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PERMANENT DYNAMICS OF PARTICLE-LIKE SOLUTIONS IN
OUT-OF-EQUILIBRIUM SYSTEMS

This dissertation aims to understand how nonvariational e�ects a�ect the dynamics of particle-
type solutions in spatially extended systems. In the �rst part of our research, we study
nonvariational perturbations on the dynamics of fronts and localized structures that can be
understood as particle-like solutions associating continuous variables such as position, veloc-
ity, and size. In Chapter 1, we explain some preliminary concepts useful to understand the
results of this thesis. Chapter 2 is dedicated to understanding how nonvariational e�ects
can a�ect the dynamics of fronts connecting a stable state with an unstable one. From an
analytical and numerical point of view, we show how the nonvariational e�ect can induce a
pulled-pushed transition in this kind of front and show experimental evidence of our results
in a LCLV setup with optical feedback. Chapter 3 reveals how nonvariational e�ects induce
propagation in normal fronts, obtaining in such a way a new propagation mechanism caused
only by the shape of the front connecting the stable states that the nonvariational parameters
can control. In addition, we verify our theoretical �ndings by studying the LCLV setup with
optical feedback in the regime where the system is multistable. Chapter 4 shows a transition
from motionless to traveling localized states due to a spontaneous symmetry breaking in the
nonvariational Turing-Swift-Hohenberg equation as an archetypical model of pattern-forming
systems. A nonvariational e�ect drives such transition, and it is characterized numerically
and analytically. Moreover, we generalize such kinds of states in higher dimensions. Chapter
5 and 6 explores a new kind of chimera states in continuous media, namely, traveling and
wandering chimera states, respectively. Chimera states are characterized by the coexistence
of coherent and incoherent spatiotemporal dynamics. Traveling chimeras propagates in a
speci�c direction with a well-de�ned average speed; meanwhile, wandering chimeras exhibit
an erratic motion resembling a random walk. We characterize its statistical and dynamical
properties and give numerical insights about its bifurcation diagram. In chapter 7, we study
the dynamics of fronts but consider another kind of nonvariational perturbation, namely, de-
terministic �uctuations englobing chaotical and spatiotemporal chaotical dynamics. We show
that despite these �uctuations, a front may remain pinned, in contrast to fronts in systems
with Gaussian white noise �uctuations, and explore the pinning-depinning transition. We
describe this transition by deriving an equation for the front position, which takes the form
of an overdamped system with a ratchet potential and chaotic forcing; this equation can, in
turn, be transformed into a linear parametrically driven oscillator with a chaotically oscillat-
ing frequency. Finally, in chapter 8, we extend our study of deterministic perturbations to
localized structures. Mobility properties of spatially localized structures arising from chaotic
but deterministic forcing of the bistable Swift-Hohenberg equation are compared with the
corresponding results when the chaotic forcing is replaced by white noise. For the family
of LS studied, we found that shorter structures are more fragile than longer ones, and their
stability region can be displaced outside the pinning region for constant forcing. In addition,
we discuss the nature of randomness and how it can emerge from deterministic dynamics.

i



ii



RESUMEN DE LA MEMORIA PARA OPTAR
AL TÍTULO DE DOCTOR EN CIENCIAS, MENCIÓN FÍSICA
POR: ALEJANDRO JOSE ALVAREZ SOCORRO
FECHA: 2021
PROF. GUÍA: MARCEL CLERC GAVILAN

PERMANENT DYNAMICS OF PARTICLE-LIKE SOLUTIONS IN
OUT-OF-EQUILIBRIUM SYSTEMS

Esta disertación tiene como objetivo comprender cómo los efectos no variacionales afectan la
dinámica de las soluciones tipo partícula en sistemas espacialmente extendidos. En la primera
parte de nuestra investigación, estudiamos perturbaciones no variacionales en la dinámica de
frentes y estructuras localizadas, las cuales pueden entenderse como soluciones tipo partícula,
es decir, pueden describirse a través de variables continuas tales como la posición, la veloci-
dad y el tamaño. En el Capítulo 1, explicamos algunos conceptos preliminares necesarios
para comprender los resultados de esta tesis. El capítulo 2 está dedicado a vislumbrar cómo
los efectos no variacionales pueden afectar la dinámica de los frentes que conectan un es-
tado estable con uno inestable. Desde un punto de vista analítico y numérico, mostramos
cómo los efectos no variacionales pueden inducir una transición tipo pulled-pushed en esta
clase de frentes. Adicionalmente, mostramos evidencia experimental de nuestros resultados
en un setup compuesto por una válvula de luz de cristal líquido (LCLV) con retroinyección
óptica. En el Capítulo 3 revelamos cómo los efectos no variacionales pueden inducir propa-
gación en frentes normales, obteniendo un nuevo mecanismo de propagación que depende
exclusivamente de la forma del frente que conecta los estados estables, la cual es modulada
por los parámetros no variacionales. Nuestros hallazgos teóricos son veri�cados mediante
el estudio de este tipo de frentes en la LCLV con retroinyección óptica en el régimen en el
que este sistema es multiestable. En el capítulo 4 se muestra una transición de estados lo-
calizados inmóviles a propagativos en la ecuación no variacional de Turing-Swift-Hohenberg,
como consecuencia de una ruptura espontánea de simetría. Dicha transición es conducida
por efectos no variacionales y se logra caracterizar numérica y analíticamente. Además,
generalizamos este tipo de estados en dimensiones superiores. Los capítulos 5 y 6 explo-
ran un nuevo tipo de estados de quimera en medios continuos, a saber, estados de quimera
viajeros y errantes, respectivamente. Los estados de quimera se caracterizan por la coex-
istencia de dinámicas espacio-temporales coherentes e incoherentes. Las quimeras viajeras
se propagan en una dirección preferencial con una velocidad media bien de�nida; mientras
tanto, las quimeras errantes exhiben un movimiento errático que se asemeja a un caminante
aleatorio. Caracterizamos sus propiedades estadísticas y dinámicas y brindamos información
numérica sobre sus diagramas de bifurcación. En el capítulo 7, estudiamos la dinámica de
los frentes, sujetos a �uctuaciones determinísticas que incluyen a comportamientos caóticos y
caóticos espacio-temporales. Mostramos que a pesar de estas �uctuaciones, un frente puede
permanecer anclado (o pinned), en contraste con la aplicación de �uctuaciones estocásticas.
Para explorar la transición de pinning-depinning, se deriva una ecuación para la posición del
frente, que toma la forma de un sistema sobreamortiguado con un potencial tipo ratchet y un
forzamiento caótico. En el capítulo 8, ampliamos nuestro estudio de perturbaciones deter-
minísticas a estructuras localizadas comparando el efecto de las �uctuaciones determinísticas
con el de las estocásticas. Finalmente, se discute la naturaleza de la aleatoriedad y cómo esta
puede surgir de una dinámica determinística.
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Introducción

Nature is full of peculiar phenomena emerging as a consequence of injection and dissipation
of energy, and it is the job of physicists to classify, characterize, understand and predict
the occurrence and dynamics of such phenomena. In this thesis, we are interested in a
particular type of phenomenon that we can associate with the concept of a particle in its
most elementary form, i.e., phenomena that can be characterized by continuous parameters
such as position, size, �eld, speed, among others. For example, the propagation of a �ame in
an elongated strip of paper (quasi-one-dimensional system) can be understood as a particle
propagating in a one-dimensional space. Here, its position is given by the center of the
combustion reaction region; the size of the particle would be associated with the size of the
combustion zone. Its speed would be the speed with which the center of the zone where
the combustion occurs moves concerning time. Another example of interest for the present
manuscript would be the propagation of localized structures, e.g., a non-linear wave, where
the position, size, amplitude, and velocity can be de�ned almost directly, establishing an
immediate link with the concept of particle. It should be noted that this is just one way of
interpreting and understanding this type of phenomenon. Furthermore, our theoretical frame
of reference is a consequence of the interaction between various disciplines, mainly classical
mechanics, statistical physics, optics, �uid dynamics, physics out of equilibrium, non-linear
dynamics, dynamic systems, so it could be said that it is a modern approach to problems
that escape a purely relaxational dynamic.

In this sense, we will be mainly interested in two types of phenomena that can be associated
with the concept of a particle, namely,

� Fronts, domain walls, interfaces.

� Localized structures, dissipative solitons, localized patterns, defects.

Fronts and localized structures themselves appear in a wide range of systems coming from
optics, mechanics, combustion, chemical reactions, liquid crystals, granular media, hydrody-
namics, plasmas, among many others. Moreover, these phenomena appear in more far topics
like population dynamics, genetics, cancer disease, brain dynamics, opinion dynamics in so-
cieties, to mention a few. Such phenomena that appears in several systems independently of
the underlying physics are called robust phenomena. Fig. 1 exhibits some examples of fronts
and localized structures in several physical systems. Figure 1(a) it is shown a pendulum
chain with dissipation and parametrically forced, where emerges, in a range of parameters, a
solution that connects the equilibria θ = 0 and θ = π, making that it coexist in space. Other
examples of fronts illustrated in Fig.1 appears in (b) �uidized granular media, (c) interface
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Figure 1: In this �gure, we can observe several examples of particle-like solutions. In the left
panel, we can see fronts solutions in (a) an array of pendulums, (b) �uidized granular media,
(c) optical media and (d) magnetical media. The corresponding localized solutions at each
of the before mentioned media are shown in (e),(f),(g), and (h).

connecting two domains with di�erent average molecular orientation in optical media, and
(d) domain walls in magnetical media. In the same spirit, the right panels exhibit some
examples of localized states. Particularly, Fig.1 (e) show localized structures in a pendulum
chain, and (f) in �uidized granular media, (g) in optical media and (h) in magnetical media.

Additionally, fronts and localized structures are non-linear phenomena; that is, the laws
of evolution that describe such phenomena are non-linear, and typically their solutions do
not satisfy the principle of superposition, or in other words, the Linear combination solutions
is not a solution, what if it occurs in linear systems.

Going deeper into the universe of spatially extended non-linear systems, we have those
approaching equilibrium through purely relaxational type dynamics, i.e., their asymptotic
behavior ends in a stable equilibrium or a periodic orbit. For these so-called variational
systems, an energy functional can be found whose minimization describes its asymptotic
dynamics. On the other hand, we have the so-called non-variational ones, characterized by
permanent dynamics, and from the theoretical point of view, their laws of evolution do not
follow the minimization of functional energy. Unfortunately, while there are methods to
study variational systems, general literature for non-variational systems is absent, and there
are few research papers in the area.
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Contradictory to what one might think based on classical literature, non-variational sys-
tems are generic and commonly appear when is searched for laws of evolution of macroscopic
systems out of equilibrium. Variationality, as a mathematical property, surrenders to coarse-
grained hypotheses and mean-�eld approaches. Although variationality could be recovered
by considering the entire system from a microscopic point of view as well as all the inter-
action between its constituents, this would render the model theoretically and numerically
intractable. Hence the great relevance of non-variational systems.

Precisely this thesis tries to give a broad panorama of the dynamics of particle-type
solutions in non-variational spatially extended systems, addressing how non-variational e�ects
a�ect the dynamics of fronts and localized structures. Nevertheless, only front and localized
structure dynamics themselves are topics of broad interest in the scienti�c community.

0.1 Objetives

The main objective of this thesis is to understand how nonvariational e�ects can a�ect the
dynamics of particle-like solutions, in particular, fronts and localized structures.

0.1.1 Speci�c Objetives

We are particularly interested in

� Understand how nonvariational e�ects could a�ect the dynamics of normal and FKPP
fronts or interfaces and characterize its transitions.

� Give numerical and analytical insights about the modi�cation of propagation direction
of speed when nonvariational terms are considered.

� Understand how nonvariational e�ects can modify direction and propagation speed in
localized structures and characterize its dynamical transitions.

� Generalize the results for higher dimensions.

� Validate the theoretical results developed in this thesis by experiments whose mathe-
matical model corresponds to a nonvariational system.

� Study the emergence of new dynamical behaviors driven by nonvariational e�ects, mo-
tivated by the existence of chimera (or chaoticons) for the nonvariational Turing-Swift-
Hohenberg equation.

� Answer the question, can chaoticons propagate? Furthermore, what kind of propagation
dynamics can exhibit these.

� Explore how deterministic �uctuations as another example of nonvariational perturba-
tions can a�ect the dynamics of fronts and localized structures.

� Show how deterministic �uctuations could drive the system to di�erent transitions
comparing with stochastic �uctuations.

� Give insights about how deterministic systems can reach randomness.

� Propose new methods to approach nonvariational systems.
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0.2 Content of the thesis

This thesis is divided as follows.

The chapter 1 contains the theoretical framework with the necessary concepts to under-
stand the rest of the chapters of the thesis. For this purpose, de�nitions from non-linear
physics, pattern formation, and spatially extended systems are systematically addressed.
The concepts of robust phenomena, fronts, localized structures, localized patterns, chaos,
space-time chaos, and chimera states are also presented. We also explain the concept of
variational and non-variational systems, understanding the latter as systems whose dynam-
ics are not purely relaxation and can not minimize an energy functional. Nonvariationality
will be crucial because one of the pillars of this thesis is understanding how non-variational
e�ects a�ect the dynamics of robust phenomena such as localized structures and interfaces
or fronts. Finally, we explain the details of a liquid crystal light valve experimental setup
that can be variational or non-variational, depending on the tuning, which will serve as a
validation laboratory for a large part of the results presented in this thesis.

In the chapter 2 we begin the study of the non-variational e�ects in the dynamics of fronts
of FKPP type, that is, fronts that connect a stable state with an unstable one. This type of
front allows describing physical processes such as combustion, the dynamics of a population,
and, as we show in this chapter, the dynamics of a liquid crystal light valve with optical
feedback under certain experimental conditions.

In the chapter 3 we try to explore the non-variational e�ects on another type of front,
called normal fronts, characterized by connecting two stable states. As in the previous case,
these fronts allow describing physical processes such as combustion (when the material has
a su�ciently high ignition point), competition between populations in population dynamics,
and dynamics in magnetic and optical media. In particular, we show an application in the
control of fronts in the liquid crystal light valve presented in the previous chapters.

In the chapter 4 we seek to understand how non-variational e�ects can a�ect the dynamics
of localized dissipative structures, showing that both the speed of propagation and the direc-
tion can be controlled via the adjustment of the non-variational parameters. Additionally, we
try to extend the results obtained to larger dimensions, �nding a family of bounded localized
structures (which we call catamarans because they resemble boats with two parallel hulls),
emerging as a consequence of the non-variational terms and whose dynamics and transitions
were characterized. Later, this kind of solution was reported in [1, 2] on another setup based
on liquid crystals.

In chapter 5 we show a paradigmatic phenomenon in the chimera literature. Although
the emergence of chimera-type states (or chaoticons) in continuous media due to the e�ect of
non-variational terms was reported in [3, 4], we show that there exists a family of chimeras
that breaks its symmetry and travels in a wide range of parameters with well-de�ned direction
and speed. The propagation mechanism is the consequence of the collective oscillations or
modes within the localized structure. In this sense, we show their dynamics, emergence, and
zoology and numerically illustrate their interaction and the formation of bound states.

In chapter 6, we show the emergence of an extremely curious phenomenon that we called
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wandering chimeras in spatially continuous systems. These wandering chimeras are char-
acterized by behavior resembling the Brownian movement; however, as we demonstrated in
the chapter, they are statistically and dynamically di�erent. Additionally, we evidenced the
existence of this type of state through data obtained from the liquid crystal light valve setup
with optical feedback.

In the chapter 7, we explore a di�erent type of non-variational e�ect, this time given by
the perturbation of a system by deterministic or chaotic �uctuations. The motivation of
our research was to discover how deterministic �uctuations a�ect the dynamics of fronts by
considering the coupling of the Nagumo Kuramoto equation with the Kuramoto-Sivashinsky
equation as a source of spatiotemporal chaos. In this sense, we �nd important di�erences
between chaotic and stochastic perturbations. Perhaps the most important result is that,
unlike noise, deterministic perturbations preserve the pinning zone due to the forbidden
transitions typical of deterministic dynamics. Finally, this work opens the doors to under-
standing how noise can emerge from chaotic dynamics in spatially extended systems, as we
illustrate by measuring macroscopic variables such as average behavior, thus obtaining the
main ingredients of noise.

In chapter 8 we continue investigating the e�ect of deterministic �uctuations, in this
case in the dynamics of localized structures through the study of a system composed of the
non-variational Turing-Swift-Hohenberg equation coupled with the Kuramoto-Sivashinsky
equation to be able to elucidate the e�ect of the spatiotemporal chaotic perturbations in the
dynamics of the localized structures that the Turing-Swift-Hohenberg equation exhibits. In
a wide range of parameters, we �nd that the position and speed of the localized structures
present a sustained chaotic behavior, without transitions to the homogeneous state or to
another localized structure, which does not occur when considering stochastic perturbations.
Together with the previous one, this work opens the doors to an interesting line of research,
given by the transitions induced by chaos.

Along with our research, we were trying to understand how robust phenomena like fronts
and localized structures emerge and modify their dynamics when non-variational e�ects are
present due to when macroscopic phenomena in nature are modeled; typically, such models
are non-variational. The common thread throughout our research was precisely to understand
how non-variational e�ects a�ect the dynamics of fronts and localized structures encompassed
within the concept of particle-type solution. In this sense, in chapter 9, we summarize all
the �ndings as conclusions of our research.
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Chapter 1

Theoretical Framework

In this chapter we develop all the theoretical background needed to understand the results
presented in this thesis.

1.1 Robust phenomena and out-of-equilibrium systems

A phenomenon is called robust if it emerges in a wide variety of systems, independently of
the underlying physics. Some examples are

� The interfaces between states, also called fronts. They are found in various systems,
e.g., in chemical reactions like combustion, where the burned state is separated from
the unburned state by an interface where the reaction occurs. We can also �nd fronts
in others physical systems such as domain walls in (i) magnetic media de�ned as an
interface separating magnetic domains, or the region where the transition between the
di�erent magnetic moments, (ii) optical media (interfaces between regions with di�erent
molecular orientation), (iii) climatic fronts (interfaces between masses of cold air and
hot air, where typically are formed cumulus clouds or cumulonimbus) and even in (iv)
social systems, with groups of people separated by their opinions. Some excellent books
and reviews about fronts dynamics are [5, 6, 7]

� Localized structures are also found in various systems and often appear as localized
spots or patterns in the media. They are shown in magnetic and optical media as areas
or spots with well-de�ned properties such as position, speed, and size and di�erentiated
from the surrounding environment. Particularly in liquid crystals, they can be seen as
areas with molecular orientation di�erent from that of the medium, so that observing
them using crossed polarizers, we can see them as �bright� points of light on a �dark�
background depending on whether the molecular orientation of the base state allows
do not pass the light. A good review in localized structures can be found in [8, 9]

� Chaotic behavior, although possibly many, is mistaken for chance; it is also robust.
Phenomena such as the toss of a coin or dice, the weather, the stock market, and even
a double pendulum exhibit the main properties of chaos, which are the apparently
random like behavior with a marked sensitivity to the initial conditions [10, 11].
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Other examples are the waves, synchronization of coupled systems [12, 13], spatial pattern
formation [14], hysteresis [15], among many others [16].

Robust phenomena are usually understood from a mathematical perspective via the theory
of normal forms within dynamical systems theory [17, 18]. It is sought to �nd the most
straightforward equation that allows describing the behavior of the phenomenon qualitatively.
These equations, models, or laws of evolution called normal forms can come in many �avors,
typically as di�erential equations, partial derivative equations, discrete maps, and cellular
automata. In this sense, the emergence of robust phenomena in normal forms is usually
linked to the change in some system parameter, and the speci�c value of the parameter in
which said emergence occurs is usually called the bifurcation point.

1.2 Dynamical Systems and Evolution Laws

From the above, a dynamical system can be understood as a rule or law of evolution over
state space. More formally, a dynamical system consists of an abstract space, called phase
space or state space, whose coordinates (called state variables) describe the state of a system
at any moment, and the evolution law allows the absolute determination of the future of all
state variables, given only the initial state or condition of the system.

Some examples of dynamical systems are:

� The state of a simple pendulum, described by its angle and speed, is given by Newton's
law F = ma, or more explicitly d2θ/dt2 + (g/L) sin θ = 0.

� The temperature of a metal rod of a su�ciently small radius at a point x, and at an
instant t is given by ∂tu = c∂xxu.

� The population of a self-limited population of bacterias in a petri dish through a gen-
eration time window could be described by the map xt+1 = µxt(1− xt).

1.3 Spatially Extended Systems

Physical systems are tipically spatially extended, i.e., the dynamical behavior in any point
of the space depends on the state of the whole space or at least of part of it. From a
mathematical point of view these equations that determine the evolution laws of the systems
are in general described as partial di�erential equations.

In the following, we will discuss about some models that will be explored and used through-
out the development of this thesis. In general, all will be described by:

∂tu = F (u) + ν∂xxu+ ξ∂xxxxu+ bu∂xxu+ c(∂xu)2, (1.1)

that represent a generalization of the classical reaction-di�usion equation, recovered taking
ξ = b = c = 0.
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Fisher, Kolmogorov, Petrovsky and Piskunov Equation

In the world of reaction di�usion equations, the Fisher, Kolmogorov, Petrovsky and Piskunov
equation, denoted by FKPP, is maybe one of the most explored models. It is given by the
following equation

∂tu = ru(1− u) + ν∂xxu. (1.2)

It was introduced in 1937 in a seminal work of R. A. Fisher [19] and in parallel but A. N.
Kolmogorov, together with I. G. Petrovsky and N. S. Piskunov [20] as a model to describe the
advantageous of a gene. In addition, investigating the propagation this model in the context
of combustion theory. This is maybe the simplest and most known equation that describe a
traveling wave.

Turing-Swift-Hohenberg Equation

This equation was studied by A. Turing in the 1970s in the context of the problem of mor-
phogenesis, as was reported in posthumously reported in [21, 22] and by J. Swift and P.
Hohenberg in [23] in the context of hidrodynamic �uctuations. Since it, this equation has
been a topic of intensive research [24, 25, 26, 27] as archetypical model for fronts, localized
states and pattern formation. It can be written as

∂tu = η + µu− u3 − ν∂xxu− ∂xxxxu (1.3)

depending of the region of parameters, this equation presents fronts solutions, localized states
and patterns [24, 25].

Kuramoto-Sivashinsky Equation

This equation is one of the most simple equations where spatio-temporal chaos emerges.
Was derived by Kuramoto in the context of coupled oscillators [28] and by Sivashinky in the
context of �ame dynamics [29]. It can be written in the following way

∂tψ = −µ∂xxψ − (∂xψ)2 − ∂xxxxψ (1.4)

This equation exhibit a rich and complex dynamics and will be studied with more details
in the following sections.

1.3.1 Variational and Nonvariational Systems

Physics in equilibrium deals with systems for which its asymptotic behavior is known, either
that reach the stable equilibrium state through energy dissipation, or that from the macro-
scopic point of view it is in a well de�ned state without any permanent dynamics in the
macroscopic variables de�ning it. In this scenario, the evolution laws are tipically described
by the extremization of a conservated quantity, tipically the energy. These systems are called
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variational. More formally, from a mathematical point of view, a variational system is de�ned
as a system whose dynamics comes from the derivative of a functional, i.e.,

∂tu = −δF
δu

(1.5)

These kind of system follow a relaxational dynamics, and can not show any kind of per-
manent dynamics nor spatio-temporal complexity. On the other hand, a nonvariational or
nongradient system [30, 31, 32, 33, 34, 35] are those that can not be written as Eq. (1.5).
Such systems tipically describes more rich and interesting dynamics, and are permanent in
time and appears frequently in the modelling of macroscopic systems due to the corse-grain
and mean-�eld approaches envolved in the deduction of the evolution laws. Thus, we will
mainly interested in robust phenomena like fronts and localized structures in nonvariational
system. In models, fronts and localized structures can be described as particle like solutions.

1.3.2 Particle-Like Solutions

Phenomena that can be described by particle like solutions are robust in nature. We can
identify propagative localized structures in macroscopic systems that preserve its shape and
can be characterized by macroscopic variables like position, speed, withd, height, charge,
mass, etc. Thus, phenomena like a pulse propagation or a domain wall in a magnetic media
can be understood in the framework of particle-like phenomena.

1.4 Fronts or domain walls

We can de�ne a front as a nonlinear wave, joining two steady states of the system. Such
states can be static or dynamical states. Maybe the most general de�nition of front is the
following. A front can be de�ned as a solution that connect two steady states in a spatially
extended systems. It can be motionless or traveling. In this thesis we will interested in the
later scenario. Consider a traveling front that propagates with a well de�ned speed v. We
can write the solution in the co-mobile frame putting z = x− vt, obtaining in this way

u(x, t) = u(x− vt) = u(z) (1.6)

A studyed the scenario is a front connecting two stationary states, u(x, t) = u0 and u(x, t) =
u1, where F (u) = 0. In the following we will explore the properties of fronts connecting a
stable state with an unsable one.

1.5 FKPP fronts

One of the most simplest systems exhibiting fronts is the FKPP equation,

∂tu = ru(1− u) + ∂xxu.

It have two steady states, u0 = 0 and u1 = 1. Kolmogorov et al. [20] show how to get the
direction of propagation, obtaining that the unstable state always invades the stable one for
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this equation. Thus, to get the front propagation direction it is only needed evaluate the
stability of the steady states. In this case, for r > 0 we have

∂uF (0) = r − 2ru|u0=0 = r > 0

and,

∂uF (1) = r − 2ru|u1=1 = −r < 0

then, u0 is unstable and u1 is stable.

1.5.1 Propagation speed: pulled and pushed fronts

Consider a slightly general scenario than the FKPP equation by taking a bistable reaction-
di�usion equation

∂tu = F (u) +D∂xxu (1.7)

with F (0) = F (1) = 0 and F (u) > 0 for 0 < u < 1. In the equation 1.7. Putting the
system in the co-moving frame and linearizing the front solution around the unstable state,
we obtain

D∂zzu+ v∂zu+ F ′(0)u = 0 (1.8)

Note that it is an homogeneous second order di�erential equation with constant coef-
�cients, therefore its solutions can be found by using the exponential ansatz u(z) ≈ eλz,
obtaining

(Dλ2 + vλ+ F ′(0))eλz = 0 (1.9)

where eλz 6= 0 always. Therefore,

Dλ2 + vλ+ F ′(0) = 0 (1.10)

whose solutions are given by

λ± =
−v ±

√
v2 − 4DF ′(0)

2D
(1.11)

and to obtain the associated real solutions, it must satisfy
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v2 − 4DF ′(0) ≥ 0 (1.12)

But to obtain solutions with physical meaning is needed that

v ≥
√

4DF ′(0) (1.13)

because in other case the solution will oscillate arround u = 0, driving to negative values for
the density u. We can �nd the minimal front speed using a linear criteria in a similar way
showed for the FKPP system in the above section. Thus, we consider an exponential ansatz
u(z) ≈ e−λz in Eq. (1.8), obtaining

v(λ) = Dλ+
F ′(0)

λ
(1.14)

and to �nd the minimun we derivate with respect to λ and set it equal to zero to get

v′(λ) = D − F ′(0)

λ2
= 0 (1.15)

and solving for λ, give us

λ =

√
F ′(0)

D
(1.16)

and substituting in Eq. (1.14) we obtaing

v∗ = min
λ

[v(λ)] = 2
√
DF ′(0) (1.17)

In addition, Aronson and Weinberger [36] obtain in addition and upper bound for the
speed, so that

2
√
DF ′(0) ≤ v∗ ≤ 2

√
DSupu

[F (u)

u

]
, (1.18)

for any positive and su�ciently localized initial condition u(x, 0), with u(x, 0) ∈ [0, 1]. More-
over, for any function satisfying F (u) ≤ uF ′(0), the upper and lower bounds agree and the
asymptotic front speed is uniquely determined and given by Eq. (1.17).

Note that in the above scenario the fron speed can be calculated by a linear criteria
and only depends on the region where the front vanishes, i.e., the front tail u ≈ 0. This
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propagation mechanism is called pulled (also pulled fronts) because the front propagations
is pulled by its leading edge.

On the other hand, when the upper and lower bounds does not coincide and the asymptotic
front speed is larger than the given by the lower bound (linear criteria), the front propagation
mechanism is called of pushed type, because the front is pushed by its interior part. In the
following section we will show an example of a system exhibiting a pulled pushed transition
in the front dynamics.

1.5.2 Pulled-Pushed Transition

Consider the following system

∂tu = u(1− u)(1 + au), (a > 0) (1.19)

The above equation have two steady states given by u ≡ 1 and u ≡ 0 that are stable
and unstable one respectively. Nevertheless, the asymptotic front speed changes when the
a parameter is increased over a critical value. In fact, [37] shows that the front speed is
described by

v =

{
2
√
D a ≤ 2

(
√
a+ 2/

√
a))
√
D/2 a > 2

(1.20)

1.6 Normal fronts

Another interesting kind of front is given by those connecting two stables states, called normal
fronts. A simple example is given by a generic bistable system, whose potential is depicted
in �gure (a). In order to have an expresion for this system, consider

∂tu = F (u) + ∂xxu (1.21)

where u = u(x, t) and u = u0, u = u1 are stable states, i.e., ∂uF (u) < 0 for u = u0, u1.

The propagation direction and speed of these kind of fronts depends on the sign and
magnitude of the di�erence of energy. Following the Pomeau work [38] we get to the following
expresion for the front propagation speed

v ∝ ∆V (u) =

∫ u1

u0

F (u)du (1.22)

A detailed calculation for a speci�c bistable system is done in the chapter 3.
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Figure 1.1: Panels (a) and (b) show a generic bistable potential where the asymmetry is
controlled by η parameter, having in (a) that the state B minimizes the energy potential
corresponding to η > 0 and in (b) the contrary scenario, i.e., A minimize the energy potential.
In panel (c) is depicted how the state B invades A when B minimizes the energy potential,
and in panel (c) the complementary case.
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1.7 Dissipative Localized Structures

Out-of-equilibrium systems are typically described through non-linear dynamical systems. In
turn, these can be understood qualitatively through simpli�ed equations called normal forms.
Therefore, one of the most straightforward and most interesting generic transitions can be
observed through the birth of a homoclinic tangency; described connection occurs between
one of the stable varieties and one of the unstable manifolds of the equilibria.

From a purely mathematical point of view, these homoclinic tangles give rise to the so-
called localized structures [24, 39]. However, from the physical perspective, localized stric-
tures are characterized by the coexistence between injection and energy dissipation, typically
represented through non-linear focusing terms (injection) and di�erential operators, among
which the Laplacian (di�usion). The balance between injection and energy dissipation in
e�ect allows stabilization of localized structures against small disturbances. These out of
equilibrium structures are called self-organized dissipative localized structures [14, 8, 40]. It
is also worth mentioning that we can also understand the spatial variation of a front con-
necting two homogeneous states as a localized structure because in that case, we will have
a solution that will connect the zero homogeneous state with itself through a path that
describes the variation of the solution in the heart of the front (interface).

It should be noted that this type of structure emerges in both natural systems and those
derived from technological devices, the latter being of particular interest given the possibility
of its reproduction and study through experimental setup within a laboratory. Other exam-
ples of dissipative localized structures are spirals and, in general, localized patterns, typically
the product of the coexistence between homogeneous states and patterns.

In addition to the term localized dissipative structure, in the literature, we can �nd syn-
onyms such as:

� Dissipative soliton[8, 41], which refers to its similarity to localized waves in conservative
systems, also called solitons, which can typically be found in the study of surface waves
in �uids or through solutions of the non-linear Schrödinger equation, the Sine-Gordon
equation, and variational variants.

� Pulse, used throughout the literature on optical systems as light pulses in setups com-
posed of optical �bers [42, 43] and in neurodynamics, when studying the propagation
of electrical stimuli in neuronal tissues [44].

� Spots, mainly used in the literature of optical systems [45, 46], especially in liquid
crystals [47, 48, 49], since these localized structures typically emerge as spots of light
or absence of light in said systems. However, recently it has also been applied in the
emergence of structures located in vegetation [50].

1.8 Patterns and localized patterns

In natural and technological systems, patterns tend to emerge from a homogeneous state
due to a destabilization of the stable state via spatial modulation. Examples of these can be
found in the �sand-ripples� on the sea surface, the Faraday waves that emerge in vertically
forced systems, or the convective Rayleigh-Benard rolls. An example of particular interest
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throughout this manuscript will be the standard states in the Swift-Hohenberg equation [24].
As mentioned in the previous chapter, a localized structure can be seen as a homoclinic orbit
in the associated Newton-like system. Thus, a localized pattern can be understood similarly,
with the di�erence that the type of connection performs more complex explorations or tours
in phase space. To review more details about pattern formation systems and its dynamics
there are excellent books and reviews, e.g., [40, 14, 51, 52, 53, 54] and references therein.

1.9 Dynamical Complexity

From classical mechanics, we know that a simple pendulum can show us solutions that, due to
the friction (dissipation of energy mechanism), it ends asymptotically in a state of equilibrium
without oscillations. A little more sophisticated systems such as the magnetic pendulum or
the double pendulum can present highly complex orbits. Nevertheless, the dissipation will
play its role in both scenarios, bringing the system to a stable and homogeneous equilibrium
over time. We also know that a simple pendulum leads at most to periodic behaviors under
ideal conditions (without friction or energy dissipation). However, in general, its dynamics
can become aperiodic and even qualitatively similar to randomness. For example, from a
numerical and experimental point of view, the double pendulum has been studied, either
assuming the absence of dissipation in the numerical case or by injecting energy to replace
the loss naturally. In both scenarios, the existence of aperiodic orbits is shown [55, 56]. In
the following will be explored what kinds of dynamical behaviors continue after the periodic
behavior.

1.9.1 Quasiperiodicity

After periodicity, the dynamical behavior that follows in complexity is quasi-periodicity,
distinguished from periodicity through a translation by excess or defect in the period, i.e.,
there does not exist a period. A simple example is the following:

∂tttty + 3∂tty + 2y = 0, (1.23)

whose solution

y(t) = A cos(t) +B sin(t) + C cos
(√

2t
)

+ sin
(√

2t
)
, A,B,C,D ∈ R, (1.24)

gives rise to aperiodic trajectories, since the function t tocos(t) + cos( sqrt2t) is not periodic
and is a solution of the di�erential equation.

A more straightforward example in discrete dynamical systems is given by the rotation
maps of the circle, i.e.,

xt+1 = (xt + λ) mod 1, (1.25)
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whose solutions or trajectories are always periodic if λ is a rational number because in that
case λ = p/q and by iterating q times, we would obtain

{x0, x1 =
(
x0 +

p

q

)
mod 1, x2 =

(
x0 + 2

p

q

)
mod 1, . . . , xp =

(
x0 + q

p

q

)
mod 1 = x0.}

(1.26)

Note that if lambda is irrational, the situation is quite di�erent since it is impossible to
�nd a q such that the q -th iterated allows generating a periodic orbit. This result is known
as Jacobi's theorem [11].

It should be noted that the quasi-periodicity �nally keeps the solution close to a periodic
solution so that from the physical point of view, it allows making predictions with an error
margin limited by the maximum translation concerning the periodic orbit that the system
allows. A more interesting aperiodic behavior is the so-called deterministic chaos, or simply
chaos explained in the next section.

1.9.2 Chaos

We have mentioned that systems out of equilibrium can present highly complex and aperiodic
behaviors over time as energy dissipation mechanisms. Such behavior is called chaos and is
mainly characterized by the property of having sensitivity to initial conditions. We will
evidence this robust dynamical behavior through two generic and well-known examples, one
in discrete systems and the other in continuous systems.

Logistic Map

Maybe the most simple example of chaotic dynamics is given by the logistic map, given by

xt+1 = f(xt) = µxt(1− xt).

Geometrically, it is described by a concave parabola that cross the x-axis at x = 0 and x = 1,
as we can see in �gure 1.2.

Note that, from the Figure 1.2, this map has two �xed points, given by the solutions of
the equation: f(x) = x, one of them is trivial f(0) = 0 and the other one is easily calculated
by:

µx(1− x) = x
=⇒ (µ− 1)x− µx2 = 0
=⇒ x = (µ− 1)/µ.

In particular, for µ = 4, we obtain that x = 3/4 is a �xed point. Realizing a linear stability
analysis we get that
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Figure 1.2: Logistic map. Fixed points (equivalent to steady state in continuous time systems
are given by the intersection between the parabola described by the map and the identity
function.)

f ′(x) = µ− 2µx

Note that x = 0 is always unstable for µ > 0. On the other hand, evaluating the other one
equilibrium, we get

f ′
(µ− 1

µ

)
x = µ− 2µ

µ− 1

µ

or simplifying

∣∣∣f ′(µ− 1

µ

)∣∣∣ = |2− µ|

thus, x = (µ − 1)/µ is stable for 1 < µ < 3 and loose it stability for µ ≥ 3, where start
the �rst period-doubling phenomena.

To understand more in deep the dynamics of this map, we will study its periodic orbits.
Thus, x0 de�ne a periodic orbit of n-period if

x0, x1 = f(x0), x2 = f 2(x0) = f(f(x0)), . . . , xn = fn(x0) = 0
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where n is the smallest integer that fn(x0) = x0. Note that �xed points are periodic orbits
of 1-period. We can calculate numerically the periodic orbits for this map in function of the
parameter µ, obtaining the bifurcation diagram shown in �gure 1.3

From the �gure 1.3 we can get some intuition about where is borning the dynamical
complexity, and we can observe a sort of branching of the period orbits. This phenomena is
known as a period-doubling cascade, and the logistic map is maybe the most simple dynamical
system exhibit it. Note the self-similarity of the bifurcation diagram. Tipically, bifurcation
diagrams over regions where the dynamics is chaotic have this property, known as fractal
branching due to period doubling. In this point we will see how period orbits evolve and
duplicate its period through increasing the bifurcation parameter. Nevertheless we do not
see yet how chaos looks. Figure 1.4 show a generic orbit of the logistic map in the chaotical
regime.

Sensibility to initial conditions

We mention in the �rst part of this manuscript that the sensibility to initial conditions
is one of the most important ingredients of chaos. In the following we will characterize such
property for the logistic map. In order to illustrate it consider the logistic map at µ = 4 and
the following two initial conditions x0 ∈ (0, 1) and a small perturbation of it, e.g., x′0 = x0 +ε
with ε arbitrarily small but ensuring that x′0 ∈ (0, 1). Simulating this scenario, we obtain
the behabiour ilustrated in �gure 1.5

As we can see in �gure 1.5, after close to 20 iterations, both solutions separates with
a poor correlated behabior. The instantaneous and cumulative di�erence between the two
orbits is ilustrated in �gure 1.6. This give us and idea about how both orbits separates in
time. In fact, one can calculate the rate of (exponential) separation between orbits that
starts arbitrarily close. This drive us to the concept of Lyapunov exponent, that is maybe
the most popular chaos quanti�er. It will be presented later.

Instead of the simplicity of the logistic map, there are a lot of research associated with it.
A good reference about the importance and the applications related to the logistic map can
be found in [57]

Lorenz Equations

In a seminal paper published in 1963, Edward Lorenz discovered that simple deterministic
systems could give rise to extremely complex dynamic behaviors. His famous equations can
be deduced from a drastic simpli�cation of atmospheric convection roll equations. However,
the same equations have been also deduced in optical [58] and mechanical [59] systems.

The Lorenz equations are given by

ẋ = σ(x− y)
ẏ = ρx− y − xz
ż = xy − βz

(1.27)

here σ, ρ and β are parameters that in the Lorenz model correspond to the Prandtl number,
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Figure 1.3: Bifurcation diagram for the logistic map in terms of the bifurcation parameter
µ. Here we can see the stable periodic orbits for each µ value as well as the doubling-period
e�ect. The black box indicated in the top of this �gure corresnpond to the plot located at
the bottom)
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Figure 1.4: Generic orbit of the logistic map, for µ = 4
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Figure 1.5: Sensibility to initial conditions illustrated to two initial conditions starting close
to x0 = 0.3274 with a distance of order 10−8
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Figure 1.6: Instantaneous and cumulative di�erence between the orbits shown in �gure 1.5
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the Rayleigh number, and the ρ parameter is related to the aspect ratio of the rolls.

This system has only two nonlinear terms, given by the quadratic terms xy and xz, it is
symmetric (x, y)→ (−x,−y) so that, if (x(t)y(t), z(t)) is solution, then (−x(t),−y(t),−z(t))
is also solution. Additionally it is also dissipative, i.e., the volumes in the phase space
contract under time evolution of the system. This system exhibits chaos for a wide range of
parameters, and in Fig. 1.7 we can see the chaotic behabior of each component as well as
the interesting geometry of the attractor.

There are book dedicated to the study of this equation [60] and there exist several open
problems related to it.

1.9.3 Spatio-temporal chaos

When we speak of space-time chaos, we are in the world of spatially extended systems,
typically described through partial derivative equations or through systems of di�erential
equations where the spatial variable has been discretized. In this scenario and the sensitivity
to the initial conditions, typically shown through the exponential separation of the trajecto-
ries over time, there is a loss of spatial correlation. Perhaps the simplest example of a system
exhibiting space-time chaos is given by the PDE.

∂tψ = −µ∂xxψ − (∂xψ)2 − ∂xxxxψ (1.28)

known as the Kuramoto-Sivashinky system, which exhibits spatiotemporal chaos and loss of
spatial correlation, as is shown in [28, 29].

Another example, just as paradigmatic, is given by the coupled map system.

xt+1
n = (1− ε)f(xt+1

n ) +
ε

2
(f(xtn−1 + f(xtn+1)), n = 1, . . . , N (1.29)

where the map f : R→ R is given by

f(x) = ax2 − 1, (1.30)

where a is a real number, studied by Kuramoto in [61]. It exhibits also a complex spa-
tiotemporal dynamics characterized by a sensitivity to initial conditions and loss of spatial
correlationm as we can see in �gure 1.9.

A more formal way of characterizing chaotic behavior is given by calculating the Lyapunov
exponents for chaos and the Lyapunov spectrum for space-time chaos. The following sections
explain the details for determining it.

1.9.4 Lyapunov Exponents

Consider the following dyamical system
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Figure 1.7: Panel (a) shows the attractor of the Lorenz system. Panel (b) depicts its di�erent
phase planes and (c) evidence the behavior of each component of the system with respect to
time.
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Figure 1.9: Figure show spatio-temporal chaos for the Kaneko coupled map lattice given by
the Eq. 1.38

ẋ = f(x) (1.31)

where x stands for the N−dimensional state vector. Consider now two points x0(0) and x1(0)
as a initial condition for the trajectories x0(t) and x1(t) respectively. We can measure the
separation or distance between the two corresponding points of these trajectories when we
let evolving the time, throught

d(t) = |x1(t)− x0(t)| (1.32)

if the dynamics of the equation (1.31) is chaotic, then d(t) increases exponentially in time,
i.e.,

d(t) ≈ d(0)ekt (1.33)

and this give us the average velocity of the exponential divergence of the trajectories
through

k ≈ ln

[ d(t)

d(0)

]
t

(1.34)

and taking the limit d(0) → 0 and t → ∞, we obtain a exact de�nition of the maximum
characteristic Lyapunov exponent, i.e.,
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λ = lim
d(0)→0

t→∞

ln
[d(t)/d(0]

t
(1.35)

Characterizing the dynamics in the following way:

� If λ < 0 then the dynamics tends to a stable �xed point.

� If λ = 0 then we have a periodic or quasi-periodic behevior.

� If λ > 0 one deals with a chaotic behabior.

Is nothewortly that the maximum characteristic Lyapunov exponent give us the velocity
of information lost with respect to the initial system state.

1.9.5 Spectrum of Lyapunov Exponents

The Lyapunov spectrum is a more detailed measure than the maximum characteristic Lya-
punov exponent. To understand it, consider again a trajectory x(t) for the Eq. (1.31) with
initial condition x(0), and consider the neighborhood of trajectories xε(t) by

xε = x(t) + ~ε(t) (1.36)

where ε(t) is the distance between xε(t) and x(t). Thus, we can de�ne the function

λ[~ε(0)] = lim
t→∞

ln
[~ε(t)/~ε(0]

t
(1.37)

whose argument is the vector of initial displacement ~ε(0) such that |~ε(0)| = ε and ε→ 0.

Note that we can consider ~ε at the N−direction of the state space, obtaining in such a way
a �nite serie of values λ1, λ2, . . . , λn. These values of the function λ are called the Lyapunov
exponents (LEs), and the positive/negative values of the LEs can be viewed as a measure of
the averaged exponential divergence/convergence of the neighborhood trajectories. In this
work, LEs will be presented as a sequence of values in decreasing order, so that the �rst
Lyapunov exponent is the greatest one. In this work we will focus in the algorithms based
on Benettin method [62] and Jacobian method [63] to �nd the Lyapunov spectrum.

1.10 Chimera states

Chimera states are usually de�ned as spatio-temporal patterns exhibiting coexistence of co-
herent and inchoherent domains are ubicuous from out-of-equilibrium systems. They can
be understood as localized spatiotemporal patters resulting from a symmetry breaking [64].
Although the chimera states has been extensively reported in discrete-space systems of oscil-
lators, and there exist a lot of evidence that such behaviour also occurs in continuous systems.
Experimentally, It has been reported in several systems ranging from nature to technological
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devices. Since the seminal work of Kuramoto [65], the phenomena of chimera states has
been increasing attention due to its robustness and universality. In neurodynamics, has been
reported has spatio-temporal neuron �ring patterns in experiments with cortinal neurons
[66, 67, 68] In semiconductor lasers, chimera states has been observed has states with coher-
ent and incoherent domains in terms of light intensity [69, 70, 71] and in coupled waveguide
resonators appears reported as domains with coherent and incoherent light emission [72].
Nevertheless, in continuous media, the chimera states has been less explored. From the theo-
retical point of view, one of the �rst examples of this kind of chimera-like states in continuous
systems is the chaoticon, given by [3, 4], showing coexistence of a coherent domain de�ned
by a homogeneous state and an incoherent domain of spatiotemporal chaos in the nonvari-
ational real Swift-Hohenberg model and the one-dimensional Nagumo Kuramoto model. In
addition, recently has been reported an exciting example of coexistence of a homogeneous
domain de�ned by a frozen spiral coexisting with a background of amplitude turbulence in
the complex Ginzburg-Landau equation [73].

Some experimental examples in the continuous media scenario can be seen in �uid and
optical systems. In �uid dynamics has been reported in the experiment of Faraday waves,
parametrically forced by an oscillating, the coexistence of domains of regular stripes (coherent
state) and chaotical surface waves (incoherent state) [74, 75]. In the Taylor-Couette �ow,
given by a �uid constrained between two rotating cylinders, we have that when the rate of
rotation increases, the dynamics changes from an orderly laminar regime to a turbulent one
through a series of intermediate dynamical states. In such intermediate states, we can �nd
the coexistence of a coherent state given by the laminar regime coexist with an incoherent
state of turbulence, see for example [76], and references therein.

1.10.1 Chimera states in a discrete time system

An exciting model to looking for chimeras in discrete systems is the famous coupled system
of coupled logistic maps studied by Kaneko [61], and given by:

xt+1
n = (1− ε)f(xt+1

n ) +
ε

2
(f(xtn−1 + f(xtn+1)), n = 1, . . . , N (1.38)

where the map f : R→ R is given by

f(x) = ax2 − 1, (1.39)

where a is a real number. The above map exhibits a transition to chaos driven by a doubling
period cascade similar to that exhibited by the logistic map. Moreover, both maps are
topologically conjugated (dynamically equivalent). In order to measure the syncronization,
we can calculate a spatial phase by site

θi(t) = exp(−|xi + 1(t)− xi−1(t))/2|), (1.40)

capturing the spatial variation arround the i-th site in the lattice. Note that if all the system
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Figure 1.10: Panel (a) shows spatiotemporal diagram for Eq. (1.38). Panel (b) the spatio-
temporal evolution of the phase calculated using Eq. (1.10.1. Panel (c) considers the temporal
average of the phase at each site.

is synchronized, the phase θi(t) of each site will be 1 for all i = 1, . . . , N and time t. Thus,
we can calculate the level of synchronization of the system by taking the Kuramoto order
parameter

R =
1

N

N∑
i=1

θi(t) (1.41)

or plot directly the spatio-temporal diagram given by Eq. () to identify asynchronous (or
incoherent) domains or chimera states, as we can observe in �gure 1.10(b).

1.10.2 Chimera states in a continuous time system

In the literature, we can �nd a great variety of chimeras in continuous systems. However,
most appear thanks to combining systems with complex dynamics and typically non-local
or complex couplings (through complex networks). However, a much simpler and more
paradigmatic example is given by the Du�ng oscillator system coupled to �rst neighbors
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Figure 1.11: Chimera states exhibited by the Du�ng system given by Eq. (1.42)

and reported in [77]. Such a system is de�ned by

d

dt2
xn(t) = −xn + αx3n − x5n − µ

d

dt
xn + γ cos(ωt) + κ(xn+1 − 2xn + xn−1), (1.42)

where xn(t) accounts for the displacement of the n-th oscillator with a unit natural frequency,
n = 1, . . . , N characterizes the number of oscillators, µ is the friction coe�cient, γ de�nes the
amplitude of the periodic external forcing of frequency ω and κ is the coupling parameter.
A chimera state for the YYY parameter values is shown in Figure 1.11.

1.11 LCLV Experiment: A nonvariational setup

Through all the research devoted to the realization of the present manuscript, an experimental
setup protagonize almost all application of our theoretical work. Such setup is composed by
a liquid cristal light valve (LCLV) with an optical feedback, characterized extensively by
[78, 79, 80]. This setup contains a LCLV inserted in an optical feedback loop as is shown in
Figure 1.13.

At the same time, the LCLV is composed by a nematic liquid�crystal �lm sandwiched in
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Figure 1.12: Schematic representation of a liquid crystal light valve with optical feedback.
SLM denotes the spatial light modulator. PBS corresponds to the polarizing beam splitter,
LCLV is the liquid cristal light valve, FB is the �ber bundle that reinject the light reaching
the photoconductor. BS accounts for the beam splitter, M for a mirror, each f in a lense, L
accounts for the difraction lenght and the camera that capture all the liquid crystal dynamics
is denoted by CCD.

between a glass and a photoconductive plate over which a dielectric mirror is deposed. The
liquid�crystal �lm under consideration is a nematic LC-654, produced by NIOPIK and is
characterized by a planarly aligned (nematic director ~n parallel to the walls). It is a mixture
of cyano-biphenyls, with a positive dielectric anisotropy ∆ε = ε‖−ε⊥ = 10.7 and large optical
birefringence, ∆n = n‖−n⊥ = 0.2, where ε‖ and ε⊥ are the dielectric permittivities ‖ and ⊥
to ~n, respectively, and n‖ and are n⊥ are the extraordinary (‖ to ~n) and ordinary (⊥ to ~n)
refractive index. The cell have a thickness of d = 15 µm.

The feedback loop is closed by an optical �ber bundle (FB) and is designed in such a way
that di�raction and polarization interference are simultaneously present. The optical free
propagation length is given by L and it can be varied by a rail system with precision motors
installed over the optical table.

Transparent electrodes over the glass plates allow the application of an electrical voltage
V0 across the nematic layer. The photoconductor behaves like a variable resistance, which
decreases for increasing illumination.

The light injected in the optical look comes from an expanded He-Ne laser beam, with
λ = 633 nm, 1 cm transverse diameter and power Iin = 6.5 mW/cm2, linearly polarized
along the vertical y-axis. A spatial light modulator (SLM, controlled through an external
computer) was placed in the input beam in order to carry out one-dimensional experiments
and control the iluminated domain to study for two-dimensional phenomena.

The light which has passed through the liquid�crystal layer and has been re�ected by
the dielectric mirror experiences a phase shift which depends on the liquid�crystal molecular
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Figure 1.13: Setup pictures.
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orientation and, on its turn, modulates the e�ective voltage that is locally applied to the
liquid�crystal sample. Over a critical voltage, molecules tend to orient along the direction
of the applied electric �eld, which changes local and dynamically following the illumination
spatial distribution present in the photoconductor wall of the cell. When liquid�crystal
molecules reorient, due to their birefringent nature, they induce a refractive index change.
Thus, the LCLV acts as a manageable Kerr medium, causing a phase variation φ = β cos2 θ ≡
2kd∆n cos2 θ in the re�ected beam proportional to the intensity of the incoming beam Iw
on the photoconductive side, where θ is the longitudinal average of molecular reorientation.
Here, k = 2π/λ is the optical wave number. The system dynamics is controlled by adjusting
the external voltage V0 and free propagation length L.

32



Chapter 2

Nonvariational E�ects in FKPP Fronts

2.1 Introduction

Unlike fronts in variational systems, the propagation of a front in a non-variational one
does not follow the minimization of a free energy functional. In this chapter, we want to
understand how the propagation of a front that connects a stable state with an unstable
one is a�ected when it is considering non-variational e�ects. For this purpose, we started by
studying the FKPP model, developed in section 1.3, equipped with two non-variational terms,
nonlinear advection and nonlinear di�usion. Depending on the parameters that weight the
non-variational terms, we show that the propagation speed of the front exhibits a supercritical
transition of pulled-pushed type, in a similar way that the reported by [37], and explained in
1.5.2, but in this case driven by non-variational e�ects.

Then, we consider a theoretical and experimental approach to the results obtained in the
nonvariational FKPPmodel, considering the liquid crystal light valve with an optical feedback
setup and model, commented in section 1.11. In this case, the non-variational terms are
related to the free di�raction length (or free propagation length). We found that theoretical
and experimental results are in good agreement, obtaining a theoretical explanation of the
behaviour of FKPP front in this experiment.

2.2 Nonvariational Fisher-Kolmogorov-Petrovskii-Piskunov

model

The dynamics of FKPP fronts has been well studyed in the variational scenario, however, it is
not the case of nonvariational systems. In order to have a �rst approach to the nonvariational
e�ects in FKPP fronts, we will consider the following model:

∂tu = µu(1− u) + ν∂xxu+ bu∂xxu+ c(∂xu)2, (2.1)

where b weights the nonlinear di�usion and c the nonlinear advection term. Note that for
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Figure 2.1: Spatiotemporal propagation of fronts solutions into an unstable state for three
di�erent values of c. Bottom panels accounts for the same initial condition, and upper panel
for the �nal state, for number of iteration steps T = 5000. The nonlinear advection weight
take the value c = 0 for (a), c = −15 for (b) and c = 15 for (c).

b = c = 0 we recover the classical Fisher equation 1.2, and for b = 2c Eq. 2.1 is variational. In
a �rst approach, we realize a numerical exploration of this model, taking central derivatives
to approximate the spatial di�erential operators, and Runge-Kutta of fourth-order for time
integration. To simplify the simulations we take b = 0 and let only varying c.

The e�ects in the front shape are illustrated in �gure 2.1. To reveal the e�ect of non-
variational terms in the propagation speed of this kind of fronts we realize a in-depth numer-
ical exploration of equation 2.1 for b = 0 and c in range [−10, 10]. Obtaining the bifurcation
diagram shown in Fig. 2.2

This result reensembles the pulled-pushed transition reported in [37], but unlike this one,
our result is driven by non-variational e�ects. To explain and validate our numerical �ndings,
we develop a theoretical framework based on the perturbation theory. Thus, consider a small
nonvariational perturbation, i.e.,

∂tu = µu(1− u) + ν∂xxu+ ε(bu∂xxu+ c(∂xu)2) (2.2)

where ε small weights the perturbation. From section 1.5.1, we known that the asymptotic
speed for the FKPP equation is given by

vfkpp = 2
√
µν (2.3)
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Figure 2.2: Pulled-pushed transition. The �gure ilustrates a bifurcation diagram of speed
depending on parameter c.

For the nonvariational scenario, ε 6= 0, we consider the system in the comobile system of
reference and based on parameter variation method we put the following ansatz,

u(x, t) = uf (x− vt− p(t)) + w(x− vt− p(t)) (2.4)

where v = vfkpp is the asymptotic speed, p(t) is a small correction for the position of the
front, promoted to a time variable function, and w is a small correction function for the whole
shape solution. Putting the system in the co-mobile frame and introducing the ansatz (2.4)
in Eq. (2.2) we get from the left side

∂tu = −ṗ(t)∂zuf − v∂zuf − ν∂zw (2.5)

and from the right side,

∂tu = µuf − µu2f − 2µufw + µw − µw2 + ν∂zzu+ ν∂zzw
+b(uf∂zzuf + uf∂zzw + w∂zzuf + w∂zzw
+c((∂zuf )

2 + 2∂zuf∂zw + (∂zw)2)
(2.6)

Taking up to linear terms in ε and factorizing in w, from Eqs. (2.5) and (2.6) we get

[−2µuf +µ+ ν∂zz + v∂z]w = −[µuf (1−uf ) + v∂zuf ]− ṗ(t)∂zuf − buf∂zzuf − c(∂zuf )2 (2.7)

using the standar ket notation of functional spaces and calling L = −2µuf + µ+ ν∂zz + v∂z,
we obtain

L |w〉 = −b |uf∂zzuf〉 − cket(∂zuf )
2 − ṗ(t)∂zuf (2.8)
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and considering the inner product

〈f | g〉 =

∫ +∞

−∞
f(z)g(z)dz (2.9)

we can apply the Fredholm alternative or solvability condition we obtain,

vNV (b, c) = −b〈φ|uf∂zzuf〉〈φ| ∂zuf
− c〈φ| (∂zuf )

2〉
〈φ| ∂zuf

(2.10)

where φ := φ(z) ∈ Ker(L†).

Note that L is not self adjoint, but we can calculate the adjoint in a straightforward
manner, exploring the only one part of L that is not self-adjoint, obtaining

L = L − 2ν∂zuf (2.11)

To evaluate numerically the Eq. 2.10, the kernel element φ is numerically calculated.

Finally, from Eq. (2.3 ) and (2.10) we get that the FKPP fronts in Eq. (2.1) there are
two contributions for the speed

v = vFKPP + vNV
= 2

√
µν + vNV (b, c)

(2.12)

Note that µ and ν doest not appear explicitly in the expresion for vNV , so we can think that
the control of speed in the FKPP fronts can be increased taking µ ∼ ν ∼ ε2.

The theory above developed is applied then to explain an experimental result showing
a front propagation transition induced by di�raction in the liquid crystal light value setup
with optical feedback. The di�raction is produced by the free propagation length that we
can control by moving the �ber bundle in the light propagation axis, as we can see in Figure.

2.3 Outlook

� The robustness of the FKPP fronts enable us to extend these results to other contexts
such as population dynamics, combustion theory.

� In particular, we are interested in understand the non-variational e�ect in discrete and
heterogeneous media.

� These result can be applied in the design of optical switches based on FKPP fronts,
but with a faster response due to di�ractive e�ects.

� Control of LCLV displays could be improved, considering nonvariational perish.
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Abstract: Driven optical systems can exhibit coexistence of equilibrium states. Traveling waves
or fronts between different states present complex spatiotemporal dynamics. We investigate the
mechanisms that govern the front spread. Based on a liquid crystal light valve experiment with
optical feedback, we show that the front propagation does not pursue a minimization of free
energy. Depending on the free propagation length in the optical feedback loop, the front speed
exhibits a supercritical transition. Theoretically, from first principles, we use a model that takes
it into account, characterizing the speed transition from a plateau to a growing regime. The
theoretical and experimental results show quite fair agreement.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Front propagation occurs in a wide range of physical contexts such as optics, liquid crystals,
granular matter, combustion, population dynamics, chemical reactions, industrial deposition
processes, among others [1]. Since the seminal works of Fisher [2] and Kolmogorov, Petrovsky,
and Piskunov [3] in genetics and population dynamics, respectively, on traveling fronts (called
FKPP fronts) there has been an increasing interest in the study of this phenomenon. The FKPP
front solutions are peculiar of connecting a stable state with an unstable one. The propagation
speed of these fronts depends on the initial conditions. When the disturbance of the unstable state
is bounded, the fronts always propagate with a minimal speed [1]. In liquid crystals, these fronts
have been subject of intense research [4–12], since they play a fundamental role in understanding
and applicating average molecular reorientations through light.
Theoretically, the interface dynamics is well understood for variational systems, i.e., systems

whose dynamics is described in terms of the minimization of a physical quantity (free energy,
entropy, and so forth). In contrast, nonvariational systems do not pursue a minimization of a free
energy. Indeed, front propagation into an unstable state does not follow a minimization principle
and its dynamics is less explored. However, front propagation between two stable states in
nonvariational systems has been analyzed by Álvarez-Socorro et al [11]. The non-variationality
is a generic characteristic of nonequilibrium systems [13, 14].
This work aims to investigate the effect of diffraction in the front propagation between two

domains of average molecular orientations in a liquid crystal light valve (LCLV) with optical
feedback. The diffraction produced by the free propagation length L governs the nonvariational
effects. Based on a LCLV subjected to optical feedback experiment, front propagation into an
unstable state is studied. Depending on diffraction, front speed exhibits a supercritical transition.
Theoretically, using the nonlinear elasticity and optics theory, a model that accounts for this
transition is inferred. The front speed exhibits a transition from a plateau to a growing regime.
The theoretical and experimental results show a quite fair agreement.
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Fig. 1. Liquid crystal light valve with optical feedback. (a) Schematic representation of the
experimental setup. The LCLV is composed of a nematic liquid crystal film sandwiched
in between a glass and a photoconductive plate-over with a dielectric mirror. The light is
injected through a He-Ne laser beam, f stands for lenses with a focal length of 25 cm, PBS
represents a polarizer beam splitter, BS a beam splitter, and SLM is a spatial light modulator
controlled by a computer (PC). The feedback loop is closed by an optical fiber bundle (FB).
The free propagation length is denoted by L and the image in the LCLV is captured through
a CCD camera. (b) Temporal snapshots sequence of the front propagation showed in the
LCLV taken at L = 0 mm, ν = 1 KHz, and V0 = 2.62 Vrms . Dark and light area account
for different average molecular orientations, respectively. The dashed rectangles mark the
illuminated region.

2. Experimental setup

A simple optical system that presents multistability and nonvariational dynamics is the LCLV
with optical feedback [5–11]. Figure 1 schematically shows the used experimental setup. This
setup consists in a liquid crystal cell with a photo-sensitive wall inserted in an optical feedback
loop closed by an optical fiber bundle (FB). This experimental array has been designed in
order to have coexisting diffraction and polarization interferences. The LCLV structure is
composed by a nematic liquid crystal film between a glass with transparent electrodes (ITO)
and a photoconductive plate with a deposited dielectric mirror. The liquid crystal film under
consideration is a nematic LC-654, produced by NIOPIK, planar aligned, with thickness
d = 15µm. It is a mixture of cyanobiphenyls, with a positive dielectric anisotropy. The optical
free propagation length L drives the nonvariational effects. ITO electrodes are used to apply
an external voltage V0 across the nematic layer. The photoconductor resistance is inversely
proportional to applying illumination [6].
Light suffers a phase shift while crossing the LCLV depending on the nematic director state

(i.e., the average liquid crystal molecular orientation), which, in its time, modulates the effective
local voltage applied to the nematic sample. Once a critical voltage is passed, the director tends
to orient along the direction of the applied electric field, this reorientation changes local and
dynamically, following the spatial distribution of light present in the photoconductor. Another
effect of this molecular change, due to the liquid crystal birefringent nature, is an induced effective
refractive index change. Thus, the LCLV can be seen as an active Kerr medium, causing a phase
variation φ = βcos2θ = 2kd∆ncos2θ in the reflected beam proportional to the incoming beam
intensity Iw on the photoconductive side, θ stands for the longitudinal average of the molecular
reorientation [6] and k = 2π/λ represents the wavenumber. An expended He-Ne laser beam,
λ = 633 nm and power Iin = 6.5 mW/cm2, linearly polarized along the vertical y axis is used as
light source to illuminate the LCLV. Quasi-one-dimensional conditions are reached thanks to a
computer controlled spatial light modulator (SLM) placed in the input beam. All experiments
were conducted at a working temperature of 28◦C. The voltage V0 and free propagation length L
are the control parameters.
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Fig. 2. Experimental characterization of the bifurcation diagram and the front propagation
transition. (a) Bifurcation diagram observed in the LCLV with optical feedback constructed
at L = 0 mm. The points account for the intensity of the reflected light by the LCLV as a
function of the applied voltage V0. The system exhibits three regions, two monostable and
one bistable between the planar and reoriented state. VFT accounts for the critical value
of the reorientation instability, the Fréedericksz transition. The insets stand for respective
snapshots obtained in the indicated voltages. (b) Front speed as a function of free propagation
length L at V0 = 2.62Vrms . The points account for the front speed measured in pixels
per second. The dashed line is the union between consecutive experimental points. The
continuous curve stands for the trend line of the experimental points.

2.1. Experimental characterization of front propagation into an unstable state

Thanks to the use of the spatial light modulator, a bidimensional channel is illuminated on the
liquid crystal light valve of dimensions 6 mm long by 0.9 mm wide [cf. Fig. 1(b)]. By changing
the voltage V0 applied to the liquid crystal film and monitoring the evolution of light intensity
that goes through the LCLV employing a CCD camera, we characterize the bifurcation diagram
of the director reorientation transition. Figure 2(a) shows the bifurcation diagram obtained. For
small voltage V0 < VFT , when the molecules are not reoriented, a little light is transmitted in the
optical feedback, which corresponds to the channel being dark [see inset in Fig. 2(a)]. The critical
voltage from which the molecules begin to reorient is designated by VFT . On the contrary, when
the director is reoriented, the transmitted light increases and then the channel turns light gray.
Note that the transition of average molecular reorientation of the LCLV with optical feedback is
of the first order type [4,8]. Indeed, the transition exhibits an abrupt color change. Besides, when
the voltage is varied, a hysteresis loop is observed between the average molecular configurations.
The hysteresis region is between the two monostable regions.

To study the front propagation into an unstable state, we follow the strategy: initially applied
voltage is small (V0 � VFT ). Hence, the initial configuration is planar, and it is stable.
Subsequently, the applied voltage is increased above a critical value of reorientation bifurcation
(V0 = 2.62Vrms > VFT ). Then the planar state becomes unstable, and the reoriented alignment is
stable. The reoriented state (light color) starts to invade the planar alignment from the edges or
imperfections of the channel. Figure 1(b) shows a sequence of snapshots of the observed front
propagation. From the recording of the front propagation, its speed is determined. Subsequently,
by changing the position of the optical fibers bundle, we can change the value of the free
propagation length L, which is the distance where light diffraction occurs in our experimental
setup. Figure 2(b) shows the front speed as a function of the free propagation length L at fixed
applied voltage V0. Unexpectedly, we infer that for small and negative L, the front speed is
modified slightly, but for L positive this speed increases and is significantly modified. Therefore,
we experimentally observe that the front speed exhibits a transition between a plateau and a
growing regime. It is worthy to note that L does not change the relative stability between the
director configurations, but rather changes the coupling between the molecular arrangements.
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The origin of the front propagation transition will be elucidated in the next section.

3. Theoretical model of the LCLV with optical feedback

Based on the elastic theory, dielectric effects, and optical feedback, close to the Fréedericksz
transition VFT , the average molecular reorientation is given by the dimensionless model [4, 8, 11]

∂tu = µu + βu2 + γu3 − u5 + ∂xxu + bu∂xxu + c(∂xu)2, (1)

where x and t, respectively, account for the spatial transverse coordinate and time. The order
parameter u(x, t) is the amplitude of the critical mode of the average molecular reorientation.
µ is the bifurcation parameter, µ � 1, that accounts for the competition between the electric
and elastic force, which is proportional to (V0 − VFT )/VFT . β is a phenomenological parameter
that accounts for the pretilt induced by the anchoring in the walls of the liquid crystal layer. The
cubic and quintic terms stand for the competition between elastic and electrical forces induced
by optical feedback [8]. The diffusion term ∂xxu describes the transverse elastic coupling. The
coefficients b and c account, respectively, for the diffusion and the nonlinear advection. These
two terms are proportional to the free propagation length L and have the same sign. Indeed,
when L = 0, b = c = 0. Higher-order terms in Eq. (1) are ruled out by the scaling analysis, since
u ∼ µ1/4, γ ∼ µ1/2, β ∼ µ3/4, ∂x ∼ µ1/2, and b ∼ c ∼ 0. The previous model (1) satisfies an
equation that is governed by the minimization of free energy F [u, ∂xu] at L = 0, that is,

∂tu = −
∂F

∂u
, (2)

where F =
∫

dx[−µu2/2 − βu3/3 − u4/4 + u6/6 + (∂xu)2/2]. However, the diffraction effect
generates that the diffusion and the nonlinear advection allow the emergence of permanent
dynamics, such as spatiotemporal chaos [15] or oscillatory behaviors [7]. This type of behaviors
is incompatible with a dynamic governed by a principle of minimization. The methodology of
how to derive the parameters {µ, β, b, c} and the relation with the physical parameters are given
by Clerc et al [8, 11].
The term proportional to β breaks the reflection symmetry of the amplitude u. This effect

always renders the reorientation transition into a discontinuous instability with a small hysteresis.
Note that positive and negative equilibria exist for β, µ > 0. Besides, the negative values of the
amplitude u(x, t) has no physical sense. Figure 3 shows the bifurcation diagram of model Eq. (1).
This model is characterized by exhibiting a first-order bifurcation when µ = 0. Then the system
presents a hysteresis region between two monostable regions. Note that this bifurcation diagram
is qualitatively similar to that observed experimentally [cf. Fig. 2(a)].
An ideal region to study fronts into an unstable state is µ > 0. In this region of parameter

space, there are fronts between the planar unstable up and stable reoriented state u+. Figure 4
shows the front propagation for µ > 0. In order to study the effects of nonvariational terms, we
consider a front solution initially with b = c = 0 and at a given time (t = 20) we activate the
nonvariational effects (b = 0 and c = −30). In the variational regime, the minimal front speed
vmin is determined by the linear terms, marginal criterion [1], which has the explicit expression
vmin = 2√µ. Indeed, if the values of the nonlinear parameters are changed, the front speed does
not change. From Fig. 4, we infer that when the nonvariational terms are included the profile
of the front is modified. The front solution exhibited a readjust of the spatial profile where the
front suffers a back propagation, and after this readjust, the front solution acquires a form with
which it spreads with the marginal speed. Figure 4 depicts the front profiles without and with the
influence of non-variational terms. Unexpectedly, although the front profile is markedly modified,
the front speed remains constant.
To analyze how the front speed is modified as a function of the non-variational terms, we

have numerically measured the front speed as a function of b = c = L. This is consistent with

                                                               Vol. 27, No. 9 | 29 Apr 2019 | OPTICS EXPRESS 12394 



the functional dependence of the parameters as a function of the free propagation length L.
Figure 3(b) summarizes the front speed as a function of the free propagation length L. We
observe that for free negative propagation lengths the front speed is constant and as it increases
the numerical precision it tends to the front speed predicted by the marginal criterion [see
Fig. 3(b)]. It is well-known that numerical discretization effects modify this speed [12]. For
free positive propagation lengths, we observed that the speed of the front grows linearly with L.
Hence, we observe that the front speed presents a transition between a plateau and a growing
regime, which is consistent with experimental observations [cf. Figs. 2(b) and 3(b)]. Indeed,
the system exhibits a transition between fronts where its speed is determined by the marginal
criterion (pulled front [1]) to fronts where the nonlinear terms determine the speed, nonlinear
criterion (pushed front [1]). A pulled-pushed transition of fronts, with a speed transition diagram
similar to that shown in Fig. 3(b), is well-known in a cubic reaction-diffusion model when the
nonlinear terms are modified [16]. To figure out how the front speed is modified by the presence
of the nonvariational terms a perturbative analysis can be performed.

4. Analytical and numerical analysis of the front speed

Due to the transition between pulled-pushed fronts occurs at free propagation length L = 0, we
can consider the nonlinear diffusion and advection terms as perturbatives (b, c � 1). Let us
consider u f (x − v0t) as the front solution for the unperturbed problem of Eq. (1) with b = c = 0,
where v0 > 2√µ is the front speed. To calculate the front speed for the perturbed problem, we
consider the following ansatz,

u(x, t) = u f

(
z ≡ x − v0t − ÛP(t)

)
+ w(x − v0t − p(t)), (3)

where z is the coordinate in co-moving system, ÛP and w account for the correction of the front
speed and the profile function, respectively. Moreover, ÛP and w are of order of b ∼ c ∼ ε , where
ε � 1 is a small control parameter. Introducing the ansatz (3) in Eq. (1) and leaving only the
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Fig. 3. Characterization of bifurcation diagram and front speed of model Eq. (1). (a)
Bifurcation diagram of Eq. (1). Equilibrium amplitude uo as a function of the parameter µ
for fixed β. The continuous and dashed curves account for stable and unstable equilibrium,
respectively. These curves were obtained by solving the algebraic equation 0 = µu0 +
βu2

0 + u3
0 − u5

0; up , u−, and up account for the upper, middle, and lower equilibrium branch,
respectively. The system exhibits three regions, two monostable and one bistable. (b) Front
speed as a function of free propagation length L. The continuous curve shows the front
speed of model Eq. (1) obtained numerically with µ = 1.0, β = 0.1, and b = c = L. The
dashed horizontal curve accounts for the minimal front speed using the marginal criterion
vmin = 2√µ.
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terms up to ε order, after straightforward calculations, we get the linear equation

Lw = − Ûp(t)∂zu f − bu f ∂zzu f − c(∂zu f )
2, (4)

where the linear operator has the form L ≡ [µ + 2βu f + 3u2
f − 5u4

f + v∂z + ∂zz + b(u f ∂zz +

∂zzu f ) + 2c∂zu f ∂z]. To solve this linear equation, we use the Fredholm alternative or solvability
condition [17] and obtain

Ûp(t) = vnv ≡ −b
〈φ| u f ∂zzu f 〉

〈φ| ∂zu f 〉
− c
〈φ| (∂zu f )

2〉

〈φ| ∂zu f 〉
, (5)

where the symbol 〈 f | g〉 ≡
∫ ∞
−∞

f (z)g(z)dz and the function φ(z) belong to the kernel of the
adjoint operator of L, which is independent of diffraction effect. The φ function is only accessible
numerically. As a matter of fact, the correction of the front speed of nonvariational origin is
proportional to the free propagation length L. When L > 0 (L<0), the previous integrals are
negative (positive) then vnv is positive (negative). Hence the front speed has two contributions,
one of variational origin given by the linear criterion and another nonlinear one given by the
nonvariational effects, i.e.,

v = v0 + vnv . (6)

Therefore, from this perturbative analysis, it is expected that the front speed increases or decreases
with the free propagation length L. However, numerically only for positive diffraction, the
front speed increases linearly with the free propagation length [cf. Fig. 3(b)]. Figure 5 shows
how the speed and the profile of the front are modified when the free propagation length L is
changed. Therefore, for L > 0, the system exhibits an excellent qualitative agreement with Eq.
(5). Despite the above calculation, for L < 0, the speed of the front remains at the minimum
speed in contradiction with Eq. (6). This behavior can be understood in the following way,
the front modifies its asymptotic profile (cf. Figs. 4 and 5), which increases its propagation
speed given by the linear criterion [18], so that it cancels the speed decrement induced by the
nonvariational effects. Then, the previous perturbative analysis cannot be valid because the base
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Fig. 5. Spatiotemporal propagation of front solution into an unstable state for different free
propagation lengths. Top panels account for front propagation in the experiment by L = −0.4
cm (a), L = 0.0 cm (b), and L = 0.4 cm (c), respectively. Bottom panels stand for the front
propagation of model Eq. (1) by µ = 1.0, β = 0.1, and free propagation length L = −1.0
(d), L = 0 (e), and L = 4.0 (f). The insets account for the front profile at a given instant
experimentally and numerically, respectively.

solution is modified and it is not a small correction. This mechanism explains the origin of the
pull-pushed transition of fronts, when the disturbance tries to decrease the fronts speed, it adapts
their shape to maintain the minimum speed. Also, when the disturbance increases the speed
of propagation, the system responds by increasing the speed. Therefore, the system exhibits
a pull-pushed transition of fronts at zero free propagation length in the optical feedback loop,
L = 0, when the disturbance begins to increase the minimum speed. Spatiotemporal diagrams
are an adequate tool to characterize this type of transitions. When the parameters are modified,
if the speed remains unchanged, pulled fronts will not produce any noticeable change in the
spatiotemporal diagram, however when fronts are pushed, the spatiotemporal diagram presents a
change in the front position slope (cf. Fig. 5).

5. Conclusions and remarks

Based on a liquid crystal light valve experiment with optical feedback, we have investigated a
mechanism of speed control in interfaces connecting a stable with an unstable state based on
varying the free propagation length, showing a supercritical transition from a plateau speed to an
increasing speed regime, pulled-pushed front transition. Experimental and theoretically, we have
characterized this supercritical transition, which result shows quite fair agreement.

The possibility of having different molecular domains with varying effective refractive indices,
being able to manipulate the speed between these domains, allows the opportunity of having
switches between electronic and optical elements. The presented results open the possibility of
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novel photonic devices in such direction.
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Chapter 3

Novariational E�ects in Normal Fronts

3.1 Introduction

As was mentioned in chapter 1, the dynamics of macroscopic systems are described typically
by a small number of variables as a consequence of coarse-grained and averaging approaches
reaching nonvariational or non gradient systems. Instead of chapter 2, here we will consider
the nonvariational e�ect in fronts connecting two stable states, bistable fronts. Thus, we will
investigate the dynamics of front solutions corresponding to

∂tu = −δV (u)

δu
+ εFNV = FV + εFNV (3.1)

where FV (u) correspond to a bistable potential and FNV correspond to the nonvariational part
of the energy functional [81] and ε is a control parameter of the nonvariational e�ects. For
ε = 0, we have a variational bistable system whose dynamics is characterized by relaxation to
reach equilibrium, following the minimization of the energy functional associated. Moreover,
as was explained in chapter 1, in a front connecting two stable states, the energetically
favorable states will invade the less favorable.

In this chapter, we will try to answer the following question, what are the mechanism for
front propagation in nonvariational systems?. We address the above question by considering
two generic bistable systems. The �rst one is given by

∂tu = −αu+ βu2 − u3 + ∂xxu+ εFNV , (3.2)

that can be deduced for ε = 0 from the Landau-De Gennes theory for liquid crystals [82], and
the second one, for ε = 0 known as the spatially-extended pitchfork normal form or bistable
model, given by

∂tu = η + µu− u3 + ∂xxu+ εFNV , (3.3)
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Figure 3.1: Bifurcation diagrams for Landau DeGennes equation.

This equation has been appear in a wide range of contexts, ranging from population dynamics
to liquid crystals [79, 80]. The nonvariational part FNV is a mix of nonlinear di�usion and
nonlinear advection, and is given by

FNV = bu∂xxu+ c(∂xu)2, (3.4)

The weight coe�cients b and c enable us to control the nonvariational e�ects in the dynamical
behavior of the system. In the following section, we will characterize the front solutions for
the Eq. (3.2), their speed, and the relationships between Eqs. (3.2) and (3.3).

3.2 Landau-De Gennes System

To characterize the homogeneous steady states of the system, we start �nding it by solving

− αu+ βu2 − u3 = 0, (3.5)

whose roots are given by

u0 = 0, u± =
β ±

√
β2 − 4α

2
, (3.6)

in the liquid crystal theory, the states u0 and u+ correspond to the isotropic and nematic
phases, respectively. Note that the three solutions coexist only for β2 − 4α > 0. Calculating
the derivative of the scalar �eld and evaluating in the equilibrium we obtain for u0 = 0,

∂F

∂u

∣∣∣
u=u0

= −α + 2βu− 3u2
∣∣∣
u=u0

= −α, (3.7)

i.e., u0 is stable for α > 0 and unstable for α < 0. For u± =
β ±

√
β2 − 4α

2
we obtain that

46



∂F

∂u

∣∣∣
u=u±

= −α + 2βu− 3u2
∣∣∣
u=u±

= −β
2 ∓ β

√
β2 − 4α

2
+ 2α, (3.8)

Notice that there exist a region where u− is unstable, characterized by the inequality

− β2 + β
√
β2 − 4α

2
+ 2α > 0, (3.9)

Such region is characterized in �gure 3.1 and correspond to the region de�ned by the inequali-
ties α > 0; β = 0 that describes a straight line in the αβ-parameter space and α > 0; β > 2

√
α.

3.2.1 Analytical Solution and Front Speed Calculation

To obtain the analytical solutions corresponding to the interface connecting the coexisting
stable states of Eq. (3.2) for ε = 0, we look for a traveling solution of the form u := u(x−vt),
where v is the propagation speed. Putting the system in the co-moving frame z = x − vt,
Eq. (3.2) takes the Newton-like form

∂zzu+ v∂zu− αu+ βu2 − u3 = 0, (3.10)

We can assume that α ≥ 0, accounting for the region where both u0 = 0 and u+ are both
stable. and inspired in the tanh-method [83, 84], we considering a parameter-dependent
solution of �rst order in tanh, connecting the states 0 and A = u+ [85]

u(z) =
A

2
(tanh(Bz) + 1), (3.11)

substituting the proposed solution (3.11) in Eq. 3.10 we obtain:

− AB2 tanh(Bz)(1− tanh2(Bz)) +
vAB(1− tanh2(Bz))

2
− αA(1 + tanh(Bz))

2

+
βA2

4
+
A2 tanh(Bz)β

2
+
A2β tanh2(Bz)

4
− A3

8
− 3A3 tanh(Bz)

8

− 3A3 tanh2(Bz)

8
− A3 tanh3(Bz)

8
= 0,

(3.12)

and factorizing in tanh(Bz) we get
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(AB2 − A3

8
) tanh3(Bz)

+(−1

2
vAB +

1

4
βA2 − 3

8
A3) tanh2(Bz)

+(−AB2 − 1

2
αA+

1

2
βA2 − 3

8
A3) tanh(Bz)

+
vAB

2
− αA

2
+
βA2

4
− A3

8
= 0.

(3.13)

This drive us to the following system of equations


AB2 − A3

8
= 0

−1
2
vAB + 1

4
βA2 − 3

8
A3 = 0

−AB2 − 1
2
αA+ 1

2
βA2 − 3

8
A3 = 0

+vAB
2
− αA

2
+ βA2

4
− A3

8
= 0,

(3.14)

From the �rst equation we get B =
√

2/4A and substituting on the third one we get

α− βA+ A2 = 0, (3.15)

whose solutions are

A =
β ±

√
β2 − 4α)

2
= u±. (3.16)

Note that for solutions connecting u0 = 0 and u = u+ corresponding to the isotropic and
nematic phases respectively in the Landau�De Gennes model, we get from the second equation
of the system (3.14) an analytical expression for the speed of this front, given by

− (β
√

2β2 − 8α + (β2 − 2α)
√

(2))v + (3α− β2)
√
β2 − 4α− β3 + 5αβ = 0, (3.17)

and solving for v we obtain,

v =
(β − 3

√
β2 − 4α)

√
2

4
. (3.18)

Figure 3.2 show the front speed for β = 2.
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3.2.2 Nonvariational contribution to the speed

To calculate nonvariational contribution to the front speed, we consider the ansatz u = u0+w
where w is an small error function, with w � ∂tw ∼ b ∼ c � 1. Putting the system in the
co-mobile frame z = x− (v0 + vnv)t, substituting in the equation 3.2, and keeping the terms
up to order w, from the left side we get

∂tu0 = −v0∂zu0 − vnv∂zu0, (3.19)

and from the right side

∂tu0 = (−αu0 + βu20 − u30 + ∂zzu0)
+(−α + 2βu0 − 3u20 + ∂zz)w
+bu0∂zzu0 + c(∂zu0)

2.
(3.20)

Note that the �rst two terms in the right side of Eqs. (3.19) and (3.20) are canceled, because
they satisfy the variational equation. Letting L = [−α + 2βu0 − 3u20 + ∂zz], we obtain the
following simpli�ed equation

L |w〉 = −vNV ∂zu0 − bu0∂zzu0 − c(∂zu0)2, (3.21)

and applying solvability condition or Fredholm alternative, i.e., bracketing the above equation
with 〈φ| ∈ KerL, we get

VNV =
−b 〈φ|u0∂zzu0〉 − c 〈φ| (∂zu0)2〉

〈φ| ∂zu0〉
, (3.22)

Then, the front contribution to the speed is proportional to the nonvariational terms. It is
nothewortly that both terms generates speeds with oposite direction, vanishing particularly
when b = c = 0 and for b = 2c.

49



3.2.3 Swift-Hohenberg from Landau De-Gennes

Another archetypal equation from pattern formation is the Swift-Hohenberg equation. In this
section we will explore a connection between two models (3.3) and (3.2). Thus, given the
Eq. (3.2), consider the variable change u = u0 + w. From the Landau-De Gennes Equation
(3.2) we get

∂tw = −w3 + (β − 3u0)w
2 + (2βu0 − 3u20 − α)w + βu0 − u30 − αu0, (3.23)

Assigning u→ w in the Swift-Hohenberg equation, and comparing it with Eq. (3.2.3) we get


η = βu0 − u30 − αu0
µ = 2βu0 − 3u20 − α
0 = β − 3u0,

(3.24)

obtaining u0 = β/3 and from the �st two equations of the system (3.25) we obtain the
following relations


η =

2

27
β3 − 1

3
αβ

µ =
β2

3
− α,

(3.25)

reaching in this way to the Swift-Hohenberg equation.

Note that, although both equation (3.3) and (3.2) appears to be equivalent, they are not
from the physical point of view. A simple way to illustrate this point is observing that for the
Swift-Hohenberg equation, moving the η parameter outside of the stable region eliminates
any of the stable states (nematic or isotropic depending of the direction where η is varied).
Nevertheless, in the model (3.11) only the nematic phase can disappear.

3.3 2D Fronts

Fronts occur commonly in nature, at least in two-dimensional systems. Some examples are
the �re propagation in a forest, spreading of a virus, growth of a population, magnetization
domains in a magnetic media, or the orientation domains in a LCLV. Thus, we are interested
in nonvariational e�ects in fronts in dimensions larger than one and how nonvariational e�ects
interact with 2D properties like the front's curvature.

To study these e�ects, we will consider the Nonvariational Turing-Swift-Hohenberg equa-
tion given by
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Figure 3.3: Curvature and nonvariational e�ects in 2D fronts.
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∂tu = η + µu− u3 +∇2u+ bu∇2u+ c(∇u)2 (3.26)

Inspired in the numerical results, shown in the top panels of Fig. 3.3, we the simpli�ed
scenario of a circular front u = u(r − vt) for the model given by Eq. 3.26, where {r, θ} are
the radial and angular coordinates respectively. Taking into account that we can write in
polar coordinates the laplacian and gradient operators,

∇2u = ∂rru+
1

r
∂ru+

1

r2
∂θθu (3.27)

and,

(∇u)2 = (∂ru)2 +
1

r2
(∂θu)2 (3.28)

we can study the front propagation speed towards a radial axis, where all the derivatives in
θ vanishes. Then, the equation 3.26 takes the simple 1D form

∂tu = η + µu− u3 + ∂rru+
1

r
∂ru+ bu

(
∂rru+

1

r

)
+ c(∂ru)2 (3.29)

furthermore, it can be simpli�ed more considering r = R0 + x, where R0 is the initial
radius and x the position of the front. If R0 is su�ciently larger, we can approximate
1/(R0 + x) ≈ 1/R0, obtaining in this way

∂tu = η + µu− u3 + ∂xxu+ bu∂xxu+ c(∂xu)2 +
1 + bu

Ro

∂xu (3.30)

Note that this equation is similar to the Eq. 3.3, nevertheless it comes with two advective
terms, a linear and a nonlinear one. In order to calculate the speed, we follow the same
strategy done in section 3.2.2. Putting the system in the co-moving frame, we obtain the
following relation to the contributions to the front speed:

− vNV ∂zu0 =
[
µ− 3u20 + ∂zzu0 +

∂z
R0

]
w + bu0∂zzu0 + c(∂zu0)

2 +
∂zu0
R0

+
bu0∂zu0
R0

(3.31)

Letting L = [µ− 3u20 + ∂zzu0 + ∂z/R0], using the bracket notation w(z = x− vt) := |w〉 and
rewriting the above equation, we get

L |w〉 = −vNV ∂zu0 − bu0∂zzu0 − c(∂zu0)2 −
∂zu0
R0

− bu0∂zu0
R0

(3.32)

52



and applying solvability condition or Fredholm alternative, i.e., bracketing the above equation
with 〈φ| ∈ KerL, we get

VNV = −(b 〈φ|u0∂zzu0〉+ c 〈φ| (∂zu0)2〉+ 1/R0 〈φ| ∂zu0〉+ b/R0 〈φ|u0∂zu0〉)
〈φ| ∂zu0〉

(3.33)

obtaining in this way, a pure nonvariational contribution (similar to the 1D contribution), a
contribution from the curvature (given by the thrid derivative term), and another contribution
that is a mixed term that comes from the curvature and the nonvariational terms.

3.4 Outline

� Normal fronts are extremely common in physical systems.

� In addition, the generality of the spatially-extended pitchfork normal form suggests
that this strategy of control of front propagation can be applied in several contexts,
ranging from liquid crystals up to opinion dynamics in social media.

� We are also interested in understanding how nonvariational e�ects are a�ected by dis-
creteness and heterogeneity in the spatial coupling.

� These results could be of particular interest in designing optical and magnetical storage
devices and computational processors.

� In the LCLV experiment mentioned in the above chapter, close to a bistability point,
we could apply the theory to predict and control the molecular re-orientation front
propagation direction and speed using a nonvariational perish.

� In high dimensions, we exhibit several contributions to the normal front speed, namely,
the di�erence of energy, the curvature e�ect (also known as Gibbs-Thompson e�ect), the
nonvariational e�ect, and a mixed term depending on both curvature and nonvariational
terms.
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Multistable systems exhibit a rich front dynamics between equilibria. In one-dimensional scalar gradient
systems, the spread of the fronts is proportional to the energy difference between equilibria. Fronts spreading
proportionally to the energetic difference between equilibria is a characteristic of one-dimensional scalar gradient
systems. Based on a simple nonvariational bistable model, we show analytically and numerically that the
direction and speed of front propagation is led by nonvariational dynamics. We provide experimental evidence
of nonvariational front propagation between different molecular orientations in a quasi-one-dimensional liquid-
crystal light valve subjected to optical feedback. Free diffraction length allows us to control the variational or
nonvariational nature of this system. Numerical simulations of the phenomenological model have quite good
agreement with experimental observations.
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The coexistence between different equilibria is a charac-
teristic property of nonequilibrium systems [1–3]. Inhomoge-
neous initial conditions caused by, e.g., inherent fluctuations
of macroscopic systems, generate spatial domains which are
separated by domain walls. These interfaces are known as front
interfaces, domain walls, or wave fronts [3,4]. Interfaces be-
tween these metastable states appear in the form of propagating
fronts and give rise to rich spatiotemporal dynamics [5]. Front
dynamics has been observed in several contexts, such as walls
separating magnetic domains, liquid-crystal phases, fluidized
granular states, chemical reactions, and solidification and com-
bustion processes, to mention a few. Indeed, front solutions
are robust phenomena ranging from chemistry and biology to
physics. Moreover, these propagative fronts can be regarded
as particle-type solutions, i.e., they can be characterized by a
set of continuous parameters such as position, core width, and
so forth. Front propagation depends on the nature of the states
that are being connected. For example, in the case of a front
connecting a stable and an unstable state, its speed is not unique
but is determined by the initial conditions [6]. This scenario
changes for a front connecting two stable uniform states. For
variational or gradient systems, the most stable state invades
the other one, in order to minimize its nonequilibrium energy
or Lyapunov functional [7]. Likewise, there is only one point
in the parameter space for which the front is motionless, the
Maxwell’s point.

Due to a time-scale separation of the microscopic variables,
the dynamics of macroscopic systems is described by a
small number of variables (coarse-graining process), which
generally satisfy nonvariational or nongradient equations
[2–4]. In this framework, walls connecting two equivalent
vectorial fields through spontaneous symmetry breaking can
spread according to a given chirality of the vector field [8].
This mechanism, the nonvariational Ising-Bloch transition, is
well known [9]. A deeper understanding of front propagation in
macroscopic systems out of equilibrium will open the possibil-
ities for applications in nonequilibrium crystal growth, opera-
tion of nonequilibrium magnetic and optical memories, control
of nonequilibrium chemical reactions, to mention a few.

The aim of this Rapid Communication is to show that front
solutions in scalar field models generically propagate based

on two mechanisms: (i) the energy difference between states,
and (ii) nonvariational effects. Considering a simple nonvari-
ational bistable model, we show analytically and numerically
that front propagation is led by nonvariational dynamics.
A quasi-one-dimensional liquid-crystal light valve (LCLV)
experiment with optical feedback allows us to evidence
nonvariational front propagation between different molecular
orientations. Free diffraction lengths allow us to control the
variational or nonvariational nature of this optical system. A
phenomenological model for small free diffraction lengths is
derived. Numerical simulations of this model have quite good
agreement with experimental observations.

Simple bistable model. Let us consider a bistable model

∂tu = η + μu − u3 + ∂xxu + ε[c(∂xu)2 + bu∂xxu]

= −δF

δu
+ εFNV , (1)

where the scalar field u(x,t) is an order parameter that
accounts for an imperfect pitchfork bifurcation [4], μ is a
bifurcation parameter, η stands for the asymmetry between
the equilibria, ε is an small parameter, ε � 1, that controls the
nonvariational force FNM ≡ c(∂xu)2 + bu∂xxu, {c,b} account
for, respectively, nonlinear convective and diffusive terms, and
the functional

F ≡
∫

dx

[
V (u) + (∂xu)2

2

]
, (2)

where V (u) ≡ −ηu − μu2/2 + u4/4 is a potential. Notice the
above model is invariant under spatial reflection symmetry
(x → −x). Moreover, model (1) is variational when b = 2c.

For ε = 0, the above model (1) becomes a variational one.
This model has two stable equilibria for η small and positive
μ, u = ±√

μ + O(η), represented by {A,B}. Figure 1 depicts
the potential V (u) for different values of η. A nontrivial
solution of this variational model is front waves, uF (x −
vt) ≈ ±√

μ tanh [
√

μ/2(x − vt)] + O(η), that connect these
two equilibria [7]. The middle and lower panels of Fig. 1
show the profiles of the front solutions and their respective
spatiotemporal evolutions. Notice that fronts propagate at a
constant speed. The location and the region of the space where
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FIG. 1. Front propagation in the bistable variational model Eq. (1)
with ε = 0. The upper panels represent the potential V (u) for different
values of η, (a) η = 0.2, (b) η = 0, and (c) η = −0.2, with μ = 1.0.
The middle and lower panels illustrate the front profiles and their
respective spatiotemporal evolutions for (d), (f) μ = 1.0, η = 0.3,
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the front has a greater variation is known as the front position
and core, respectively. In the pioneering work of Pomeau [7],
it was shown that the front speed v is (η � 1)

v = vV ≡ V (A) − V (B)∫ ∞
−∞(∂xuF )2dx

≈ 3
√

2

2μ
η. (3)

Hence, the front speed is proportional to the energy difference
between the equilibria and the front core shape (denominator).
Indeed, the most energetically favorable state invades the
least favorable one (cf. Fig. 1). Likewise, when both states
have the same energy, η = 0, the front is motionless, which
corresponds to Maxwell’s point. Therefore, for variational
systems the mechanism of front propagation is the energy
difference between the connected equilibria.

In the case where nonvariational terms are considered,
ε �= 0, the above scenario changes drastically. To figure out
these changes, we consider model Eq. (1) at Maxwell’s point
and the nonvariational terms as perturbative, ε � 1. Then,
in this limit we can use the following ansatz for the front
solution, u(x,t) = uF (x − vt) + w(x − vt,v), where w is a
small adjustment function, which is of order of ε. Using this
ansatz in Eq. (1), linearizing in w, and imposing solvability
conditions, we get

vNV ≡ ε
c
∫ +∞
−∞ (∂xuF )3dx + b

∫ +∞
−∞ uF ∂xuF ∂xxuF dx∫ +∞

−∞ (∂xuF )2dx
. (4)

Then, the front speed is proportional to the nonvariational
terms. Notice that a similar method to obtain the speed of
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FIG. 2. Nonvariational front propagation model Eq. (1) at
Maxwell’s point (η = 0, ε = 1, and μ = 1). (a) Potential V (u). Front
profiles at a given instant for (b) positive c = 3, (c) negative c = −3,
and b = 0. (d) and (e) represent the spatiotemporal evolutions of
front solutions with positive and negative parameters c respectively
and b = 0. (f) Dimensionless front speed as a function of parameter
c. Points account for the numerical front speed obtained from Eq. (5)
with b = 0, η = 0, and ε = 1, the solid straight line is obtained
from the analytical formula vNV ≈ (2c − b)εμ

√
2/5, and the curve

is obtained using formula (4) with a numerical front profile uF .

the propagative front was used to characterize the Ising-Bloch
transition [9].

From the above formula, we can conclude that the mech-
anism generating the spread of this front is only the front
shape. Namely, the front core shape [∂xuF ∼ O(1)] determines
the propagation speed and not the energy difference between
equilibria. The above expression can be approximated by
vNV ≈ (2c − b)εμ

√
2/5. Figure 2 illustrates the nonvaria-

tional front propagation observed from the model (1) for
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FIG. 3. Front propagation model Eq. (1) with η = 0.3 and μ = 1.
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evolutions of the front solution with zero and positive parameter c.
(e) Dimensionless front speed as a function of parameter c. Points
account for the numerical front speed and continuous curve v =
vV + vNV .

different values of parameter c. For small c, the system exhibits
quite good agreement with the above approximation. For large
c, we can use formula (4) with uF obtained numerically. This
semianalytical approach has quite fair agreement (cf. Fig. 2).
Notice that nonlinear convection and diffusion are opposite
effects for front speed. The front becomes motionless when
the system is variational (b = 2c).

When considering the general case of asymmetry between
equilibria (η �= 0) and the presence of nonvariational terms, the
front speed is determined by the two mechanisms discussed
above, i.e., the front speed is v = vV + vNV . Figure 3 depicts
the front propagation in the generic case. A comparison
between numerical simulations and theoretical results shows
quite good agreement (cf. Fig. 3). Note that there is always
a point in the parameter space where the front is motionless
(vV = −vNV ), but which does not correspond to equal energy
between states.

Liquid-crystal light valve with optical feedback. A simple
physical system that exhibits nonvariational behaviors and
multistability is a LCLV with optical feedback [10–13]. This
setup contains a LCLV inserted in an optical feedback loop (see
Fig. 4). The LCLV is composed of a nematic liquid-crystal film
sandwiched in between a glass and a photoconductive plate
over which a dielectric mirror is deposited (see Ref. [11] and
references therein). The feedback loop is closed by an optical
fiber bundle (FB) and is designed in such a way that diffraction
and polarization interferences are simultaneously present. The
optical free propagation length is given by L.

The liquid-crystal film under consideration is planarly
aligned (nematic director 
n parallel to the walls), with a
thickness d = 15 μm. The liquid crystal filling the LCLV is
a nematic LC-654, produced by NIOPIK. It is a mixture of
cyanobiphenyls, with a positive dielectric anisotropy �ε =
ε‖ − ε⊥ = 10.7 and a large optical birefringence �n = n‖ −
n⊥ = 0.2, where ε‖ and ε⊥ are the dielectric permittivities
‖ and ⊥ to 
n, respectively, and n‖ and are n⊥ are the
extraordinary (‖ to 
n) and ordinary (⊥ to 
n) refractive indices
[14]. Transparent electrodes over the glass plates allow for the
application of an electrical voltage V0 across the nematic layer.
The photoconductor behaves as a variable resistance, which
decreases for increasing illumination. The light which has
passed through the liquid-crystal layer and has been reflected
by the dielectric mirror experiences a phase shift which
depends on the liquid-crystal molecular orientation and, at its
turn, modulates the effective voltage that is locally applied to
the liquid-crystal sample. Over a critical voltage, the molecules
tend to orient along the direction of the applied electric field,
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FIG. 4. Nonvariational front propagation in a LCLV with optical feedback. (a) Schematic representation of the experimental setup. {L1,L2}
stands for two lenses with a focal distance f = 25 cm, M is a mirror, FB is an optical fiber bundle, PBS is a polarizing beam splitter cube, BS
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which the system exhibits nascent bistability at θ0 = θc. (b) Front
speeds as functions of voltage V0 for different free propagation
lengths.

which changes local and dynamically following the spatial
distribution of illumination present in the photoconductor wall
of the cell. When liquid-crystal molecules reorient, due to
their birefringent nature, they induce a refractive index change.
Thus, the LCLV acts as a manageable Kerr medium, causing a
phase variation φ = β cos2 θ ≡ 2kd�n cos2 θ in the reflected
beam proportional to the intensity of the incoming beam Iw on
the photoconductive side, where θ is the longitudinal average
of the molecular reorientation. Here, k = 2π/λ is the optical
wave number. The LCLV is illuminated by an expanded He-Ne
laser beam, λ = 633 nm, with a 1 cm transverse diameter
and power Iin = 6.5 mW/cm2, linearly polarized along the
vertical y axis. A spatial light modulator (SLM, controlled
through an external computer) was placed in the input beam in
order to carry out one-dimensional experiments. The system
dynamics is controlled by adjusting the external voltage V0

and free propagation length L.
Theoretical description of the LCLV. The light intensity

Iw reaching the photoconductor is given by Iw(θ,L) =
Iin|e−i L

2k
∂xx (1 + e−iβ cos2 θ )|2/2 [11], where x is the transverse

direction of the liquid-crystal layer. As long as Iin is suf-
ficiently small (Iin ∼ 1 mW/cm2), the effective voltage Veff

applied to the liquid-crystal layer can be expressed as Veff =
V0 + αIw, where 0 <  < 1 is a transfer factor that depends
on the electrical impedances of the photoconductor, dielectric
mirror, and the liquid crystal, while α is a phenomenological
dimensional parameter that describes the linear response of
the photoconductor [11].

The dynamics of the average director tilt θ (x,t) is described
by a nonlocal relaxation equation of the form [10]

τ∂tθ = l2∂xxθ − θ + π

2

(
1 −

√
VFT

V0 + αIw(θ,L)

)
, (5)

with VFT ≈ 3.2 Vrms the threshold for the Fréedericksz tran-
sition, τ = 30 ms the liquid-crystal relaxation time, and
l = 30 μm the electric coherence length.

Let us consider the zero free propagation length, L = 0,
Iw(θ,L = 0) = Iin{1 + cos(β cos2 θ )}/2. In this limit, Eq. (5)
is a gradient model. To derive a simple description of
the above model, we study its dynamics around the emer-
gence of bistability, i.e., when the system becomes mul-
tivalued or exhibits nascent bistability [15]. Figure 5(a)

depicts nascent bistability. We express the expression for
equilibria θ (x,t) = θ0 as follows, V0(θ0) = VFT/(1 −
2π−1θ0)2 − α Iin[1 + cos(β cos2 θ0)]/2, and from this re-
lation we determine the values of the parameters for the
emergence of bistability. Indeed, in the parameter space,
the above expression generates a folded surface from
which one can geometrically infer the points of nascent
bistability [cf. Fig. 5(a)]. In fact, θ0 becomes multivalued
when the function V0(θ0,Iin) has a saddle point at θ0 = θc.
Around the saddle point V0(θc) creates two new extreme
points that determine the width of the bistability region.
To find the saddle points of V0(θc,Iin), we have to im-
pose the conditions dV0/dθc = 0, d2V0/d

2θc = 0, and, after
straightforward algebraic calculations, we obtain the relations
Iin = π2VFT/αβ(π/2 − θc)3 sin(2θc) sin (β cos2 θc), and (θc −
π/2)[2 csc 2θc + β sin 2θc cot(β cos2 θc)] = 3. The first ex-
pression gives the critical value of Iin for which V0 becomes
multivalued. The second expression is an algebraic equation
that depends only on the parameter β and determines all the
points of nascent bistability. Notice that only half of them
have physical significance because the other half correspond
to negative values of the intensity. By taking into account the
constraint that the intensity must be positive and considering
that the cotangent function is π periodic, we have that the
actual number of points of nascent bistability is equal to the
next smallest integer of β/2π . For the values considered in our
experiment, β is about 54, then one expects to find eight points
of nascent bistability in the entire (V0,Iin) parameter space, a
prediction that is confirmed by the experiment [10].

The dynamics around a nascent bistability point can be
described by a scalar field u(x,t) governed by a cubic
nonlinearity. Hence, close to this point, Iin ≡ I c

in, V0 ≡ V c
0 ,

and we can consider

θ (x,t) ≈ θc + u(x,t)/u0, (6)

where u2
0 ≡ 2β cos 2θc cot(β cos2 θc) + (4 + β2 sin 2θc)/3 −

2/(π/2 − θc)2 is a normalization constant.
Considering the above ansatz in Eq. (5) with a zero free

propagation length L = 0, and developing in a Taylor series
by keeping the cubic terms, after straightforward algebraic
calculations, we can reduce the full LCLV model to a simple
bistable model,

τ∂tu = η + μu − u3 + l2∂xxu, (7)

where η ≡ α[1− cos(β cos2 θc)](π/2−θc)3[Iin − Ic+α[1−
cos(β cos2 θc)(V0 − Vc)]/2]/π2VFT, and μ ≡ 12{(π/2
− θc)2(V0 − Vc) + [π2 VFT/12 − (π/2 − θc)2](Iin − Ic)/Ic}/
π2VFT.

For a small free propagation length (L ∼ ε � 1), the
light intensity Iw reached in the photoconductor can be
approximated by a local model characterized by

Iw(θ,L) ≈ Iin{1 + cos(β cos2 θ )

+L[1 + cos(β cos2 θ )∂xx sin(β cos2 θ )]/k

−L sin(β cos2 θ )∂xx cos(β cos2 θ )/k}/2.

Introducing this expression in Eq. (5), using ansatz (6),
developing in a Taylor series by keeping the cubic terms in
u, considering that the order parameter is a slow variable
in space (∂xxu � ∂xu � 1), renormalizing space, and after

010202-4



RAPID COMMUNICATIONS

NONVARIATIONAL MECHANISM OF FRONT . . . PHYSICAL REVIEW E 95, 010202(R) (2017)

straightforward calculations, we obtain Eq. (1), with

b = c ≡ −
παβ cos(2θc)Ic

(
VFT

2Vc+αIc[1+cos(β cos2 θc)]

)
3/2

√
2lu0VFT

.

Hence, close to nascent bistability, model Eq. (5) can be
approximated by a simple nonvariational model Eq. (1), which
describes the complex dynamics observed around this critical
point.

Numerical simulations of model (5) in the region of
bistability for a small free propagation length show that the
system exhibits front solutions. The front speed is affected
when the free propagation length is changed. Therefore, these
fronts present a propagation mechanism of a nonvariational
nature.

Experimental nonvariational front propagation. Using the
SLM, we have conducted quasi-one-dimensional experiments
in a LCLV with optical feedback. As voltage V0 is varied as a
control parameter, we identify the bistable region, where two
different molecular orientation states coexist. In this bistability
region, the SLM is not only used to create a one-dimensional
channel, but also to create localized perturbations, which
allow us to observe the emergence of fronts between two

different molecular orientations. Hence, the light observed in
the near field has different intensities, which are associated
with the molecular orientations. Figure 4(b) shows a temporal
sequence of snapshots of front propagation. By recording the
interface evolution over the channel with a CCD camera, we
have measured the front speed, which is plotted in Fig. 4(c)
as a function of V0 for different values of free propagation
length L. For small L, experimental imperfections are relevant.
We consider nonsmall L. Note that as the free propagation
length increases, the front speed increases, which is consistent
with the theoretical prediction. Therefore, the mechanism that
generates the spread of these fronts is the energy difference
and front core shape (nonvariational effect).

In summary, we have characterized a mechanism of
nonvariational front propagation in one-dimensional scalar
fields, where the process responsible for generating the spread
of this front is the front shape and not the energy difference
between equilibria. In higher dimensions we expect that the
propagation is only corrected by curvature effects, e.g., the
Gibbs-Thomson effect [3].
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Chapter 4

Nonvariational E�ects in Localized

Structures

4.1 Introduction

In the previous chapters, the e�ects of the inclusion of non-variational terms in the dynam-
ics of normal and FKPP fronts were explored, understanding such non-variational terms as
typical in the formation of evolution laws macroscopic systems. This chapter will study their
impact on localized structures dynamics and their role in their propagation. Indeed, an im-
portant challenge in studying localized dissipative structures is to understand the mechanisms
that allow or drive propagation and how to control such propagation. For this reason, our
focus is on understanding how non-variational e�ects can make a localized structure go from
motionless to propagative. Since its inception, the motion of localized structures has been
the subject of intense research. The seminal work of Scott Russell on propagating solitons in
a water channel [86], is maybe the �rst attempts to understand how and why these solitons
propagate at almost constant speeds and maintaining their shape for long period of time.
While his work was mainly descriptive, he laid the groundwork for further study of solitons.
Now, there are a variety of mechanisms of propagation of localized structures reported. How-
ever, all are based on the same principle, breaking the symmetry of the localized structure.
In other words, asymmetry is the cause of propagation in localized structures. Perhaps the
most intuitive way to do this is by entering drift terms or phase gradients [87]. Another
similar nature approach places asymmetry in terms of coupling or feedback, thus having o�-
axis couplings [88] or translational couplings in space [89]. Finally, and perhaps the closest
propagation mechanism to our work would be symmetry breaking via the introduction of
space or time delay terms [90, 91, 92, 93, 94], which are also non-variational. However, in our
work, we identi�ed a simple propagation mechanism, in which the breaking of the symmetry
of the localized structure occurs spontaneously, thus giving rise to a transition from motion-
less to propagative. In order to understand this transition in a simple system, we consider
the non-variational Turing-Swift-Hohenberg equation, explored in the previous chapters, and
given by:
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Figure 4.1: Speed of localized structure v = ẋ0 as a function of the parameter c. At the
transition point c ≡ c∗ ≈ 0.319. Dots indicate localized structures speed obtained from
numerical simulations of Eq. (4.1). Green curves is associated with the analytical results
developed in our paper and red curves are associated with the �t of the numerical values
given by : v = ẋ0 = 0.1467

√
c− 0.319 Parameters are µ = η = −0.02, ν = 1, and b = −0.9.

Left insets account for the pro�le and the spatiotemporal evolution of a motionless localized
structure. Right top (bottom) insets account for the pro�le and the spatiotemporal evolution
of a right (left) moving localized structure.

∂tu = η + µu− u3 − ∂xxu− ∂xxxxu+ 2bu∂xxu+ c(∂xu)2, (4.1)

Note that the equation is variational for b = c in this way. The next section illustrates how
the localized structures for equation (4.1) propagate, along with the region's details in the
parameter space in which they appear.

4.2 Propagation of localized states driven by nonvaria-

tional e�ects

Through a numerical study of the nonvariational e�ects in a generalization of Turing-Swift-
Hohenberg equation, we found that these can generate a spontaneous symmetry break and
induce movement in localized structures. A spectral method was used for spatial integration
and a Runge-Kutta of order 4 for temporal integration, however central derivatives were also
used, and in all cases, the results were equivalent.

In particular, leaving b = −0.9 �xed by varying the parameter c we could see the transition
from motionless to traveling. In the �gure 4.1 such a transition is shown, where we take
c < c∗ (in the motionless zone) and c > c∗ in the propagative zone, where c∗ ≈ 0.319 is the
bifurcation point. The bifurcation diagram of these localized structures was also character-
ized. In the �gure 4.1, you can see a Pitchfork type bifurcation for all the �xed parameters,
leaving only c to vary. The paper can be found an extended version of this bifurcation di-
agram, allowing the parameter b variation. Collisions By studying the interaction of these
localized structures, we seek to see their behavior in the face of collisions. In this case, when
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Figure 4.2: Elastic collision of LS. Panel (a) shows the collision between two localized states in
the spatiotemporal diagram. Panels (b), (c) and (c) shows the pro�le of the solution in three
time instants corresponding to the initial time t = 0, the collision time t ≈ 6 × 104 and the
�nal state t = 105 respectively. Panel (e) show a representation in 3D of the spatiotemporal
diagram.

Figure 4.3: Bounded localized states, called catamaran structure, propagating on space.
Parameters are η = −2, ν = −1, µ = −0.092, b = −2.8, and c = 3.2.

two of these collided, we saw that their interaction is elastic type, as can be seen in �gure
4.2. i.e., the interaction between the localized structures presented here appears to be repul-
sive. Although a more in-depth analysis of the interaction between non-variationally forced
dissipative localized structures is necessary, outside the scope of our research on propagation
mechanisms will be addressed later.

4.3 Catamaran states: a 2D generalization

When trying to generalize the results obtained previously to systems of greater dimension,
we searched for these solutions in the 2D generalization of this system:

∂tu = η + µu− u3 −∇2u−∇4u+ 2bu∇2u+ c(∇u)2, (4.2)

However, we could not �nd an analogue of a peak that is propagative for the two-
dimensional system. In other words, the solution of a peak is unstable in the propagative
region. However, we �nd that the bound states of two peaks can break symmetry and prop-
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Figure 4.4: Catamaran structures obtained when parameter η is varying in the region where
catamaran structures exist. In panel (a) correspond to η = 0.5 and present a more asym-
metric shape, and exhibit a long tail compared with �gures in panels (b), (c), and (c) that
corresponds to η = −1,−2 and −5 respectively.

agate. We call them catamarans due to their particular structure made up of two peak
structures and their ability to move through space. For �xed parameters, the speed of these
can be controlled via the terms that weigh the non-variational contributions. However, by
varying the eta parameter, we �nd that it is also possible to change its shape, thus displaying
an exciting variety of this type of localized structures. Some of these are shown in �gure 4.4.

4.4 Experimental Catamarans.

This type of structure was not sought in the setup composed of the liquid crystal light valve
with optical retro-injection studied in the above chapters because the non-variational param-
eters in such experiment are not free, instead there are linked to the free propagation length,
and the region in which they appear are initially inaccessible for the experiment. However,
after our theoretical investigation, a series of experimental works were published showing
localized catamaran-like structures in nematics. The setup is composed of a sandwich-type
nematic liquid crystal layer with a ground state director vector parallel to the plates that
encapsulate the liquid crystal so that solitons (which can be described as deformation waves
of the local director vector) are induced by an electric �eld of alternating current applied on
the plate on which there are transparent electrodes. More details about the experiment and
the setup parameters can be seen in [1, 2]. Other examples of propagative linked localized
structures have been reported by Purwins et al. However, this type of states dynamics is of
the rotating type or forming aligned trains, rather than catamarans.

4.5 Outline

� We show a very simple and generic model of a scalar �eld system exhibiting a parity
breaking transition of dissipative localized structures driven by nonvariational terms.

� The weights in nonvariational terms enable us to control the speed of these localized
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Figure 4.5: Localized structures exhibited in the liquid crystal based setup reported in [1, 2]
. The bright and dark domains corresponds to the nematic and isotropic phases respectively.

structures.

� These kinds of solutions su�er a drift bifurcation (transition from motionless to traveling
LS) following a supercritical Pitchfork bifurcation, analyzed in detail in our published
paper.

� We deduce semi-analytically the Pitchfork normal form for the speed.

� We explore the 2D extension of the model and show that there are propagative localized
structures, but they are paired instead of single spots.

� Due to the nonvariational TSH-equation genericity, we expect to observe this kind of
propagative bounded localized states in more examples of nature.

The possibility of controlling the propagation of this type of structure and its relationship
with the dynamics of liquid crystals, optical devices, and in general, with the dynamics
of interfaces allows the creation of a bridge to investigate their applications in the labeled
delivery of information in photonic devices information storage and processing as well as the
delivery of micro-scale cargoes. Additionally, in the course of this research, a wide variety
of patterns with exciting dynamics were found, some of them explored in-depth, e.g., the
traveling and wandering chaotics (detailed in the next chapters), and others that are in
development at the time of writing this chapter and are part of future postdoctoral research.
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We consider a paradigmatic nonvariational scalar Swift-Hohenberg equation that describes short

wavenumber or large wavelength pattern forming systems. This work unveils evidence of the tran-

sition from stable stationary to moving localized structures in one spatial dimension as a result of a

parity breaking instability. This behavior is attributed to the nonvariational character of the model.

We show that the nature of this transition is supercritical. We characterize analytically and numeri-

cally this bifurcation scenario from which emerges asymmetric moving localized structures. A gen-

eralization for two-dimensional settings is discussed. Published by AIP Publishing.
https://doi.org/10.1063/1.5019734

The formation of localized structures (LSs) often called

cavity solitons or dissipative solitons is a universal feature

of the self-organized non-equilibrium systems and is of

common occurrence in many fields of nonlinear science

ranging from biology, chemistry, to physics. The impor-

tant issue of our analysis is to reveal the transition from a

stationary to moving localized structures that may occur

in practical systems. We show that an internal parity

symmetry breaking bifurcation allows localized struc-

tures to move in an arbitrary direction. We illustrate this

bifurcation scenario in the paradigmatic nonvariational

Swift-Hohenberg equation that has been derived for

many far from equilibrium systems. These results are

obtained in the particular limit of nascent bistability and

large wavelength or small wavenumber pattern forming

regime. Therefore, the present analysis could be applied

to more realistic models. Understanding the dynamics of

localized structures may allow for the manipulation and

the control of light in advanced optical devices.

I. INTRODUCTION

Localized structures (LS’s) have been theoretically pre-

dicted and experimentally observed in many fields of nonlin-

ear science, such as laser physics, hydrodynamics, fluidized

granular matter, gas discharge system, and biology.1–10

These solutions correspond to a portion of the pattern sur-

rounded by regions in the homogeneous steady state.

However, localized structures are not necessarily stationary.

They can move or exhibit a self-pulsation as a result of exter-
nal symmetry breaking instability induced by a phase gradi-

ent,11 off-axis feedback,12 resonator detuning,13 and space-

delayed feedback.14 This motion has also been reported

using a selective15,16 or a regular time-delay feedbacks.17

We identify an internal symmetry breaking instability

that causes a spontaneous transition from stationary to mov-

ing localized structures in nonvariational systems. In

contrast, variational systems, i.e., dynamical systems character-

ized by a functional, an internal symmetry breaking instability

causes the emergence of motionless asymmetric localized

states.19,20 To investigate this nonvariational transition, we

consider a generic nonvariational scalar Swift-Hohenberg

equation. This is a well-known paradigm in the study of spatial

periodic and localized patterns. It has been derived for that pur-

pose in liquid crystal light valves with optical feedback,21,22 in

vertical cavity surface emitting lasers,23 and in other fields of

nonlinear science.24 Generically, it applies to systems that

undergo a Turing-Prigogine instability, close to a second-order

critical point marking the onset of a hysteresis loop. This equa-

tion reads

@tu ¼ gþ lu� u3 � �r2u�r4uþ 2bur2uþ cðruÞ2:
(1)

The real order parameter u ¼ uðx; y; tÞ is an excess field vari-

able measuring the deviation from criticality. Depending on

the context in which Eq. (1) is derived, the physical meaning

of the field variable u can be the electric field, biomass,

molecular average orientation, or chemical concentration.

The control parameter g measures the input field amplitude,

the aridity parameter, or the chemical concentration. The

parameter l is the cooperativity, and � is the diffusion coeffi-

cient. The Laplace operator r2 � @xx þ @yy acts on the plane

(x, y). The parameters b and c measure the strength of non-

variational effects. The terms proportional to c and b, respec-

tively, account for the nonlinear advection and nonlinear

diffusion, which in optical systems can be generated by the

free propagation of feedback light.21,22

For b¼ c, Eq. (1) is variational,24 i.e., the model reads

@tu ¼ �dFðuÞ=du; with F(u) being the free energy or the

Lyapunov functional. In this case, any perturbation compati-

ble with boundary conditions evolves toward either a homo-

geneous or inhomogeneous (periodic or localized) stationary

states corresponding to a local or global minimum of F(u).
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Therefore, complex dynamics such as time oscillations,

chaos, and spatiotemporal chaos are not allowed in the limit

b¼ c. In particular, in this regime, stationary localized struc-

tures and localized patterns have been predicted.25 An exam-

ple of a stationary LS in one-dimension is shown in the left

panel of Fig. 1. The obtained localized structure has a maxi-

mum value of field u(x, t) located at the position x0. The sta-

tionary LS has been studied for Eq. (1) in one dimensional

(1D) spatial coordinate, as well their snaking bifurcation dia-

gram.26,27 When b 6¼ c, the model equation losses its varia-

tional structure and allows for the mobility of unstable

asymmetric localized structures, rung states, that connect the

symmetric states.26 Indeed, the system exhibits a drift insta-

bility leading to the motion of localized structures in an arbi-

trary direction. However, these states are unstable states for

small nonvariational coefficients.

In this paper, we characterize the transition from stable

stationary to moving localized structures in non-variational

real Swift-Hohenberg equation. Figure 1 illustrates stable

moving localized structures. We show that there exists a

threshold over which a single LS starts to move in an arbi-

trary direction since the system is isotropic in both spatial

directions. We compute analytically and numerically the

bifurcation diagram associated with this transition. In one

dimensional setting, the transition is always supercritical

within the range of the parameters that we explore. The

threshold and the speed of LS is evaluated both numerically

and analytically. In two-dimensional settings, numerical sim-

ulations of the governing equation indicate that the nature of

the transition towards the formation of moving localized

bounded states is not a supercritical bifurcation. It is worth

to mention another type of internal mechanism that occurs in

regime devoid of patterns and may lead to a similar phenom-

enon for fronts propagation through a non-variational Ising

Bloch transition.19,28–30 The Ising-Bloch transition has been

first studied in the context of magnetic walls.19 Soon after, it

has been considered in a various out of equilibrium systems

such as driven liquid crystal,29 coupled oscillators,30 and

nonlinear optic cavity.31 More recently, it has been shown

that non-variational terms can induce propagation of fronts

in quasi-one-dimensional liquid crystals based devices.32

Experimental observation of a supercritical transition from

stationary to moving localized structures has been realized in

two-dimensional planar gas-discharge systems.33

The paper is organized as follows: the numerical charac-

terization of the bifurcation scenarios triggered by an internal

symmetry breaking instability leading to the formation of

asymmetric traveling localized structures is discussed in Sec.

II. At the end of this section, we perform numerical simula-

tions in one-dimensional system Eq. (1). In Sec. III, we per-

form an analytical analysis of the symmetry breaking

instability. Two-dimensional moving bounded localized

structures are analyzed, and their bifurcation diagram is

determined in Sec. IV. Finally, the conclusions are presented

in Sec. V.

II. NUMERICAL CHARACTERIZATION OF PARITY
BREAKING TRANSITION

We investigate the model Eq. (1) numerically in the

case where b 6¼ c in 1D with periodic boundary conditions.

The results are summarized in the bifurcation diagram of

Fig. 1. We fix all parameters and we vary the nonvariational

parameter c. When increasing the parameter c< c�, LS’s are

stationary. There exist a threshold c¼ c� at which transition

from stationary to moving LS’s takes place. This transition is

supercritical. For c> c�, stationary LS becomes unstable,

and the system undergoes a bifurcation towards the forma-

tion of moving localized structures. The direction in which

LS propagates depends on the initial condition used. Indeed,

there is no preferred direction since the system is isotropic.

The spatial profiles of the stationary and the moving local-

ized states are shown in Fig. 2. The shadow regions allow

emphasizing the symmetric (stationary) and asymmetric

(moving) solutions concerning the localized structure posi-

tion. We clearly see from this figure that stationary LS is

FIG. 1. The speed of localized structure v ¼ _x0 as a function of the parameter c. At the transition point, c � c� � 0:319. Dots indicate localized structures

speed obtained from numerical simulations of Eq. (1). Green curves are associated with the analytical results depicted in Sec. III and red curves are associated

with the fit of the numerical values given by: v ¼ _x0 ¼ 0:1467
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c� 0:319
p

. Parameters are l¼ g¼�0.02, �¼ 1, and b¼�0.9. Left insets account for the pro-

file and the spatiotemporal evolution of a motionless localized structure. Right top (bottom) insets account for the profile and the spatiotemporal evolution of a

right (left) moving localized structure.
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symmetric concerning its maximum. This can be explained

by the fact that a spontaneous spatial parity breaking symme-

try accompanies the transition from stationary to moving

localized structures. In fact, if the parity with respect to its

position
Ð x0þL

x0�L uðx; tÞdx is positive (negative), it moves to the

right (left).

We have measured the speed of moving LS solutions of

Eq. (1) numerically, by varying both c and b parameters. The

results are summarized in Fig. 3. There are three different

dynamical regimes. When increasing both parameters b and

c, the stationary localized structures are stable in the range

delimited by the curve C1. These structures exhibit a sponta-

neous motion leading to the formation of moving LSs solu-

tions in the range of parameters delimited by the curves C1

and C2. By exploring the parameter space (b, c), we see

clearly from Fig. 3 that the bifurcation towards the formation

of moving LSs remains supercritical.

After the numerical characterization, we perform an

analytical analysis of the transition towards moving LS. For

this purpose, let us consider the linear dynamics around

stationary LS; ulsðx� x0Þ located at x¼ x0. The linear opera-

tor reads

Lu � l� 3u2
ls � �@xx � @xxxx þ 2buls@xx

� �
u

þ 2cð@xulsÞ@xuþ 2bð@xxulsÞu: (2)

Note that the operator L is not self-adjoint (L 6¼ L†). Due

to the lack of analytical solutions of LS for Eq. (1), we com-

pute numerically the spectrum and eigenvectors associated

with L; L2, and L†. The spectrum of L always has an eigen-

value at the origin of the complex plane (the Goldstone mode)

as shown in Fig. 4(a). The corresponding eigenfunction

denoted by jv0i � @zulsðx� x0Þ is depicted in Fig. 4(a-i).

When approaching the parity breaking transition threshold,

another mode collides with the Goldstone mode as shown in

Fig. 4(a). The corresponding eigenfunction of this mode is

depicted in Fig. 4(a-ii). Note, however, that the profiles of both

eigenfunctions are almost the same. At the threshold, these

eigenfunctions are identical. This degenerate bifurcation has

been reported in the Swift-Hohenberg equation with delayed

feedback.17,18 The spectrum of L2 operator is obtained by

using the Jordan matrix decomposition as shown in Fig. 4(b).

There are two eigenfunctions jv0i and jv1i ¼ uasðx� x0Þ,
which satisfy

Ljv1i ¼ jv0i;
L2jv1i ¼ 0:

(3)

The profiles of jv0i and jv1i are plotted in Figs. 4(b-i)

and 4(b-ii), respectively. From this figure, we can see that

for jv0i mode, the integral
Ð x0þL

x0�L jv0idx ¼ 0, while for jv1i
mode, the integral

Ð x0þL
x0�L jv1idx 6¼ 0. This indicate that the

profile of jv1i is asymmetric. This asymmetric mode has

been reported in Refs. 19, 20, 26, 30, and 33. The eigenval-

ues and the critical eigenfunctions associated with the adjoint

operator L† are depicted in Fig. 4(c).

Introducing the canonical inner product

hgjf i ¼
ð1
�1

f ðxÞgðxÞdx (4)

numerically, we have verified that critical modes are orthog-

onal hv0jv1i ¼ 0.

III. ANALYTICAL DESCRIPTION OF PARITY
SYMMETRY BREAKING TRANSITION

To provide an analytical understanding of the parity

symmetry breaking bifurcation, we focus our analysis on the

one-dimensional setting. To do that, we explore the space-

time dynamics in the vicinity of the critical point associated

with the transition from stationary to moving LS at c¼ c� by

defining a small parameter � which measures the distance

from that critical point as c ¼ c� þ �2c0. Our objective is to

determine a slow time and slow space amplitude equations.

We expand the variable u(x, t) as

uðx; tÞ ¼uls x� x0ð�tÞð Þ þ �A0ð�2tÞuasðx� x0ð�tÞÞ
þwðx; x0;A

0Þ; (5)

FIG. 2. Profile of localized structures obtained from numerical simulations

of Eq. (1). Parameters are l¼ g¼�0.02, �¼ 1, and b¼�0.9. (a) Stationary

and (b) moving localized structure.

FIG. 3. The speed v ¼ _x0 as a function of the nonvariational parameters c
and b obtained by numerical simulations of Eq. (1). Parameters are

l¼ g¼�0.02, and �¼ 1; for each curve, different fixed values of the

parameter b are considered, which are indicated in the upper part of the

respective curve. The two segmented curves (C1, C2) limit the region where

moving localized structures are observed. The line C1 marks the transition

from stationary to moving localized structures.
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where ulsðx� x0ð�tÞÞ is the stationary localized structure,

and x0 stands for the position of the localized structure. We

assume that this position evolves on the slow time scale �t.
The function uasðx� x0ð�tÞÞ � jv1i is the generalized eigen-

function corresponding to the asymmetric mode. The ampli-

tude A0 is assumed to evolve on a much slower tine scale �2t,
and wðx; x0;A

0Þ is a small nonlinear correction function that

follows the scaling w� �A0 � 1. By replacing the above

ansatz (5) in the corresponding one-dimensional model of

Eq. (1) and linearized in w, after straightforward calculations

we obtain

�Ljwi¼ � _x0jv0i��3 _A0 jv1iþ‘�A0jv1i
þc0 @zulsjv0iþ�2A02@zuas@zjv1iþ2�A0@zuasjv0i

� �
��3A03u2

asjv1i�3�2A02uasulsjv1iþc��2A02@zuas@zjv1i
þ2bð�A0Þ2uas@zzjv1i; (6)

where we have introduced the notation _x0 ¼ @tx0; _A0 ¼ @tA
0;

z � x� x0ðtÞ that corresponds to the coordinate in the

co-moving reference frame with speed _x0, and jwi
� wðx; x0;A

0; �Þ.
At order �, the solvability condition34 reads

FIG. 4. Spectrum of linear operators.

Real and imaginary parts of the eigen-

values associated with the linear opera-

tors (a) L, (b) L2, and (c) L†.

Parameters are l¼�0.02, �¼ 1.0,

b¼�0.9, and c¼ 0.318. Inset figures

are the real part of the eigenfunction

jv0i; jv1i; jw0i, and jw1i for the

Goldstone and the asymmetric mode

associated with the zero eigenvalue,

respectively.
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_x0 ¼ �A0: (7)

To determine the equation of the amplitude A0 of the asym-

metric mode, we apply on Eq. (6) the linear operator L and

we obtain

�L2jwi ¼ ��3 _A0Ljv1i þ c0L@zulsjv0i þ cð�A0Þ2L@zuas@zjv1i

þ 2Dc�A0L@zuasjv0i � ð�A0Þ3Lu2
asjv1i

þ c�ð�A0Þ2L@zuas@zjv1i þ 2bð�A0Þ2Luas@zzjv1i

� 3ð�A0Þ2Luasulsjv1i:

The application of the solvability condition at the next order

leads to

_A0 ¼ 2c0hw1jL@zuasjv0i
hw1jv0i

A0 � hw1jLu2
asjv1i

hw1jv0i
A03: (8)

To simplify further Eqs. (7) and (8), we propose the follow-

ing scaling and change of parameters:

A � hw1jLu2
asjv1i

hw1jv0i
A0; s � hw1jv0i

hw1jLu2
asjv1i

t;

r � 2c0

hw1jL@zuasjv0ihw1jLu2
asjv1i

hw1jv0i2
;

(9)

we get the dynamics for the critical modes

_AðsÞ ¼ rA� A3; (10)

_x0ðsÞ ¼ �A: (11)

The parameter r / ðc� c�Þ measures the distance from the

critical point associated with the parity symmetry breaking

transition. The stationary speed of amplitude Eqs. (10) and

(11) is v ¼ 6
ffiffiffi
r
p
/ ðc� c�Þ1=2

. This implies that the asym-

metric mode undergoes at the onset of the instability a drift-

pitchfork bifurcation,35,36 as result of parity breaking sym-

metry.19,20,26,30,33 This bifurcation scenario is in perfect

agreement with the results of direct numerical simulations of

Eq. (1) presented in Sec. II [see the bifurcation diagram of

Fig. 1]. Note that the interaction between symmetric station-

ary LSS has been investigated in the variational Swift-

Hohenberg equation by Aranson et al.36

IV. BOUNDED MOVING LOCALIZED STATES IN TWO
SPATIAL DIMENSIONS

Most of the experimental observations of localized

structures have been realized in two-dimensional systems,4,5

in which stationary localized structures are observed.

Experimentally, it has been reported a supercritical transition

from stationary to moving localized structures in a planar

gas-discharge system.33

An example of two-dimensional moving localized

states obtained by numerical simulations of Eq. (1) is

depicted in Fig. 5(a). In this figure, a time sequence of two-

dimensional moving bounded states obtained for periodic

boundary conditions is shown. The two spots are bounded

together in the course of the motion. The nonvariational

effects render this localized moving spots asymmetric.

There is no preferred direction for this motion since the sys-

tem is isotropic in the xy plane. We characterize this

motion by computing the speed ( _x0 ) as a function of the

nonvariational parameter c. The result is shown in Fig.

5(b). The existence domain of this moving structures occurs

in the range of c1< c< c2. For c< c1, the system undergoes

a well documented curvature instability that affects the cir-

cular shape of LS and in the course of time leads to a self-

replication phenomena.37 This behaviour is illustrated in

Fig. 6(a). However, for c> c2, bounded localized structures

become unstable and we observe in this regime transition to

homogeneous steady state as shown in Fig. 6(b).

FIG. 5. Moving bounded localized structures obtained from numerical simu-

lations of Eq. (1). (a) Temporal sequence of the moving bounded LSs in (x,

y) plane obtained at t1¼ 0, t2¼ 1500, t3¼ 3000, t4¼ 4500, and t5¼ 6000

time steps. Parameters are g¼�2, �¼�1, l¼�0.092, b¼�2.8, and

c¼ 3.2. (b) The speed of bounded moving LSs as a function of the parameter

c. Other parameters are the same as in (a). The red dots indicate localized

structures speed obtained from numerical simulations of Eq. (1) and the blue

curve shows an interpolation obtained from these dots.
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V. CONCLUSION

We have considered the paradigmatic real nonvaria-

tional Swift-Hohenberg equation with cubic nonlinearity.

We have investigated the transition from stable stationary to

moving localized structures. We have shown that the sponta-

neous motion of localized structures induced by parity sym-

metry transition and nonvariational effects is supercritical

and occurs in wide range of the system parameter values. In

one dimensional setting, the analytical and the numerical

bifurcation diagrams have been established. We have derived

a normal form equation to describe the amplitude and the

speed of moving localized structures. We have estimated the

threshold as well as the speed of moving asymmetric local-

ized structures. A similar scenario has been established for

cubic-quintic Swift-Hohenberg equation with only the non-

variational nonlinear advective term.38 In this paper, a drift

pitchfork bifurcation of localized states has been discussed

where the resulting traveling states are linearly stable.

However, in two-dimensional systems, we have shown

through numerical simulations that the transition towards

bounded moving localized state is rather subcritical. We

have shown that there exist a finite range of parameters

where bounded LS is stable. Out of this parameter range, the

2D bounded localized state self-replicates or exhibits transi-

tion towards a stationary homogeneous steady state.

Our results are valid in the double limits of a critical

point associated with nascent bistability and close to short

wavenumber or large wavelength pattern forming regime.

However, given the universality of model (1), we expect that

the transition considered here should be observed in various

far from equilibrium systems.
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Chapter 5

Traveling Chimeras

5.1 Introduction

As was mentioned in chapter 1, chimera states have been an intensive research object in the
last 20 years. Despite this, there is still much to discover about these intriguing states. For
example, until recently, all chimeras studies focused on recognizing these states in spatially
discrete systems. There are only a few works on traveling chimera states in spatially discrete
systems [95, 96, 97, 98, 99, 100, 101, 102]. In the scenario of continuous media, we report the
�rst traveling chimera state to the best of our knowledge. Any external cause does not drive
its spatial propagation, i.e., no drift terms force its propagation. Instead, such propagation is
driven by the system itself due to a spontaneous symmetry breaking. The formation of such
kind of intriguing states creates a bridge between totally coherent and complex spatiotempo-
ral behaviors. More formally, a traveling chimera state can be understood as chimera patterns
whose domains constituting it exhibit a motion, i.e., considering the incoherent domain, its
position travels along with the media, independently if the media is discrete or continuous.

It is noteworthy than in almost all papers about traveling chimeras, these states propa-
gates in a discrete media with a complex coupling topology. In contrast, we investigate this
phenomenon from the dissipative localized structure's point of view. In this case, we consider
a continuous media, where the coupling is described by spatial derivatives, namely di�usion
and advective terms. Besides, we show that this phenomenon in a generic equation from
pattern formation theory, namely, the nonvariational Turing-Swift-Hohenberg, presented in
the above chapters. Due to the equation's generic nature, we expect to see such states in
a wide range of natural and technological systems, particularly in liquid crystal dynamics.
This model describes the dynamics of a liquid crystal light valve with optical feedback.

On the other hand, traveling and motionless chimera states are of interest due to its
possible connections with the opinion dynamics in social systems [103, 104, 105], population
dynamics [106], as well as in out equilibrium chemical reactions[107] and electro-chemical
oscillators [108].

In the combustion process, the interface phase dynamics between burned and unburned
states can be considered a traveling localized state. Depending on the reactive used and
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the material heterogeneity, the dynamics could be highly complex, as almost all can see at
burning gunpowder or in some �reworks [109].

5.2 Traveling chimera states in the nonvariational Turing-

Swift-Hohenberg equation

To illustrate the phenomenon of traveling chimera states, we will explore the dynamics of the
generalized Turing-Swift-Hohenberg equation, presented in the above chapter and given by

∂tu = η + µu− u3 − ν∂xxu− ∂xxxxu+ bu∂xxu+ c(∂xu)2. (5.1)

For the reader's ease, we recall that the �rst three terms account for an imperfect pitch-
fork normal form, µ is a bifurcation parameter, and η stands for the asymmetry between
the equilibria. The second and fourth derivatives account for di�usion and hyper-di�usion
process. The terms weighted by b and c accounts for the nonlinear di�usion and nonlinear
advection and are responsible for the nonvariational dynamics. In the nonvariational regime,
Eq. (5.1 ) exhibit di�erent kinds of traveling chimera states. In Fig. 5.1 is shown a typical
traveling chimera state. Note that chimera states can coexist with motionless chimeras.
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To unveil such dynamical solutions and statistical properties, we realize an in-depth nu-
merical exploration and de�ne some metrics to track its position and capture its asymmetry.

5.3 Position, speed, and asymmetry of chimeras

To characterize the propagation speed of the traveling chimeras, we need �rst de�ne its
position. In this scenario, we explore two possibilities, namely, the centroid of the localized
solution de�ned by

ρ0(t) ≡
∫ L/2
−L/2 x(u(x, t)− h)dx∫ L/2
−L/2(u(x, t)− h)dx

, (5.2)

and a second one inspired in the most more straightforward geometric de�nition of position,
given by the median of the localized structure, de�ned by

ρm(t) ≡ x0(t) + x1(t)

2
, (5.3)

Both Eqs. (5.2) and (5.3) enable us to track the localized state throughout the space.
These solutions enable us to de�ne a mean speed, taking as speed the slope of the linear �t
of the curve described by the position vs. time. The position and speed of a chimera state
of N = 7 peaks is shown in �gure 5.2. To reveal the mechanism behind the propagation of
these localized structures, we propose quantifying its disparity by

δ(t) ≡ ρ0(t)− ρm(t). (5.4)

Obtaining that for motionless chimera states, the averaged disparity 〈δ(t)〉 ≈ 0. For traveling
chimeras, this value reaches a well-determined value that is positive or negative, depending
on the direction of propagation of the localized structure. A plot for the temporal evolution
and mean values of the asymmetry for both motionless and traveling states is shown in �gure
5.1.

5.4 Traveling chimeras and bounded solutions

We let vary the parameters of the model in order to look for other traveling chimera states.
In particular, we found chimera states of di�erent sizes or peaks, as shown in �gure 5.3.

It enabled us to explore its coexistence, interaction, and bounded states formation. To
clarify these points, we consider numerically several scenarios, e.g., taking

1. two coexisting traveling chimeras of di�erent sizes propagating in the same direction,

2. two counter-propagative chimeras of the same size, and

3. two counter-propagative chimeras with di�erent sizes.
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In the �rst scenario of two coexisting chimeras of di�erent sizes and propagating in the
same direction, we obtain that the faster reach to the slower and interact forming a new
bounded state (train-like) as is depicted in Fig. 5.4, whose speed is slightly faster than the
speed of the slower chimera.

As a second numerical test, to explore the interaction of equal size counter-propagative
chimera to see the e�ect of such collision. In this case, we observe a plastic collision as is
expected of a soft-matter macroscopic �particle�, as we can see in Fig. 5.5. It is noteworthy
that, for the one-peak localized states studied in the above chapter, the collision of two par-
ticles was elastic, and the plasticity in the scenario of chimera states could be a consequence
of the interplay between the intrinsic dynamics and the interaction of the localized states.

Finally, we explore the scenario of counter-propagative chimera states with di�erent sizes.
In this case, after the collision, the particle with more �mass� drag the smaller one, as is
represented in the spatiotemporal diagram showed in Fig. 5.6.

5.5 Dark traveling chimeras

From the optical point of view, dark solitons can be understood as dark spots in an optical il-
luminated medium [110, 111], contrasting to the bright solitons. From the nonlinear physics
point of view, both can be represented by solitary-wave solutions (or dissipative solitons)
where its envelope is positive or negative concerning the background state, whose shape does
not change the co-moving frame. Although it has mainly been described in �ber optics dy-

76



200

0.6

-0.2

0.2

u(
x,
t)

u(
x,
t)

2x105

t

400 x0

0.6

-0.2

0.2

4x105

6x105

8x105

0

0.6

-0.2

0.2

u(x,t)

Figure 5.6: Collision of two counterpropagative chimera states of di�erent sizes.

namics [111, 112], but there appears in liquid crystals [113, 114], photovoltaic photorefractive
materials [115] to mention a few. In a more general framework, dark solitons can be seen
as holes in the order parameter (typically a density) in the spatially extended system under
study. In this scenario, if we identify the above-studied chimera state as a bright soliton, we
can de�ne an equivalent to a dark chimera, where the hole represents the incoherent zone.
In �gure 5.7 we can see this kind of solution for the nonvariational Turing-Swift-Hohenberg
equation.

It is noteworthy that, in the context of the Turing-Swift-Hohenberg equation, dark chimeras
exist due to the symmetry properties of the equations. It could be obtained from bright trav-
eling chimeras by performing the following variable changes η → −η, b → −b and c → −c
and taking u(x, 0) = −u(x, 0) as the initial condition.

5.6 Outline

� The emergence of these intriguing states brings a natural bridge between coherence and
incoherence behavior in natural systems.

� The generalization of chimera states in higher dimensions remains under research.

� We are interested in the design of experiments where such kinds of states appear. The
nonvariational terms could be accessible as a physical knob, similar to the di�raction
in the fronts observed in the liquid crystal light valve experiment.
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� Due to the emergence of the Turing-Swift-Hohenberg in disciplines like ecology, chem-
istry, and social dynamics, we expect to see these states in such systems. A possible
direction for further work is to explain the mechanism behind the appearance of such
dissipative structures in such disciplines and their consequences.
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a b s t r a c t 

Coupled oscillators exhibit intriguing dynamical states characterized by the coexistence of 

coherent and incoherent domains known as chimera states. Similar behaviors have been 

observed in coupled systems and continuous media. Here we investigate the transition 

from motionless to traveling chimera states in continuous media. Based on a prototype 

model for pattern formation, we observe coexistence between motionless and traveling 

chimera states. The spatial disparity of chimera states allows us to reveal the motion 

mechanism. The propagation of chimera states is described by their median and centroidal 

point. The mobility of these states depends on the size of the incoherent domain. The bi- 

furcation diagram of traveling chimeras is elucidated. 

© 2020 Elsevier B.V. All rights reserved. 

1. Introduction 

In recent years the so-called chimera states, defined as dynamical behaviors having coexistence of coherent and inco- 

herent domains, have attracted the attention of the scientific community [1–22] . Since the seminal work of Kuramoto and 

Battogtokh [2] , the universal phenomenon of chimeras states has been intensively studied. Most of these studies focus on 

discrete systems of coupled oscillators and only recently the dynamical richness of chimera solutions in continuous models 

has been explored [23,24,26,27] . In continuous media, the chimera states can be understood as localized spatiotemporal 

complex patterns resulting from a symmetry breaking. These localized structures can be of spatiotemporal chaotic, chaotic, 

or quasi-periodic nature. Experimentally, these states were reported in a liquid crystal light valve with optical feedback 

(termed Chaoticons [23,24] ) and in fluids (identified as localized turbulence [28] ). A requirement for observing chimera 

states in continuous media is the coexistence between a chaotic spatiotemporal or quasi-periodic pattern and a homoge- 

neous state. The origin by which the domains are blocked is because the pattern in the interfaces induces a barrier, pinning 

effect [23,24,29] . As a result of this mechanism, one expects to find a family of localized solutions organized through a 

snaking type bifurcation diagram [30] . The discrete counterpart of the snaking type bifurcation diagram for chimera states 

has also been reported [15–18] . 

Experimentally, chimera states have been observed in discrete coupled systems in the following contexts: chemical oscil- 

lators [4] , neurodynamics [19] , liquid crystals [5] , optoelectronic delayed feedback setup [20] , laser diode coupled to a non- 

linear saturable absorber [21] , and laser diode subjected to a coherent polarization [22] , among others. Chimera solutions 
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Fig. 1. (color online) Coexisting motionless and traveling chimera states. Spatiotemporal diagram of motionless (a) and traveling chimera state (b) for 

Eq. (1) when η = −0 . 04 , μ = −0 . 09 , ν = 1 , b = −1 . 5 , and c = 10 . The top and bottom panels account for the profiles of the chimera state at the initial 

u (x, t = t i = 0) and final u (x, t = t f = 15 × 10 5 ) instant of the spatiotemporal diagram. 

can be interpreted as particle-type solutions; that is, these solutions can be characterized by a set of continuous parameters 

such as the position and width. They can be motionless [3] , propagative [31–33] , or wandering [34] in their position or cen- 

troid. The localized structures can move as a result of external symmetry-breaking instability induced by a phase gradient 

[35] , off-axis feedback [36] , resonator detuning [37] , and space-delayed feedback [38] . Likewise, internal symmetry-breaking 

instability can induce propagative localized states [39,40] . Indeed, when a parameter is modified in continuous media, lo- 

calized solutions become asymmetric and propagate due to non-variational effects. The dynamics of localized states can 

be described by the median and centroid. The median is defined as the middle point of the incoherent (spatiotemporal) 

domain. Meanwhile, the centroid is the point defined by the profile weighted average of the localized state. In general, for 

asymmetric solutions, both quantities do not coincide. The difference between these quantities accounts for the disparity. 

In this manuscript, we aim to investigate traveling chimera states in continuous media. Fig. 1 illustrates, for the same 

parameters, a motionless and traveling chimera state. Using a prototype model for pattern formation, the non-variational 

Turing-Swift-Hohenberg equation, we unveil the transition of chimera states from motionless to propagative. Since this 

transition is subcritical, depending on the initial conditions the system would exhibit coexistence between chimera states 

of different sizes and speeds. Indeed, a family of propagative chimera states and their respective bifurcation diagram is 

presented. The motion mechanism of chimera states can be characterized using their spatial disparity. Notice that in spite 

of their spatiotemporal chaotic nature, traveling chimera states propagate with a well-defined oscillatory speed. 

The rest of the article is organized as follows. In Section 2 , the mathematical model for pattern formation used through- 

out the paper as well as their chimera solutions are introduced. Section 3 presents a characterization of chimera solutions in 

2 



A.J. Alvarez-Socorro, M.G. Clerc and N. Verschueren Commun Nonlinear Sci Numer Simulat 94 (2021) 105559 

terms of the temporal evolution of their centroid, median, and disparity. Section 4 is devoted to the study of the propagation 

of chimera states as a function of their width. Concluding remarks are presented in Section 5 . 

2. The non-variational Turing-Swift-Hohenberg equation 

A prototype model in pattern formation is the Swift-Hohenbeg equation [41] . This model, originally deduced to describe 

the pattern formation on Rayleigh-Bénard convection [41] , is an isotropic real order parameter nonlinear equation with 

reflection symmetry. 

A recent paper [42] , has shown that Alan Turing derived essentially the same equation in a completely different con- 

text. In his unpublished draft notes entitled “‘Outline of the development of the Daisy”, Turing anticipates pattern formation 

based on the interaction of Fourier modes, proposing the equation and organizing the stability of symmetric pattern solu- 

tions through symmetry. As a recognition to both origins of the equation and to emphasize its robustness, from here on we 

will refer to this model as the Turing-Swift-Hohenbeg equation . 

A generalization of this equation, including reflection symmetry breaking terms, describes the dynamics of a system in 

the vicinity of a spatial symmetry breaking instability and close to a second-order critical point marking the onset of a 

hysteresis loop. This critical point is denominated as the Lifshitz point [43] . Due to the universality of this bifurcation, this 

generalized model has been deduced in several contexts such as chemistry [44] , plant ecology [45,46] and nonlinear optics 

[47] . 

This model exhibits extended patterns as well as localized structures as equilibrium solutions. However, due to its vari- 

ational nature, these structures do not have permanent dynamics. In this manuscript, we will consider a non-variational 

generalization. For a one dimensional spatially extended systems, the model is given by Residori et al. [48] , Clerc et al. 

[49] , 

∂ t u = η + μu − u 

3 − ν∂ xx u − ∂ xxxx u + 2 bu∂ xx u + c(∂ x u ) 2 , (1) 

where u = u (x, t) is a real scalar field, function of the spatial coordinate x and time t . The interpretation of u depends on 

the physical context where the model has been derived. For instance, it could correspond to the electric field, deviation of 

molecular orientations, phytomass density, or chemical concentration [48–50] . Regarding the parameters, μ is the bifurca- 

tion parameter responsible for the bistability of the homogeneous equilibria. The parameter η is also a bifurcation parameter, 

breaking the reflection symmetry of the scalar field ( u → −u ) and therefore accounts for the asymmetry between homoge- 

neous states. The term proportional to ν account of the diffusion ( ν < 0) or anti-diffusion process ( ν > 0). The symbols ∂ xx 

and ∂ xxxx stand for the Laplacian and bilaplacian, respectively. The bilaplacian term accounts for a hyper-diffusion process. 

Terms proportional to b and c , account for nonlinear diffusion and advection, respectively. Notice that when η = b = c = 0 , 

one recovers the Turing-Swift-Hohenbeg equation. 

2.1. Chimera states in continuous media 

For a certain region of parameters, model Eq. (1) exhibits coexistence between a chaotic spatiotemporal pattern and a 

uniform state [23] . In Ref. [51] a detailed study of the chaotic spatiotemporal pattern is reported. As stated before, the coex- 

istence of these behaviors is a prerequisite for observing spatiotemporal chaotic localized states, chaoticons or chimera states 

in continuous media. A numerical investigation on this parameters region shows that depending on the initial conditions, 

localized structures of stationary [47] , oscillatory [49] , and chaotic [23] nature can be observed. Moreover, the width of these 

localized structures seems to quantify the complexity of their behavior. A wider localized structure allows the existence of 

a higher number of spatial modes and therefore the number of positive Lyapunov exponents increases [23] . 

The conducted numerical study considers simulations of model Eq. (1) with periodic boundary conditions. Integration 

was implemented using a fourth-order explicit Runge-Kutta scheme for the time with a fixed time-step size and a finite 

differences scheme in space with a centered stencil of 7 grid points. dx = 0 . 6 and grid size L = 400 . The results presented 

in this manuscript consider, for the sake of reproducibility, the fixed numerical parameters (d t, d x, L ) = (0 . 01 , 0 . 6 , 400) . We 

have numerically confirmed that these results hold for different values of the numerical parameters. Likewise, for simplic- 

ity, we have only varied the non-variational parameter c to study chimera states. However, the reported findings are also 

observed for different values of the other parameters. 

Fig. 1 shows a motionless (left panel) and traveling (right panel) chimera-type states observed for the same parame- 

ters and different initial conditions. A well-defined speed for the traveling chimera can be observed in the spatiotemporal 

diagram [cf. Fig. 1 (b)]. The motionless (traveling) chimera is characterized on average by being symmetric (asymmetric). 

To obtain chimera states, we use as initial conditions asymmetric Gaussians with different widths and heights sustained 

by the steady homogeneous state. Symmetric and asymmetric Gaussians initial conditions were used for Fig. 1 . Chimera 

states in continuous media can be understood as stable equilibrium points of the interaction of fronts that separate the 

coherent and incoherent domains [23,24] . They can be considered as attractors and consequently any localized initial con- 

dition with size and amplitude similar to a chimera state will converge to it. Consequently, any localized initial condition 

with size and amplitude similar to a chimera state will converge to it. 

To figure out the complexity of motionless and traveling chimera states for the same parameters, we have computed the 

instantaneous and average power spectrum of each state, a [ u ] ≡ | ∫ L/ 2 −L/ 2 e 
iκx u (x, t) | 2 dx and 〈 a [ u ] 〉 ≡ ∫ T 

0 a [ u (t , k )] dt /T , respec- 
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Fig. 2. (color online) Motionless versus traveling chimera state. Power spectra of motionless (a) and traveling chimera state (b). The top and bottom panels 

account for the instantaneous a [ u ] and average 〈 a [ u ] 〉 power spectrum. Insets in top panels stand for spatiotemporal evolution of the motionless and 

traveling chimera states, respectively. Median evolution of motionless (c) and traveling (d) chimera states. 

tively. Fig. 2 depicts the power spectra of motionless and traveling chimera state and the evolution of their median. These 

spectra reveal the complex spatiotemporal nature of both states. Although the spectra of traveling and motionless chimera 

share many features, the extra complexity exhibited by the motionless one allows a distinction via the power spectrum (see 

bottom panels of Fig. 2 a and b). 

3. Propagation characterization of chimera state 

To shed light on the collective dynamics of chimera-like states, let us consider as a order parameter, the centroid of the 

localized structure, 

ρ0 (t) ≡
∫ L/ 2 
−L/ 2 x (u (x, t) − h ) dx ∫ L/ 2 
−L/ 2 ( u ( x, t) − h ) dx 

, (2) 
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Fig. 3. (color online) Propagation characterization of a chimera state for Eq. (1) with η = −0 . 04 , μ = −0 . 09 , ν = 1 , b = −1 . 5 , and c = 10 . (a) Profile of 

a propagative chimera-like at a given time. Its centroid ρ0 and median ρm are indicated by the red and green dashed vertical line, respectively and h 

accounts for the background value of the chimera state. (b) Temporal evolution of the centroid and median. (c) Dynamics in the phase portrait build-up by 

the median and centroid variable. (d) Temporal evolution of the disparity of the localized structure. The dashed curve accounts for the horizontal axis. (e) 

Temporal derivative of the centroid (green) and median (red). (f) Power spectra of the derivatives of centroid and median, respectively. 

where L is the system size and h is a constant which corresponds to the background of the chimera state (see Fig. 3 a) and 

statisfy η + μh − h 3 = 0 . The median of the localized structure is defined by 

ρm 

(t) ≡ x 0 (t) + x 1 (t) 

2 

, (3) 

where x 0 and x 1 are, respectively, the left and right extreme points of the incoherence region (see Fig. 3 a). Note that 

u (x 0 , t) = u (x 1 , t) = −h . Fig. 3 b shows the temporal evolution of the median (green) and centroid (red) of the chimera state. 

Both trajectories are oscillating and propagating. The average speed is numerically computed by taking the coefficient of the 

linear regression fitting for the centroidal trajectory. Fig. 3 c depicts the dynamics of the centroid versus the dynamics of the 

median. Both quantities are oscillating out of phase in the comoving frame. That is, they describe a helicoidal trajectory (a 

closed cycle in the comoving frame). 

To understand the mechanism behind the propagation of chimera states in continuous media, let us introduce the dis- 

parity parameter δ( t ) (or asymmetry) of the localized structure, defined by 

δ(t) ≡ ρ0 (t) − ρm 

(t) . (4) 

This quantity measures the asymmetry of the localized solution and a preferential propagation direction will be reflected 

in the dynamics of δ( t ). For instance, Fig. 3 (d) depicts the behavior of the disparity. Although this quantity oscillates, the 

average value is positive and consequently the centroid is shifted towards a direction determined by the initial conditions. 

Fig. 3 (e) provides a speed profile of the localized structure by considering the temporal derivatives of the centroid and 

median. Power spectra of ˙ ρm 

(t) and ˙ ρ0 (t) have been included in panel ( f ), from which we can infer that the dynamic of the 

centroid and median are anharmonic and they can be represented in good approximation into the dominant Fourier modes. 

4. Family of traveling localized structures 

To study the family of chimera states and their organization, it will be useful to introduce the following terminology a 

N -chimera state corresponds to a chimera with N peaks. 

So far a 7-chimera has been considered. Depending on the initial conditions, given by a slightly asymmetrical Gaussian 

with several widths were considered. More precisely, we consider widths of the order of 1,2,3, . . . wavelength of the chaotic 

spatiotemporal pattern, which allows observing N = 6 , 7 , 8 , 9 , 10 , and 11-chimera states. Furthermore, coexistence between 

distinct propagative chimera states was also observed. Interestingly, the smallest traveling chimera state found in the param- 

eter region considered is a 6-chimera (see Fig. 4 a). Fig. 4 shows the spatiotemporal evolution of different traveling chimera 

states using the same conventions as Fig. 1 . Note that the complexity exhibited by the chimeras seems to increase with 

their width. As stated before, this can be regarded as a consequence of an increase in the number of positive Lyapunov 

exponents [23] . 

For equal parameters, chimera states of larger size propagate faster (have greater mobility). The origin of this is because 

the engine of propagation is the asymmetry of the localized solution and consequently the larger the localized state, the 

more asymmetrical modes are involved in the internal dynamics of the chimera solution. 
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Fig. 4. (color online) Spatiotemporal diagrams for diverse traveling chimera states for N -chimera of model Eq. (1) , for η = −0 . 04 , μ = −0 . 09 , ν = 1 , 

b = −1 . 5 . (a) N = 6 at c = 10 . 3 , (b) N = 7 at c = 10 , (c) N = 8 at c = 9 . 7 , (d) N = 9 at c = 9 . 5 and (e) N = 10 at c = 9 . 3 . At the top and bottom of each 

spatiotemporal diagram is shown the initial ( t = 0) and final ( t = 14 × 10 5 ) profile state. 

Fig. 5. (color online) Average speed 〈 v 〉 and coexistence of traveling chimera states of model Eq. (1) as a function of advection c parameter, for η = −0 . 04 , 

μ = −0 . 09 , ν = 1 , and b = −1 . 5 . Painted regions (beige) account for the region of coexistence of two traveling chimera states. The curves of different colors 

account for localized propagative structures of different peaks. The inset presents more detail of the first branch N = 10 . 

To explore the dynamics of a localized solution of a given size, we consider an asymmetric initial condition with a 

similar size and let the system evolves. Once the solution is stationary, i.e., it maintains its area fluctuating around a value. 

Then, we determine the centroid and its average speed. By measuring the slope of a linear fit over position with respect to 

time the average speed is determined. Later, the c parameter is increased or decreased by ± 0.01. To check the persistence 

of the solution is verified that there are no significant changes in the area and speed. The above process is systematically 

repeated for different chimeras. Fig. 5 summarizes the speed of chimera states as a function of the non-variational advection 

parameter c . Beige panels highlight the regions where coexistence of traveling chimera states is observed. Notice that we 

have only found regions of a single or coexistence of at most two traveling chimera states. When the value of c is increased, 

chimeras propagate faster. Observe that traveling chimera states always emerge with a finite no null speed (see Fig. 5 ). 

Due to the asymmetry generated by the oscillations of the peaks, we conjecture that chimeras smaller than a critical 

size will not be able to achieve a preferential direction of propagation. Nevertheless, they could still develop an erratic or 

wandering dynamical behavior within a bounded region of the order of one wavelength. On the other hand, in chimera 

states of large sizes the centroid is closer to the geometric center on average and therefore the average disparity will tend 

to zero. Hence, large structures will not propagate. In the parameter regime considered, the largest structure observed was 

a 11-chimera. Therefore, traveling chimera solutions will only be observed in a range of sizes. 
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Fig. 6. (color online)(a) Speed of 7-chimera states as a function of nonlinear advection parameter c of model Eq. (1) for η = −0 . 04 , μ = −0 . 09 , ν = 1 , and 

b = −1 . 5 . The inserts correspond to the respective chimera states. Circles account for the saddle-node bifurcations. 

5. Bifurcations 

In the previous section, we observed that the advection parameter c in model Eq. (1) seems to control the speed of 

chimera states. In this section, we consider the transition of a 7-chimera from static to traveling when c is varied. 

Fig. 6 shows the speed of the 7-chimera state as a function of c . This chart was obtained using a similar method employed 

for Fig. 5 . However, asymmetric and complimentary initial conditions were used to obtain a chimera and its counterprop- 

agating one. The complimentary initial condition is obtained by inverting the spatial coordinate sense. From the numerical 

simulations we infer that the propagative chimera states emerge from a saddle-node bifurcation. This instability is repre- 

sented by full circles denoted by SN in Fig. 6 . Due to the lack of a continuation method for unstable chaotic solutions, we 

can not complete the bifurcation diagram. By increasing the value of parameter c, we observe that the propagative chimera 

becomes unstable. Depending on the initial conditions, this propagative localized states can engender the uniform state, 

smaller localized structures, or motionless chimera. Therefore, the basin of attraction of these equilibria are of complex 

nature, probably with fractal structures. Studies of these basins of attraction are in progress. 

6. Conclusions 

We have shown a novel class of chimera traveling solutions in spatially extended continuous systems, using the non- 

variational Turing-Swift-Hohenberg type Eq. (1) , as a prototype model. Since this is a model of broad interest in pattern 

formation and relevant in a wide variety of systems [50] , we expect to observe these solutions in several natural and tech- 

nological systems. 

We have investigated the properties of chimera states by defining and studying the temporal evolution of the centroid 

and median of localized structures. These quantities suggested the consideration of the disparity to measure the asymmetry 

of chimeras in time. The disparity provided a description for the mechanism responsible for the propagation of chimera 

states. In particular, it provides a plausible argument for the existence of traveling chimera state in an interval of sizes 

(6–11 in our case). Moreover, using this dynamical quantities a bifurcation diagram of stable propagative chimera solutions 

has been presented. To obtain a complete bifurcation diagram, a continuation method is required. However, there are not 

continuation methods for unstable chaotic solutions yet. This is a major problem in modern bifurcation theory. 

Recently, the chimera state phenomenon has been extended to 2 and 3 spatial dimensions [25,26,32,52–55] . We expect 

that the phenomenon studied in the present paper can be observed in more dimensions, work in this direction is in progress. 
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Chapter 6

Wandering Chimeras

6.1 Introduction

As was seen in the previous chapter, chimeras, as an example of localized dissipative struc-
tures, not only exhibit a fascinating display of coexistence between coherent and incoherent
behavioral domains, but these domains can also propagate in space. How they spread is re-
lated to a break of symmetry that induces a disparity in the localized structure, and therefore
yields a movement in a preferential direction [116] . However, this is not the only type of
spread that these intriguing states are capable of displaying. This chapter shows another kind
of propagation, which we call wandering walking (to di�erentiate it from random walking).
These chimera state exhibits erratic behavior, resembling a random walk, but governed by
simple deterministic equations. As in the previous chapter, these chimeras appears in the
non-variational Turing-Swift-Hohenberg solutions, and therefore they live in a continuous
medium.

The wandering motion of chimera states has been reported in the literature. For example,
in [117] is shown chimera states whose incoherent domain propagates erratically through
space for a system of nonlocal coupled Kuramoto-like oscillators. In this case, these chimera
states share two of the main Brownian motion properties, i.e., a self-correlation function for
the displacements decaying to zero and a Gaussian shape distribution for its displacements.
Another work in this direction is given by [118] where are studied chimera states where the
wandering motion comes from the coherent domain. A discrete set of coupled oscillators
de�nes the system. Its dynamics exhibit a decaying self-correlation function and Gaussian
shape distribution for its displacements and therefore is modeled by Gaussian white noise.

On the other hand, the chimera states reported in the present chapter live in continuous
media. Instead of the works mentioned above, the associated self-correlation function for
its displacements does not decay to zero, evidencing memory e�ects and highlighting its
deterministic nature.

Another kind of dissipative structures presenting this kind of wandering behavior of de-
terministic nature is the so-called explosive solitons [119, 120, 121], mainly studied for the
cubic-quintic Ginzburg Landau equation [122]. Nevertheless, in this case, explosive solitons
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Figure 6.1: Single localized structures of the non-variational Swift-Hohenberg Eq. (6.1) by
η = −0.04, µ = −0.09, ν = 1, b = −2, c = 24, dx = 0.4 and dt = 0.001. (a) Pro�le and
(d) spatiotemporal evolution of the motionless localized structure with two bumps. h is the
distance of the homogeneous state to zero. (b) Pro�le and (e) spatiotemporal evolution of
the motionless localized structure with three bumps. The position or centroid of the localized
structure is maintained at a �xed location. Besides, the heights of the bumps oscillate with a
�xed amplitude and frequency. (c) Pro�le and (f) spatiotemporal evolution of the wandering
complex localized solution. This state has four bumps. Each of them exhibits complex
aperiodic oscillations, while the localized structure changes its position erratically. Here
the coherent domain has a constant dynamics, whereas the incoherent domain has complex
dynamical behavior.

are transient dissipative solutions whose propagation is driven by the spatiotemporal chaotic
�uctuations of the media, and there is not a persistent coherent domain. Therefore are not
chimera states. Another interesting point to highlight is that the displacements of this kind
of localized dissipative structure have a self-correlation function decaying to zero. A similar
phenomenon is reported in [123], nevertheless, it will be explained in chapter 8 where is stud-
ied more in-depth the e�ects of spatiotemporal chaotic �uctuations on dissipative localized
states.

6.2 Wandering Chimeras

Exploring numerically the nonvariational e�ects on localized structures in the non-variational
Turing-Swift-Hohenberg equation 6.1,

∂tu = η + µu− u3 − ν∂xxu− ∂xxxxu+ bu∂xxu+ c(∂xu)2. (6.1)

we could evidence the existence of a particular type of chimera-type solution, propagating
in space in a random-like way, as shown in �gure 6.1. These kind of solution was founded
for the parameters values η = −0.04, µ = −0.09, ν = 1, b = −2, c = 24, dx = 0.4 and
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spatiotemporal evolution presented in panel (a). (c) Several trajectories of the centroid of
chimera state calculated for di�erent slightly initial conditions.

dt = 0.001. Nevertheless, the solution is generic and exist in a wide domain in the parameter
space.

Although this type of behavior has indeed been reported for dissipative structures present-
ing stochastic forcing, in our work, all evolution laws are uniquely deterministic. Thus, we are
in the presence of perhaps the simplest example of a chimera state with erratic propagation
and the �rst example of these in a continuous medium.

When trying to characterize its behavior, we use, analogously to the strategy presented
in the previous chapter, the centroid concept, given by the equation 6.2.

xc(t) ≡
∫ L/2
−L/2 x(u(x, t)− h)dx∫ L/2
−L/2(u(x, t)− h)dx

. (6.2)
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Figure 6.3: Wandering chimera state pinned by symmetric walls.

Figure 6.2 show the dynamics of the centroid for a wandering chimera.

Additionally, we study the �uctuations in its displacements de�ned by δxc(t+ dt)− xc(t),
allowing us to characterize its behavior statistically. The distribution of the displacements was
�t to a truncated Gaussian distribution. Unlike random walks, we were able to show that the
behavior of the self-correlation function R(T ) = 〈∆xc(t)∆xc(t+τ)〉 does not decay to zero for
values of τ large as in the case of random walkers. Instead, it kept �uctuating between 0.4 and
−0.4, thus evidencing not only its deterministic nature but also its memory e�ects. Finally,
we evidence its complexity by studying its power spectral density and the Lyapunov spectrum,
observing, in this case, the appearance of 5 non-zero Lyapunov exponents, highlighting low-
dimensional chaotic dynamics.

6.3 Wandering localized structures in physical experiments

This type of localized structures with erratic behavior has been evidenced in various physical
systems. In particular, in the liquid crystal light valve setup, it was possible to observe
the emergence of an erratic walk of a spot, captured via the measurement of light intensity
measured by a CCD. This localized structure and its dynamics can be seen in �gure 6.3.

Another experimental example of dissipative localized structure with wandering motion
appears in the gas-discharge systems studied in [124], where current �laments between par-
allel plates emerge when an externally applied voltage is applied. More details about the
phenomena and experiments could be consulted in [124] and references therein.
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Figure 6.4: Wandering chimera state pinned by symmetric walls.

6.4 Control of wandering motion: pinning and chaotical

engines

Given the complexity of the spatial propagation of wandering chimeras, we try to answer
whether it is possible to control their behavior, either by con�ning their dynamics and achiev-
ing the pinning of the localized structure or controlling its motion through the generation of
a preferential direction of propagation. We note that this localized structure coexists with
other fundamental localized structures (without permanent dynamics) to answer this ques-
tion. One given by a localized structure of 3 peaks and another given by a localized structure
of 2 peaks, as shown in �gure 6.1.

So the interaction of the wandering chaoticon with di�erent types of arrangements of
these structures was explored numerically. The �rst thing we found is that by con�ning
the wandering chaotic between identical walls, de�ned by these fundamental and motionless
localized structures, it was possible to con�ne it and thus prevent its propagation throughout
space, as shown in �gure 6.4.

Additionally, we consider the case of asymmetric walls, i.e., considering a structure with
three peaks on one side and another with two peaks on the other side. With this, we �nd that
the localized structure de�ned by the bound state began to have a preferential propagation
direction, in which the wandering chaoticon became the motor of this bound state. Figure 6.5
shows the dynamics of this type of state resulting from the mixture of the di�erent coexisting
localized structures.
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Figure 6.5: Control of propagation direction of a wandering chimera states locating by the
formation of a bounded state with two di�erent coexisting localized states without permanent
dynamics

6.5 Outline

� We show the emergence of wandering chimera states in continuous media.

� We show evidence of these wandering chimera states in the LCLV experiment. Never-
theless, such states need to be explored with more detail from the experimental point
of view.

� Its propagation was characterized by the statistical and nonlinear dynamics point of
view, characterizing its displacement statistics and dynamical complexity.

� We built the geometry of the displacement dynamics attractor and was shown its geo-
metrical complexity.

� The leading Lyapunov exponents were calculated, obtaining that its chaotic dynamics
is of low-dimensional type.

� Due to the genericity of the non-variational Turing-Swift-Hohenberg equation, we ex-
pect the observation of these kinds of states in a wide variety of natural and techno-
logical systems.

� Some control strategies were o�ered to achieve spatial pinning or propagation with a
preferential direction of motion, enabling its potential use in designing electro-optical
devices for storage and computing as well as micro energy generators.
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The coexistence of coherent and incoherent domains in discrete coupled oscillators, chimera state , has 

been attracted the attention of the scientific community. Here we investigate the macroscopic dynamics 

of the continuous counterpart of this phenomenon. Based on a prototype model of pattern formation, we 

study a family of localized states. These localized solutions can be characterized by their sizes, and posi- 

tions, and Yorke-Kaplan dimension. Chimera states in continuous media correspond to chaotic localized 

states. As a function of parameters and their size, the position of these chimera states can be bounded 

or unbounded. This allows us to classify these solutions as wandering or confined walk. The wandering 

walk is characterized by a chaotic motion with a truncated Gaussian distribution in its displacement as 

well as memory effects. 

© 2020 Elsevier Ltd. All rights reserved. 

Localized structures are a characteristic feature of the self- 

organized non-equilibrium systems [1–3] . These structures, de- 

scribed as particle-like solutions, are characterized by continu- 

ous order parameters like the position, width, and amplitude [4] . 

Notwithstanding, localized structures corresponds to extended so- 

lutions. They have been observed in numerous fields, ranging from 

physics, chemistry to biology [4–6] . The localized structures are the 

dissipative counterpart of the solitons in conservative systems. In 

one-dimensional systems, they can be interpreted as spatial tra- 

jectories that connect one steady state with itself. Indeed, they 

are homoclinic orbits of the spatial co-moving system [7] . Lo- 

calized structures are not necessarily motionless. As a result of 

symmetry breaking instabilities, they can exhibit motion or self- 

pulsation [8–14] . Recently, it has been shown that parity symmetry 

breaking induces spontaneous motion of localized structures [15] . 

A unified description of localized structures and their dynamic 

behavior can be achieved by the nonvariational Swift-Hohenberg 

equation [16–19] . This model accounts for a scalar field that 

does not follow minimization principles. The nonvariational Swift- 

Hohenberg equation has been derived in several contexts [19] . 

Moreover, this equation is used to puts light on the existence, sta- 

bility properties, and dynamical evolution of complex spatiotempo- 

ral localized structures called chaoticons [20] . This intriguing phe- 

nomenon is observed in a liquid crystal light valve experiment 

∗ Corresponding author. 

E-mail address: alejandro.alvarez@ing.uchile.cl (A.J. Alvarez-Socorro). 

with optical feedback. Furthermore, numerically chaoticons are ob- 

tained in nonlocal nonlinear Schrödinger equation [22] , Ginzburg- 

Landau equation [21] and a reaction-diffusion model [23] . In- 

deed, these states show a coexistence between coherence (sta- 

tionary) and incoherence (spatiotemporal chaotic) domains. Hence, 

chaoticons are the continuous counterpart of chimera states [24] , 

namely, chaoticons correspond to chimera-like solutions. Originally, 

chimera states were observed in nonlocally coupled phase oscilla- 

tors [25] . These intrigued states correspond to breaking symmetry 

solution without bistability. Extension of chimera states in bistable 

systems was proposed in several coupled systems [26–29] , which 

was usually denominated chimera-like states. Depending on the 

initial condition, these states have different size and exhibit a fam- 

ily of solutions with the coexistence of coherent and incoherent 

domains. 

Since then, chimera states have been investigated in more 

general frameworks [30–35] . Initially, even though the existence 

of chimera states was attributed to the nonlocal nature of the 

coupling [24] . Subsequently, chimera states have been observed 

in systems that are coupled globally [36–38] , and locally [26–

28,39,40,21] . In all these studies, domains remain motionless. How- 

ever, under special conditions, chimera states are traveling solu- 

tions. This is observed under symmetric [41,42] and asymmetric 

schemes of coupling [29,43–45] . Even, chimera states show an er- 

ratic motion with stochastic nature in a finite number of coupled 

oscillators [42,46] . This fact is reflected by the loss of memory of 

the chimera position, which is counterintuitive for a determinis- 

tic system. Henceforth in this manuscript, we will use the term 

https://doi.org/10.1016/j.chaos.2020.110169 

0960-0779/© 2020 Elsevier Ltd. All rights reserved. 



2 A.J. Alvarez-Socorro, M.G. Clerc and M.A. Ferré / Chaos, Solitons and Fractals 140 (2020) 110169 

Fig. 1. (color online) Experimental observation of an erratic walk of a localized spot 

in a liquid crystal light valve with optical feedback. (a) Experimental spatiotemporal 

evolution of a localized spot. (b) Instantaneous snapshot of the localized state. (c) 

A plot of the light intensity at a given time (Courtesy of Nicolas Verschueren). 

chimera to refer a complex spatiotemporal localized state in con- 

tinuous media. 

Unexpectedly, in a liquid crystal light valve experiment with op- 

tical feedback, an erratic walk dynamics of chaoticons is observed 

(see Fig. 1 ). This complex walk accounts for an erratic motion of 

the position of the complex localized structure. This dynamic is of 

deterministic nature. Theoretically, the chaoticon was described by 

the non-variational Swift-Hohenberg equation [20] . However, the 

reported dynamics of chaoticons of this model are characterized 

by erratic localized fluctuations in a bounded region of the or- 

der of one wavelength of the spatiotemporal chaotic state [20] , at 

variance to the experimental observations characterized by an un- 

bounded erratic walk. The mechanism that produces these states 

and their dynamics is an open problem. 

In this paper, we investigate the erratic walk of chimera states 

in continuous media. Based on a prototype model of localized 

structures—the non-variational Swift-Hohenberg equation—we nu- 

merically observe and analyze wandering walks of localized struc- 

tures. To characterize this wandering motion, we use tools of the 

dynamical systems and statistics theory. Finally, in comparison to 

the random dynamics of chimera states in coupled oscillators [46] , 

the motion of the wandering walk of chimera-like state shows 

memory effects. Namely, the self-correlation of the position of this 

localized state does not become zero. 

An archetypal model that shows patterns, fronts, localized 

structures, and chimera-like states in continuous media is the non- 

variational Swift-Hohenberg equation [19,20,47,48] . It describes the 

dynamics near a Lifshitz critical point [2] that accounts for the 

confluence of a spatial instability and a nascent of bistability 

through the scalar order parameter u ( x, t ), 

∂ t u = η + μu − u 

3 − ν∂ xx u − ∂ xxxx u + c ( ∂ x u ) 
2 + 2 bu ∂ xx u, (1) 

where x and t stand for the spatial and temporal coordinates, re- 

spectively. μ is the bifurcation parameter ( μ � 1), η accounts 

for the asymmetry between homogeneous states, c, ν , and b are, 

respectively, the nonlinear advection, the linear and the nonlin- 

ear diffusion coefficients. The term proportional to the four spatial 

derivative accounts for the hyperdiffusion. Higher-order terms in 

Eq. (1) are ruled out by scaling analysis, since u ~ μ1/2 , η ~ μ3/2 , 

ν ~ μ1/2 , ∂ t ~ μ, ∂ x ~ μ1/4 , and c ~ b ~ O (1). 

When b = c = η = 0 , Eq. (1) corresponds to the well-known 

Swift-Hohenberg model [2,49] . The minimization of free energy 

characterizes the dynamics of Eq. (1) . Hence, the Swift-Hohenberg 

equation shown only stationary solutions as equilibria. Indeed, 

this dynamics is of variational nature. However, in the case that 

b � = c , model Eq. (1) losses its variational structure, allowing 

the existence of solutions that show permanent dynamics, such as 

propagative fronts [50] , moving and oscillatory localized structures 

Fig. 2. (color online) Confined chimera states observed in the Swift-Hohenberg 

Eq. (1) by η = −0 . 09 , μ = −0 . 04 , ν = 1 , b = −2 , c = 21 , dx = 0 . 6 and dt = 0 . 01 . (a) 

Spatiotemporal evolution of a confined chimera state of 6 bumps. Temporal evo- 

lution of the centroid (b) and displacement (c) of the chimera state. Panels (d) 

and (e) show, respectively, an excerpt of the centroid and displacement for the first 

10 4 time steps. (f) and (g) are the statistical distribution for centroid and displace- 

ments of chimera state, respectively. (h) Phase portrait reconstruction in 2D space 

of chimera state centroid. 

[15,48,51] , and chimera-like states [20] . Fig. 2 (a) displays a typical 

chimera state of model Eq. (1) . This dynamic behavior is charac- 

terized by presenting localized spatiotemporal chaos, which is sur- 

rounded by homogeneous states on its flanks. It is noteworthy to 

note that despite its spatiotemporal complexity, the evolution of 

the chimera state position is localized in space, that is, the local- 

ized state is confined. To characterize the dynamics of the chimera 

state, let us introduce its position or centroid as 

x c (t) = 

∫ L 
−L x ̂  u (x, t) dx ∫ L 
−L 

ˆ u (x, t) dx 
, (2) 

where ˆ u (x, t) ≡ u (x, t) + h and h is the distance of the homo- 

geneous state to zero. Moreover, we consider displacements of 

chimera state �x c , taking the difference of its position between 

two successive time steps. 

Fig. 2 shows the temporal evolution of the centroid and dis- 

placements of the chimera state. These dynamics reveal a rich 

and complex evolution. Note that the dynamics of the centroid 

is bounded by one wavelength. Hence, the chimera state remains 

around a given position. The statistical characterization of the cen- 

troid and displacements dynamics are shown in Fig. 2 (f) and (g), 

respectively. In both cases, the distributions are bounded, reflect- 

ing the fact that the spatiotemporal chaotic localized structure is 

pinned. The richness and complexity of such kind chaotic local- 

ized structures have been studied previously in Verschueren et al. 

[20] . The reconstruction of the attractor for the centroid of chimera 

state—following the classical Fraser and Swinney method [53] —

obtaining by unfolding in a 2D space is shown in Fig. 2 (h). Un- 

expectedly, when changing parameters, the position of the chimera 

exhibits complex behaviors, which causes the chimera to move dis- 

tances greater than the characteristic wavelength of the spatiotem- 

poral chaotic state (cf. right panels in Fig. 3 ). 

To the best of our knowledge, the complex and unbounded dy- 

namical behavior of the position of chimera states has not been 

reported in continuous media. To investigate such localized struc- 

tures dynamics, we have conducted a numerical analysis of model 

Eq. (1) in the nonvariational regime. For the sake of simplicity, pe- 

riodic boundary conditions have been considered, however, similar 

dynamic behaviors are observed with other boundary conditions. 

Fourth-order Runge-Kutta in time and finite differences in space 
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Fig. 3. (color online) Single localized structures of the non-variational Swift- 

Hohenberg Eq. (1) by η = −0 . 04 , μ = −0 . 09 , ν = 1 , b = −2 , c = 24 , dx = 0 . 4 and 

dt = 0 . 001 . (a) Profile and (d) spatiotemporal evolution of the motionless localized 

structure with two bumps. h is the distance of the homogeneous state to zero. (b) 

Profile and (e) spatiotemporal evolution of the motionless localized structure with 

three bumps. The position or centroid of the localized structure is maintained at a 

fixed location. Besides, the heights of the bumps oscillate with a fixed amplitude 

and frequency. (c) Profile and (f) spatiotemporal evolution of the wandering com- 

plex localized solution. This state has four bumps. Each of them exhibits complex 

aperiodic oscillations, while the localized structure changes its position erratically. 

Here the coherent domain has a constant dynamics, whereas the incoherent domain 

has complex dynamical behavior. 

are the numerical methods used to integrate model Eq. (1) . In all 

simulations, the space is discretized in 400 points with dx = 0 . 4 , 

and the time step size is dt = 0 . 001 . Fig. 3 shows typical local- 

ized solutions exhibited by the model Eq. (1) . The system shows 

only these three types of single localized states in a given region of 

parameters. These localized solutions as a function of their width 

are characterized by being stationary, oscillatory, or chaotic, re- 

spectively. Other localized states are a composition of these sim- 

ple solutions. The top panels in Fig. 3 show profiles of each local- 

ized structure at a given time, and the bottom panels display the 

respective spatiotemporal evolution of localized states. Solutions 

that have two and three bumps correspond to stationary states, de- 

picted in Fig. 3 (d) and (e). However, a complex spatiotemporal evo- 

lution is shown by the localized structure that exhibits four bumps, 

see Fig. 3 (f). In the former case, the system shows coexistence be- 

tween coherent and incoherent domains. Indeed, this state corre- 

sponds to a chimera state, but instead of the chimera state shown 

in Fig. 2 , it exhibits a wandering walk in its position, which is char- 

acterized by move several times the characteristic wavelength of 

the chaotic domain. Hence, the incoherence domain presents wan- 

dering movements which resemble a random walk [52] . 

Fig. 4 illustrates the temporal evolution of the four-bumps 

chimera solution and its respective centroid x c ( t ). To figure out the 

sensitivity of the initial conditions on the motion of this chimera 

state the position x c ( t ) is calculated for slightly different initial con- 

ditions [see Fig. 4 (c)]. From this figure, one can infer that the posi- 

tion of the chimera solution presents complex dynamics as a func- 

tion of the initial conditions. Likewise, to reveal the nature of the 

movements, we compute its displacements, taking the difference 

of its position between two successive time steps. Hence, the dis- 

placements are defined by �x (t) ≡ x c (t) − x c (t − τ ) . Fig. 5 shows 

the temporal evolution of the displacement �x ( t ) and its respec- 

tive histogram which has a bell shape. Building the associated dis- 

tribution of displacements, we found that a Gaussian distribution 

well describes it. Consider a fitting distribution function of the 

form 

f (�x ) = 

1 

β
√ 

2 π
e −

(�x −μ) 2 

2 β , (3) 

where μ corresponds to the mean value of the displacements 

( μ ≡ 〈 �x 〉 , where the symbol 〈 · 〉 accounts for the average on the 

values of the displacements). β accounts for the standard devia- 

tion. The probability density distribution, and the Gaussian func- 

Fig. 4. (color online) Wandering walk of chimera states of the non-variational 

Swift-Hohenberg Eq. (1) by η = −0 . 04 , μ = −0 . 09 , ν = 1 , b = −2 , c = 24 , dx = 0 . 4 

and dt = 0 . 001 . (a) Excerpts of Spatiotemporal diagram of a wandering chimera 

state. (b) Temporal evolution of the centroid x c ( t ) of the chimera state, calculated 

using formula (2) , of the respective spatiotemporal evolution presented in panel (a). 

(c) Several trajectories of the centroid of chimera state calculated for different 

slightly initial conditions. 

Fig. 5. (color online) Statistical characterization of displacements of the position of 

the chimera solution �x ( t ) for Eq. (1) with η = −0 . 04 , μ = −0 . 09 , ν = 1 , b = −2 , 

c = 24 , dx = 0 . 4 and dt = 0 . 001 . (a) Longtime evolution of the displacements �x ( t ). 

(b) The probability distribution of displacements, which shows a Gaussian-like dis- 

tribution. The continuous curve (red) accounts for a Gaussian adjustment function, 

formula (3) , with μ ≈ 0 and β ≈ 2 . 158 × 10 −3 . The left inset shows the probability 

distribution of displacements in the log-log scale. This illustrates that the distribu- 

tion corresponds to a truncated Gaussian. The right inset shows amplification of 

the tails of the distribution. (c) Self-correlation function R ( T ) based on Pearson’s co- 

efficient. The fact that this function does not decay to zero highlight the memory 

effects of the wandering motion of chimera states. (For interpretation of the refer- 

ences to color in this figure legend, the reader is referred to the web version of this 

article.) 
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Fig. 6. (color online) Temporal characterization of statistical measures of wandering 

chimera states for model Eq. (1) by η = −0 . 04 , μ = −0 . 09 , ν = 1 , b = −2 , c = 24 , 

dx = 0 . 4 and dt = 0 . 001 . (a) Displacement distributions for different waiting times 

τ = 10, 20, and 30, respectively. Temporal evolution of the standard deviation (b), 

and the excess kurtosis (c). 

tion (3) are compared in Fig. 5 (b). The probability distribution 

of displacements of chimera-like states resembles to the prob- 

ability distribution of displacements of a Brownian motion. The 

rhythms of the displacements of a Brownian particle are com- 

pletely determined by a random process (Wiener process [52] ). 

However, unlike a Brownian motion, the self-correlation function 

R (T ) = 〈 �x (t)�x (t + T ) 〉 does not decrease despite the increasing 

of T , highlighting the memory effects of this motion. Moreover, the 

self-correlation shows an oscillatory behavior between a consider- 

able maxima and minima values [see Fig. 5 (c)]. Observe that R ( T ) 

was measured using the Pearson correlation coefficient. Besides, 

we have plotted the distribution of displacement in the log-log 

scale, see insets in Fig. 5 (b). This chart reveals that the displace- 

ment distribution corresponds to a truncated Gaussian distribution. 

This type of distribution is a consequence of the central limit theo- 

rem for a finite number of elements [54–56] . To check out this re- 

sult, we have conducted different numerical simulations with very 

long periods and of different sizes and the distribution obtained is 

the same. 

To characterize the statistical evolution of the displacement �x 

in a given waiting time τ , we have monitored the evolution of the 

displacement distribution, the standard deviation σ , and the excess 

kurtosis κ . Fig. 6 summarizes this statistical analysis. Note that σ
and κ show a linear and parabolic waiting time dependence, re- 

spectively. Similar dynamical behavior of σ was reported in phase 

coupled oscillators [46] . This type of dynamical statistical behavior 

is not peculiar of Brownian motion. 

In brief, the position of the chimera-like state shows a wander- 

ing motion with a truncated Gaussian distribution of its displace- 

ment and memory effects. 

To shed light on the dynamic nature of the wandering walk 

of chimera-like states, we will use tools from the theory of dy- 

namic systems such as the power spectrum and Lyapunov expo- 

nents. These type of tools allows us to characterize the dynam- 

ics of modes and establish if the dynamics are of chaotic nature. 

When the largest Lyapunov exponent λmax is negative, the system 

Fig. 7. (color online) Dynamic characterization of the wandering chimera state of 

the non-variational Swift-Hohenberg Eq. (1) by η = −0 . 04 , μ = −0 . 09 , ν = 1 , b = 

−2 , c = 24 , dx = 0 . 4 and dt = 0 . 001 . (a) Lyapunov characteristic exponents of the 

wandering chimera solution and the partial sums of the Lyapunov exponents �i = ∑ i 
k =1 λk . (b) Power spectrum of displacements time series. 

has a stationary equilibrium, for instance, homogeneous or pattern 

states. On the contrary, when it is positive, the system under study 

exhibits chaotic dynamics. Indeed, the Lyapunov spectrum charac- 

terizes the exponential sensibility to the initial conditions [57] . The 

analytical study of the Lyapunov spectrum is a titanic endeavor 

and in practice inaccessible. The numerical derivation of the ex- 

ponents is a standard strategy. Indeed, it is necessary to spatially 

discretize the model Eq. (1) . Hence, model (1) is approximated to 

a set of coupled ordinary differential equations, discretized system . 

From these equations, one can determine the discretized Jacobian 

at the chaotic solution, which characterizes the linear evolution of 

the state under study. To determine the Lyapunov exponents, we 

follow the linear evolution of an orthonormal deviation vectors ba- 

sis of the discretized system. At every temporal evolution step, the 

deviation vectors are replaced by a new set of orthonormal vectors. 

From these orthonormalization procedures, Lyapunov exponents 

are estimated (see Ref. [58] for more details). We have calculated 

numerically the leading Lyapunov exponents of the chimera solu- 

tion. Fig. 7 shows the positive Lyapunov spectrum of the chimera 

solution. From this spectrum, it is inferred that the strange attrac- 

tor has at least 4 unstable directions. Note that few exponents are 

positive, which highlight a low-dimensional chaotic dynamics. In 

addition, one can determine the dimension of the strange attractor 

that characterizes the dynamics of the position of the chimera-like 

solution, using the Yorke-Kaplan conjecture [59] . The Yorke-Kaplan 

dimension is defined as D Y K = n + 

∑ n 
i =1 λi / | λn +1 | , where n is the 

largest integer such that λ1 + + λn > 0 . Fig. 7 (a) shows the par- 

tial sum of the Lyapunov exponents �i = 

∑ i 
k =1 λk . From this chart, 

we found that n = 10 . Then, the dimension is D YK ≈ 10.005. Be- 

sides, Fig. 7 (b) displays the power spectrum of the temporal evo- 

lution of the displacements. The complex evolution of the wander- 

ing chimera state is revealed in a large number of frequency that 

is involved in the dynamics, which is typical of chaotic behaviors. 
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Fig. 8. (color online) Phase diagram of chimera states in parameter-space η − c and 

for μ = −0 . 09 , ν = 1 , b = −2 , dx = 0 . 6 and dt = 0 . 01 . The green, blue and light red 

area account for the region where wandering, traveling, and motionless chimeras 

states are observed. The motionless and traveling chimera states are characterized 

by bounded and traveling centroid. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 

Therefore, from the previous analysis, we infer that the wandering 

walk of the chimera-like solution is of a chaotic nature. 

The wandering chimera-like states are observed in a wide range 

of parameters, which is a manifestation of the robust nature of 

these localized states. Fig. 8 shows the phase diagram of chimeras 

with wandering walks in η − c parameters space. Hence, chimeras 

with wandering walks are observed in a wide region of the param- 

eter space. It is important to note that these chimeras with wan- 

dering walks can coexist with motionless localized structures and 

confined chimeras. 

In conclusion, we have shown that wandering dynamics of the 

position of chimera solutions in continuous spatially extended sys- 

tems. These intriguing states are observed in the nonvariational 

Swift-Hohenberg equation, which is a prototype model of pat- 

tern formation. We have investigated the statistical and dynami- 

cal properties of wandering chimera states. The wandering walk 

of these solutions shows a truncated Gaussian distribution in its 

displacements. This property and the sensitivity to the initial con- 

ditions resemble a sort of Brownian motion. However, the wan- 

dering walk of the chimera states exhibits memory effects that 

are characterized by the self-correlation function. Besides, we have 

shown that the evolution of the position of wandering chimera-like 

state corresponds to chaotic behavior. To support this statement, 

the leading Lyapunov exponents were calculated. 

Due to the generic character of the nonvariational Swift- 

Hohenberg equation, we expect the observation of wandering 

chimera-like states in a wide range of systems. In addition, we can 

take advantage of these wandering chimera-like states as Brownian 

motors [60] to induce propagation or control of coexisting local- 

ized structures. Finally, this work provides insights into novel ways 

of light beam generation with coexisting coherent and incoherent 

domains. The incoherent domain remains in a wandering motion. 

We expect that such kind of light beam will have significant and 

far-reaching ramifications in the development of novel and practi- 

cal technological applications. Work in this direction is in progress. 
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Chapter 7

E�ect of Deterministic Fluctuations in

Fronts Dynamics

7.1 Introduction

The e�ect of �uctuations in the dynamics of macroscopic systems, particularly in the dynam-
ics of fronts or interphases, is a topic of interest in a wide range of the scienti�c areas. Its study
enables a better description and understanding of the interaction between the environmental
dynamics and the system under consideration. Typically, such external or environmental
�uctuations have been modeled by stochastic processes or noise, and the noise-induced tran-
sitions are itself a topic of intensive research in nonlinear sciences [125, 126]. The nature of
its role in the dynamics of a system has been illustrated in several theoretical models, and
experimental setups [127].

Almost all literature has been focused on stochastic �uctuations. Meanwhile, deterministic
�uctuations have only been explored in simple scenarios like periodic and quasi-periodic
�uctuations. On the other hand, dynamics of high complexity and deterministic nature like
chaos and spatio-temporal chaos have been less explored, and to the best knowledge of the
authors, the �rst work in this direction is the subject of this chapter. In our research, we
were obtaining a novel approach to understand how deterministic �uctuations can induce
transitions that di�er from noise-induced transitions.

In this chapter, we unveil the e�ects of deterministic �uctuation in the front dynamics
and compare it with the e�ect of random white noise as stochastic �uctuations counter-
part. In particular, we found that fronts may remain pinned under deterministic �uctuations
compared to the stochastic analogous. This is because chaotic dynamics exhibit forbidden
transitions that limit �uctuations that can occur in time. The pinning-depinning transition
is illustrated for archetypical equations coming from pattern formation theory, and it is de-
duced a law for the front position in the form of a parametrically driven oscillator with a
chaotical forcing frequency. This research a relevant step to understanding how chaos and
spatiotemporal chaos can induce transitions in out-of-equilibrium systems.
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7.2 Deterministic versus stochastic �uctuations

To compare random and deterministic �uctuations, it is necessary to de�ne some concepts
coming from stochastic dynamics and probability theory. Thus, consider an experiment in
which the sample space composed of all the possible outcome events is denoted by Ω. A real
function X de�ned on the space Ω is called a random variable. In simple words, a random
variable assigns a real number X(ω) to each possible outcome ω ∈ Ω. Random variables
could be discrete or continuous, depending on if they take values into a discrete set or a
continuous one. Thus, we say that a random variable has a discrete distribution if there
exists a non-negative function such that for any ω ∈ Ω, the probability of occurrence of such
event ω is given by

f(x) = P (X = ω). (7.1)

Therefore, for any indexed subset of A = {ω1, . . . , ωi, . . .} ⊂ Ω we have that

P (X(ω) ∈ A) =
∑
ωi∈A

f(ωi). (7.2)

On the other hand, a random variable has a continuous distribution, meaning that the
random variable has a nonnegative function such that, for any interval I

P (X ∈ I) =

∫
I
f(x)dx. (7.3)

A particular kind of random variable are the Gaussian distributed random variables, where
the probability density function takes the form

f(x) =
1

2
√

2π
e

−(x−µ)2

2σ2 , (7.4)

where µ is the mean value of the random variable and σ its standar deviation.

Therefore, we can de�ne a continuous-time random process as a time-indexed random
process for which the index variable takes a continuous set of values, typically associated
with time. A white noise process is a random process where the random Gaussian variables
are temporally uncorrelated, have zero mean and �nite variance. Thus X(t) is a white noise
like random process if

1. 〈X(t)〉 = 0

2. 〈X(t1)X(t2)〉 = 0, for t1 6= t2
3. 〈X(t)2〉 <∞

The e�ect of this kind of �uctuations in the dynamics of fronts has been deeply explored
in [125, 126, 128], exhibiting as the main result the pinning zone destruction phenomena.
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Figure 7.1: Geometrical di�erences between chaos and noise. Figures (a) (c) and (e) shows
the �rst 500 iterations of the logistic map, a Gaussian noise N(µ = 0.5, σ ≈ 0.35354), and a
uniform noise U [0, 1]. Figures (b), (d) and (f) represent the �rst return map for the dynamics
of logistic map, N(µ = 0.5, σ ≈ 0.35354) and U [0, 1] respectively.

On the other hand, we are interested in comparing these results with the e�ects that the
system exhibits under deterministic spatiotemporal chaotic �uctuations. Both are complex
and random-like. Nevertheless, in the addressed scenarios, some properties enable us to
di�erentiate the chaos of noise easily.

7.2.1 Dynamical and statistical di�erences

Meanwhile, for a random process and any sub-interval with where the density function is non-
zero, it is possible to get values in such subinterval at any time instant. In other words, it is
possible to get (almost) the same value for each time step (or time interval for continuous-time
processes). In deterministic chaotical systems, it is impossible because in the time-evolution
of the system, starting in the attractor basin, it draws all the attractor for a su�ciently larger
time. It is referred to as forbidden transitions and is described as transitions graphs [129]
that could be obtained numerically in a similar way that invariant measures are calculated
theoretically by a symbolic dynamics approach.
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Another point of di�erence is found when the self-correlation is measured. For random
white noise, the Pearson self-correlation goes to zero for t > t0 quickly. Nevertheless, it
is not the case for continuous chaotic systems, where memory is preserved, unveiling its
deterministic origin. Nevertheless, scenarios where a chaotic system can exhibit a Pearson
self-correlation function that vanishes quickly, e.g., the logistic map. Moreover, such maps
have been used as part of algorithms for the generation of pseudo-random numbers [130].
Nevertheless, the hidden self-correlations could be captured with more sophisticated mea-
sures like mutual information, and partition cross-entropy [131, 132, 133]. Finally, a third
interesting point that di�erentiates randomness from chaos is that chaotical orbits typically
generate fractal structures. There exist patterns that appear behind the complexity. Random
�uctuations do not generate patterns, as shown in the �rst return maps plotted in �gure 7.1.
Now, we can compare the e�ect of chaotic �uctuations versus stochastic ones.

7.3 The Nagumo�Kuramoto�Sivashinsky system

In this section, we will illustrate the e�ect of chaotic spatiotemporal �uctuations on a propa-
gating interface between a homogeneous state and a complex spatiotemporal one, considering
following set of equations.

{
∂tu = u(α− u)(u− 1) + ∂xxu+ βucos(kx) + γu∂xψ

∂tψ = −µ∂xxψ − (∂xψ)2 − ∂xxxxψ
(7.5a)

(7.5b)

where u(x, t) is a scalar �eld. Equation (7.5a) can be understood as a bistable system with
Nagumo type nonlinearity, with spatial di�usion and periodic spatial forcing (with wavelength
λ = 2π/k) and chaotic spatial forcing weighed by the parameter γ.

The unforced Eq. (7.5a), β = γ = 0, corresponds to the well-known Nagumo model [134].
This model has two stable homogeneous states u = 1 and u = 0 that may be connected by
a front. Such fronts propagate with a speed that depends on the value of the parameter α
(0 < α < 1) and only remains motionless for α = 1/2. This particular value of α is called the
Maxwell point [40]. Moreover, α describe the relative stability between the two competing
states: for α < 1/2 (resp. α > 1/2), the state u = 1 (resp. u = 0) takes over the system.
When the spatial forcing is taken into account (β 6= 0, γ = 0), the state equivalent to u = 1 is
replaced by a periodic state with imprinted wavelength 2π/k [135, 136], meanwhile the state
u = 0 remains as solution. Therefore, in this parameter regime, it is possible to found fronts
connecting the periodic pattern and the homogeneous state, a situation that is conducive
to front pinning [38]: the presence of spatial heterogeneity generates an energy barrier that
must be overcome before the front can move. Consequently, the front speed vanishes over
a relatively large interval of parameters, the so-called pinning range. Figure 7.3 shows the
bifurcation diagram for the speed in terms of the parameter α, exhibiting for the spatial
forcing intensity β = 0.085 the associated pinning range.

The second equation corresponds to the famous Kuramoto-Sivashinsky equation [137, 138,
28, 139, 140], which is perhaps the simplest system that presents spatiotemporal chaos. Given
the spatial forcing, it is known that the dynamics of the front for equation (7.5b) exhibits
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pinning whenever the energy di�erence between the states connecting the front is not capable
of overcoming the potential barrier generated by the periodic forcing.

The plot shows that the pinning-depinning transition corresponds to a supercritical bifur-
cation that takes place at αc = α±. These critical points correspond to SNIPER (Saddle-Node
In a PERiodic orbit) bifurcations as found in related depinning problems [141]. Indeed, the
average front speed, 〈V 〉, grows as the square root of the distance from the critical point,
〈V 〉 ∼

√
|α− α±|.

In the following section we will explore how deterministic �uctuations, corresponding to
γ 6= 0 a�ect this bifurcation diagram.

7.4 The e�ect of spatiotemporal chaos in the front prop-

agation: a chaos-induced transition

To understand the e�ect of spatiotemporal chaotic �uctuations in front dynamics, we take
the system described by the equations (7.5a - 7.5b) and realize several numerical simulations,
integrating using �nite di�erences for spatial discretization and a fourth-order Runge-Kutta
method for the time evolution. Neumann boundary conditions were imposed on both the
Nagumo-Kuramoto and the Kuramoto-Sivashinsky equations. The domain length was �xed
at L = 300 with a space discretization interval dx = 0.6 and time step dt = 0.01 for the time
evolution.
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Figure 7.3: Pinning-depinning transition of spatiotemporally chaotic patterns embedded in
a stable homogeneous state. (a) Average front speed 〈V 〉 as a function of α. The squares
(�) and �lled circles (•) represent the average speed of the front obtained from numerical
simulations of Eqs. (7.5a)�(7.5b) with β = 0.085, k = 0.7, and, respectively, γ = 0 and
γ = 0.055. The vertical bars show the standard deviation of the front speed. The pinning
region for β 6= 0 and γ = 0 is shown using light shading. This region shrinks as a result
of spatiotemporally chaotic forcing, γ 6= 0 (dark shaded region). The insets show the spa-
tiotemporal dynamics of the fronts in di�erent parameter regimes. (b) Pinning region in
the (α, k) parameter space. The white curve represents the boundary of the pinning region
of the spatiotemporally forced system (7.5a)�(7.5b) with β = 0.085, γ = 0.055 computed
numerically.
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When γ 6= 0 the pattern state around u = 1 becomes spatiotemporally chaotic, obtaining
that main result is not a pinning zone destruction e�ect. Moreover, there exists a range of γ
values where the pinning zone exists, and for γ su�ciently larger, the spatiotemporal chaotic
pattern always invades the homogeneous state. Besides, we evidence a shrinking e�ect of
the pinning zone, obtaining that the extreme points de�ning the pinning zone α−, alpha+
depends on γ. This shrink e�ect is shown in Fig. 7.3.

These di�erences between the e�ect of random and deterministic �uctuations put into the
light a deeper question, how we can understand the emergence of noise from deterministic
systems and how it is possible to model a limit from deterministic �uctuations to noise
�uctuations in the same sense that a thermodynamic limit. The following sections try to
approach these questions.

7.5 Emergence of noise from chaos

The di�erences between chaos and noise have been examined mainly by the design of met-
rics and indicators that enable us to distinguish both regimes in a certain quanti�er space.
Nevertheless, the origin of noise and its relationship to deterministic dynamics has been less
explored. Does this drive us to questions like, is the randomness in nature a consequence of
a collective of chaotical entities? It motivates us to verify if it is possible to �nd the noise
ingredients (from a probability theory point of view) in deterministic dynamical systems. To
give an approach to a possible answer, we consider a system composed of several compo-
nents and built dynamical macroscopic variables like the average to measure. We found that
the size of the system (number of constituent elements) and the coupling weakness between
the elements are the two main ingredients to satisfy the probability criteria for randomness,
decreasing the self-correlation when the system's size increases and the coupling are almost
zero.

Randomness is typically understood as a memory-less behavior in which there is no pos-
sibility of predicting an event outcome (at least with precision). Nevertheless, we have
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information about the random event distribution and predict where it is most probable to
�nd an event. Also, in a random macroscopic process, it is impossible to predict the outcome
when we perform the same experiment at a particular time. The main reason is that it is
impossible to prepare a system with the same initial state for all its elements that constitute
it when the number of elements is su�ciently larger. This property is related, in fact, with
one of the main ingredients of chaos, called sensibility to initial conditions, and accounts for
the experimental predictability in chaotic systems. A simple small change in the initial con-
ditions can drive the system to �nal states far between them. Another interesting feature to
consider is the so-called invariant measure (equivalent to the probability density function of
a random variable), enabling us to access more rich dynamical and geometrical details of de-
terministic systems to compare with noise. Typically such invariant measures are nontrivial
functions, and the dynamics itself of the system could be embedded into higher dimensional
spaces where the orbits unfold, unveiling rich geometrical structures (fractals).
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Figure 7.5: Dynamics of the macroscopic variable given by the equation (7.6). The increasing
of N drives a Gaussian shape distribution of the variable and the loss of memory evidenced
by the shrink in the variability range of the self-correlation function.
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7.5.1 Noise from Lorenz equation

To illustrate the di�erences of deterministic �uctuations and noise, as well as how a deter-
ministic system acquires random properties, we will consider two scenarios; the �rst one is
a set of N independent copies of a Lorenz system with N large and the average of the X
component as the macroscopic variable to measure in the whole system. As was mention in
chapter 1, the Lorenz model is given by

Ẋ = σ(Y −X),

Ẏ = X(ρ− Z)− Y,
Ż = XY − βZ,

and the parameters are �xed at β = 8/3, σ = 10 and ρ = 28 used by Lorenz to study the
chaotic behavior of this system [142]. Note that X(t) has a symmetric distribution about
X = 0 and a correlation function that does not decay, as shown in the �rst two plots in
Fig. 7.5. To study how can emerge randomness from chaos consider N independent copies of
this system. Keeping with the Xi coordinate of each system and normalizing it conveniently,
we building the macroscopic variable (coarse graining variable)

X̄(t) =
1

〈σ〉√n

N∑
k=1

Xi(t) (7.6)

In �gure 7.5 we can see the associated distribution and self-correlation function forN = 1, 5
and 200. Note that the distribution calculated taking the Lyapunov normalization term
converges clearly to a normal distribution N(0, 1) and the region where the self-correlation
varies is decreasing in terms of N as expected.

7.5.2 Logistic Chaos

Another interesting example to examine is the logistic map, as a time discrete example of
chaotic system, analized in detail in chapter 1 and given by

xt+1 = f(xt) = µxt(1− xt). (7.7)

This is one of the simplest and paradigmatical systems exhibiting chaotical behavior. For
our purposes, we put the parameter µ = 4 at the fully developed chaotic region, where the
interval [0, 1] corresponds to the invariant set (basin of attraction) of the map. We build
the approximated invariant measure for it, using the standard method of binning the phase
space and realize a normalized histogram, obtaining the Fig. 7.6.

This map achieve easily a Gaussian-like distribution with few number of elements, namely,
N = 5. Nevertheless, the self-correlation function vanishes almost instantaneously, and to
evidence the loss of memory, we plot how this map loss one of the signatures of chaos fractal
geometrical patterns in the �rst-return embedding space. Note that, in this case it is needed
N = 100 to loss all the patterns, as was shown in Fig. 7.6.
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Figure 7.6: Dynamics of the macroscopic variable given by the equation (7.6) for the logistic
map. The increasing of N drive to a Gaussian shape distribution of the variable, nevertheless
in this scenario, the self-correlation vanishes faster than the case of Lorenz system. Thus, we
evidence the memory loss by showing the �rst return map.

A more interesting chagenge us to se if a macroscopic variable comming from a sum of
chaotical entities can satisfy one of the more fascinating results of the random variables and
in general of the probability theory, the celebrated central limit theorem [143, 144]. In the
following section, we will explore this question from a numerical perspective.
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7.6 Obtaining a Central Limit Theorem

There exist a lot of variants from the central limit theorem (CLT) that mainly depends on
the shape of the distributions of the corresponding random variables. The classical CLT
due to Lindeberg�Lévy stablish that for a sequence {X1, X2, . . . } of independent and iden-
tically distributed (i.i.d.) random variables with 〈Xi〉 = µ and V ar[Xi] = σ2 < ∞, de�ning
Sn =

∑n
k=1Xi we have that

√
nSn − µ converge in distribution to a normal N(0, σ2). Nev-

ertheless, in general the invariant measure of a chaotical system is not i.i.d. Thefore, we will
use the following generalization of the CLT due to Lyapunov.

Lyapunov's CLT. Suppose {X1, X2, . . .} is a sequence of independent random variables,
each with �nite expected value µi and variance σ2

i . De�ning s
2
n =

∑n
i=1 σ

2
i , if for some δ > 0,

Lyapunov's condition

lim
n→∞

1

s2+δn

n∑
i=1

〈
[
|Xi − µi|2+δ

]
〉 = 0

is satis�ed, then a sum converges in distribution to a standard normal random variable, as n
goes to in�nity, i.e.,

1

sn

n∑
i=1

(Xi − µi)
d−→ N(0, 1). (7.8)

In practice, it is usually easiest to check Lyapunov's condition for δ = 1.

Thus, we consider a macroscopic variable as a sum of several chaotical entities proposed
in the Eq. 7.8. In this scenario, we can observe how the macroscopic variable converge in
distribution to a Gaussian, as Lyapunov's CLT aims. In fact, in Fig. 7.6 we can see how
this convergence is achieved as the number of uncoupled copies N increases. To reach a
good convergence in distribution, we only need a value of N = 5. Thus, it is possible to
conjecture that there exists a central limit theorem for chaotic systems that satisfy the same
hypothesis as the central limit theorem of Lyapunov. The relationships between chaos and
the central limit theorem have been boarded in [145, 146, 147] from a theoretical point of
view. Nevertheless, a demonstration of a central limit theorem for chaotic systems remains
open. We currently realize future research in this direction.

7.7 Outline

� This work opens the possibility to explore how complex deterministic �uctuations can
a�ect the interface dynamics and propose an interesting question, it is always external
�uctuations be modeled by stochastic processes?

� These complex deterministic �uctuations could correspond to a system coupled with a
small reservoir bath, de�ned with a small number of particles, whose dynamics could
be modeled by an n-body problem which have chaotical solutions typically.
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� Our research creates a bridge to exploring deterministic �uctuation modify pre-existing
phase transitions or even induce new ones. In this sense, a complete study of chaos-
induced transition is missing and creates an interesting area to explore.

� Some physical processes such as phase separation in binary mixtures or alloys (with a
certain degree of isolation) could enable some possible applications to understand the
propagation of interfaces.

� Besides, using SLM as a device to introduce spatio-temporal chaos in devices like liquid
crystal light valves with optical feedback could enable us to explore the e�ect of chaos
in such devices experimentally.

� Finally, an approach to understand how randomness can emerge from deterministic
systems is elucidated.

111



PHYSICAL REVIEW E 99, 062226 (2019)

Front depinning by deterministic and stochastic fluctuations: A comparison

A. J. Alvarez-Socorro,1 Marcel G. Clerc,1 M. A. Ferré,1 and Edgar Knobloch2

1Departamento de Física and Millennium Institute for Research in Optics, Facultad de Ciencias Físicas y Matemáticas,
Universidad de Chile, Casilla 487-3, Santiago, Chile

2Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA

(Received 21 March 2019; published 27 June 2019)

Driven dissipative many-body systems are described by differential equations for macroscopic variables
which include fluctuations that account for ignored microscopic variables. Here, we investigate the effect of
deterministic fluctuations, drawn from a system in a state of phase turbulence, on front dynamics. We show that
despite these fluctuations a front may remain pinned, in contrast to fronts in systems with Gaussian white noise
fluctuations, and explore the pinning-depinning transition. In the deterministic case, this transition is found to
be robust but its location in parameter space is complex, generating a fractal-like structure. We describe this
transition by deriving an equation for the front position, which takes the form of an overdamped system with
a ratchet potential and chaotic forcing; this equation can, in turn, be transformed into a linear parametrically
driven oscillator with a chaotically oscillating frequency. The resulting description provides an unambiguous
characterization of the pinning-depinning transition in parameter space. A similar calculation for noise-driven
front propagation shows that the pinning-depinning transition is washed out.
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I. INTRODUCTION

Nonequilibrium systems, i.e., driven dissipative systems,
frequently exhibit rich and complex interface dynamics as
one state displaces another or defects nucleate, drift, and an-
nihilate [1–4]. This defect evolution is usually dominated by
interface, wall, or front dynamics depending on the physical
context under study. These nonlinear waves do not obey the
superposition principle, and each interface has a well-defined
profile that depends on the parameter values of the system.
The concept of front propagation originally emerged in the
context of population dynamics [5], gene propagation [6] as
well as flame propagation [7], and has since attracted grow-
ing interest in chemistry, biology, physics, and mathematics
[1–3,8].

In physics, fronts play a central role in a large variety of
situations, ranging from reaction-diffusion models and solid-
ification processes to pattern-forming systems arising in fluid
dynamics (see, e.g., [1,3,9] and references therein). From the
point of view of dynamical systems theory a one-dimensional
front of constant form corresponds to a heteroclinic orbit
connecting two spatially extended homogeneous states [10].
The propagation speed of the front depends on the type and
stability of the states connected by the front. One of the most
studied types of front is that connecting a stable spatially
homogeneous state with an unstable one, the so-called FKPP
or pulled front [2,11]. The speed of such a front is not, in
general, unique and depends on the initial condition [11].
Another well-known type of front, a bistable or pushed front,
connects two stable homogeneous states [4]. Such fronts are
found inside a bistability region between two homogeneous
states and are characterized by a single speed that is deter-
mined by the free energy difference between the two states
whenever the system is variational. In this case the state with
the lower energy displaces that with higher energy [4] and the

front speed only vanishes at the Maxwell point, at which both
states have the same energy [1].

The previous scenario changes when the front connects a
homogeneous state to a spatially periodic or patterned state.
As first pointed out by Pomeau [4], the presence of spatial
heterogeneity is expected to generate an energy barrier or
pinning potential that has to be overcome before the front
can propagate, i.e., front propagation only occurs when the
energy difference between the two states exceeds a nonzero
minimum value. In the vicinity of the Maxwell point the
energy difference is too small for propagation and the front
remains motionless or pinned. When the energy difference
is large enough and the front depins, it moves in a stick-
slip manner, with a mean speed that increases as the square
root of the distance from the parameter value for depinning.
The existence of a pinning range has been discussed in a
number of physical contexts, and in particular in the con-
text of the generalized Swift-Hohenberg model [12] and the
crystallization kinetics of cellular patterns (see the textbook
[1] and references therein). Experimentally, an observation of
the pinning-depinning transition in a spatially periodic optical
medium was reported in [13]. However, the inclusion of inher-
ent incoherent fluctuations (i.e., noise) drastically changes the
pinning-depinning transition [14,15]. Noise-induced escape
over the confining potential barrier [16] allows the system
to escape permanent pinning and ultimately always results
in front propagation. Likewise, one can consider fronts that
connect a state with coherent intrinsic spatiotemporal fluc-
tuations (chaos, spatiotemporal chaos, turbulence, etc.) with
a nonfluctuating homogeneous state. This type of front is
fundamental to the understanding of flame propagation in
combustion [17–19], emergence of turbulence in pipe flow
[20], turbulence propagation [21], and the propagation of spa-
tiotemporal chaos in an optical fiber cavity [22,23]. However,
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in these systems no pinning-depinning transition is observed.
In contrast, phase-coupled oscillators with a nonlocal cou-
pling exhibit states with partial synchrony called chimera
states. These states can be considered to be bound states of
a pair of synchronization fronts bounding a coherent state,
embedded in a background incoherent state [24–28]. Despite
the fluctuations in the background these fronts do not depin
and the length of the interval of coherence fluctuates about
a well-defined mean determined by the parameters of the
problem.

Incoherent fluctuations, such as those arising from thermal
effects, are usually described by a random variable having
equal intensity at different frequencies (white noise), i.e., a
constant power spectrum density [29]. Thus, fluctuations of
any size are allowed, with the restriction that large fluctuations
are unlikely. In contrast, deterministic (chaotic) fluctuations
have a power spectrum dominated in general by certain in-
commensurate frequencies [30]. Moreover, since the strange
attractor responsible for the chaos is typically bounded, the
associated deterministic fluctuations have a maximum size.
This difference between the accessible deterministic and
stochastic fluctuations has a major impact on the dynamics of
fronts.

The basic question is whether coherent spatiotemporal
fluctuations always trigger a depinning transition in systems
exhibiting pinned fronts between two distinct states, in other
words whether deterministic fluctuations behave like additive
noise [16]. We show here that in the presence of coherent
spatiotemporal fluctuations fronts between a spatiotemporally
chaotic pattern and a homogeneous state may indeed remain
pinned, albeit in a narrower parameter range. We also show,
using a bistable model that exhibits a pinning-depinning tran-
sition driven by phase turbulence, that this transition is robust
but that the pinning-depinning boundary becomes complex,
generating a fractal-like structure in parameter space. We
describe the pinning-depinning transition using an effective
equation for the front position which takes the form of an
equation for an overdamped system with a ratchet potential
and chaotic forcing determined by the instantaneous location
of the front. These fluctuations are bounded and may be
insufficient to trigger a depinning transition. Using a series
of transformations we convert this problem into a linear para-
metrically driven oscillator with a chaotically oscillating fre-
quency. The resulting description allows us to characterize the
pinning-depinning transition unambiguously, by identifying
the unbounded (bounded) solutions of the oscillator problem
with pinned (depinned) solutions of the front problem, and
hence allows us to compute the boundary between the two,
i.e., the location in parameter space of the pinning-depinning
transition. A similar calculation for a noise-driven system
leads to the same ratchet potential but driven by additive white
noise. In this case the front always eventually depins.

II. MODEL

To investigate the propagation of an interface between
homogeneous and complex spatiotemporal states, we consider
the following model:

∂t u = u(α − u)(u − 1) + ∂xxu + βu cos (kx) + γ u∂xψ, (1)

where u(x, t ) is a scalar field. The first term on the right-
hand side describes a bistable system and corresponds
to the Nagumo nonlinearity in the context of population
dynamics [8]. The second term accounts for diffusion. The
third term represents spatial forcing with amplitude β and
wavelength λ = 2π/k which gives rise to a pattern state. Fi-
nally, the last term represents multiplicative spatiotemporally
chaotic forcing, with the auxiliary scalar field ψ taken to
satisfy the Kuramoto-Sivashinsky equation

∂tψ = −μ∂xxψ − (∂xψ )2 − ∂xxxxψ. (2)

Equation (2) describes the propagation of nonlinear waves of
chemical concentration in the Belousov-Zhabotinskii reaction
[32–34] and the propagation of flame fronts [35,36], and is
perhaps the simplest model that exhibits spatiotemporal chaos
[37]. In this context, ψ (x, t ) determines the position of an
interface between two distinct states. In this paper we use
this equation to provide spatiotemporal forcing of Eq. (1)
via the zero-mean coupling term ∂xψ . Note that the field
u(x, t ) does not feed back on ψ (x, t ). Thus, the spatiotemporal
forcing is prescribed. A model similar to Eqs. (1) and (2) was
originally introduced to understand the existence of localized
but spatiotemporally chaotic solutions [31].

The unforced Eq. (1), β = γ = 0, corresponds to the well-
known Nagumo model [8,38]. This model has two stable ho-
mogeneous states u = 1 and u = 0 that may be connected by a
front. Such fronts are typically nonstationary and so propagate
with a speed that depends on the value of the parameter α

(0 < α < 1). Thus α measures the relative stability of the two
competing states: for α < 1/2 (respectively, α > 1/2), the
state u = 1 (respectively, u = 0) takes over the system. There
is only one value of α, α ≡ αM = 1/2, at which the interface
is motionless. This particular value of α is called the Maxwell
point [1]. When the spatial forcing is taken into account
(β �= 0, γ = 0), the above scenario changes. Although the
state u = 0 persists unchanged, the state u = 1 is replaced by a
periodic state with imprinted wavelength 2π/k, cf. [13,39,40].
Hence, in this parameter regime, the system possesses fronts
between a periodic solution and a homogeneous state, a
situation that is conducive to front pinning [4]: the presence of
spatial heterogeneity generates an energy barrier that must be
overcome before the front can move. Consequently, the front
speed vanishes over a relatively large interval of parameters,
the so-called pinning range. Figure 1(a) shows a typical
pinning range as a green shaded area. Square symbols (�)
represent the numerically determined average front speed. The
plot shows that the pinning-depinning transition corresponds
to a supercritical bifurcation that takes place at αc = α±.
These critical points correspond to SNIPER (Saddle-Node In
a PERiodic orbit) bifurcations as found in related depinning
problems [41]. Indeed, the average front speed, 〈V 〉, grows as
the square root of the distance from the critical point, 〈V 〉 ∼√|α − α±|. Far from this critical point, the average front
speed grows linearly [42]. The resulting bifurcation diagram
was verified experimentally in a spatially forced liquid crystal
light valve experiment [13,39].

When γ �= 0 the pattern state around u = 1 becomes spa-
tiotemporally chaotic and as a result the pinning range shrinks
[Fig. 1(a)]. The pinning interval that remains decreases as the
forcing wave number k increases [Fig. 1(b)], and vanishes in a
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FIG. 1. Pinning-depinning transition of spatiotemporally chaotic
patterns embedded in a stable homogeneous state. (a) Average front
speed 〈V 〉 as a function of α. The filled squares (�) and circles (•)
represent the average speed of the front obtained from numerical
simulations of Eqs. (1) and (2) with β = 0.085, k = 0.7, and, re-
spectively, γ = 0 and γ = 0.055. The vertical bars show the standard
deviation of the front speed. The pinning region for β �= 0 and γ = 0
is shown using light shading. This region shrinks as a result of
spatiotemporally chaotic forcing, γ �= 0 (dark shaded region). The
insets show the spatiotemporal dynamics of the fronts in different
parameter regimes. (b) Pinning region in the (α, k) parameter space.
The white curve represents the boundary of the pinning region
of the spatiotemporally forced model (1) and (2) with β = 0.085,
γ = 0.055 computed numerically. For comparison we also show the
location of the theoretically predicted pinning-depinning transition
α± = αM ± √

βkA(k)/2 with αM = 1/2 and A(k) determined from
formula (10) (red dashed line) and from numerical integration of the
interface equation (8) (blue dashed-dotted line). Both procedures are
valid for γ � 1 only. The quality of the theoretical predictions can
be ascertained from the enlargement shown in the lower right panel.

cusp at (α, k) = (1/2,∞) as k → ∞ (not shown). Figure 2(a)
shows a typical spatiotemporal evolution of the chaotic pattern
state. This state may be characterized by means of Lyapunov
exponents, which provide information about the solution sen-
sitivity to exponentially close initial conditions [43]. From
a dynamical systems point of view, if the largest Lyapunov
exponent is positive, the system is chaotic, but not neces-
sarily spatiotemporally chaotic. To distinguish between these
two types of complex dynamical behavior, it is necessary to
compute the Lyapunov spectrum, i.e., the set of Lyapunov
exponents [43,44]. Spatiotemporal chaos has a Lyapunov
spectrum with a continuous set of positive values. In this case,
the number of positive exponents in the Lyapunov spectrum
depends on the length L of the domain. In contrast, chaos
in a low-dimensional system possesses a Lyapunov spectrum
with a discrete set of positive exponents whose number is

FIG. 2. Spatiotemporally chaotic pattern state of the Kuramoto-
Sivashinsky-Nagumo model, Eqs. (1) and (2), when α = 0.38, β =
0.085, γ = 0.03, and k = 0.6. (a) Space-time diagram. (b) The
corresponding Lyapunov spectrum. (c) Power spectra S(p) of the
pattern state u(x, t ) for three different values of the forcing amplitude
γ averaged over T = 106 snapshots. The forcing wave number k is
denoted by p0.

independent of L. Figure 2(b) shows the Lyapunov spectrum
of the spatiotemporally chaotic pattern state in Fig. 2(a),
computed from Eqs. (1) and (2) using the strategy proposed in
[45,46]. Here, N counts the number of points into which the
system has been discretized and i is an integer that indexes the
Lyapunov exponents. The figure shows that this state is indeed
spatiotemporally chaotic. All the numerical simulations were
conducted using finite differences for spatial discretization
and a fourth-order Runge-Kutta method for the time evolution.
Neumann boundary conditions were imposed on both the
Nagumo-Kuramoto and the Kuramoto-Sivashinsky equations.
The domain length was fixed at L = 300 with a space dis-
cretization interval dx = 0.6 and time step dt = 0.01 for the
time evolution.

With the aim of understanding the mode dynamics of
the state shown in Fig. 2(a), we introduce the time-averaged
power spectrum [37]

S(p) = 1

T

∫ T

0

∣∣∣∣
∫ L

0
u(x, t )eipxdx

∣∣∣∣
2

dt, (3)

where L is the system size and T is a large time interval. The
resulting spectra, computed from Eqs. (1) and (2) for several
different values of the forcing amplitude γ , are shown in
Fig. 2(c) and confirm the broad-band nature of the mode-mode
interactions involved in the spatiotemporally chaotic state
despite the dominance of the forcing wave number p0 = k and
its harmonics.

From Fig. 1 and the related results in Fig. 2 we infer
that the model (1) and (2) exhibits coexistence between a
spatiotemporally chaotic pattern u(x, t ) and the homogeneous
state u = 0. Under these conditions one expects to find
front solutions between these states. The insets in Fig. 1(a)

062226-3



A. J. ALVAREZ-SOCORRO et al. PHYSICAL REVIEW E 99, 062226 (2019)

FIG. 3. Temporal evolution of the front position x = δ(t ) in the
model (1) and (2) in the pinning and depinning regimes when α =
0.45, β = 0.085, k = 0.9, and γ = 0.01 (pinned front, right panel)
and γ = 0.02 (unpinned front, middle panel).

depict typical front solutions of this type and their temporal
evolution for different values of the parameter α. The filled
circles (•) in Fig. 1(a) represent the average front speed
computed numerically and these show that for k = 0.7 and
γ = 0.055 the pinning-depinning transition not only persists
but also acquires complex dependence on the forcing wave
number k.

To characterize the dynamics of the front in greater detail,
we monitored its position x = δ(t ) defined by the condition

δ(t ) ≡
∫ L/2
−L/2 x∂xu(x, t ) dx∫ L/2
−L/2 ∂xu(x, t ) dx

, (4)

where L is the system size. Thus δ(t ) corresponds to a value
of the field u(x, t ) between the two equilibria. In particular,
in the unperturbed problem u(x = δ) = 1/2, a value exactly
halfway between the two equilibria. Figure 3 illustrates the
temporal evolution of the front position in the pinning and
depinning regimes, respectively. As a result of chaotic forcing
the pinning-depinning boundary becomes complex, gener-
ating a fractal-like structure [see Fig. 1(b), white curve].
Complex fluctuations around a given location characterize
the front position inside of the pinning region (see Fig. 3,
dark orange curve). Outside of the pinning region, the front
position exhibits stick-slip dynamics with complicated os-
cillations around a fixed position alternating with jumps to
a new position. This process repeats, with jumps of order
of the wavelength 2π/k and always in the same direction
(see Fig. 3, dark blue curve). The complexity of the front
motion can be quantified in terms of the largest Lyapunov
exponent which characterizes the behavior of the sudden
jumps in the front position δ(t ) as parameters are varied in
the spatiotemporally chaotic regime [43]. Figure 4 shows the
largest Lyapunov exponent, λLLE, of this motion, computed
from 200 slightly different initial conditions, as a function of
the parameter α. The exponent λLLE tends to increase with
increasing α but cannot be used to infer the location of the
pinning region. In other words, the chaotic behavior inside and
outside of the pinning region exhibits similar characteristics,
and λLLE is not a good indicator of the pinning-depinning
transition.

FIG. 4. Largest Lyapunov exponent λLLE of the front position as
a function of α for k = 0.7, γ = 0.055, and β = 0.085. The shaded
region shows the pinning region.

III. ANALYTICAL CHARACTERIZATION
OF INTERFACE DYNAMICS

In this section, we explain the pinning-depinning transition
in terms of the front position δ(t ). An equation describing the
dynamics of δ is deduced using perturbation methods. Similar
approaches have been used to explain the existence of both
stationary [42] and time-dependent [31] localized structures.

The unforced model, Eqs. (1) and (2) with β = γ = 0, has
an exact stationary front solution at the Maxwell point αM =
1/2 connecting the two homogeneous states u = 0 and u = 1:

uF (x, δ) = 1

2
+ 1

2
tanh

(√
2

4
(x − δ)

)
. (5)

To understand the effect of spatial (β �= 0) and spatiotempo-
rally chaotic (γ �= 0) forcing, we suppose that both β and γ

are small and that the system is close to the Maxwell point,
i.e., γ ∼ β � 1 and α̃ ≡ αM − α, with α̃ ∼ γ ∼ β. Let us
consider the following ansatz:

u(x, t ) = uF (x − δ(t )) + W(x, t ), (6)

where the front position δ(t ) is promoted to a temporal func-
tion representing the dynamics of the interface. The remainder
term W(x, t ) is assumed to be small, of the order of β, γ ,
and α̃. Introducing the above ansatz in Eq. (1) together with
the definition of the comoving coordinate z ≡ x − δ(t ), and
linearizing in W, we obtain

−L̂ W = ∂zuF δ̇ − α̃uF (uF − 1) + βuF cos(kz + kδ)

+ γ uF ∂zψ (z + δ, t ), (7)

where the linear operator L̂ ≡ 3uF − 3u2
F − 1/2 + ∂zz. To

solve the above linear equation, we introduce the inner prod-
uct 〈 f |g〉 = ∫ ∞

−∞ f ∗(z)g(z)dz. Using this inner product, it is

easy to show that L̂ is self-adjoint, L̂ = L̂ †. Note that ∂zuF

is an element of the kernel of L̂ †. Applying the solvability
condition, equivalently the Fredholm alternative [47], one
obtains, after straightforward calculations,

δ̇ = −∂U

∂δ
− 6

√
2γ B(t ). (8)
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The first term is the gradient of an effective time-independent
potential given by

U (δ) ≡
√

2α̃δ + βA sin(kδ + φ), (9)

where

A ≡ 6π
√

1 + 2k2 csch(
√

2πk), (10)

φ ≡ arctan(
√

2k). (11)

The potential U (δ) in Eq. (9) is called a washboard potential
or equivalently a generalized Peierls-Nabarro potential be-
cause of its use in describing the dynamics of dislocations
in crystals [48–50]. However, it also describes the motion
of charged particles in a periodic crystal in the presence of
an electric field, and arises in other spatially forced physical
systems as well. In particular, the potential has been used
to explain the existence of localized spatiotemporally chaotic
solutions in both continuous [31] and discrete media [27,51].

The second term on the right-hand side of Eq. (8) corre-
sponds to additive time-dependent forcing with amplitude

B(t ) ≡
∫ ∞

−∞
uF (z)∂zuF (z)∂zψ (z + δ, t ) dz. (12)

Although this chaotic forcing appears to depend on the front
position δ this fact does not change the statistical properties of
B(t ) which remain on average homogeneous.

Equation (8) describes an overdamped system with a
ratchet potential and chaotic forcing. When the potential bar-
rier between equilibria is sufficiently large the front position
fluctuates around an equilibrium position and we call the front
pinned. On increasing the forcing amplitude γ above a critical
value, the front position begins to explore nearby equilibria
in order to minimize energy, leading to a pinning-depinning
transition, i.e., to the onset of front propagation. Thus front
propagation corresponds to a chaotic ratchet motor.

In the absence of spatiotemporally chaotic forcing, γ = 0,
an analytical expression for the pinning-depinning transition
can be deduced from the stationary solution of Eq. (8). The
width of the pinning region is determined by the condition
A2(k) = 2α̃2(k)k2/β2. Figure 1(b) shows the smooth depen-
dence of the resulting pinning-depinning transition α±(k) on
the wave number k (dashed red line).

When spatiotemporally chaotic forcing is included, γ �= 0,
the pinning-depinning boundary α±(k) is fundamentally al-
tered, and now takes on a fractal structure. In Fig. 1(b) this
boundary is indicated by the white curve. To understand the
complex dynamics exhibited by the fronts near this bound-
ary and the complex structure of the boundary in parameter
space, one must first characterize the spatiotemporally chaotic
forcing given by Eq. (12). Figure 5 shows the temporal
evolution of the function B(t ) obtained from the Kuramoto-
Sivashinsky model (2) with μ = 3.0. The statistical char-
acterization of the spatiotemporally chaotic forcing and its
probability density function can be determined from Eq. (2),
and is shown in Fig. 5(b). Note that the histogram of the
values acquired by the function B(t ) is similar to a Gaussian
distribution [the fit in Fig. 5(b) has standard deviation 0.2355]
although the distribution has compact support (see the zoom
of the histogram tail). This is a consequence of the fact that
the function ∂zuF (z) in the integrand in Eq. (12) cuts off

0.0

0.1
x10-3

1.0 1.1

100

10-2

FIG. 5. Statistical characterization of the spatiotemporally
chaotic forcing term B(t ) in Eq. (12). (a) Typical temporal evolution
of B(t ) obtained from the Kuramoto-Sivashinsky forcing (2) with
μ = 3.0 and domain length L = 300, computed with a discretization
interval dx = 0.6 and time step dt = 0.01. (b) Probability density
function of B(t ) in terms of a histogram (blue columns). The red
curve represents a Gaussian fit. The left inset displays the probability
density function of B(t ) in a semi-log plot, while the right inset shows
the tail of the histogram, suitably magnified, showing the truncation
of the distribution. (c) Correlation function C(τ ) ≡ 〈B(t )B(t + τ )〉,
where the symbol 〈·〉 denotes an average over the time t .

the contributions from the spatiotemporally chaotic process
∂zψ (z, t ) at large |z|, implying that B(t ) does not behave as
an infinite sum of independent identically distributed random
variables. Consequently, B(t ) is not a Gaussian white noise,
a fact confirmed by the correlation function C(τ ) shown in
Fig. 5(c). This correlation function does not decay to zero as
τ → ∞, in contrast to a genuine stochastic process.
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In the following we explore the consequences of the above
finding.

IV. PINNING-DEPINNING TRANSITION
AS A PARAMETRIC RESONANCE

The pinning-depinning transition of a front can be under-
stood as a parametric resonance [52]. To see this we transform
Eq. (8) into a linear parametric oscillator equation using a
series of nonlinear changes of the dependent variable δ(t ). The
effective frequency of the resulting oscillator problem fluc-
tuates chaotically as a result of the spatiotemporally chaotic
forcing. In order to identify the threshold for the transition
in these circumstances we need to perform long integrations
and impose stringent convergence criteria as first done in
Ref. [53].

We begin by writing x(t ) ≡ tan [kδ(t )/2]. Equation (8)
then becomes an inhomogeneous Riccati equation,

ẋ = a + 2 � x + b x2, (13)

where

a(t, α̃, γ , β, k) ≡ − k√
2
α̃ − 3

√
2kγ B(t ) − 3k

2
√

2
βA cos φ,

b(t, α̃, γ , β, k) ≡ − k√
2
α̃ − 3

√
2kγ B(t ) + 3k

2
√

2
βA cos φ,

�(t, β, k) ≡ 3k

2
√

2
βA sin φ. (14)

Next, using the Riccati transformation x = −ẏ/[b(t )y], we
find that the auxiliary variable y(t ) satisfies a damped second-
order linear ordinary differential equation,

ÿ −
(

2 � + ḃ

b

)
ẏ + a b y = 0, (15)

which can in turn be transformed into an undamped Hill
equation using the change of variable y(t ) = z(t ) exp[ξ (t )],
where ξ ≡ ∫

(2� + ḃ/b)dt/2:

z̈ +
{

b̈

2b
− ḃ2

2b2
− 1

4

(
2� + ḃ

b

)2

+ ab

}
z = 0. (16)

This linear equation represents a parametrically driven oscil-
lator with a frequency that fluctuates chaotically. Note that this
frequency diverges at b = 0. Figure 6 shows that while b can
indeed pass through zero, it does so infrequently. Moreover,
since the term in braces, hereafter referred to as ω2, is then
large and negative the solution z = 0 is then strongly unstable
and hence far from the pinning-depinning transition which
remains unaffected.

In the following we study the boundedness of solutions of
Eq. (16) as a function of the parameters, employing the strict
convergence criteria developed for the stability of the z = 0
solution for quasiperiodic frequencies [53]. Specifically, we
evolve the equation up to a maximum of 107 time steps. To de-
fine the notion of convergence, we introduce the radius R(t ) ≡√

z(t )2 + ż(t )2 representing the instantaneous amplitude of
the solution in phase space. A solution z(t ) will be called
unbounded (bounded) if it exceeds (fails to exceed) Rmin =
10−1 during an integration time of 0 � t � 107. Unbounded

(a) (b)

(c) (d)

FIG. 6. Statistical characterization of the auxiliary function b(t )
defined in Eq. (14b). (a) Temporal evolution and (b) histogram of
b(t ). (c) Reconstruction of the dynamics in (b, ḃ) space. (d) Proba-
bility density function of ḃ/b in terms of a histogram.

trajectories z(t ) correspond to pinning in the original problem.
In Fig. 7 the shaded (unshaded) region obtained in this manner
corresponds to pinned (depinned) fronts.

A. Hill equation with chaotic frequency

To gain insight into the dynamics of the front position in
the presence of chaotic forcing, we consider an overdamped
pendulum, described by an angle θ and subject to the effect of
a chaotic torque,

θ̇ = − sin θ + r(t ), (17)

where r(t ) = r0 + ξX (t ), r0 and ξ are control parameters, and
X (t ) is a zero-mean component of the Lorenz model [54],
satisfying

Ẋ = σ (Y − X ), Ẏ = X (ρ − Z ) − Y, Ż = XY − βZ.

(18)

FIG. 7. Region with unbounded solutions (blue, pinned fronts)
of the the Hill equation (16) shown in the (α̃, γ ) parameter space,
where α̃ = αM − α. The equation has a chaotic frequency arising
from B(t ). Outside this region the solutions are bounded (depinned
fronts). Parameters are β = 0.085 and k = 0.7.

062226-6



FRONT DEPINNING BY DETERMINISTIC AND … PHYSICAL REVIEW E 99, 062226 (2019)

x

FIG. 8. Statistical characterization of the chaotic forcing func-
tion X (t ) showing the probability density distribution of X (t ) in the
Lorenz model with β = 8/3, σ = 10, and ρ = 28. The top inset
shows the corresponding strange attractor. The bottom inset shows
a zoom of the tail of the probability distribution. (b) Correlation
function C(τ ) ≡ 〈X (t )X (t + τ )〉.

We employ the traditional parameter values β = 8/3, σ = 10,
and ρ = 28 used by Lorenz to study the chaotic behavior of
this system [54]. Note that X (t ) has a symmetric distribution
about X = 0 and that its correlation function does not decay
as shown in Fig. 8. These properties mimic the behavior of
the effective forcing B(t ) in Eq. (12), cf. Fig. 5. Moreover,
the forced overdamped pendulum, Eq. (17), resembles Eq. (8)
for the front position δ(t ) in the sense that for ξ = 0 and
r0 � 1 (r0 > 1) the trajectories of the pendulum in phase
space are bounded (unbounded). However, when ξ �= 0 and
chaotic forcing is present the characterization of the stability
of a trajectory in phase space becomes a nontrivial problem.

Using variable changes similar to those used to trans-
form Eq. (8) into Eq. (16), that is, using h ≡ tan (θ/2), h =
−2ẏ/[r(t )y], y(t ) = z(t ) exp[ξ (t )], where ξ (t ) is now given
by ξ = − ∫

(1 − ṙ/r)dt/2, we can cast Eq. (17) into a Hill
equation as well:

z̈ +
{

r̈

2r
− ṙ2

2r2
− 1

4

(
1 − ṙ

r

)2

+
(

r

2

)2
}

z = 0. (19)

When the term in braces, i.e., the square of the instantaneous
frequency ω2, is a periodic function of time, it is well known
that this equation has both bounded and unbounded solutions
depending on the oscillation frequency [55,56]. This situation
persists when the oscillation frequency is quasiperiodic but
the boundary between bounded and unbounded solutions be-
comes a complex function of the parameters whose complete
characterization remains an open problem [53]. In the present
case r(t ) also occasionally passes through zero, but as in
Eq. (16), this does not affect the pinning-depinning transition.

To study the boundedness of solutions of Eq. (19) as a
function of the parameters, we employ the same strategy as
in the previous section. Figure 9 depicts a sample trajectory

(a)

(b)

FIG. 9. Temporal evolution of the Hill equation (19) with Lorenz forcing computed for (a) ξ = 0.001, r0 = 0.6 [z(t ) unbounded, θ (t )
pinned] and (b) ξ = 0.001, r0 = 1.1 [z(t ) bounded, θ (t ) depinned]. The panels from left to right show the trajectory in the (z, ż) phase space,
the temporal evolution of R(t ), the effective squared frequency ω2 in the Hill equation, and the angle θ (t ) reconstructed from the temporal
evolution of z(t ) in the region of (a) pinning and (b) depinning.
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(a)

(b)

(c)

FIG. 10. (a) Parameter space of the Hill equation (19) with
Lorenz forcing. Shaded (unshaded) regions correspond to pinned
(depinned) fronts as determined by the condition R(t ) > 10−6

[R(t ) < 10−6] in time 0 � t � 107 analogous to that used in Eq. (16),
starting from an initial condition with R(0) = 10−9. (b), (c) Temporal
evolution of θ (t ) and the analogous quantity R(t ) ≡

√
θ (t )2 + θ̇ (t )2

as obtained from Eq. (17) in the region of (b) pinning and (c) depin-
ning, corresponding, respectively, to locations P1 and P2 in parameter
space (a).

in the (z, ż) phase space, the temporal evolution of the ra-
dius R(t ) ≡

√
z(t )2 + ż(t )2, the coefficient ω2(t ) in the Hill

equation (19), and the reconstructed variable θ (t ) correspond-
ing to (a) pinning, and (b) depinning. Observe that in (a) ω2 is
on average negative while in (b) it is positive.

Using this type of analysis, one can explore the parameter
space of the problem and map out in detail the boundary
between pinning and depinning within Eq. (17). Figure 10
summarizes this analysis in the (r0, ξ ) plane: blue points
represent trajectories that diverge. The boundary between
the trajectories that have and have not diverged is evidently
complex, and remains to be characterized in detail. The figure
also shows the evolution of θ (t ) and the quantity R(t ) ≡√

θ (t )2 + θ̇ (t )2 obtained numerically from Eq. (17) in the
region of (b) pinning and (c) depinning, respectively.

V. MULTIPLICATIVE NOISE INDUCES
FRONT PROPAGATION

The first description of macroscopic matter is usually done
using a small number of coarse-grained or macroscopic fields,

FIG. 11. Average speed of a front connecting homogeneous and
pattern states as function of α for the stochastic model, Eq. (20), with
β = 0.085 and k = 0.7. The red dot-dashed curve and the blue curve
with filled circles show the deterministic and stochastic evolution of
the front between a homogeneous and a periodic state, respectively.
The insets show sample spatiotemporal evolution of the front before
(lower left) and after (upper right) the Maxwell point when γ = 5.

whose evolution is described by deterministic differential
equations. This reduction is a consequence of temporal scale
separation, which allows a description in terms of the slowly
varying macroscopic variables. An improved description in-
cludes fluctuations due to the elimination of a large number
of fast variables whose effect can be modeled by including
suitable inherent stochastic terms (or noise) in the differential
equations. The stochastic term can be classified into two
types: additive (multiplicative) noise that does not depend
(depends) on the variable under study. Additive noise induces
propagation of a static front connecting a stable homogeneous
equilibrium and a pattern state [14,15]. The effect of multi-
plicative noise on fronts that connect a pair of homogeneous
states has also been studied (see the textbook [57] and refer-
ence therein). In particular, the dynamic evolution of a system
with fronts connecting an absorbing state (a state without
fluctuations) and a fluctuating one has been discussed, and
the emergence of spatiotemporal intermittency established
[58].

In this section we compare the pinning-depinning results
obtained with deterministic spatiotemporally chaotic forcing
[Eqs. (1) and (2)] with the corresponding results obtained
with explicitly stochastic forcing. In both cases the forcing
is multiplicative. For this purpose we consider the following
stochastic model:

∂t u = u(α − u)(u − 1) + ∂xxu + βu cos (kx) + γ uζ (x, t ),

(20)

where ζ (x, t ) is a Gaussian white noise with zero mean
value, 〈ζ (x, t )〉 = 0, and correlation 〈ζ (x, t )ζ (x′, t ′)〉 = δ(x −
x′)δ(t − t ′). Here, the coefficient γ represents the noise
strength, as in Eqs. (1) and (2), and the symbol 〈·〉 indicates
averaging over the realizations of the noise.

Since the noise in Eq. (20) is multiplicative and propor-
tional to u, the state u = 0 is an absorbing state. In contrast,
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the state u = 1 is an equilibrium state that exhibits persistent
fluctuations. The front position x = δ(t ) between these states
exhibits random motion. Figure 11 shows the average front
speed in the model. As a result of inherent fluctuations, one
observes that the pinning region disappears and the front is
only (statistically) stationary at a single point of the param-
eter space, the Maxwell point. The location of this point
in turn depends on the intensity level γ of the noise. The
disappearance of the pinning region in the present case is
notable and is due to the fact that some realization of the
stochastic process always overcomes the nucleation barrier
introduced by the periodic forcing [15], a phenomenon known
as a noise-induced transition [16].

To characterize this behavior one can use the same strategy
as in Sec. III, and write down an equation for the front
position x = δ(t ). Using the ansatz (6) in Eq. (20), linearizing
in W, and applying the appropriate solvability condition, one
obtains

δ̇ = −∂U

∂δ
+ �ξ (t ), (21)

where the potential U (δ) is defined in expression (9), and

ξ (t ) ≡ − 3γ

2
√

�

∫
ζ (z + δ, t )uF ∂zuF dz, (22)

� ≡
(

3γ

2

)2 ∫
[uF (z)∂zuF (z)]2 dz = 27γ 2

40
√

2
. (23)

Here, � measures the strength of the effective noise at the level
of the front. Equation (21) is a Langevin equation for the front
position with a Gaussian white noise. Specifically,

〈ξ (t )〉 ≡
〈
− 3γ

2
√

�

∫
ζ (z + δ, t )uF ∂zuF dz

〉
,

= − 3γ

2
√

�

∫
〈ζ (z + δ, t )〉uF ∂zuF dz,

= 0 (24)

with the same procedure for the other cumulants. In particular,
〈ξ (t )ξ (t ′)〉 = δ(t − t ′). Thus all the properties of the reduced
noise ξ (t ) are inherited from the spatiotemporal noise ζ (z, t ).
Note that in contrast to B(t ) the noise ξ (t ) is not bounded,
despite the presence of the cutoff represented by the term
∂zuF (z) in the integrand in Eq. (22). This is because ξ (t )
depends on the noise realization, in addition to its time-
dependence. This difference has profound consequences for
the pinning-depinning transition.

Equation (21) describes an overdamped system with a
ratchet potential and additive white noise. Owing to generic
asymmetry of the potential U whenever α �= 0 and the lack
of a global stationary state, the system continuously converts
random fluctuations into directed motion of the front, i.e., the
noise induces front propagation. This behavior is known as
a Brownian motor [59]. Thus the main difference between
chaotic and stochastic forcing is that the former exhibits a
pinning-depinning transition while the latter does not.

VI. CONCLUSIONS AND REMARKS

The description of many-body systems using differential
equations for macroscopic variables with fluctuating terms
that account for ignored fast variables has been very
successful. A classic example of this type of description is the
Langevin equation associated with Brownian motion. This de-
scription assumes, explicitly or implicitly, that the fluctuations
are incoherent and so can be modeled by a prescribed stochas-
tic process. If the number of fast degrees of freedom is large
this process is taken to be Gaussian white noise. In general one
expects similar behavior in the presence of deterministic fluc-
tuations arising from a chaotic or turbulent system. However,
as shown here, there are important differences between these
two descriptions when it comes to the dynamics of fronts. This
is because the front profile provides a cutoff that determines
the effective noise acting on the front. This cutoff, specified by
the function ∂zuF (z), acts like a smoothed out δ-function. In-
deed, if we replace ∂zuF (z) by Gδ(z), we obtain from Eq. (12)
the result B(t ) = GuF (0)∂zψ (δ, t ) as the noise acting at the
location x = δ of the front. Since ψ (δ, t ) is specified by the
bounded dynamics of the Kuramoto-Sivashinsky equation (2)
B(t ) represents bounded fluctuations which may or may not
trigger a depinning transition. In contrast, in the stochastically
driven system (20) a similar procedure leads to the expression
ξ (t ) = G′uF (0)ζ (δ, t ). Since ζ (t ) is a Gaussian white noise
by assumption, we see that so is ξ (t ). However, the stochastic
description allows rare but arbitrarily large fluctuations at
any one location and this fact ultimately triggers a depinning
transition—all that one has to do is wait long enough. This
is not so in the deterministic case. We believe that it is this
distinction between the effective noise at the front location
that is ultimately responsible for the survival of pinning in the
deterministic case and its disappearance in the stochastic case.
This distinction may play a significant role in the evolution
of macroscopic quantities in other circumstances as well, as
in Ref. [60].

The dynamics of fronts is well known to be highly sen-
sitive to details of the system just ahead of the front, as in
the example studied by Brunet and Derrida [61,62] where
departures from the continuum description were found to have
an important effect on the speed of an invasion front. In this
paper we have obtained a similar result and showed that de-
terministic spatiotemporal fluctuations can trigger a pinning-
depinning transition of spatiotemporally chaotic patterns, a
transition that is washed out when stochastic fluctuations are
used instead. This fact represents a fundamental distinction
between these two cases.
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Chapter 8

E�ect of deterministic �uctuations in

localized structures

8.1 Introduction

It is interesting to imagine the �rst thoughts of the biologist Robert Brown when looking
through his microscope how a pollen particle suspended in the water seemed to come to life
and move irregularly. In fact, his �rst impression was that he had found the most funda-
mental element of life, and he described the phenomenon as a �revitalization� of the pollen
particle. Furthermore, to him, it seemed a sort of counterexample to the unquestioned New-
ton's laws that marked the golden age of determinism by describing both natural processes
and mechanical/technological systems successfully. His �ndings were presented in a paper
presented to the Royal Society entitled [148]. However, about a decade later, he had to
acknowledge that he was wrong. The phenomenon could be explained due to the interaction
between the water particles on the pollen particle. In this sense, the pollen particle is much
larger than the water particles but small enough to show the e�ect of the water particles col-
lisions. Albert Einstein in 1905 gives a complete description of the Brownian movement from
fundamental physical principles [149]. Three years later, Paul Langevin in 1908, proposed
a more straightforward theoretical approach, applying precisely Newton's laws to describe
the dynamics of a Brownian particle [150]. In this work, he is considered a random force to
explain the medium's collective e�ect on particle dynamics.

Nevertheless, is it always possible to describe the interaction with the medium by a random
(or stochastic) �uctuation?. There are the same results when the medium is composed by a
small number of particles such that the Newton equations can describe its behavior?. What
are the di�erences between these two approaches? In this chapter, we will try to address
these questions by studying a particle embedded in a spatiotemporal chaotical media and
comparing it with the standard Brownian motion model where the media is random. We will
compare the statistical and dynamical properties of both models and evidence a phenomenon
of pinning similarly to the phenomenon exhibited for fronts reported in [151] and detail in
the above chapter and contraposition with the destruction of localized states exhibited the
stochastic �uctuations. In the following section we will start studying the Brownian particle
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from the Langevin perspective.

8.2 Brownian motion particle

To understand the dynamics of the Brownian motion, we take a Newtonian approach. We
start with Newton's second law,

m
V (t)

dt
= F (t), (8.1)

and

X(t)

dt
= V (t), (8.2)

where m accounts for the mass of the particle, V (t) accounts for its velocity, and X(t)
accounts for its position. The force term F (t) is given by

F (t) = −γV (t) +
β2

√
dt
ξ(t), (8.3)

where the �rst term at the right side of eq. 8.3 accounts for the viscous drag and the second
for the interaction with the medium, modeled using a normal distributed random variable.
Thus, substituting Eq. (8.3) in Eq. (8.1) we obtain

m
V (t)

dt
= −γV (t) +

β2

√
dt
ξ(t), (8.4)

and the constant parameters enable to describe the viscosity and thermal e�ect intensities.
Note Eq. 8.4 is a di�erential equation for the random variable V .

A more convenient way to write Eq. (8.4), as is typically done in stochastic di�erential
equations theory, is to express it in its di�erential form, given by

V (t+ dt)− V (t) = −γV (t)dt+
√
β2dtξ(t), (8.5)

Furthermore, the process described by the equation 8.5, together with the time integral
X(t) describes the Brownian motion. Perhaps the main contribution to this approach is that
Langevin understood that both viscous drag and velocity �uctuations are complementary
e�ects of the same phenomenon, e.g., the numerous collisions of the particles that make up
the �uid and the Brownian particle. At this point we can integrate numerically Eq. (8.5)
and obtain several realizations for the solution of this equation.
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Figure 8.1: Panel (a) shows a solution of the langevin equation for γ = 10, β = 5 and
dt = 0.001. Panel (b) show the displacements given by ∆X = X(t + dt) − X(t) and panel
(c) show the distribution of the displacements.

A straightforward and easy approach to obtain the solutions of these equations is the
following. Note that the random variables V (dt), V (2dt), . . . , V (t) are a linear combination
of independent normal random variables, and therefore its distribution is itself normal. Thus
we can write

V (t) = N(〈V (t)〉, σ(V (t))), (8.6)

transforming the problem of solving 8.4 to the problem of found expresions for the mean
〈V (t)〉 and the standard deviation σ = σ(V (t)), and substitute them into Eq. (8.2). We
start triying to �nd 〈V (t)〉. Applying the mean operator in both sides of Eq. (8.5) we obtain,

〈V (t+ dt)− V (t)〉 = 〈−γV (t)dt+
√
β2dtξ(t)〉, (8.7)

and therefore,

〈V (t+ dt)〉 − 〈V (t)〉 = 〈−γV (t)dt〉+
√
β2dt〈ξ(t)〉, (8.8)

and 〈ξ(t)〉 = 0, a simple ordinary di�erential equation for the mean speed, given by

d〈V (t)〉
dt

= −γ〈V (t)〉, (8.9)

whose solutions are of the form

〈V (t)〉 = V0e
−γt, (8.10)

Now, we need only the standar deviation σ. To �nd it, we will consider an equation for
〈V (t)2〉. By de�nition

d[V (t)2] = V (t+ dt)2 − V (t)2, (8.11)
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Figure 8.2: Brownian motion from Langevin equation. (a) Show the pro�le of difussion given
by several realizations for the solutions of Langevin equation. (b) Measures of the standard
deviation of the distribution of the particles along space changes on time, and (c) give us a
numerical aproximation of the probability density function based on 4000 brownian particiles
for times t = 1, 10, 20, 30.

and we can substitute Eq. (8.5) into (8.11) to obtain

d[V (t)2] = [(1− γdt)V (t) +
√
β2dtξ(t)]2 − V (t)2, (8.12)

expanding the cuadratic terms, cancelling the corresponding terms, and taking into account
that dt3/2 and dt2 are smaller than dt and therefore negligible, we get

d[V (t)2] = −2γdtV (t)2 + 2V (t)
√

(β2dt)ξ(t) + β2dtξ(t)2, (8.13)

Taking average on noth sides of the equation, gives

d〈V (t)2〉 = −2γdt〈V (t)2〉+ 2〈V (t)〉
√

(β2dt)〈ξ(t)〉+ β2dt〈ξ(t)2〉. (8.14)

Then, we use the fact that V (t) is a linear combination of independent normal random
variables and therefore

〈V (t)ξ(t)〉 = 〈V (t)〉〈ξ(t)〉 = 0, (8.15)

and recalling that 〈ξ(t)2〉 = 1, we obtaining the following simple ordinary di�erential equation
for the variance

d〈V (t)2〉 = −2γdt〈V (t)2〉+ β2dt, (8.16)

or equivalently

d

dt
〈V (t)2〉 = −2γ〈V (t)2〉+ β2, (8.17)
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whose solutions can be easily calculated by taking V (0) = v0, obtaining

〈V (t)2〉 = v20e−2γt +
β2

2γ
(1− e−2γt), (8.18)

and therefore

σ2(t) = 〈V (t)〉2 − 〈V (t)2〉 =
β2

2γ
(1− e−2γt), (8.19)

and to get the solution of the equation 8.5 we substitute (8.10) and (8.19) in Eq. (), obtaining

V (t) = N(〈V (t)〉, σ2(t)) = N(v0e
−γt,

β2

2γ
(1− e−2γt), (8.20)

and the probability density is easily recovered by

p(V (t)) =
exp[− (V (t)−〈V (t)〉)2

2σ2 ]

σ
√

2π

=

exp
[
− (V (t)−v0e−γt)2

2β
2

2γ
(1−e−2γt)

]
√

2π β
2

2γ
(1− exp[−2γt])

. (8.21)

Note that Eqs. (8.20) and (8.21) characterize the motion and statistic of the Brownian motion
particle described by the Eq. (8.5). In the following section, we will explore another kind of
complex behavior particle but interacting with a spatiotemporal chaotic media.

8.3 Chaotic motion particle

In the following, we will try to explore the e�ect of deterministic �uctuations on the dynamics
of localized structures since these allow us to give a fairly adequate description of the concept
of a particle itself. Localized structures are characterized by continuous order parameters such
as position, width, amplitude, and therefore these solutions can be considered a theoretical
description of the particle concept from the physics perspective. For the sake of simplicity, we
consider a version of the Turing-Swift�Hohenberg equation as a model in which particle-type
solutions have been well studied, coupled to a chaotic space-time medium described by the
Kuramoto�Sivashinsky equation, i.e.,

∂tu = ρu− (1 + ∂xx)
2u+ bu2 − u3 + γ∂xψ(x, t)u+

√
ηξ(x, t)u (8.22)

with
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Figure 8.3: Spatiotemporal evolution of a one bump localized solution of the Swift-Hohenberg
Eq. (8.22) subject to spatiotemporally chaotic forcing with given by Eq. (8.23) for parameters
µ = 3, ρ = −0.27, b = 1.8 and (a) γ = η = 0, (b) γ = 0.017 and η = 0 and (c) γ = 0,
η = 5. The lower and upper panels show the solution pro�les at the initial and �nal times,
respectively. Note the much longer timescale in panel (b).

∂tψ = −µ∂xxψ − (∂xψ)2 − ∂xxxxψ (8.23)

Where the Swift-Hohenberg equation has u ≡ 0 as a homogeneous solution. It should also
be noted that the deterministic and noisy perturbative terms, weighed by the coe�cients γ
and η respectively, are of the multiplicative type, so the homogeneous solution u ≡ 0 holds
for any value that these take. For η = γ = 0, the system reduces to the Swift�Hohenberg
equation, whose properties have been well established in [24, 152].

In order to measure the e�ect of deterministic �uctuations on the dynamics of localized
structure-type solutions, we carried out a detailed numerical study for the system composed
of the equations (8.22) and (8.23) in a region in which there are localized structures for the
equation (8.22) and in which the space-time chaos of the equation (8.23) it is fully developed.
Thus, setting the parameters at µ = 3, ρ = −0.27, b = 1.8 and for γ = 0.017 we obtained a
complex behavior, similar in appearance to that of the Brownian movement, as can be seen
in �gure 8.4.

8.4 Chaos-induced transitions

We it is compared the behavior of localized structures under the e�ect of the deterministic
versus stochastic �uctuations, a �rst di�erence that highlight is that the localized structures
survive to deterministic �uctuations, at di�erence of the case of random gaussian �uctuations.
In Fig. 8.4 we explore numerically this phenomena and observe that there exist a region for
the �uctuation weight parameter such that the localized structure is a persistent solution
for ρ �xed and there exist a critical γ such that the solution becomes unstable, and the
solution evolves to the most stable solution, that could be the homogeneous state, one of the
coexisting localized pattern states or the whole pattern solution.

128



-0.15 0.00
0

3

7

(a)

||u||L2

LS1
LS2
LS3

-0.34 -0.26-0.30
0.00

0.04

0.02

ρ

γ

LS2

LS1

LS3

ρp1 ρp2

ρ+ρ-

(b)

ρp1 ρp2 ρ
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persistence region for three values of γ and η = 0. Panel (b) shows how these solutions persist
for ρ �xed and varying γ.

8.5 Outline

� This work explores the dynamical behavior of a particle-like solution exposed to a
chaotic spatiotemporal medium, giving an exciting example of a chaotical particle.

� The e�ect of deterministic �uctuations enables a pinning zone in contraposition to the
e�ect of randomness on localized states. This pinning zone is a consequence of the
limited (or forbidden) transitions in deterministic systems.

� The pinning region shrinks as the strength of the �uctuations increase.

� Localized structures under deterministic �uctuations exhibit complex spatiotemporal
dynamics, namely, a chaotic walk.

� This kind of work is of interest when the particle under study (the equivalent to the
Brownian particle) is coupled to a small reservoir bath, composed of a small number of
particles whose dynamics could be modeled by an n-body problem which have chaotical
solutions typically.

� Brownian motion dynamics, and in general, the random motion has been used to formu-
late heuristically inspired blind search algorithms. In the same direction, the chaotical
particle proposed here could de�ne a novel kind of random search algorithms whose
self-correlation is driven by the dynamics of the chaos model used for the �uctuations.

� Besides, it is possible to investigate these behaviors in experiments by introducing
the spatio-temporal chaos using SLMs, for example, in the liquid crystal light valve
experiments explained in chapters 2 and 3, enabling, in this case, a mechanism for
complex propagation of light spots in liquid crystals.

129



PHYSICAL REVIEW E 101, 042212 (2020)

Chaotic motion of localized structures

A. J. Alvarez-Socorro ,1,2 Marcel G. Clerc,1 Michel Ferré ,1 and Edgar Knobloch3

1Departamento de Física and Millennium Institute for Research in Optics, Facultad de Ciencias Físicas y Matemáticas,
Universidad de Chile, Casilla 487-3, Santiago, Chile

2Laboratorio de Investigación, Desarrollo e Innovación, Zenta Group, Diagonal Oriente 5081, Ñuñoa, Santiago, Chile
3Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA

(Received 19 November 2019; revised manuscript received 12 January 2020; accepted 23 March 2020;
published 27 April 2020)

Mobility properties of spatially localized structures arising from chaotic but deterministic forcing of the
bistable Swift-Hohenberg equation are studied and compared with the corresponding results when the chaotic
forcing is replaced by white noise. Short structures are shown to possess greater mobility, resulting in larger
root-mean-square speeds but shorter displacements than longer structures. Averaged over realizations, the
displacement of the structure is ballistic at short times but diffusive at larger times. Similar results hold in two
spatial dimensions. The effects of chaotic forcing on the stability of these structures is also quantified. Shorter
structures are found to be more fragile than longer ones, and their stability region can be displaced outside the
pinning region for constant forcing. Outside the stability region the deterministic fluctuations lead either to the
destruction of the structure or to its gradual growth.

DOI: 10.1103/PhysRevE.101.042212

I. INTRODUCTION

A fundamental problem of statistical mechanics is to de-
scribe the effect of microscopic scales on macroscopic vari-
ables. Usually this effect is modeled in terms of stochastic
fluctuations, due to the large number of microscopic degrees
of freedom. However, in cases where the number of degrees
of freedom is restricted, the fluctuations cannot be taken
as stochastic, and in this case their deterministic or chaotic
character may play an important role. Here we investigate the
effects of the resulting deterministic fluctuations on spatially
localized structures (LSs). Such structures are a characteristic
feature of self-organized nonequilibrium systems [1–3] and
have been observed in numerous fields, ranging from physics
and chemistry to engineering and biology. These particlelike
states are characterized by continuous order parameters, such
as position, width, and amplitude whose evolution may be
described by macroscopic equations. The texts [4–6], together
with the references cited therein, provide a helpful overview
of the subject. In one spatial dimension, the profile of a
stationary LS embedded in a featureless background can be
interpreted in terms of a spatial trajectory that connects a
homogeneous state with itself, i.e., as a homoclinic orbit of
a dynamical system evolving in space [7]. In many cases the
resulting states may be thought of as bound states of a pair of
fronts, one connecting a homogeneous state to a pattern state,
while the second connects the pattern state back to the homo-
geneous state. This is the case, for example, for LSs present
in the region of bistability between a homogeneous state and
a spatially extended pattern. Such regions typically contain a
pinning or snaking interval within which one finds multiple
LSs of different lengths organized in a snakes-and-ladders
bifurcation diagram [8,9]. The resulting diagram captures the
linear stability properties of the LSs as well as their relative
(or energy) stability [10].

Localized structures are not necessarily motionless. The
motion and complex dynamics of LSs can be the result of
a spontaneous symmetry-breaking instability [11–18] or the
result of a fluctuating background [19–21]. Despite the ability
of existing theory to provide an intuitive picture of the origin
of LSs current understanding does not apply to the latter
situation. As is well established, additive white noise induces
random motion of LSs but ultimately leads to their destruction
[22,23]. This is not the case when the forcing is chaotic, i.e.,
deterministic [24].

Figure 1 illustrates the dramatic difference between deter-
ministic and stochastic forcing of a one-bump LS described
by the bistable Swift-Hohenberg equation. In the absence
of forcing [Fig. 1(a)] the structure is stable and motionless.
With deterministic but chaotic forcing the structure remains
stable but executes lateral motion resembling a random walk
[Fig. 1(b)], in stark contrast to the effect of multiplicative
white noise forcing that ultimately always destroys the struc-
ture [Fig. 1(c)]. As discussed further below, this is a conse-
quence of the fact that white noise ultimately explores a wide
range of fluctuations, resulting in a potential noise-induced
transition [25], while those arising from a deterministic origin
are bounded by the size of the attractor. In the following
we refer to the trajectory in Fig. 1(b) as a chaotic walk
to distinguish it from the more commonly studied random
walk.

The work that follows is motivated by the striking differ-
ence between Figs. 1(b) and 1(c). We begin by describing the
model problem we study followed by a description of our
simulation results in one spatial dimension together with a
semi-analytical understanding of the LS mobility character-
istics revealed by these simulations as the forcing amplitude
increases. The paper concludes with a brief discussion of the
two-dimensional case.

2470-0045/2020/101(4)/042212(7) 042212-1 ©2020 American Physical Society
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FIG. 1. Spatiotemporal evolution of a one-bump localized solu-
tion of the Swift-Hohenberg equation (1) subject to spatiotemporally
chaotic forcing with μ = 3 when ρ = −0.27, b = 1.8 and (a) γ =
η = 0, (b) γ = 0.017, η = 0, and (c) γ = 0, η = 5. The lower and
upper panels show the solution profiles at the initial and final times,
respectively. Note the much longer timescale in panel (b).

II. THE MODEL

To study the effect of deterministic fluctuations on the dy-
namics of localized structures, we employ a system of partial
differential equations (PDEs) composed of a bistable Swift-
Hohenberg (SH) equation subject to multiplicative forcing
provided by the Kuramoto-Sivashinsky (KS) equation [24], as
described by

∂t u = ρu − (1 + ∂xx )2u + bu2 − u3

+ γ ∂xψ (x, t )u + √
ηζ (x, t )u, (1)

together with

∂tψ = −μ∂xxψ − (∂xψ )2 − ∂xxxxψ. (2)

Here ζ (x, t ) is a Gaussian white noise with zero
mean, 〈ζ (x, t )〉 = 0, and correlation 〈ζ (x, t )ζ (x′, t ′)〉 =
δ(t − t ′)δ(x − x′) and η represents its intensity, while γ

specifies the strength of the multiplicative spatiotemporally
chaotic fluctuations experienced by the LSs in Eq. (1) which
can be tuned by selecting appropriate values of the parameter
μ in Eq. (2) [24]. When γ = η = 0 the system reduces
to the usual bistable Swift-Hohenberg equation, whose
properties are now well-established [9,26]. Figure 1 shows
sample results for b = 1.8 and (a) γ = η = 0, (b) γ = 0.017,
η = 0, i.e., for deterministic forcing. In contrast, Fig. 1(c) is
computed from Eq. (1) with stochastic forcing only (γ = 0).

To investigate the effect of spatiotemporally chaotic fluctu-
ations on the behavior of LSs, we have conducted a numerical
study of the model Eqs. (1) and (2) with γ > 0, η = 0, and
μ sufficiently large that Eq. (2) possesses solutions in the
form of spatiotemporal chaos [27]. For the sake of simplicity,
periodic boundary conditions are used. Integration was imple-
mented using a fourth-order Runge-Kutta scheme in time with
step size dt = 0.01 and a finite difference scheme in space
that uses a centered stencil of seven grid points. Space was
discretized into 400 points with grid size dx = 0.6. A stable
localized one-bump solution of the bistable Swift-Hohenberg
equation (γ = 0, η = 0) at b = 1.8 and ρ = −0.27 was taken
as initial condition, motivated by the parameter regime studied
in Ref. [9]. This solution can be seen in Fig. 1(a).

The spatiotemporal forcing is provided by the Kuramoto-
Sivashinsky equation [28,29], whose dynamics are well ex-
plored. In particular, it is known that for μ = 3 this equation

FIG. 2. (a) Spatiotemporal complexity in the Kuramoto-
Sivashinsky Eq. (2) at μ = 3. (b) Temporal profile of the fluctuations
at the fixed location x = 100 [vertical dashed line in (a)] and (c) its
probability density function, both at μ = 3.

exhibits spatiotemporally chaotic behavior. Figure 2(a) shows
the spatiotemporal chaos at this value of μ while Figs. 2(b)
and 2(c) show the resulting forcing amplitude at an arbitrarily
selected location x = 100 and its probability density function
(pdf). It is noteworthy that this density is symmetric with
mean zero. Note also that the density has a finite support since
the KS attractor is bounded. This is in contrast to white noise.

In the following we employ the parameter values b = 1.8
and μ = 3 and vary the parameters ρ, γ while keeping η =
0 (deterministic forcing). We then compare the results with
those for pure stochastic forcing (γ = 0, η �= 0).

III. RESULTS

We now study the effects of the deterministic fluctuations
quantified in Section II on the dynamics of the one-bump
localized state shown in Fig. 1(a). Figure 3(a) shows the
snakes-and-ladders structure of the pinning region when γ =
0 (blue curves) within the region of bistability between the
homogeneous state u = 0 (red horizontal line) and the pe-
riodic state with 2π wavelength (red curve), both for b =
1.8; solid (dashed) lines indicate stable (unstable) states. In
the following we call the three lowest stable states LS1,
LS2, and LS3, the integer indicating the number of fully
developed peaks within the structure. Thus, Fig. 1(a) shows
LS1. Superposed on the LS curves are the LS1, LS2, and
LS3 states that were found to persist for t = 107 for three
different values of γ and color-coded as follows: γ = 0.006
(thick red), γ = 0.008 (thick blue), and γ = 0.015 (thick
yellow), suggesting that in each of these cases these states
are in fact stable, albeit in a reduced parameter range: the
figure indicates that as the fluctuation amplitude γ increases
the snaking zone gradually shrinks but does not disappear.
Figures 3(b) and 3(c) portray the surviving snaking zones
for γ = 0.006 and γ = 0.008, respectively. These results are
presented in a different way in Fig. 4 which shows the regions
of stable LS1, LS2, and LS3 in the (ρ, γ ) plane. Note that as
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FIG. 3. (a) Snakes-and-ladders structure of the pinning zone
when b = 1.8 and γ = η = 0 (blue curves) straddling the Maxwell
point located at ρM ≈ −0.3137, with superposed stable localized
states: γ = 0.006 (red), γ = 0.008 (blue), and γ = 0.015 (yellow),
showing the progressive shrinking of the snaking region as γ in-
creases. Dashed lines at ρp1 and ρp2 indicate the width of the pinning
zone when γ = η = 0. The corresponding results for (b) γ = 0.006
and (c) γ = 0.008 showing, from bottom to top, the branches of
stable LS1, LS2, and LS3 as determined from simulations over a
time interval t = 107. In each case the error bars indicate the size of
the fluctuations over this timescale.

γ increases the LSs are eroded more rapidly in the vicinity
of the left boundary ρ = ρ−(γ ) than near the right boundary
ρ = ρ+(γ ). This asymmetry arises because the fluctuations
near ρ−, i.e., for values of ρ below the (effective) Maxwell
point, favor the homogeneous state, leading to front retraction,
while those near ρ+, i.e., for ρ above the Maxwell point,
favor the periodic state and hence front advance. As a result
the fluctuations gradually shift the pinning region toward
larger values of ρ relative to the case γ = η = 0. We also
see that this effect is larger for LSn with small n, and that
stable LSn with larger n survive to larger values of γ . As
discussed further below this appears to be a consequence
of the reduced mobility of larger structures. Figure 5 sheds
additional light on this behavior. The left panels show the
boundary of the pinning or snaking zone as γ increases across
γ−(ρ) [Fig. 5(a)] and across γ+(ρ) [Fig. 5(c)]. Thus, for
γ > γ−(ρ) the preferred state is u = 0 while the opposite is
the case for γ > γ+(ρ). These observations are reflected in
Figs. 5(b) and 5(d) which show that below the pinning region
the structure collapses to u = 0 [Fig. 5(b)] while above it it

FIG. 4. Regions of stability of LS1, LS2, and LS3 in the (ρ, γ )
plane showing that the stability regions become increasingly asym-
metrical and in each case close off [at γ = γc(n)] when the forcing
amplitude γ becomes too large. Dashed lines at ρp1 and ρp2 indicate
the width of the pinning zone when γ = η = 0.

gradually nucleates additional wavelengths and so grows in
spatial extent [Fig. 5(d)]. Figures 5(a) and 5(c) also show that
the lifetime of the localized structures outside their stability
region (see Fig. 4) increases rapidly as one approaches the
top boundary of the pinning region in the (ρ, γ ) plane. We
expect that this lifetime increases inversely as the square root
of the distance from the boundary of the stability zone much
as occurs when γ = 0 [9].

To explain some aspects of the above results, and in par-
ticular the lateral motion of the LSs computed from the PDE
system Eqs. (1) and (2), we employ a semianalytical approach,
putting the system into the instantaneous comoving frame
z = x − ∫ t

0 c(t ′) dt ′. Thus, c(t ) is the instantaneous velocity

FIG. 5. Lifetimes τ of localized states as a function of γ for
b = 1.8 and (a) ρ = −0.28, (c) ρ = −0.26 outside the pinning zone
(red dots with error bars). The solid lines represent the fits (a) τ =
14.39/(γ − 0.013)1.6, (c) τ = 125.9/(γ − 0.01)1.1. (b) Eventual de-
cay of LS1 at ρ = −0.28 when γ = 0.0225 > γ−(ρ ). (d) Gradual
growth of LS1 at ρ = −0.26 when γ = 0.012 > γ+(ρ ).
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FIG. 6. Characterization of the instantaneous speed c(t ) of local-
ized structures as a function of their length n as obtained from Eq. (6)
with b = 1.8, ρ = −0.3, γ = 0.25, η = 0, and μ = 3. (a) Probabil-
ity density function of c(t ) for three different values of n. (b) Typical
temporal evolution of c(t ) for n = 3 (dark blue curve) and n = 14
(light red curve). The remaining panels show (c) the kurtosis and
(d) the standard deviation σ of the pdf of c as functions of n.

of the structure. To simplify the calculation that follows, we
use standard bracket notation for the inner product with

〈 f | g〉 =
∫ ∞

−∞
f (x)g(x) dx. (3)

We suppose that |u〉 = |u0〉 + |w〉, where u0 ≡ u0(z) is an
appropriate LS solution and w is a small perturbation com-
parable in magnitude to both γ and the instantaneous velocity
c(t ). It follows that

−c∂zu0 = L |w〉 + γ |(∂zψ )u0〉 , (4)

where L ≡ ρ − (1 + ∂zz )2 + 2βu0 − 3u2
0. Since L is a self-

adjoint linear operator (i.e., L = L†) with a kernel spanned
by ∂zu0 the solvability condition for w(x, t ) yields

ẋc(t ) ≡ c(t ) = −γ
〈∂zu0| (∂zψ )u0〉

〈∂zu0| ∂zu0〉 . (5)

Since the structure is localized, integration by parts shows that

ẋc(t ) = γ
〈∂zu0| ψ∂zu0〉
〈∂zu0| ∂zu0〉 . (6)

This equation governs the motion of the centroid, hereafter
xc(t ), of the localized structure and shows that motion results
from the asymmetry in the projection of ψ (z, t ) on the trans-
lation mode ∂zu0(z). For fluctuations driven by noise alone we
have

ẋc(t ) = −√
η
〈∂zu0| ζ (z, t )u0〉

〈∂zu0| ∂zu0〉 ≡ √
ηξ (t ), (7)

where ξ (t ) is a white noise satisfying

〈ξ (t )ξ (t ′)〉ζ = 〈(∂zu0)2| u2
0〉

(〈∂zu0| ∂zu0〉)2
δ(t − t ′). (8)

Figure 6(a) compares the probability density functions of
c(t ) for localized structures with n = 3, 8, and 14, while
Fig. 6(b) shows the corresponding realizations c(t ) for n = 3
and 14. We see that the distribution of speeds is much broader

FIG. 7. (a) Position of the centroid xc(t ) for several slightly dif-
ferent one-bump initial conditions when ρ = −0.27, γ = 0.001, η =
0. (b) Corresponding ensemble-averaged centroid displacement d (t )
(red curve). The black-dashed line corresponds to the linear fit d (t ) =
3 × 10−4t to the short-time evolution (0 � t � 100), while the blue-
dashed curve represents the square root fit d (t ) = 0.0013

√
t − 0.001

to the subsequent evolution.

when n is small than when it is large, and conclude that
narrower structures have greater mobility, a conclusion in
agreement with related work on colliding LS [30]. We ascribe
this effect to the requirement that to move a broader structure
one requires a fluctuation with a larger spatial correlation,
making larger speeds less likely. Notice also that the distribu-
tion function for small n is markedly asymmetric. This is due
to the asymmetry in the forcing function ∂xψ with respect to
spatial reflection x → −x. Inevitably the resulting asymmetry
in the pdf of the speed c decreases with increasing length n of
the structure. These properties are summarized in Figs. 6(c)
and 6(d) which show the kurtosis of the pdf and its standard
deviation σ as a function of n.

IV. STATISTICAL CHARACTERIZATION
OF LS DISPLACEMENT

To characterize the dynamics of an LS, we fix attention on
its centroid, defined by

xc(t ) =
∫ L
−L xu(x, t ) dx∫ L
−L u(x, t ) dx

, (9)

where [−L, L] is the domain size. Figure 7 shows the location
of this centroid for LS1 as a function of the elapsed time
t as determined from numerical simulations of the system
Eqs. (1) and (2) starting from several slightly different initial
conditions (color-coded) obtained by multiplying u and ψ at
the same grid points as the solution by independent random
vectors of magnitude 10−5. The results evidence the extreme
sensitivity of the drift dynamics to initial conditions, as is
expected of a chaotic system.

From the dynamics of the centroid, we can extract its
displacement �x(t ) ≡ xc(t + dt ) − xc(t ) in time dt for each
realization of the chaotic process. Figure 8(a) shows this
displacement for one such realization. We see that successive
displacements may be considered to be uncorrelated, with
zero mean. Indeed, the resulting distribution of �x resembles
a Gaussian distribution [Fig. 8(b)], as may be expected of
Brownian motion. However, in the present case the distribu-
tion is truncated since very large displacements in the time dt
are prohibited. This is a consequence of the fact that the dis-
placement is fully deterministic, with each realization drawn
from a bounded attractor. Figure 8(c) shows the expected rapid
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FIG. 8. (a) Displacement �x of the centroid of a one-bump state
as a function of time t in a single realization of the chaotic walk
at ρ = −0.27 and γ = 0.001. (b) Associated probability density
function P(�x). (c) Evolution of the standard deviation σ�x of the
resulting displacement dynamics. (d) Ensemble standard deviation
σ (t ) computed over 100 slightly different initial conditions differing
by order 10−4. The inset presents the same results on a log-log
scale. Initially, a ballistic behavior is observed (exponent 1, t <

100, dashed black curve), followed by a crossover to subdiffusive
behavior (exponent 0.345, t > 100, dashed red curve).

saturation of the standard deviation σ�x(t ) of �x. In contrast,
Fig. 8(d) shows the cumulative effect of these displacements,
i.e., the standard deviation σ (t ) of the centroid position xc(t )
computed over 100 realizations of the above process, each
generated by a small [O(10−4)] random perturbation of the
initial condition.

Figure 9 shows the corresponding evolution of 3-bump and
14-bump localized states in a space-time diagram. We see that
the broader structure has a broader probability distribution
function than the shorter structure [Fig. 9(c)]. At first sight
this conclusion is in conflict with our mobility calculation.
We understand this unexpected result as follows: because
broader structures have lower mobility and therefore larger
effective inertia, a broader structure, once in motion, will

FIG. 9. Space-time evolution of (a) 3-bump and (b) 14-bump
localized states when ρ = −0.28, γ = 0.012 showing that the ampli-
tude of the centroid displacement decreases with increasing number
of bumps. (c) Displacement �x of the structures as a function of time
together with their pdf.

(b)(a)

FIG. 10. (a) Spatiotemporal evolution of a one-bump localized
solution of the Swift-Hohenberg equation (1) with b = 1.8, ρ =
−0.27, η = 0 in the presence of additive deterministic fluctuations
γ ∂xψ (x, t ) with γ = 0.004 and μ = 3. (b) Temporal evolution of
the centroid position xc(t ).

drift further before it can change direction, resulting in larger
typical displacement than for shorter structures.

V. CONCLUSIONS

Based on a prototype model of pattern formation, the
Swift-Hohenberg equation, we have shown that localized
structures are robust in the presence of multiplicative deter-
ministic fluctuations. This is in contrast to the effect of random
fluctuations, which ultimately always destroy such structures.
We have seen that in the former case the LSs exhibit complex
spatiotemporal behavior we have termed a chaotic walk. This
type of walk is highly sensitive to the initial conditions but
its properties can nonetheless be described using standard
statistical physics approaches including the computation of
probability distribution functions. The exploding dissipative
solitons studied in Ref. [31] provide a distinct example of
a system exhibiting related behavior, where translation is
triggered by loss of reflection symmetry. However, in con-
trast to the system studied here, in this system translation
is intermittent and associated with episodic escapes from a
reflection-invariant strange attractor as described in Ref. [32].
The resulting walk is thus a chaotic Lévy flight. In contrast
our system Eqs. (1) and (2) has no reflection symmetry. As
shown in Fig. 10 similar results hold in the case of additive
deterministic fluctuations as well.

We have seen that the presence of deterministic fluctua-
tions with increasing amplitude leads to the gradual erosion
of the stability zone of different LSs, with shorter structures
proving more fragile than broader ones. In addition, the
stability zone shifts towards larger values of the parameter
ρ because fluctuations at the lower end of the zone tend
to eliminate spatial structure while those at the upper end
tend to nucleate new structure. For large enough fluctuation
amplitude stable LSs are no longer possible.

We have seen that within their zone of stability the LSs exe-
cute a chaotic walk. The properties of this walk are determined
by the mobility of the structure, and we have shown by explicit
calculation that shorter structures have greater mobility, and
hence smaller effective inertia. As a result shorter struc-
tures change direction more frequently than longer structures,
which are therefore characterized by a broader distribution of
step sizes.

Similar behavior is found in two spatial dimensions as
well. Figure 11(b) shows several examples of chaotic but
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FIG. 11. Chaotic walk in two dimensions of an initially ax-
isymmetric one-bump state (a) for several slightly different initial
conditions for Eq. (2) when b = 2.2, ρ = −0.5, γ = 0.07, η = 0
(b). The red dot in (b) shows the location of the structure at t = 0.
(c) Displacements �x and �y of the centroid of a one-bump state
in time dt = 0.01 as a function of the time t in one realization
of the chaotic walk. (d) Associated probability density functions.
(e) Evolution of the standard deviations σ�x , σ�y of the resulting
displacements.

deterministic walks of a one-bump localized structure
[Fig. 11(a)] initially at (x, y) = (0, 0) obtained from different
realizations of Eqs. (1) and (2) in two dimensions generated by
multiplying u and ψ at each grid point by independent random
vectors of magnitude 10−3. No additive noise is included (η =
0). The figure shows the resulting trajectories in the (x, y)
plane while Figs. 11(c) and 11(d) show the statistics of the
centroid displacement (�x,�y) in time dt = 0.01, defined
as in the one-dimensional case, for one of these realizations.

These show that the chaotic walk is statistically isotropic with
a constant and isotropic standard deviation. Moreover, when
averaged over the initial conditions used to generate the differ-
ent realizations, the distribution of the resulting walks is also
isotropic. Thus localized structures in two spatial dimensions
undergo similar behavior when subjected to multiplicative
deterministic fluctuations as those in one spatial dimension.
A detailed study of the properties of these two-dimensional
deterministic walks is in progress.

The above results differ fundamentally from those prevail-
ing for Eq. (1) driven stochastically by white noise (γ = 0). In
this case all LSs eventually collapse to either the trivial state
u = 0 or to a spatially extended state. These two outcomes
are separated by an effective Maxwell point that has to be
computed as a function of the applied forcing strength η.
In fact theoretical interpretations of experimental studies of
LSs, in both 1D and 2D [4–6], typically assume that any
fluctuations that may be present are of a stochastic nature, and
not deterministic. We have shown that a careful examination
of the statistical properties of the observed LS dynamics
can in principle discriminate between these two possibilities,
and provide new insights into the nature of the underlying
fluctuations.

Throughout this paper we have adopted periodic bound-
ary conditions. However, it is known that fluctuations in
the boundary conditions can in and of themselves lead to
unexpected timing jitter in optical signals [33]. A study of the
effect of deterministic boundary fluctuations on the dynamics
of LSs through their effect on the critical wave number kc is
therefore also of interest, and will be reported on in a future
publication.
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Chapter 9

Conclusions

In this chapter, we summarize the main results presented in this thesis at each chapter as
well as some points for further research.

In chapter 2 was revealed how nonvariational e�ects could a�ect the dynamics of FKPP
fronts, obtaining that FKPP fronts exhibit a pulled-pushed-like transition when parameters
weighting nonvariational terms like nonlinear advection and nonlinear di�usion varies. These
results were validated in a LCLV experiment with optical feedback, obtaining that the ex-
perimental results were in good agreement with the theoretical ones. It is noteworthy that
the robustness of the FKPP fronts enables us to extend these results to other contexts such
as interfaces in optical and magnetical media, population dynamics and in combustion the-
ory. Moreover, these results open the doors to new questions like the nonvariational e�ects
in discrete and heterogeneous media from a theoretical point of view and the possibility of
improving the control of liquid crystal displays, considering nonvariational knob.

In chapter 3 was found a new mechanism for front propagation, as evidenced by putting a
bistable nonvariational system at the Maxwell points and varying the nonvariational terms.
In this scenario, the mechanism of propagation is purely nonvariational. Moreover, in any
point of the parameter space where a normal front exists, the speed depends on two contribu-
tions, the di�erence of energy between the stable states connected by the front and terms that
are related to the shape of the front and are related to the nonvariational terms. Bistability,
and in general multistability, is a robust phenomenon in nature as well as a nonvariational
mechanism. Therefore our work enables mechanism to understand and control front propa-
gation when it is possible to have such kinds of nonvariational terms. The applications range
from control of interfaces in liquid crystals, magnetical media, granular media dynamics, as
well as population dynamics and opinion dynamics in social media. In the scenario of FKPP
fronts, we are also interested in understanding how nonvariational e�ects are a�ected by
discreteness and heterogeneity in the spatial coupling.

In chapter 4 was presented how nonvariational e�ects can drive a transition from motion-
less to motion following a supercritical Pitchfork bifurcation in localized dissipative structures
exhibiting a parity breaking transition. From the theoretical point of view, we take the non-
variational Turing-Swift-Hohenberg equation as an archetypical model in pattern formation
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exhibiting localized states, where the nonvariational contribution comes from terms like non-
linear advection and nonlinear difussion. Moreover, due to the nonvariational TSH-equation
genericity, we expect to observe this kind of propagative bounded localized states in more
natural phenomena. On the other hand, from an experimental point of view, this kind of
mechanism of propagation of localized structures could be of interest in control of spots
in liquid crystals devices, labeled delivery of information in photonic and magnetic storage
devices, processors, and the delivery of micro-scale cargoes.

In chapter 5, we found a novel kind of chimera states or chaoticons in continuous media,
namely, traveling chimera states. Although the traveling chimera states in discrete media
were known, our work presents, to the best of the authors' knowledge, the �rst example of
a traveling chimera state in continuous media. Nonvariational e�ects drives the emergence
of these intriguing states. In our work, we characterize its behavior from a dynamical and
statistical perspective and give numerical insights about its bifurcations. As further work, we
are investigating possible higher dimensional generalization of these states. As nonvariational
terms could be accessible as a physical knob, we expect to �nd such kinds of states in
experiments as well as in nature. In particular, due to the emergence of the Turing-Swift-
Hohemberg in disciplines like ecology, chemistry, and social dynamics, we expect to see these
states in such systems.

In chapter 6, we exhibit an intriguing kind of propagative chimera state in continuous
media, namely, wandering chimera states, characterized by a wandering motion resembling
a random walk. We characterize its dynamical and statistical properties. In particular, we
consider the centroid displacements as order parameter and characterize the geometry of its
displacement, obtain numerically the attractor basin, and reveal its interesting geometrical
complexity proper of chaotical systems. In this way, the wandering motion of the localized
structure was mapped to a chaotical trajectory of the centroid. Moreover, the leading Lya-
punov exponents were calculated, obtaining that its chaotic dynamics are of low-dimensional
type. On the other hand, we show evidence of these states in the LCLV experiment. Never-
theless, deeper research about the emergence of this kind of state in the LCLV experiment
is needed. Moreover, due to the genericity of the nonvariational Turing-Swift-Hohenberg
equation, we expect the observation of these kinds of states in a wide variety of natural and
technological systems. Finally, some control strategies were o�ered to achieve spatial pinning
or propagation with a preferential direction of motion, enabling its potential use in designing
electro-optical devices for storage and computing and micro energy generators.

Inspired by how Spatio-temporal chaos can drive to wandering motion, in chapter 7,
we try to answer a more deep question: how chaotic �uctuations, as another example of
nonvariational perturbation, can induce new kinds of dynamical phenomena. In particular,
we study how deterministic (or chaotic) �uctuations modify the dynamics of normal fronts
and how di�erent are such results when they are compared to the stochastic perturbation
scenario. Moreover, our work proposes an interesting question, when external �uctuations can
be modelled by stochastic processes?. As a physical motivation, these complex deterministic
�uctuations could correspond to a system coupled with a small reservoir bath, de�ned with
a small number of particles, whose dynamics could be modeled by an n-body problem which
have chaotical solutions typically. This work creates a bridge to exploring how deterministic
�uctuation modi�es pre-existing phase transitions or even induces new ones. In this sense,
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a complete study of chaos-induced transition is missing and creates an interesting area to
explore. An experimental approach to an experiment could use the LCLV experiment in the
multistability region (for simplicity bistability) and introduce the Spatio-temporal chaotic
perturbations using the SLM device. Such experiments could improve our comprehension of
the spatiotemporal chaotic perturbations in spatiotemporal systems and give insights into
how randomness can emerge from deterministic systems.

In chapter 8, we studied the e�ect of deterministic �uctuations in the dynamics of localized
states, obtaining in such a way an exciting example of a chaotical particle. The e�ect of
deterministic �uctuations enables a pinning zone in contraposition to the e�ect of randomness
perturbations on localized states in a similar way than the obtained result for deterministic
�uctuations in fronts in chapter 7. In both scenarios, the pinning zone is a consequence of
the limited (or forbidden) transitions in deterministic systems. In addition, we characterize
how this zone depends on the �uctuation intensity parameter, obtaining a shrinking e�ect of
the pinning zone when the intensity increase. When the centroid of the localized structures
under chaotic �uctuations is tracked, it exhibits complex spatiotemporal dynamics, namely, a
chaotic walk. Meanwhile, its dynamics appears to be qualitatively �similar� to the Brownian
particle, it is of deterministic nature and it could be interpreted as an analogous to a particle
interacting with a small chaotical thermal bath composed by a n-body system, instead of
describing it with the standard stochastic approach. This work opens several questions about
the nature of randomness and how it can emerge from determinism. Finally, motivate us to
explore in deep a research line in chaos induced transitions and its applications.
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