with a low compu-
tational cost, where there are no external sources of
uncertainty and system uncertainty can be reasonably
approximated as homogeneous and Gaussian

2) Fuzzy Numbers for Output Uncertainty: The sim-
plicity of the interval structure only allows its applica-
bility to systems with additive external uncertainty.

3) Fuzzy Numbers Method (sequential version): The
interval structure of this method is versatile and can
be applicable to different type of systems and several
uncertainty behaviors. Also, due to the use of a previous

TABLE 4. Characteristics of neural interval models based on sequential
methods.

identified model, its training process does not increase
in complexity.

4) Method based on α-level cuts of the output: This
interval preserve the uncertainty information of the sys-
tem without requiring additional computational effort
for computing the uncertainty of the predicted output.

5) Min-Max method: There are more recent intervals
which outperform the capacities of this method, such as
the fuzzy numbers and the joint supervision methods.
However, this method is still useful for cases where the
uncertainty has a strong and persistent effect over time.

6) Interval-Valued Data: Its feasibility is restricted to
applicationswhere the dynamical system to bemodeled
presents interval-valued data as training inputs.

7) Fuzzy Numbers Method (direct version): Even
though this method shares most of the advantages
of its sequential counterpart, the training process of
this version results more complex and computationally
demanding since base model and interval identification
are performed jointly at the same time.

8) Type-2 TS models and IT2 Fuzzy Neural Net-
works:Both methods are suitable for applications with
complex system dynamics and uncertainty behaviors.
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TABLE 5. Characteristics of neural interval models based on direct
methods.

The structure of these models allows an exhaus-
tive characterization of uncertainty in most of system
dynamics. However, this comes at the disadvantage of
an elevated computational cost for its training proce-
dure.

9) Joint Supervision Method: Suitable for applications
showcasing complex uncertainty behavior where the
number of parameters and computational time are not
a concern. This method can work well in most of
dynamic systems, but in order to obtain good results,
the three models which define the interval structure
must be identified multiple times due to the search
process of its hyperparameter.

Regarding its applications, fuzzy prediction interval mod-
els have been used on several types of problems. In this
context, Table 6 shows a summary of the applications
reported in literature for the methods described in this review,
where cells left with a horizontal line (’—’) represent cases
where no literature examples were found for the given
application-interval method combination.

As shown in Table 6, the uses of fuzzy prediction inter-
vals are mainly focused on signal modeling in the context
of renewable energy systems and operation of microgrids.
There, the respective models were used for the formulation of
robust control strategies. Other important applications which
can be highlighted in the previous table is the modeling of
nonlinear systems and chaotic time series forecasting. This
is due to the extensive contribution of the IT2 fuzzy neural

networks, which are widely researched in literature for this
kind of applications.

B. NEURAL PREDICTION INTERVALS
Among the neural interval models presented in this review,
the bootstrap method rises as an interesting proposal. This
is because of two main reasons: First, the bootstrap method
is the only method capable of estimating aleatory and epis-
temic uncertainty separately without any assumptions of
homoscedasticity, which allows the obtention of unbiased
estimators for these variables. Second, the bootstrap method
can be used in conjunction with other interval models to fur-
therly improve their performance and/or quantify confidence
bounds for the interval parameters.

Additionally, other notable interval methods that find util-
ity in specific cases exist. For example, if an application
requires very fast training times for online learning and the
uncertainty of the model may be reasonably approximated
as homoscedastic, the Delta Method will probably be the
best suited solution. On the other hand, if an application
does not call for online learning and presents a complex
form of uncertainty that cannot be easily simplified, methods
such as Fuzzy Numbers, Joint Supervision, Quality-Driven
or even Bootstrap (especially if a separate quantification of
aleatory and epistemic uncertainties is desired) may be the
most appropriate solutions since they make none or very few
assumptions on uncertainty behavior. In particular, the fol-
lowing comments can be made regarding the applicability of
each method:

1) Delta Method: Suitable for applications that require
very fast models with a small amount of parameters.
Additionally, due to the assumptions of this method,
system uncertainty must be studied to determine if it
can be reasonably approximated as homogeneous and
Gaussian.

2) Bayesian Method: The calculation of the Hessian
matrix makes this method more suitable for applica-
tions where training times are not a problem. Addi-
tionally, the low amount of reported applications in
literature for this method (in part due to the previ-
ously mentioned computational cost problems) makes
its applicability harder to determine.

3) Mean-Variance EstimationMethod: The assumption
of zero epistemic uncertainty hinders the performance
of this method, while other alternatives with simi-
lar computational costs, such as the Quality-Driven
method, provide higher quality intervals since they do
not rely on this assumption.

4) Bootstrap Method: Suitable for applications where
long training times are not a limitation and a separation
of epistemic and aleatory uncertainties is desired.

5) Covariance Method: While this method has a similar
performance than the Delta Method, the necessity of
performing a logarithmic search for hyperparameter
optimization makes the Covariance Method more com-
putationally demanding.
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TABLE 6. Applications of the fuzzy prediction intervals.

6) Fuzzy Numbers Method: Since spread parameters
are only used in the final network layer, the LUBE
method produces higher quality intervals at the same
computational cost.

7) LUBE Method: Suitable for applications showcasing
complex uncertainty behavior where model weight and
computational time are not a concern. Additionally, it is
also recommended to perform a comparative analysis
along with the Joint Supervision and Quality-Driven
methods. In general, the LUBE method has a lower
training time than the Joint Supervision method, while
also not requiring any assumptions on uncertainty
behavior.

8) Joint Supervision Method: Suitable for applica-
tions showcasing complex uncertainty behavior where
model weight and computational time are not a con-
cern. Additionally, it is also recommended to per-
form a comparative analysis along with the LUBE and
Quality-Driven methods. In general, the Joint Super-
vision method has the highest training time among
the 3 methods, but has the advantage of allowing
non-symmetrical intervals, which can be useful for
certain systems.

9) Quality-Driven Method: Suitable for applications
showcasing complex uncertainty behavior where
model weight and computational time are not a con-
cern. Additionally, it is also recommended to perform
a comparative analysis along with the LUBE and
Joint Supervision methods. In general, the Quality-
DrivenMethod has the shortest training time among the
3 methods, but relies on the assumption of i.i.d. data,
which harm interval quality on dynamic systems.

10) Bayes by Backprop Method: Since no compara-
tive experiments with other state of the art methods

have been performed, this method is more suitable for
research purposes.

11) Randomized Prior Functions Method: Since no
comparative experiments with other state of the art
methods have been performed, this method is more
suitable for research purposes.

Additionally, reportedmodel applicationsmay also be used
as comparison criteria for the models. In order to facilitate
this analysis, a summary of the applications of each neural
interval model covered in this work can be seen in Table 7.
Similarly to table 6, cells left with a horizontal line (’—’)
represent cases where no literature examples were found for
the given application-interval method combination.

As shown in Table 7, neural interval models have mainly
seen use in robust control applications, especially on renew-
able energy systems and robust microgrid operation, where
these models have been used for tasks such as wind speed
forecasting, solar power prediction, and load forecasting.

VI. SIMULATION TESTS
In this section, comparisons between the most significant
methods reported in previous sections are shown. Two bench-
mark cases were implemented for testing these methods:
the modelling of the modified Chen series [121] and the
forecasting of solar power generation data from Milan [122].
In order to make fair comparisons, all these methods were
trained to comply with the 90% of coverage level requirement
across the prediction horizon for the training database.

Among the fuzzy prediction interval models reported in
section III, the methods selected for the simulation tests
were: the sequential version of the interval based on fuzzy
numbers, the fuzzy version of the joint supervision method
and the unnormalized version of the Type-2 TSK fuzzy mod-
els. On the other hand, from the neural prediction interval
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TABLE 7. Applications of neural prediction intervals.

models reported in section IV, the methods selected were:
the interval based on fuzzy numbers, the neural version of
the joint supervision method and the quality driven method.

The simulation results for both benchmark cases consid-
ered for this work are shown below.

A. MODIFIED CHEN SERIES MODELING
The modified Chen series considered in this work has the
same dynamics used in [64], which are described as:

y(k) =
[
0.8− 0.5 exp

{
−y2(k − 1)

}]
y(k − 1)

−

[
0.3− 0.9 exp

{
−y2(k − 1)

}]
y(k − 2)

+ u(k − 1)+ 0.2 u(k − 2)

0.1 u(k − 1)u(k − 2)+ e(k), (102)

where the noise depends on the previous state as follows

e(k) = 0.5 exp
{
−y(k − 1)2

}
β(k), (103)

and β is a white noise signal.
A total of 10.000 samples were obtained from the sim-

ulation of this series, which were separated into training,
test and validation datasets, in proportions of 60%, 20% and
20% respectively. Based on this, fuzzy and neural network
models, along with their respective intervals, were trained
using the training set. On the other hand, the structure of
both kind of models, which is defined by the quantity of rules
(in the fuzzy approach), the number of layers and neurons
(in the neural approach), and the selection of their input
variables, was decided based on the minimization of the
prediction error in the test dataset. Finally, the models and the

corresponding prediction intervals were validated using the
validation dataset, verifying that the trained intervals obtain a
performance close to that obtained in the training set.

Due to the different ways of identifying the models and the
interval of each type of method used, several architectures
had to be considered. Tables 8 and 9 show a summary of
the configurations that were used for each fuzzy and neu-
ral interval model, respectively. From these tables it can be
noted that the obtained fuzzy models share most of their
characteristics, with the difference being the fewer number of
rules considered by the fuzzy joint supervision method when
compared with the rest of fuzzy methods. This low number
of rules, which is obtained during the structure optimization,
results from the use of a different number of input variables
and clustering algorithms, i.e., the fuzzy joint supervision
method converges to a different structure (3 rules while
using the Gustafson-Kessel clustering algorithm). On the

TABLE 8. Baseline architectures obtained for each fuzzy interval model
on the modified Chen series dataset.
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TABLE 9. Baseline architectures obtained for each neural interval model
on the modified Chen series dataset.

other hand, the obtained neural models showcase more dif-
ferences; while the Fuzzy Numbers network was trained
using Levenberg-Marquardt optimization in order to replicate
the model configuration reported in the source material [2],
the Joint Supervision and Quality Drivenmodels were trained
using ADAM optimization. Additionally, the Quality Driven
model was trained using a lower learning rate following the
authors recommendations [7].

Table 10 shows the performance metrics obtained (RMSE,
PICP and PINAW, defined in equations (6)-(10)) with the
selected methods for one-, 8- and 16-prediction steps, all
of them measured for the validation dataset. Additionally,
the table includes the number of the parameters given by the
crisp model (as defined above equation (2)) and the interval
model. Also, Figures 3-8 present the prediction intervals
obtained with the six selected methods for a 16-steps ahead
prediction.

FIGURE 3. 16-steps ahead prediction interval based on fuzzy numbers.

As reported in Table 10, all methods achieve similar results
of coverage level, close to the target value defined for train-
ing (PICP = 90%). This is expected due to the importance
given to the PICP metric along all methods during the train-
ing procedure. An important difference observed among the
methods is the interval width (PINAW) obtained along the
prediction horizon. Despite the narrower intervals obtained
by the methods based on neural networks when compared
to those resulting from the methods that use fuzzy models
for a one-step prediction horizon, the fuzzy numbers method

FIGURE 4. 16-steps ahead prediction interval based on fuzzy joint
supervision.

FIGURE 5. 16-steps ahead prediction interval based on type-2 fuzzy
models.

FIGURE 6. 16-steps ahead prediction interval based on neural fuzzy
numbers.

(fuzzy version) and the type-2 fuzzy models show the best
performances with the lowest values of PINAW for greater
prediction steps. This better behavior along the prediction
horizon can be explained because of the greater complexity
of the interval structure associated to their large quantity
of parameters, which allows a better fit of the interval to
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TABLE 10. Performance metrics for the modified Chen series in the validation dataset.

FIGURE 7. 16-steps ahead prediction interval based on neural joint
supervision.

FIGURE 8. 16-steps ahead prediction interval based on quality driven
method.

the accumulated uncertainty in the prediction. However, this
greater complexity in the interval structure has the risk of
causing convergence problems during the training process,
due to the large degrees of freedom of the optimization prob-
lem that need to be solved.

It is important to highlight that for this case study, the
type-2 fuzzy model presents the best results with respect to
the other methods. This is achieved thanks to the fact that
this method forces that a different model must be trained for

each prediction step until the horizon is reached (for example,
to calculate 8 steps ahead predictions, a total of 8models must
be trained, where each model incorporates the predictions of
the previous steps models as inputs). This is an important
difference of the type-2 fuzzy models with respect to other
methods, which rely on only using a unique base model for all
prediction steps. Additionally, as mentioned before, the large
number of parameters provides a more complex structure that
allows to reach better results than those obtained with the rest
of direct methods implemented.

On the other hand, another interesting observation can
be made by comparing the results obtained from the neural
joint supervision and quality driven methods, where the joint
supervision method achieves a slightly better performance.
This can be attributed to the data independence assumptions
that are made by the quality driven method: since dynamical
systems are inherently dependent, the independence assump-
tion can only be approximated via batch training. However,
this technique is not perfect and could carry the risk of caus-
ing an overestimation of the error variance. On the other hand,
the RMSE metric had lower values with the joint supervision
method, probably due to the inclusion of an extra output unit
trained specifically for the optimization of crisp predictions,
while the training process of the quality driven method only
focuses on optimizing the interval bounds.

Having discussed the results obtained for the Chen series
modeling, the simulation results for the second benchmark
case are presented next.

B. FORECASTING OF SOLAR POWER GENERATION
Solar power generation data from the Multi-Good Microgrid
Laboratory (MG2

lab) of the Politecnico di Milano, Milan,
Italy [122], are used as the second case study for testing
the prediction interval methods mentioned in this work. The
available data corresponds to the measurements taken in the
years 2017 and 2018, with a sample time of one hour. A total
of 11.688 samples are divided in the same proportions as the
previous case study: 60% for training, 20% for testing and
20% for validation.

The training process of the intervals are performed using
a target value for the coverage level of 90%. Similar to the
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Chen series experiment, the structure optimization of
the models was decided based on the configuration that had
the best performance of the metrics in the test dataset. A total
of 48 regressors, corresponding to the data of two previous
days, were used as the initial candidate inputs, selecting the
most relevant inputs by performing a sensitivity analysis.

Tables 11 and 12 show a summary of the different baseline
configurations that were obtained for each fuzzy and neural
interval model, respectively.

TABLE 11. Baseline architectures obtained for each fuzzy interval model.

TABLE 12. Baseline architectures obtained for each neural interval model.

From tables 11 and 12, it can be noted that, unlike the
previous case of the modified Chen series experiment, in this
case all fuzzy models reported on Table 11 share the same
hyperparameters. This is because this time the same number
of input variables and clustering algorithmswere used. On the
other hand, the neural models reported on Table 12 preserved
most of their hyperparameters that were used on the case of
the modified Chen series experiment.

Table 13, shows the performance metrics obtained with
the selected methods for different prediction horizons, all
of them measured on the validation dataset. Additionally,
Figures 9-14 present the prediction intervals obtained with
the selected methods for a 24 hours ahead prediction.

From Table 13, similar tendencies can be appreciated on
some models when compared to the results obtained for the
Chen series modeling. In these results, all methods managed
to comply with the desired coverage level (PICP) of 90%,
while the fuzzy prediction intervals based on fuzzy numbers,
the type-2models and the quality drivenmethod presented the
overall narrowest intervals throughout the prediction horizon
(see PINAW in Table 13). Additionally, from Figures 9-12 it

FIGURE 9. 24-steps ahead prediction interval based on fuzzy numbers.

FIGURE 10. 24-steps ahead prediction interval based on fuzzy joint
supervision.

FIGURE 11. 24-steps ahead prediction interval based on type-2 fuzzy
models.

can be seen that the fuzzy prediction interval based on fuzzy
numbers presents a smoother behavior throughout the plotted
data.

Since the explanation of the main tendencies presented by
the intervals were already covered in the previous benchmark
case, here the discussion will be focused on those results that
did not follow these previous trends.
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TABLE 13. Performance metrics in the validation dataset.

FIGURE 12. 24-steps ahead prediction interval based on neural fuzzy
numbers.

FIGURE 13. 24-steps ahead prediction interval based on neural joint
supervision.

When compared with the Chen series results, the direct
methods based on neural networks obtained wider intervals,
with a coverage level greater than the target value defined for
training, especially the Joint Supervision method. The main
challenge when training predictive models for solar power
forecasting lies in dealing with a hard lower bound at zero
power which also appears in 50-60% of the dataset (corre-
sponding to night hours). This phenomenon can impact the

FIGURE 14. 24-steps ahead prediction interval based on quality driven
method.

model performance in two main ways: First, if model predic-
tions are not handled properly, it is possible to obtain negative
values for the predictions. Since no negative data is present
on the dataset, these predictions can produce an abnormal
increment of the uncertainty estimation. This situation heav-
ily impacts interval quality, specifically for larger prediction
steps, which are affected by the uncertainty accumulation of
its previous predictions. Secondly, since an important propor-
tion of the dataset is zero-valued, the resulting search space
for the optimizer is highly unstable, which can produce bad
local minima or exploding gradients on neural models. How-
ever, if correct preprocessing and postprocessing measures
are taken, it can be appreciated that average interval width
tends to abruptly descend on these regions. This is because
samples corresponding to night hours intrinsically have a
lower uncertainty due to the absence of solar radiation.

Despite all the previous considerations, it must still be
noted that in Table 13 the Joint Supervision method presents
a higher drop in performance in comparison to the Qual-
ity Driven model even though both methods should be
equally affected by the complications of the dataset. This
phenomenon can instead be attributed to the logarithmic
search used by the Joint Supervision method for hyperparam-
eter optimization, since this process is highly vulnerable to
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parameter initialization uncertainty and can sometimes
present convergence problems on complex solution spaces,
such as in this experiment.

To finish the analysis and comments of the results obtained
by both benchmark cases studied in this work, it is important
to remark the following situation presented during the train-
ing process of the intervals. Due to the nonlinear characteris-
tic of the optimization problem solved during training, along
with their large number of high degrees of freedom (large
number of optimization variables), the implementation of all
methods suffer of a high probability to fall into a subopti-
mal solution. This problem can be mitigated by guiding the
optimal search and reducing the space of possible solutions.
Another option that can be applied is a fine-tuning of the
hyperparameters which define the training algorithm. As an
example of this, it can be mentioned that the first strategy
of mitigation was applied in the training process of the fuzzy
numbers method based on fuzzy models. The results obtained
for both simulated cases shown that this method based on
fuzzy numbers stands out for its performance over the rest
of methods, achieving narrow interval widths. This good
behavior was achieved after testing bad previous local min-
ima obtained with optimizations that had greater spaces of
possible solutions. This shows the importance of considering
the use of thesemitigation techniques, to achieve convergence
to an optimal prediction interval model during the training
procedure.

VII. CONCLUSION
A detailed literature review of the methods used for the devel-
opment of prediction intervals based on fuzzy logic systems
and neural networks has been made in this paper. Moreover,
the main characteristics of each method for prediction inter-
val construction were presented and some recommendations
were made for selecting the most suited method for specific
applications. As a final contribution, this work also performed
experimental tests to compare the performance of the most
significant methods reported in this review, using benchmark
cases that consisted of artificial and real data.

The importance of characterizing the uncertainty associ-
ated to signals and predictions is evidenced in this work, given
its applicability to different engineering problems. It has been
highlighted that the methods presented in this work, corre-
sponding to the prediction intervals based on fuzzy models
and neural networks, are widely used in the literature for
the implementation of forecasting systems, fault detection
algorithms, robust control strategies and the study of the
future behavior of nonlinear systems.
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