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There is a growing evidence describing a decline in adaptive homeostasis in aging-
related diseases affecting the central nervous system (CNS), many of which are
characterized by the appearance of non-native protein aggregates. One signaling
pathway that allows cell adaptation is the integrated stress response (ISR), which senses
stress stimuli through four kinases. ISR activation promotes translational arrest through
the phosphorylation of the eukaryotic translation initiation factor 2 alpha (eIF2α) and
the induction of a gene expression program to restore cellular homeostasis. However,
depending on the stimulus, ISR can also induce cell death. One of the ISR sensors
is the double-stranded RNA-dependent protein kinase [protein kinase R (PKR)], initially
described as a viral infection sensor, and now a growing evidence supports a role for
PKR on CNS physiology. PKR has been largely involved in the Alzheimer’s disease
(AD) pathological process. Here, we reviewed the antecedents supporting the role of
PKR on the efficiency of synaptic transmission and cognition. Then, we review PKR’s
contribution to AD and discuss the possible participation of PKR as a player in the
neurodegenerative process involved in aging-related pathologies affecting the CNS.

Keywords: double-stranded RNA-dependent protein kinase, integrated stress response, neurocognitive
functions, Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, aging

INTRODUCTION

Neurocognitive functions rely on neuronal cell adaptation mechanisms during the nervous
system lifespan. Neurons respond continuously to changing cellular contexts to achieve these
adaptive dynamics. An increasing evidence has shown a reduced capacity in adaptive homeostasis
mechanisms in aging and aging-related neurodegenerative diseases. One of the signaling pathways
that allow cell adaptation is the integrated stress response (ISR). The ISR comprises four
kinases/sensors: double-stranded RNA-dependent protein kinase [protein kinase R (PKR)], heme-
regulated inhibitor (HRI), the general control non-derepressible-2 (GCN2), and the PKR-like
endoplasmic reticulum (ER) resident protein kinase (PERK). Depending on the stimulus, one of
the ISR kinases becomes active and phosphorylates the eukaryotic translation initiation factor
2 (eIF2α) on Ser51 (Harding et al., 2003; Pakos-Zebrucka et al., 2016). This phosphorylation
event not only leads to a decrease in global protein synthesis but also induces the expression of
selected genes, including the one coding for the activating transcription factor 4 (ATF4) (Harding
et al., 2003; Pakos-Zebrucka et al., 2016). Once translated, ATF4 translocates to the nucleus
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and promotes genetic programs involved in essential cellular
processes/functions, including autophagy, redox homeostasis,
and amino acid metabolism. However, under chronic
overactivation, ISR can also induce apoptosis (Pakos-Zebrucka
et al., 2016). Although ISR signaling events have been described
in dividing cells, the consequences of ISR activation, specifically
in neurons, remain poorly explored in physiological conditions.
However, there are strong pieces of evidence that suggest a role
for ISR in central nervous system (CNS) pathophysiology. For
instance, there is significant information about the role of PERK
in neurodegeneration. PERK is a sensor that can be activated
directly by mis- or unfolded proteins at the ER (Wang et al.,
2018). Several neurodegenerative diseases are characterized
by the presence of aggregated unfolded or misfolded proteins,
including Huntington’s disease (HD), Parkinson’s disease (PD),
and AD, and the contribution of PERK has been largely discussed
in other articles (Bell et al., 2016; Hughes and Mallucci, 2019).
This review is focused on the kinase PKR and the consequences
of its activation in the CNS. PKR is a stress sensor first identified
as a kinase responding against viral infection (Meurs et al.,
1990). Today, PKR is considered a significant regulator of central
cellular processes, including mRNA translation, transcriptional
control, apoptosis regulation, growth regulation, and cell
proliferation (He et al., 2013; Zhou et al., 2014; Shinohara et al.,
2015; Gal-Ben-Ari et al., 2018). In the CNS, PKR controls protein
synthesis and regulates synaptic and cognitive function. PKR
activation has also been involved in neurological conditions,
including AD (Peel and Bredesen, 2003; Couturier et al., 2010;
Dumurgier et al., 2013; Hugon et al., 2017) (reviewed in Hugon
et al., 2017), PD (Bando et al., 2005), and HD (Peel et al., 2001;
Bando et al., 2005), suggesting a role of PKR in pathologies
associated to aging affecting the CNS.

Here, we reviewed the antecedents supporting PKR and the
consequences of its activation as a key player in physiological
conditions and its contribution in the neurodegenerative process
involved in aging-related pathologies affecting the CNS.

PKR-eIF2α ROLE ON CNS PHYSIOLOGY

Protein kinase R is conserved in vertebrates, and it has not
been found in plants, fungi, protists, and invertebrates (Taniuchi
et al., 2016). PKR was initially described to be activated by
viral double-stranded RNAs (dsRNA) (Hovanessian, 2007). Once
the stimulus is detected, the activation of PKR is mediated by
homodimerization and trans-autophosphorylation at threonine
446 and threonine 451 (Romano et al., 1998). Activated PKR
induces the phosphorylation of eIF2α (p-eIF2α), leading to
general protein synthesis inhibition (Romano et al., 1998). In
parallel, PKR activation can also promote p-eIF2α-dependent
translation of messenger RNAs (mRNAs) containing specific
5′ untranslated region (UTR) regulatory regions (Chesnokova
et al., 2017). One of the proteins synthesized after ISR activation
is ATF4, which leads to apoptosis in several cell types (Wek
et al., 2006; Hussain and Ramaiah, 2007; Lee et al., 2007). It
has been recently reported that PKR activation is negatively
regulated by its interaction with sphingosine kinase 1 (SPHK1),

which reduces apoptosis execution on cell lines (Qiao et al.,
2021). It has been reported that PKR can also be activated in
the absence of virus (dsRNA) by endogenous cellular stresses
such as oxidative stress, intracellular calcium increase, or ER
stress (Romano et al., 1998; Zhu et al., 2011; He et al., 2013).
Additionally, interferon-gamma (IFNγ), tumor necrosis factor
α (TNFα), heparin, platelet-derived growth factor, and inosine–
uracil mismatches have also been described as PKR activators
(Deb et al., 2001; Page et al., 2006; Anderson et al., 2011;
McAllister et al., 2012; Husain et al., 2015; Reimer et al., 2018).
Thus, the PKR-eIF2α branch may potentially be activated in
response to a diversity of inductors depending on a particular
cellular context. Moreover, a specific PKR activation mechanism
has been described, in the absence of dsRNA, through the
PKR associated protein activator (PACT) (in humans) or its
murine homolog RAX. Thus, PACT/RAX has been proposed
as physiological activators of PKR (Patel and Sen, 1998; Ito
et al., 1999). A recent detailed study of PKR-activating dsRNAs
found that most of the PKR-interacting RNA repertoires are
mitochondrial RNAs (mtRNAs) that can form intermolecular
dsRNAs (Youssef et al., 2015; Kim et al., 2018). mtRNAs
interaction with PKR was found to induce this kinase activation,
eIF2α phosphorylation, and subsequent control cell translation
(Youssef et al., 2015; Kim et al., 2018). This promiscuity of PKR
as a sensor of endogenous and exogenous stimuli suggests that
PKR could be a negative regulator of protein synthesis in several
cellular physiological and pathological contexts (see Figure 1).

As mentioned earlier, ISR activation can lead to cell adaptation
or apoptosis, which has been extensively reviewed elsewhere
(Pakos-Zebrucka et al., 2016). This paradoxical role of the ISR is
supported by signaling assays on proliferating cells with spatially
homogeneous dynamics. An ISR modulating stimulus is applied
to a whole cell, and survival readouts are studied on these assays.
In neuronal models, it has been established that the activation
of the PKR eIF2 a branch also mediates apoptosis (Vaughn
et al., 2014). However, it is worth considering that neuronal cells
show a significantly higher degree of complexity to support their
local cytoarchitecture. This particularity of neurons diversifies the
potential roles of homeostasis regulation on neuronal functions.
For example, it has been established that local protein synthesis,
a process directly regulated by PKR, is necessary not only to
maintain local axonal phenotype (merotrophism) and axonal
integrity but also to execute axonal degeneration in an apoptotic
independent manner (Alvarez et al., 2000; Whitmore et al., 2003;
Hillefors et al., 2007; Pazyra-Murphy et al., 2009). Thus, local
protein synthesis regulates neuronal integrity. Consequently,
homeostasis regulation mechanisms may be essential not only
for neuronal survival but also for local integrity maintenance
in neurons. However, the participation of PKR in local integrity
maintenance in neurons remains unknown.

The role of PKR-eIF2α in the CNS has been studied
using genetic strategies. The mouse in which part of the
PKR coding gene has been deleted (PKR-KO) or the knock-
in mouse bearing an eIF2α allele with the S51A mutation
(eIF2αS/A) does not show qualitative changes on CNS overall
morphology and histological patterns of axonal or synaptic
markers (Costa-Mattioli et al., 2007; Zhu et al., 2011) compared
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FIGURE 1 | Possible mechanistic links between the activation of the PKR-eIF2α branch of the ISR and hippocampal/cortical plasticity under physiological and
age-related neurodegenerative conditions. The diagram represents the potential role of the double-stranded RNA protein kinase [protein kinase R (PKR)] in synaptic
transmission efficiency under physiological conditions (left side) and age-related neurodegenerative conditions (right side). PKR-activating stimuli induce a significant
increase in the phosphorylation (P) of the alpha subunit eukaryotic initiation factor 2 (eIF2α) in a dsRNA-dependent manner or via its endogenous activator
RAX/PACT. This pathway activation promotes the inhibition of mRNA translation and ATF4 dependent gene reprogramming of several cellular functions. Altogether,
PKR-eIF2α ISR branch activation may lead to cell adaptation or cell death. PKR-eIF2α ISR branch loss of function (LOF) under physiological conditions (left side)
significantly modifies cortical and hippocampal receptor-mediated synaptic transmission. Consequently, long-term potentiation (LTP) and long-term depression (LTD)
are also affected. Under age-related neurodegenerative conditions (right side), common stimuli could participate in the activation of PKR-eIF2α ISR branch activation
in Huntington’s diseases (HD), Parkinson’s disease (PD), and Alzheimer’s disease (AD). Under this activation, ATF4 translocates to the nucleus and mediates
degenerative reprogrammation. On the other hand, the eIF2α phosphorylation decreases mRNA translation. This decrease in translation induces modifications in the
hippocampal and cortex LTP and LTD through an unknown mechanism.

to wild-type (WT) mice. Specifically, PKR-KO mouse brain
shows no gross abnormalities on Nissl staining and presynaptic
or postsynaptic structures, visualized by synaptic markers
such as the vesicular glutamate transporter 1 (VGLUT1), the
postsynaptic density protein 95 (PSD95), and the glutamic acid
decarboxylase 67 (GAD67), a GABAergic terminal marker (Zhu
et al., 2011). Additionally, eIF2αS/A knock-in mouse has no

detectable differences in the hippocampus overall morphology,
based on axonal or presynaptic marker stains (Small et al.,
2000; Costa-Mattioli et al., 2007). In spite of this general
preservation of CNS tissue under PKR-eIF2α ISR branch
loss of function (LOF), a growing body of evidence shows
that PKR participates in neuronal essential functions, survival,
and integrity.
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PKR in Neuronal Function
A major functional expression of synaptic plasticity is the
efficiency of synaptic transmission. In turn, an efficient
synaptic transmission supports neurocognitive functions. The
relationship between synaptic plasticity and neurocognitive
functions has been extensively reviewed before (Martinez
et al., 2018). Importantly, synapses loss and dendritic atrophy
are observed in the aging human brain and correlate with
neurocognitive dysfunctions progression (Uylings, 2000).
Consequently, altered synaptic transmission is also a common
characteristic of age-related neurodegenerative diseases (Kumar
and Foster, 2007). The widest used model for modifiability
of synaptic transmission is the hippocampal field activity
measurement, based on the synaptic plasticity role on cognitive
memory mechanisms. There, brief high-frequency neuronal
firings induce an increase in the efficacy of neuronal synapses
that sustains for hours, known as long-term potentiation (LTP)
(Connor and Wang, 2016; Peters et al., 2018). This physiological
adaptive mechanism requires postsynaptic Ca2+ significant
entry, activation of metabotropic glutamate receptors, and the
generation of diffusible intercellular messengers (Landfield et al.,
1986; Barnes et al., 1992; Rosenzweig et al., 1997; Connor and
Wang, 2016; Peters et al., 2018). On the other hand, repeated
low-frequency firing, which results in a modest rise in Ca2+,
induces long-term depression (LTD), provoking a significant,
sustained decrease in the efficacy of neuronal synapses. Healthy
aging and age-related neurodegeneration are associated with
a decrease in synaptic plasticity, leading to impaired synaptic
transmission (Rosenzweig et al., 1997). Consequently, reduced
ability to enhance synaptic transmission through LTP or an
LTD imbalance over LTP would trigger a decrease in synaptic
transmission in aged animals (Landfield et al., 1986; Barnes et al.,
1992; Rosenzweig et al., 1997; Temido-Ferreira et al., 2019).
LTP and LTD are the major mechanistic insights that have been
proposed to correlate with performance on mouse models of
cognitive memory, which has been already reviewed (Landfield
et al., 1986; Barnes et al., 1992; Rosenzweig et al., 1997; Connor
and Wang, 2016; Figlioli et al., 2019).

An accumulating evidence suggests that the PKR-eIF2α

signaling pathway negatively regulates hippocampal synaptic
transmission efficiency in non-pathological conditions. Earlier
studies on hippocampal slices showed that a significant decrease
in eIF2α phosphorylation levels correlates with a lower threshold
for long-lasting LTP (LTP that requires protein synthesis)
(Takei et al., 2001; Costa-Mattioli et al., 2005). This result
suggests that the eIF2α pool phosphorylation state modulates
the establishment of a sustained increase in the efficacy of
neuronal synapses. Furthermore, the eIF2αS/A mouse, which
shows reduced eIF2α phosphorylation levels (by ∼50%) relative
to WT mice, does not display any difference in basal transmission
compared to WT mice (Costa-Mattioli et al., 2007). Under
these significantly reduced eIF2α phosphorylation levels, Schaffer
collateral/commissural fibers’ stimulation with a short-lasting
inducing LTP protocol (which does not require protein synthesis)
(Kandel, 2001; Kelleher et al., 2004) elicits the expected result
on WT hippocampal slices. Notably, the same protocol elicits
a long-lasting LTP on hippocampal slices from eIF2αS/A mice

littermates, which is sensitive to protein synthesis inhibitors
(Costa-Mattioli et al., 2005, 2007). These results strongly suggest
that eIF2α phosphorylation negatively regulates the transition
from short- to long-lasting LTP at the hippocampus. Notably,
previous reports have shown that eIF2α phosphorylation is
necessary for LTD promotion at hippocampal slices (Di Prisco
et al., 2014). Taken together, these results suggest that eIF2α

phosphorylation could simultaneously modulate both LTP and
LTD at the hippocampus. Consequently, ISR sensor kinases may
potentially play a role in transmission efficiency by modulating
the eIF2α phosphorylation state.

Acute pharmacological inhibition of PKR induces aberrant
activity on the neocortex of free-moving adult mice, studied by
electroencephalography (EEG), without changes in ongoing
behavior (Zhu et al., 2011). These results suggest that
eIF2α-mediated regulation of synaptic efficiency could be
downstream of PKR signaling. Coincidently, authors have
determined that PKR genetic deficiency in mice leads to aberrant
hyperactivity of neuronal networks by reducing GABA-mediated
inhibitory synaptic transmission (Zhu et al., 2011). In this model,
PKR LOF led to a significantly higher number of spikes reaching
a higher excitatory postsynaptic potential (ceiling), presumably
because PKR-mediated inhibition was impaired (Zhu et al.,
2011). Thus, the authors have proposed that the physiological
role of PKR over transmission efficiency is to maintain a
relatively low level of excitability by enhancing GABAergic
synaptic transmission with a lack of change in postsynaptic
receptor-related mechanisms.

As mentioned earlier, eIF2α phosphorylation is necessary
to induce LTD (Di Prisco et al., 2014). Notably, PKR
activation is sufficient to induce sustained LTD mediated by
the phosphorylation of eIF2α (Di Prisco et al., 2014). LTD
induction by PKR activation has been studied in a transgenic
mouse in which a drug can activate PKR in certain neurons in
the CNS. Specifically, the mouse expresses a transgene encoding
a drug-dependent conditional PKR that dimerizes and activates
at hippocampal CA1 neurons. The pharmacological induction
of PKR activation led to eIF2α phosphorylation and sustained
LTD selectively on neurons expressing the transgene (Di Prisco
et al., 2014). Together, these data support the idea that PKR
and eIF2α are major regulators of transmission efficiency. Thus,
the regulation mediated by PKR-eIF2α also participates in CNS
physiology at a functional level, beyond neuronal survival and
integrity. Concomitantly, loss of function of eIF2α and PKR also
induces significant changes over neurocognitive functions.

Since the modulation of eIF2α phosphorylation impacts
transmission efficiency, it is plausible to expect that it also
affects the performance of mice when paradigms evaluating
cognitive memory are applied. In fact, it has been shown
that pharmacological inhibition of eIF2α dephosphorylation
mediates memory consolidation of drug-paired stimuli (Huang
et al., 2016). In a model in which basolateral amygdala (BLA)-
dependent cocaine addiction is established, rats are exposed
to freely choose between saline paired side or cocaine paired
side of a chamber. The difference in the time spent on the
cocaine-paired side versus the saline-paired side is calculated
as the cocaine place preference. Authors have found that eIF2α
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phosphorylation and ATF4 levels diminish in the BLA after
a re-exposure to a previously cocaine-paired context (Huang
et al., 2016). Notably, local injection in the BLA of a selective
inhibitor of eIF2α dephosphorylation after this memory retrieval
protocol disrupts drug-paired stimulus-induced craving (Huang
et al., 2016). Moreover, eIF2α also plays a role in spatial
learning and spatial memory when studied by the Morris water
maze paradigm (Costa-Mattioli et al., 2007). In this test, mice
are trained during consecutive days to swim, find a platform,
and memorize its location in a pool. Then, the time required
for the mice to find the hidden platform (“escape latencies”)
and the time spent on the platform’s quadrant is measured
(Morris et al., 1982). Using this setup, authors have found
that eIF2αS/A knock-in mice reached the platform significantly
faster than their WT littermates (Costa-Mattioli et al., 2007). In
addition, eIF2αS/A mice had a significantly greater preference
for the platform quadrant (Costa-Mattioli et al., 2007). These
results strongly suggest that eIF2α partial LOF enhances
hippocampal-dependent spatial learning and spatial memory.
Furthermore, the eIF2α’s role over memory function has also
been explored in several experimental paradigms of protein
synthesis-dependent long-lasting memory such as auditory and
contextual fear conditioning, conditioned taste aversion (CTA),
and latent inhibition (LI) of CTA (Rosenblum et al., 1993;
Bourtchouladze et al., 1998; Schafe et al., 1998) in eIF2αS/A
mice. Remarkably, partial loss of eIF2α function (eIF2αS/A)
induces a significant improvement on evocative parameters at
all those above experimental long-lasting memory paradigms
(Costa-Mattioli et al., 2007). Thus, eIF2α phosphorylation state
modulation regulates long-term memory function beyond its
effect on the transmission efficiency discussed before.

Similarly, acute pharmacological targeting of PKR using
the inhibitor C16 has been evaluated in a taste learning
paradigm. Local stereotaxic injection into the insular cortex
or intraperitoneal (i.p.) injection of C16 before applying an
aversive taste stimulus results in enhanced cortical-dependent
novel taste learning and CTA in rats (Ariffin et al., 2010; Stern
et al., 2013). This effect of acute inhibition has been proposed
as indicative of PKR involvement in cognitive processing. To
evaluate this, authors had used acute pharmacological inhibition
of PKR before contextual and auditory fear conditioning and
studied the incorporation of neurons to functional circuits
induced by learning through the expression of a specific marker
gene, immediate-early gene (Egr-1) (Hall et al., 2000; Frankland
et al., 2004; Zhu et al., 2011). On this experimental setup,
both contextual and auditory long-term fear memories were
enhanced under PKR pharmacological inhibition in mice (Zhu
et al., 2011). Concomitantly, in the same group of experiments,
long-lasting memory in PKR-KO mice correlated with Egr-1
levels at hippocampal CA1 neurons. Authors have proposed
that PKR LOF not only improves long-lasting memory but
also participates in the recruitment of CA1 neurons into the
cognitive encoding process (Zhu et al., 2011). Furthermore, the
PKR-KO mouse also shows significantly improved hippocampus-
dependent spatial memory assayed by the Morris water maze
test. Even more, the PKR-KO mouse also shows improved
auditory and contextual long-term fear memories compared to

WT littermates when tested through Pavlovian fear conditioning
(Zhu et al., 2011). Thus, genetic deletion of PKR strengthens
long-term spatial memory.

PKR on Glial Cells
Several authors have reported the presence of the components
of the PKR-eIF2α branch on another type of cells present in the
CNS, the glial cells (Auch et al., 2004; Ong et al., 2005; Alirezaei
et al., 2007; Vantelon et al., 2007; Flores-Mendez et al., 2013).
However, the role of the PKR-eIF2α branch on glial functions
under physiological conditions remains mostly unexplored. In
this context, emerging reports suggest that eIF2α activation
controls protein a synthesis rates on glial cells. Specifically,
protein synthesis rates increase in astrocytes correlate with Eif2 a
phosphorylation, in response to lactic acid (Vantelon et al., 2007).
It has also been reported that eIF2α activation mediates protein
synthesis rate changes in response to glutamate neurotransmitter
on Bergmann glial cells (Flores-Mendez et al., 2013). In turn, PKR
mediates an increase in nitric oxide (NO) production on in vitro
human astrocytes in response to dsRNA by inducing inducible
nitric oxide synthase (iNOS) expression (Auch et al., 2004).
Altogether, these reports suggest that the PKR-eIF2α branch may
have a relevant role in CNS functions regulated by glial cells.
Despite this, the antecedents available describing the role of the
components of the PKR-eIF2α branch on glial biology have been
performed in the context of pathological inflammation, which we
will review in the next section.

Altogether, an accumulated evidence suggests that the
PKR-eIF2α signaling pathway participates in CNS morpho-
functionality per se under physiological conditions: at the
neuronal cell level through survival and integrity, through glial
regulation, at the transmission efficiency of circuits, grounded
on synaptic plasticity, and finally, at the neurocognitive level
by regulating long-term memory (LTM). This role of PKR
and eIF2α at several organizational and functional levels
under physiological conditions points to a potentially relevant
role in the early stages of age-related neurodegenerative
diseases (Figure 2).

PKR ROLE IN AGE-RELATED
NEURODEGENERATIVE DISEASES

Based on the extended role described for PKR and eIF2α

on CNS morpho-functional levels that we reviewed in the
previous section, we identified the potential for this pathway
to play a role as a significant regulator of age-related
neurodegenerative diseases. We reviewed the possible role of
PKR-eIF2α pathway in neurodegenerative diseases in which
pathological hallmarks, including progressive neuronal cell
death, transmission efficiency defects, and neurocognitive
functions decline, can be detected.

Mechanistic Link Between AD and PKR
The PKR and eIF2α roles over age-related neurodegenerative
diseases have been mostly studied for AD in the context of the
amyloid cascade hypothesis experimental models. We reviewed
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FIGURE 2 | The role of protein kinase R (PKR) in CNS physiology and pathophysiology. A schematic view of the modulation exerts by PKR in CNS
morpho-functional integrity at different levels under physiological conditions and in Alzheimer’s (AD) disease. The information available for age-related
neurodegenerative diseases is included.

the evidence on the role of PKR-eIF2α over AD pathogenic
hallmarks. We detailed the studies related to the role of PKR
on AD pathogeny in Table 1. A detailed description of the AD
models, characteristics, and progression has been extensively

detailed elsewhere (De-Paula et al., 2012; Cheng et al., 2018;
Bouteiller et al., 2019; Castellani et al., 2019).

Alzheimer’s disease is characterized by the presence of
extracellular senile plaques of the amyloid-beta (Aβ) aggregated
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TABLE 1 | Studies involving protein kinase R (PKR) in Alzheimer’s disease.

AD model (in vitro/in vivo) PKR
active/LOF/GOF

Variable
relationship

Neurodegeneration readouts/outcome References

AD patients Active Correlative PKR accumulation at nuclei in postmortem AD
brain tissue

Onuki et al. (2004)

5xFAD transgenic mouse Active Correlative p-PKR and p-eIF2α levels are increased in cortical
tissue, by immunoblotting

Mouton-Liger et al. (2012a)

Aβ neurotoxicity over primary neuronal
culture

PKRi Functional PKR pharmacological LOF prevented
Aβ1−42-induced activation of inflammatory
pathways, release of TNFα and interleukin (IL)-1β,
and inhibited apoptosis

Couturier et al. (2011)

5xFAD transgenic mouse and
Aβ1−42-injected mouse

PKRi Functional PKR pharmacological LOF restores deficits in LTM
and LTP in both mouse AD models

Hwang et al. (2017)

Aβ toxicity over SH-SY5Y cells and AD
patients

PKRi Functional and
correlative

PKR colocalizes with neuronal GSK-3β and tau in
AD brains. PKR modulates Aβ induced GSK-3β

activation, tau phosphorylation, and apoptosis in
neuroblastoma cells

Bose et al. (2011)

AD patients Active Correlative p-PKR in aged brains histology negatively
correlates with cognitive scores

Taga et al. (2017)

AD patients Active Correlative A SNP (rs2254958) on the PKR coding gene
correlates with AD progression

Bullido et al. (2008)

Thiamine-deficient diet ad libitum PKR-KO mouse or
PKRi

Functional PKR LOF (genetical and pharmacological) reverses
Aβ oligomers levels increase in thalamus nuclei,
motor deficits, and neurodegeneration induced by
thiamine

Mouton-Liger et al. (2015)

Aβ25−35 neurotoxicity over primary
neuronal culture

Active Correlative Purified Aβ25−35 induces PKR phosphorylation Yu et al. (2007)

Aβ25−35 neurotoxicity over primary
culture of cortical neurons

PKR siRNA Functional Purified Aβ25−35 induces PKR phosphorylation Lai et al. (2006)

FAD-mutant hAPP mouse and AD
patients

Active Correlative p-PKR associates with plaques in the FAD-mutant
hAPP mouse brain. p-PKR in the hippocampus and
the neocortex of AD patients associates with
amyloid plaques

Peel and Bredesen (2003)

APPSwe/PS1DE9 mouse and monkeys
(Macaca fascicularis) exposed to Aβ

oligomers

PKRi Functional Amyloid-β induces PKR and eIF2α phosphorylation
in the brain of mouse and monkeys. Activated PKR
correlates with synapse loss and memory
impairment

Couturier et al. (2012)

AD patients Active Correlative p-PKR levels at CSF strongly correlates with the
severity of cognitive impairment

Dumurgier et al. (2013)

5xFAD mouse PKR-KO mouse Functional PKR LOF (genetic) in the 5xFAD mouse shows
reduced BACE1 and Aβ levels, synaptic alterations,
neurodegeneration, and neuroinflammation and
improves memory defects

Tible et al. (2019)

APPSL/PS1 KI mouse Active Correlative p-PKR and p-eIF2α levels are increased in the
cortex of APPSL/PS1 KI mouse

Couturier et al. (2010)

Mouse overexpressing the Swedish
mutation of 101 amyloid precursor
protein (Tg2576)

PKRi Functional p-PKR and p-eIF2α levels are increased in the brain
of Tg2576 mouse. PKR LOF (pharmacological)
alleviates memory deficits in the Tg2576 mouse

Zhang et al. (2016)

Four-month-old ApoE3 and ApoE4
mice

PKRi Functional Pharmacological PKR LOF (locally injected) rescues
memory impairment and attenuates ATF4 mRNA
increased translation in the ApoE4 mouse

Segev et al. (2015)

Aβ1−42 peptide neurotoxicity over
primary neuronal cultures and SH-SY5Y
cells

PKR siRNA Functional PKR LOF (siRNA) inhibits Aβ1−42 induced
pro-neurodegenerative signaling in nuclei

Morel et al. (2009)

AD patients Active Correlative PKR and eIF2α levels in lymphocytes of AD patients
correlates with cognitive and memory test scores

Paccalin et al. (2006)

AD, Alzheimer’s disease; Aß, amyloid-beta protein; LOF, loss of function; LTM, long-term memory; LTD, long-term depression; TNFα, tumor necrosis factor alpha; IL,
interleukin; SNP, single-nucleotide polymorphism; APP, amyloid precursor protein; FAD, familial Alzheimer’s disease; p-PKR, phosphorylated PKR; eIF2α, eukaryotic
initiation factor alpha 2; PKRi, PKR pharmacological inhibitor (C16); SH-SY5Y, thrice-cloned subline of bone marrow biopsy-derived line; GSk-3b, glycogen synthase
kinase 3 beta; CSF, cerebrospinal fluid; ATF4, activating transcription factor 4; ApoE4, apolipoprotein E4.
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protein, intracellular neurofibrillary tangles (NFTs) composed
of hyperphosphorylated tau protein, and neuroinflammation
(De-Paula et al., 2012; Cheng et al., 2018; Bouteiller et al.,
2019; Castellani et al., 2019; Diaz-Zuniga et al., 2020). Senile
plaques are composed of Aβ peptides generated after amyloid
precursor protein (APP) proteolysis through the amyloidogenic
pathway (Chow et al., 2010). Shortly, β-site APP cleaving
enzyme 1 (BACE1) cleaves APP, shedding its ectodomain
and leaving in the membrane a fragment of 99 amino acids
(C99) (Vassar et al., 1999; Bennett et al., 2000). Then, a
γ-secretase complex cleaves C99, generating variants of Aβ

peptides, being the peptide of 42 residues (Aβ1−42), the
major component of the amyloid plaques and the one with
toxic properties (Barrow and Zagorski, 1991; Miller et al.,
1993; Klein et al., 1999; Vassar et al., 1999; Bennett et al.,
2000; Cai et al., 2001; Luo et al., 2001). Several studies
have shown that BACE1 levels and its proteolytic activity are
increased in postmortem AD brain samples (Fukumoto et al.,
2002; Holsinger et al., 2002; Zhao et al., 2007). According
to the amyloid hypothesis (Hardy and Selkoe, 2002), the
accumulation and aggregation of Aβ is the triggering event
leading to neurodegeneration in AD. These antecedents suggest
that elevated BACE1 levels could participate in AD onset
or progression. Altogether, these pathological characteristics
participate in the neurotoxic mechanism that ultimately leads
to a progressive decline of memory function and other
cognitive skills (De-Paula et al., 2012; Bouteiller et al., 2019;
Castellani et al., 2019).

Protein kinase R can control the levels of BACE1 protein in
human neuroblastoma cells exposed to oxidative stress (Mouton-
Liger et al., 2012a,b; Taga et al., 2017). The same group has
reported that phosphorylated (activated) PKR (p-PKR), p-eIF2α,
and BACE1 levels are increased in the AD brain. Moreover,
a significant correlation between BACE1 with phosphorylated
eIF2α was found (Mouton-Liger et al., 2012b; Taga et al.,
2017). These antecedents suggest that PKR-eIF2α could modulate
Aβ production. However, little is known about the role of
PKR over the specific mechanisms associated with the amyloid
hypothesis of AD.

Protein kinase R has also been involved in the mechanism
of tau protein phosphorylation. An analysis performed on AD
brains and transgenic mouse models found that the distribution
of p-PKR matched the distribution of abnormally phosphorylated
tau in adjacent sections (Peel and Bredesen, 2003). It has been
established that cell lines with reduced PKR expression through
RNA interference (RNAi) strategies significantly reduce tau
phosphorylation at the 12E8 epitope (serine 262/serine 356),
a disease-related phosphorylation site (Azorsa et al., 2010).
Notably, a recent work has reported that PKR overexpression
and knockdown increase and decrease tau protein and mRNA
levels in cell lines, respectively (Reimer et al., 2021). Moreover,
the same study showed that PKR directly phosphorylates multiple
abnormal and disease-related residues within tau protein (Reimer
et al., 2021). Furthermore, this PKR-mediated phosphorylation
induces tau displacement from microtubules, promoting a
pathological role for tau. Based on this, several authors have
proposed that PKR activation links Aβ and tau mechanisms

of neurodegeneration (Bose et al., 2011; Amin et al., 2015;
Reimer et al., 2021).

Protein kinase R is overexpressed in the brain of patients with
AD (Chang et al., 2002; Peel and Bredesen, 2003; Onuki et al.,
2004). Activated PKR has been found in neuron cytoplasm, in
granule-vacuolar degeneration sites, neuronal nuclei, and around
senile plaques by immunohistological analysis of brains derived
from AD mouse models and human AD patients postmortem
biopsies (Peel et al., 2001; Chang et al., 2002; Peel and Bredesen,
2003; Hugon et al., 2017). In these studies, AD cases showed
prominent granular p-PKR immunoreactivity in association with
neuritic plaques and pyramidal neurons in the hippocampus and
neocortex compared to samples from subjects without dementia
(Peel et al., 2001). Interestingly, p-PKR immunoreactivity has
also been found distributed within and around the periphery of
senile plaques of the Aβ-aggregated protein (Peel et al., 2001;
Chang et al., 2002; Peel and Bredesen, 2003; Hugon et al.,
2017). Whether this PKR activation patterns and effect over
Aβ production are an early event in the disease process or a
late consequence of neurodegeneration has not been established.
On the other hand, authors have suggested that mutations in
the PKR gene are related to an early onset of AD in human
patients (Bullido et al., 2008). A 5′ UTR SNP (rs2254958)
of the EIF2AK2 (PKR coding gene) has been associated with
susceptibility for developing AD at an early age (Bullido et al.,
2008). More specifically, this polymorphism is commonly found
in AD patients. Compared to other genotypes, the homozygotes
of rs2254958 showed earlier (around 3.3 years) onset of AD
(Bullido et al., 2008). Consequently, PKR aberrant expression
may predispose to AD progression (Peel and Bredesen, 2003).
Interestingly, reports from in vitro models of AD suggest that
PKR is in turn activated by the Aβ peptide (Peel et al., 2001;
Hugon et al., 2017).

An interesting report showed that p-PKR is significantly
increased in cerebrospinal fluid (CSF) of AD patients when
compared with sex-paired and age-matched patients without
dementia (Dumurgier et al., 2013). Moreover, when p-PKR was
cross-sectionally associated with a standardized cognitive test,
the Mini-Mental State Exam (MMSE), it was found that higher
levels of p-PKR over the follow-up were correlated with cognitive
deterioration (Dumurgier et al., 2013). Interestingly, while CSF
Aβ1−42 levels and p-Tau 181/Tau ratio were also cross-sectionally
associated with the MMSE score at the diagnosis, only p-PKR
was determined as a biomarker of cognitive decline during the
progression of AD. Based on this, authors have proposed that a
higher level of CSF p-PKR can predict a faster rate of cognitive
decline at the time of AD diagnosis (Dumurgier et al., 2013). This
suggests that CNS cellular components actively extrude activated
PKR to the extracellular milieu in the context of a progressive
worsening of AD.

The role of endogenous activators of PKR in the context of AD
has been poorly explored. However, Paquet et al. (2012) reported
that PACT and p-PKR have significantly higher colocalization on
AD patients’ brains postmortem in comparison to age-matched
controls. Furthermore, levels of activated PKR (normalized
p-PKR levels) strongly correlate with PACT protein levels on the
same samples (Paquet et al., 2012). Interestingly, Aβ1−42 peptides
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induce a timely coordinated significant increase in both PKR
activation levels and PACT protein levels in vitro on the SH-
SY5Y human neuroblastoma cell line (Paquet et al., 2012). These
data suggest that PACT and PKR could participate in a common
cellular response to AD-related neurotoxicity. However, further
research is needed to characterize a specific mechanism.

On the other hand, authors have proposed a potential role
for dsRNAs, well-described PKR activators, in the context of
AD progression. In brief, transcripts with repetitive elements
can unspecifically form dsRNA on the cytoplasm (Scheckel
et al., 2016). Interestingly, changes in chromatin and epigenetic
modifications associated with age-related neurodegenerative
diseases promote the derepression of repetitive element
transcription due to changes in heterochromatin (Scheckel et al.,
2016). Based on this, it has been suggested that this derepression
may lead to an increased accumulation of intracellular dsRNA.
Notably, RNA-seq-based analysis of global transcriptomes from
AD patients versus age-matched controls shows increased levels
of transcripts from multiple classes of repetitive elements (Saldi
et al., 2019). Furthermore, adenosine-to-inosine RNA editing,
a posttranscriptional marker of dsRNA, is also comparatively
increased on the same AD patients’ global transcriptomes (Saldi
et al., 2019). Thus, a potential role for dsRNAs on the onset
or progression of AD has been proposed. However, cellular
mechanistic links between dsRNA, PKR, and AD pathogenic
markers are currently unknown. In Figure 1, possible stimuli
participating in PKR activation are shown on AD context and
other age-related neurodegenerative conditions.

As mentioned, it has been widely reported that the activation
of the PKR-eIF2α branch of the ISR leads to apoptosis on
several cell types, including neurons (Lee and Esteban, 1994;
Der et al., 1997; Gil and Esteban, 2000; Scheuner et al., 2006).
This proapoptotic role of PKR-eIF2α has been reported to be
executed mostly through the canonical apoptotic pathway (Lee
and Esteban, 1994; Der et al., 1997; Gil and Esteban, 2000;
Scheuner et al., 2006). It has also been shown that PKR inhibition
suppresses apoptosis execution in neural cells. Specifically,
overexpression of a negative dominant form of PKR (K296R) on
neuroblastoma cells inhibits pharmacological ER stress (induced
with tunicamycin) and the induction of the apoptotic markers
caspase-3 and C/EBP homologous protein (CHOP, also known
as GADD153). This apoptosis inhibition correlates with a delay
in eIF2α phosphorylation and ATF4 expression (Vaughn et al.,
2014). In addition, the role of PKR activation in neuronal
survival has been explored on the paradigm of ethanol-induced
apoptosis (Qi et al., 2014; Li et al., 2015). This model has
shown that ethanol exposure causes neuronal apoptosis in mice’s
developing cerebellum (Olney et al., 2002; Qi et al., 2014).
There, PKR pharmacological inhibition preserves cell survival
under ethanol toxicity in cultured cerebellar granule neurons (Ke
et al., 2009). Furthermore, when PKR activity dependence on its
endogenous activator RAX is absent through a genetical deletion
of the domain of interaction between endogenous activator
RAX and PKR (the deficient RAX-binding domain in PKR
mouse), Purkinje and granule neurons densities are significantly
preserved in response to ethanol when compared to WT mice
(Li et al., 2015). Altogether, these results suggest that PKR

dynamics regulate neuronal survival in response to neurotoxicity
by modulating apoptotic cell death.

To our interest, several reports suggest that the PKR-eIF2α

signaling pathway also modulates neuronal apoptosis on AD
models. For instance, it has been found that pharmacological
or genetic inhibition of PKR significantly reduces Aβ-induced
apoptosis (Page et al., 2006). Initially, it was reported that in
an AD in vitro model based on Aβ deposition, increased tau
phosphorylation and neuronal death induced by Okadaic Acid
correlates with PKR and eIF2α activation (Kim et al., 2010).
Other authors have also reported that cortical neurons from
PKR-KO mice exhibit significantly lower apoptotic cell death
levels in response to Aβ (Gourmaud et al., 2016). This protective
effect of PKR genetic LOF was correlated with significantly
lower levels of apoptosis executors, including cleaved poly ADP-
ribose polymerase (PARP) and cleaved caspase 3. Levels of
Fas-associated protein with death domain (FADD), an adaptor
that bridges death receptor signaling to the caspase cascade
indispensable for the induction of extrinsic apoptotic cell death,
are significantly increased on the cortex of a mouse model
of Alzheimer’s disease (5xFAD) at a presymptomatic stage
when compared to WT littermates in vivo (Couturier et al.,
2010). Furthermore, co-immunoprecipitation assays showed
that PKR and FADD physically interact in cortex extracts
derived from 5xFAD mice, and no interaction is detectable at
WT littermates (Couturier et al., 2010). Notably, the authors
have determined that Aβ1−42 induces p-PKR phosphorylation,
increases FADD levels, and promotes physical interaction
between PKR and FADD in the nucleus of neuroblastoma
cells. Even more, PKR gene silencing (RNAi) or treatment
with the specific PKR inhibitor, C16, significantly inhibits PKR
activation in neuroblastoma cells and inhibits downstream
activities of caspase-3 and caspase-8. Taken together, these
antecedents suggest that PKR activation promotes neuronal
apoptotic cell death in the context of Aβ neurotoxicity in models
of Alzheimer’s disease.

Another major characteristic of AD pathogenic hallmark is
the glia-mediated neuroinflammation. Briefly, microglial cells
execute the innate immunity in the CNS and participate in
regulating synaptic plasticity and neuronal circuits activity
(Hasan and Singh, 2019; Ikegami et al., 2019; Konishi et al., 2019).
Notably, microglia and astrocytes react to pathological stressors
by producing and releasing inflammatory mediators that aim
to resolve the pathological state. Age-related neurodegenerative
diseases operate as chronic pathological stressors over glial
cells, which promotes a phenotypical change (glial activation)
characterized by a significant increase in the release of
inflammatory mediators from glia (Pawate et al., 2004; Lassmann,
2020). The role of glial cells has been largely described for
neurodegenerative diseases, including HD (Hsiao and Chern,
2010) and PD (Przedborski and Goldman, 2004). However,
a direct contribution of PKR in glial cells has not been
explored in HD or PD.

Histological studies of brains from AD patients and AD
animal models show a strong colocalization of reactive glial cells
with senile plaques and neurofibrillary tangles (Parachikova et al.,
2007; Hickman et al., 2008; Lopez-Gonzalez et al., 2015). The

Frontiers in Aging Neuroscience | www.frontiersin.org 9 April 2021 | Volume 13 | Article 638208

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-638208 April 22, 2021 Time: 14:53 # 10

Martinez et al. PKR as a Regulator of Neurodegeneration

inflammatory cascade mechanism during AD associated with Aβ

toxicity has been largely reviewed before (Bruni et al., 2020; Kim
et al., 2020; Merlo et al., 2020; Webers et al., 2020). In brief,
microglia and astrocyte activation participates in Aβ clearance on
AD progression’s earlier steps (Ries and Sastre, 2016). However,
further AD progression is characterized by an increase in
microglial activation. This increase in inflammatory signaling in
the latter stages of AD correlates with a significant decrease in Aβ

clearance by microglia (Lee and Landreth, 2010; Solito and Sastre,
2012). In turn, Aβ peptide triggers microglial cell activation and
induces the release of proinflammatory cytokines (Khandelwal
et al., 2011). Specifically, microglia overexpress proinflammatory
cytokines such as interleukin (IL)-1β, IL-6, and TNFα, and
this promotes neurodegeneration in the later stages of AD
(Yamamoto et al., 2007; Di Bona et al., 2008; Forlenza et al., 2009;
Wang et al., 2015). Brain inflammation has been reported on
several histological analysis of postmortem AD samples (McGeer
and McGeer, 2010; Zotova et al., 2010). Astrocytic and microglial
cell reactions are often detected surrounding senile plaques.
Based on these observations, it has been suggested that glial
inflammation may increase synaptic integrity loss and neuronal
degeneration during AD.

Notably, the increase in glial proinflammatory cytokines has
also been correlated with a significant decrease in hippocampal
LTP on several models of AD (Hickman et al., 2008; Ojala
et al., 2008; Chakrabarty et al., 2010; Park and Bowers, 2010;
Kitazawa et al., 2011; Spooren et al., 2011; Zhao et al., 2011;
Sutinen et al., 2012). Thus, inflammatory signaling may be
directly related to neurocognitive dysfunction that characterizes
AD. Interestingly, proinflammatory cytokines have also been
involved in the improvement of neurocognitive functions.
Specifically, it has been reported that lipopolysaccharides (LPS)
infusion into the insular rat cortex enhances associative taste
learning through the increase in glutamatergic AMPA receptors
expression and trafficking at synapses (Delpech et al., 2015).
Altogether, the relationship between inflammation, transmission
efficiency, and neurocognitive functions is highly complex and
beyond this review’s scope.

Local and systemic administration of a PKR activator, the
dsRNA analogous polyinosinic:polycytidylic acid (poly:IC), has
been extensively used as a neuroinflammation model (White
et al., 2016). Under this treatment, poly:IC activates inflammatory
antiviral responses on neurons and glial cells via Toll-like
receptors signaling (Carpentier et al., 2008; Botos et al.,
2009; Trudler et al., 2010; Chen et al., 2019). Importantly, it
has been found that repeated consecutive peripheral poly:IC
injections during 7 days induce a sustained significant increase
in hippocampal Aβ levels on mice up to 21 days after
last administration (White et al., 2016). Even more, the Aβ

increase induced by poly:IC injections strongly correlates with
significantly lower performance on the contextual memory
test (freezing test) (White et al., 2016). However, a functional
relationship between neurotoxicity of Aβ oligomers induced by
poly:IC and PKR-eIF2α ISR branch remains unexplored.

Interestingly, authors have proposed that the components
of PKR-eIF2α branch participate in CNS response to Aβ-
oligomers associated neuroinflammation. Specifically, blocking

the TNFα function through a TNFα neutralizing monoclonal
antibody (Infliximab) significantly inhibits PKR activation
(normalized p-PKR) and eIF2α phosphorylation triggered by
Aβ oligomers in neuronal cultures (Lourenco et al., 2013).
Notably, TNFα receptor 1 (TNFR1) genetic LOF significantly
inhibits hippocampal phosphorylation of PKR and eIF2α in
response to local intracerebroventricular (i.c.v.) injection of
Aβ1−42 oligomers in comparison to WT mice (Lourenco et al.,
2013). Concomitantly, TNFR1 genetic LOF completely prevents
Aβ-oligomer-induced synapse degeneration on hippocampal
neurons in vitro. These results suggest that Aβ-dependent
activation of TNFα receptors lies upstream of PKR and p-eIF2α

in vivo. Based on this, authors have theorized that TNFα receptors
and the activation of PKR-eIF2α induced by TNFα signaling
could participate in memory impairment in response to Aβ

oligomers (Lourenco et al., 2013). However, further research is
needed to establish a functional link and determine whether this
is a neuronal-specific or neuro-glial mechanism. On the other
hand, PKR downregulation prevents hippocampal LPS-induced
microglial activation and cytokines production (Khandelwal
et al., 2011). Specifically, PKR genetic LOF significantly inhibits
microglial activation, detected by levels of ionized calcium-
binding adaptor molecule 1 (Iba1) and astrocytosis, detected
by glial fibrillary acidic protein (GFAP) on the hippocampus
of LPS-injected mice in comparison to WT mice (Khandelwal
et al., 2011). Concomitantly, PKR genetic LOF also significantly
inhibits the increase in brain TNFα and IL-6 induced by LPS
(Khandelwal et al., 2011). Thus, PKR participates in a positive
feedback between inflammatory signaling related to pathology on
the brain. It has been previously reported that LPS i.p. injections
promote a significant increase in Aβ peptide on mice brain (Lee
et al., 2008). Notably, PKR genetic LOF significantly inhibits LPS-
induced Aβ, and BACE1 hippocampal increases protein levels
compared to WT mice under the same treatment (Khandelwal
et al., 2011). Altogether, these results show that the PKR-
eIF2α branch participates in AD-related neuroinflammation as a
mediator of Aβ neurotoxicity, where PKR activation is promoted
by inflammatory signaling and also promotes an increase in
cytokines. Thus, these results suggest that the PKR-eIF2α branch
could be a core regulator axis of inflammatory signaling on the
memory-related regions of the brain.

Synapse degeneration is another relevant step in AD’s onset
and progression (Briggs et al., 2017). Interestingly, synaptic
dysfunction occurs first, at presymptomatic stages of AD
(Briggs et al., 2017), presumably because of the presence of
soluble oligomeric assemblies of Aβ protein (Clare et al., 2010;
Robinson et al., 2014; Forner et al., 2017). Furthermore, cognitive
dysfunction during AD is strongly correlated with synaptic loss
(Forner et al., 2017). Specifically, the morphometric assessment
of synapses number in AD demonstrates that synapse loss is
the major indicator that correlates with cognitive impairment
in patients (Robinson et al., 2014). It has been possible to
detect early deficits in synaptic function and plasticity in mouse
models of Alzheimer’s disease (Wishart et al., 2006; Hanus
and Schuman, 2013). This early synaptic function alteration
suggests that structural and functional modifications at synapses
may be responsible for the early cognitive decline observed
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in human patients (Wishart et al., 2006; Hanus and Schuman,
2013). Synapse degeneration and dysfunction are also key
pathological events in other dementias and may contribute to
the cognitive decline observed during aging and aging-related
neuropathologies (Cohen et al., 2013; Namjoshi and Raab-
Graham, 2017). However, the role of the PKR-eIF2α branch
over synaptic integrity during AD progression remains unknown.
A growing body of evidence has proposed that PKR activity
inhibition significantly reduces transmission efficiency defects
and neurocognitive dysfunction in the context of murine models
of AD in vivo. For example, pharmacological inhibition of PKR
by i.p. injection of C16 in the context of AD model ApoE4
mouse significantly improves the long-term contextual memory
compared with ApoE4 vehicle-treated mice (Segev et al., 2015).
It is worth mentioning that this pharmacological inhibition of
PKR was induced as a pretreatment before memory consolidation
training (Segev et al., 2015). In addition, the role of PKR
genetic LOF has been functionally assayed over Aβ-oligomer-
induced cognitive dysfunction. Specifically, authors have found
that i.c.v. injection of Aβ oligomers induces a significant decrease
in freezing events on the contextual fear conditioning test in
WT mouse (Lourenco et al., 2013). Notably, PKR genetic LOF
completely inhibits the decrease in freezing events induced by
local Aβ neurotoxicity (Lourenco et al., 2013). Altogether, these
results suggest that PKR activation participates in long-term
contextual memory impairment induced by the AD pathogenic
hallmark mediators.

The role of PKR and eIF2α in transmission efficiency
and neurocognitive functions in age-related neurodegenerative
diseases has been mostly explored in the 5xFAD AD mouse
model. In brief, these 5XFAD mice co-overexpress human APP
and presenilin 1 (PS1) carrying five familiar Alzheimer’s disease-
related mutations (FAD mutations) in APP and PS1 transgenes
(the Swedish mutation: K670N, M671L; the Florida mutation:
I716V; the London mutation: V717I) and PS1 (M146L; L286V)
driven by the Thy-1 promoter (Oakley et al., 2006). There, it
has been described that the Swedish mutation increases Aβ

production, and the other mutations contribute to increasing the
production of Aβ1−42. Consequently, in this mouse, five FAD
mutations act together to additively increase levels of cerebral
Aβ1−42 neurotoxic peptides (Oakley et al., 2006; Ohno et al.,
2006, 2007). Thus, the 5XFAD mouse model develops amyloid
deposits (senile plaques) around 2 months of age, consistent
with their accelerated Aβ1−42 production compared to other
AD transgenic mouse models (Eriksen and Janus, 2007). At
2 months of age, amyloid deposition begins and accumulates in
the hippocampus’ subiculum and specific cortex layers in this
mouse model. Then, a sustained increase in Aβ1−42 deposits fills
the hippocampus and cortex of the brain of the 5XFAD mouse up
to 6 months of age (Oakley et al., 2006). Concomitantly, 5xFAD
mice develop comparatively earlier onset and more aggressive
symptoms within amyloid mouse models (Oakley et al., 2006;
Ohno et al., 2006, 2007). Related to the participation of PKR
in this mouse model, the authors have assayed the effect of
pharmacological inhibition of PKR or genetic deletion of PKR
over hippocampal LTP and LTD (Lourenco et al., 2013; Zhang
et al., 2016; Hwang et al., 2017; Tible et al., 2019). In addition,

LTM has been assayed by several authors in this model under
the same conditions. It is worth mentioning that authors have
described a lack of NFTs in 5xFAD histological samples (Sasaguri
et al., 2017). Then, conclusions about the role of PKR and
eIF2α obtained on this model under pharmacological or genetic
modulations are giving clues mainly about Aβ neurotoxicity as
AD pathogenic hallmark. Notably, it has been established that
PKR pharmacological and genetic LOF significantly modulates
transmission defects and neurocognitive dysfunction during
the pathological progression on 5xFAD mouse (Hwang et al.,
2017; Tible et al., 2019). There, authors have recently found
that genetic PKR LOF in the context of 5xFAD background
achieved by double mutation significantly improves LTP on
hippocampal slices compared to 5xFAD mouse (Tible et al.,
2019). Milder PKR LOF by pharmacological inhibition also
significantly improves transmission efficiency on the 5xFAD mice
(Hwang et al., 2017). Interestingly, PKR genetic LOFs’ protective
effect over synaptic transmission efficiency strongly correlates
with memory function maintenance during presymptomatic and
symptomatic AD stages in the 5xFAD mouse (Hwang et al., 2017;
Tible et al., 2019).

Altogether, the evidence mentioned above reveals an extended
role of PKR in AD pathology, where this kinase participates
in the demise of neuronal integrity and dysfunctional synaptic
transmission efficiency that leads to neurocognitive impairment.
This extended role points to interesting pathogenic mechanisms
that could be modulated beyond the context of AD.

The Possible Role of PKR in Huntington’s
Disease
Huntington’s disease is a progressive, debilitating, and fatal
neurological disorder. Its main symptoms include involuntary
or uncontrollable dance-like movements (chorea movements),
cognitive and memory impairment, and other psychiatric
changes (Ha and Fung, 2012). HD is inherited in an autosomal
dominant manner (Cepeda et al., 2007). The mutated gene
contains an expansion in the number of CAG repeats in the
huntingtin gene (HTT) on chromosome 4 (Walker, 2007). HD
is typically a late-onset disease, although juvenile variants occur
(Cepeda et al., 2007).

Neuropathological changes in HD are characterized by a
prominent loss and atrophy of medium spiny projection neurons
(MSNs) in the striatum (caudate and putamen) (Vonsattel and
DiFiglia, 1998; Gutekunst et al., 2002; Rubinsztein, 2003). Besides,
abnormalities in neurons in the cerebral cortex (Vonsattel et al.,
1985), substantia nigra, and thalamus, which input to striatal
projection neurons (SPN), have been described (Reiner and
Deng, 2018). The output tracts to the globus pallidus and
substantia nigra from SPN also show abnormalities (Reiner
and Deng, 2018). Neuronal cell loss is also evident in other
brain regions, including the hippocampus (Vonsattel et al.,
1985; Spargo et al., 1993; Utal et al., 1998). The striatal neuron
loss is non-prominent in premanifest HD (Vonsattel et al.,
1985; Albin et al., 1991; Vonsattel and DiFiglia, 1998), and the
early symptoms seem to be driven by striatal neuron circuit
connectivity loss and dysfunction.
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The striatum, which is highly affected in the disease, is the
basal ganglia’s main input nucleus and transforms thalamic
and cortical inputs into two output streams, called the direct
and the indirect pathways. Although these two pathways’
actions are complex, the basal ganglia circuit’s simplified model
proposes that the direct pathway facilitates directed movements,
and the indirect pathway terminates or suppresses movements
(Smith et al., 1998). Imbalances in the two pathways’ activity
are hypothesized to underlie numerous movement disorders,
including the ones observed in HD (Galvan and Wichmann,
2007). Medium spiny projection neurons (MSNs) of the striatum,
which are GABAergic inhibitory neurons (Lighthall and Kitai,
1983), determine the direct and indirect pathways’ activation.

Another pathological landmark of HD is the presence of
aggregated forms of mutant huntingtin protein (mHtt) in
neurons. These aggregates include intranuclear and cytoplasmic
inclusions, as well as microaggregates. The contribution of
these inclusions in neuronal loss observed in HD has not been
completely elucidated, but essential processes affected in the
disease have been identified (Walker, 2007). The expansion CAG
repeats can be bidirectionally transcribed (Cho et al., 2005;
Moseley et al., 2006), and several of these mutated genes have
been shown to produce aberrant proteins, which are synthesized
from multiple reading frames in the absence of AUG in a
process called repeat-associated non-AUG (RAN) translation
(Zu et al., 2011). One of the disease processes is related to the
chronic production of misfolded mHtt, which overwhelms the
proteostatic machinery (chaperons, proteasome, and autophagy),
leading to a global collapse of the proteostasis network (Soares
et al., 2019). Alterations in cell–cell interactions have also been
described, including axonal transport and delivery of trophic
factors (Soares et al., 2019).

The discovery of the HD gene in 1993 led to the development
of genetic models of the disease, which provided material
for studies in the earliest stages of disease pathogenesis and
mechanistic studies (Cepeda et al., 2010). We address recent
findings concerning PKR involvement in HD and its contribution
to synaptic transmission efficiency and synaptic integrity. The
activation of PKR has been found in tissues derived from
HD patients’ postmortem samples. Increased p-PKR levels
were detected in the hippocampal tissue of patients with HD,
suggesting an association of PKR activation with extrastriatal
degeneration (Bando et al., 2005). This result is particularly
interesting because the hippocampus’s role in HD pathology in
the last years has gained importance (Harris et al., 2019). HD
patients showed significant deficits in hippocampal-dependent
spatial cognition. Moreover, a correlation was found between the
CAG repetitions and the severity of the symptoms, suggesting
that deficits relate to HD’s disease process.

Huntington’s disease mouse models have shown alterations in
striatal and cortical synaptic transmission. Specifically, the R6/2
mouse model, which carries a fragment of the HD gene (exon 1)
and contains 150 CAG repeats (Mangiarini et al., 1996), exhibits
a consistent decrease in the frequency of spontaneous excitatory
postsynaptic currents (EPSCs) (Cepeda et al., 2003) in striatal
MSNs and an increase in spontaneous inhibitory postsynaptic
currents (IPSCs) in MSNs (Cepeda et al., 2004, 2010). The

increased inhibition of GABAergic neurons would reduce striatal
output along the indirect pathway. This may lead to disinhibition
of the external globus pallidus and could explain some HD
symptoms. Another study performed an electrophysiological
analysis of striatal interneurons in the heterozygous Q175 mouse
model of HD that contains human HTT allele with the expanded
CAG repeat (∼179 repeats) (Holley et al., 2019). They found
increased excitability of the fast-spiking interneurons (FSIs) and
low-threshold spiking (LTS) (Holley et al., 2019). The increase
in excitability of FSIs lead to increase in IPSC of MSNs (Koos
and Tepper, 1999); interestingly, FSIs are GABAergic cells that
provide inhibitory inputs to spiny neuron and degenerate in HD
(Gittis et al., 2010). In contrast, LTS neurons, associated with a
modulatory role on excitatory synaptic input, are spared from
degeneration (Ferrante et al., 1985). This evidence suggests that
the increase in the inhibitory activity of MSNs is a common
symptom of HD pathology, and a possible role of PKR in
mediating the inhibitory activity of GABAergic inhibition on the
cortex and striatal MSNs can be considered.

Presymptomatic Huntington’s disease patients often exhibit
cognitive deficits before the onset of typical symptoms (Lawrence
et al., 1998; Brandt et al., 2002). Learning and memory are
believed to depend on changes in synaptic efficacy in certain key
brain regions, including the hippocampus and other regions. LTP
and LTD, the most studied form of synaptic plasticity, have been
largely described to be altered on several HD models (Lione et al.,
1999; Lynch et al., 2007; Simmons et al., 2009; Brooks et al.,
2012). Indeed, the R6/2 mice displayed age-related alterations
in synaptic plasticity at CA1 and dentate granule cell synapses
and impaired spatial cognitive performance in the Morris water
maze (Murphy et al., 2000). Supporting the premature occurrence
of cognitive impairment in HD, LTP has been shown to be
reduced in hippocampal slices from presymptomatic Hdh(Q92)
and Hdh(Q111) knock-in mice (Lynch et al., 2007). Indeed, the
LTP impairment in an early-onset HD mouse model was related
to the reduced ability of excitatory synapses in cortical areas to
fully respond under low stimulus rates (Usdin et al., 1999). Mouse
HD models expressing full-length human mHTT (YAC46 and
YAC72) (Hodgson et al., 1999) showed early electrophysiological
abnormalities and LTP impairment before any noticeable
behavioral abnormalities and any evidence of neurodegeneration
or aggregate formation (Hodgson et al., 1999). Moreover, R6/1
HD mice, carrying 115 CAG repeats (Mangiarini et al., 1996),
showed reduced hippocampal LTP (Milnerwood et al., 2006).
Defects in memory consolidation and cognitive behavior have
also been demonstrated in a transgenic HD monkey, including
progressive impairment in motor functions and cognitive
decline, recognition memory, and spatial memory (Chan et al.,
2014). As mentioned, hippocampus-associated behavioral task is
impaired in humans affected by the disease (Harris et al., 2019).
Hippocampal cell loss, synaptic plasticity abnormalities, and
memory impairment are initial events on HD’s pathology. PKR
and eIF2α phosphorylation participates in memory consolidation
in a bidirectional manner on CA1 hippocampal slices of eIF2α

knock-in mice and recombinant PKR-expressing mice (Costa-
Mattioli et al., 2007; Jiang et al., 2010). This information
strongly suggests that increased PKR levels in HD brains can
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be partially involved in the impaired LTP and aberrant synaptic
plasticity on the hippocampus through eIF2α phosphorylation.
An unsolved question in the role of PKR in physiological or
pathological conditions is the stimulus that is activating the
kinase. In this context, the binding and activation of PKR to
RNAs containing another triplet repeat, the CUG sequence,
which is the genetic basis of myotonic dystrophy, have been
described (Tian et al., 2000).

Protein kinase R also binds preferentially mutant huntingtin
RNA transcripts containing CAG repeats (Peel et al., 2001),
raising the possibility that, in the HD pathological context,
PKR activation described in HD mouse models and postmortem
samples could be mediated by the binding of expansion of
trinucleotide repeat regions. The RAN translation, a pathological
phenomenon described in HD, has recently been described as
a process regulated by PKR and its phosphorylation (Zu et al.,
2020). Genetic deletion of PKR or the expression of a dominant-
negative form of PKR inhibits RAN translation. Moreover,
metformin, a drug widely used for treating type 2 diabetes and
recently tested in neurodegenerative disorders (Gantois et al.,
2019; Martinez et al., 2020), showed an inhibiting effect on RAN
translation and PKR activation (Zu et al., 2020). It remains to be
elucidated how metformin inhibits PKR and its possible effects in
neurodegenerative diseases. We detail studies on the role of PKR
on HD pathogeny in Table 2.

Overall, the evidence shows a role of PKR in HD,
either as a synaptic transmission modulator or controlling
translation, which reinforces the potential therapeutic role of
this kinase in HD.

A Link Between PD and PKR
Parkinson’s disease is one of the most common age-related brain
disorders. PD is defined primarily as a movement disorder, with
the typical symptoms being resting tremor, rigidity, bradykinesia,
and postural instability. PD is pathologically characterized
by degeneration of nigrostriatal dopaminergic neurons and
abnormal aggregates of α-synuclein protein, called Lewy bodies,
in the surviving neurons (Kalia and Lang, 2015). The presence of
these abnormal aggregates of α-synuclein protein is called Lewy
pathology. PD patients also display non-motor symptoms, such
as cognitive impairment (Muslimovic et al., 2005), recognition

memory deficits (Aarsland et al., 2017), and impaired learning
(Foltynie et al., 2004; Muslimovic et al., 2005; Aarsland et al.,
2009; Elgh et al., 2009). Remarkably, PD and HD patients
showed similarities in long-term memory impairment (Scholz
et al., 1988); this indicates that similar mechanisms modulate the
memory deficits in both neurodegenerative diseases.

In addition to the classic nigrostriatal α-synuclein misfolding
and dopaminergic neuronal loss, several mechanisms contribute
to the brain changes described in PD, including synaptic
dysfunction and loss, mitochondrial dysfunction, retrograde
signaling impairment, and altered neurotransmitter activity,
among others (Aarsland et al., 2017). Compared with the motor
symptoms, little is known about the mechanisms underlying
cognitive decline in PD, and several key questions remain
unresolved. The evidence from postmortem studies indicates that
Lewy body pathology in limbic and cortical areas is the main
pathological hallmark of PD’s cognitive impairment. The model
proposed is that α-synuclein pathology spreads from areas in
the lower brainstem or olfactory bulb (or extra-CNS territories
like the gut or other areas innervated by the vagus nucleus)
to the midbrain, forebrain, and limbic structures, and, finally,
neocortical regions (Braak et al., 2003; Sauerbier et al., 2016).

The contribution of PKR in PD has been poorly explored.
However, an interesting set of evidence suggests that PKR may
play a role in PD pathogenesis. Specifically, postmortem biopsies
from PD patients show a significant increase in activated PKR
in hippocampal neurons compared to age-matched controls.
Furthermore, activated PKR was also significantly increased
on nuclei from hippocampal lysates from the same patients
(Bando et al., 2005). Interestingly, murine models of PD
reproduce this significant increase in activated PKR at the
hippocampus (Deguil et al., 2010). Specifically, parkinsonism
in mice induced by intraperitoneal injection of 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) correlates with a
significant increase in activated PKR at the hippocampus (Deguil
et al., 2010). Interestingly, a preclinical treatment against PD
significantly reduces activated PKR at the hippocampus and
improves spatial memory on the Morris water maze paradigm
(Deguil et al., 2010). Furthermore, additional strong evidence
can be considered to involve PKR as kinase participating
in PD. It has been described that the extent of amyloid

TABLE 2 | Reports of protein kinase R (PKR) and age-related neurodegenerative diseases.

AD model
(in vitro/in vivo)

Tissue Finding References

HD patients Brain tissue from HD patients and htt
YAC mice

PKR preferentially binds to mutant huntingtin RNA transcripts.
p-PKR immunolocalizes with degenerated areas in HD model

Peel et al. (2001)

HD patients Hippocampal tissue from HD patients p-PKR is significantly higher and forming aggregates in the
nuclei of the CA1, CA2, and CA3 hippocampal regions

Bando et al. (2005)

PD patients Hippocampal tissue from PD patients p-PKR is significantly higher CA2 and CA3 hippocampal regions Bando et al. (2005)

C57Bl/6 mouse treated
with MPTP (parkinsonism)

Striatum, midbrain containing the
substantia nigra, hippocampus, frontal
cortex samples

PKR levels are increased in the striatum and hippocampal
tissue and eIF2α phosphorylation is increase in the striatum in
response to MPTP

Deguil et al. (2010)

YAC, yeast artificial chromosome; p-PKR, phosphorylated PKR; CA, hippocampal cornu ammonis; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; Ser, serine; OLN,
oligodendroglial permanent cell line; MSA, multiple system atrophy; SH-SY5Y ASYN, alpha-synuclein overexpressing SH-SY5Y neurons; OLN-AS7, oligodendroglial cells
AS7.
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plaque pathology observed in PD is a significant contributor
to the cognitive decline observed in the disease (Compta
et al., 2011; Aarsland et al., 2017), suggesting a possible
common mechanism driving cognitive impairment observed
in AD and PD. Another common aspect can be found
between AD and PD. Synaptic dysfunction followed by
synaptic loss is likely to be the early and key events in AD
(Terry et al., 1991). Emerging evidence has shown synaptic
alterations in PD patients (Matuskey et al., 2020). Using in vivo
high-resolution positron emission tomographic imaging and
postmortem autoradiography derived from patients’ samples, the
authors showed decreased levels of synaptic vesicle glycoprotein
2A (SV2A) in PD patients (Matuskey et al., 2020). Notably,
most of the genes implicated in PD (e.g., SNCA, LRRK2, DJ-
1, PINK1, and PRKN) have a critical role in synaptic function,
and knockout mouse for each of the genes has demonstrated
disruption of synaptic plasticity and neurotransmitter function
(Plowey and Chu, 2011; Belluzzi et al., 2012; Abeliovich and
Gitler, 2016).

Cognitive impairment is also detected in mouse models
of the disease, in which partial lesions of dopaminergic
and noradrenergic inputs to the striatum and hippocampus
are induced with 6-hydroxydopamine. This mouse displayed
reduced long-term novel object recognition and decreased LTP,
predominantly in the dentate gyrus (Bonito-Oliva et al., 2014).
Concomitantly, the application of extracellular α-syn oligomers
in rat hippocampal brain slices impairs LTP (Martin et al., 2012).
On the other hand, overexpression of α-syn induced impairment
in short-term memory and spatial learning in rats principally
due to α-syn accumulation primarily in the CA2 region. Thus,
processes controlled by PKR are also altered in PD mouse
models. We detail studies on the role of PKR on PD pathogeny
in Table 2.

The phosphorylation of eIF2α in the substantia nigra has
been described in the postmortem tissue from PD cases, and in
the same study, the activation (phosphorylation) of another ISR
kinase, the ER stress sensor PERK (Hoozemans et al., 2007), was
also detected. On the other hand, another study showed strong
induction of phosphorylated PKR in hippocampal neurons
(Bando et al., 2005), but the phosphorylation of eIF2α was not
analyzed. It is possible to consider that PKR could be mediating

the phosphorylation of eIF2α in other regions, i.e., substantia
nigra, and driving cell death events observed in the disease.

The stimulus activating PKR in PD is still unknown. In this
context, an association between viral infections mediated by
herpes simplex virus (HSV) and influenza virus A and increased
PD incidence has been found (Olsen et al., 2018). It has been
proposed that HSV influenza virus A infections may lead to PD
pathology. Viral transcripts, possibly detected by PKR, could be
part of the mechanism underlying the association proposed.

CONCLUDING REMARKS

The role of PKR seems to be relevant in physiological
and pathological conditions but with completely different
consequences. PKR could be considered as a regulator of synaptic
efficiency transmission and, consequently, a neurocognitive
regulator. The identity of the stimulus that activates the
kinase in normal conditions remains to be determined. In
pathological conditions, PKR seems to be a cell death regulator,
resulting in an interesting candidate for therapeutics strategies.
The abnormalities observed in aged-related neurodegenerative
diseases could have a common regulator, PKR, mediating
apoptotic signals, synaptic transmission deficiencies, and
neurocognitive dysfunction.
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