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TRPM4 is a non-selective cation channel activated by intracellular calcium and
permeable to monovalent cations. This channel participates in the control of neuronal
firing, neuronal plasticity, and neuronal death. TRPM4 depolarizes dendritic spines and
is critical for the induction of NMDA receptor-dependent long-term potentiation in CA1
pyramidal neurons. Despite its functional importance, no subcellular localization or
expression during postnatal development has been described in this area. To examine
the localization and expression of TRPM4, we performed duplex immunofluorescence
and patch-clamp in brain slices at different postnatal ages in C57BL/6J mice. At P0
we found TRPM4 is expressed with a somatic pattern. At P7, P14, and P35, TRPM4
expression extended from the soma to the apical dendrites but was excluded from
the axon initial segment. Patch-clamp recordings showed a TRPM4-like current active
at the resting membrane potential from P0, which increased throughout the postnatal
development. This current was dependent on intracellular Ca2+ (ICAN) and sensitive to 9-
phenanthrol (9-Ph). Inhibiting TRPM4 with 9-Ph hyperpolarized the membrane potential
at P14 and P35, with no effect in earlier stages. Together, these results show that TRPM4
is expressed in CA1 pyramidal neurons in the soma and apical dendrites and associated
with a TRPM4-like current, which depolarizes the neurons. The expression, localization,
and function of TRPM4 throughout postnatal development in the CA1 hippocampal
may underlie an important mechanism of control of membrane potential and action
potential firing during critical periods of neuronal development, particularly during the
establishment of circuits.

Keywords: TRPM4, ICAN, hippocampus, CA1, pyramidal neurons

INTRODUCTION

TRPM4 is a Ca2+ -activated non-selective cation channel (CAN) permeable to monovalent cations.
TRPM4 and TRPM5 are the only members of the TRP family directly activated by intracellular
Ca2+ (Launay et al., 2002; Prawitt et al., 2003; Nilius et al., 2005; Pedersen et al., 2005). TRPM4
is widely expressed in several tissues, including the brain (Shpak et al., 2012; Funk, 2013; Kim
et al., 2013; Lei et al., 2014; Riquelme et al., 2018). In neurons, TRPM4 is gated by intracellular
Ca2+ increases through the activation of neurotransmitter receptors such as Gq -coupled receptors
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or ionotropic receptors (Mrejeru et al., 2011; Menigoz et al.,
2016). TRPM4 has been proposed as the ICAN underlying the
plateau potential in accessory olfactory neurons (Shpak et al.,
2012) and hypothalamus (Teruyama et al., 2011), and it has
been confirmed as the ICAN in pre-Bötzinger neurons, pyramidal
neurons in the hippocampus CA1 (Menigoz et al., 2016), layer IX
cerebellar Purkinje neurons (Kim et al., 2013), and in the neurons
of the thalamic reticular nuclei (O’Malley et al., 2020).

TRPM4 may help to control both the membrane potential
and the firing frequency of neurons. In cerebellar Purkinje
neurons and thalamic reticular nucleus neurons, activation
of mGluR1 increases the intracellular Ca2+, activating
TRPM4, which then increases the firing frequency through
an afterdepolarization or a plateau potential, respectively, (Shin
et al., 2009; Kim et al., 2013; O’Malley et al., 2020). Furthermore,
the activation of mGluR5 increases TRPM4 activity in pre-
Bötzinger neurons, thus controlling the motor output of the
respiratory central pattern generator (Mironov, 2008; Picardo
et al., 2019). These antecedents suggest TRPM4 may play a
significant role in the control of neuronal excitability and firing
frequency more generally.

In the hippocampal area CA1, the activation of NMDA
receptors increases postsynaptic calcium levels, triggering the
activity of TRPM4, which in turn increases postsynaptic
depolarization, thus enhancing long-term potentiation (LTP) of
excitatory transmission (Menigoz et al., 2016). Moreover, TRPM4
knockout mice show a variety of deficits in hippocampus-related
behavioral tasks linked to decreased LTP (Bovet-Carmona et al.,
2018, 2019). TRPM4 is also involved in neuronal degeneration
and ischemia/reperfusion damage (Schattling et al., 2012; Leiva-
Salcedo et al., 2017), where it plays a key role in oncotic cell
swelling and neuronal death, leading to the proposal that TRPM4
inhibition could be a treatment for these conditions (Jha et al.,
2020; Luo et al., 2020; Robert et al., 2020).

Although TRPM4 expression in CA1 pyramidal neurons
has been addressed through immunoblot, in situ hybridization,
mRNA expression, and cell immunofluorescence, no information
about its subcellular localization and expression during postnatal
development has been reported. Here, we addressed the
localization of TRPM4 in CA1 and its functional expression in
pyramidal neurons during postnatal development. We found
TRPM4 is localized in the soma and apical dendrites of pyramidal
neurons in the stratum pyramidale, with only sparse expression
in the stratum oriens. Furthermore, we found the presence of
a Ca2+ -activated non-selective cation current (ICAN), sensitive
to 9-Phenanthrol (a TRPM4 inhibitor), which increases during
postnatal development and is active at the resting membrane
potential. These data support the hypothesis that TRPM4 plays
multiple roles in controlling neuronal excitability and suggest
important roles in pathological conditions.

METHODS

Animals and Tissue Sectioning
All experiments were conducted following animal protocols
approved by the Ethical Committee of the Universidad de

Santiago de Chile, according to the rules and guidelines of
the National Agency of Research and Development (ANID).
Male and female C57BL/6J mice were housed in a temperature
and humidity-controlled facility with a 12/12 h light/dark cycle
with water and food ad libitum. Male and female mice at
postnatal day P0 and male mice at P7, P14, and P35 were used
for immunofluorescence and electrophysiology experiments. All
mice were obtained from independent litters.

Coronal brain slices containing the dorsal hippocampus
were prepared from mice between P0 to P35 (Supplementary
Figure 1). Briefly, male mice at P7, P14, and P35 were deeply
anesthetized by isoflurane inhalation (3%). Animals at P35 were
intracardially perfused with PBS 0.1 M pH 7.2 followed by freshly
made 4% w/v formaldehyde dissolved in PBS 0.1 M pH 7.4. All
mice were euthanized by decapitation, and brains were quickly
removed and placed in 4% w/v formaldehyde (Merck, Germany),
then incubated overnight at 4◦C. The next day, the brains
were placed in a vibrating tissue slicer (1000 plus, Vibratome,
United States), and sectioned using a sapphire blade to get
60 µm thick slices.

Primary Antibodies
Monoclonal anti-TRPM4 L88/86 antibody was obtained
from hybridoma tissue cultures and used as non-diluted
supernatant (RRID:AB_2716758). The antibody was
validated by immunoblots in HEK293 expressing TRPM4,
by immunofluorescence in B16-F10 cells expressing an
shRNA against TRPM4 (Riquelme et al., 2018), and in
cerebellar lobule XI (positive labeling) and lobule IV
(negative labeling; Supplementary Figure 2). Polyclonal
anti-MAP2 antibody (ab32454, RRID:AB_776174) was obtained
from Abcam (United States). Anti-AnkG antibody (75-
146, RRID:AB_10673030) was obtained from NeuroMab
(United States; Supplementary Table 1).

Secondary Antibodies
Alexa Fluor 546 goat anti-mouse (A21133), Alexa Fluor 546
donkey anti-rabbit (A10040), and Alexa Fluor 488 goat anti-
mouse IgM (A21042) antibodies were obtained from Life
Technologies (United States; Supplementary Table 1).

Immunofluorescence Labeling
Tissue sections containing the hippocampus were blocked in 10%
v/v normal goat serum (Sigma, United States) in 0.1 M PBS,
pH 7.4 (NGS) for 1 h at room temperature (RT); then sections
were incubated with the primary antibody used as non-diluted
supernatant or diluted in the same NGS solution using gentle
rocking for 60 h at 4◦C. Sections were washed in 0.1 M PBS for
30 min before incubation with the secondary antibody (1.5 h at
RT). After 6 washes of 5 min with PBS, the sections were mounted
on glass slides using Mowiol mounting media and covered with a
0.17 mm thick coverslip. Fluorescence was observed in an LSM-
510 or LSM 800 inverted confocal microscope (Zeiss, Germany).
For full area composition, images were acquired with a 10x,
0.3 N.A. objective. High magnification confocal images were
acquired using a 40 × 1.4 N.A. oil immersion objective, with a
pinhole of 1 Airy unit for each channel, a scan zoom of 1, frame
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scan mode with averaging of 4, and a pixel time of 2.06 µs. All
images were obtained at 8 or 16-bit pixel depth at 1024 × 1024
resolution. Images were adjusted for overall brightness, contrast,
and level using Fiji-ImageJ. For intensity measurements, confocal
images were acquired using a 25 × 0.8 N.A. water immersion
objective, with a pinhole of 1 Airy unit for each channel, a scan
zoom of 0.5, frame scan mode with an averaging of 4, and a pixel
time of 0.52 µs. Images were taken as Z-stack of 3 images at
1.5 µm intervals and analyzed as Z-projections using Fiji-ImageJ.

Image Analysis
Intensity measurements were collected using Fiji-ImageJ with the
regions of interest (ROI) plugin. Labeling intensity throughout
the stratum pyramidale, stratum radiatum, and stratum oriens of
hippocampal area CA1 was measured using several rectangular
ROI of 31 × 52 µm. Data were collected for at least four
animals on each postnatal day and the fluorescence intensity
was normalized to the fluorescence of the stratum pyramidale of
each mouse. For image analysis statistics, we tested for normality
using Kolmogorov-Smirnov and the statistical significance was
determined by the Kruskal–Wallis test followed by Dunn’s
post hoc test.

Electrophysiological Recordings
Mice (C57BL/6J) between postnatal day 7-35 were deeply
anesthetized with 3% isoflurane (P0 mice were not anesthetized)
and their brains were quickly removed and placed in ice-
cold oxygenated (95% O2, 5% CO2) high-magnesium
ACSF containing (in mM): 124 NaCl, 2.5 KCl, 5 MgCl2,
0.5 CaCl2, 1.25 NaH2PO4, 0.4 ascorbic acid, 2 sodium pyruvate,
26 NaHCO3, 11 glucose, and pH 7.4. Tissue blocks containing the
hippocampus were placed in a vibratome to obtain parasagittal
brain slices (350 µm thick). Then, slices were transferred to
a chamber containing oxygenated ACSF containing (in mM):
125 NaCl, 2.5 KCl, 1.3 MgCl2, 2.5 CaCl2, 1.25 NaH2PO4,
26 NaHCO3, 11 glucose, and pH 7.4. After 1.5 h of recovery, the
slices were transferred to a recording chamber mounted on a
Zeiss Axioscope 200FS DIC microscope. Slices were continuously
perfused with oxygenated ACSF (2–3 mL/min) at 32± 2◦C.

Voltage and current-clamp experiments. Whole-cell
recordings were performed from stratum pyramidale neurons
in the hippocampus using borosilicate glass pipettes (4 to
6 G�) filled with intracellular solution. For current-clamp,
the intracellular solution contained (in mM): 130 potassium-
gluconate, 10 KCl, 10 HEPES, 1.5 EGTA, 2 Mg-ATP, 0.3 Na-GTP,
and pH 7.2 adjusted with KOH (∼300 mOsm); and for voltage-
clamp intracellular solution contained: 130 CsCh3SO3, 8 NaCl,
10 HEPES, 5 TEA-Cl, 10 EGTA, 2 Mg-ATP, 0.3 Na-GTP,
5 QX-314, and pH 7.2 adjusted with CsOH (∼300 mOsm/kg).
For perforated-patch protocols, 300 µg/mL nystatin diluted
in DMSO was added to the intracellular solutions. Usually, a
stable access resistance (Ra) was obtained after 10 to 15 min
(Ra = 10–20 M�). In the case of a sudden decrease in the access
resistance, the recording was discarded.

For voltage-clamp recordings, the pipette and whole-cell
capacitance, as well as series resistance, was compensated by 80%,
neurons were held at -70 mV and recorded in ACSF containing

(in µM): 1 TTx, 50 CNQx, 25 DL-AP5, and 100 picrotoxin.
Voltage-ramp protocols from -100 to 100 mV (0.4 mV/ms)
from a holding potential of -70 mV were delivered somatically
at 0.2 Hz. Voltage-clamp recording was performed using a
Multiclamp 700A (Molecular Devices, United States) or HEKA
EPC10 (HEKA GmBH, Germany), data were filtered at 10 kHz
and digitized at 20 kHz using pClamp 10.3 or HEKA Patchmaster
2× 73.5.

Data Analysis
Electrophysiological data were analyzed using Clampfit 10.3.
Data are reported as mean ± standard deviation in the text
and a 95% confidence interval (CI) in the plots. Data were
tested for normal distribution using the Kolmogorov–Smirnov
test. For parametric data, statistical significance between groups
means was assessed using one-way ANOVA followed by a
Dunnett’s multiple comparisons post hoc test. For the two-group
comparison, we used the t-student test. Statistical significance
was determined at p < 0.05. The effect size was calculated using
Cohen’s d analysis for shared control using Estimation statistics
beta analysis1 (Ho et al., 2019).

RESULTS

TRPM4 Expression in CA1 Pyramidal
Neurons
Analysis of the Allen brain map database shows the presence of
TRPM4 mRNA in the pyramidal layer of the hippocampal area
CA1 of adult mice, with a pattern suggesting its expression in
pyramidal neurons. To characterize the expression of TRPM4
in pyramidal neurons from the hippocampal area CA1, we
performed duplex immunofluorescence labeling with TRPM4
and MAP2 and TRPM4 and AnkG in mouse brain sections from
P35 animals. As expected, we found strong TRPM4 labeling in
the whole hippocampal formation, particularly in the pyramidal
layer of CA1, CA3, subiculum, and in the granular cells of the
dentate gyrus (Figure 1A). A detailed analysis of the CA1 region
shows TRPM4 labeling in the soma and in the apical dendrites of
the pyramidal neurons that extend through the stratum radiatum;
the labeling is present in the proximal and middle apical dendrites
but is not present in the dendritic branches (Figure 1B); the axon
initial segment (AIS) is devoid of TRPM4 labeling (Figure 1C). In
the stratum oriens, we found sparse TRPM4 expression restricted
in most cases to the somatic region and without labeling of the
basal dendrites (Figure 1B). The labeling intensity measurements
show higher intensity in the stratum pyramidale and a reduction
in the stratum radiatum and stratum oriens (Figure 1D). Thus,
TRPM4 is localized in the soma and apical dendrites of pyramidal
neurons and is absent in the AIS.

TRPM4 Expression During Postnatal
Development of CA1
Next, we studied the expression of TRPM4 at different postnatal
stages. We performed duplex immunofluorescence labeling for

1https://www.estimationstats.com
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FIGURE 1 | TRPM4 expression in CA1 pyramidal neurons at P35. Confocal images showing double labeling of (A) TRPM4 (Alexa 488, green, i) with MAP2 (Alexa
546, magenta, ii), merged signals (iii), in the whole hippocampal area. (B) Shows the expression of TRPM4 (i) MAP2 (ii) and the merged signals (iii) in area CA1, and
(iv) shows a zoomed area (white rectangle); yellow arrowheads show neurons in the stratum pyramidale and the distribution in the soma and proximal apical
dendrite, white arrowhead show the distribution in the stratum oriens, showing the expression in the somatic region of the neurons. (C) Shows the expression of
TRPM4 (Alexa 488, green, i) and AnkG (Alexa 546, magenta, ii) and the merged signals (iii), and (iv) shows a zoomed area (white rectangle). (D) Graph of normalized
fluorescence intensity of TRPM4 in S.P, S.R, and S.O of area CA1. Fluorescence intensity values were normalized to CA1 S.P for each mouse. Each point
corresponds to an individual mouse (Kruskal–Wallis followed by Dunn’s post hoc test vs. CA1 S.P; n = 5 mice). S.P, stratum pyramidale; S.R, stratum radiatum; and
S.O, stratum oriens. Calibration bars = 100 µm in (A), and 20 µm in (B,C).
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FIGURE 2 | TRPM4 expression in CA1 pyramidal neurons during postnatal development. Confocal images showing double labeling of TRPM4 (Alexa 488, green, i)
with MAP2 (Alexa 546, magenta, ii), the merged signals (iii), and (iv) shows a zoomed area (white rectangle), yellow arrowheads showed neurons in the stratum
pyramidale and the distribution in the soma and proximal apical dendrite; white arrowhead shows the distribution in the stratum oriens, showing the expression in the
somatic region of the neurons. (A) Shows the expression of TRPM4 and MAP 2 at P0, (B) Shows the expression at P7, and (C) Shows the expression at P14. (D,E)
Graphs of normalized fluorescence intensity of TRPM4 in S.P, S.R, and S.O of area CA1 of P7 and P14. Fluorescence intensity values were normalized to CA1 S.P.
for each mouse. Each point corresponds to an individual mouse (Kruskal Wallis followed by Dunn’s post hoc test vs. CA1 S.P; n = 4 mice). (F) Graph of normalized
fluorescence intensity of TRPM4 in S.P, from P0, P7, P14, and P35 mice. Fluorescence intensity values were normalized to mean intensity values of CA1 S.P of P35
mice. Each point corresponds to an individual mouse (Kruskal Wallis followed by Dunn’s post hoc test vs. CA1 S.P, P35; n = 4–5 mice). S.P, stratum pyramidale;
S.R, stratum radiatum; and S.O, stratum oriens. Calibration bars = 20 µm.
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TRPM4 and MAP2 in brain sections containing CA1 at P0, P7,
and P14. At P0, we found a compact and thicker pyramidal layer
with a small stratum radiatum (Soriano et al., 1994; Supèr and
Soriano, 1994; Andersen et al., 2006, 116); TRPM4 is expressed
in the soma of the neurons present in the pyramidal layer
(Figure 2A, yellow arrows). Moreover, we found a few neurons
expressing TRPM4 in the stratum oriens (Figure 2A, white
arrows). At P7, we found a defined neuronal morphology and a
clear separation between the hippocampal layers. Additionally,
neurons in the stratum pyramidale show a strong somatic and
apical dendritic labeling (Figure 2B, yellow arrows), with sparse
labeling in the stratum oriens (Figure 2B, white arrows). The
labeling intensity in the stratum pyramidale is similar to the
stratum radiatum but decreases in the stratum oriens (Figure 2D).
In P14, we found TRPM4 labeling in the somatic region of the
pyramidal layer with a similar pattern as in P35, in which the
labeling occurs in stratum pyramidale and the stratum radiatum.
The neurons show labeling at the soma and the main apical
shaft (Figure 2C, yellow arrows). TRPM4 is sparsely expressed in
neurons present in the stratum oriens with a somatic pattern and
without labeling of the basal dendrites (Figure 2C, white arrows,
and Figure 2E). When we compared the fluorescence intensity of
the stratum pyramidale between the different postnatal stages, we
found the expression in the soma remains unchanged between
the different postnatal stages (Figure 2F). Together, our results
indicate TRPM4 is expressed at birth, and neurons progress from
a somatic pattern to a somatodendritic pattern with labeling in
the apical dendrites throughout postnatal development.

TRPM4 Functional Expression in CA1
Pyramidal Neurons During Postnatal
Development
To determine the functional expression of TRPM4, we performed
nystatin-perforated patch-clamp recordings in pyramidal cells in
CA1 at P0, P7, P14, and P35. We measured the TRPM4 current
in pyramidal neurons using glutamatergic and Na+ channel
blockers [(Riquelme et al., 2018), see section “Methods”]. We
found that a somatic voltage ramp (-100 to 100 mV) in pyramidal
neurons at P0 activates a non-rectifying current with a maximum
of 55.8 ± 11.6 pA, and a Vrev = 0.9 ± 1.3 mV. The application of
10 µM 9-Ph reduces the current to 30.2 ± 4.9 pA. This effect is
reversible after∼3 min washout (48.9± 7.9 pA) with no changes
in the Vrev. To further confirm the CAN nature of this current,
we broke the membrane to enter the whole-cell configuration,
thus allowing the diffusion of EGTA. This experimental protocol
(Figure 3A) reduced the current to 27.4 ± 5.6 pA (Figure 3B).
We found comparable results at P7: the current was non-
rectifying with a Vrev = 1.4 ± 0.4 mV, and a peak current of
63.2 ± 10.1 pA, the application of 9-Ph reduced the current
to 34.2 ± 3.9 pA, and was completely recovered after washout
(88.4 ± 26.4 pA). The intracellular diffusion of EGTA reduced
the current to 36.8± 17.1 pA (Figure 3C), with no change in the
Vrev.

At P14, we found a non-rectifying current with a
Vrev = −1.8 ± 1.9 mV, and a maximal current of 91.4 ± 15.6 pA.
This current was reduced to 33.8 ± 5.2 pA after the application

of 10 µM 9-Ph. Washout recovered the maximal current to
82.1 ± 13.3 pA, and EGTA diffusion reduced the current to
30.5 ± 8.2 pA (Figure 3D). Similarly, at P35, we found a
non-rectifying current with a maximum of 117.4 ± 51.7 pA
and a Vrev = −1.2 ± 2.6 mV (Figure 3E, i, black trace, and
ii black circles). The application of 9-Ph reduced the current
(42.2 ± 9.7 pA, one-way ANOVA, p < 0.01, Figure 3E, i red
trace, and ii red circles); current levels were recovered after
washout (108 ± 46.7 pA, Figure 3E, i blue trace, and ii blue
circles), and EGTA diffusion reduced the current (33.5 ± 7.3 pA,
one way ANOVA, p < 0.004, Figure 3E, i gray trace, and ii gray
circles), with no changes in the Vrev. Thus, these results indicate
an increase in the 9-Ph sensitive and Ca2+ -dependent current
during postnatal development.

Resting Membrane Potential Through
the Postnatal Development of CA1
Pyramidal Neurons
Next, we assessed the effect of TRPM4 inhibition at different
postnatal stages. We performed current-clamp experiments using
the nystatin-perforated patch-clamp configuration in pyramidal
neurons in CA1 from P0, P7, P14, and P35 mice. We
found TRPM4 inhibition at P0 and P7 did not change the
membrane potential (P0 control = −66.1 ± 7 mV; P0 9-Ph = -
66.3 ± 5.5 mV, t-test, p < 0.8; P7 control = −67 ± 2.7 mV;
P7 9-Ph = −67.8 ± 2 mV, n = 6, t-test, p < 0.2). At
P14 and P35, we found that 10 µM 9-Ph reversibly reduced
the membrane potential (P14 control = −69.6 ± 3.6 mV;
P14 9-Ph = −72.1 ± 3.8 mV, t-test, p < 0.004; P35
control = −70.7 ± 2.6 mV; P35 9-Ph = −73.1 ± 1.9 mV,
n = 6, t-test, p < 0.002; Figures 4A,B). These membrane
potential changes were associated with an increase in the input
resistance (Figure 4C), suggesting the closing of a conductance.
Together, these results show that a Ca2+ -activated, 9-Ph sensitive
conductance participates in controlling the membrane potential
at specific stages of postnatal development.

DISCUSSION

Here we report the distribution of TRPM4 in hippocampal area
CA1 during postnatal development in mice. Using a combination
of immunofluorescence with double labeling to localize TRPM4-
MAP2 or TRPM4-AnkG, and electrophysiology, we found (1)
that TRPM4 is expressed at birth with constant expression
through postnatal development; (2) TRPM4 expression is
restricted to the soma and apical dendrites, and (3) a CAN current
sensitive to 9-Ph, which is consistent with TRPM4, is active at
resting membrane potential and increases its magnitude through
postnatal development.

TRPM4 Expression in CA1 Pyramidal
Neurons During Postnatal Development
In mice, the expression of TRPM4 has been demonstrated
by immunoblot, reverse transcription qPCR, and
immunofluorescence in hippocampal neuron cultures (Schattling
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FIGURE 3 | TRPM4 functional expression in CA1 pyramidal neurons during postnatal development. Current recordings in CA1 pyramidal neurons in response to a
somatic voltage-ramp (−100 to 100 mV from a holding potential of −70 mV), glutamatergic transmission and action potential generation was inhibited (see section
“Methods”). Neurons were recorded in a nystatin-perforated patch configuration (control, 9-Ph and washout) and after breaking the membrane to enter whole cell
configuration, which allows EGTA diffusion (EGTA). (A) Diagram of the experimental protocol used in the electrophysiological recordings. (B) Shows the currents
recorded at P0 (n = 6), (C) shows the currents at P7 (n = 6), (D) shows the currents at P14 (n = 6), and (E) shows the currents at P35 (n = 8). (i) Each representative
current trace was obtained from CA1 pyramidal neurons (stratum pyramidale) after different treatments (Control, 9-Ph, Washout, EGTA); arrowhead shows where the
current was measured. (ii) Summary plot of the current in the different treatments, vertical lines show the 95% CI (statistical difference were determined using a
one-way ANOVA, p-values are show above each group). (iii) Cohen’s d for 3 comparisons against the shared control. Mean difference is depicted as a dot, the
vertical bar shows the 95% CI as indicated by the end of the vertical error bars, and the p-values are shown above each point, depicting results of a two-sided
permutation t-test. Each point corresponds to an individual mouse (1 slice per mouse).
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FIGURE 4 | TRPM4 inhibition hyperpolarizes CA1 pyramidal neurons during postnatal development. (A) Representative perforated-patch voltage trace recorded in
pyramidal neurons showing the effect of 10 µM 9-Ph at P0, P7, P14, and P35. (B) Summary plots showing resting membrane potential and the effect of 10 µM 9-Ph
at P0 (n = 6), P7 (n = 6), P14 (n = 6), and P35 (n = 6). (C) Summary plots showing the effect of 9-Ph on the input resistance at P0 (n = 6), P7 (n = 6), P14 (n = 6), and
P35 (n = 6; statistical difference were determined using a one-way ANOVA, p-values are show above each group). On the right side of each plot the paired mean
difference between the conditions is shown; the mean difference is depicted as a dot; the 95% confidence interval is indicated by the end of the vertical error bar.
Statistical differences were evaluated using paired t-test and p-values are shown above. Each point corresponds to an individual mouse (1 slice per mouse).

et al., 2012). The expression of TRPM4 in the hippocampal
area CA1 has been addressed by in situ hybridization and
functionally demonstrated in knockout mice, suggesting a role
in NMDA-induced postsynaptic depolarization, thus boosting
depolarization and enhancing LTP of excitatory transmission
(Menigoz et al., 2016; Bovet-Carmona et al., 2018), an effect
similar to that observed in dopaminergic neurons in the
substantia nigra, where a 9-Ph sensitive current participates in
postsynaptic depolarization (Mrejeru et al., 2011), despite this
information the expression of TRPM4 at the cellular level during
postnatal development has not been thoroughly addressed.

We found TRPM4 is expressed at birth, with little variation
in the level of the channel but with marked changes in
its localization during postnatal development, adopting a
somatodendritic pattern; dendritic expression is restricted to
the apical dendritic tree. This change is temporally related to
an increase in a Ca2+ -dependent and 9-Ph sensitive current
throughout development. In this context, it is notable that CA1
pyramidal neurons transition from network-driven burst firing
to an intrinsically bursting pattern during development. This
transition is the emergence of an Afterdepolarization Potential

(ADP) arising from voltage-dependent Ca2+ channels and a
persistent Na+ current that increases the ADP duration, which
reaches its maximum at P20 (Wu et al., 2004). However, ADP
is not fully explained by this mechanism; we suggest TRPM4
may participate in ADP, as in other neuronal types (Mironov,
2008; Kim et al., 2013; Lei et al., 2014; Picardo et al., 2019).
Our hypothesis is supported by evidence that the ADP in CA1
pyramidal neurons is partially dependent on a CAN current
(Fraser and MacVicar, 1996).

Localization of TRPM4 in CA1 Pyramidal
Neurons
Localization of the ion channels determines its influence on
the membrane potential and its ability to control synaptic
transmission and excitability (Trimmer, 2015). The apical
dendrites of CA1 pyramidal neurons receive input primarily
from distant CA3 neurons through the Schaffer collaterals, while
distal dendrites receive inputs from the entorhinal cortex through
the perforant path and from the thalamic projection (Spruston,
2008). The proximal apical dendrite expressed high levels of
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NR2B-containing NMDAR while distal dendrites expressed
lower levels of this receptor (Arrigoni and Greene, 2004). These
differences in synaptic inputs and receptor expression control
the synaptic integration, transmission, and plasticity of the CA1
pyramidal neuron (Remondes and Schuman, 2002). In this
context, TRPM4 in apical dendrites may help to control the
local membrane potential and regulate synaptic transmission in
a Ca2+ -dependent manner (Menigoz et al., 2016), while TRPM4
in the soma may contribute to plateau potential and burst firing.
These functions have already been described in several neuronal
types (Mrejeru et al., 2011; Kim et al., 2013; Lei et al., 2014). The
activation of TRPM4 in CA1 could be involved in developing
ADP and repetitive firing during neuronal activity. In this regard,
the EPSP or the backpropagated action potential may increase the
somatic and dendritic intracellular Ca2+ (Larkum et al., 1999),
thus boosting TRPM4 activity and increasing the depolarization
to a level (plateau potential) sufficient to activate the burst firing
mode. Pyramidal neurons in CA1 show different excitability
patterns along the septo-temporal axis; ventral hippocampal
neurons in CA1 are more excitable and are more depolarized than
dorsal CA1 pyramidal neurons (Milior et al., 2016). While we
did not explore these differences, we hypothesized that TRPM4
expression is consistent through the axis This is supported by
data from Allen brain map showing similar levels in the mRNA
through the axis2, but further experiments would be necessary to
address this point.

Additionally, we found TRPM4 is active at basal non-
stimulated conditions, as in smooth muscle cells (Gonzales and
Earley, 2012). Consistent with our findings, the resting [Ca2+]
in pyramidal neurons is between 100 and 150 nM (Wojda et al.,
2008), well above the minimum required for TRPM4 activation
(Launay et al., 2002, 2004).

TRPM4-Like Current During
Development
During mouse postnatal development, changes in the expression
of ion channels and/or receptors determine changes in the
morphology and excitability patterns of neurons (Pokorný and
Yamamoto, 1981; Johnson-Venkatesh et al., 2015; Sánchez-
Aguilera et al., 2020). Our results indicate TRPM4 is expressed
at P0, suggesting its expression begins before birth. This is
consistent with human evidence that TRPM4 expression in
the hippocampus starts at 15 weeks post-conception3. At P0,
pyramidal neurons display small action potentials and slow
activity, which progresses to regular spiking at P14 (Sánchez-
Aguilera et al., 2020). While we did not observe a change in
the expression of the channel, we observed an increase in the
CAN current through postnatal development, corresponding to
the changes in firing behavior in CA1 pyramidal neurons from
network-driven burst firing to intrinsic burst firing (Wu et al.,
2004), but experiments proving the ADP dependency of CAN
through development would be required to determine the precise
role of this current.

2https://mouse.brain-map.org/gene/show/44509
3https://www.brainspan.org/lcm/search?exact_match=false&amp;search_term=
TRPM4&amp;search_type=gene

We found that 9-Ph hyperpolarized the membrane potential
in neurons at P14 and P35 but not at earlier stages. This change
in the membrane potential is accompanied by an increase in
input resistance, indicating 9-Ph closes a conductance. These
9-Ph effects are synchronous with an increase in TRPM4-like
currents, suggesting that these currents participate in setting
the membrane potential. Despite the presence of TRPM4-like
currents in early postnatal stages (P0 and P7), we did not observe
changes in the membrane potential, suggesting other currents
may be shunting the TRPM4-like conductance, including
perhaps background potassium conductance (Spigelman et al.,
1992), Ih currents (Vasilyev and Barish, 2002; Bender et al.,
2005), or tonic GABA currents (Marchionni et al., 2007). The
observation that TRPM4 is expressed at birth strongly suggests
TRPM4 expression starts in the prenatal period, in this context,
TRPM4 has been implicated in cell migration in epithelial
and immune cells (Shimizu et al., 2009; Cáceres et al., 2015),
suggesting a similar role in the developing brain; however,
TRPM4 KO mice show no differences in volume or number
of neurons in the hippocampus compared to wild-type mice
(Menigoz et al., 2016), although their connectivity is changed
(Bovet-Carmona et al., 2019). Additional experiments using
in utero electroporation of shRNA against TRPM4 would be
necessary to address this point.

In CA1 pyramidal neurons, the localization of TRPM4 in
the soma and main apical dendrites allows fine-tuned control
of excitability through changes in the membrane potential in a
Ca2+ dependent manner. Moreover, the increase in the current
throughout postnatal development may be a mechanism to
control action potential firing during critical periods of neuronal
development during the establishment of circuits.
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