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In an election campaign, candidates must decide how to optimally allocate their efforts/resources optimally

among the regions of a country. As a result, the outcome of the election will depend on the players’ strategies

and the voters’ preferences. In this work, we present a zero-sum game where two candidates decide how to

invest a fixed resource in a set of regions, while considering their sizes and biases. We explore the Majority

System (MS) as well as the Electoral College (EC) voting systems. We prove equilibrium existence and

uniqueness under MS in a deterministic model; in addition, their closed form expressions are provided when

fixing the subset of regions and relaxing the non-negative investing constraint. For the stochastic case, we

use Monte Carlo simulations to compute the players’ payoffs, together with its gradient and hessian. For the

EC, given the lack of Equilibrium in pure strategies, we propose an iterative algorithm to find Equilibrium

in mixed strategies in a subset of the simplex lattice. We illustrate numerical instances under both election

systems, and contrast players’ equilibrium strategies. Finally, we show that polarization induces candidates

to focus on larger regions with negative biases under MS, whereas candidates concentrate on swing states

under EC.
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History :

1. Introduction
1.1. Motivation

Democratic election is the most prevalent mechanism for choosing a country’s leader all over the

world at this time. As a result of several events that have taken place during the 20th and beginning

of the 21th century, there are now, as for 2020, more than 55% of the world’s countries that rely

on a ballot system to choose their authorities (Our World in Data (2019)).

Before the election day, candidates who run for president (or similar positions, such as prime

minister) hold an election campaign. During this, multiple events take place in different regions of

the country where candidates promote their ideas and promises to the potential voters of the regions

visited. Among the multiple challenges that arise in this context from a candidate’s perspective,

this paper focuses on the following research question: Given a resource with a fixed budget,

for example, time, what is the optimal allocation of this resource among the various
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regions of the country? The motivation to focus on regions or parts of a country such as

states, is: (i) in-person electoral campaign events can take place in, at most, one regions at a given

time, (ii) regions are usually characterized by populations that share common traits, such as the

their political preference. Indeed, inhabitants from a particular region might have a very different

political position compared to voters from another region, and (iii) the number of potential voters

(or electoral votes depending on the case) varies from region to region.

Given the heterogeneity of the different regions, some of them are going to be more attractive

to invest in than others. For example, although California is the state with the most electoral

votes in the US electoral system, candidates usually prefer to focus their campaign efforts on other

places (see National Popular Vote Inc. (2019)). The reason is probably that the existing political

preference biases of CA residents leave little room for improving the chances of winning for either

candidate compared to those in other states. On the contrary, the so-called swing states are known

to be the ones that are key for winning the election. Swing states are characterized by having a

significant population that is undecided, or at least, to some degree can be convinced to vote for

either one candidate or the other.

As expected, the electoral outcome in each region or state will depend on the level of effort, (i.e.

the resource investment) of the candidates. Therefore, it is reasonable to think that the turnout

for a candidate in a region will increase as the more effort she invest, while it will decrease the

more effort her contenders make. Thus, the candidates’ resource allocation problem is modeled as

a zero-sum game. For simplicity, we present a game theory formulation of the setting described

above for two candidates, under the Majority System, and the Electoral College systems. The aim

of this work is not only the modelling and resolution of each election system, but also analyzing the

contrasts between the equilibrium strategies obtained in both. For example, how does polarization

affect candidates’ resource allocations? Also, what is the impact of voter uncertainty in the two

systems? Under what circumstances do swing states become attractive to candidates? We believe

there are several such interesting questions that can be answered by using mathematical models

able to capture the problem structure in order to analyze candidates’ actions.

Although in reality an election outcome is a result of multiple factors, we provide a simplified

model that is still capable of providing insightful results able to resemble candidates’ decisions

observed in reality. Some of the main challenges are: (i) create a modelling framework with the

complexity that enables the representation of the agents’ actions and payoffs of the setting, while

also being tractable to solve, and (ii) the model resolution under the different cases which involves

for instance the estimation of complex mathematical expressions, or the computation of mixed

equilibria. We analyze the case of the two following election systems:

• MS (Majority System): The candidate with the most votes wins the election.
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• EC (Electoral College): Each region has a number of electoral votes. On each region, the

candidate with the majority of votes wins all the electoral votes of the region. The candidate with

more electoral votes wins the election. This is the electoral system in the US.

It is worth to clarify that in the actual EC system used in the US, in some states the Electors

are free to vote their own choice (not necessarily matching the majority of the popular vote of

the respective state). In 33 states the electors are obligated to vote for the popular vote winner

candidate.

For ease of exposition, we present the strategy allocation problem from an election campaign

setting. However, it is important to note that there are several other applications which share a

similar game theoretic framework. For example, firms that compete for a market share within a

set of localities, power control games in wireless network, and resource allocations in a battlefield.

1.2. Contributions and Structure of the Paper

The main contributions of this work can be summarized as the following three:

1. Modelling: The development of a game theory modelling framework able to capture candi-

dates’ resource allocation decisions, considering biases and abstention, under a Majority System

and an Electoral College system, showing equilibrium existence and uniqueness for some particular

cases under the Majority System, and developing closed form solutions for certain settings.

2. Algorithms: The development of solution methods able to find the game equilibrium using

Monte Carlo simulations to compute multidimensional integrals and its respective derivatives.

3. Numerics: Solve numerical experiments providing insight into what equilibria arise under

different settings. In addition, contrast the impact of voters’ uncertainty as well as polarization in

the candidates’ strategy and the election outcome.

The paper structure is described as follows: The literature review is given in Section 2. In

Section 3 the electoral model under MS is presented, followed by EC in Section 4. The the numerical

computations are shown in Section 5. Finally, conclusions and future work are given in Section 6.

All proofs are in the Appendix.

2. Literature Review

A basic model for the resource allocation problem was denoted as the “Blotto game” or “Coronel

Blotto”. In this game, two players decide how to allocate a finite resource among a finite set of

objects (also denoted as battlefields) where the player that allocates the most resources on an object

wins it. The players’ payoff results in the number of battles won (see Borel (1921)). Since then, this

problem has been studied under multiple variations; we refer the reader to Kovenock and Roberson

(2012), Duffy and Matros (2017), and Thomas (2018) for more details on these variations.
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An interesting setting of the Blotto game is the case with heterogeneous values (or weight) for

each field. Gross and Wagner (1950) solved the game equilibrium where players maximize the

total weighted battles won. Assuming symmetric budgets and heterogeneous weights, they solved

the game for three fields. The case with more than three fields and homogeneous valuations was

addressed in Laslier and Picard (2002). Gross and Wagner (1950) had pointed out the directions

of the results for this case without providing technical details. Recently, the result has been gener-

alized for heterogeneous valuations, allowing for more than three regions, by Thomas (2018). The

solution of the problem with asymmetric budget and homogeneous battlefields has been charac-

terized by Roberson (2006) using n-copulas on the marginal distribution of the players’ strategies.

This result has been extended by Schwartz et al. (2014), and Kovenock and Roberson (2020), for

the heterogeneous valuations case. In all these settings, the outcome in each region is deterministic

given the players’ allocations. In our paper, we address a model where the result in each region is

a probability that depends on the players’ allocations, and pre-existing biases as well.

An early work that introduces uncertainty in the outcome was developed by Friedman (1958)

who framed the problem as an advertising expenditure allocation. He was the first to find a closed

form solution for the game equilibrium in which the players’ chances of winning each region are

proportional to the players’ investments while they maximize the expected number of sales. Brams

and Davis (1974) stated that under the Electoral College System, candidates invest in states in

proportion to the power of 2/3 of the state’s weight. The author assumed that both candidates

maximize the expected number of electoral votes, while assuming the resources allocated to each

state are the same for both candidates. Although there is literature that supports the symmetry

of candidates’ allocation strategies to some degree (see Shaw (1999)), there is significant evidence

for rejecting allocations to be proportional to the state’s weight (see National Popular Vote Inc.

(2019)). In our work, we consider the probability of winning in the objective function, while allowing

candidates’ investments to differ within the same states. Lake (1979) looked into the Electoral

College where candidates maximize the chances of winning the majority of electoral votes. They

found a procedure for computing the game equilibrium in closed form expressions using the Banzhaf

Power Index (see Banzhaf III (1964)). More recently, Duffy and Matros (2015) extended the results

of Lake (1979) for the case of asymmetric budgets, and the results of Friedman (1958) for more than

two players. Osorio (2013) generalized the closed form solution from Friedman (1958) to the case

of asymmetric players’ valuations where candidates maximize the expected number of votes. Our

work differs from these in the following aspects: (i) we incorporate states’ biases, (ii) we allow for

a more general representation of the stochastic voting outcome of each state (by using a Dirichlet

distribution instead of a Bernoulli), and (iii) we explore equilibrium in mixed strategies.
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Another study closely related to ours is Snyder (1989). The author presents a model in which two

parties compete in a legislative election, and analyzes the cases where parties maximize the expected

number of elected seats, and the probability of winning a majority. They consider candidates’

investments as a cost in their objective function. Similar to the work of Snyder (1989), Klumpp and

Polborn (2006) studied a simultaneous and sequential equilibrium of the game, also considering

the allocation cost in candidates’ objective. The main differences of our work are that we study the

majority and electoral college systems with a variable number of votes/electoral votes per region,

and we consider the allocation cost as a budget constraint (also known as “use it or lose it”).

Also under EC, Stromberg (2008) studied a probabilistic model in which candidates allocate

resources across states to maximize the probability of winning the election. Using a limiting approx-

imation argument of the central limit theorem, the authors characterize conditions that must satisfy

an interior equilibrium of the game. Our work differs since we do not use Gaussian approximations

for the probability of winning; on the contrary, we use an exact method to compute this (see Kaplan

and Barnett (2003) where the authors reject the Gaussian distribution for the number of electoral

votes).

Prediction of the election outcome has also captured the attention of researchers. Bayesian priors

has been a technique widely used by researchers; applications of this in the EC can be found in

Kaplan and Barnett (2003), Rigdon et al. (2009), and Rigdon et al. (2015). Under the same electoral

system, choice models have also been used for forecasting purposes (see Wang et al. (2015)).

Finally, it is worth mentioning the connection of the presented problem with the market-share

competition between two firms, see for example, Bell et al. (1975), Barnett (1976), and Monahan

(1987). Similarly, framed as a multi-item contest problem, Robson et al. (2005) found closed form

expressions for the game equilibrium using a generalized version of the Tullock functional form

(see Buchanan et al. (1980)). Our work differs on treatment of the bias parameters, while we also

consider the possibility of abstention. In addition, we consider a stochastic version of the electoral

game, analyzing the cases where candidates maximize the expected number of votes, as well as the

probability of winning.

3. Majority System

Two candidates, A and B, compete on a political election campaign for president of a country.

We assume throughout the paper that the election is for president, however this can be applied

to any other election that shares the same settings of the model. The country is divided into

a set of regions which will be denoted as I := {1, . . . , n}. Each region i ∈ I has vi voters. Both

candidates are endorsed with a fixed campaign resource budget which they must allocate among

the different regions. We will consider this resource to be the number of days of the campaign.
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Then, both candidates have a budget of D days on which they are able to run their campaign

events in the different regions. Consequently, candidates must decide how much effort —how many

days of campaigning— they will put into each of the regions. Let xi ≥ 0 and yi ≥ 0 be the number

of days inputted by candidates A and B respectively in region i. For simplicity, we normalize the

budget to the unit value, i.e. D= 1. It can be easily seen that we can use other limited resources,

besides days of campaigning, which candidates need to allocate strategically among the regions.

For the sake of simplicity, the resource modeled in this work will be the days of campaigning.

However, the model could easily be extended to incorporate additional resources, such as money

or others, leading to a different polyhedral set as the strategy space.

The strategy space for both candidates, denoted by ∆n, is the simplex in Rn, namely ∆n = {x∈

Rn|
∑n

i=1 xi = 1, xi ≥ 0}. Intuitively, the more days that candidate A invests in a region, the more

votes she is likely to get from that particular region. Nonetheless, the more campaign her opponent

(B) does in that region, the less the number of votes candidate A will receive from that particular

geographical area. Therefore, the outcome of votes from each particular region will depend on the

political efforts of both contenders (see Nagler and Leighley (1992)). In addition, it is natural to

think that some regions have an a-priori bias towards one of the candidates. Put it differently, for

the same level of efforts inputted by both candidates in a particular region, the outcome might

favor one of the candidates over the other due to the already existing preferences of the population

of the region. We assume both players play simultaneously. For each region i, let sAi : R×R→ [0,1]

be the function that maps the efforts of candidates A and B (xi and yi respectively) into the

fraction of the votes that candidate A obtains in region i. Similarly define sBi : R×R→ [0,1] as the

fraction of votes obtained by candidate B in region i. We allow the possibility for abstention to

happen, therefore, 0≤ sAi + sBi ≤ 1.

We will first analyze a deterministic model of the problem, and then present a stochastic version.

The voting system to be analyzed here is the Majority System. In MS, the candidate who obtains

the most votes (nationwide) wins the election.

3.1. Deterministic Game

In this case, the vote outcome of all regions is determined by the vectors of efforts, x and y, of the

candidates A and B respectively. For this setting, we will define the outcome function sAi and sBi

for each region i as sAi (xi, yi) = xi+αi
xi+αi+yi+βi+γi

and sBi (xi, yi) = yi+βi
xi+αi+yi+βi+γi

.

αi, βi > 0 are the bias parameters towards candidates A and B respectively, and γi ≥ 0 is the

abstention parameter for region i. Bias parameters represent the intrinsic bias of the region towards

a particular candidate. If αi >βi, then people from region i are leaning towards candidate A since

for the same levels of efforts, i.e. xi = yi, candidate A gets more votes from the region than her
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contender. Vice-verse if αi <βi. Also, note that high values of the bias parameters αi, βi mean that

the result of region i is less sensitive with respect to the level of efforts xi and yi, and therefore

voters’ preferences are highly polarized to change their votes given the candidates’ campaigns. On

the contrary, low levels of αi, βi imply that the outcome of the people’s votes is more sensitive to the

candidates’ efforts. The abstention parameter, γi for region i, is such that there is no abstention if

γi = 0. Otherwise abstention increases monotonically with the parameter. Note that the abstention

can be seen as a “third” candidate option that does not campaign and has a bias parameter

equal to γi. Then, for a given region i, the total number of votes candidate A (B) receives is

vis
A
i (xi, yi) (vis

B
i (xi, yi)); and the total number of votes candidate A (B) receives is

∑
i∈I vis

A
i (xi, yi)(∑

i∈I vis
B
i (xi, yi)

)
. All parameters are public information.

The objective of each player is to win the election. However, this can result in an infinite number

of equilibria. Moreover, we can argue that some of these equilibria are more preferable than others.

For instance, if candidate A wins the election on one equilibrium with 51% of the votes (between

both candidates), whereas on another equilibrium wins with 68% (between both candidates), there

is no doubt that the second scenario is preferred by candidate A (and especially the political parties

behind the candidate). Then, as for the deterministic game, the objective of each candidate will

be to maximize the number of votes obtained with respect to the total number of votes obtained

between the two candidates. Note that an equilibrium—the formal definition of this will be given

shortly—of this game is also an equilibrium of the game in which candidates aim to win the election

regardless of the difference.

The optimization problem candidates A and B solve are written as follows:

max
x∈∆n

QA(x,y) :=

∑
i∈I vis

A
i∑

i∈I vi(s
A
i + sBi )

(1) max
y∈∆n

QB(x,y) :=

∑
i∈I vis

B
i∑

i∈I vi(s
A
i + sBi )

. (2)

The numerator of the candidates’ objective function in (1) and (2) has the total number of votes

they get, while the denominator has the total number of votes obtained by both. This is clearly a

zero-sum game since an increase in the percentage of votes of one candidate results in its loss from

the opponent.

Definition 1. An equilibrium is a pair of effort vectors (x∗,y∗)∈∆n×∆n such that each vector

x∗ and y∗ is the optimal solution of the respective candidate’s maximization problems given in

Expressions (1) and (2).

The following theorem states the existence of equilibrium of the game presented.

Theorem 1. There exists an equilibrium (in pure strategies) for the deterministic game.

Proof. See Appendix A. �
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Then next theorem states the uniqueness of the equilibrium.

Theorem 2. The equilibrium of the deterministic game is unique

Proof. See Appendix B. �

Unfortunately, there is no closed form solution for the equilibrium of the game. Before showing

a method to compute this, we will present a proposition that states a closed form solution for

the equilibrium of an unbounded version of the game. More precisely, consider the same election

game as described above except that the candidates’ efforts are allowed to take negative values

(these efforts must still add up to one). Furthermore, consider that the efforts of both candidates

are constrained to a particular subset of regions I∗ ⊆ I. The latter subset represents the regions

on which the candidates will focus their attention, whereas regions outside this set will have null

investment. The resulting game defined with the given characteristics will be called an unbounded

game constrained on the set of regions I∗. Existence and uniqueness of the equilibrium of this game

can be shown using similar arguments to the ones used for the original game. The next proposition

presents a closed form for its equilibrium.

Proposition 1. For any nonempty set I∗ ⊆ I, the equilibrium of the unbounded game con-

strained in the set of regions I∗ is given by

x
UB(I∗)
i =

vi
vI∗

(
(1 +αI∗) +

QA

QA +QB
γI∗

)
− QA

QA +QB
γi−αi (3)

y
UB(I∗)
i =

vi
vI∗

(
(1 +βI∗) +

QB

QA +QB
γI∗

)
− QB

QA +QB
γi−βi, (4)

for all i∈ I∗, where αI∗ :=
∑

j∈I∗ αj and similarly with βI∗, γI∗ and vI∗. Candidates’ votes can be

computed as QA =
vI∗ (1+αI∗ )

2+αI∗+βI∗+γI∗
+
∑

j /∈I∗
vjαj

αj+βj+γj
, and QB =

vI∗ (1+βI∗ )

2+αI∗+βI∗+γI∗
+
∑

j /∈I∗
vjβj

αj+βj+γj
.

Proof. See Appendix C. �

From Proposition 1, we can obtain the equilibrium of the unbounded version of the game when

fixing the set of regions where candidates can put their efforts. Note that the obtained equilibrium

might have negative components, in which case it cannot be the equilibrium of the original game.

Even if the unconstrained equilibrium quantities are all non-negative, this might not be the equi-

librium of the original game. However, if I∗ matches the set of regions with positive investment

values in the equilibrium of the original game, then (x∗,y∗) = (xUB(I∗),yUB(I∗)). Equations (3)

and (4) can be used to analyze the relation between the problem parameters and the game equi-

librium (at least in a local neighborhood). A corollary that extends from Proposition 1 is for the

particular case where I∗ = I. It can be observed that in the latter case,
∂xUBi
∂vi

,
∂yUBi
∂vi

> 0, i.e., a

region with a higher number of votes will induce more efforts by both candidates (see Appendix D).
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The interesting fact of the case in which I∗ = I, is that if unbounded equilibrium quantities (from

Proposition 1) are non-negative, then this will also coincide with the equilibrium of the original

game. Also, in this particular case, it can be shown that, the fraction of votes obtained by candidate

A (with respect to both candidates) in each region is equal to
1+

∑
j αj

2+
∑
j(αj+βj)

. Then, the total fraction

of votes obtained by candidate A equates the latter expression. Thus, the total fraction of votes

obtained by candidate A is independent of the abstention. Furthermore, the candidate who has

the greater value of the sum of his bias parameters will win the election. Namely, if
∑

j αj >
∑

j βj,

then candidate A wins the election. Another important observation that holds for the unbounded

game constraint to I∗ ⊆ I in the case of no abstention is stated in the next corollary. Note that

the unbounded version of the game can be interpreted as a hypothetical setting where candidates

can lend-and-borrow efforts among the different regions, in which short positions are possible.

Corollary 1. If γi = 0 for i ∈ I∗, the equilibrium of the unbounded game constraint to I∗ is

such that the fraction of votes obtained by candidate A in each region in I∗ is the same. Specifically:

x
UB(I∗)
i +αi

x
UB(I∗)
i +αi + y

UB(I∗)
i +βi

=
1 +αI∗

2 +αI∗ +βI∗
,

y
UB(I∗)
i +βi

x
UB(I∗)
i +αi + y

UB(I∗)
i +βi

=
1 +βI∗

2 +αI∗ +βI∗
. (5)

Proof. See Appendix E. �

Under a compulsory voting system, if I∗ matches the set of regions where the candidates’ efforts

are positive in the constraint game equilibrium (i.e. the original game), the result of Corollary 1

will hold. As a result, the fraction of votes each candidate obtains in each region of the set I∗ will

be the same.

In order to compute the equilibrium of the original game, with the non-negativity constraints, we

can iterate by solving a parametrized game with payoff function QA
t (x,y) := tQA(x,y)+

∑
j ln(xj)−∑

j ln(yj) for a fixed t > 0, obtaining (x∗t ,y
∗
t) which denotes the equilibrium of this game. The

proof of existence and uniqueness of equilibrium is analogous to that of the original game shown

in Theorems 1 and 2). Then, for a fixed value of t, we solve the game by using the infeasible start

Newton method, and iterate until finding the equilibrium of the limit game.

Up to this point, we have assumed that for a given vector of (i) efforts, x and y, (ii) bias

parameters, α and β, and (iii) abstention parameter, γ; the outcome of the election is perfectly

known and so can be computed exactly for every single region, and thus for the whole country.

The latter is probably a strong assumption, since despite the amount of information we have on

a particular region, we will probably not predict the result with 100% accuracy. Therefore, in the

next section we introduce a stochastic model that accounts for uncertainty in the vote outcomes.
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3.2. Stochastic Game

For each region i, let SAi , SBi , and SCi be the random variable of the fraction of votes received by

candidate A, candidate B, and the abstained votes respectively, such that

(SAi , S
B
i , S

C
i )∼Dir3 (k(xi +αi), k(yi +βi), kγi) , (6)

where Dirm is an m-dimensional Dirichlet distribution (in this case, three-dimensional).

Note that the expectation of SAi and SBi matches with the values of the analogous parameters (sAi

and sBi ) in the deterministic model. Indeed, E(SAi ) = xi+αi
xi+αi+yi+βi+γi

, E(SBi ) = yi+βi
xi+αi+yi+βi+γi

. The

parameter k > 0 regulates for the noise of the vote outcomes, so that higher values of k represent

settings with lower variability (and vice versa). In fact, the variance for the fraction of votes for

candidate A is Var(SAi ) = (xi+αi)(yi+βi+γi)

(xi+αi+yi+βi+γi)
2(1+k(xi+αi))

, so limk→∞Var(SAi ) = 0 (analogous for SBi

and SCi ).

In this case, where the vote outcomes are stochastic, candidates will exert their efforts in order

to maximize the chances of getting elected, instead of maximizing the expected number of votes.

Note that if candidates were to maximize the expected number of votes, it would result in a game

that is equivalent to the one introduced in the deterministic section if there was no abstention. Let

RA be the number of votes obtained by candidate A, and similarly for RB. The probability that

candidate A wins the election can be computed as:

P
(
RA >RB

)
=

∫
∆3

· · ·
∫

∆3

1{∑i∈I vis
A
i >

∑
i∈I vis

B
i }
∏
i∈I

fi
(
sAi , s

B
i , s

C
i

)
dsAi ds

B
i ds

C
i . (7)

Then, the optimization problem of candidates A and B can be written as:

max
x∈∆n

P
(
RA >RB

)
(8) max

y∈∆n
P
(
RB >RA

)
. (9)

Definition 2. An equilibrium for the stochastic game is a pair of effort vectors (x∗,y∗) ∈
∆n × ∆n such that each vector x∗ and y∗ is the optimal solution of the respective candidate

maximization problems given in Expressions (8) and (9).

Unlike the deterministic version of the game, in the stochastic version we have no guarantee of the

existence of the equilibrium in pure strategies. However, we can state the existence of equilibrium

in mixed strategies.

Theorem 3. There exists an equilibrium in mixed strategies for the stochastic game.

Proof. See Appendix F. �

After several numerical computations, we observed that the objective function always happens

to be quasi concave, which suggests that there might always exists an equilibrium in pure strate-

gies. Therefore, we proceed to find an equilibrium in pure strategies as described in the following

subsection.
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3.2.1. Computing Equilibrium To compute the equilibrium of the stochastic game, we use

a gradient descent ascent method. Namely, we move the strategies of both players simultaneously

according to their payoffs at the current solution and repeat until we reach a pair of strategies

(x,y) such that no player has an incentive to deviate. More specifically, we take a step ρ> 0 in the

chosen direction to update the new solution as (x,y)← (x + ρdA,y + ρdB), where dA and dB are

the directions of maximum and minimum growth of f(x,y) := P(RA >RB) within ∆n. In order to

compute these directions, the following proposition is introduced:

Proposition 2. The direction of maximum growth of a function f : Rn→ R within the simplex

region, ∆n, is given by di = xi

(
τi−

∑
j xjτj

)
, where τi = xi

(
∂f
∂xi
−
∑

j
∂f
∂xj

xj

)
.

Proof. See Appendix G. �

It can be easily shown that the directions of Proposition 2 correspond to the complementary

slackness of the optimization problem faced by both candidates. We use the complementary slack-

ness as a stopping criteria.

The algorithm we use is described as follows: The starting point is set to be proportional to

Algorithm 1 Equilibrium for Stochastic Game

1: Input α,β, γ, v ∈ Rn+

2: Set x, y= v/
(∑

j vj

)
, ξA = ξB = {∞}ni=1

3: While max{‖ξA‖},‖ξB‖}}> ε do

4: x= x+ ρdA, y= y− ρdB

5: update ξA, ξB

6: End While

7: Return (x, y)

the regions’ number of votes. Although the game is not convex-concave, the algorithm in practice

always happens to converge at a stationary point.

The calculation of f and its derivatives requires computing several composed integrals, see the

expressions of these terms in Appendix H. We need to compute 3n-dimension integrals for the

terms mentioned, which is not possible in practice, not even for low values of n. Therefore, we use

Monte Carlo simulation to approximate the value of these integrals.

3.2.2. Boosting : The need to compute several integrals by Monte Carlo simulation implies

that at each pair of strategies (x,y) we evaluate when running Algorithm 1, we need to sample

multiple Dirichlet random variables; one for every region and simulation. The next proposition

states a result that helps us to re-use the simulations of the Dirichlet random variables for nearby
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points (i.e. candidate strategies that are close to the ones we are at). For ease of notation, let us

denote S := {(SAi , SBi , SCi )}ni=1.

Proposition 3. Let g : (∆n)
n→ R be a scalar function. Then it holds that

E (g(S)|x + ∆x,y + ∆y) = E

(
K × g(S)×

∏
j

(SAj )k∆xj (SBj )k∆yj |x,y

)
, (10)

where K =
∏
j

B(k(xi+αi),k(yj+βj),kγj)

B(k(xi+∆xj+αi),k(yj+∆yj+βj),kγj)
and B(·, ·, ·) is the multivariate Beta function.

Proof. See Appendix I. �

Proposition 3 allows us to reuse the simulations of the sampled Dirichlet distribution at a given

point x,y in other points x + ∆x,y + ∆y. In particular, we are interested in using Proposition 3

with the function g(S) = 1{∑i∈I viS
A
i >

∑
i∈I viS

B
i }, which takes value one in case the election is won

by candidate A, and zero otherwise. As a result, we can sample the Dirichlet random variables once

at a particular pair (x,y), and compute an (unbiased) estimate of the probability that candidate

A wins at any other point (x + ∆x,y + ∆y) by computing the RHS of Equation (10) with g(S) =

1{∑i∈I viS
A
i >

∑
i∈I viS

B
i }. However, as we move further from the point (x,y), it might turn out that

the variance of the random variable in the RHS of Equation (10) increases. (Note that the random

variable of the RHS of Equation (10), unlike the rv in the LHS of Equation (10), does not follow

a Bernoulli distribution.) The next proposition states a result with respect to the variances of the

random variables of Equation (10).

Proposition 4. Let g(S) = 1{∑i∈I viS
A
i >

∑
i∈I viS

B
i }. If the probability of winning for candidate

A is higher at point (x + ∆x,y + ∆y) than at point (x,y), i.e. f(x,y)> f(x + ∆x,y + ∆y), then

Var (g(S)|x + ∆x,y + ∆y)<Var

(
K × g(S)×

∏
j

(SAj )k∆xj (SBj )k∆yj |x,y

)
, (11)

where K =
∏
j

B(k(xj+αj),k(yj+βj),kγj)

B(k(xj+∆xj+αj),k(yj+∆yj+βj),kγj)
.

Proof. See Appendix J. �

Proposition 4 provides a sufficient condition that implies that the variance of the rv K× g(S)×∏
j(S

A
j )k∆xj (SBj )k∆yj |x,y is greater than the variance of g(S)|x,y. In other words, reusing the

Dirichlet rv’ simulations from a point (x,y) to estimate the probability that candidate A wins at a

point (x + ∆x,y + ∆y) will probably lead to more error than using the Dirichlet random variable

at the point (x + ∆x,y + ∆y). It is interesting that there are cases in which this does not hold;

namely, there are cases in which estimating the winning probability for candidate A at a point

(x + ∆x,y + ∆y) reusing the Dirichlet rv from point (x,y) has less variance than estimating this

probability with the Dirichlet at the point (x + ∆x,y + ∆y). An example of an instance where
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the latter happens is vT = (12,3,4), αT= (0.1,0.5,0.4), βT= (0.2,0.6,0.3), γT= (0.1,0.1,0.1), x =

(0.1,0.35,0.55), y = (0.4,0.2,0.4), ∆x = (−0.07,−0.02,0.09), and ∆y = (0.15,−0.1,−0.05); the

variance expressions of the LHS and RHS of Equation (11) result in 0.30 and 0.23 respectively.

Finally, note that the variance of the rv K × g(S)×
∏
j(S

A
j )k∆xj (SBj )k∆yj |x,y can be estimated

simply by reusing the Dirichlet rvs from point (x,y), see Equation (46) in Appendix J. All in all,

we use the result of these propositions when applying Algorithm 1 by re-using Dirichlet sampled rv

at nearby points as long as the variance of the winning probability does not increases. Otherwise,

we sample again.

4. Electoral College

Under the Electoral College system, the candidates get all the electoral votes of the states where

they have the majority of votes with respect to their contenders. Let wi ∈ Z+ be the number of

electoral votes of state i ∈ I. Since the electoral college is used in the US, we prefer to denote

regions as states. As in Section 3.2, we will assume that for each state i ∈ I, the fraction of votes

at each state i received by candidates A and B, and the fraction of abstention votes, (SAi , S
B
i , S

C
i ),

follows a Dirichlet distribution as in Equation (6). One of the consequences of using the Dirichlet

distribution in the Electoral College system is the independence between the fraction of votes

obtained by a candidate relative to the sum of the candidates’ votes, and the abstention. This is

formally stated in the following lemma:

Lemma 1. If (X,Y,Z) ∼ Dir3(a, b, c), then the relative value of X with respect to X + Y is

independent of Z, that is, Cov( X
X+Y

,Z) = 0. Moreover, it holds that X
X+Y

∼Beta(a, b).

Proof. See Appendix K. �

Therefore, to determine the winner in each state i, we need to focus on the rv SAi /(S
A
i + SBi ),

which distributes as Beta(k(αi + xi), k(βi + yi)). Let G denote the event that candidate A wins

the election, namely G ⇐⇒
∑

j wj1{SAj >SBj }
>
∑

j wj1{SBj >SAj }
. Since we are using continuous

distributions for the vote outcome in each state, the event of a draw has probability zero. However,

there might be a non-zero probability of a draw between the candidates’ electoral votes (when∑
iwi is even and there is a subset of states whose electoral votes add up to half of the country’s

electoral votes). In this case the draw is broken by tossing a fair coin; we omit this in the given

definition of G in order to reduce notation, although we consider it in the computations performed.

The optimization problems that candidates face are:

max
x∈∆n

P(G) (12) max
y∈∆n

1−P(G) (13)
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In order to compute P(G), we use a recursive procedure similar to that in Kaplan and Barnett

(2003) and Rigdon et al. (2009). Let pi be the probability that candidate A wins state i, and Tk be

the rv of the number of electoral votes obtained by candidate A from states 1 to k. The recursion

is given as

P(Tk = t) = (1− pk)P(Tk−1 = t) + pkP(Tk−1 = t−wk) ∀k ∈ {2, . . . ,N}

P(T1 = t) = (1− p1)1{t=0}+ p11{t=w1}.
(14)

Let M :=
∑N

i=1wi, i.e. the total number of electoral votes. Then, the probability of winning the

election for candidate A is given by P(G) =
∑M

t=dM2 e
P(TN = t) (if M is even P(TN = M

2
) must be

multiplied by half). As for the probability of winning for candidate A in a state i (pi), this can be

computed as the complement of the cdf of the distribution Beta(k(αi + xi), k(βi + yi)) evaluated

at 0.5 (see Lemma 1). Note that for the limit game where k→ 0, the Bernoulli parameter of each

state can be computed in closed form as pi = (αi +xi)/(αi +xi +βi + yi).

We first explore the search for an equilibrium in pure strategies, and later on move to an equi-

librium in mixed strategies.

Definition 3. An equilibrium in pure strategies under EC is a pair of effort vectors (x∗,y∗)∈

∆2
n such that each vector x∗ and y∗ is an optimal solution of the respective candidate maximization

problems given in Expressions (12) and (13).

4.1. Relationship between MS and EC

It is interesting to note that there are some equivalences between the games under the MS and EC

election systems for certain cases. The following theorems state two of these equivalences:

Theorem 4. If the number of electoral votes is proportional to the number of voters, then the

two following games are the same:

• MS where candidates maximize the expected number of votes with no abstention, i.e., γ = 0.

• EC where candidates maximize the expected number of electoral votes.

Proof. See Appendix L. �

Although it is more natural that candidates maximize the probability of winning rather than the

number of electoral votes obtained in the EC; in reality, a political party with almost no odds of

winning might prefer the latter objective as a damage control strategy at the expense of the few

chances of winning.

Theorem 5. If the number of electoral votes is proportional to the number of voters, then the

two following games are equivalent in the limit where k→ 0, in the sense that players’ utilities in

both cases converge in probability:

• MS where candidates maximize the probability of winning with no abstention, i.e., γ = 0.
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• EC where candidates maximize the probability of winning.

Proof. See Appendix M. �

The limit case when k approaches zero induces a “U” shaped density function on each state, leading

to a highly correlated outcome among voters where either all of them support one candidate or

the other. Such a setting is unlikely to be observed in reality.

4.2. Computing Equilibrium in pure strategies

We apply a Gradient Descent Ascent method like the one used in Section 3.2.1 but now with

P(G) as the objective function of the zero-sum game. In this case, the derivative of the payoff

function can be written as ∂
∂xi

P(G) =
∑

j
∂
∂pj

P(G)
∂pj
∂xi

= ∂
∂pi

P(G) ∂pi
∂xi

since
∂pj
∂xi

= 0 for i 6= j. ∂pi
∂xi

is

the derivative of the complementary cdf of the Beta distribution on xi. Let Gi be the event that

candidate A wins the electoral votes of state i, and let Gc
i be the complement of this event. The

Law of Total Probability implies that P(G) = P(G|Gi)pi + P(G|Gc
i)(1− pi), taking derivative with

respect to pi results in ∂
∂pi

P(G) = P(G|Gi)−P(G|Gc
i). P(G|Gi) and P(G|Gc

i) can be computed using

the same recurrence as the one introduced in Equations (14) but fixing the outcome of the ith state

to winning (pi = 1) or losing (pi = 0) when the conditional event is Gi or Gc
i respectively. Then we

get

∂

∂xi
P(G) =(P(G|Gi)−P(G|Gc

i))k

(
E[ln(

SAi
SAi +SBi

)1{SAi ≥SBi }] + piθ(k(αi +xi), k(βi + yi))

)
,

(15)

where θ(a, b) :=ψ(a+b)−ψ(a) and ψ is the digamma function. Similar for candidate B. With this,

we can use the same procedure described in Section 3.2.1, in particular the use of Proposition 2,

and Algorithm 1. We find from numerical computations that the gradient descent ascent method

converges to a point which, at least numerically, appears to be either an Equilibrium, or a Local

Nash Equilibrium. In particular, the parameter k (which controls for variability) seems to have a

key role in this. Low values of k lead to cases with existence of Equilibrium, whereas high values of

k tend to end up in a Local Nash Equilibrium. Intuitively, the latter case resembles a deterministic

version of the game, where pure equilibrium does not seem plausible since in the extreme case (of

k→∞), payoff functions are not even continuous. As a result of the lack of Equilibrium in pure

strategies, we explore equilibrium in mixed strategies which indeed do exist.

Theorem 6. There exists an equilibrium in mixed strategies for the stochastic game under EC.

Proof. The proof follows the same arguments given in Appendix F. �

Unfortunately, the search for a mixed equilibrium of the game is not a simple task. Furthermore,

it might result in complicated strategies which might not be practical for the agents involved. As a

result, we decide to look for mixed equilibria of the game in a finite subset of strategies. Note that
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since this is a zero-sum game, if the subset of strategies is finite, we can obtain a mixed equilibrium

by simply solving an LP. More precisely, consider the (n, q)-simplex lattice (as introduced in Scheffé

(1958)) as the set of points Dq(∆n) := {x ∈ Rn|xi ≥ 0,
∑n

i=1 xi = 1, xiq ∈ Z+} where q ∈ Z+. The

latter set represents a discretization of the simplex, (note also that we are considering just strategies

where
∑

i xi = 1), in which the parameter q controls for the refinement of the grid so that higher

values of this parameter result in a more refined set, see Figure 1. Intuitively, the (n, q)-simplex

lattice represents the players’ strategies, so that each player is endorsed with q indistinguishable

balls which they have to invest among the n states. The number of elements in the (n, q)-simplex

lattice is
(
n+q
n

)
, which unfortunately is exponential in the number of states and on the parameter

q. However, we can think of a way to consider only a subset of strategies in Dq(∆n). Then, in order

to find an equilibrium in mixed strategies, we consider the following an iteration procedure:

1. Start with a subset of strategies for both players of the set Dq(∆n)

2. Find the equilibrium in mixed strategies

3. Explore the players’ best responses in pure strategies in the action space ∆n.

4. For each player’s best response at Step 3, obtain the vertices within the simplex lattice

that generate the smallest convex hull that contains the best response. Add these vertices to the

respective player strategy sets. If for both players there are no new strategies to be added, finish;

otherwise, go to Step 2.

Figure 1 Examples of Dq(∆3) for q= 1,2,3,4.

In order to formalize the latter, consider the strategy sets TA, TB ⊆Dq(∆n) for each respective

player. For Step 1, we start with a small set of strategies for both players. For example, these can

be the n canonical vectors ei which have a 1 in the ith component and 0 elsewhere, for i= 1, . . . , n.

For Step 2, define an equilibrium in mixed strategies where players have a finite set of strategies.

Definition 4. An equilibrium in mixed strategies under EC for discrete sets of strategies TA

and TB is a pair of vectors (σ∗A,σ
∗
B) ∈∆|TA| ×∆|TB | such that σ∗A ∈ arg maxσ Eσ,σ∗

B
[P(G)] and

σ∗B ∈ arg maxσ Eσ∗
A
,σ[P(G)].
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As mentioned, this equilibrium can be found by solving an LP due to the zero-sum game structure.

Let P ∈ R|T
A|×|TB | be the payoff matrix of the first player, namely Pij = P(G) where x is set to the

ith strategy of TA, and similarly y with TB. We can solve the following LPs

max
v,σA

v

s.t. veB −P TσB ≤ 0

eTAσA = 1

σA ≥ 0,

(16)

min
u,σB

u

s.t. ueA−P TσB ≥ 0

eTBσB = 1

σB ≥ 0,

(17)

where eA and eB are vectors with |TA| and |TB| ones respectively. See Appendix N for details.

For Step 3, we need to find the player’s best responses in pure strategies in ∆n given a mixed

strategy of their opponent. In order to do this, we use a gradient descent method for each player

considering the expectation of the objective derivative according to the contender’ mixture prob-

abilities. Thus, candidate A considers the expectation with respect to σ∗
B, whereas candidate B

does it with respect to σ∗
A. For Step 4, consider x∈∆n as the best response of candidate A (wlog).

We would like to find the points in the simplex lattice that contain x in its convex hull, while at

the same time, being as small as possible (in the sense that there is no other subset of these points

that also contains x in its convex hull). Recall that the grid refinement of the simplex lattice is

given by the parameter q, which implies that all components of the points in Dq(∆n) are multiples

of 1/q. Then, we can remove from the analysis the fractional part of x that is a multiple of 1/q and

stay with the remainder; namely, we can define xr := x− bqxc
q
∈ [0, 1

q
)n, where the floor function is

applied for each component. Amplifying xr by q leads to qxr ∈ [0,1)n. Let us define m :=
∑n

i=1 qx
r
i ,

then we can state the following claim:

Claim 1. It holds that m∈ {0,1, . . . , n− 1}.

Proof. See Appendix O. �

Let Y := {y ∈ {0,1}n|
∑n

i=1 yi =m}. Then, we aim to find a subset of vectors in Y such that qxr

can be written as a convex combination of these. This results in
(
n
m

)
vectors from which to choose.

Thus, we use the following algorithm:
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Algorithm 2 Finding binary vectors that contain fractional point

1: Input y ∈ [0,1)n, s.t. m=
∑n

i=1 yi ∈ {0,1, . . . , n− 1}

2: Set Z =∅, w= y

3: While w 6∈ {0,1}n do

4: z = arg minv∈Y ‖w− v‖22
5: Z =Z ∪{z}

6: t= min
{

mini:wi<zi

{
wi

zi−wi

}
,mini:wi>zi

{
1−wi
wi−zi

}}
7: w=w+ t× (w− z)

8: End While

9: Z =Z ∪{w}

10: Return Z

Given a fractional point, Algorithm 2 returns a set with vectors in Y that contain the fractional

point in its convex hull. In particular, at each iteration: In line 4, it finds the closest point in Y to

the current point w. Note that the objective function in line 4 can be written as ‖w−v‖22 =
∑

j w
2
j +∑

j v
2
j − 2

∑
j vjwj = ‖w‖22 + m − 2

∑
j:vj=1wj, which optimum is attained in the n-dimensional

binary vector with ones in the m largest components of w, and 0 elsewhere. Ties can be broken

randomly. In line 5, we add z to the output set Z. In lines 6 and 7, we move from the current point

w along the direction w− z until the first component reaches 0 or 1 (from a different previous

value), updating the current point w. This cycle repeats until the current point is binary, in which

case we stop iterating, and add this point to the set Z (line 9). The next Lemma states some

properties of Algorithm 2.

Lemma 2. Denote z(k) as the kth point added in the set Z in Algorithm 2, and t(k) as the value

of the scalar t in the kth iteration of Algorithm 2.

(i) The algorithm finishes in at most n iterations, i.e., |Z| ≤ n.

(ii) The weights of the convex combination of the algorithm input y can be computed as λk =

t(k)

1+t(k)

∏k−1

j=1
1

1+t(j)
∀k < |Z|, λ|Z| =

∏|Z|
j=1

1

1+t(j)
where λk > 0 for all k.

Proof. See Appendix P. �

We can see from Lemma 2 that the output of points to be returned is linear (at most n).

Indeed, at each iteration, the algorithm fixes one component of w to 0 or 1, keeping its value fixed

for the rest of the iterations. The latter is consequent with the second claim of Lemma 2. It is

interesting to observe that Algorithm 2 not only returns the vertices from which the input point y

is a convex combination, but also, the weights of the convex combination by using the intermediate

computations of the algorithm. Algorithm 2] runs in O(n2).
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Then, we can use Algorithm 2 with y = qxr in order to obtain at most n points in Y, and

transform these points to the original scale (recall that Algorithm 2 works in the [0,1] hypercube,

independent of q). More precisely, if x ∈∆n is the best response of one of the players, then the

simplex lattice points to be added to the player strategy set are Z(x) := { bqxc
q

+ zk

q
|zk ∈ Z(qxr)}

(note the cardinality is at most n), where we use the notation Z(qxr) to denote the output from

Algorithm 2 with input y = qxr. Figure 2 shows how Algorithm 2 iterates in the original space ∆n

with n= 3 and the points in the grid that conform the simplex lattice.

Figure 2 Algorithm 2. The blue point is the best response in ∆n to discretize. The white dot of the second panel

represents z of the first iteration, while the black black segment the ray w− z. In the third panel, the

red dot represents the new point w. The new point z is depicted in red in the fourth panel, and finally

the last point w is obtained in the fifth panel in white.

Finally, it can be stated that added points in set Z are minimal in the sense that there is

no other set in Dq(∆n), for example W, that generates x as a convex combination such that

Conv(W) ( Conv(Z). The formal proof is given in Appendix Q. In summary, the full algorithm

for finding a mixed equilibrium on subsets of the simplex lattice as strategy sets is given below.

Algorithm 3 Algorithm for mixed equilibrium in subsets of the simplex lattices

1: Input α,β ∈ Rn+, k ∈ R+, w ∈Zn+, q ∈Z+

2: Set TA, TB = {ei ∈ Rn, i∈ I}, Pij = P(G|x(i), y(j))∀(x(i), y(j))∈ TA×TB

3: While True do:

4: (σA, σB) = solve(P )

5: xBR = arg maxx∈∆n P(G|x,σB), yBR = arg miny∈∆n P(G|σA, y)

6: If Z(xBR)⊆ TA and Z(yBR)⊆ TB : Break

7: TA = TA ∪Z(xBR), TB = TA ∪Z(yBR)

8: Update P

9: End While

10: Return (TA, σA, T
B, σB)
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In line 2 of Algorithm 3 the strategy sets are initialized with the canonical vectors, and the payoff

matrix, P , is computed under the pairs of these strategies. Line 4 computes the mixed equilibrium

by solving Optimization problems (17) and (16). Lines 5 and 6 compute each candidate best

response on the continuous space ∆n. In line 7, we compute the discretized vectors in the simplex

lattice for the players best responses; if these sets, Z(xBR) and Z(yBR), are already contained in

the respective players strategy sets (TA and TB), the algorithm finishes. If this is not the case,

the new discretized strategies are added to the player’s strategy sets in lines 11 and 12. Finally, in

line 12 the payoff matrix is updated to include the payoffs for the pairs of players’ strategies that

involve new strategies.

5. Numerical Results

In this section, we show numerical computations of the game equilibria under the different settings

introduced under the Majority and Electoral College voting systems. Then we analyze the effect

of polarization for both election systems.

5.1. Majority System

5.1.1. Deterministic case: We focus our analyses on cases where strategies are non-negative.

Numerical results of the unbounded game (i.e., without non-negativity constraints) are shown in

Appendix R. Table 1 shows the equilibrium for the deterministic game under MS in an instance

composed of ten regions. The region’s vote-share, biases, and abstention parameters are given in

columns 2, 3-4, and 5 respectively. We observe that only the first three regions, which are the

ones with the largest vote-share, are chosen to invest in by both candidates. Adding up the results

from all regions, we see that candidate A, candidate B, and the abstentions are 30.0%, 28.9%, and

41.1% respectively. Thus, candidate A wins by obtaining 50.9% of the votes in the election between

A and B. Among the regions that candidates invest in, it can be seen from Table 1 that they

allocate most of their resources into regions in which the bias is leaning towards their contender. For

example, candidate A has a less favorable bias in region 1 compared to candidate B (i.e., α1 <β1);

consequently, in equilibrium candidate A ends up investing 68.3% of its resources into this region

(versus 36.4% for candidate B). As a result, the number of votes from the turnover in region 1

that candidate A ends up with is slightly more than half. (See last column of Table 1). As for the

second region, the biases and candidate investments are in the opposite direction compared to the

first region. Also, note that the two first regions end up getting the highest turnout nationwide.

This is explained by the high number of votes there, which induce candidates’ efforts to be focused

on them.

The equilibrium shown in Table 1 is computed using procedure described at the end of Section 3.1.

Nonetheless, since we know ex post that candidates focus exclusively on the first three regions, the
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equilibrium could have been computed using the closed form expression from Proposition 1 with

I∗ = {1,2,3}.

Region v [%] α [%] β [%] γ [%] x [%] y [%] Turnout [%] VFT A [%]
1 23.3 45 71 94 68.3 36.4 70.1 51.3
2 18.5 68 37 67 25.8 52.1 73.2 51.3
3 14.4 32 24 121 5.9 11.5 37.8 51.7
4 8.9 43 39 89 0.0 0.0 48.0 52.4
5 8.2 76 65 92 0.0 0.0 60.5 53.9
6 8.2 36 61 143 0.0 0.0 40.4 37.1
7 6.8 51 54 45 0.0 0.0 70.0 48.6
8 6.2 42 41 79 0.0 0.0 51.2 50.6
9 3.4 85 31 102 0.0 0.0 53.2 73.3
10 2.1 37 69 68 0.0 0.0 60.9 34.9

Table 1 Equilibrium quantities under MS in the deterministic model. Turnout column represents the

percentage of votes that goes either to candidate A or B, this is computed as

(xi +αi + yi +βi)/(xi +αi + yi +βi + γi) for each region i. VFT A represents the expected Votes From Turnout

that go to candidate A, this is computed as (xi +αi)/(xi +αi + yi +βi) for each region i.

Candidates’ investments in equilibrium shown in Table 1 is not just the result of the size and

biases of regions, but also of their abstention. In order to understand the impact of the latter,

we analyze the same instance shown in Table 1 with no abstention, i.e., γi = 0 for every region

i. The equilibrium is given in Table 2 from which we can make the following two observations:

First, note that compared to the equilibrium obtained in the case with abstention (see Table 1),

both candidates shift some of their efforts from the first two regions onto the third one. This is for

two reasons: (a) when setting the abstention parameters to zero, the third region becomes more

attractive to invest in since it has one of the biggest abstention parameters in the original instance,

and (b) the bias parameters (α3 and β3) are the lowest and one of the closest among all the regions,

and therefore, it is easier to influence the voters of that region. Second, since both candidates are

investing in the first three regions under a no abstention setting, the result of Corollary 1 holds.

Namely, the fraction of votes obtained by candidate A is the same in all these regions (see last

column of Table 2).

5.1.2. Stochastic case: We now proceed to solve the MS game under a stochastic model.

Table 3 shows the results with k = 10. It is interesting to observe that the candidates’ efforts are

similar to those in the deterministic case (see Table 1). As a result, the previously bias disadvantage

effect in which candidates invest more in regions with a smaller bias parameter relative to the

contender also holds. The probability that candidate A wins is 57.4%.

The equilibrium quantities given in Table 3 are obtained by running Algorithm 1. Recall that

we do not have a formal proof of existence and uniqueness of the equilibrium for the stochastic
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Region v [%] α [%] β [%] γ [%] x [%] y [%] Turnout [%] VFT A [%]
1 23.3 45 71 0 56.6 25.2 100.0 51.4
2 18.5 68 37 0 12.7 39.4 100.0 51.4
3 14.4 32 24 0 30.7 35.4 100.0 51.4
4 8.9 43 39 0 0.0 0.0 100.0 52.4
5 8.2 76 65 0 0.0 0.0 100.0 53.9
6 8.2 36 61 0 0.0 0.0 100.0 37.1
7 6.8 51 54 0 0.0 0.0 100.0 48.6
8 6.2 42 41 0 0.0 0.0 100.0 50.6
9 3.4 85 31 0 0.0 0.0 100.0 73.3
10 2.1 37 69 0 0.0 0.0 100.0 34.9

Table 2 Equilibrium quantities under MS with no abstention in the deterministic model. Turnout column

represents the percentage of votes that goes either to candidate A or B, this is computed as

(xi +αi + yi +βi)/(xi +αi + yi +βi + γi) for each region i. VFT A represents the expected Votes From Turnout

that go to candidate A, this is computed as (xi +αi)/(xi +αi + yi +βi) for each region i.

Region v [%] α [%] β [%] γ [%] x [%] y [%] Turnout [%] VFT A [%]
1 23.3 45 71 94 68.3 36.4 70.1 51.3
2 18.5 68 37 67 25.8 52.1 73.2 51.3
3 14.4 32 24 121 5.9 11.5 37.7 51.7
4 8.9 43 39 89 0.0 0.0 48.0 52.4
5 8.2 76 65 92 0.0 0.0 60.5 53.9
6 8.2 36 61 143 0.0 0.0 40.4 37.1
7 6.8 51 54 45 0.0 0.0 70.0 48.6
8 6.2 42 41 79 0.0 0.0 51.2 50.6
9 3.4 85 31 102 0.0 0.0 53.2 73.3
10 2.1 37 69 68 0.0 0.0 60.9 34.9

Table 3 Equilibrium quantities under MS in stochastic model with k= 10. Turnout column represents the

percentage of votes that goes either to candidate A or B, this is computed as

(xi +αi + yi +βi)/(xi +αi + yi +βi + γi) for each region i. VFT A represents the expected Votes From Turnout

that go to candidate A, this is computed as (xi +αi)/(xi +αi + yi +βi) for each region i.

game. Because of the latter, an empirical analysis is performed to test whether or not the strategies

obtained are indeed an equilibrium. Figure 3 shows the payoff ratio for different unilateral deviations

for each player. For example, if the equilibrium obtained is (x,y)∈∆2
n, then the ratio for player A

at a strategy x′ ∈∆n is computed as P(RA>RB |x′,y)

P(RA>RB |x,y)
. Similarly for player B. The y-axis of Figure 3

corresponds to the ratios for unilateral deviations of both players, while the x-axis represents the

Euclidean distance between the equilibrium point and the respective unilateral deviated strategy.

Note that every unilateral deviation computed resulted in a ratio below 1. Therefore, it seems that

neither player has an incentive to switch its strategies, at least from the testes unilateral deviations.

We now analyze the outcome of the election for different levels of uncertainty. Recall that for

the stochastic case, k is the parameter that controls for uncertainty (see Equation (6)). On the one

hand, as k→∞ the variance approaches zero, and therefore the game resembles its deterministic

version. On the other hand, at the limit where k→ 0, the result in each region i follows a discrete
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Figure 3 Payoff ratio for unilateral deviations for different strategies in ∆n for candidate A in the left panel, and

candidate B in the right panel.

random variable where all votes go to either one candidate or to abstention. Figure 4 plots the

probability that candidate A wins, in equilibrium, for different values of k using the same instance

parameters as before (see Table 3) except for the abstention parameter γ. More precisely, we look

at different levels of abstention by scaling the original abstention vector γ (from Table 3) by a scalar

factor g≥ 0. It can be seen on Figure 4 that as the game becomes more deterministic (k→∞), the

result becomes more predictable, and therefore the probability of winning for one of the candidates

(candidate A in this case) approaches 100%. Also, for a fixed variability level k, there is no clear

trend on the probability of winning for candidate A under the different abstention cases.

0.1 1 10 100

50 %

55 %

60 %

65 %

70 %

75 %

Probability of winning for candidate A

g = 50 
g = 1 

g = 0 

Figure 4 Probability of winning for candidate A (y-axis) for different levels of the parameter k (x-axis in log-

scale).

5.2. Electoral College

For the Electoral College case, we consider the same instance as in the Majority System, with

the same bias and abstention parameters, except that the states have electoral votes. With the

aim of obtaining an Equilibrium in fixed strategies, if there is any, we apply a Gradient Descent

Ascent method as described in Section 3.2.1 using the equations for the derivative values described

in Section 4.2. Despite obtaining a pair of strategies for both candidates when doing the latter
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procedure, this pair of strategies is not an Equilibrium. Figure 5 shows the payoff ratio for both

candidates for unilateral deviations from the pair of strategies obtained. We can see that both

candidates have an incentive to change their strategies to different ones. Nonetheless, it seems that,

at least locally, there is no such incentive. Thus, the pair of strategies obtained might be a Local

Nash Equilibrium.

0.2 0.4 0.6 0.8 1.0 1.2

20 %

40 %

60 %

80 %

100 %

120 %
Candidate A

0.2 0.4 0.6 0.8 1.0 1.2

20 %

40 %

60 %

80 %

100 %

120 %
Candidate B

Figure 5 Payoff ratio for unilateral deviations.

Consequently, we run Algorithm 3 in order to find an equilibrium under mixed strategies. Table 4

shows the instance parameters and the equilibrium obtained after running Algorithm 3. The vector

efforts shown are the strategies obtained with positive probability. These probabilities are given

in the last row of Table 4. It can be seen that (i) both candidates randomized their strategies,

and (ii) their efforts are mostly invested in the first three states, which are the ones with more

electoral votes. Candidate A’s equilibrium strategies are very similar to each other, focusing most

efforts in the first state, and less on the second and third states. As for candidate B’s efforts in

equilibrium, these more evenly distributed between the three first states compared to candidate A,

with emphasis on the first two regions. Also, it can be seen that overall, the expected probability

that candidate A wins the election is 55.2%.

Table 5 shows the probability that candidate A wins the election for each combination of strate-

gies of the mixed equilibrium given in Table 4. Candidate A’s chances of winning are almost the

same when playing any of the first three strategies regardless of what Candidate B plays. On the

contrary, if Candidate A plays the fourth strategy, the winning odds will depend highly on the

strategy of candidate B, taking values below 50% for some cases, although the chances of the latter

are below 2% (see Table 6).

5.3. Equilibrium and States’ Uncertainty

The results shown above assume k = 10. Recall that the parameter k regulates the variability of

the voters outcomes in each state; k→ 0 tends to the case where all electors choose one option,
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Region w α β x(1) x(2) x(3) x(4) y(1) y(2) y(3) y(4)

1 34 45 71 76 75 75 0 64 52 0 0
2 27 68 37 8 9 8 47 0 48 61 61
3 21 32 24 16 16 17 46 36 0 39 38
4 13 43 39 0 0 0 7 0 0 0 1
5 12 76 65 0 0 0 0 0 0 0 0
6 12 36 61 0 0 0 0 0 0 0 0
7 10 51 54 0 0 0 0 0 0 0 0
8 9 42 41 0 0 0 0 0 0 0 0
9 5 85 31 0 0 0 0 0 0 0 0
10 3 37 69 0 0 0 0 0 0 0 0

Probability [%] 11.8 1.1 82.9 4.2 28.4 35.9 24.0 11.7
Table 4 x(i) and y(i) with i∈ {1,2,3,4} correspond to the equilibrium effort vectors obtained with positive

probability after running Algorithm 3 with q= 100.

P(A wins) [%] y(1) y(2) y(3) y(4)

x(1) 55.1 54.9 55.1 55.1
x(2) 55.1 54.6 55.4 55.4
x(3) 54.8 54.9 55.4 55.4
x(4) 59.1 58.4 48.3 48.4

Table 5 Probability that candidate A wins for

each pair of strategies.

P(x(i), y(j)) [%] y(1) y(2) y(3) y(4)

x(1) 4.2 3.3 2.8 1.4
x(2) 0.4 0.3 0.3 0.1
x(3) 29.7 23.5 19.9 9.7
x(4) 1.5 1.2 1.0 0.5

Table 6 Probability of each case from the mixed

equilibrium.

whereas k→∞ results in a more deterministic outcome (the variance, in fact, goes asymptotically

to 0). Before showing the equilibrium results for different levels of k, it is worth mentioning that

Algorithm 3 uses a set of starting points for both players’ strategies. As a result, the equilibrium

outcome might differ when running Algorithm 3 with different starting points.

For each k we run Algorithm 3 a total of M := 40 times using a different random initial set of

strategies for each candidate. Table 7 shows for different levels of k: the average Earth Movers

Distance using the Euclidean distance between all pairs of equilibrium strategies obtained for

candidates A and B in the second and third columns respectively; the average probability that

candidate A wins among all M runs in the fourth column; and the average equilibrium support

cardinally obtained for candidates A and B in the fifth and sixth columns respectively.

Table 7 shows that for higher values of k, Algorithm 3 might lead to different outcomes, whereas

for low values of k the outcome always results in a single pure strategy for both candidates. The

intuition behind this is that for a more deterministic outcome of the game (high value of k),

players will tend to randomize their strategies since, otherwise, the opponent could take advantage

of this deterministic outcome, similarly as in Matching Pennies game. On the contrary, a more

stochastic game (low k) will induce pure strategies. Table 7 also shows that for higher values k,

the winning probability of candidate A tends to a slight increase. However, it is worth noticing

that the latter effect is much more pronounced in the MS rather than the EC (see Figure 4 and
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Table 7). As a result, reducing voters’ uncertainty (i.e., increasing k) does not translate in reducing

the uncertainty of the election winner under EC, unlike the case of the MS.

k D (on x) D (on y) P(A wins) [%] |Sup(x)| |Sup(y)|
1 0.00 0.00 52.3 1.0 1.0
2 0.00 0.00 53.0 1.0 1.0
5 0.02 0.00 54.2 1.0 1.0
10 0.07 0.07 55.2 4.125 4.125
20 0.07 0.08 55.4 4.85 4.85
50 0.16 0.15 54.8 8.5 8.5
100 0.16 0.15 55.8 13.35 13.35

Table 7 The effects of the value of k on the behavior of the equilibrium.

5.4. Performance of Algorithm 3

In this section we study the performance of Algorithm 3 by solving different numerical instances.

More precisely, we control for: (i) the number of states and (ii) the level of concentration of the

electoral votes among the states. With respect to the former, we consider n∈ {5,10,20,50}; while

for the latter, states’ electoral votes are sampled from a multinomial distribution where the number

of electoral votes of the i th state is (in expectation) proportional to νi, where ν ∈ (0,1] is a parameter

that controls for the concentration. If ν = 1, states will have a similar number of electoral votes,

whereas smaller values of ν will induce a more skewed distribution of electoral votes. We consider

ν ∈ {0.8,0.9,1}. In addition, the total number of electoral votes is set to 538 and each state is

endorsed with 3 additional electoral votes besides the sampled ones (thus the parameter of the

number of trials of the multinomial distribution is 538− 3n). For each pair (n,ν) we sample and

solve a total of 100 instances.

With respect to Algorithm 3, Table 8 shows the average and maximum: solving time, iterations,

cardinality of the players’ strategy sets when finishing Algorithm 3, and the number strategies

in the support with positive probability. It can be seen that instances with lower concentration

of electoral votes (i.e., higher ν) have a higher solving time and a larger strategy sets. This is

because when all states have a similar magnitude of electoral votes, candidates’ strategies will

have to consider investing in several states. This translates in higher solving times for the best

responses while also inducing more strategies to be added in the players’ strategy sets. It is worth

observing from Table 8 that the actual number of strategies with positive probability appears

to be independent of the concentration of electoral votes. Also, it is interesting to note that the

amount of iterations required do not seem to be particularly affected by the size of the instance

(i.e., n), nor the concentration level. Although, there is a slight negative relation between the

number of iterations and the size of the instance and the concentration of electoral votes. Despite
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Time [s] Iterations |Sup(x)| |Sup(y)| |Sup+(x)| |Sup+(y)|
ν n Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg. Max.

1.0 5 23 237 13.8 33 36.8 127 36.2 86 3.9 9 3.9 9
1.0 10 347 1391 15.0 30 56.3 135 57.1 154 4.0 9 4.0 9
1.0 20 792 3087 14.2 33 86.4 198 89.6 270 3.5 7 3.5 7
1.0 50 1312 7556 12.2 30 136.9 354 142.0 438 2.9 6 2.9 6
0.9 5 23 245 13.8 33 36.8 127 36.1 86 3.9 9 3.9 9
0.9 10 303 1519 14.3 30 49.8 155 50.9 146 3.8 8 3.8 8
0.9 20 662 2577 14.0 28 61.0 191 67.5 157 3.6 7 3.6 7
0.9 50 786 4729 10.1 27 83.3 196 81.0 199 2.8 7 2.8 7
0.8 5 17 173 12.3 30 28.0 89 28.2 73 3.5 8 3.6 8
0.8 10 228 1110 12.7 29 37.7 92 39.8 102 3.7 8 3.7 8
0.8 20 417 2457 12.5 28 46.1 175 49.4 108 3.6 7 3.6 7
0.8 50 616 4239 9.9 28 73.3 146 70.1 131 3.1 6 3.0 6

Table 8 Average and maximum: solving times, iterations, and cardinality of the players’ strategy sets when

finishing Algorithm 3. Sup+(x) (Sup+(y)) denotes the number of strategies that have a positive probability for

candidate A (B).

the exponential cardinality of the simplex lattice, the running time of Algorithm 3 does not show

an exponential relation with the size of the instance. Furthermore, the number of iterations is in

average between 10 and 15, see fifth column of Table 8.

5.5. Effect of Polarization under MS and EC

In all the examples analyzed so far, we have fixed the values of the bias parameters, and so their

magnitude relative to the candidates’ budget. Nevertheless, it actually is not clear how big the

effect of campaigning is relative to the effect of existing biases. The term polarization is used to

characterize the case when voters’ position is inelastic with respect to candidates’ campaign. The

latter occurs when existing biases are large enough compared to candidates’ budget. In this section

we analyze the effect of polarization on candidates’ equilibrium strategies. More precisely, the same

instances given in Tables 1 and 4 are solved while scaling the bias parameters α and β for different

factors. Let f > 0 denote the value of this factor so that the new bias parameters are (fα, fβ).

Since the candidates’ budgets remain fixed, different factors will represent different levels of power

of campaigns. On the one hand, f → 0 represents a low polarization case since there are virtually

no biases, and therefore the voters’ decisions are triggered mostly by the candidates’ campaigns.

On the other hand, in the case when f →∞, the effect of campaigning becomes negligible, except

for those states in which the difference between the candidates’ bias parameters is still within the

reach of what the campaign can affect.

Results for the MS are shown in Table 9. We can see that for low levels of biases (f = 0.1),

candidates’ efforts on average are directly related to the weight of the region size (in terms of

number of votes). In addition, all states get some level of investment (except for states 9 and
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f

0.1
1
5
10
50

Strategies for A [%]
1 2 3 4 5 6 7 8
34 24 18 8 3 5 5 3
68 26 6
100
100
100
45 68 32 43 76 36 51 42 α(0)

Strategies for B [%]
1 2 3 4 5 6 7 8
32 27 18 8 4 2 5 3
36 52 12

100
100
100

71 37 24 39 65 61 54 41 β(0)

Table 9 Equilibrium for different bias parameters (α,β) = (fα(0), fβ(0)) under MS. For each

f = 0.1, 1, 5, 10, 50, candidate A wins with probabilities 51.47%, 57.41%, 67.31%, 73.12%, and 91.75% respectively.

All strategies have null effort in states 9 and 10. The last row shows values of α(0) and β(0).

10). The intuition behind the latter can be easily observed in the extreme case where f → 0 (i.e.

there are almost no previous biases). If a candidate ignores a region, it takes the opponent just

any positive effort to win most of its votes. For medium biases (f = 1), candidates prioritize only

those regions with more votes. Unlike the low bias case, investing in smaller regions no longer

pays off. For higher biases (f = 5,10,50), candidates concentrate all their efforts in a single region

compensating the initial bias disadvantage (region 1 for candidate A; 2 for B). All in all, candidates

allocate their efforts where they have the maximum marginal return. The effect of polarization in

candidate equilibrium strategies can be summarized as the interplay of the two following factors:

(i) regions with a large number of votes, and (ii) the disadvantage bias.

f

0.1

1

5

10

50

Strategies for A [%]
σA [%]

1 2 3 4 5 6 7 8
51 24 9 3 7 4 2 10.8
40 27 18 6 1 5 2 1 26.8
40 26 19 6 1 5 2 1 46.0
2 40 30 9 4 8 4 3 1.7
1 40 30 9 4 9 4 3 5.8
1 40 30 9 4 8 4 4 8.8
76 8 16 11.8
75 9 16 1.1
75 8 17 82.9

47 46 7 4.2
88 12 19.6
87 13 80.4
86 14 93.3
85 15 6.7

100 100.0
45 68 32 43 76 36 51 42 α(0)

Strategies for B [%]
σB [%]

1 2 3 4 5 6 7 8
49 29 7 4 4 3 4 7.0
38 29 20 6 2 3 1 1 31.7
38 29 20 6 2 2 2 1 4.0
38 28 20 6 2 3 2 1 2.8
37 29 20 6 2 3 2 1 37.9

41 28 11 6 6 5 3 16.6
64 36 28.4
52 48 35.9

61 39 24.0
61 38 1 11.7

100 53.3
55 45 46.7

100 48.7
83 17 51.3
100 100.0

71 37 24 39 65 61 54 41 β(0)

Table 10 Equilibrium for different bias parameters (α,β) = (fα(0), fβ(0)) under EC. For each

f = 0.1, 1, 5, 10, 50, candidate A wins with probabilities 51.54%, 55.05%, 58.90%, 69.34%, and 93.62% respectively.

All strategies have null effort in states 9 and 10. The last row shows values for α(0) and β(0).
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Table 10 shows the equilibrium obtained for EC when running Algorithm 3 for different levels of

f . We can observe that for low (f = 0.1) and medium biases (f = 1), the equilibria obtained under

EC follow the same structure as the one shown under MS; low biases make almost every state worth

to investing in, whereas for medium biases smaller states (in terms of electoral votes) become less

profitable. For higher biases (f ≥ 5), a clear difference emerges between the two systems. Under

EC, unlike what was shown under MS, several states are not worth investing in despite their large

electoral weight (such as states 1 and 2). When the difference between the candidates’ biases is

large enough, candidates refuse to invest in these states since their electoral outcome will remain

mostly unchanged. The intuition behind the latter is that the effect of a candidate campaign on

the probability of winning in a such a state will be negligible. This is clear in the extreme case

where f = 50. Both candidates invest only in state 4, as it is one of the few where the difference

between its bias parameters is within the reach of their campaign budgets to offset its outcome.

In summary, polarization under EC will induce the candidates to campaign according to the two

following factors: (i) states with similar biases, and (ii) high electoral votes. States that combine

both of these elements are usually called swing states.

The previous analysis helps us to understand candidates’ decisions under both election systems

for different levels of polarization. Under MS, candidates put their efforts into seeking to get the

greater number of votes. The bigger the biases are, the more they tend to invest only in those

regions where there are more people to convince to vote for them; large regions with relative initial

disadvantages. Under EC, because of the winner-take-all policy, some votes do not translate into its

respective electoral vote. As a result, when a candidate faces a state with an initial disadvantage,

such that it is virtually impossible to induce any substantial change in the probability of winning,

it is simply not worth investing in, even though it might actually be the largest state. Similarly

in states with a considerable initial advantage. Therefore, under a highly polarized scenario, the

campaign is only relevant in the undecided states; the swing states.

An interesting insight from the last result can be applied to the effect of polarization on political

campaigns. In a polarized country, we would expect higher bias values, and therefore strategies

should be more focused on a few states. In reality, the latter observation can have additional

consequences regarding not just the candidates’ resource allocation strategies, but also on the

election promises made in the different states. For example, a candidate might be more tempted to

offer higher infrastructure expenditures in a swing state (under a polarized EC), despite the fact

that that state might have only a small fraction of the national population, but it plays a key role

in winning the election.
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6. Conclusions

The presented models and results presented show how different electoral systems and political real-

ities might affect the optimal solution to the resources allocation problem of an election campaign.

Under a deterministic model for the Majority System (MS), it is possible to show the existence

and uniqueness of the equilibrium. In addition, a closed form solution is provided for some particular

cases of the problem. For general cases, the equilibrium can be obtained by using a gradient descent

ascent method. The latter is performed by using a simulation procedure for the stochastic version

of the game, enabling the computation of an estimate of the candidate’s objective function and

gradient as well, which reuses simulated values of previous iterations. Under the Electoral College

(EC), unlike MS, numerical computations indicate that there is no equilibrium in pure strategies.

In order to explore mixed strategies, we propose an algorithm that returns a mixed equilibrium in

a subset of the simplex lattice by augmenting candidates strategy sets in an iterative method.

When facing MS, candidates tend to focus mainly on the largest regions, with special attention

to those where they are less popular than their rivals. In addition, it is observed that in equilibrium,

the votes from turnout for each candidate happen to be almost the same among the regions chosen

to invest in. Moreover these quantities happen to be exactly the same in the deterministic model,

and in the stochastic with no abstention.

For the EC, we observed mixed strategies in the game equilibrium. In particular, we detected

a connection between the uncertainty within the election and the number of strategies (support)

of the obtained equilibrium. The more randomness, the more pure are the candidates’ equilibrium

strategies. As a result, an election in which there is little uncertainty of the outcome will induce

a less predictable behaviour (due to mixing). On the contrary, under a lot of noise, candidates’

campaigns narrow to a single pure strategy.

It is interesting to note the impact of uncertainty in the winning probability under both election

systems. In the case of MS, the stochastic model will resemble its deterministic version when

reducing the uncertainty, and therefore candidates’ winning probability will approach one or zero. In

the case of EC, the probability of winning will be mildly affected by the noise reduction. Therefore,

both candidates will continue to have a significant chance of winning the election.

Another important element analyzed is the effect of polarization on candidates’ strategies under

both election systems. In a scenario with low polarization, the most relevant information for the

strategies is the size of the state. Furthermore, in such a case, one might expect to see candidates

investing in almost every region. As polarization increases, candidates will focus on only a few

regions. Indeed, in MS, candidates’ strategies are centered on regions with more potential votes

while emphazising those in which they have an initial bias disadvantage. On the other hand, under

EC, candidate investments are concentrated in swing states. Namely, states with no clear tendency
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towards any candidate, while having a non-negligible number of electoral votes. As observed in

some instances, even though there might be larger states than others, as polarization increases, the

efforts are more concentrated on those swing states alone. This is something that actually happens:

In the US, California and Texas are the two largest states. Yet, only one election campaign event

was held in each of them during the 2016 election, while Florida (the third largest state) had 71

campaign events in total.

It is interesting to note that here it is assumed that the resource being allocated (the strat-

egy) is the time that the candidate invests in each state. This leads to a symmetrical budget

constraint.However, the same model can be applied for studying the campaign resource allocation

strategy in terms any other resources rather than time, such as: advertisement budgets, election

promises, etc.
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Appendix A: Proof of Theorem 1.

It suffices to note that (i) the players’ strategy sets are convex, closed, and bounded; and (ii) the players’ util-

ities are concave. We will focus the analysis on the first player. Because of the zero-sum nature of the game,

(i) is direct. To show (ii), recall that the utility of the first player is given by QA in the objective function of

Equation (1). In order to compute the hessian, let us first compute the gradient. We get ∂QA

∂xi
= vimi

σip
, where

p :=
∑

i∈I vi(s
A
i +sBi ), σi := xi+αi+yi+βi+γi, mi := bip+ci

∑
k
vkbk, ci := γi

σi
, and bi := yi+βi

σi
. Then, the hes-

sian matrix of the first player utility is given by (∇xxQA)
ij

= ∂2RA

∂xixj
=−

(
vivj

p3σiσj
(cimj + cjmi) + 1{i=j}

2vimi

p2σ2
i

)
for all i, j ∈ I. To demonstrate the concavity of the utility function, we will show that for any z ∈ RN , it

holds that (zT∇xxQAz≤ 0. Indeed, we have

zT∇xxQAz = −
∑
i

∑
j

(
zizj

vivj
p3σiσj

(cimj + cjmi) + 1{i=j}z
2
i

2vimi

p2σ2
i

)
= −

∑
i

∑
j

(
1

2
wiwj(cimj + cjmi) + 1{i=j}w

2
i pv

−1
i

)
where wi := ziviσ

−1
i p−3/2

√
2. Then:

zT∇xxRAz = −
∑
i

∑
j

(
wiwjcimj + 1{i=j}w

2
i pmiv

−1
i

)
= −

∑
i

∑
j

(
wiwjci

(
bjp+ cj

∑
k

vkbk

)
+ 1{i=j}

w2
i p

vi

(
bip+ ci

∑
k

vkbk

))

≤ −
∑
i

∑
j

(
wiwjci

(
bjp+ cj

∑
k

vkbk

)
+ 1{i=j}

w2
i p

2bi
4vi

)

= −

(∑
i

wici

)(∑
i

wibi

)
p−

(∑
i

wici

)2(∑
i

vibi

)
−
∑
i

w2
i bi

4vi
p2 (18)

≤ −

(∑
i

wici

)2(∑
i

vibi

)
+

(
∑

i
wici)

2
(
∑

i
wibi)

2∑
i

w2
i
bi

vi

= −
(
∑

i
wici)

2∑
i

w2
i
bi

vi

(∑
i

vibi

)(∑
i

w2
i bi
vi

)
−

(∑
i

wibi

)2


≤ 0.

The first inequality is because p > 0 and ci, bi, vi ≥ 0. The second inequality is because Expression (18) is a

second degree polynomial of p which is maximized at p equal to −a1/(2a2), where ai is the ith coefficient

(i.e. of the variable pi) for i= 1,2. The last inequality, follows from Lemma 3, by replacing w with x, b with

y, and the diagonal matrix with bi/vi in the row-column i with D.

Lemma 3. For any x,y ∈ Rn, and positive diagonal matrix D ∈ Rn×n, it holds that (xTy)
2 ≤

xTDyxTD−1y.

Proof. (
xTy

)2
= ‖xTy‖22

= ‖xTD1/2D−1/2y‖22

≤ ‖xTD1/2‖22‖D−1/2y‖22

= xTDyxTD−1y,
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where the inequality follows from the Cauchy-Schwartz inequality. �

Appendix B: Proof of Theorem 2.

Let

G(x,y) :=

[
∇xxQA ∇yxQA

∇xyQB ∇yyQB

]
.

Using Theorem 2 of Rosen (1965), we need to show that G(x,y) +GT (x,y) is negative definite. Note that

∇yxQA and∇xyQB are symmetric matrices, since the utility functions, RA and RB, and have both continuous

second derivatives. Then (
∇xyQB

)T
=
(
∇xy

(
1−QA

))T
= −

(
∇xyQA

)T
= −∇xyQA

= −∇yxQA.

Then

G(x,y) +GT (x,y) = 2×
[
∇xxQA 0N×N

0N×N ∇yyQB

]
.

But we have already shown that∇xxQA and∇yyQB are negative definite in the proof of Theorem 1. Therefore,

G(x,y) +GT (x,y) is also negative definite, which concludes the proof.

Appendix C: Proof of Proposition 1

To do so, we solve the following double KKT equations system:

vi(Q
A +QB)(sBi + sCi )

σi
− QAvis

C
i

σi
= λ(QA +QB)2 ∀j ∈ I∗ (19)

vi(Q
A +QB)(sAi + sCi )

σi
− QBvis

C
i

σi
= η(QA +QB)2 ∀j ∈ I∗ (20)∑

j∈I∗
xj = 1 (21)∑

j∈I∗
yj = 1 (22)

Adding equations (19) and (20), plus using the fact that sAj + sBj + sCj = 1, we get
vj

σj
= (λ+ η)(QA +QB) for

all j ∈ I∗, equivalently

vj = (λ+ η)(QA +QB)σj (23)

for all j ∈ I∗. Adding up Equation (23) over all j ∈ I∗, and using Equation (21) and (22), we get

vI∗ = (λ+ η)(QA +QB)(2 +αI∗ +βI∗ + γI∗) (24)

where for any z∈ Rn and I∗ ⊆I = {1, . . . , n}, we define zI∗ :=
∑

j∈I∗ zj . Replacing the term (λ+η)(QA+QB)

from Equation (24) into Equation (23) leads to the following identity

vj
σj

=
vI∗

2 +αI∗ +βI∗ + γI∗
(25)
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for all j ∈ I∗. Let QA
I∗ be the number of votes obtained by candidate A on the set of regions I∗. Similarly

define QB
I∗ for candidate B, and QC

I∗ for the sum of abstention votes. Then, using Equation (25) on the

definition of QA
I∗ , Q

B
I∗ , and QC

I∗ results in

QA
I∗ =

∑
j∈I∗

vj
xj +αj
σj

= vI∗
1 +αI∗

2 +αI∗ +βI∗ + γI∗
(26)

QB
I∗ =

∑
j∈I∗

vj
yj +βj
σj

= vI∗
1 +βI∗

2 +αI∗ +βI∗ + γI∗
(27)

QC
I∗ =

∑
j∈I∗

vj
γj
σj

= vI∗
γI∗

2 +αI∗ +βI∗ + γI∗
. (28)

Multiplying Equation (19) by σj and adding up over all j ∈ I∗, we get

λ(QA +QB)2(2 +αI∗ +βI∗ + γI∗) = (QA +QB)(QC
I∗ +QB

I∗)−QAQC
I∗ . (29)

Using Equations (26), (27), and (28) on Equation (29) leads to

λ= vI∗
(QA +QB)(1 +βI∗ + γI∗)−QAγI∗

(QA +QB)2(2 +αI∗ +βI∗ + γI∗)2
(30)

where all values are already known. Doing the analogous steps, we can conclude that

η= vI∗
(QA +QB)(1 +αI∗ + γI∗)−QBγI∗

(QA +QB)2(2 +αI∗ +βI∗ + γI∗)2
(31)

Replacing Equations (30) and (31) in Equations (19) and (20) and after arranging some terms, we get

x
UB(I∗)
i =

vi
vI∗

(
1 +αI∗ +

QA

QA +QB
γI∗

)
− QA

QA +QB
γi−αi (32)

y
UB(I∗)
i =

vi
vI∗

(
1 +βI∗ +

QB

QA +QB
γI∗

)
− QB

QA +QB
γi−βi (33)

for all i∈ I∗. Finally, QA and QB, the number of votes obtained by candidates A and B respectively, can be

obtained from Equations (26) and (27) plus the votes obtained in the regions with no campaign. Namely

QA =
∑
j∈I

vj
xi +αi

xi +αi + yi +βi + γi

= QA
I∗ +

∑
j 6∈I∗

vj
αi

αi +βi + γi

where QA
I∗ is given in Equation (26). Similarly with QB, concluding the proof.

Appendix D: MS Unbounded Equilibrium with I∗ = I

In this case, QA = QA
I∗ = vI∗

1+αI∗
2+αI∗+βI∗+γI∗

= (
∑

j
vj)

1+
∑

j αj

2+
∑

j αj+
∑

j βj+
∑

j γj
. Analogous with QB. Therefore,

we have QA

QA+QB =
1+

∑
j αj

2+
∑

j αj+
∑

j βj
. Replacing these into the values of x

UB(I∗)
i and y

UB(I∗)
i of Equations (32)

and (33) lead to:

xUBi =
1 +

∑
j
αj

2 +
∑

j
(αj +βj)

[
vi∑
j
vj

(
2 +

∑
j

(αj +βj + γj)

)
− γi

]
−αi

yUBi =
1 +

∑
j
βj

2 +
∑

j
(αj +βj)

[
vi∑
j
vj

(
2 +

∑
j

(αj +βj + γj)

)
− γi

]
−βi

for all i∈ I.
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Appendix E: Proof of Corollary 1

From Proposition 1, we know that x
UB(I∗)
i = vi

vI∗

(
(1 +αI∗) + QA

QA+QB γI∗
)
− QA

QA+QB γi−αi. But, if γj = 0 for

all j ∈ I∗ (and therefore, γI∗ = 0), then the last expressions is x
UB(I∗)
i = vi

vI∗
(1 +αI∗)−αi (analogous for y).

By replacing this expression, we get

x
UB(I∗)
i +αi

x
UB(I∗)
i +αi + y

UB(I∗)
i +β

=
1 +αI∗

2 +αI∗ +βI∗
(34)

y
UB(I∗)
i +βi

x
UB(I∗)
i +αi + y

UB(I∗)
i +β

=
1 +βI∗

2 +αI∗ +βI∗
(35)

Appendix F: Proof of Theorem 3.

The existence of equilibrium in mixed strategies follows from the compactness of the strategy spaces, and

the continuity of the utility functions. The former statement is direct, whereas the latter occurs since the

winning probability of candidate A is an integral of continuous functions on xi (see Equation (7)).

Appendix G: Proof of Proposition 2.

For ease of exposition, assume that x ∈ Int(∆n). Let us do the transformation x = h(w) such that hi(w) =

ewi/
(∑

j∈I e
wj

)
. Note that for any x ∈ Int(∆n), there exists a w ∈ Rn such that x = h(w); indeed wi =

ln(xi/x1) +w1 for i > 1, while w1 can take any arbitrary value. Then, we look for the directional derivative

of h(w) in the direction of maximum growth of f , i.e. ∇wf(h(w)). Then, for every i∈ I we have

dxi = lim
t→0

hi(w + t∇wf(h(w)))−hi(w)

t

= ∇whi(w) ·∇wf(h(w)) (36)

where · is the dot product. Then

∂hi
∂wj

=
∂

∂wj

(
ewi∑
k∈I e

wk

)
= 1{i=j}

ewi∑
k∈I e

wk
− −ewiewj(∑

k∈I e
wk

)2
= hi(w) (1{i=j}−hj(w))

= xi (1{i=j}−xj) (37)

and

∂f

∂wj
=
∑
k∈I

∂f

∂xk

∂hk
∂wj

=
∑
k∈I

∂f

∂xk
hk(w) (1{k=j}−hj(w))

= hj(w)

(
∂f

∂xj
−
∑
k∈I

∂f

∂xk
hk(w)

)

= xj

(
∂f

∂xj
−
∑
k∈I

∂f

∂xk
xk

)
=: τxi . (38)
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Putting together Equations (37) and (38) into Equation (36), we get

dxi =
∑
j∈I

xi (1{i=j}−xj) τxj

= xi

(
τxi −

∑
j∈I

xjτ
x
j

)
.

Appendix H: Gradient formulas for the majority system stochastic model

Let us denote the event W :=
∑

i∈I vis
A
i >

∑
i∈I vis

B
i . Then

P
(
RA >RB

)
=

∫
∆3

· · ·
∫

∆3

1{W}

∏
i∈I

fidsi.

The derivatives with respect to each candidate investing component, xi and yi, can be computed as

∂

∂xi
P
(
RA >RB

)
= k

∫
∆3

· · ·
∫

∆3

1{W} ln(sAi )
∏
i∈I

fidsi + kzAi

∫
∆3

· · ·
∫

∆3

1{W}

∏
i∈I

fidsi

∂

∂yi
P
(
RA >RB

)
= k

∫
∆3

· · ·
∫

∆3

1{W} ln(sBi )
∏
i∈I

fidsi + kzBi

∫
∆3

· · ·
∫

∆3

1{W}

∏
i∈I

fidsi

where zAi =ψ (k(αi +xi +βi + yi + γi))−ψ (k(αi +xi)) and zBi =ψ (k(αi +xi +βi + yi + γi))−ψ (k(βi + yi)),

where ψ(·) denotes the di-gamma function.

Appendix I: Demonstration of Proposition 3

Let s = {(sAi , sBi , sCi )}ni=1 be n samples of the random variable S. The density at each point, given the

parameters (x,y) will be denoted as fi|x,y(sAi , s
B
i , s

C
i ). Then, we can write the density of the Dirichlet random

variable (SAi , S
B
i , S

C
i ) at a particular (x + ∆x,y + ∆y) as

fi|x+∆x,y+∆y(sAi , s
B
i , s

C
i ) =

(sAj )k(xj+∆xj+αj)−1(sBj )k(yj+∆yj+βj)−1(sCj )kγj−1

B(k(xj + ∆xj +αj), k(yj + ∆yj +βj), kγj)

= (sAj )k∆xj (sBj )k∆yj
(sAj )k(xj+αj)−1(sBj )k(yj+βj)−1(sCj )kγj−1

B(k(xj + ∆xj +αj), k(yj + ∆yj +βj), kγj)

= (sAj )k∆xj (sBj )k∆yj
B(k(xj +αj), k(yj +βj), kγj

B(k(xj + ∆xj +αj), k(yj + ∆yj +βj), kγj)
fi|x,y(sAi , s

B
i , s

C
i )

= (sAj )k∆xj (sBj )k∆yj ×Kj × fi|x,y(sAi , s
B
i , s

C
i )

where Kj =
B(k(xj+αj),k(yj+βj),kγj)

B(k(xj+∆xj+αj),k(yj+∆yj+βj),kγj)
. Let K = ΠiKi. Then, we can write the expectation of g(S) given

the efforts (x + ∆x,y + ∆y) as

E(g(S)|x + ∆x,y + ∆y) =

∫
· · ·
∫

(∆3)n
g(s)×

∏
j

fj|x+∆x,y+∆y(sAj , s
B
j , s

C
j )dsAj ds

B
j ds

C
j

= K ×
∫
· · ·
∫

(∆3)n
g(s)×

∏
j

(sAj )k∆xj (sBj )k∆yjfj|x,y(sAj , s
B
j , s

C
j )dsAj ds

B
j ds

C
j

= K ×E

(
g(S)×

∏
j

(SAj )k∆xj (SBj )k∆yj |x,y

)
.
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Appendix J: Demonstration of Proposition 4

Let W and V be the rv of the candidate who wins the election at point (x + ∆x,y + ∆y) and (x,y)

respectively. So W =A if candidate A wins at strategies (x + ∆x,y + ∆y), and W =B otherwise; similarly

for V . Let us denote p = P(W = A) = P(g(S)|x + ∆x,y + ∆y), q = P(V = A) = P(g(S)|x,y). Note we are

assuming p > q. Denote the function h(S) = K ×
∏
j
(SAj )k×∆xj (SBj )k×∆yj . Using the law of total variance,

we have

Var (g(S)|x + ∆x,y + ∆y) = E [Var (g(S)|x + ∆x,y + ∆y,W )] + Var (E [g(S)|x + ∆x,y + ∆y,W ]) .(39)

With respect to the first term of the RHS of Equation (39) we have

E [Var (g(S)|x + ∆x,y + ∆y,W )]

= Var (g(S)|x + ∆x,y + ∆y,W =A)P(W =A) + Var (g(S)|x + ∆x,y + ∆y,W =B)P(W =B)

= E
[
(g(S)−E [g(S)|x + ∆x,y + ∆y,W =A])

2 |x + ∆x,y + ∆y,W =A
]

P(W =A)

+E
[
(g(S)−E [g(S)|x + ∆x,y + ∆y,W =B])

2 |x + ∆x,y + ∆y,W =B
]

P(W =B)

= E
[
(1− 1)

2
]
p+ E

[
(0− 0)

2
]

(1− p)

= 0 · p+ 0 · (1− p)

= 0. (40)

With respect to the second term of the RHS of Equation (39) we have

Var (E [g(S)|x + ∆x,y + ∆y,W ])

= (1−E [E [g(S)|x + ∆x,y + ∆y,W ]])
2 P(W =A) + (0−E [E [g(S)|x + ∆x,y + ∆y,W ]])

2 P(W =B)

= (1−E [g(S)|x + ∆x,y + ∆y])
2
p+ (0−E [g(S)|x + ∆x,y + ∆y])

2
(1− p)

= (1− p)2
p+ (0− p)2

(1− p)

= p(1− p). (41)

Putting together Equations (40) and (41) into Equation (39), we get

Var (g(S)|x + ∆x,y + ∆y) = p(1− p). (42)

Again, using the law of total variance, we have

Var (h(S)g(S)|x,y) = E [Var (h(S)g(S)|x,y, V )] + Var (E [h(S)g(S)|x,y, V ]) . (43)

With respect to the first term of the RHS of Equation (43) we have

E [Var (h(S)g(S)|x,y, V )]

= Var (h(S)g(S)|x,y, V =A)P(V =A) + Var (h(S)g(S)|x,y, V =B)P(V =B)

= E
[
(h(S)g(S)−E [h(S)g(S)|x,y, V =A])

2 |x,y, V =A
]

P(V =A)

+E
[
(h(S)g(S)−E [h(S)g(S)|x,y, V =B])

2 |x,y, V =B
]

P(V =B)
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= E

[(
h(S)g(S)− p

q

)2

|x,y, V =A

]
P(V =A) + E

[
(h(S)g(S)− 0)

2 |x,y, V =B
]

P(V =B)

= E

[(
h(S)− p

q

)2

|x,y, V =A

]
q+ E

[
(0− 0)

2
]

(1− q)

> 0 (44)

where in the third equality we use the fact that E [h(S)g(S)|x,y, V =A] = 1. This is true since we have that

p = E [h(S)g(S)|x,y]

= E [h(S)g(S)|x,y, V =A]P(V =A) + E [h(S)g(S)|x,y, V =B]P(V =B)

= E [h(S)g(S)|x,y, V =A] · q+ 0 · (1− q)

= E [h(S)g(S)|x,y, V =A] · q.

Then E [h(S)g(S)|x,y, V =A] = p

q
. With respect to the second term of the RHS of Equation (43) we have

Var (E [h(S)g(S)|x,y, V ])

=

(
p

q
−E [E [h(S)g(S)|x,y, V ]]

)2

P(V =A) + (0−E [E [h(S)g(S)|x,y, V ]])
2 P(V =B)

=

(
p

q
−E [h(S)g(S)|x,y]

)2

q+ (0−E [h(S)g(S)|x,y])
2

(1− q)

=

(
p

q
− p
)2

q+ (0− p)2
(1− q)

= p

(
p

q
− p
)
. (45)

Putting together Equations (44) and (45) into Equation (43), we get

Var (h(S)g(S)|x,y) > p

(
p

q
− p
)

> p(1− p)

= Var (g(S)|x + ∆x,y + ∆y) .

The second equality is because we are assuming the case where p > q, and the last equality comes from

Equation (42). This concludes the proof.

As a side note, notice that we can give an expression for computing the variance of the random variable

h(S)g(S)|x,y by only reusing the Dirichlet rv at point (x,y).

Var (h(S)g(S)|x,y) = E
[
(h(S))2(g(S))2|x,y

]
−E [h(S)g(S)|x,y]

2

= E
[
(h(S))2g(S)|x,y

]
− p2 (46)

Appendix K: Demonstration of Lemma 1

Cov

(
X

X +Y
,Z

)
= Cov

(
X

X +Y
,1−X −Y

)
= −Cov

(
X

X +Y
,X +Y

)
= −E[X] + E[X +Y ]×E

[
X

X +Y

]
= − a

a+ b+ c
+

a+ b

a+ b+ c
E

[
X

X +Y

]
(47)
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With respect to the term E
[

X
X+Y

]
, we can compute this by

E

[
X

X +Y

]
= E

[
X

1−Z

]
=

∫ 1

0

∫ 1−z

0

x

1− z
· fX,Y,Z(x,1−x− z, z)dxdz

=
1

B(a, b, c)

∫ 1

0

∫ 1−z

0

x

1− z
·xa−1(1−x− z)b−1zc−1dxdz

=
1

B(a, b, c)

∫ 1

0

(1− z)−1zc−1

∫ 1−z

0

xa(1−x− z)b−1dxdz

=
1

B(a, b, c)

∫ 1

0

(1− z)a+b−1zc−1

∫ 1

0

ua(1−u)b−1dudz

=
B(a, b)

B(a, b, c)

∫ 1

0

(1− z)a+b−1zc−1dz

∫ 1

0

u
ua−1(1−u)b−1

B(a, b)
du

=
B(a, b)

B(a, b, c)
·B(a+ b, c) · a

a+ b

=
Γ(a)Γ(b)

Γ(a+ b)
· Γ(a+ b+ c)

Γ(a)Γ(b)Γ(c)
· Γ(a+ b)Γ(c)

Γ(a+ b+ c)
· a

a+ b

=
a

a+ b
(48)

In the fifth equality we use the change of variable u= x
1−z . Replacing Equation (48) into Equation (47), we

get

Cov

(
X

X +Y
,Z

)
= − a

a+ b+ c
+

a+ b

a+ b+ c
· a

a+ b

= 0

showing the result for the covariance.

In order to show that X
X+Y

∼Beta(a, b), we compute its pdf. Let W := X
X+Y

, then (X,Y,Z) = (W (1−

Z), (1−W )(1−Z),Z). Then consider a w ∈ (0,1),

fW (w) =

∫ 1

0

∫ 1−z

0

1{x=wx+w(1−x−z)}fX,Y,Z(x,1−x− z, z)dxdz

=

∫ 1

0

∫ 1−z

0

fX,Y,Z(w(1− z), (1−w)(1− z), z)dxdz

=

∫ 1

0

(1− z)fX,Y,Z(w(1− z), (1−w)(1− z), z)dxdz

= wa−1(1−w)b−1 · 1

B(a, b, c)
·
∫ 1

0

(1− z)a+b−1zc−1dz

= wa−1(1−w)b−1B(a+ b, c)

B(a, b, c)

=
wa−1(1−w)b−1

B(a, b)

where we used in the sixth equality that B(a, b, c) = B(a, b) ·B(a+ b, c). The resulting pdf for W = X
X+Y

corresponds to a Beta distribution with parameters (a, b), which concludes the proof.
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Appendix L: Proof of Theorem 4.

If the candidates maximize the expected number of votes under MS, candidate A’s objective is E(
∑

i
viS

A
i ), or

equivalently
∑

i viE(SAi ) by linearity of expectation. If now we assume that γ = 0, then E(SAi ) = xi+αi

xi+αi+yi+βi
.

Therefore, the problem candidate A faces is to maximize
∑

i
vi

xi+αi

xi+αi+yi+βi
with x∈∆n. Similarly, candidate

B maximizes
∑

i
vi

yi+βi
xi+αi+yi+βi

with y ∈∆n.

Under EC, the expected number of votes candidate A gets from region i is
SA
i

SA
i

+SB
i

. Since for every i,

SAi and SBi are components of the same Dirichlet distribution, then its ratio follows a Beta distribution by

using Lemma 1. Namely,
SA
i

SA
i

+SB
i
∼Beta(k(xi +αi), k(yi + βi)). Then, if candidates maximize the expected

number of votes, candidate A’s objective is E
[∑

i
wi

SA
i

SA
i

+SB
i

]
=
∑

i
wiE

[
SA
i

SA
i

+SB
i

]
=
∑

i
wi

xi+αi

xi+αi+yi+βi
=∑

i
θvi

xi+αi

xi+αi+yi+βi
with x ∈∆n, where θ :=wi/vi for all i (since we are using the assumption that electoral

votes of each state are proportional to the number of popular votes of the respective state). Similarly for

candidate B, concluding the result.

Appendix M: Proof of Theorem 5

For ease of notation for the reader, we denote sometimes for this proof 1{X} as 1{X}. Also, for ease of

exposition, we only consider the case where v ∈Zn+ and
∑

i
vi is odd and therefore there is no chance of tie

under EC. We want to show that P(|1{
∑

i
vis

A
i >

∑
i
vis

B
i } − 1{

∑
i
vi1{sA

i
>sB

i
} >

∑
i
vi1{sA

i
<sB

i
}}> ε)

k→0→ 0

for any ε > 0. Consider 0< ε< 1, then

P(|1{
∑
i

vis
A
i >

∑
i

vis
B
i }−1{

∑
i

vi1{sA
i
>sB

i
} >

∑
i

vi1{sA
i
<sB

i
}}|> ε)

= P(|1{
∑
i

vis
A
i >

1

2

∑
i

vi}−1{
∑
i

vi1{sA
i
>1/2} >

1

2

∑
i

vi}|> ε)

= P(
∑
i

vis
A
i >

1

2

∑
i

vi >
∑
i

vi1{sA
i
>1/2}︸ ︷︷ ︸

E1

) + P(
∑
i

vis
A
i <

1

2

∑
i

vi <
∑
i

vi1{sA
i
>1/2}︸ ︷︷ ︸

E2

),

where the first equality uses the fact of no-abstention. We will define the event E3, and show that (i)

E3 ∩E1,E2 = ∅, and (ii) P(E3)→ 1 as k→ 0. Note that since (i) it holds that P(E1) + P(E2) + P(E3)≤ 1

and because of (ii) it must be that P(E1) + P(E2)→ 0 as k→ 0. For what follows, we will denote sAi as

si to reduce notation. Consider δ = 1/ (4
∑

i vi), and let us define the event E3 as E3 = {s ∈ [0,1]n : ∃z ∈

{0,1}n s.t. ‖z− s‖∞ < δ} or equivalently E3 = {s∈ [0,1]n : |si−1{si>1/2}|< δ∀i}.

To show (i), we will first address the case where E3 ∩E1 = ∅. By contradiction, consider s ∈E3 ∩E1. Then

we have that
∑

i visi >
1
2

∑
i vi >

∑
i vi1{si>1/2}, equivalently,

∑
i visi >

1
2

∑
i vi ≥

∑
i vi1{si>1/2}+ 1/2 since∑

i
vi is odd and vi take integer values. Subtracting the right hand side of the previous expression from the

left hand side leads to
∑

i
vi(si−1{si>1/2})> 1/2. Since s∈E3, it is easy to see that 1{si>1/2} = 1{zi>1/2} = z,

where z is the closest “corner point” (in {0,1}n) to s. Then we have
∑

i vi(si−1{si>1/2}) =
∑

i vi(si− zi)≤∑
i
vi|si − zi| <

∑
i
viδ = 1/4 > 1/2 which is a contradiction. The proof of E3 ∩ E2 = ∅ is analogous, and

therefore is omitted.

To show (ii), let us define the events Di = {s∈ [0,1]n|δ≤ si ≤ 1−δ}. Therefore, it can be seen that
⋃
iDi =Ec

3.

Indeed, if there is some s∈Di for some i, then clearly there is no z∈ {0,1}n such that ‖z−s‖< δ. Conversely,
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if there is some s∈E3, then there is at least one component k such that ‖z− s‖∞ ≥ δ for all z∈ {0,1}n; then

s∈Dk, thus s∈
⋃
i
Di. Now, the probability of each event Di can be expressed as P(Di) = FSi

(1−δ)−FSi
(δ),

where FSi
is the CDF of Si (actually SAi ) which distributes as Beta(k(xi+αi), k(yi+βi)). Since Si converges

to a Bernoulli when k→ 0, it follows that P(Di) as well. Then we have

1−P(E3) = P(Ec
3) = P

(⋃
i

Di

)
≤
∑
i

P(Di)
k→0→ 0.

Then P(E3)→ 1 as k→ 0, and therefore P(E1) + P(E2)→ 0 concluding the proof.

Appendix N: Zero-sum game as an LP

The optimization game can be expressed as

min
σB

max
σA

σT
B
PσA

s.t. eT
A
σA = 1

σA ≥ 0

eT
B
σB = 1

σB ≥ 0.

(49)

Note that the inner problem of (49)
max
σA

σT
B
PσA

s.t. eT
A
σA = 1

σA ≥ 0

(50)

has the following dual
min
u

u

s.t. ueA ≥P TσB.
(51)

Then, we can replace (51) into the primal of the inner problem in (49) and get

min
u,σB

u

s.t. ueA−P TσB ≥ 0

eT
B
σB = 1

σB ≥ 0

(52)

which is a single LP. The LP for obtaining the first player equilibrium strategies is analogous.

Appendix O: Demonstration of Claim 1

We have

m=

n∑
i=1

qxri = q

n∑
i=1

xri = q

(
1−

n∑
i=1

bqxic
q

)
= q−

n∑
i=1

bqxic=

n∑
i=1

(qxi−bqxic), (53)

where from the expression before the last equality, it can be seen that the result is a subtraction of integers

which results on an integer. From the last expression of Equation (53) we can see that all the arguments

inside the sum are non negative, and are strictly less than one. Therefore, the sum can be at least 0, and at

most n− 1.
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Appendix P: Demonstration of Lemma 2

Let us denote as w(k) the value of the vector w at iteration k in Algorithm 2, and similar for t(k) with respect

to t in the kth iteration. Before going into the demonstrations of (i) and (ii), we will show the following

lemma:

Lemma 4. For each iteration k of Algorithm 2, it holds that z
(k)
j 6= z

(h)
j for all h> k where j is one of the

components that reaches the minimum condition in line 6 of Algorithm 2.

Proof. Consider we are in the kth iteration of Algorithm 2. We have some w(k), where we assume that

w(k) ∈ [0,1]n and
∑n

i=1w
(k)
i =m (note this is accomplished for the case k= 1, while we will show this for the

case k+ 1). Because w(k) ∈ [0,1]n and
∑n

i=1w
(k)
i =m, if w(k) has at least one fractional component (which

is the interesting case in which we go inside the loop of Algorithm 2), it must be the case that w(k) has

at most n−m− 1 components with zeros, and at most m− 1 components with ones. Then, line 4 of the

algorithm forces z
(k)
i =w

(k)
i for each component i such that w

(k)
i ∈ {0,1}. Then, the Algorithm tries to find the

maximum magnitude from which we can move from the vector w(k) in the direction w(k)− z(k) (clearly the

latter is non-zero since w(k) has at least one fractional component while z(k) ∈ {0,1}n). We then look for the

maximum value of t such that w(k) + t(w(k)− z(k))∈ [0,1]n, this is equivalent to (I) w
(k)
i + t(w

(k)
i − z

(k)
i )≥ 0

and (II) w
(k)
i + t(w

(k)
i −z

(k)
i )≤ 1 for all components i where w(k) is fractional, since for the other components

the right term is zero. (I) is equivalent to
w

(k)
i

z
(k)
i
−w(k)

i

≥ t if z
(k)
i >w

(k)
i , and

w
(k)
i

z
(k)
i
−w(k)

i

≤ t if z
(k)
i <w

(k)
i . The latter

case always holds, then (I) can be written simply as
w

(k)
i

1−w(k)
i

≥ t if z
(k)
i >w

(k)
i . As for (II), this is equivalent

to
1−w(k)

i

w
(k)
i
−z(k)

i

≤ t if z
(k)
i >w

(k)
i , and

1−w(k)
i

w
(k)
i
−z(k)

i

≥ t if z
(k)
i <w

(k)
i . The former case can be eliminated since always

holds, then (II) can be reduced to
1−w(k)

i

w
(k)
i

≥ t if z
(k)
i <w

(k)
i . Putting together (I) and (II), we get the expression

for t(k) in line 6 of Algorithm 2. Note that all the expressions inside the arguments of the min{}’s have strictly

positive arguments, therefore t(k) > 0, because w
(k)
i ∈ (0,1) for those components. Also, since w(k) has some

fractional component, t(k) is well defined. We have also shown that w(k+1) ∈ [0,1]n. In addition, as it will be

used later, we can show that
∑n

i=1w
(k+1)
i =m, since

∑n

i=1w
(k)
i =

∑n

i=1 z
(k)
i =m. Consider that this holds j

to be the index which can follow either one of the two following cases denoted by (a) and (b). In (a), j is such

that t(k) =
w

(k)
j

1−w(k)
j

where z
(k)
j = 1 then w

(k+1)
j = w

(k)
j + t(w

(k)
j − z

(k)
j ) = w

(k)
j +

w
(k)
j

1−w(k)
j

(w
(k)
j − 1) = 0. Then, in

the next iteration, if w(k+1) ∈ {0,1}n then z
(k+1)
j = 0 6= 1 = z

(k)
j . Contrarily, if w(k+1) 6∈ {0,1}n, then there is

a fractional component, and by induction of the same arguments given, it will hold that 0 = z
(k+1)
j =w

(k+1)
j ,

and 0 = w
(k+2)
j = w

(k+1)
j . Therefore z

(h)
j 6= z

(k)
j for all h > k. In case (b), j is the component such that

t(k) =
1−w(k)

j

w
(k)
j

where z
(k)
j = 0 then w

(k+1)
j = w

(k)
j + t(w

(k)
j − z

(k)
j ) = w

(k)
j +

1−w(k)
j

w
(k)
j

(w
(k)
j − 0) = 1. Then, in the

next iteration, if w(k+1) ∈ {0,1}n then z
(k+1)
j = 1 6= 0 = z

(k)
j . On the contrary, if w(k+1) 6∈ {0,1}n, then there is

a fractional component, and by induction of the same arguments given, it will hold that 1 = z
(k+1)
j =w

(k+1)
j ,

and 1 =w
(k+2)
j =w

(k+1)
j . Therefore z

(h)
j 6= z

(k)
j for all h> k. �

Proof of (i). As shown in the proof of Lemma 4, at each iteration k inside the loop of Algorithm 2, one

fractional component of w(k) is fixed to either 0 or 1 when moving to the next w(k+1). Since w(k) ∈ Rn, we

can have at most n iterations, and therefore |Z| ≤ n.
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Proof of (ii). From line 7 of Algorithm 2 we can see that w(k+1) = w(k) + t(k)(w(k)−z(k)), which is equiv-

alent to w(k) = 1
1+t(k) w

(k+1) + t(k)

1+t(k) z
(k). Then, we have that for k = 1, it holds that w(1) = 1

1+t(1)
w(2) +

t(1)

1+t(1)
z(1), where w(1) = y, the input point. Then, w(1) = 1

1+t(1)

(
1

1+t(2)
w(3) + t(2)

1+t(2)
z(2)

)
+ t(1)

1+t(1)
z(1) =

1
1+t(1)

(
1

1+t(2)

(
1

1+t(3)
w(4) + t(3)

1+t(3)
z(3)

)
+ t(2)

1+t(2)
z(2)

)
+ t(1)

1+t(1)
z(1) and so on until the last point which if we

denote this by w(|Z|), in which case the equation is w(1) = w(|Z|)∏|Z|
j=1

1
1+t(j)

+
∑|Z|−1

k=1 z(k) t(k)

1+t(k)

∏k−1
j=1

1
1+t(j)

.

Finally, to show that the weights are strictly positive, it suffices to note that t(k) > 0 for all k ∈ {1, . . . , |Z|}.

The proof of the latter was done in particular in the proof of Lemma 4, concluding the proof.

Appendix Q: Showing that output points in Z are minimal

We want to formally show that given x ∈∆n and q ∈ Z+, and apply Algorithm 2 using as input y = qxr =

qx−bqxc (where the floor function is applied to each component) from which we obtain Z and construct Z,

there can not exist a set W 6= Z,⊆Dq(∆n) such that (a) x ∈ Conv(W) and (b) Conv(W) ( Conv(Z). Let

us assume by contradiction that such set W exists. The latter implies the following: (i) W ⊆Y (where Y :=

{ bqxc
q

+ y

q
|y ∈Y}), (ii) Dq(∆n)∩ (Conv(Z)\Z) = ∅, (iii)W (Z, (iv) elements in Z are linearly independent,

and (v) x 6∈ Conv(W) which contradicts (a). For ease of notation, let us define xb := bqxc
q

. To show (i), it

must be the case that all elements w ∈W are such that wi ∈
{
xbi , x

b
i + 1

q

}
(which is accomplished by each ith

components of the points in Z). If not, then (b) can not be true since there would be a point inW which can

not be generated as a convex combination of points in Z. Using a similar argument, it must be the case that

all elements in W have m components equal to the respective component of 1/q+xb and n−m components

with the value equal to the respective component of xb (recall that all vectors in Z have m ones and n−m

zeros, where m=
∑n

i=1 qx
r
i , and so all elements in Z have m components with value equal to the respective

component of 1/q + xb and n−m components equal to the respective component xb). If otherwise, then

for any µ∈∆|Z| it holds that
∑n

i=1

∑|Z|
k=1 µkz

(k)
i =

∑|Z|
k=1 µk

∑n

i=1 z
(k)
i =

∑|Z|
k=1 µkm=m

∑|Z|
k=1 µk =m (where

z(k) denotes the kth element added to the set Z when running Algorithm 2), i.e., any convex combination

of the points in Z will have components that add up to m. Therefore, if (b) holds, it must be the case

that all elements in W have m components equal to the respective components of 1/q + xb, and n −m

components equal to the respective component of xb, thusW ⊆Y. For (ii), note that if by contradiction there

is v ∈Dq(∆n)∩(Conv(Z)\Z), then it must exist µ∈∆|Z| such that v =
∑|Z|

k=1 µkz
(k) where at least there are

two indexes, l, h∈ {1, . . . , |Z|} for which µl, µh ∈ (0,1) (otherwise there would be a single index j where µj = 1

while µi = 0 ∀i 6= j, and v would be equal to z(j) which can not be possible). Consider a component i such

that z
(l)
i 6= z

(h)
i (notice that either (z

(l)
i , z

(h)
i ) = (xbi ,1/q+ xbi) or (z

(l)
i , z

(h)
i ) = (1/q+ xbi , x

b
i)), then it must be

the case that
∑|Z|

k=1 µkz
(k)
i ∈ (xbi ,1/q+xbi), which is a contradiction since v ∈Dq(∆n), which shows (ii). Note

that (ii) states that every convex combination of the points in Z which is not an extreme point of Conv(Z)

(i.e. the convex combination weights can not be one), the resulting vector has at least one component i with

value in the interval (xbi ,1/q + xbi), and therefore the convex combination does not belong to the simplex

lattice Dq(∆n). Then it must holds that W ⊆Z, since otherwise there would exist w ∈W \Z. Note that

because of (b) we have W ⊆ Conv(W) ⊆ Conv(Z), and then it holds that w ∈ Conv(Z) \ Z. Adding the

fact that W ⊆Dq(∆n), leads to w ∈Dq(∆n)∩ (Conv(Z) \Z), which contradicts (ii). Then (iii) follows from

W ⊆Z and W 6=Z. For (iv), if it is assumed by contradiction that the vectors in Z are linearly dependent,
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then there would exist µ∈ R|Z| \ {0} such that
∑|Z|

k=1 µkz
(k) = 0. Consider h := min{k ∈ {1, . . . , |Z|}|µk > 0}.

It holds that z(h) can be written as a linear combination of vectors in Z of higher indexes. This last cannot

be possible due to Lemma 4, since we know that there is a component, say j, such that z
(h)
j 6= z

(l)
j for all

l > h, concluding (iv). Finally, to show (v), if we look at the convex combination of x with respect to the

vertices in Z, from Lemma 2 we have that all weights are positive, and from (iv) we have that this is the

only way to generate x. As a result, if we remove any element in Z, then we cannot generate x as a convex

combination. In other words, because of (iii), we cannot generate x as a convex combination of the elements

in Y, i.e. x 6∈Conv(W), which concludes the proof.

Appendix R: Majority System Unbounded Equilibrium

As an hypothetical exercise, we computed the unbounded equilibrium of the game under the MS. Recall

that this equilibrium can be computed in closed form solution by using Proposition (1) with I∗ = I (see

Equations (3) and (4)). The results of the unbounded equilibrium are computed for the same instance

presented in Table 1, and its results are illustrated in Figure 6. In this, region’ biases (α,β) are depicted

with empty circles whereas the regions’ biases plus candidates’ strategies (α+x,β+y) are depicted with

filled circles. The arrows in Figure 6 represent the effort put by both candidates, where the x-component

(y-component) corresponds to candidate A (B). It can be seen that only the three largest regions receive

positive effort. On the contrary, smaller regions have negative efforts, therefore acting as lenders to the

former regions. It is interesting to observe the perfect linear relation between the efforts plus bias parameters

of one candidate with respect to the other (see the straight line in Figure 6). More specifically, the linear

relation yi +βi = (xi +αi)
(

1+
∑

j βj

1+
∑

j αj

)
holds for every region i.
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Figure 6 Unbounded equilibrium for instance in Table 1. Circles, “◦”, represent the bias parameters (α,β); filled

circles, “•”, represent (x+α,y+β) at the unbounded equilibrium. Sizes are proportional to the number

of votes of the region. The dotted diagonal represents the diagonal with slope 1+
∑
β

1+
∑
α

.
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