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En esta tesis estudiamos los efectos de una inflación generada por múltiples campos (mul-
tifield inflation) en el escenario donde la materia oscura puede ser descrita, totalmente o
en una fracción, como agujeros negros primordiales (PBH por sus siglas en inglés). En el
contexto en el que trabajamos, la producción de PBH, se puede relacionar directamente a
una amplificación a pequeñas escalas en el espectro de potencias de las perturbaciones de
curvatura primordial. Esto nos permite conectar la física inflacionaria con otro posible ob-
servable como lo serían estos agujeros negros, ayudando así a dilucidar de mejor forma los
misterios detrás de la física fundamental detrás de este periodo.

Para el caso de una inflación con más de un campo, las perturbaciones de curvatura (o
adiabáticas) interactúan con otros grados de libertad (modos de isocurvatura) describiendo
una trayectoria no trivial en el espacio de campos. En la literatura, por lo general, se han
considerado modelos donde los modos adiabáticos interactúan de manera débil con estos otros
grados de libertad. Sin embargo, existen escenarios (gravedad cuántica por ejemplo) donde
las perturbaciones de isocurvatura podrían interactuar fuertemente con las perturbaciones
de curvatura.

En este trabajo presentamos un modelo exacto donde estos modos de isocurvatura pro-
ducen grandes amplificaciones en los modos adiabáticos. Ocurriendo esto cuando la trayec-
toria inflacionaria experimenta giros abruptos en el espacio de los campos. Se resolvieron de
forma analítica las ecuaciones de movimiento para los modos que representan las perturba-
ciones en el régimen de un acoplamiento fuerte (modelado por una función tipo top-hat). Los
resultados obtenidos evidenciaron una dependencia exponencial entre el salto en el espectro
de potencias de la perturbación de curvatura y el ángulo barrido por el giro en el camino
inflacionario. Por lo que nuestra solución manifiesta el hecho de que para que tengamos un
panorama cosmológico con una cantidad importante de PBH, es necesaria la existencia de
términos cinéticos no canónicos en la acción de inflación con múltiples campos.

i



RESUMEN PARA OPTAR AL GRADO DE
MAGÍSTER EN CIENCIAS, MENCIÓN FÍSICA
POR: CRISTÓBAL TOMÁS ZENTENO GATICA
FECHA: 2021
PROF. GUÍA: GONZALO PALMA QUILODRÁN

MULTIFIELD INFLATION CONSEQUENCES IN THE PRIMORDIAL
BLACK HOLES GENERATION

In this thesis, we study the effects of multifield inflation on the scenario where dark matter
can be described, in whole or in a fraction, as primordial black holes (PBH). In the context
in which we work, the production of PBH can be directly related to a small-scale amplifi-
cation in the power spectrum of primordial curvature perturbations. This fact allows us to
connect inflationary physics with another possible observable one such as these black holes,
thus helping to elucidate the mysteries behind the fundamental physics behind this period.

In the case of multifield inflation, curvature (or adiabatic) perturbations interact with
other degrees of freedom (isocurvature modes), describing a non-trivial trajectory in the field
space. Most of the models considered in the literature are the ones where adiabatic modes
weakly interact with these other degrees of freedom. However, there are scenarios (quantum
gravity, for example) where isocurvature perturbations could interact via a strong couple
with curvature perturbations.

In this work, we present an exact model where these isocurvature modes produce a large
amplification in the adiabatic modes. This occurs when the inflationary trajectory experi-
ences sharp turns in the space of the fields. The equations of motion for the modes repre-
senting perturbations in a strong coupling regime (modeled by a top-hat-like function) were
analytically solved. And the results obtained showed an exponential dependence between the
jump in the power spectrum of the curvature perturbation and the angle swept by the rota-
tion in the inflationary path. So our solution manifests the fact that to have a cosmological
paradigm with a significant amount of PBH, the existence of non-canonical kinetic terms in
the multifield action is necessary.
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Chapter 1

Introduction

Questions about the Universe and our relationship as humans with it have existed for thou-
sands of years since the origin of our civilized world. Questions related to its origin, our place
in it, the movement of the elements that it contains, how it will end, and many others have
tried to be answered by many cultures up to the present. In ancient times, the main tool used
to be able to propose a cosmology (from Greek /kosmos/, cosmos or order and /logia/, study
of) was the astronomical observation. So it is to be understood that, these times, a great
part of the explanations have been based on intricate religious and mythological believings,
where, in the center, there was a deity created by the human.

Figure 1.1: Heliocentric Model, Source: De revolutionibus orbium
coelestium

The first breakthrough in this way of thinking was in the XVI-XVII centuries, with the
origin of modern science. Contrary to religious beliefs, scientific truth must be based on
observation and experimentation; besides, it must be justified in a common mathematical
language. With this new way of thinking as a background, Copernicus presented the helio-
centric model (figure: 1.1), where the Earth stopped to be the point from where the planets
and stars orbit, and the sun becomes the center of our solar system. At the beginning of the
seventeenth century, Kepler formulates his well-known laws, where with three simple postu-
lates, he accurately describes the orbits of the planets around the sun. Later with Newton’s
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laws, postulated in 1687, the world will be able, for the first time, to formulate a cosmology
based on scientific proposals and the observations of the time. Although this understanding
of the universe was quite simple and rudimentary, it was a great scientific leap of the time.
The sky and the stars ceased moving at the whim of the deities and began to move according
to the law of Universal Gravitation and describe orbits according to Newton’s equations of
motion.

Of course, this early modern cosmology cannot explain all the questions about the uni-
verse and even generated more inquiries than answers. Questions such as; the origin of the
universe and the stars, the action at distance of gravity, among others, still could not be
understood in a good way. However, it laid the foundations for a conversation on which the
study of the universe is based to this day: theory plus observation. In addition to these
objective foundations, the universe is itself an infinitely complex system, so it is necessary
to formulate a hypothesis about it that simplifies its study. This is why the cosmological
principle was formulated. This principle proposes that our universe on large scales is ho-
mogeneous (matter is distributed equally in all space) and isotropic (there are no privileged
directions). Although this paradigm helps significantly with the proposal of a physical model
of the universe, when it was first thought, it did not have enough observational foundations.
With advances in observations and technologies over time, the cosmological principle and its
scope of applicability have been better justified. These elements mentioned above give us
the bases and also the limitations of the cosmological model that we are going to have and
on which we are going to work. This is why the next great leap in modern cosmology was in
the 20th century.

In the first decades of the 20th century, two grand physical theories emerged and revolu-
tionized the way of how we see the universe: General Relativity and Quantum Mechanics.
The theory of General Relativity, proposed by Einstein in 1915 [1], models the universe as
a 4-dimensional space (3 spatial and one temporal). The matter within it, changes its 4-D
curvature so that gravity would be explained by straight paths in curved space-time. With
general relativity, the fundamental understanding of the universe was expanded, several open
questions of Newton’s theory were solved (such as the precession in the orbit of Mercury and
the interaction between light and gravity) in addition to adding new elements such as black
holes and gravitational waves. This conversation between matter/energy and space-time dy-
namics is fundamental to understand the universe as a whole through General Relativity.

Almost parallel to the development of the theory, Edwin Hubble, in 1929, observed that
distant galaxies were moving away faster than those closer to the Earth (see Fig 1.2.a), thus
proposing the famous Hubble law [2]:

v = H0d. (1.1)

This observational law gave us the first intuition of the dynamics of the universe as a whole.
It gave insights about an early universe where its components were much more compacted,
which later expanded to give rise to the formation of structure that we see nowdays. This
theory of the origin of the universe will finally be validated a couple of decades later with the
observations of the cosmic microwave background radiation (CMB) [3], which corresponds to
radiation emitted in early periods in the history of the universe where matter and radiation
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from the universe were coupled. When the universe had around 400,000 years, this radiation
stopped interacting with the rest of the components of the universe and began to travel freely
in space until it was observed. The spectrum of this radiation fit almost perfectly with a
blackbody of about 2.7K (Fig 1.2.b), usually characterized as the temperature of the uni-
verse and has been declining due to expansion (it is estimated that the temperature of the
radiation when it originated was approximately 3,000K).

(a) Hubble original Plot [2]. (b) CMB spectrum [4].

Figure 1.2: The Foundings of the Modern Cosmology

The relevant physical quantity in a model of space-time in general relativity is the metric,
which can be understood in a simple way as a collection of functions that tell us how to
measure distances in curved spaces. At the same time, the equations that communicate the
metric with the matter content of space-time are Einstein’s equations. It is impossible to
solve a general Einstein equation that is valid for any metric at any point in space and with
any source, so it is necessary to make assumptions that simplify our study problem. In this
case, the assumption chosen is that our large-scale universe is governed by the cosmolog-
ical principle. With this in mind, the most general metric that describes a homogeneous
and isotropic universe is the so-called Friedmann-Lemaitre-Robertson-Walker (FLRW) met-
ric [5–8]. In this metric, the relevant dynamic quantity is called the scale factor, which is
a function that depends on time and tells us how the distances measured in the universe
change over time; if it expands, the scale factor will grow, while if the universe contracts, the
scale factor will decrease over time. As in this first approximation, it is about understanding
the universe on a large scale. The assumption that follows is to assume that all its content
behaves like a perfect fluid. By rewriting Einstein’s equation with all these ingredients, we
have Friedmann’s equation, which is a differential equation for the scale factor that depends
on the content of the universe.

The content of the universe is another of the big questions that are being studied in modern
cosmology. Our current model separates them into four parts: radiation, baryonic matter,
dark matter, and dark energy. The first two are pretty simple to understand; radiation is
mainly neutrinos and photons that travel through the universe whose origin is mainly from
the CMB, while the baryonic matter is everything made up of atoms. On the other hand,
dark matter and dark energy remain big questions in cosmology, even though together they
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correspond to more than 90% of the content of the universe today. Dark matter was proposed
as a way to explain the dynamics of galaxies and the stars that compose them, while dark
energy is necessary to explain the expansion of the universe and how it is accelerating.

The cosmological principle and the assumptions used to derive the Friedmann equation
help us understand our universe at a first approximation. Unfortunately, this treatment does
not predict the formation of structures such as galaxies and stars. In cosmology, the phe-
nomena which occur on smaller scales than those prescribed by the cosmological principle
are studied with a perturbation theory. Another justification for this treatment is the CMB
observations, where small inhomogeneities of the order of ±10−5K of the background tem-
perature are observed [9]. The theory of cosmological perturbations, in a few words, consists
of perturbing the so-called "background" quantities governed by Friedmann’s equations and
(in principle) expanding the equations of motion to first order. With this theory, which
complements the background cosmology, the anisotropies of the CMB radiation can be well
understood theoretically, and the formation of structure is justified since, if we have small
overdensities of matter in an early universe, these will begin to gather matter due to the
effects of gravity and will generate stars and galaxies1.

A fundamental quantity in the study of cosmological perturbations is the primordial cur-
vature perturbation [10]. This perturbation acts as an initial condition (under certain as-
sumptions) to all perturbations of the universe components. The primordial curvature per-
turbation did not have a clear physical explanation at first. It was modeled as a random field,
where its behavior was characterized according to its statistics, which, to comply with the
cosmological principle, must be gaussian as a first approximation. The two great successes of
the cosmological perturbations theory are the computation of the angular power spectrum of
the CMB [11] and the matter power spectrum [12], where, as is necessary for the cosmological
proposal, the theoretical predictions correspond with the observations (Figures 1.3 and 1.4).

Figure 1.3: CMB angular power spectrum: the blue line is the theoretical
prediction (according to the actual concordance model of cosmology), while
the red points are the observations with their error bars. Source: Planck
2018 [13].

1 For the full study of the gravitational collapse, a non-linear treatment of general relativity is used.
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Figure 1.4: Matter Power Spectrum, source: Planck 2018 [13].

The Big Bang model affirm that the universe was originally in a state of infinite density
and temperature and then began to expand. In this model, the first fractions of a second
cannot be explained by known physical theories, this epoch, it is known as the Planck era.
As the universe expands, fundamental forces, which are unified at high energies, begin to
decouple and the standard model particles begin to appear, giving rise to hadrons, of which
protons and neutrons stand out, which would form atomic nuclei. From what has been de-
scribed above and in a very superficial way, it seems that, except for what happened in the
Planck era and for the unknown regarding our standard model of particles, the Big Bang
theory manages to satisfactorily explain the origin of our universe and how it evolves over
time. However, the latter is very far from the reality since the Big Bang theory presents a
couple of fundamental problems. The most obvious are: the horizon problem, the flatness
problem, and the initial conditions [14, 15, 10].

To understand the horizon problem, we can look at two diametrically opposite areas of
the CMB radiation. To correspond to the homogeneity of the universe, we must find that
these two zones, at the moment of origin of said radiation, must be in thermodynamic equi-
librium. But the reality is that these two zones, according to the usual Big Bang theory, were
never in causal contact, so it is impossible for them to have the same temperature (unless
the initial conditions were very fine-tuned). So, the big bang theory fails to explain that
our night sky is so homogeneous if it comes from non-causally connected patches. On the
other hand, current observations show us an approximately flat universe today (curvature in
4 dimensions). Still, one of the dynamic effects of the expansion of the universe is to increase
that curvature, which implies that the early universe must still be much flatter than today.
This is the flatness problem that the classical Big Bang theory cannot explain. Finally, as we
had previously proposed, the Big Bang also fails to explain that the primordial perturbations
are adiabatic and it statistic is mainly gaussian [16].
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The most elegant way to solve these problems of the Big Bang theory is by considering
a period during the first moments in the history of the universe where it has an accelerated
expansion. This period is known as inflation [17], and it will be the main focus of the work
in this Thesis. Assuming a period of accelerated growth in the primordial universe instantly
solves the horizon and flatness problems. The horizon problem is solved since prior to this
accelerated expansion, these points that we considered causally disconnected were in contact,
to later be separated by the effect of the great expansion of the universe. On the other hand,
with an accelerated expansion, a flat universe is an equilibrium solution, so an inflationary
epoch long enough gives us a universe that is flat enough to correspond to current predic-
tions. To explain the problem of the initial conditions is necessary to study perturbations in
inflation.

The simplest way to model the inflationary period is through a scalar field, called infla-
ton, coupled with gravity. The conditions to generate an accelerated expansion through a
field is not unique, and there is no fundamental theory (like the standard model of parti-
cles or general relativity) where the existence of the inflaton is contemplated, which makes
the inflationary theory intrinsically phenomenological. However, physically speaking, this
period is especially interesting because, in inflation, we can connect quantum phenomena
with classical scales. In fact, the explanation for the initial conditions is through considering
the perturbations in the inflaton as quantum fields. As the universe expands rapidly, these
quantum fluctuations are frozen and then give rise to primordial curvature perturbations.

The most common inflation model that gives us an accelerated expansion and satisfies
current observations is called slow-roll and is characterized by an approximately flat poten-
tial. In addition, the perturbations in slow-roll inflation give us primordial perturbations
that follows gaussian statistics. The gaussianity of these perturbations has been observed
with a certain degree of accuracy in the angular spectrum of the CMB and measurements of
the large-scale structure, characterized mainly by an almost scale-invariant power spectrum
(in Fourier space).

The gaussianity of primordial perturbations is not the end of the story since, as we stated
earlier, the physical nature that leads to inflation is unknown. Many theories that try to
explain inflation go beyond conventional ones, such as string theory and supergravity, and
many others. For this reason, if it is possible to observe and understand the departures (or
any exotic difference) in the gaussian statistics (non-gaussianities) or the scale-invariance
of the primordial perturbations, we would have valuable information on the physics behind
inflation [18–21]. This idea is the great motivation behind this work.

We had previously mentioned that the observations of the CMB and the large-scale struc-
ture have corresponded to a gaussian statistic and scale-invariant in the primordial pertur-
bations, so how do we justify going further? First of all, it is necessary to emphasize that the
observations of the angular spectrum of the CMB restrict the power spectrum in a specific
range of scales (large ones), but it is not general. There are many reasons, but one of the
recent events that make us suspect going beyond a gaussian model comes from the detections
of gravitational waves due (mainly) to collisions between black holes.
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In 2016, the first measured observation of a gravitational wave was reported by the LIGO
observatory in the United States [22]. This event was a great revolution in science, not only
because it once again corroborated Einstein’s theory of General Relativity, which predicted
its existence, but also because the first detection was not expected so soon, let alone that
the following were so frequent. If gravitational-wave emissions were considered to be due to
astrophysical black hole collisions, these phenomena are highly unlikely. In addition, some
of the masses reported for these black holes that originate gravitational waves were within
the range where it is not possible for them to exist, called the "mass gap" [23]. All these
inconsistencies made the idea of the existence of Primordial Black Holes (PBH) resurface and
that the LIGO detections come from collisions of this type of black hole.

Primordial Black Holes were first theorized in the 1960s [24, 25] and differ from astrophys-
ical black holes as the former comes from large curvature perturbations in the early universe.
At the time of these first ideas about PBH, the initial conditions were worked as a random
field, without taking much relevance to its physical origin, so these large perturbations in the
curvature were possible but unlikely, so the theorized amount of PBH should be negligible.
What is relevant to our discussion on non-gaussianities and scale-invariance departures is the
fact that these large perturbations are characterized by tails in the probability distributions
for curvature perturbations so that a scenario with an odd number of primordial black holes
is necessarily generated by deviations in the gaussianity or the scale-invariance of the pri-
mordial statistics (mainly with a power spectrum that grows several orders of magnitude on
small scales [26]). Furthermore, due to the nature of the perturbations that would generate
the PBHs (smaller in relation to those of the CMB), a scenario with PBH is compatible,
under certain restrictions, with the observations that are available to date [27]. Additionally,
in recent years, primordial black holes have also received more attention since they are a very
good candidate to be dark matter [28]. This is mainly due to their properties, characteristic
size, and that they are well explained by a well-known theory such as general relativity.

Trying to understand inflationary models that allow changes in the type of primordial
statistic to a non-gaussian/non scale-invariant one is the focus of this thesis. One of the
inflationary models that enable this is those with more than one field, called multifield in-
flation [29–31]. In this type of inflation, we have multiple fields which drive inflation; with
this paradigm, the usual single-field slow-roll inflation can be understood as a trajectory
in the space defined by the fields. The non-gaussianities in this model can be understood
through the coupling between the perturbations in the curvature and those associated with
the additional fields, called isocurvature perturbations. This coupling is described as changes
in the trajectory in the field’s space and has generally been treated as a weak coupling (to
use a perturbative treatment in the equations). The main objective of this thesis will be to
study the effects of a strong coupling between these fields, characterized by large turns in
the space of the fields, and to relate characteristics of the turn with the conditions necessary
to generate a considerable amount of PBH.

This thesis will be structured as follows: in chapter 2, we will introduce the general
concepts of cosmology for a homogeneous and isotropic universe, and we will present the
inflationary theory in its most general version; in chapter 3, we will present the theory of
cosmological perturbations, and we will develop the tools needed to understand perturbations
in inflation; in chapter 4 we will discuss going beyond the general paradigm on primordial
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perturbations (adiabaticity, gaussianity, and scale invariance) to explore the fundamental
physics behind inflation; in chapter 5, we will make a brief review on the theory of primordial
black holes as dark matter; in chapter 6 we will present our model of multifield inflation, and
we will derive an analytical solution for the curvature perturbation that allows the generation
of PBH-DM, in chapter 7 we will terminate our work with the conclusions.
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Chapter 2

Modern Cosmology in a Homogeneus
universe

2.1. General Relativity and Homogeneous Cosmology
Overview

In this section, we will show the main results and equations that are useful in the context
of the study of modern cosmology. For more details, we recommend the usual literature:
[32–35].

The theory that rises to modern cosmology is mainly the theory of General Relativity
(GR) (excluding the fact that some modern cosmology equations can be derived from a
purely Newtonian treatment [36]), which Einstein proposed at the beginning of the 20th
century [1]. Briefly, the theory of general relativity explains how space-time behaves under
the effects of matter and how objects move in these curved space-times. A remarkable fact
of this theory is that gravity is no longer a force and can be understood as an “effect” due to
space-time curvature. In contrast to classical physics, where the dynamic object to be studied
through the equations of motion are the particles’ trajectories, in GR, the dynamic object
is the metric. Without going into much detail, the metric is the object that characterizes
distances in curved space-times, that is:

ds2 = gµνdx
µdxν . (2.1)

When talking about curved space-times, the intuition of derivative changes since it will
depend on the direction (and the coordinates) of the point where we are applying it. To
preserve an invariant definition of the reference frame of the derivative, we introduce the
covariant derivative:

∇µA
ν = ∂µA

ν + ΓνµρAρ, (2.2)

where Γµνρ are known as Christoffel symbols, defined from the metric as:

Γρµν = 1
2g

ρσ(∂µgσν + ∂νgσµ − ∂σgµν) (2.3)

It is important to note that the definition written in equation (2.2) is valid only for tensors
of rank (0,1), but it can be simply extended to any tensor.
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With the covariant derivative, we can derive an equation for the paths that minimize
the distance between two points, called geodesics, which in GR are defined from an affine
parameter along the path xµ(λ).

d2xµ

dλ2 + Γµρσ
dxρ

dλ

dxσ

dλ
= 0. (2.4)

This equation is of utmost relevance since point particles move along geodesics.

The equation of motion for the metric in GR is Einstein’s equation, which has the form
of:

Rµν −
1
2gµνR = 8πGTµν , (2.5)

where Rµν is the Ricci tensor, R is the Ricci scalar, defined by the following contraction:
R = Rσ

σ and G is the Newton gravitational constant. The Ricci tensor is a contraction of the
Riemann tensor Rµν = Rλ

µλν . The Riemann tensor can be understood as a quantification of
the curvature of space-time at a certain place. Written in terms of Christoffel’s symbols, it
is:

Rρ
µλν = ∂λΓρµν − ∂νΓ

ρ
µλ + ΓρλσΓσµν − ΓρνσΓσµλ. (2.6)

The Einstein equation’s (2.5) left side contains the kinematic (or curvature) information
associated with the metric and its derivatives, while the right side is the dynamic information
contained in the energy-momentum tensor of the space-time that we are studying.

Knowing the metric of the universe would be the ultimate goal of modern cosmology, where
we could predict the movement of its components as well as knowing the origin and end of it
exactly. Unfortunately, as we mentioned earlier, this is practically impossible. Therefore, it
is necessary to apply various assumptions to the type of metric that we imagine the universe
must have and how we model its components.

On the metric side, we must impose that the space-time that describes the universe must
comply with the cosmological principle. In this way, the only metric representing a homo-
geneous and isotropic space-time corresponds to the metric known as Friedmann-Lemaitre-
Robertson-Walker (FLRW), which in spherical coordinates has the form:

ds2 = −dt2 + a2(t)
[

dr2

1−Kr2 + r2dΩ2
]
, (2.7)

where K corresponds to the curvature of this space in 4 dimensions2. If K = 0, we have
a flat space, if K < 0, we have an open (hyperbolic) space, and K < 0 a closed space (if
this is the case, our universe could be characterized as the surface of a 3-sphere). On the
other hand, the function a(t) is the scale factor that tells us how spatial distances increase
(or decrease) with time, this dependence is due to the homogeneity and isotropy of space-time.

To continue, we must make assumptions about the content of the universe. As we are
interested in knowing the universe on a large scale (since we want our metric to obey the

2 In this metric, and for all of this thesis, we work with units that make the speed of light equal to one.
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cosmological principle), we can approximate the galaxies to points and the content of the
universe as a composition of perfect fluids. The energy-momentum tensor of a perfect fluid
is written as:

Tµν = (ρ+ p)uµuν + pgµν , (2.8)

where uµ is the 4-speed of the fluid and ρ, p are the energy density and pressure of the
fluid respectively. As an intrinsic property of the energy-momentum tensors that are valid as
sources for the Einstein equation, they must obey a continuity equation ∇µT

µ
ν . If we place

ourselves in the reference system where the universe is homogeneous and isotropic, the fluid
is at relative rest, so we have u0 = 1 and ui = 0, in this way, the continuity equation is:

ρ̇+ 3H(ρ+ p) = 0, (2.9)

where H is the Hubble expansion rate, defined by H(t) ≡ ȧ
a
.

Before writing Einstein’s equation for the FLRW metric, in the last definition, we write
H as a function of the scale factor and its derivative. Still, in the equation (1.1) we present
H0 as the proportionality constant between the redshift and the distance to state Hubble’s
law. This is not a coincidence since we can show that Hubble’s experimental law in 1929
is directly related to the evolution of the universe and the scale factor. If we do a Taylor
expansion to the scale factor around the current time t0 and keep up at first order, we have

a(t) ≈ a(t0) + ȧ(t0)(t− t0) = a(t0)(1 +H(t0)(t− t0)). (2.10)

On the other hand, we can relate the scale factor and the redshift, defining the latter as the
difference between the wavelengths of a signal due to the expansion of the universe

z ≡ λ− λe
λe

, (2.11)

where, λe is the emitted wavelength of the signal. As the signal travel through the universe,
his wavelengths are affected by its expansion as λ(t) = λe/a(t), and the redshift is:

z = 1
1 + a

. (2.12)

Then if H(t0)(t − t0) � 1, we have a relationship between the redshift and the distances
(since c = 1) where H0 ≡ H(t0)

z ≈ H(t0)(t− t0) = H0d. (2.13)

Which is the same law that Hubble gets from his observations. This is because he only could
observe some “near” galaxies at that time, so the travel time of the signals can be considered
small.

If we go back to studying the equation (2.9). First of all, we would like to know the relation
between the energy density and the different components’ pressure. It can be demonstrated,
using mainly the kinetic theory of the components, that for the fluids that we are interested
in studying, the relation between the density and the pressure is through a simple equation
of state:
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p = ωρ, (2.14)

where ω is a constant known as the state parameter, and it will be different according to
each component of the universe. With this, we can integrate the equation (2.9) and obtain
the energy density dependence with respect to the scale factor:

ρa ∝ a−3(1+ωa). (2.15)

Where the subscript a represents each element of the universe differentiated by its state
parameter. For the case of our universe, we can characterize three different components.
Each component will have a different state parameter:

• Relativistic matter (ωr = 1/3), are mainly the photons and neutrinos that are in the
universe, we can observe part of the radiation of the universe with the CMB (mainly
photons). The evolution of the energy density of the radiation as a function of the scale
factor will be:

ρr ∝ a−4. (2.16)

• Non-relativistic matter (ωm ≈ 0). This type of matter is characterized as non-interacting
with each other. It mainly describes baryonic matter and dark matter. In this case, the
energy density associated with non-relativistic matter will have the form:

ρm ∝ a−3. (2.17)

• Dark energy (or vacuum energy) (ωΛ ≈ −1); is an element that characterizes a type
of energy with negative pressure, generating the expansion of the universe. In general,
this element is introduced into space-time dynamics from a cosmological constant Λ in
Einstein’s equations.

TΛ
µν = − Λ

8πGgµν . (2.18)

Replacing the state parameter for this case, we arrive at a fairly intuitive result, the en-
ergy density associated with the cosmological constant does not depend on time (through
the scale factor).

ρΛ ∝ const. (2.19)

Considering all the components of the universe (i.e Tµν = ∑
a
T aµν), Einstein’s equation (2.5)

translates into two equations: (
ȧ

a

)2
= 8πG

3
∑
a

ρa + K

a2 (2.20)

ä

a
= −4πG

3
∑
a

(ρa + 3pa) (2.21)

The first equation is known as the Friedmann equation, while the second is interpreted
as the acceleration equation. From the second equation, it is straightforward to see that we
will have an accelerated expanding universe for the dark energy component (p = −ρ). In any
case, the first equation will be the relevant one to relate the density of matter of the universe
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in its history with the scale factor.

The goal will be to solve the Friedmann equation for all times. Being a first order differ-
ential equation, we need an initial condition. This initial time will be the current time since
we can only access the observations measured today. So we set the scale factor today to
a(t0) = 1. We can make the last statement because the scale factor does not have a physical
meaning by itself, we only see its effects when we measure proper quantities in the universe.
Another way to understand it is that the observable and measurable physical quantity is the
scale factor variation, characterized by the Hubble parameter H(t).

With this in mind, we are going to rewrite the Friedmann equation by making two crucial
definitions: the critical density

ρcrit(t) ≡
3H2

8πG, (2.22)

and the density parameter of each component of the universe

Ωa ≡
ρa
ρcrit

. (2.23)

With this, we are left with a more compact version of the Friedmann equation.

H2(t) = H2
0

[
Ω0,r

a4 + Ω0,m

a3 + Ω0,k

a2 + Ω0,Λ

]
, (2.24)

in this version of the equation, we introduce the curvature energy density as:

ρk ≡
−3K

8πGa2 . (2.25)

In general, to describe the various epochs of the universe, we use the scale factor (which
goes from 0 to 1 today) or the redshift as a temporal quantity. The latter is 0 today and
grows as that we are going backward in time (reasonable since the oldest signals have more
time for their wavelengths to be stretched due to the expansion of the universe).

Another important element is that although we include the effects of the intrinsic curvature
of space-time in this way of writing the Friedmann equation, it must be separated from the
contributions of the other sources of energy density ∑

a
Ωa = 1 − Ωk. This separation will

help us to deduce the curvature of the universe only by measuring the densities of the other
components.

2.2. ΛCDM model
The model that best fits the observations is the so-called Lambda Cold Dark Matter

(ΛCDM), where our universe contains various types of components, all of which behave with
one of the state parameters mentioned above. We will go on to explain in more detail what
each type of component corresponds to and its values observed today.

• Photons: They are photons that travel through the universe freely. The vast majority
of these come from the microwave background radiation (CMB). In the early universe,
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the temperature was so high that the photons were coupled with the matter, but as the
universe was cooling, the photons had one last interaction with matter and began to
travel freely until we observed them. The CMB is a photo of that moment. Measuring
the temperature of the CMB allows us to deduce the density parameter for photons
today:

Ω0,γ = 4.48× 10−5, (2.26)

we can notice that photons correspond to a very small fraction of the energy density
today.

• Neutrinos: they also correspond to relativistic particles. Unlike photons, they were
uncoupled from the rest of the universe elements much earlier. The energy density of
neutrinos can be related to the energy density of photons by:

ρν = 3× 7
8 ×

(4
3

)4/3
ργ. (2.27)

In this way, the neutrino density will also correspond to a very small contribution to the
energy density of the universe today:

Ω0,ν = 3.4× 10−5, (2.28)

• Baryonic Matter: Corresponds to everything made up of baryons in the universe. It
is the component of which galaxies, stars, planets, we, etc., are composed. Baryons
interact with light so that we can observe them. Currently, the observations of the CMB
temperature perturbations allow us to approximate the density parameter of baryonic
matter, where:

Ω0,b = 0.048± 0.003, (2.29)

• Dark matter: It is another type of non-relativistic matter whose main characteristic is
that it interacts only gravitationally with the baryonic matter. The dark part of its name
came since it does not interact with light. Its existence is deduced from observations in
the rotations of galaxies and galaxy clusters, among others. You can approximate the
density parameter of dark matter from studying the peaks in the angular spectrum of
the CMB, where it currently has to be:

Ω0,DM = 0.258± 0.015. (2.30)

Dark matter is an essential part of this thesis, so we will discuss it later in chapter 5.

• Curvature: Observations of the large-scale structure of the universe, besides the CMB
analysis, can constrain the effects of the curvature of the universe. The density param-
eter associated with the curvature has the value:

Ω0,K = 0.001± 0.002. (2.31)

This is why it is generally said that our universe is approximately flat.

• Dark energy: Observations tell us that our universe is expanding, and this can be
explained mainly by a type of energy density with negative pressure as we present in
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the equation (2.18), if we complement all the values of the other density parameters
mentioned above, we get:

Ω0,Λ = 0.6889± 0.0056. (2.32)

In this way, we will group neutrinos and photons as a single fluid called radiation and baryonic
and dark matter as a fluid that we simply call matter. In the figure 2.1, we summarize the
values for each component’s energy density. Noting that at present, the dynamics of the
universe is dominated by dark energy.

Figure 2.1: Components of the universe, source.

The fact that Λ is the majority component today does not necessarily mean that it always
was. If we look at the relations (2.16) and (2.17), as we go further back in time, the scale fac-
tor gets smaller, so the other components of the universe (radiation and matter) were the ones
that dominated the dynamics of the universe in early times. As we see in the relation (2.17),
we can determine the moment in which the energy density associated with the matter was
equal to the energy density associated with dark energy. This is for aΛ = 0.76, or z = 0.31.
While from the equation (2.16) we can also deduce the moment when the energy density asso-
ciated with radiation was equal to the density of matter. This is arad = 2.7×10−4 or z = 3676.

With the above, we can define (a priori) 3 eras in the universe that occurred in the fol-
lowing order: the radiation dominated era, the matter dominated era, and the dark energy
dominated era (i which this thesis is written). We have left out inflation since its origin is to
solve certain problems associated with the Big Bang paradigm, and we will explain it later
in this chapter.

The values proposed above are essential since we can solve the Friedmann equation (2.24)
at different times, considering only the element whose density is greater than the rest and
thus better understand the dynamics in those eras. If we solve the Friedmann equation for
the different eras, we have the following time dependencies for the scale factor:

ar(t) ∝
√
t, am(t) ∝ t2/3, aΛ ∝ eH0t. (2.33)
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2.3. A Quick Review of the universe’s Thermal History
Although understanding the components of the universe through these macro-divisions

such as radiation, matter, and dark energy is useful to understand the dynamics of the uni-
verse in a first approximation, the Big Bang theory proposes that our universe originated
from a singularity at very high temperatures in a very small volume and from there our uni-
verse was expanding and at the same time cooling. According to this last idea, the physics
that governs the components in the first moments of the universe is very different from what
we observe today (where gravity is the most important interaction at large scales). Using
kinetic theory treatments and the interactions that we know (through nuclear and particle
physics) between the particles that make up the universe, we can understand the history of
the universe from its first moments to the present day.

Before presenting the most relevant milestones in the thermal history of the universe, it
is important to clarify that, although we had mentioned that in cosmology, time was usually
represented with the scale factor or the redshift. To study the universe’s thermal history is a
lot more convenient to use temperature to characterize the passage of time. The convenience
comes from the fact that when treating the dynamics of the particles from their distributions
and interactions, the temperature (or the energy if we make the combination kBT with kB the
Boltzmann constant) will give us a better intuition for when specific processes or reactions
are or are not occurring in the universe. The relationship between the temperature of the
universe and the scale can be deduced merely from the fact that the wavelengths of the sig-
nals have a dependence λ ∝ a so that the frequencies will obey an inverse law ν ∝ 1/λ ∝ 1/a
while the temperature will be linearly related to the frequency for the black bodies. With
this, we have a simple and intuitive relationship between temperature (or energy) and the
scale factor T ∼ 1/a so that as we refer to higher temperatures, we will be talking about
earlier moments in the history of the universe.

Let us also note that for all this treatment, it is assumed that we are studying a universe
that, from its early stages, was in thermal equilibrium, which is well justified by its homo-
geneity and isotropy at present, but it is not a trivial assumption to explain for the initial
conditions (inflation theory solves this question satisfactorily).

Below we will present a summary of the thermal history of the universe starting from
the universe at a temperature of approximately 100Gev (10−10s). Since that moment, the
dynamics of the elements of the universe are well justified and understood based on what we
know in particle physics, gravity, and nuclear physics. If we go further back in time, we enter
an area where physics’ known laws begin not to work well, and we have to start speculating.

• When the universe lowers its temperature below 100Gev, the electro-weak transition
occurs. That is, the symmetry between the weak and electromagnetic fields is lost.
In these early stages of the universe, it was composed mainly of protons, neutrons,
neutrinos, photons, electrons, and positrons.

• Then, when the universe is at a temperature of 1 Mev, the neutrinos are decoupled from
the rest of the particles. By not interacting with the rest of the particles, the neutrinos’
distribution stops varying, and their temperature evolves independently of the rest of
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the particles. Furthermore, as long as the temperature of the universe is above 0.5 Mev,
the creation/annihilation of positron-electron pairs were quite frequent.

• When the temperature drops below 0.5Mev, it is no longer efficient to create and de-
stroy positrons and electrons, occurring a final pair annihilation. Since the universe is
electrically neutral, several electrons must have survived this process to compensate for
the charge on the protons.

• The next milestone occurs when the temperature is about 0.07Mev (∼ 3 min), as this is
when the first Deuterium Helium and Lithium atomic nuclei are formed. This moment
in the history of the universe is called the Big Bang Nucleosynthesis (BBN). After nuclei
were formed, the universe’s only relevant process (from a thermodynamic perspective)
is Thomson scattering.

• Long after all this, the next advance in thermal history occurs the moment of equality
between radiation and matter, when the universe was at a temperature of 0.8eV (or was
10,000 years old). Within this analysis, this particular moment does not have much
relevance. It is going to be important in the study of the perturbations to the various
relevant physical quantities since from this moment on, the perturbations of matter
begin to grow due to gravity, growth that will give rise to the structure (stars, galaxies,
etc.) that we see today.

• Since the universe has a temperature lower than 20eV, the photons stop exchanging
energy with the electrons, but they change their direction due to the interaction, so the
universe continues to be opaque to the photons. At about 0.26eV, the photons interact
for the last time with the rest of the particles and begin to travel freely, and the universe
becomes transparent. This milestone is called the Last Scattering, and these are the
photons that we receive as the radiation from the microwave background. To put this
milestone in perspective, it occurs when the universe is (approximately) 400,000 years
old (redshift 1100) and was at a temperature of around 3000K.

• Almost at the same time as the last scattering, recombination occurs. Where the protons
join with the electrons forming Hydrogen atoms. It is important to emphasize that the
Big Bang theory manages to accurately predict the abundances of Hydrogen, Helium,
and Lithium in the universe that we observe, this being one of the clearest tests of the
validity of the theory.

After the decoupling of the photons, the universe became dark, and from the perturbations
in the various physical quantities, the first stars and galaxies began to form. We will discuss
this topic in detail later when we discuss the theory of cosmological perturbations.

2.4. Conformal Time and Horizons
For most of the history of cosmology and astronomy, almost all observation of the sky

was due to light signals coming from the universe3. The light that propagates through this
space-time that we characterize as FLRW and this being in expansion modifies in a certain
way the path of light. In particular, if we were to graph a diagram of a null geodesic ds2 = 0

3 Without considering the recent observations of gravitational waves.
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using absolute time t as a temporal variable, we would have a curve modified by the scale
factor in time. To understand FLRW spaces with the intuitions of Minkowski spaces, we
define the conformal time as:

τ =
∫ dt

a(t) . (2.34)

One way to understand conformal time simply is to see it like a clock that moves slower
as the universe expands [37]. Using the conformal time as a temporal variable, the FLRW
metric (2.7) becomes:

ds2 = a(τ)
[
−dτ 2 + dr2

1−Kr2 + r2dΩ2
]
, (2.35)

in this way, the trajectories of light rays in a space-time diagram with time as they are lines
with angles of ±45° as in a Minkowski space. This is extremely useful for studying horizons
and causal connections between events for the FLRW metric.

Working within the framework that the Big Bang theory is the best theory to explain
the origin of the universe and the processes that have occurred in it from its early stages to
the present day, the universe has a finite age. So, along with the fact that photons travel at
a finite speed through a vacuum, we cannot access the entire universe from an observation
point. If we define ti as the moment of the origin of the universe, the particle horizon is the
maximum comoving distance in which light can propagate from the origin of the universe to
today, that is:

χp = τ − τi =
t∫

ti

dt

a(t) =
a∫

ai

da

a2H
=

a∫
ai

d ln a
aH

. (2.36)

Later, in the context of studying the evolution of modes for perturbations in the dynamic
quantities of the universe, in order to separate the types of regimes in the modes, we will
define a length scale associated with the Hubble radius ∼ 1/aH which is also called the
Hubble horizon. Although for a universe dominated by matter and with null curvature (as
the observations in our universe show), the particle horizon is of the order of ∼ 1/aH also,
they are not the same quantity. Since the Hubble horizon appears in the dynamic study of
perturbations, while the particle horizon is a kinematic quantity that accounts for photons’
trajectories [38].

2.5. Problems with the Big Bang Theory
With the clear concept of particle horizon, we can already present specific problems that

the Big Bang theory has that require a complementary theory that explains the dynamics of
the universe in its very early stages. We call them problems because there are observations
today that are not fully explained by the Big Bang theory.

2.5.1. The Horizon Problem
Consider the following situation [39]: we are studying the signal from the cosmic microwave

background radiation in two diametrically opposite directions. The physical emission distance
of one of these signals can be understood as the particle horizon distance (evaluated in at
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the emission time te) multiplied by the scale factor (since the particle horizon is a comoving
quantity), so it will be:

dCMB(te) = a(te)
t0∫
te

dt

a(t) . (2.37)

While the separation distance between the two signals is twice the distance mentioned above.

We can then ask ourselves if these two areas were in causal contact at the radiation
emission time. To do this, we calculate the ratio between the separation distance and the
size of the horizon. If this ratio is greater than 2, there could be no causal contact between
the two points. We write the ratio between the separation and the size of the horizon as:

dsep(te)

dH(te)
=

2
∫ t0
te

dt
a(t)∫ t0

0
dt
a(t)

. (2.38)

To simplify the calculation, we consider a universe dominated by matter, and with zero
curvature, we obtain:

dsep(te)

dH(te)
= 2

(
(1 + z)1/2 − 1

)
. (2.39)

The redshift associated with the CMB emission is approximately z = 1100, which tells us
that (at the moment of emission) the separation between these points is approximately 80
times the distance from the horizon, in evident causal disconnection. Even without being
so exaggerated, if we consider two signals from the CMB at an angular distance of 2°, these
two signals will also be causally disconnected. The fact that our night sky is made up of
thousands of patches not causally connected at the time of its formation and that it is still an
almost homogeneous spectrum (beyond small inhomogeneities) is what we call the horizon
problem.

2.5.2. Flatness Problem
From the definition of the critical density, we can write the Friedmann equation (2.20)

separating the energy density components of the universe with the curvature:

|1− Ω| = K

(aH)2 . (2.40)

As our universe is expanding, the quantity 1/aH grows as a function of time (the horizon
increases as the universe expands), so the observed solution of Ω ∼ 1) today is an unstable
equilibrium point. Any small deviation is amplified by expansion, no matter how small it is.
If we look back in time, if today we can say that the universe is flat with a confidence of 1%,
that is, that our |1 − Ω| < 0.01 today. For moments of recombination, we should enforce a
much stricter condition, (|1 − Ω| < 10−5) [40]. So as we go to an early universe, we must
demand an extremely flat universe to be consistent with current observations. This is what
we call the flatness problem, since the Big Bang theory does not give us a dynamic reason
why the universe from its origins was so flat.

19



2.6. Inflation (General Forumlation)
From the two problems associated with the Big Bang, we can deduce a common element

that generates them; the fact that the Hubble radius (1/aH) grows with time. The natural
way to solve these two problems (together with the problem of the initial conditions that we
will discuss later) is considering that in the very early stages of the universe, it expanded
rapidly, to then give way to the evolution that we know of the universe. This period is called
inflation.

If the expansion is accelerated, this tells us that the Hubble radius decreases with time,
so this would generate that zones that were in causal contact (i.e., in thermodynamic equi-
librium) would cease to be in a moment of inflation, and then return to be in contact when
the Hubble radius began to grow again. Thus solving the horizon problem since, if we return
to the previous example of diametrically opposite emissions from the CMB, these will not
have been in causal contact at the time of recombination, but they were already thermalized
from inflation. Another way of looking at it is that with an accelerated expansion, the in-
tegral that defines the particle horizon (2.36) is dominated by the early stages of the universe.

On the other hand, if we revisit the Friedmann equation (2.40) In inflation, the quantity
1/aH decreases with time, making the solution of Ω ∼ 1 an attractor, thus solving the uni-
verse Flatness problem.

Mathematically speaking, we have three equivalent conditions for inflation: As we had
previously presented, to solve the horizon and flatness problem, we must force the Hubble
radius to shrink over time:

d

dt

( 1
aH

)
< 0. (2.41)

By expanding the derivative of the previous equation, we have that the condition becomes:

d

dt

( 1
aH

)
= − ä

(aH)2 < 0 ⇒ ä > 0, (2.42)

which results in an accelerated expansion of the universe. Finally, if we ask ourselves some
dynamic effect that generates this accelerated expansion, say which energy-momentum tensor
causes this acceleration, we can use the equation(2.21) and the fact of imposing ä > 0 we
have:

p < −1
3ρ, (2.43)

that is, negative pressure could generate the accelerated expansion necessary in inflation.

A particular case of accelerated expansion is that described by “De Sitter” space [41, 42],
which consists of an expansion characterized by a constant Hubble parameter: (H = const),
so the expansion will be exponential:

a(t) = eH(t−t0), (2.44)
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while the scale factor is a function of time as we can express it as:

a(τ) = − 1
Hτ

. (2.45)

It is important to note that for this type of expansion, the moment of the singularity that
gives rise to the universe (a = 0) is characterized by τ = −∞. The fact that the scale factor
becomes infinite for the case of (τ = 0) should not concern us since for the De sitter space
τ = 0 corresponds to the infinite future t→∞ for the coordinate time.

Why is it relevant to present the De Sitter space in the context of inflation? A good infla-
tionary model can be understood as a quasi-De Sitter process, where the Hubble parameter
is almost a constant. The way that we quantify this condition is by rewriting the scale factor
acceleration ä/a and introducing the parameter ε = −Ḣ/H2, we get

ä

a
= H2(1− ε). (2.46)

For the inflation requirements to be met, we must impose that ε < 1. Later on, we will be
able to rewrite this condition for this parameter based on the system’s dynamic variables and
thus have more clarity of what happens in inflation.

To close this part, we must mention that whatever the dynamic form that generates
inflation, in the end, its energy density must be transferred to radiation in the form of
particles of the standard model. This process that ends inflation is called reheating.

2.6.1. Single Field Inflation
Although the idea of a shrinking Hubble sphere (i.e., an accelerated expansion), for a few

fractions of a second at the beginning of the universe directly solves the problems associated
with the Big Bang, the dynamic origin of inflation is not so simple to imagine with the clas-
sical intuitions. Needless to emphasize what we mentioned in the equation (2.43), we would
need a component of the universe that has negative pressure for inflation to occur.

Without specifying its physical nature, we can model inflation with a scalar field called an
inflaton. In the simplest case, this field is minimally coupled to gravity through the following
action:

S =
∫
d4x
√
−g
[
M2

Pl

2 R− 1
2g

µν∂µφ∂νφ− V (φ)
]
. (2.47)

The first term is the part of the Einstein Hilbert action and M2
Pl = 1/8πG is the reduced

Planck mass4.By varying this action with respect to the metric, we can derive the Einstein
equations (2.5). While the rest is the contribution of the scalar field.

If we vary the action with respect to the inflaton, we will obtain the equation of motion

4 When it is useful, we’re going to use this definition. Besides, it is common to set this term to 1 to normalize
the discussion in terms of the Planck mass
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of the field:
φ̈+ 3Hφ̇− 1

a2∇
2φ+ dV

dφ
= 0. (2.48)

From this equation, particularly from the second term, we can deduce that the expansion of
the universe acts as a friction force for the field’s dynamics.

The energy-momentum tensor associated with the scalar field is:

T (φ)
µν ≡ −

2√
−g

δSφ
δgµν

= ∂µφ∂νφ− gµν
(1

2∂
λφ∂λφ+ V (φ)

)
. (2.49)

Whereas if we assume that we are working on an FLRW metric at all times, the inflaton
will keep the symmetries of the metric, so this field can only be time-dependent. With this
assumption, the term ∇2φ in the equation (2.48) vanishes, and the energy-momentum tensor
of the inflaton is that of a perfect fluid, with:

ρφ = 1
2 φ̇

2 + V (φ), (2.50)

pφ = 1
2 φ̇

2 − V (φ). (2.51)

From the energy density, it can be clearly seen how we have the kinetic energy of the field
in the first term while the second is the potential. We also note that if the contribution
of the potential to the energy density exceeds that of the kinetic energy, we will have the
accelerated expansion necessary for inflation to occur. If this condition is fulfilled (V � φ̇),
we will have the so-called slow-roll inflation.

With equations (2.50) and (2.51), we can write the Friedmann and the acceleration equa-
tions in terms of the inflaton field and its potential:

H2 = 8πG
3

[1
2 φ̇

2 + V (φ)
]
. (2.52)

ä

a
= Ḣ +H2 = −8πG

3
(
φ̇2 − V (φ)

)
(2.53)

If we equalize equation (2.46) with (2.53), we will have an expression of the parameter ε as
a function of the field, which will be very useful to describe the inflation conditions:

ε = 4πG φ̇2

H2 = 1
2M2

Pl

φ̇2

H2 . (2.54)

For the case of slow-roll inflation, we can approximate the Friedmann equation to:

H2 ' 8πG
3 V (φ). (2.55)

For inflation to last a sufficient amount of time to be able to solve the problems associated
with the Big Bang, we must impose a second condition; the acceleration of the field should
be small. If we see the equation of motion for the field (2.48), we can deduce that the field’s
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acceleration has to be small to fulfill the request:

∣∣∣φ̈∣∣∣� ∣∣∣3Hφ̇∣∣∣, ∣∣∣∣∣dVdφ
∣∣∣∣∣. (2.56)

To qualify this condition more intuitively, we define a second slow-roll parameter:

η = − φ̈

Hφ̇
. (2.57)

With this, slow-roll inflation would be characterized by (ε < 1 and η < 1). With this second
condition, we can write an approximate version for the inflaton equation of motion in the
same way as we did with (2.55), obtaining:

3Hφ̇+ dV

dφ
' 0. (2.58)

We can also use the slow roll conditions, to define parameters that depend only of the
shape of the potential associated with the inflation:

εV = 1
16πG

(
1
V

dV

dφ

)2

= M2
Pl

2

(
1
V

dV

dφ

)2

ηV = 1
8πG

1
V

d2V

dφ2 = M2
Pl

(
1
V

d2V

dφ2

)
(2.59)

Note that there is no single potential that satisfy the conditions to generate inflation. And
there is a diverse classification of types of inflation differentiated by various characteristics
of their potentials [43, 44].

To close the discussion of this part, we need to consider that inflation has a beginning
and an end. To characterize the duration of this period, which are fractions of fractions of a
second, we define the number of e-folds:

N ≡ ln
(
af
ai

)
=
∫ tf

ti
Hdt (2.60)

Where the indices f and i are for the end and the beginning of inflation respectively. In the
other hand, for the flatness problem to be solved, we must require that (|Ωf − 1| < 10−60),
so from the ratio between the initial and final curvature:

|Ωf − 1|
|Ωf − 1| '

(
ai
af

)2

= e−2N (2.61)

If we impose that the initial condition is that the difference between |Ωi−1| is of the order
of unity, that is, an initial condition very far from a flat space, we would need N> 70 for the
universe to be approximately flat from its origins after inflation.
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Chapter 3

Perturbations in Inflation

3.1. Linear Perturbation Theory
So far, we have talked about the dynamics of the universe as a homogeneous fluid full of

various components (radiation, matter, and dark energy). From the assumption of homo-
geneity, it is possible to understand, with a reasonably high degree of certainty, the dynamics
and history of the universe. We can understand how its components evolved, how these
elements affects its evolution by identifying the different eras. And there is even a theory
that allows solving the Big Bang theory’s specific problems by introducing an accelerated
expansion in its first fractions of existence.

As we presented previously, the assumption of the homogeneity of the universe is a help-
ful tool to understand it. But, it is a matter of looking at the sky at night, and we will
realize that our universe is full of structure (clusters of galaxies, stars, planets, etc.), not
dust of perfectly distributed matter. All this without forgetting that on large scales, the
cosmological principle is perfectly maintained. So it is the natural step for modern cos-
mology to try to understand these inhomogeneities, at least in a first approximation, and
see how they relate to the large-scale dynamics of the universe modeled by the FLRW metric.

The theory that we are going to develop in this chapter is called the theory of cosmological
perturbations, whose starting point is to perturb the metric:

gµν = ḡµν + hµν . (3.1)

Where ḡµν corresponds to the background spacetime metric, which for our case will be the
Friedmann-Lemaitre-Robertson-Walker metric:

ḡ00 = −1 ḡ0i = ḡi0 = 0 ḡij = a2(t)δij. (3.2)

From now on, in this chapter, all the quantities with a bar on them will correspond to the
background quantities whose evolution we studied in the previous section.

On the other hand, we will keep all this perturbative treatment in a linear order for hµν ,
that is, we will neglect higher orders of h. With this in mind, the inverse of the perturbation
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will be hµν = −ḡµρḡνσhρσ, whose components we write as:

h00 = −h00, hi0 = 1
a2(t)hi0, hij = − 1

a4(t)hij. (3.3)

Since the cosmological principle only applies to the background metric, we cannot make
many assumptions about the perturbation tensor hµν , other than the fact that it is symmet-
ric. To work better with this tensor, we are going to write its 10 degrees of freedom as a
combination of 4 scalar perturbations (A, B, C, E), two vector perturbations (Fi and Gi),
and one pure tensor perturbation γij5:

h00 = −2A, (3.4)
hi0 = a(t)(∂iC + Fi), (3.5)

hij = a2(t)
(

2Bδij + ∂i∂jE −
1
3δij∇

2E + ∂jGi + γij

)
. (3.6)

Vector and tensor perturbations must also fulfill the following conditions in order not to
have additional hidden scalar or vector degrees of freedom:

δij∂iFj = 0, (3.7)
δij∂iGj = 0, (3.8)
δij∂iγkj = 0, (3.9)
δijγij = 0. (3.10)

The convenience of this way of writing the perturbation is that each component transforms
and evolves independently. This fact will come in handy when discussing Gauge transforma-
tions and the equations of motion for the perturbations.

The next step in this discussion is to consider perturbations in the energy-momentum
tensor. We do this by considering the following separation:

Tµν = T̄µν + δTµν , (3.11)

where T̄µν is the background energy-momentum tensor also expressed as a function of back-
ground quantities:

T̄µν = (ρ̄+ p̄)ūµūν + p̄ḡµν . (3.12)

To identify the perturbed part of the energy-moment tensor, we start by considering that
the total shape of the energy-moment tensor is also that of a perfect fluid.

Tµν = (ρ+ p)uµuν + pgµν . (3.13)

Then each quantity is separated into part of background and perturbation:

ρ = ρ̄+ δρ, p = p̄+ δp, (3.14)

5 With this decomposition it is fulfilled that the different elements transform independently under changes
of coordinates, without contributing to the other elements of the decomposition. For example, the vector
part transforms as a vector without adding scalar quantities.
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and the 4-velocity, when doing the separation: uµ = ūµ + δuµ, the spatial part can be
separated into a scalar part and another purely vector part:

δui ≡ ∂iδu+ δuVi , ∂iδu
i(V ) = 0. (3.15)

We replace (3.14), (3.15) and (3.1) in (3.13) leaving everything in linear order in the pertur-
bations and we obtain:

δTµν = δpḡµν + p̄hµν + (δρ+ δp)ūµūν + (ρ̄+ p̄)δuµūν + (ρ̄+ p̄)ūµδuν . (3.16)

Splitting the components in the same way as in (3.4) - (3.6), we have:

δT00 = δρ− ρ̄h00, (3.17)
δT0i = p̄h0i − (p̄+ ρ̄)

(
∂iδu+ δuVi

)
, (3.18)

δTij = a2(t)δijδp+ p̄hij. (3.19)

Since we started under the assumption that the shape of the momentum energy tensor
was a perfect fluid, the spatial part of the tensor has only one scalar degree of freedom. To
consider all the degrees of freedom, we must introduce an anisotropic stress tensor πij, which
represents dissipative effects due to the inertia of the system. For what would remain:

Tij = a2(t)δijδp+ p̄hij + a2(t)πij, (3.20)

The anisotropic stress tensor can also be split down into scalar, vector and tensor parts:

πij = ∂i∂jπ
S − 1

3δij∇
2πS + ∂iπ

V
j + ∂jπ

V
i + a2(t)πij, (3.21)

where each component must fulfill the conditions analogous to those presented in the equa-
tions (3.7-3.10).

3.2. Gauge Transformations
In the discussion of perturbation theory, we have to consider that by adding a pertur-

bation to the metric, we break in a certain way the invariance to change between reference
frames of the metric. To be more precise, if we have the metric decomposition of the form
gµν = ḡµν +hµν , nothing prohibits us from that in a given reference frame the system behaves
like a background space plus a different perturbation, or even a reference system where the
perturbation doesn’t exist. That is, the decomposition proposed in the equation (3.1) is not
unique. The main complication that this brings is that when trying to solve the Einstein
equations for a perturbed metric, we will have to take into account that there will be mixed
physical quantities (that we want to study) and quantities associated only with the choice of
coordinates.

If we consider infinitesimal transformations between coordinate systems xµ → x′µ = xµ +
ξµ, an arbitrary tensor Aµν...ρ will transform as:

A′µν...ρ(x′) = Aµν...ρ(x)− ∂µξλAλν...ρ(x)− ∂νξλAµλ...ρ(x)− ...− ∂ρξλAµν...λ(x), (3.22)
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these types of transformations are called gauge transformations.

If we want to keep the study in a linear order, the gauge transformation for the perturba-
tion in the metric and the energy-momentum tensor will be:

h′µν = hµν − ∇̄µξν − ∇̄νξµ, (3.23)
δT ′µν = δTµν − ξλ∇̄λT̄µν − T̄ λµ ∇̄νξλ − T̄ λν ∇̄µξλ, (3.24)

where ∇̄ corresponds to the covariant derivative defined in (2.2) but with the Christoffel
symbols derived from the background metric. If we separate the previous equation by com-
ponents, in the same way as in (3.4)-(3.6) and (3.17)-(3.19) we have a transformation rule
for each component of the perturbed metric scalar, vector and tensor decomposition:

A′ = A+ ξ̇0, (3.25)

C ′ = C − 1
a

(
ξ̇S + ξ0 − 2HξS

)
, (3.26)

F ′i = Fi −
1
a

(
ξ̇Vi − 2HξVi

)
, (3.27)

E ′ = E − 2
a2 ξ

S, (3.28)

B′ = B +Hξ0 −
1

3a2∇
2ξS, (3.29)

G′j = Gj −
1
a2 ξ

V
j , (3.30)

γ′ij = γij (3.31)

where ξS and ξVi are the scalar and vector decomposition of ξi:

ξi ≡ ∂iξ
S + ξVi , δij∂iξ

V
j = 0. (3.32)

Then, the transformation of the elements of the energy-momentum tensor results:

δρ′ = δρ+ ξ0 ˙̄ρ, (3.33)
δu′ = δu− ξ0, (3.34)
δp′ = δp+ ξ0 ˙̄p, (3.35)
δu′Vi = δuVi (3.36)
π′ij = πij, (3.37)

We can see right away that δuVi and πij are gauge invariants6.

From a simple inspection, we can identify gauge-invariant quantities (i.e., physical quan-
tities), for example:

6 For a perfect and irrotational fluid.
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ΦGI = A+ d

dt

(
aC − 1

2a
2Ė
)
, (3.38)

ΨGI = −B + 1
6∇

2E − aHC + a2

2 HĖ, (3.39)

δρGI = δρ+ ˙̄ρ
(
aC − a2

2 Ė
)
, (3.40)

δuGI = δu− aC + a2

2 Ė (3.41)

The gauge-invariant quantities that will be of particular interest for our study of the infla-
tionary period are the gauge invariant comoving curvature perturbation R and the curvature
perturbation on uniform-density hypersurfaces ζ defined as:

R = B − 1
6∇

2E +Hδu, (3.42)

ζ = B − 1
6∇

2E − H
˙̄ρ δρ. (3.43)

3.2.1. Gauge Election
Due to the fact that there are different ways to represent the metric perturbation, we

are free to choose the transformation to a particular reference frame, that is, selecting ξµ.
Although this is a priori arbitrary, a good selection of Gauge can simplify the equations to
study certain problems in particular. Next, we will present the most common gauge choices.

• Newtonian Gauge
The Newtonian (or longitudinal) Gauge consists of locating ourselves in a reference
frame such that:

E ′ = 0 C ′ = 0 F ′i = 0. (3.44)

In this gauge the scalar perturbation in the temporal part of the metric coincides with
the gauge-invariant potential defined in (3.38). This gauge’s main use is to describe the
evolution of the large-scale structure after recombination.

• Synchronous Gauge
This gauge is characterized by the fact that the temporal parts of the metric (g00 and
g0i) are not perturbed. This characteristic makes the synchronous gauge very useful in
discussing perturbations in the photon-baryon fluid in the primordial universe since we
can more easily connect certain ideas and derivations of kinetic theory. To characterize
the perturbations of the metric in this gauge, we take the choice of ξµ such that:

A′ = 0, C ′ = 0, F ′i = 0. (3.45)

It is important to mention that this gauge has what is known as a residual gauge, that
is, the condition expressed in (3.45) is fulfilled for an infinite amount of ξµ. This residual
gauge is mainly fixed in discussions about fluid velocity associated with dark matter.
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• Comoving Gauge
This gauge is particularly useful for studying perturbations in the inflationary period.
This gauge has the characteristic such that the 3-speed of the fluid we are studying
disappears. For this, we must choose ξµ such that:

δu′ = 0, E ′ = 0, G′i = 0. (3.46)

With the conditions mentioned above, for this gauge, we have B = R (which will be
relevant in the discussion about initial conditions for our universe).

3.3. Einstein Equations (scalar perturbations)
Once we identify the perturbations with which we are going to work and ideate a tool to

detect which quantities are physical and which are not, we must solve Einstein’s equations
to see their evolution in time and space:

δGµν = 8πGδTµν . (3.47)

As we have already mentioned previously, dividing the perturbations into a scalar-vector
and tensorial part enables us to study the equations of motion (Eqn. (3.47)) separately
for per type of perturbation. Scalar modes are the most complex to understand since they
present a larger number of degrees of freedom and have a greater gauge freedom also. On the
other hand, vector modes decay with time, and tensor modes are gauge-invariant, so their
treatment is a bit more standard 7.

3.3.1. Equations in Fourier Space
To study the different perturbations, it will be more convenient to work the equations

in Fourier space. In which, for the case of scalar modes, the perturbations in the physical
space will be defined by a superposition of plane waves with a comoving wavenumber ~k.
In addition, because the perturbations are invariant for spatial translations, the modes will
evolve independently. In this way, given a certain perturbation ψ(~x, t), we define its Fourier
transform as:

ψ̃(~k, t) =
∫
~k
ψ(~x, t)e−i~k·~x, (3.48)

where
∫
~k ≡

∫ d3k
(2π)3 . Then we can rewrite the equations of motion for the modes in Fourier

space, making the following correspondences:

ψ(~x, t)→ ψ(~k, t) ∂iψ(~x, t)→ ikiψ(~k, t) ∇2ψ(~x, t)→ −k2ψ(~k, t) (3.49)

This is particularly useful for handling the different equations in perturbation theory. Since
in cosmology we have a fundamental scale to separate physical phenomena, the Hubble hori-
zon scale (∝ H−1). As we mentioned in section 2.4, the Hubble length informs us if two
zones are causally connected in the universe. By working in Fourier space, we can compare

7 In order to go directly to the equations that are relevant to the work of this thesis, in appendix A is a
compilation of the expressions for the Einstein equations for the scalar modes in different gauges.
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the scales of the modes characterized by their wavelength8 λ ∝ k−1, with the Hubble horizon
and simplify the equations for these cases.

A fairly illustrative example is the equation of motion of a scalar field in an expanding
universe (eq. (2.48)), which without considering a potential for the field and in Fourier space
is:

φ̈+ 3Hφ̇+ k2

a2φ = 0. (3.50)

According to the relationship between k and H, we can separate the equation for each mode
and solve them independently. If k � H we can neglect the dissipative term associated with
the expansion. We called this the sub-horizon mode. On the other hand, we have the case
of the modes with k � H, called superhorizon, where we can neglect the third term.

Finally, it will be of vital importance to note that the modes in this decomposition in
Fourier space and the Hubble horizon do not evolve in the same way. Since the physical
wavelengths will evolve linearly with the scale factor (λphys ∼ a), while the evolution of the
Hubble parameter will strongly depend on the time of the universe in which we are, where:

1
Hr(a) ∼ a2,

1
Hm(a) ∼ a3/2, (3.51)

where the subindices r,m comes from the radiation and matter era (see our discussion in
chapter 2), so the evolution of the different modes and how we approximate the equations
we work with will not be trivial.

3.4. Initial Conditions for the Perturbations
As we can see from Appendix A, where we derive the equations of motion for the first-

order perturbations, we have a sufficient number of equations to solve the evolution of the
perturbations (of matter and metric) and be able to better understand various phenomena
on a smaller scale (than the cosmological scale), such as the formation of structure, the
anisotropies of the CMB among others. Then, to have a deterministic solution, we must
know the initial conditions for these perturbations.

Following the discussion in the previous section, due to the homogeneity of the universe,
we are going to understand the initial conditions in Fourier space. The basis of our argument
to identify the nature of the initial conditions was also mentioned earlier. As the Hubble
horizon (in times dominated by radiation and matter) grows faster than the wavelength of
the perturbation modes. So, a reasonable assumption to begin to understand the initial
conditions for the perturbations is to assume that all the modes were outside the horizon at
very early times.

We can get more information from this assumption if we put ourselves in the following
case: we want to study a scalar quantity χ of our universe and its perturbations in the usual
way , i. e. χ(~x, t) = χ̄(t)+δχ(~x, t). But, under the assumption that the relevant wavelengths
8 It is important to note that this is the comoving wavelength, which is related to the physical one via the
scale factor λphys = a(t)λ.
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of the initial conditions for the evolution of the χ perturbations are much larger than the
Hubble radius, it should not be possible to differentiate between the background quantity
and the total quantity (except due to a phase that indicates that we are in a certain Hubble
patch), that is:

χ(~x, t) = χ̄(t+ δt(~x, t)). (3.52)

At first order we can obtain the following relation for δt:

δt(~x, t) = δχ(~x, t)
˙̄χ(t) . (3.53)

This relationship should hold for all perturbed scalar quantities (density, pressure, tempera-
ture, etc.). If we additionally impose that the species that command the background solutions
are in local thermodynamic equilibrium, then it must be satisfied that δt must be common
for all species:

δρa(~x, t)
˙̄ρa(t)

= δpa(~x, t)
˙̄pa(t)

= δT (~x, t)
˙̄T (t)

= δt(~x, t) ∀a. (3.54)

We will call the perturbations that fit this condition adiabatic. With this, we can say that
all adiabatic scalar perturbations are determined by a single primordial perturbation 9. The
challenge that follows will be to connect this perturbation (which we will now call primordial)
with inflation. The logic is as follows: the accelerated expansion of the universe during the
inflationary epoch makes the modes of the perturbations generated in said period (whose
nature we will deal with later) exit the horizon and re-enter after inflation ends, and the
subsequent ages of the universe begin.

To make the connection between the inflationary period and the primordial perturbation
more direct, it will be useful to study a perturbation (remember that we have a gauge
freedom) where its superhorizon modes are constant. Let’s prove this last statement, if we
work with the curvature perturbation in hypersurfaces of uniform density ζ, defined in the
equation (3.43) and use the Newtonian Gauge:

ζ = −Ψ + δρ

3(ρ̄+ p̄) , (3.55)

in the second term we use the continuity equation (eq. (2.9)) to replace ˙̄ρ. Do not forget that
ζ is a gauge-invariant quantity, so although we are doing this treatment in the Newtonian
gauge, it is valid for any other. If we derive this definition and use the equation (A.16) for
the superhorizon case (k2/a2 � 1), we are left

ζ̇ =
˙̄ρ ˙̄p

3(ρ̄+ p̄)2

(
δρ
˙̄ρ −

δp
˙̄p

)
. (3.56)

But, if the perturbations we are studying are adiabatic, then the parentheses of this equation
is canceled by the condition expressed in equation (3.54), with this we conclude that ζ is
conserved outside the horizon.

9 In Appendix B, we use the equations for perturbations in the synchronous gauge and show this explicitly.
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Additionally, for purposes of understanding the physics that originate these perturbations,
we can relate ζ withR (comoving curvature perturbation) through their definitions (equations
(3.42) and (3.43)) and the equation (A.9), where we obtain

ζ = R− k2

a2
ΨGI

12πG(ρ̄+ p̄) , (3.57)

where for superhorizon modes ζ = R. For this reason, it is common not to differentiate these
quantities when we speak of a primordial curvature perturbation.

3.4.1. Statistics of R
The fact that the initial conditions for the perturbations in the universe are adiabatic,

and even the fact that they came from a single field of perturbations, are ideas prior to
the inflationary theory that explains their origin [16]. How the assumptions associated with
these conditions were justified, ignoring the fundamental physics that originated them, is
closely connected to how we do astronomical observation to understand the universe. 99 %
of our knowledge about the universe is derived fundamentally from the detection of multiple
signals that come to us from millions of sources in space. Where then, statistics are made
with these observations10 in order to connect observable values with the theory that explains
the phenomena. As the connection between observation and theory is through statistical
quantities, a valid assumption to work with the primordial perturbation is to assume that R
is a random field.

The information that we will obtain from R will be obtained from understanding its
statistics, mainly from n-point correlations. But R cannot be any random field. Instead, it
must meet specific basic rules associated with the cosmological principle and the background
behavior of the universe on which this perturbation exists. For example, since R is a per-
turbation in the metric, its spatial average must be zero so as not to modify the background
spacetime. Furthermore, because the homogeneity and isotropy of the universe, the ergodic
theorem gives us a condition for the correlations of two points

〈R(~x),R(~y)〉 ∼ f(|~x− ~y|), (3.58)

condition that, in Fourier space, is translated into〈
R(~k),R(~k′)

〉
≡ (2π)3δ(3)

(
~k + ~q

)
PR(k). (3.59)

Where k =
∣∣∣~k∣∣∣ and PR(k) is the power spectrum of R. Additionally, it is common to define

the dimensionless power spectrum ∆R, through

PR(k) ≡ 2π2

k3 ∆R(k). (3.60)

The simplest way to understand the statistics of primordial perturbations is to assume
that it is gaussian. Where the main characteristic that a gaussian R fulfills is that all its
statistical information lies only in the power spectrum, since the n-point correlations would

10 The justification for why it is reasonable to do statistics with the observations of the universe is through
the ergodic theorem in conjunction with the cosmological principle [16].
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follow the following rule:

〈R1R2...Rn〉 =
〈R1R2〉 ... 〈Rn−1Rn〉+ perms n even

0 n odd.
(3.61)

So the question that automatically continues is: What is the shape of this primordial
power spectrum? The simplest answer is that it should have a power-law shape

∆R(k) = AR

(
k

k∗

)ns−1

, (3.62)

where AR and ns are the amplitude and spectral index of the power spectrum, while k∗ is
a pivot scale to fix the power spectrum observationally. This form for ∆R was proposed in
the first instance to justify the theory of galaxy formation, where a scale-invariant power
spectrum (ns ≈ 1) was introduced [45, 46]. Various observations have made it possible to
constrain the parameters AR, ns and k∗ of the power spectrum, for example, the observations
of the Planck satellite of the anisotropies of the CMB give us the following values (with
k∗ = 0.002Mpc−1):

ln
(
1010AR

)
= 3.044± 0.014, ns = 0.9649± 0.0042. (3.63)

The primordial power spectrum will be a fundamental quantity to understand, in a first
approximation, the behavior of physics that gives rise to the primordial perturbations and
how this is connected with the observations. We say first approximation since by studying
higher-order correlations (non-gaussianities), we can continue to obtain greater detail in the
fundamental physics behind inflation and the first moments of the universe. Unfortunately,
the last point remains in the speculative part since the observations today are not precise
enough to measure non-gaussianities [47].

3.5. Scalar Perturbations in Single Field Inflation
Now we are going to focus on understanding the perturbations in inflation, which we are

going to consider as the source of the perturbations in the matter. These perturbations in
the inflaton field, we write them as any perturbation of a scalar field:

φ(~x, t) = φ̄(t) + δφ(~x, t). (3.64)

Where if we want to relate the perturbations in the inflaton with the energy-momentum
tensor, this must be through the equation (2.50). Connecting to a perfect fluid, we have that
the density, pressure, and 4-velocity will be:

ρφ = −1
2g

µν∂µφ∂νφ+ V (φ), (3.65)

pφ = −1
2g

µν∂µφ∂νφ− V (φ), (3.66)

uµφ = −[−gρσ∂ρφ∂σφ]−1/2gµτ∂τφ. (3.67)
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Now, we can split these quantities into a background part and the perturbation. Where
the behavior of the background quantities is those explained in section 2.6.1.. Whereas if we
expand (3.65, 3.66, 3.67) up to first order, we will obtain the matter perturbations:

δρ = ˙̄φδφ̇+ dV

dφ
δφ+ h00

2
˙̄φ2, (3.68)

δp = ˙̄φδφ̇− dV

dφ
δφ+ h00

2
˙̄φ2, (3.69)

δu = −δφ˙̄φ
. (3.70)

We are interested in studying the comoving curvature perturbation R in inflation. For
this, we are going to use the comoving gauge defined by the conditions in (3.46). The ad-
vantage of this gauge in this discussion comes from the fact that if δu vanishes, this implies
by the equation (3.70), that δφ is also zero. In other words, in the comoving gauge, the
perturbations of the inflaton are "carried over" to perturbations in the metric.

Then, at this gauge, the perturbation in the energy density and pressure become equal:

δρ = δp = δN Ḣ
4πG , (3.71)

to arrive to the last equality, we used the identity ˙̄φ2 = −Ḣ/4πG that is obtained by com-
bining the equations (2.52) and (2.53). If we replace what is obtained in the equation (3.71)
in the equations (A.28), (A.29) and (A.32) of the appendix A , we will obtain the following
system of equations:

0 = HδṄ + 2
(
3H2 + Ḣ

)
δN − k2

a2R− R̈ − 6HṘ − H

a
k2C, (3.72)

0 = −HδN + Ṙ, (3.73)

0 = − d

dt

(
δN Ḣ

)
− 6HḢδN + k2

a
ḢC + 3ḢṘ, (3.74)

remember that in this gauge AC ≡ δN and BC = R. From the third equation we can isolate
C in terms of R and δN . And form the second equation, we know that HδN = Ṙ. Replacing
all of this in the first equation, we get to a differential equation for R:

R̈+
(

3H − 2Ḣ
H

+ Ḧ

Ḣ

)
Ṙ+ k2

a2R = 0. (3.75)

This equation can be written in a compact form if we define the following quantity:

z2 ≡

a ˙̄φ
H

2

= 2a2ε. (3.76)

Replacing this definition of z in the equation (3.75) and using the conformal time, we are
left with:
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R′′ + 2z
′

z
R′ + k2R = 0, (3.77)

this equation is the Mukhanov-Sasaki equation [48], which describes the comoving curva-
ture perturbation.

3.6. Quantum fluctuations in Inflation
The physical explanation that we will give to the origin of these perturbations in the infla-

tionary period is that they correspond to quantum fluctuations of the inflaton. Due to their
nature, these perturbations would only have relevance at scales similar to Planck’s scale.
Still, since they occur in the inflationary period, these scales undergo an expansion until
they correspond to cosmological scales. With this argument, we could explain the origin of
the primordial perturbations as a consequence of the existence of the Heisenberg uncertainty
principle. But it still does not solve the fundamental nature of inflation. However, it is a great
advance since it establishes a point of contact between quantum theory and general relativity.

The first step in interpreting curvature perturbations as a quantum field (and thus using
the tools of quantum field theory) is to have an action that describes those perturbations.
To get this action, the usual treatment is to expand, up to second order, the Einstein Hilbert
action with a scalar field (equation (2.47)), apply the background equations, and extract the
quadratic terms11.

In our case, we can take the easy path and figure out an action from the Mukhanov-Sasaki
equation (3.77), for this we define the following variable:

v ≡ zR. (3.78)

Using this variable, the equation of motion becomes:

v′′k +
(
k2 − z′′

z

)
vk = 0. (3.79)

In this last expression, we made explicit the fact that the field vk depends on the proper time
and that the wavenumber is a parameter associated with the expansion in Fourier space. The
essential thing is to note that this equation can be obtained by varying the following action
with respect to v12:

S(2) = 1
2

∫
dτd3x

[
(v′)2 + (∂iv)2 + z′′

z
v2
]

(3.80)

Then, we promote the field v and at its conjugate moment v′ to a quantum operator,
where, in real space, it will be

11 This derivation is usually done using the ADM formalism of general relativity and the comoving gauge
(see Appendix C for more details). We will also use this formalism in chapter 6 for the case of multifield
inflation.

12 From now on, for simplicity, we will consider MPl = 1
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v(~x, τ)→ v̂(~x, τ) =
∫ dk3

(2π)3

[
vk(τ)âkei

~k·~x + v∗k(τ)â†ke−i
~k·~x
]
. (3.81)

While in Fourier space it translates to

v(k, τ)→ v̂k(τ) = vk(τ)âk + v∗−k(τ)â†−k (3.82)

In the above expressions, vk(τ) are the mode functions that obey the classical equation
of motion (3.79), while â†−k and âk are the creation and annihilation operators. The mode
functions must comply with the following normalization

〈vk, vk〉 ≡
i

~
(
v∗kv
′
k − v∗

′

k vk
)

= 1, (3.83)

also the creation and annihilation operators satisfy with the canonical commutation relations:[
âk, â

†
k′

]
= (2π)3δ(3)

(
~k − ~k′

)
. (3.84)

3.6.1. Vaccum Selection
A fundamental part of this treatment, in which we promote fields to quantum operators,

is to define a vacuum state, in which

âk |0〉 = 0, (3.85)

this choice will imply an additional restriction for the mode functions [49]. The most common
choice to satisfy this condition is to assume that long in the past (τ → −∞), all relevant
modes13 were well inside the horizon. This is equivalent to choosing an initial condition that
all modes are sub-horizon (k � aH). Using this approximation in the equation (3.79), we
have

v′′k + k2vk = 0. (3.86)

The solution of this equation is the usual one for a harmonic oscillator, normalizing and
taking the solution that minimizes the energy, we are left as an initial condition:

lim
τ→−∞

vk = e−ikτ√
2k
. (3.87)

We can also interpret this condition in the following way: modes much smaller than the
characteristic scale of the horizon of the universe do not "observe" a curved space, so we can
locally approximate spacetime as a flat Minkowski space, where the modes obey the equation
(3.86) [38].

13 In this theory, there will be scales in which this does not apply, those that even at the beginning of inflation
were outside the horizon, but these scales are not relevant since they are very large scales that mix with
the background of the universe.
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3.7. Quantum Fluctuations in De Sitter Space
As inflation is a process that we called "quasi de Sitter", it is important to solve the

equation of motion for the modes (equation (3.79)) in the de Sitter limit and understand its
behavior14. In this limit ε→ 0 but

z′′

z
= a′′

a
= 2
τ 2 . (3.88)

Replacing in the equation (3.79), we have:

v′′k +
(
k2 − 2

τ 2

)
vk = 0. (3.89)

Where, the general solution is

vk = α
e−ikτ√

2k

(
1− i

kτ

)
+ β

eikτ√
2k

(
1 + i

kτ

)
. (3.90)

If we impose the condition that we present in the equation (3.83) and we impose the
Minkowski limit for the subhorizon modes (equation (3.87)), we can set the parameters
α = 1 and β = 0. Leaving us the so-called Bunch Davies mode functions [49]:

vk = e−ikτ√
2k

(
1− i

kτ

)
. (3.91)

3.7.1. Power Spectrum
With the solution for the modes obtained in (3.91), we can calculate the two-point corre-

lation function for R, since

〈R(k)R(k′)〉 = 1
z2 〈v̂k v̂k′〉 . (3.92)

If we replace in this expression, the decomposition of v̂k that we write in the equation
(3.82) and also use the commutation relation for the creation/annihilation operators (eq.
(3.84)), we get:

〈R(k)R(k′)〉 = |vk|
2

z2 (2π)3δ
(
~k + ~k′

)
, (3.93)

from where we can deduce the spectrum of powers of the first term of the multiplication.
Calculating |vk|2 and replacing z defined in the equation (3.76), the spectrum results

PR(k) = H2

2k3

H
˙̄φ

2(
1 + k2τ 2

)
. (3.94)

Where, in the superhorizon limit (|kτ | � 1) we will have a dimensionless power spectrum
(equation (3.60)) that is scale invariant. Let’s not forget that since R is conserved outside
the horizon, we can evaluate H and ˙̄φ at the moment of crossing the horizon thc for each

14 In the appendix D, we solve the modes for the slow roll inflation case
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mode, so that a(thc)H(thc) = k. In this way, in the approximation of a de Sitter space, the
dimensionless power spectrum will have the following scale-invariant amplitude:

∆R(k) = H2

(2π)2
H2

˙̄φ2

∣∣∣∣
k=aH

, (3.95)

if we replace in the previous expression the slow-roll parameter ε, we get

∆R(k) = H2

8π2
1
ε

∣∣∣∣
k=aH

. (3.96)

To close this part, in the appendix D we compute the primordial power spectrum assuming
a slow-roll inflation to compute the mode functions, obtaining:

PR(k) = H2

2k3
π−1

2ε 22ν−1Γ2(ν)
(
k

aH

)−2ν+3

, ν = 3
2 + 3ε− η (3.97)

3.8. Conections with Observations
We have already raised the fact that in a first-order approximation and assuming adiabatic

initial conditions, we can connect the origin of all scalar perturbations, both of matter and
metric, to a single perturbation. But, unfortunately, we do not observe directly these pertur-
bations. Instead, we see the result of their evolution in the universe in time. What’s more,
these perturbations interact with each other once they are all within the Hubble horizon,
making the analysis even more complex.

For example, although dark matter does not interact with baryon matter directly, it
generates potential wells into which the plasma photons-baryons will fall. The desirable
thing is to be able to understand an observable quantity by separating the part that comes
from the primordial perturbations (evaluated at the moment τhc of the departure from the
inflation horizon) and another that comes only from the evolution of the perturbations from
when they re-enters the horizon until it is observed. In a schematic way, we will find that an
observable quantity O can be written as

Ok(τ) = TO(k, τ, τhc)Rk(τhc), (3.98)

where TO is a transfer function.

Next we will explain how this reasoning is applied to the calculation of the CMB angular
spectrum and to the matter power spectrum.

3.8.1. CMB anisotropies
As we discussed in section 2.3, in the early stages of the universe, photons were coupled

with baryonic matter. Then, as the temperature drops, they travel freely, becoming the
photons of the CMB. But, continuing the discussion in this chapter, curvature perturbations
also generate density perturbations in this primordial plasma and thus also left their mark
on the anisotropies of the CMB.
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The common way of making a map of the anisotropy in the temperature of the CMB, is
written from a decomposition into spherical harmonics:

aobs
lm =

∫
dΩ
(

∆T
TCMB

(n̂)
)

obs
Ylm(n̂), (3.99)

where n̂ is the unit vector in the observation direction. Moreover, if we consider that we
are doing statistics with an isotropic background spectrum, we can combine the moments to
have the angular spectrum (invariant before rotations):

Cobs
` ≡

1
2`+ 1

∑̀
m=−`

∣∣∣aobslm ∣∣∣2. (3.100)

This same angular spectrum can be obtained theoretically15, Where we can make a definition
equivalent to eq. (3.99):

athlm = 4πi`
∫
~k
Ylm(k̂)Tl(k)R(k). (3.101)

We will obtain the transfer function, in this case, by solving the Boltzmann equations for the
photons temperature perturbations Θ ≡ ∆T/T and leaving everything in gauge-invariant
terms. The transfer function is generally separated into two contributions:

T`(k) = T LS
` + T ISW

` , (3.102)

where "LS", which comes from Last Scattering, is the contribution of the physics prior to
the last scattering in the transfer function. In contrast, the second contribution is called
"Integrated Sach Wolfe effect" (ISW), which considers the effects of photons passing through
gravitational potential wells after decoupling from matter16, each part can be written as:

T LS` (k)R(~k) =j`(krL)
[
Θτ

0,GI(~k, tL) + ΦGI(~k, tL) + 1
4Θτ

2(~k, tL)
]

(3.103)

+ 3j′`(krL)Θτ
1,GI(~k, tL) + 3

4j
′′
` (krL)Θτ

2(~k, tL), (3.104)

T ISW
` (k)R(~k) =

∫ t0

tL
dt′j`(kr(t′))

(
Φ̇GI(~k, t′) + Ψ̇GI(~k, t′)

)
. (3.105)

In the previous expressions, jl are the spherical Bessel functions, tL and rL are the physical
time and the comoving distance at the time of the last scattering. Additionally, Θτ

`,GI are
the multipole expansions of the temperature perturbation expressed in its gauge-invariant
form17. The superscript τ tells us that we are considering the effect of photon scattering for

15 We are going to state only the relevant results, see reference [34] for the complete derivation.
16 This effect is generally considered less relevant than the contribution of the effects that are before the last
scattering since potential wells don’t change much over time [35]

17 It can be shown that the monopole ` = 0, the dipole ` = 1 and the quadrupole ` = 2 terms of the expansion
are proportional to the perturbation in the density δρ, the velocity perturbation δu, and the anisotropic
stress tensor πS respectively. This is why we can write them in a Gauge invariant form following expressions
equivalent to the equations (3.40, 3.41), while the quadrupole is automatically Gauge invariant.
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the last time before free travel:

Θτ
`,GI(~k, tL) ≡

∫ ∞
tini

dtρscatt(t)Θ`,GI(~k, t),

with ρscatt(t) is the probability density for the scattering between a photon and an electron
by Thomson scattering. Finally ΦGI and ΨGI are the Gauge invariant potentials defined in
(3.38) and (3.39).

With all this in mind, the theoretical angular spectrum will be

Cth
` = 4π

∫ dk

k
|T`(k)|2∆R(k), (3.106)

with ∆R(k) is the dimensionless primordial power spectrum, defined in the equation (3.60).

3.8.2. Matter Power Spectrum
In an oversimplified way, the large-scale structure is formed from the accumulation of

matter (mainly dark matter) in gravitational potentials wells. Therefore, by theoretically
studying the evolution of perturbations in the dark matter density, we could connect ob-
servations of galaxies and their structure with primordial physics. By convention, the dark
matter power spectrum is related to the primordial power spectrum as

Pδ(k, τ) = 4
25

(
k

aH

)4

T 2
δ (k, τ)PR. (3.107)

Contrary to the angular spectrum of the CMB, one can intuit the behavior of the transfer
function for dark matter Tδ(k) qualitatively from the general physics of matter perturbations
as it enters the horizon. A characteristic of the radiation dominated era is the existence
of radiation pressure, a pressure that prevents the growth of perturbations, so that in this
period, the density contrast for dark matter δm ≡ δρm/ρ̄m only grows logarithmically δ ∼ ln a.
Then, during the period dominated by matter, this radiation pressure can be neglected, so the
growth of matter perturbations and gravitational collapse operate more efficiently. Hence,
the density contrast grows with the factor of scale δm ∼ a [50]. Putting these ideas together,
the transfer function for matter can be approximated to

Tδ(k) ≈
1 k < keq(

keq
k

)2
k > keq.

(3.108)

This expression is too simple to be able to do a deeper analysis or a more predictive
study on the large-scale structure. An analytical expression that approximates this transfer
function in a much better way was derived by Bardeen et al. [51]:

Tδ(q) = ln (1 + 2.34q)
2.34q

(
1 + 3.89q + (1.61q)2 + (5.46q)3 + (6.71q)2

)−1/4
, (3.109)

where

q = k

ΓhMpc−1, Γ ≡ Ωh exp
(
−Ωb −

√
2hΩb/Ω

)
. (3.110)
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More exact transfer function can be derived numerically with CAMB or CMBFAST for
example [52].
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Chapter 4

Beyond the Basic Principles

Although the evidence that connects the primordial perturbations physics with the universe
that we can observe today seems quite satisfactory, as we’ve repeatedly said before, they don’t
explain the fundamental physics behind inflation. Let’s not forget that single-field inflation is
a model that was initially thought of as the simplest that generated an accelerated expansion
for the universe. Furthermore, as we have seen throughout chapter 3, the first-order study of
the scalar perturbations of the inflaton (interpreted as quantum fluctuations of the vacuum)
generate conditions so that R, in the superhorizon case, corresponds to the assumption (and
observations) that the initial conditions for the perturbations are adiabatic and obey a scale-
invariant gaussian statistic. This chapter will focus on these last points and discuss how to
connect possible departures to these principles with much more detailed primordial physics.

4.1. Isocurvature Perturbations
Until now, we have focused on the study of the adiabatic modes of perturbations. That

is, they obey the equation (3.54) and are well justified in the homogeneity of the universe.
Moreover, we can understand adiabaticity from the fact that the relative number between
components of the universe varies uniformly between all species of the universe. With this
idea in mind, we are going to define the isocurvature (or entropic) modes as the variation
of the relative quantity between the component i of the universe, with respect to radiation
ρr = ρν + ργ [53]:

Si = δ(ni/nr)
ni/nr

. (4.1)

So, for each component of the universe model (ΛCDM) we will have a different isocurvature
mode, where the previous relation translates to:

SDM = δDM −
3
4δr, (4.2)

SB = δB −
3
4δr, (4.3)

Sν = 3
4δν −

3
4δr. (4.4)

In general, the evolution of perturbations is studied considering an isocurvature mode differ-
ent than zero, to later see its effects on the different observables of the universe [54].
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Then, it is necessary to ask the question if these isocurvature modes affect our understand-
ing of the evolution of adiabatic modes, mainly if they have an influence on the connection
that we can make between inflationary physics and primordial perturbations from R. It can
be shown that a general isocurvature mode S (we omit the index i):

S ≡ H

(
δp
˙̄p −

δρ
˙̄ρ

)
(4.5)

affects the temporal variation of the curvature perturbation (in the superhorizon limit) R
(equation (3.56))18[55] as:

Ṙ ≈ −3H
˙̄p
˙̄ρS. (4.6)

As we did with the curvature perturbation R, to connect the isocurvature modes with the
observables, in the first instance, we need the two-point correlation functions for S and the
correlation between adiabatic and isocurvature mode:

〈S(k)S(k′)〉 = (2π)2δ(3)
(
~k + ~k′

)
PS(k), (4.7)

〈S(k)R(k′)〉 = (2π)2δ(3)
(
~k + ~k′

)
PSR(k). (4.8)

The quantity that is relevant to us to notice the presence of the isocurvature modes (or the
adiabaticity of our initial conditions) is the ratio between the power spectra PS/PR through
the following α parameter:

α

1− α ≡
PS
PR

. (4.9)

Without going into much detail, the observational constraints are divided based on how
correlated the modes are, this is quantified with a parameter defined as

β ≡ PSR√
PRPS

. (4.10)

Current constraints (with 95 % of confidence level) for dark matter isocurvature modes (4.2)
are α0 < 0.067 in case that the modes are not correlated (β = 0) and α−1 < 0.0037 in the
fully anti-correlated case (β = −1) [56]19

What will be relevant for this work is how isocurvature modes are connected with an
inflationary theory. In particular, if the eventual observation of these modes would give us
more information about the fundamental physics behind the inflationary period.

It can be shown by studying first-order cosmological perturbations that we will always
have two independent adiabatic solutions (i.e. obey the relations of equations (3.54)) for
the scalar modes [62]. In the case of Single Field Inflation, we have only two independent
solutions for scalar perturbations, a solution that decays with time and another that remains

18 Remember that the gauge-invariant quantities ζ and R are equal in the superhorizon limit (equation 3.57)
19 Check [57–61] for more details on the constraints for isocurvature modes both for CDM and for the rest of
the components of the universe.
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constant outside the horizon. This is the reason why single-field scalar perturbations are
automatically adiabatic.

Another way to corroborate this last point is by replacing in the definition of S (eq. (4.5))
the density and pressure perturbations for inflation perturbations (3.68, 3.69) together with
the background quantities (2.50, 2.51), where we have:

S =
2H dV

dφ

˙̄φ2
(

¨̄φ2 −
(
dV
dφ

)2
)[ ˙̄φ

(
˙δφ− A ˙̄φ

)
− ¨̄φδφ

]
. (4.11)

The parentheses can be related to the gauge-invariant quantity ΨGI through the equation
(A.9)20, resulting:

S =
H dV

dφ

˙̄φ2
(

¨̄φ2 −
(
dV
dφ

)2
) k2

a2 ΨGI . (4.12)

From this last equation, it is evident that for scalar perturbations in single-field inflation, the
isocurvature modes are approximately zero at large scales.

To conclude this subsection, let us note that if we add more degrees of freedom to the physi-
cal model behind inflation, we will automatically find ourselves in a scenario with isocurvature
modes. In fact, the formalism that we will explore in this thesis, which considers inflation
generated by multiple fields, contemplates N − 1 isocurvature modes additional to adiabatic
modes (with N the number of fields) [63].

4.2. Non Gaussianities
Returning to the discussion made in section 4.1, we had proposed that a gaussian statistic

for the primordial perturbations was a simple assumption and corresponded in a good way
(at a first-order approximation) to the observations.

Going into more detail with this idea, as we discussed in sections 3.6 and 3.7, by studying
the perturbations in inflation and associating them with a quantum field, one can give (ac-
cording to an inflationary model) an origin and value to the power spectrum for the primordial
curvature perturbation (for example, equation (3.95) for the De Sitter case). Furthermore,
the property of gaussianity (eq. (3.61)) is automatically fulfilled by the decomposition of the
modes for the curvature perturbation (eq. (3.82)).

In the same way, at the end of section 3.4.1, we mentioned that studying higher-order
correlations would give us more information on the physics behind inflation. A good analogy,
taken from [19], is to take the case of particle physics, where the two-point correlation func-
tions correspond to free particles in Minkowski spacetime. More interesting elements of the
theory, such as new particles and interactions, come out of higher-order correlations. It is
not surprising then that the first-order study of perturbations gave us an action (eq. (3.80))

20 To make the correspondence properly you have to replace δρ and δp of the equations (3.68, 3.69) and
remember that we have imposed Mpl = 1/

√
8πG = 1
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very similar to the free particle one. So to break down degeneracies between theories, we
must explore these non-gaussianities and their observational implications, in the same way,
that particle colliders explore the standard model at higher and higher energies.

4.2.1. Modeling Non-Gaussianity
The most common way to begin to deal with these departures to gaussian statistics is

through the next order correlation, that is, the three-point correlation function, defined as〈
R(~k1)R(~k2)R(~k3)

〉
≡ BR(~k1, ~k2, ~k3). (4.13)

Under the same assumptions for which we define the power spectrum for the two-point
correlation (homogeneity and isotropy), we can further restrict the shape of the function BR.
In this case, we define the bispectrum through:

BR(~k1, ~k2, ~k3) = (2π)3δ(3)
(
~k1 + ~k2 + ~k3

)
BR(k1, k2, k3). (4.14)

One of the first ways to characterize non-gaussianities is through a correction for the
gaussian perturbation, which in real space we define as [64–66]:

R(~x) = Rg(~x) + 3
5f

local
NL

(
Rg(~x)2 −

〈
R(~x)2

〉)
. (4.15)

This way of writing the curvature perturbation21 is nonlinear and local in real space, for this
reason it is called local non-gaussianity.

With this definition of the curvature perturbation, the bispectrum (4.14) results us as a
function of f local

NL and the power spectrum that comes from the two-point correlation function:

BR(k1, k2, k3) = 6
5f

local
NL [PR(k1)PR(k2) + PR(k2)PR(k3) + PR(k3)PR(k1)]. (4.16)

Without going into much detail about the complexity of the methods, to date there are ob-
servational restrictions for the bispectrum of local non-gaussianity. Planck, for example, in
its 2018 results set, with a 68% confidence level, f local

nl = −0.9± 5.1 [47].

The delta function that appears in the definition (4.14) tells us that in order to measure a
nonzero bispectrum, the three momenta must form a triangle. This is relevant since different
inflationary models show higher non-gaussianities for certain configurations. The three most
relevant configurations are: squeezed triangle (k1 ≈ k2 � k3), equilateral triangle (k1 ≈
k2 ≈ k3) y orthogonal triangle (defined in such a way that it is orthogonal to local and
equilateral configurations [67])22, where the current observational restrictions for these last
two configurations (with a 68% confidence level) are f equil

nl = −26 ± 47 y f ortho
nl = −38 ± 24

respectively [47].

21 The 3/5 factor comes from the fact that, conventionally, local non-gaussianity is defined from the Newtonian
potential Φ, which is related to R with this factor during the epoch dominated by matter.

22 For more details on these configurations and the inflationary models with which they are associated,
review[68–76].
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4.2.2. in-in formalism
A very popular method for studying the quantum origin of non-gaussianities is the in-in

formalism, initially proposed by [77, 78] and revisited in the last two decades [79]. Without
going into many technicalities, for us, the in-in formalism is the counterpart applied to
cosmology of the methods used in particle physics to calculate the matrix of transitions
between states (S-matrix). In quantum field theory applied to particle physics, the transitions
between particles between two states are studied, one |in〉 evaluated in a long time in the
past, with one 〈out| evaluated in the far future:

〈out|S|in〉 = 〈out(+∞)|in(−∞)〉 . (4.17)

This is useful in that case, since it can be assumed that in these asymptotic states the par-
ticles are free and in a minkowski space.

If we want to bring these ideas into our objective of computing correlations of n-points
(non-gaussianities) for quantum perturbations in inflation, we must bear in mind that the
boundary conditions are not the same. When studying perturbations in inflation, we have
a moment in the universe’s evolution in which these perturbations cross the horizon, losing
their quality of being quantum perturbations and begin to evolve classically. In other words,
we are interested in calculating the n-point correlation function in a given time. In the
in-in formalism, we compute n-point correlations through expectation values between two
states |in〉 that correspond to the Bunch-Davies vacuum. For a product of operators J(τ)23,
evaluated at a time τ , its expectation value in this formalism would be:

〈J(τ)〉 ≡ 〈in|J(τ)|in〉
〈in|in〉

. (4.18)

To work the Hamiltonian of the interactions and the temporal evolution of the operators,
we use the interaction picture for quantum mechanics. In this picture (see [50] and [19] for
more details), the Hamiltonian is separated into a free part and an interaction part

H = H0 +Hint. (4.19)

Then we can write the expectation value (4.18) using the interaction Hamiltonian as:

〈J(τ)〉 = 〈0|
(
T̄ e

i
∫ τ
−∞− Hint(τ

′)dτ ′
)
J(τ)

(
Te
−i
∫ τ
−∞+ Hint(τ ′′)dτ ′′

)
|0〉 . (4.20)

Where T and T̄ are the time-ordering and anti-time-ordering operators and we use the
notation −∞± ≡ −∞(1∓ iε). This is the main equation of the in-in formalism, to use it with
a given theory, we must identify its interaction Hamiltonian and express J(τ) perturbatively.

4.2.3. Single-field non-gaussianities
One of the most remarkable works on this topic is the calculation of the three-point cor-

relations for perturbations in single-field inflation by Maldacena [80]. Next, we will state the

23 For example J(τ) = Rk1(τ)Rk2(τ)Rk3(τ) to compute the bispectrum
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most relevant points of this discussion.

Using the ADM formalism (see appendix C) and the comoving gauge, the action is ex-
panded to the second and third order for the curvature perturbation. With:

S2 =
∫
dtd3x

[
a3εζ̇2 − aε(∂iζ)2

]
, (4.21)

S3 =
∫
dtd3x

[
a3ε2ζζ̇2 + aε2ζ(∂iζ)2 − 2aεζ̇(∂iζ)(∂iχ) + f(ζ)δL

δζ
+O(ε3)

]
(4.22)

where

χ = a2ε∂−2ζ̇ , (4.23)
δL

δζ
= 2a

(
d

dt
∂2χ+H∂2χ− ε∂2ζ

)
, (4.24)

f(ζ) = η

4ζ
2 + terms with derivatives on ζ. (4.25)

Where ∂−2 is the inverse Laplacian and δL/δζ is the variation of the quadratic Lagrangian
with respect to ζ. We study the quadratic action in section 3.6, from which we obtain the
power spectrum presented in the equation (3.96).

If we want to calculate the three-point correlation function using the in-in formalism, we
must identify the interaction Hamiltonian in this case as HI = −L3. It can be shown that
we can get rid of the term proportional to f(ζ) by redefining the field ζ → ζn + f(ζn). This
redefinition adds an extra term in the three-point correlation that we must take into account:

〈ζ(x1)ζ(x2)ζ(x3)〉 = 〈ζn(x1)ζn(x2)ζn(x3)〉+ η

2(〈ζ(x1)ζ(k2)〉 〈ζ(k1)ζ(k3)〉+ cyclic)+ ... (4.26)

With all this, we can use the equation (4.20) to calculate the three-point correlation
function. However, to do this, we must do a very long calculation, and it does not add much
to our discussion in this section. On the other hand, we can estimate the order of magnitude
for the bispectrum. For this, first of all, let’s note that we can expand the exponential
functions in the equation (4.20) up to first order and study the leading term:

〈
ζ3
n

〉
= −i 〈0|

∫ t

t0
[ζn(k1)ζn(k2)ζn(k3), HI ]|0〉 . (4.27)

If we study only the first term of the interaction hamiltonian, that is∫
dtHI(t) ⊃ −

∫
dx3dτa2ε2ζζ ′2. (4.28)

Using the fact that a ∝ H−1 and ζ ∝ ζ ′ ∝ ∆ζ ∼ H/
√
ε, we can do the following rough

estimation: 〈
ζ3
〉

= −i
∫
dτ
〈[
ζ3, HI

]〉
∝ H3

ε
∝ O(ε)∆4

ζ ∼ fNL∆4
ζ . (4.29)
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This same estimation is valid for the first three terms in the cubic action (4.22), while
the term proportional to f(ζ) contributes an amount proportional to η in non-gaussianity.
Putting all this together, we can conclude that for single-field slow-roll inflation, non-gaussianity
is suppressed by the same slow-roll parameters:

fNL ∼ O(ε, η)� 1. (4.30)

This amount of fNL is too small to be detected, since even non-linearities in the evolution of
the CMB would generate fNL ∼ O(1) for example [81].

4.2.4. Consistency Relation
To close this discussion on non-gaussianities in single-field inflation, we must state the

consistency relation. Creminelli and Zaldarriaga [82] proved that if we consider a single-field
inflation scenario and no other additional assumptions, the following relation must be fulfilled
in the squeezed limit24:

lim
k1→0
〈ζk1ζk2ζk3〉 = (2π)3δ

(
~k1 + ~k2 + ~k3

)
(1− ns)Pζ(k1)Pζ(k3). (4.31)

Why this relation is so relevant is for two things:

i) As we mentioned earlier, it does not require further assumptions beyond an inflation
characterized by a single degree of freedom. Independent of the shape of its kinetic
term, the shape of its potential or the initial empty state.

ii) It tells us that in the squeezed limit the three-point correlation function is suppressed
by a factor (1− ns) and is zero for a completely scale-invariant power spectrum.

These conditions are so powerful that any detection of non-gaussianities in the squeezed could
rule out single-field inflation.

4.3. Power Spectrum non-scale-invariant
In section 3.4, we mentioned the fact that the simplest way to model the primordial power

spectrum is with a power law (eq. (3.62)) and that this assumption corresponds quite well
to the observations [13]. In particular, these observations give us a power spectrum with a
spectral index ns close to 1, that is, almost scale-invariant. In this section, we will extend
the discussion on this topic.

First, what does a scale-invariant power spectrum physically mean? The simple answer to
this question refers to the fact that in the Fourier space decomposition of the different modes
for the perturbations, all modes have the same amplitude25. In the inflationary case, this
means that the accelerating expansion of the universe affects all these modes equally. For the

24 See [83] for a good discussion on the consistency relation and a much more explanatory proof.
25 In more formal mathematical language, scale invariance is the symmetry under rescaling the system, in
the same way as fractals, for example.
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case of slow-roll inflation, the spectral index, derived from the following general relationship:

ns − 1 ≡ d ln ∆R
d ln k , (4.32)

can be written as a function of the slow-roll parameters, where the first order is 26:

ns − 1 = −6ε+ 2η. (4.33)

With this relationship, we immediately prove that slow-roll inflation produces a nearly scale-
invariant power spectrum for the primordial perturbations.

As we also mentioned in section 3.4, assuming a scale-invariant power spectrum precedes
knowledge of inflation and was justified mainly in galaxy observations. The latter is a key
point since we do not have access to all cosmological scales in these observations. Further-
more, in the observations of the angular spectrum of the CMB, we can make the following
relation between the multipole ` and the scale as ` ∼ (104Mpc)k, where it is important to
remember that the maximum resolution of these measurements is approximately up to mul-
tipole ` ∼ 3000. In other words, the amplitude and the spectral index observed by Planck
(eq. (3.63)) [13] are valid only in the range of scales that we consider "large":

10−4Mpc−1 ≤ k ≤ 1Mpc−1, (4.34)

while for smaller scales the constraints are much weaker.

Our paradigm on which we settle the connection between inflationary physics and the
initial conditions of cosmological perturbations in the fact that as the different scales go out
of the horizon due to the accelerated expansion of the Inflating universe, they freeze and
later reenter the horizon. For this reason, we can characterize each scale of the primordial
perturbations with a characteristic time in which they exit the horizon in inflation. Under
this logic, the scales that we observe in the CMB and the large-scale structure can be placed
at a time quite far from the end of inflation.

So, if we wanted to explore small scales in the primordial spectrum, we would be working
on scales that left the horizon near the end of inflation, a highly non-linear process, where
the slow roll assumption for the inflaton does not necessarily apply. The bet we make is
that by understanding these final moments of inflation, we would be closer to being able
to understand the fundamental physics behind this period. We close this chapter with the
question: Is there an observable that allows us to explore small scales?

26 See appendix D for the derivation
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Chapter 5

Primordial Black Holes

As we have mentioned in previous chapters, historically, our main method to observe and
study the Universe was through the signals we received from it. Where these signals were
limited only to electromagnetic waves in a wide range of frequencies. In other words, we
were able to study the objects of the Universe through the light they emitted or how they
interacted with it (gravitational lensing, for example).

Figure 5.1: First image of a black hole, observed by the event horizon
telescope [84].

Under this precept, so-called "dark" objects have always been elusive to direct observations.
For example, although the existence of black holes was more than recognized for many years
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in general knowledge (due to being a fundamental pillar in the theory of general relativity),
they had never been observed. Its existence was only deduced through other observations
(accretion discs, X-ray emissions, among others). This was until a couple of years ago with
the observations of the Event Horizon Telescope, where for the first time, an image of the
event horizon of a black hole could be obtained [84] (Fig. 5.1). While on the other hand, dark
matter falls into a much more speculative and open terrain. Since, as we have mentioned
previously, there is evidence of the existence of this type of matter, but there has not been
any direct observation of it.

The astronomical observation paradigm took a significant leap in the last ten years with
the launch of gravitational wave detector interferometers such as LIGO and VIRGO (and
it will continue to grow with the launching of new observatories of this type). The study
of gravitational waves allows us to explore the Universe through a signal whose nature is,
in principle, very different from light. As far as we know, the main source of these signals
are collisions between massive objects, such as black holes. So the detection of gravitational
waves is unequivocal proof of the existence of black holes.

Figure 5.2: Diagram of the masses of the objects associated with the detec-
tions made by LIGO-VIRGO, Source: LIGO webpage.

Since gravitational-wave observations have been started, the observations have not been
exactly how we theoretically expected them. Mainly in two aspects: the number of events
detected and the masses of the black holes that originate them (see Fig. 5.2). These two
points converge on the assumption that the vast majority of events are caused by collisions
of astrophysical black holes, that is, black holes formed by the gravitational collapse of stars.
The impressive thing is that the number of gravitational wave events observed is much more
than expected. Furthermore, black hole collisions where at least one of them has a mass
located in the Mass Gap have been observed (e.g., [85]). The mass gap is a range of masses
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where a black hole could not be formed by the gravitational collapse of stars. Without going
into much detail, it can be estimated that the range is between ∼ 2 and ∼ 5M� and between
∼ 50 and ∼ 150M� [86].

These unexpected observations have revived the idea of the existence of another type
of black hole, the Primordial Black Holes (PBH) [87], initially proposed in the 60s. These
would differ from their astrophysics counterpart in their origin since these would come from
the gravitational collapse of large curvature perturbations in the early Universe. For this
reason, their denomination of primordial. Beyond a different origin, these black holes cannot
be distinguished from astrophysical black holes. Theoretically, primordial black holes have
no restrictions on their mass, and there could be a greater abundance than astrophysical
black holes, managing to explain anomalous observations of gravitational waves as collisions
between PBHs.

In this chapter, we will make a brief historical introduction about primordial black holes
and then point out their relevance as a possible observable that helps us understand primor-
dial physics on scales other than those of the CMB. Although the objective of this thesis will
not be to study the primordial black holes in-depth, they will be a fundamental motivation
for the inflation proposal that we will work on in the following chapters.

5.1. Historical Overview
The idea of the existence of black holes in the early Universe is not new. Recall our

discussion on the initial conditions for cosmological perturbations, where we had mentioned
that even prior to inflationary theory, there was the assumption of adiabatic, gaussian, and
scale-invariant initial conditions. Then a straightforward logic tells us that since there are no
good reasons to cut small scales for perturbations27. It is possible to have areas where these
curvature overdensities are large enough to collapse into a black hole. These ideas were first
formulated in the 60s by Zel’Dovich and Novikov [24], and then Hawking and Carr in the
70s delved into the idea [25].

Immediately after the beginning of this idea, it was shown that, although these black holes
are generated in a FRLW space-time background in early times of the Universe history, they
do not grow or accrete matter [88]. In fact, a rough estimate for the mass of a primordial
black hole is the mass contained in the horizon at a given moment, that is, at a certain
moment in the history of the Universe, a PBH formed in a said instant will have a mass of
the order of:

MPBH ∼MH ∼
c3t

G
∼ 1015

(
ti

10−23s

)
g. (5.1)

Almost at the same time these proposals were being developed, the theory of black hole
radiation (i. e., Hawking radiation) arose [89], so one of the first certainties about PBHs
was its minimum mass. A primordial black hole to be observed today must have formed
with a mass of at least 1015g. Every lower-mass black hole has been evaporated by Hawking
radiation during the history of the universe [90].

27 Recall that we had argued that we could cut extremely large scales since they mix into the background.
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Continuing with this brief chronology, due to their dark nature, in the 1970s, the pro-
posal for primordial black holes as a dark matter candidate immediately emerged. This with
studies on how stellar formation would occur in a Universe where PBH replace dark matter
[91, 92]. It is important to emphasize that under the standard principles on initial conditions
(adiabaticity, gaussianity, and scale invariance), the gravitational collapse to form primordial
black holes is a rare phenomenon. So, a priori, the number of primordial black holes would
be negligible. Taking this last point into account, in these first proposals on PBH as DM,
a fundamental fact arises: to have a PBH production necessary to be comparable with the
whole (or a fraction) of dark matter, we must have a perturbation in the matter density of
order δ ∼ O(1). The latter can be contrasted with the measurements of the CMB tempera-
ture anisotropies, which are of the order of O(10−5).

In the 80s and 90s, the study of primordial black holes was focused on studying the differ-
ent theoretical mechanisms that would generate an increase in the amplitude of the curvature
perturbation. Mainly different inflationary models such as [93–98, 30, 31].

Also in the 90s, progress was made in the attempt to connect primordial black holes with
some observable. At that time, PBHs was classified as a possible Massive Astrophysical
Compact Halo Object (MACHO) [99, 100]. During this decade, the MACHO project was
carried out, which sought to observe the effect of gravitational microlensing in the milky way.
Unfortunately, the results obtained were not conclusive to identify the dark matter around
our galaxy as MACHOs [101]. So these observations serve as a restriction for the amount
of PBH with a certain mass that could exist (we will go into more detail on observational
constraints later).

To close this historical panorama on PBHs, prior to the great commotion that occurred
after the detections of gravitational waves in recent years, at the end of the 90s and the
first decade of this century, the progress of two essential elements in the study continued
of these black holes: the refinement of the numerical value that the critical density must
have for gravitational collapse to occur [102–107], and the effect of non-gaussianities on
PBH production [108–112]. Although we will detail these two topics later, they converge on
understanding the non-linear nature behind the formation of primordial black holes, mainly
how sensitive it is to changes in the tails of the primordial perturbations distributions.

5.2. PBH Formation
Although it does not seem so far-fetched to think that large inhomogeneities in curvature

collapse in black holes, it is necessary to specify what perturbation is considered large enough
to produce a PBH.

A scale that helps us to identify if there is a gravitational collapse is the Jeans length,
defined as:

LJ =
√
πc2

s

Gρ
, (5.2)

with c2
s is the sound speed in the medium. Another way to interpret Jeans length is the

distance in which a sound wave travels in the collapsing zone. With this in mind, the first
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intuition to estimate if an overdensity δρ collapses and forms a black hole is if its scale is
greater than the scale defined by the Jeans length. Following the work of Carr [90], with
the ideas presented above, we can derive a critical density contrast δ ≡ δρ/ρ̄ where a PBH
is generated, such as δc ≈ ω, where ω is the equation of state for the fluid in which we are
considering collapse28.

Carr also proposed an upper bound for these overdensities, where δ < 1 so that the re-
gion that collapsed into a black hole would continue to be connected to our Universe, if the
overdensity is greater than unity, it will evolve as an independent universe.

However, Carr’s proposed treatment failed to oversimplify the gravitational collapse that
generated primordial black holes (e.g., assuming a spherical collapse). This fact is very sig-
nificant because we’re working with a highly non-linear process and dealing with the tails of
the distributions. Consequently, a change by a factor of 2 in δc generate a large difference in
the prediction of the amount of PBH (we will discuss this in the other section).

In the last 20 years and the development of techniques in numerical simulations, this
threshold for the overdensity has been studied in much more detail [102–106]. Also in this
work [107], a new analytic quantity was derived for δc, where:

δc = 3(1 + ω)
5 + 3ω sin2

(
π
√

2
1 + 3ω

)
. (5.3)

For the era dominated by radiation (i. e. ω = 1/3) the threshold for the density takes the
value of δc ≈ 0.4129.

5.3. PBH Mass and Abundance
We had previously proposed the fact that the mass of a primordial black hole will be of

the order of the mass contained within the horizon approximately, whose time dependence
we write in the equation (5.1). Using this equation, we can connect the horizon mass to the
characteristic scale where the perturbation re-enters the horizon [114]:

MH ' 17
(

g

10.75

)−1/6
(

k

106Mpc−1

)−2

M�, (5.4)

where g is the number of relativistic degrees of freedom.

However, mainly for numerical calculations, the discussion about the mass of PBHs is
extended. It can be shown that the mass of black holes will not be precisely the mass of the
horizon but will also depend on the amplitude of the perturbation. This extended function

28 This argument falls apart if we consider the collapse in the matter-dominated epoch where ω ≈ 0, i. e.,
every overdensity, regardless of its scale, would collapse into a black hole. On works of gravitational collapse
and generation of PBH in the epoch dominated by matter, check [113].

29 For more details on the derivation of the equation(5.3), we highly recommend look at [107], in particular
the discussion on the different results of numerical simulations.
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for the mass of PBHs has the following form [102]:

M = κMH(δ − δc)γ. (5.5)

Where the constants κ and γ in the above expression can be obtained numerically. For the
epoch dominated by radiation, we have that κ = 3.3 and γ = 0.36.

Once we can connect the mass of black holes with a specific scale, we are interested in
having a numerical value with which we can characterize the abundance of primordial black
holes with a certain mass. This quantity, which we will identify as β, is usually described
by the mass fraction of the Universe that collapses into primordial black holes at the time
of its formation. Using the Press-Schechter formalism, which was originally used to study
gravitational collapse in galaxy formation [115], the function β is calculated as:

β = 2
∞∫
δc

P (δ)dδ, (5.6)

where P (δ) is the probability density function of the density contrast and δc is the critical
density we mentioned in the previous section.

If we consider that the perturbations follow a gaussian statistic, this means that the
probability density P (δ) can be written as:

P (δ) = 1√
2πσ2

exp
(
− δ2

2σ2

)
, (5.7)

where the variance for the density perturbations σ(k), is defined from the power spectrum:

σ2(k) =
∞∫
0

W 2(kR)Pδ(k)dk
k
. (5.8)

In the above expression, W (kR) is a smoothing window function, usually chosen one with a
gaussian shape30, and R is the radius of the horizon at a given time. Let us also remember
that the relation between the density contrast and the primordial curvature perturbation is
through:

δ(k, t) = 2(1 + ω)
5 + 3ω

(
k

aH

)2

R(k, t). (5.9)

Through the relation between the horizon mass and the scale, mentioned in the equation
(5.4) and the expression for the variance (eq. (5.8)), we can deduce that the dependence of
the function β with the mass will be through the power spectrum.

Additionally, if we integrate β(M) in the entire range of masses allowed for PBHs to exist,
we obtain the total abundance of PBHs in the universe:

30 This choice can be considered arbitrary, the dependence of the mass functions in the selection of the window
function has been studied, see [116].
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ΩPBH =
Mmax∫
Mmin

d lnM
(
Meq

MPBH

)1/2
β(M). (5.10)

Where Meq is the horizon mass at the time of the matter-radiation equality. The term inside
the parentheses gives us the fact that to obtain the total fraction of the Universe that is
PBH, we must consider that since its formation, β(M) evolves as matter during the epoch
dominated by radiation. So we get the total abundance of PBHs by integrating β at the time
of equality between radiation and matter.

Generally, the essential quantity for discussing observational constraints on the abundance
of PBH in our universe is the mass function f(M). This corresponds to the fraction of dark
matter that is formed by PBH of a certain mass M:

f(M) = 1
ΩCDM

dΩPBH

d lnM . (5.11)

Later, we will discuss the various observational constraints on this mass function’s value.

For extended mass distributions (eq. (5.5)), the function β(M) is modified to take into
account the collapse of a volume with mass other than that of the horizon:

β = 2
∞∫
δc

M

MH

P (δ)dδ = 2
∞∫
δc

κ(δ − δc)γP (δ)dδ. (5.12)

If we use this equation in conjunction with the relation between δ and mass, obtained by
inverting the equation (5.5), we have an expression for a mass function that depends on the
mass of the PBH [117]:

f(M) = 1
ΩCDM

∞∫
−∞

2√
2πσ2(MH)

exp
−

(
µ1/γ + δc

)
2σ2(MH)

 M

γMH

µ1/γ

√
Meq

MH

d lnMH , (5.13)

where µ ≡ M
κMH

. With this expression above, the mass function for PBHs can be calculated
from the Power Spectrum alone. The latter will be very relevant since, in section 5.5, we will
discuss the various observational constraints that exist for this function, so we can connect
these restrictions with the parameters that characterize the inflationary models that originate
the primordial perturbations.

5.4. Primordial Power Spectrum Constraints For PBH
In the previous section, we mentioned that the fraction of the Universe that collapses into

primordial black holes β strongly depends on the variance of the primordial perturbations.
Now we will clarify this idea, if we consider a gaussian probability density for the perturba-
tions (i.e., they follow the given form in the equation (5.7)), we can analytically integrate
the function β for the case in which the mass of the black holes is the same as the mass of
the horizon MPBH = MH (monochromatic case):
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β(MH) ≈ erfc
(

δc√
2σ(MH)

)
. (5.14)

With this we can do the following mental exercise to understand the impact of the variance
on the value of the fraction β (extracted from [118]). If we assume that the power spectrum
that is valid for large scales governs all cosmological scales, the amplitude of this power spec-
trum is AR = 2.1 × 10−9 [13]. Making a rough estimation where we consider δc = 0.5 and
σ2 = AR, the function β would be approximately β ≈ erfc(7000) ≈ 1

7000 exp(−7000), which
is an absolute negligible amount. Following the logic presented in [118], for all dark matter
to be primordial black holes with mass MPBH ∼ M�, the fraction must be approximately
β ∼ 10−8, this necessarily implies that the variance must be of the order of σ ∼ 0.1. For the
variance of the primordial perturbations to reach this value, the power spectrum must be of
the order AR ∼ 0.01, almost 7 orders of magnitude above what is observed on large scales.

Beyond the scales in which we observe the CMB, where the primordial power spectrum
is well restricted, there are other observational constraints for smaller scales. Still, as we
mentioned earlier, these are not as strict. Recalling what was proposed at the end of section
4.3, the fact that we do not have many restrictions for the power spectrum at small scales
means that we do not know precisely the physics behind the end of inflation, and the observa-
tion (direct or indirect) of primordial black holes would provide us with valuable information
about this period. The figure (5.3), extracted from [118] shows the current constraints for
the power spectrum, where the solid areas are constraints based on observations, while the
dotted lines are potentially measured constraints in the future.
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Figure 5.3: Constraints on the primordial power spectrum PR(k), extracted
from [118]. The red, blue, green and magenta constraints correspond to the
angular spectrum observations of the CMB [13], the Lyman - α forest [119],
CMB spectral distortions [120, 121] and pulsar timing array limits on gravi-
tational waves [122] respectively. In dotted green and magenta lines are the
potential constraints from future PIXIE-like spectral distortion experiment
[123] and limits in gravitational waves (by SKA, LISA and BBO) [124, 123]
respectively. The black line corresponds to the amplitude necessary hypo-
thetically for a significant amount of dark matter to be primordial black
holes.

5.5. Constraints on the Mass Function for PBH
Previously we emphasized the fact that black holes radiate, they lose mass over time, so

since the existence of primordial black holes was proposed, it was common sense to restrict
their mass to MPBH > 1015g so they could be seen today. Additionally, PBHs cover a rel-
atively wide range of possible masses, and these have not yet been observed with a high
enough degree of certainty. This is why it is natural to use the observations we have today to
restrict the possible existence of primordial black holes of specific masses. The logic is quite
simple: if there were a fraction f ∗ of PBH with mass M∗, this would have an impact on a
particular observation X, as this does not happen, we must restrict the existence of PBHs of
mass M∗ in such a way that they do not affect said observation.

At first, to make these restrictions for the PBH fraction, a monochromatic formation was
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assumed and in recent years the discussion for extended mass functions [125] has been devel-
oped. Conventionally an alternative form of the mass function is used than the one we write
in the equation (5.11), where fPBH(M) ≡ ΩPBH/ΩDM .

Currently, there are many observations, so the list of constraints for the fraction fPBH(M)
(i. e. PBH as DM) is quite broad, and this discussion can get out of hand very easily. For
up-to-date state-of-the-art on these constraints, we highly recommend checking out [27]. To
have a general notion, following what is proposed by [118], we can group and order the
different constraints to the mass function according to an increasing order in the mass of the
PBH31:

• Evaporation: They correspond to the evaporation effects of PBHs by Hawking radia-
tion.

• Interactions with stars: This restriction is based on observations of stars and possible
interaction with PBHs. If a PBH interacts with a star, it would lose energy or could
even destroy it, and these effects should be captured.

• Gravitational Lensing: These are restrictions associated with gravitational lensing
between PBH and background objects. Depending on the size of the black holes, we can
separate these restrictions in the effects in microlensing, mililensing, or femtolensing.

• Gravitational Waves: Possible observations of gravitational waves from binary sys-
tems of solar mass PBH-DM are taken into account.

• Dynamical Effects: These correspond to the effects that PBHs would generate with
astrophysical systems by gravitational interactions, such as dwarf galaxies or wide bi-
naries.

• Accretion: The effects of gas accretion by PBH in the early Universe are taken into
account. This generates radiation that could have effects on the anisotropies of the
CMB. Or also the impact of interstellar gas accretion in primordial black holes, which
could generate X-ray and radio emissions.

• Large Scale Structure: It takes into account the fact that if PBHs are a relevant
fraction of dark matter, the Poisson fluctuations in number density will increase in the
matter power spectrum at small scales.

The Figure (5.4), extracted from [118], shows the different restrictions for the fraction of
DM in the form of PBH that we mentioned earlier. At first glance, it seems that there is
not much space to satisfy the idea that all dark matter exists in the form of primordial black
holes (i.e., fPBH = 1) 32. We maintain an optimistic mentality that allows us to say that if
we can understand even a ten percent of the content of dark matter, it is a huge leap in our
understanding of the components of the Universe.

31 For more details, check out [118] and the references therein
32 This is for the monochromatic case. In the case of PBH as DM with a wide mass range, there is a greater
chance of satisfy this condition.
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Figure 5.4: Constraints for fPBH , the fraction of dark matter in the form
of PBH. Due to PBH evaporation, microlensing, gravitational waves, ac-
cretion, and dynamical constraints. Each region is a mantle that unites
different observational constraints of the same type. Figure from [118].
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Chapter 6

Multi-field Inflation and The
Enhancement of the Primordial Power
Spectrum

This chapter will be based on the article published in Physical Review Letters, entitled "Seed-
ing primordial black holes in multifield inflation" written by G. Palma, S. Sypsas and the
author of this thesis [126].

As we mentioned in the previous chapter, to give an explanation to the anomalous number
of gravitational wave events, or solve a part of the dark matter mystery, we need a significant
amount of primordial black holes in our universe. This require a physical mechanism that can
generate an amplification of the power spectrum for the primordial curvature ∆ζ for small
scales (k ≥ 108 Mpc−1) of the order of 107 with respect to the power spectrum in CMB scales.

This amplification can be achieved from various models, such as: single-field models with
special potentials [127–133]; single field models with resonant backgrounds [134, 135]; models
with light spectator fields [100, 136–138]; models where the inflaton is coupled with gauge
fields [139, 140]; models with resonant instabilities during the preheating inflation’s decay
[141–143]. In our work we are interested in studying the amplification of the primordial
power spectrum ∆ζ(k) in the multifield inflation paradigm [29–31, 144, 145].

In UV complete systems33, such as supergravity and string theory, these provide us models
with a variety of fields that can be mapped into multidimensional target spaces with curved
geometries [146, 147]. The effective theory34 of these models, which is valid during inflation,
includes potential substantial interactions between the curvature perturbation ζ and other
perturbations (isocurvature 35) [150–153], an idea that has recently gained relevance.

33 Where ultraviolet divergences do not occur.
34 Review [148, 149] for a good introduction on the subject.
35 Remember our discussion in section 4.1
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6.1. Multifield Inflation
In our case, we are going to focus on the particular case of multifield inflation with two

fields. The general action that we consider has the form:

S = SEH −
∫
d4x
√
−g
[1
2γab(φ)∂µφa∂µφb + V (φ)

]
, (6.1)

where SEH is the Einstein-Hilbert action, defined in the equation (2.47), from the space-time
metric gµν with determinant g. Furthermore, γab is the metric that characterizes the geome-
try of the space defined by the fields φa = (φ1, φ2).

If we want to describe the background equations for a flat spacetime described by this
action, we consider the FLRW metric proposed in equation (2.7) with K = 0:

ds2 = −dt2 + a2δijdx
idxj. (6.2)

If we vary the action (6.1) with respect to the fields, we will have the following equation of
motion:

gµν∂µ∂νφ
a + Γabcgµν∂µφb∂νφc − γab

∂V

∂φb
= 0, (6.3)

where γab is the inverse metric of γab and

Γabc = 1
2γ

ad

(
∂γdc
∂φb

+ ∂γdb
∂φc
− ∂γbc
∂φd

)
(6.4)

are the Christoffel symbols for the field space. Then follows the fact that the background
fields only depend on time, so the scalar fields φa0(t) satisfy:

Dtφ̇
a
0 + 3Hφ̇a0 + γabVb = 0, (6.5)

where Va ≡ ∂V/∂φa. Additionally we define the covariant derivative Dt through the action
in a vector Aa, where

DtA
a = Ȧa + Γabcφ̇b0Ac. (6.6)

To solve the background equation for the fields (6.5) we need to include the Friedmann
equation, which in this case is:

H2 = 1
3

(1
2 φ̇

2
0 + V

)
, (6.7)

where φ̇2
0 ≡ γabφ̇

a
0φ̇

b
0.

With appropriate initial conditions, this two-field system follows a path φa0 with tangent
and normal unit vectors defined as

T a ≡ φ̇a0
φ̇0
, Na ≡ − 1

ΩDtT
a, (6.8)

where Ω ≡ −NaDtT
a is the angular velocity with which the path bends.
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As we said in chapter 2, in order for us to have an inflationary period that solves the Big
Bang problems, we must impose that H remain constant (i. e. ε� 1). For simplicity, we are
going to assume that ε can be considered as a constant. However, we will allow the angular
velocity Ω to depend on time. That is a situation where the inflationary trajectory in the
field space experiences turns without significantly affecting the accelerated expansion of the
universe3637.

By separating the system into a background part and a perturbation, we can use the
definitions of unit vectors (equation (6.8)) to separate the perturbation into two parts:

φa(~x, t) = φa0 + T a(t)ϕ(~x, t) +Na(t)ψ(~x, t), (6.9)

where ϕ corresponds to the adiabatic perturbation, while ψ is the isocurvature perturbation
[63, 155].

The objective that follows is to obtain the Lagrangian for the perturbations. For this, we
will do a procedure analogous to the one used in appendix C to derive the equation (3.80). In
the co-moving gauge (ϕ = 0), using the ADM formalism, we define the primordial curvature
perturbation ζ through the perturbed metric as:

ds2 = −Ndt2 + a2e2ζδij
(
dxi +N idt

)(
dxj +N jdt

)
, (6.10)

where N and N i are the lapse and the shift functions. Putting these definitions in (6.1)
and solving the constraint equations38, we arrive at a Lagrangian which can be separated in
L = Lkin + Liso, with

Lkin = a3

2

[
(Dtζc)2 − 1

a2 (∇ζc)2 + ψ̇2 − 1
a2 (∇ψ)2

]
, (6.11)

and
Liso = −a3U(ψ), (6.12)

where U(ψ) is a potential for ψ. In the equation (6.11), ζc ≡
√

2εζ is the canonically
normalized version of ζ, and the covariant derivative acting on ζc is defined as :

Dtζc ≡ ζ̇c − λHψ, (6.13)

with λ ≡ 2Ω/H. This quantity, λ(t), will be nonzero as long as the trajectory experiences
turns, and plays a prominent role in multifield inflation: it couples ζ and ψ to quadratic
order in a way that cannot be trivially removed by field redefinition [156]. In subsequent
calculations, we will omit self-interactions from ψ by making U = 0.

36 In any case, the results obtained will not depend on these assumptions.
37 See section 2 of [154] for the discussion about the slow-roll condition in the multifield scenario.
38 See Appendix E for more details
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6.2. Mild mixing between ζ and ψ

In particular, the limit λ � 1, the interaction between ζ and ψ can be analytically
understood [157]. At this limit, in the equation (6.11), we can neglect the terms proportional
to ∼ λ2 and it can be divided as Lkin = Lfree + Lmix, where Lfree is

Lfree = a3

2

[
ζ̇2
c −

1
a2 (∇ζc)2 + ψ̇2 − 1

a2 (∇ψ)2
]
, (6.14)

and Lmix is the interaction part, given by

Lmix ≡ −a3λHζ̇cψ. (6.15)

In this limit, ζc and ψ are massless scalar fields, interacting through a mixing term propor-
tional to ζ̇cψ. For this reason we can decompose the solutions of the linear equations in
Fourier space, derived from (6.14) in the same way as in (3.82), that is

ζ̃c0(~k, t) = u(k, t)aζ(~k) + u∗(k, t)a†ζ(−~k), (6.16)

ψ̃0(~k, t) = u(k, t)aψ(~k) + u∗(k, t)a†ψ(−~k), (6.17)

where aζ,ψ and a†ζ,ψ are the annihilation and creation operators, and these must comply with
the usual commutation relation (eq. (3.84)):

[aa(~k), a†b(~q)] = (2π)3δabδ
(3)(~k − ~q), (6.18)

where δab is the Kronecker delta. Also u(k, t) are the mode functions associated with Bunch-
Davies initial conditions (eq. (3.91)):

u(k, t) = iH√
2k3

[1 + ikτ(t)]e−ikτ(t), (6.19)

where τ(t) follows what is expressed in (2.45). If λ = 0, the dynamics of ζ is that of a
single-field with a solution given by (6.16), the dimensionless power spectrum (defined in the
equations (3.59) (3.60)) in this case it will not be different from the one expressed in (3.96),
where there is a small correction of the scale invariance from the slow-roll of inflation:

∆ζ,0 = H2

8π2ε
. (6.20)

On the other hand, if λ is small but nonzero, ψ sources ζc via the mixing in eq. (6.15), where
the solution for ζc will be [157]

ζ̃c(~k) = ζ̃c0(~k) + 2∆θ(k)ψ̃0(~k), (6.21)

and ψ̃(k) = ψ̃0(~k), where

∆θ(k) = 1
2

tend∫
thc

λHdt (6.22)

is the total angle swept by a mode that crosses the horizon at a time thc = ln(k/H)/H. With
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this solution, the power spectrum ∆ζ results in [157]:

∆ζ = ∆ζ,0 ×
(
1 + 4∆θ2(k)

)
, (6.23)

which is greater than the power spectrum of eq. (6.20) by a factor 1+4∆θ2(k). The equation
(6.21) shows us that for a small λ, all superhorizon modes are equally amplified while the
turn is taking place, making the power spectrum (eq. (6.23)) have a greater amplitude for
long wavelengths, independent of the form of λ(t). This scenario is incompatible with a large
enhancement of ∆ζ in small wavelengths (with respect to the CMB scales) that we expect
for PBH production, this forces us to consider the regime with λ� 1.

6.3. Strong mixing between ζ and ψ

For the case where the turns are short, we can study the system analytically even if λ� 1.
This is considered the fast turn regime [150, 151, 154, 158–166], where Ω� H. The question
we must ask ourselves is whether this does not compromise the perturbativity of the system?
To answer this question, let us note that the origin of λ comes only from the kinetic term
in the Lagrangian (eq. (6.1)), that a quadratic order makes the covariant derivative Dtζc
appear. This implies that at higher orders λ appears in the Lagrangian through operators
of the order (Dtζc)2 gravitationally coupled to ζc. The condition for the splitting to remain
weakly coupled is

L(3)
λ

L(2)
λ

∼ ζ̇c√
2εH

� 1, (6.24)

evaluated at horizon crossing39. Since (ζ̇c/
√

2εH)2 ∼ ∆ζ is satisfied at the crossing of the
horizon, the requirement is equivalent to demanding ∆ζ � 1. So while this is true we can
keep the mixing term in the complete kinetic term of the equation (6.11). Then the equations
of motion for the fluctuations that result from varying eq. (6.11) are

d

dt
Dtζ̃c + 3HDtζ̃c + k2

a2 ζ̃c = 0, (6.25)

¨̃ψ + 3H ˙̃ψ + k2

a2 ψ̃ + λHDtζ̃c = 0. (6.26)

To continue, in this work we consider the case where λ consists of a top-hat function40, of
the form

λ(t) = λ0[θ(t− t1)− θ(t− t2)], (6.27)

with a small width δt ≡ t2 − t1 � H−1. This makes the trajectory profile describe a short
turn with an angular velocity Ω = Hλ0/2 between t1 and t2.

Now, if δt� H−1, during this brief period of time we can ignore the friction terms in the
equations (6.25) and (6.26), and treat the fluctuations as if they were evolving in a Minkowski

39 See Appendix F for details.
40 The choice of this function is mainly based on the fact that it allows us to simplify the resolution of the
equations of motion analytically. For numerical solutions, other functions that have the same characteristics
(located in time) can be used, such as a gaussian profile for example.
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space-time [167].

Before t1 the system solutions will be exactly those expressed in the equations (6.16),
(6.17) and (6.19). Between t1 and t2 the solutions, which we will denote as Φ̃a ≡

(
ζ̃c, ψ̃

)
,

turn out to be:

Φ̃a(~k, t) =
(
Aa±e

+iω±t +Ba
±e
−iω±t

)
aζ(~k) +

(
Ca
±e

+iω±t +Da
±e
−iω±t

)
aψ(~k) +H.c.(−~k), (6.28)

where Aa±, Ba
±, Ca

± and Da
± are amplitudes which satisfy

kAζ± = ∓iω±Aψ±, kBζ
± = ±iω±Bψ

±, kCζ
± = ∓iω±Cψ

±, kDζ
± = ±iω±Dψ

±, (6.29)

and ω± are the dispersion relations, given by

ω± =
√
k2 ± kk0λ0, (6.30)

in this equation, k0 ≡ HeH(t1+t2)/2, is the wave number of the modes that cross the horizon
during the turn. Finally, the solutions after t2 are of the form

Φ̃a(~k, t) = [Eau(k, t) + F au∗(k, t)]aζ(~k) + [Gau(k, t) +Hau∗(k, t)]aψ(~k) +H.c.(−~k), (6.31)

where u(k, t) is expressed in the equation (6.19). The amplitudes shown in the equations
(6.28) and (6.31) can be determined by imposing continuity of ζ̃c(~k, t), Dtζ̃c(~k, t), ψ̃(~k, t) and
˙̃ψ(~k, t) at times t1 and t2. This is achieved if the following conditions are fulfilled:

ζ̃c(~k, t−1 ) = ζ̃c(~k, t+1 ), ˙̃ζc(~k, t−1 ) = Dtζ̃c(~k, t+1 ), ψ̃(~k, t−1 ) = ψ̃(~k, t+1 ), ˙̃ψ(~k, t−1 ) = ˙̃ψ(~k, t+1 ),

ζ̃c(~k, t−2 ) = ζ̃c(~k, t+2 ), ˙̃ζc(~k, t−2 ) = Dtζ̃c(~k, t+2 ), ψ̃(~k, t−2 ) = ψ̃(~k, t+2 ), ˙̃ψ(~k, t−2 ) = ˙̃ψ(~k, t+2 ),
(6.32)

where t±i ≡ ti ± ε with ε → 0. As a result, at the end of inflation, ζ̃c(~k) becomes a linear
combination of quanta created and destroyed by the operators aζ and aψ, whose contributions
are modulated by high and low frequencies41:

ζ̃c(~k) = iH√
2k3

e
2i k
k0

sinh ( δN2 )∑
±

{
1
2

[
cos

(
ω±δN

k0

)
− i

k2
0 + k2 + ω2

±
2kω±

sin
(
ω±δN

k0

)

− ie2i k
k0

exp(− δN2 ) (ik0 + k)2 − ω2
±

2kω±
sin

(
ω±δN

k0

)]
aζ(~k)± i

4

[
−
(

2 + k2
0
k2

)
cos

(
ω±δN

k0

)

+ (k0 + ik)k2 − (k0 − ik)ω2
±

k2ω±
sin

(
ω±δN

k0

)
+ e

2i k
k0

exp (− δN2 )
(
k0

k2 (k0 − 2ik) cos
(
ω±δN

k0

))

+
(k0 − ik)

(
ω2
± − k2

)
k2ω±

sin
(
ω±δN

k0

)]
aψ(~k)

}
+H.c.(−~k), (6.33)

41 See Appendix G for the complete derivation.
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where δN ≡ Hδt is the duration of the turn in e-folds. A similar solution is obtained for ψ̃(~k).
With a WKB approximation, we can follow the same steps used to arrive at the equation
(6.33), this should allow us to obtain solutions with more general functions for λ(t).

The equation (6.33) is our main result. It shows us how, regardless of the value of λ0, ζ
and ψ are combined after the turn. Another important characteristic in the equation (6.33)
is the fact that ω− =

√
k2 − kk0λ0 becomes imaginary for k < λ0k0, generating an instability

that induces an exponential amplification of ζ̃c(~k). On scales where k < λ0k0 the fluctuation
has an amplitude ζ̃c(~k) ∝ e

√
λ0k0k−k2δN/k0 with a maximum value at kmax = λ0k0/2. While

2δθ ≡ λ0δN > 1 instability generates large enhancements in the power spectrum of ζ at the
end of inflation.

6.4. PBH from strong multifield mixing
Now we will use the analytical solution obtained in the equation (6.33) to study the origin

of primordial black holes due to multifield inflation effects. Let us first notice that, if we are
in scales where k � k0λ0/2, eq. (6.33) translates into

ζ̃short(~k) = ik−3/2∆1/2
ζ,0 aζ(~k) +H.c.(−~k), (6.34)

from where the single field power spectrum of the equation (6.20) is recovered. This tells us
that modes that are far in the horizon are not affected by spin. On the other hand, in scales
where k � k0λ0/2 we have

ζ̃long(~k) = ik−3/2∆1/2
ζ,0

[
aζ(~k) + 2δθaψ(~k)

]
+H.c.(−~k), (6.35)

i.e. ∆ζ = (1 + 4δθ2) × ∆ζ,0, confirming that long wavelengths all receive the same ampli-
fication shown previously in the equation (6.23). Finally, for δθ ∼ O(1) or higher, around
k ∼ k0λ0/2 the curvature fluctuation is dominated by (without the oscillatory phases)

ζ̃bump(~k) ∼ ik−3/2∆1/2
ζ,0 e
√
λ0k0k−k2δN/k0 × 1

4
[
(1− i)aζ(~k)− (1 + i)aψ(~k)

]
+H.c.(−~k), (6.36)

from where we can conclude that the power spectrum will have a bump centered at k = k0λ0/2
of amplitude ∆ζ,0e

2δθ/4, with a width

∆Nk ' ln
[

4δθ2

ln2 (16δθ2)

]
, (6.37)

where Nk = ln(k/H) is the wave number in units of e-folds. In summary we have

∆ζ

∆ζ,0
∼


1 + 4δθ2 if k � k0λ0/2
1
4e

2δθ if k ∼ k0λ0/2
1 if k � k0λ0/2

. (6.38)

This behavior is quite characteristic: for large δθ, the ratio of the power spectrum at long
and short wavelengths determines the bump height. In particular, the increase of ∆ζ with
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respect to the long-wavelength value can be predicted as ∼ e2δθ/(4δθ)2. This tells us that for
us to have an increase in the power spectrum of the order of 107, it is enough to have δθ ∼ 4π.

We can check ∆ζ from the equation (6.33) with the numerical solutions of the equations
(6.25) and (6.26). The results are shown in the figure (6.1). As expected, we found a good
agreement between the results for the cases with δN = 0.1 and also for δN = 1. For the case
with δN = 0.1 a difference is noted in the decay of the power spectrum, this is only because
numerical inaccuracies due to the fact of solving differential equations with large numbers.

A characteristic of this mechanism is that this rapid growth of the power spectrum evades
the limitations for enhancements in single-fields models [122, 168, 169]. If the proposal by
[170, 171] is followed, there must be a dependence of the parameters λ0 and δN in the com-
putation of the abundance of PBH as a function of mass.

To close this discussion, let us note that the power spectrum ∆ζ describes a characteristic
band structure resulting from the oscillating parts in the equation (6.33). However, it has
recently been proven that this band structure does not translate to the mass function [172].
The reason why this occurs is mainly due to the integral used in this type of computation
(see for example eq. (5.5)). On the contrary, it has been shown that these oscillations
are transferred to the spectrum of primordial gravitational waves generated in the period
dominated by radiation [173, 174]. In addition, a non-zero potential for the isocurvature field
has recently been worked out, where for a cubic interaction (i. e. ∼ ψ3) in the Lagrangian, it
has been shown that the bispectrum presents the same type of amplification that we presented
in this work42.

Figure 6.1: Plot of the primordial power spectrum as a function of N(k) =
ln(k/k0) for δN = 0.1 and λ0 = 251.3 (left panel), and δN = 1 and λ0 =
25.1 (right panel). Solid/dashed lines correspond to numerical/analytical
solutions. The spectra is normalized with respect to the values at CMB
scales.

42 This work has not yet been published, thanks to Nicolás Parra for sharing his early results.
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Chapter 7

Conclusions

The main objective of this thesis was to connect characteristics of multifield inflation with
an observable that has gained importance in the last years: primordial black holes.

From the beginning of this work (chapters 2 and 3), we have made it clear that the most
straightforward inflationary theory, single-field slow-roll inflation, helps us to solve the clas-
sic problems of the Big Bang theory (the horizon problem and the problem of the flatness
for example). Whereas the perturbations in this type of inflation, physically interpreted as
quantum fluctuations, solves the origin of the primordial perturbations that justify the origin
of the large-scale structure and the anisotropies of the microwave background radiation. Un-
fortunately, we close the analysis in those chapters by emphasizing that single field inflation
is a phenomenological theory that cannot be directly connected to a fundamental physics
theory (like the standard model or GR).

In Chapter 4, we delve into the fact that the characteristics that have been observed
on primordial perturbations (adiabaticity, gaussianity, and scale invariance) are restricted to
various factors. For example, the exploration of non-gaussianities in primordial perturbations
falls mainly on the difficulty of studying correlations of order higher than 2. Additionally, the
current observations that allow us to reach these conclusions are valid only on scales that we
identify as large. These large scales have their origin in perturbations that escaped the hori-
zon at times significantly before the end of inflation, a stage in which their phenomenology
was well justified by slow-roll single-field inflation. This is why it is difficult to obtain more
information on the physics behind inflation through observations of large-scale perturbations.

Primordial black holes, which was the core of our discussion in Chapter 5, objects that
were initially theorized in the 1960s and returned to the eye of the cosmology community in
recent years due to observations of gravitational waves, they have the goodness of being an
element of the universe whose origin would be related mainly to physics on small scales. In
that chapter, we detail PBH formation characteristics, how its abundance could be predicted
in such a way that it generates observable effects in the current universe (gravitational wave
events, for example), and various observational constraints that we have for the existence of
these black holes. A very interesting scenario in which PBH takes a leading role is the one
in which they make up a fraction (or all) of the dark matter. It has been shown that for
this to occur, there needs to be a jump in the power spectrum of at least seven orders of
magnitude on small scales. Therefore, the observation of phenomena in which the existence
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of PBH is justified would give us valuable information on new physics associated with small
scales. These physics could justify the physical nature behind inflation.

In our work, we focused on an inflationary model with multiple fields, whose origin is
justified in various UV-complete theories. This inflationary scenario has the property where
isocurvature modes can be coupled with adiabatic curvature modes, generating enhancements
in their amplitude, providing an ideal scenario for the production of primordial black holes
or other signals that require an increase in the amplitude of the small-scale perturbations.

In our model, the λ interaction between these modes is modeled by a top hat function
in time, thus modeling a rapid turn in the inflationary path in the field space. Although
it was known that these rapid turns in the inflationary trajectory generate features in the
power spectrum. We obtained analytical solutions for ζ in the regime of λ� 1. If we recall
the discussion at the end of section 6.2, large ∆ζ enhancements require fast turns, but also
require non-trivial geometry in the field space (see discussion in Appendix H). For example,
if we consider the growth of ∆ζ in a canonical multifield inflation scheme due to a turn with
a duration δN with Ω constant, this tells us that λ = 2δθ/δN However, in these canonical
models, δθ < π, so there is a maximum value for the mixing λmax = 2π/δN . So, if δN � 1,
we would be in the slow turn regime where, as we showed in section 6.2, it does not produce
great enhancements. On the other hand, if δN ≤ 1, we fall into the fast turn regime, where
it applies a behavior of the form given by the equation (6.38), where we obtained that for an
increase of 107 in ∆ζ , we require δθ ∼ 4π, moving away from canonical models.

One of the usual problems of these inflationary models is that they require a high fine-
tuning between their parameters in order to generate the desired scenarios. One of the
bonanzas that our results have is that the main parameter that produces the increase in the
power spectrum is δθ, the total angle swept by the trajectory. In this sense, our mechanism,
which is exponentially sensitive to δθ, gives us a significant enhancement without a greater
hierarchy. However, like many other inflation-based proposals, our model does not necessar-
ily give us the range of scales where the enhancement occurs since this depends directly on
the moment in which the turn occurs.

Finally, let’s remember that for simplicity, we ignore the potential U. A nonzero U could
introduce a mass for ψ, modifying the dispersion relations that we express in the equation
(6.30) and the amplitudes in (6.28), so the results for the enhancement in the power spectrum
will be altered (eq. (6.38)). Another effect is the generation of non-gaussianities, following the
guidelines of the references [175–177]. A large λ will induce distortions in the ζ statistic that
could change the details in the PBH formation [178–187]. This last point directly impacts
our discussion in section 5.3, where for example, we should consider a much more complex
form for the probability distribution for δ than that expressed in (5.7). As we mentioned
at the end of chapter 6, although it has been studied that the oscillating features are not
transferred to the mass function, they are translated into the primordial gravitational wave
spectrum generated in the period dominated by radiation. But the dynamics studied in our
model occur mainly in the inflationary period, so exploring the spectrum of gravitational
waves generated in inflation could generate more significant signals than those generated in
the radiation era (see for example [188, 189]).
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Appendix A

Einstein Equations for Scalar
Perturbations

A.1. Einstein Equations for General Scalar Perturba-
tions

In this appendix, we follow the treatment worked in Weinberg’s text [34]. We will study
scalar perturbations, in which we write the metric as:

ds2 = −(1 + 2A)dt2 + a(t)∂iCdxidt+ a2(t)
[
(1− 2B)δij + 1

3∇
2Eδij + ∂i∂jE

]
. (A.1)

Together with the scalar perturbations of the energy-momentum tensor (δρ, δp, δu andπS),
we will have the following equations of motion derived from Einstein’s equation:

−4πG
(
δρ− δp+ 2

3k
2πS

)
= HȦ+ 2(3H2 + Ḣ)A− 1

2
k2

a2

(
2B + 1

3k
2E
)

− 1
2
d2

dt2

(
2B + 1

3k
2E
)
− 3H d

dt

(
2B + 1

3k
2E
)

+ 1
2Hk

2Ė − H

a
k2C,

(A.2)

−4πGπS = 1
2a2A+ 1

4a2

(
2B + 1

3k
2E
)
− 1

4Ë −
3
4HĖ + 1

2aĊ + H

a
C,

(A.3)

−4πG(ρ̄+ p̄)δu = HA− 1
2
d

dt

(
2B + 1

3k
2E
)
, (A.4)

−4πG(δρ+ 3δp) = 1
a2k

2A− 3HȦ+ 1
a
k2Ċ + H

a
k2C + 3

2
d2

dt2

(
2B + 1

3k
2E
)

+ 3H d

dt

(
2B + 1

3k
2E
)
− 6

(
Ḣ +H2

)
A− 1

2k
2Ë −Hk2Ė.

(A.5)

Additionally, we must consider the conservation of the energy moment tensor ∇µTµν = 0 for
the case without a source (to consider collisions we must add a source term Cµ). The time
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component gives us the conservation of energy:

δρ̇+ 3H(δρ+ δp) = (ρ̄+ p̄)
(
k2

a2 (δu− aC)− 3Ḃ
)
. (A.6)

While the spatial part gives us the momentum conservation:

δp− 2
3k

2πS + d

dt
((ρ̄+ p̄)δu) = −3H(ρ̄+ p̄)δu− (ρ̄+ p̄)A. (A.7)

If we combine the Einstein equations for the perturbations (equations (A.2) - (A.5)), we can
derive the following relation:

k2

a2

(
−B − 1

6 + 1
2a

2HĖ − aHC
)

= −4πG(δρ− 3H(ρ̄+ p̄)δu). (A.8)

Where the expression in the left parenthesis is a gauge-invariant quantity defined in (3.39).
So we arrive at an equation analogous to the Poisson equation for that gauge invariant field:

k2

a2 ΨGI = −4πG(δρ− 3H(ρ̄+ p̄)δu). (A.9)

Also, if we rewrite the equation (A.3), using the gauge-invariant quantities, defined in (3.38)
and (3.39), we obtain:

ΦGI −ΨGI

2a2 = −4πGπS, (A.10)

from this relationship it follows the fact that without the presence of an anisotropic stress
tensor, the gravitational dynamics is dominated by a single field (this becomes much more
explicit in the Newtonian Gauge).

A.2. Einstein Equations for the Different Gauges
• Newtonian Gauge

In the Newtonian Gauge, we have to make the following changes:

EN = 0, CN = 0, AN ≡ Φ, BN ≡ −Ψ (A.11)

Einstein’s equations result:

−4πG
(
δρ− δp+ 2

3k
2πS

)
= HΦ̇ + 2

(
3H2 + Ḣ

)
Φ + Ψ̈ + 6HΨ̇ + k2

a2 Ψ, (A.12)

−4πGπS = 1
2a2 (Φ−Ψ), (A.13)

−4πG(ρ̄+ p̄)δu = HΦ + Ψ̇, (A.14)

−4πG(δρ+ 3δp) = k2

a2 Φ− 3HΦ̇− 6
(
Ḣ +H2

)
Φ− 3Ψ̈− 6HΨ̇. (A.15)
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While the energy-momentum conservation equations are:

δρ̇+ 3H(δρ+ δp) = (ρ̄+ p̄)
(
k2

a2 δu+ 3Ψ̇
)
, (A.16)

δp− 2
3k

2πS + d

dt
((ρ̄+ p̄)δu) = − 3H(ρ̄+ p̄)δu− (ρ̄+ p̄)Φ. (A.17)

• Synchronous Gauge
In this gauge, we must do the following changes:

AS = 0, CS = 0, (A.18)

The Einstein’s equations become

−4πG
(
δρ− δp+ 2

3k
2πS

)
= − 1

2
k2

a2

(
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2E
)
− 1

2
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dt2
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− 3H d

dt
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+ 1
2Hk
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(A.19)

−4πGπS = 1
4a2

(
2B + 1

3k
2E
)
− 1

4Ë −
3
4HĖ,

(A.20)

−4πG(ρ̄+ p̄)δu = − 1
2
d

dt

(
2B + 1

3k
2E
)
, (A.21)

−4πG(δρ+ 3δp) = 1
a2

d

dt

(
a2ψ

)
. (A.22)

Where ψ in the last equation is defined by ψ = 3Ḃ. We can use this variable in the
energy conservation equation:

δρ̇+ 3H(δρ+ δp)− (ρ̄+ p̄)
(
k2

a2 δu− ψ
)

= 0. (A.23)

On the other hand, one of the peculiarities of this gauge is that the momentum conser-
vation equation does not depend on the perturbations in the metric:

δp− 2
3k

2πS + d

dt
((ρ̄+ p̄)δu) + 3H(ρ̄+ p̄)δu = 0. (A.24)

An additional treatment that we can do with the Einstein equations in this Gauge, is
to obtain an equation for the co-moving curvature perturbation R. If we add 3 times
the equation A.19 with (−2k2) the equation A.20 and the equation A.22 we will arrive
at the following expression :

− k2

a2

(
2B + 1

3k
2E
)

= −8πGδρ+ 2Hψ. (A.25)

Where, if on the left side of the equation we make appear R, defined in the equation
(3.42), we will obtain:

− k2

a2R = Hψ − 4πGδρ+ k2

a2Hδu. (A.26)
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• Co-moving Gauge
In the co-moving Gauge, we must impose:

δuC = 0, EC = 0, BC = R, AC ≡ δN . (A.27)

With this, Einstein’s equations translate into:

−4πG
(
δρ− δp+ 2

3k
2πS

)
= HδṄ + 2

(
3H2 + Ḣ

)
δN − k2

a2R− R̈ − 6HṘ − H

a
k2C

(A.28)

−4πGπS = 1
2a2 δN + 1

2a2R+ 1
2aĊ + H

a
C, (A.29)

0 = HδN − Ṙ, (A.30)

−4πG(δρ+ 3δp) = k2

a2 δN − 3HδṄ + 1
a
k2Ċ + H

a
k2C + 3R̈

+ 6HṘ − 6
(
Ḣ +H2

)
δN .

(A.31)

While the equations for the conservation of energy and momentum result:

δρ̇+ 3H(δρ+ δp) = −(ρ̄+ p̄)
(
k2

a2C + 3Ṙ
)
, (A.32)

δp− 2
3k

2πS + (ρ̄+ p̄)δN = 0. (A.33)
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Appendix B

Equations of motion for the
perturbations in the synchronous
gauge

In this appendix we will derive the equations for the perturbations in the synchronous gauge
and show that under the assumption of adiabaticity for the initial conditions of the pertur-
bations, all perturbations come from a single primordial perturbation.

We will take as a starting point the conservation equations of the energy-moment tensor
for each component ∇νTµν = Cµ, where Cµ is a source that describes the collisions between
different components. The equations will be:

δρ̇a + 3H(δρa + δpa)− (ρ̄a + p̄a)
(
k2

a2 δua − ψ
)

= δC0,a, (B.1)

δpa −
2
3k

2πSa+ d

dt
((ρ̄a + p̄a)δua) + 3H(ρ̄a + p̄a)δua = δCS

a , (B.2)

where a is the subscript that will differentiate each component of the universe and δCS
a is

the scalar part of δCi.
Next we will write this equations for the different components of the universe.

• Dark Matter
We will model dark matter as non-relativistic particles, with this we can impose p̄D = 0,
δpD = 0 and πSD = 0. Furthermore, dark matter only interacts with the rest of the
components of the universe gravitationally, so we can neglect collisional terms. With
this, the equations become:

δρ̇D + 3HδρD − ρ̄D
k2

a2 δuD = −ρ̄Dψ, (B.3)

d
dt(ρ̄DδuD) + 3Hρ̄DδuD = 0. (B.4)

From the continuity equation for the background quantities, it is satisfied that ˙̄ρD =
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−3Hρ̄D. If we plug this relation into the second equation, this implies

δu̇D = 0. (B.5)

We can use the residual gauge that we have in the synchronous gauge, thus imposing
δuD = 0. Putting all this together, the first equation results:

δρ̇D + 3HδρD + ρ̄Dψ = 0. (B.6)

• Neutrinos
Like dark matter, neutrinos do not interact with the rest of the components of the
universe. Additionally we must impose δp = 1/3δρν and a priori we cannot neglect the
anisotropic stress tensor. The equations result:

δρ̇ν + 4Hδρν −
4
3 ρ̄ν

k2

a2 δuν = −4
3 ρ̄νψ, (B.7)

δρν − 2k2πSν + 4 d
dt(ρ̄νδuν) + 12Hρ̄νδuν = 0. (B.8)

In the above equation we can neglect the anisotropic stress tensor only if we are consid-
ering large scales.

• Photons
For photons, we consider that the only relevant interaction (other than gravitational)
is with electrons via Thomson scattering. In these collisions we will consider that the
photons change their momentum but not their energy, i.e δCγ,0 = 0, so

δCS
γ = 4

3 τ̇ ρ̄γ(δuγ − δue). (B.9)

The previous expression is derived using QFT tools, in addition, τ̇ is called the optical
depth and characterizes the amount of interactions that occur between photons and
electrons in this type of scattering. Including this in the equations, we are left with:

δρ̇γ + 4Hδργ −
4
3 ρ̄γ

k2

a2 δuγ = −4
3 ρ̄γψ, (B.10)

d
dt(ρ̄γδuγ) +Hρ̄γδuγ −

1
2k

2πSγ + 1
4δργ = τ̇ ρ̄γ(δuγ − δue). (B.11)

In this case we can neglect the anisotropic stress tensor, because its effect is less rele-
vant than Thomson’s scattering. If we want to include its effect in the system, we must
consider an equation that takes into account the temporal variation of the anisotropic
tensor, obtained from the quadrupole moment of the multipolar expansion of the Boltz-
mann equation for photons.

• Baryons
To study baryons, we will consider electrons and protons as a single fluid. Like photons,
we will consider that baryons interact only with photons using Thomson scattering, that
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is,

δCB,0 = 0, δCS
B = −δCS

γ = 4
3 τ̇ ρ̄γ(δue − δuγ). (B.12)

Additionally, we consider baryonic matter as non-relativistic, so we neglect its anisotropic
stress tensor in the same way as dark matter. With all this, the equations result:

δρ̇B + 3HδρB − ρ̄B
k2

a2 δuB = −ρ̄B, (B.13)

d
dt(ρ̄BδuB) + 3Hρ̄BδuB = 4

3 τ̇ ρ̄γ(δuB − δuγ). (B.14)

• Photon-Baryon Plasma
Due to their interaction through Thomson scattering, it is convenient to study photons
with baryons together. If we group the equations in a convenient way, we have:

δρ̇γ + 4Hδργ −
4
3 ρ̄γ

k2

a2 δuγB = −4
3 ρ̄γψ, (B.15)

δρ̇B + 3HδρB − ρ̄B
k2

a2 δuγB = −ρ̄B, (B.16)

d
dt

[(4
3 ρ̄γ + ρ̄B

)
δuγB

]
+ 3H

(4
3 ρ̄γ + ρ̄B

)
δuγB + 1

3δρ̄γ = 0. (B.17)

In the previous equations we introduce δuγB, defined as:

δuγB ≡
4
3 ρ̄γδuγ + ρ̄BδuB

4
3 ρ̄γ + ρ̄B

. (B.18)

We also made the assumption where, if τ̇ � 1 then the difference between the velocity
perturbations between the baryons and photons must be small (so as not to break the
hierarchy of perturbations), so it must comply δuγ ' δuB ' δuγB.

In addition to these equations obtained from the conservation of the energy-moment tensor
of each component, we must consider an equation for the potential ψ, obtained from Einstein’s
equations:

1
a2

d
dt
(
a2ψ

)
= −4πG(2δργ + 2δρν + δρB + δρD). (B.19)

To work the equations more easily, we will work with the density contrast, defined as
δa ≡ δρa/ρ̄a. With this variable, the time derivatives fulfill the following property:

ρ̄aδ̇a = δρ̇a + 3H(ω + 1)δρa. (B.20)

Then, the equations for δD, δν , δγ, δB, δuγ and δuν becomes:

δ̇D = −ψ, (B.21)

δ̇ν −
4
3
k2

a2 δuν = −4
3ψ, (B.22)
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δ̇γ −
4
3
k2

a2 δuγB = −4
3ψ, (B.23)

δ̇B −
k2

a2 δuγB = −ψ, (B.24)

1
4δγ + a

d
dt

[
(1 +R)δuγB

a

]
= 0, (B.25)

1
4δν + a

d
dt

(
δuν
a

)
= 0, (B.26)

where R = 3ρ̄B/4ρ̄γ. Besides, the equation for ψ becomes:

1
a2

d
dt
(
a2ψ

)
= −4πG(2ρ̄γδγ + 2ρ̄νδν + ρ̄BδB + ρ̄DδD). (B.27)

Our goal will be to solve these equations at early times. If we impose the adiabaticity
condition for the perturbations in the different components (eq. (3.54)), this translates to
the following relation

δρν
˙̄ρν

= δργ
˙̄ργ

= δρD
˙̄ρD

= δρB
˙̄ρB

= δt. (B.28)

If in this relation we use the continuity equation for the background quantities and the
definition of the density contrast, it results

3
4δν = 3

4δγ = δD = δB = −3Hδt. (B.29)

On the other hand, if we work at early times, so we can assume the superhorizon limit for
all modes (i.e. k/a→ 0). With this, by combining the equations ((B.21) - (B.24)), we get

3
4 δ̇ν = 3

4 δ̇γ = δ̇D = δ̇B = −3Hδt. (B.30)

With these relations, we can rewrite the equation (B.27), where we obtain:

3
4

1
a2

d
dt
(
a2δ̇γ

)
= 4πGδγ ρ̄R

(
1 + 3

8
ρ̄M
ρ̄R

)
, (B.31)

where ρ̄R = ρ̄γ + ρ̄ν and ρ̄M = ρ̄D + ρ̄B. Since we are working in the era dominated by
radiation, then a ∝ t1/2 and H = 1/2t. Additionally, it is true that ρ̄R � ρ̄M , so we can
neglect the second term in the parentheses and assume ρ̄R ' ρ̄tot. Using these approximations
and the Friedmann equation (3H2 = 8πGρ̄tot), we obtain the following differential equation

d
dt
(
tδ̇γ
)
− 1
t
δγ = 0. (B.32)

The solutions of this equation will be δγ ∝ t and δγ ∝ 1/t. We will keep only the increasing
mode. This solution, if combined with (B.30), implies that ψ does not depend on time. With
this, the solution for the increasing mode of the density contrasts of the different components
will be:

3
4δν = 3

4δγ = δD = δB = −tψ0(~k). (B.33)
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If we plug this result into the equations (B.25) and (B.26), we get:

d
dt

( 1
t1/2

δuγB

)
= 1

3ψ0(~k)t1/2, d
dt

( 1
t1/2

δuν

)
= 1

3ψ0(~k)t1/2. (B.34)

The solution to these equations will imply that

δuγ = δuB = δuν = 2
9ψ0(~k)t2. (B.35)

To continue this derivation, let’s recall the equation (A.26) that involved the curvature
perturbation R in the synchronous gauge:

k2

a2R = −Hψ0 + 4πGδρ+ k2

a2Hδu. (B.36)

If we consider an initial time tini (in which primordial perturbations begin to evolve) where
the universe is dominated by radiation, we can replace δρ = ρ̄γδγ + ρ̄νδν + ρ̄DδD + ρ̄BδB '
ρ̄Rδγ ' ρ̄totδγ. This gives us

ψo(~k) = −tk
2

a2R(~k, tini). (B.37)

With this last result, we can conclude that initially every perturbation can be written as a
function of the gauge-invariant quantity R, as

3
4δν = 3

4δγ = δD = δB = 1
4H2

k2

a2R(~k, tini), (B.38)

δuγB = δuν = − 1
36H3

k2

a2R(~k, tini), (B.39)

ψ0(~k) = − 1
2H

k2

a2R(~k, tini). (B.40)
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Appendix C

Derivation of the Mukhanov-Sasaki
equation with the ADM formalism

In this appendix we will derive the action presented in the equation (3.80) using the ADM
formalism. For the initial formulation of the formalism we will mainly follow the derivation
of the Padmanabhan book [190], we recommend reviewing it for more details.

The ADM (Arnowitt-Deser-Misner) formalism, or Hamiltonian formalism of general rela-
tivity, consists (in a few words) of working the equations of general relativity (the Einstein-
Hilbert action in our case) separating the spatial part and the temporary part. Although it
is useful to work with the metric as a whole. To study evolutions of certain elements, it is
more convenient to do this separation (mainly for work in numerical relativity).

The starting point is a scalar t(xα) that defines spacelike hypersurfaces, each of these
hypersurfaces is parametrized by the time Σ(t). Each hypersurface has a spatial coordinate
system yα. The next step is to connect the coordinate systems between hypersurfaces, for
this we use a four-dimensional system xi = (t, yα), with a tangent unit vector ta = (∂xa/∂t)
and normal vector na = −N∂at. Where in the last expression we define the scalar function
N called lapse. If we define the projection on the hypersurfaces as eaα = ∂xa/∂yα, we can
decompose the tangent vector ta as ta = Nna + Nαeaα, with Nα named shift vector. With
these definitions, an infinitesimal jump between hypersurfaces will be

dxa = tadt+ eaαdy
α. (C.1)

With this, we can express the metric as:

ds2 = −N2dt2 + hαβ(dxα +Nαdt)
(
dxβ +Nβdt

)
, (C.2)

where hαβ is a three-dimensional metric that can be understood as the projection of the metric
on the spatial hypersurfaces. More explicitly, the elements of the metric in four dimensions
will be

g00 = hijN
iN j −N2, g0j = hijN

i, gij = hij. (C.3)
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while the elements of the inverse metric are:

g00 = −N−2, g0j = N−2N j, gij = hij −N−2N iN j. (C.4)

Note that for the spatial metric hαβ it satisfy

hαβ = gαβ + nαnβ, (C.5)

while we can relate the determinants, where
√
−g = N

√
h. (C.6)

With the terms we have so far, for the spatial metric and the normal vector, they fulfill the
following useful properties:

habn
n = 0, ns∇mns = 0, n[m∇nnr] = 0 (C.7)

Continuing, we must include a definition of a covariant derivative for hypersurfaces, this
will be via projecting the covariant derivative in the 3-D space, that is, its action on a vector
Xn will be:

DmXn = hamh
b
n∇aXb. (C.8)

This covariant derivative satisfies Dahmn = 0, which makes it a consistent operation on hy-
persurfaces.

What follows is to have a quantity that quantifies how three-dimensional hypersurfaces
behave in 4-D spacetime, we define the extrinsic curvature of the hypersurface as

Kαβ = −∇αnβ. (C.9)

It is desirable to be able to write this quantity in terms of the metric and derivatives of
three-dimensional space. For this it can be shown that the extrinsic curvature Kαβ is related
to the Lie derivative of the 3-D metric in the normal direction, that is

£~nhmn = −1
2Kmn. (C.10)

Using the fact that ta = Nna+Nαeaα and applying a couple of Lie derivative identities, result
the following expression for the extrinsic curvature:

Kab = − 1
2N

[
DaNb +DbNa − ḣab

]
. (C.11)

Recall that our goal is to write the Einstein-Hilbert action using this formalism, for this
we will need to write the Ricci scalar in terms of the three-dimensional metric. The next
step to get to this is to have an equation for the Riemann tensor in terms of Kab and the
curvature of 3-D space. If we start with the definition of the Riemann tensor through the
commutator of the covariant derivatives of a vector

− (3)Ra
bmnXa = DmDnXb −DnDmXb. (C.12)
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If we work this expression, we will get to

(3)Rabcd = hma h
n
bh

s
ch

t
dRmnst + ε(KacKbd −KadKbc), (C.13)

where ε = nin
i = −1. The above expression is called the Gauss-Codazzi equation.

Additionally, to write the Ricci scalar, we will need to write the contraction of the Ricci
tensor two normal vectors (i.e. Rbdn

bnd). To calculate this expression, we use as a starting
point:

Rmnban
a = ∇m∇nnb −∇n∇mnb, (C.14)

and contract two indices, that is

Rbdn
bnd = gacRabcdn

bnd = nb∇a∇bn
a − nb∇b∇an

a. (C.15)

If we use the following identities:

K ≡ Ka
a = −∇an

a, KijK
ij =

(
∇in

j
)(
∇jn

i
)
, (C.16)

results
Rbdn

bnd = ∇i

(
Kni + ai

)
−KabK

ab +K2, (C.17)

where ai = na∇an
i.

In order to obtain an expression for the Ricci scalar, we will also need to write the con-
traction of the Einstein tensor with two normal vectors. For this, we will use the following
identity

hmnhabRmanb = 2nmnnGmn. (C.18)

Then, if in the equation (C.13) we contract the indices, we will obtain

(3)R = hsmhtnRmnst −K2 +KcdK
cd, (C.19)

replacing the identity, we are left with

2nmnnGmn = (3)R + k2 −KmnK
mn. (C.20)

Making a convenient identity appear from the Ricci scalar and using the definition of the
Einstein tensor, we have

R = −21
2Rgabn

anb = 2(Gab −Rab)nanb. (C.21)

Where we already know the expressions for 2nmnnGmn and Rabn
anb, so we get

R = (3)R +KabK
ab −K2 − 2∇i(Kni − ai). (C.22)

When writing the action for this formalism we can omit the last term since it is a total
derivative, so the Einstein Hilbert action is:

SADM,EH =
∫
dtdx3N

√
h
(

(3)R +KabK
ab −K2

)
(C.23)
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Now we must incorporate the part of the action associated with the inflaton. If we replace
the metric of this formalism, which we express by components in (C.3), in the part associated
with the kinetic term of the inflaton, we obtain the following action:

SADM = 1
2

∫
dtd3x

√
h
[
N (3)R + 1

N

(
EijE

ij − E2
)

+ 1
N

(
φ̇−N i∂iφ

)2
−Nhij∂iφ∂jφ− 2NV

]
,

(C.24)
where we use the relation for the determinant of g expressed in the equation (C.6) and we
define the tensor Eij which is the dimensionless extrinsic curvature Eij = NKij.

One of the great benefits of this formalism is that N and N i can be interpreted as Lagrange
multipliers, so that by varying the action with respect to these variables we will obtain the
constraint equations. If we vary, in the first place, the action with respect to N and we
minimize, this is

δSADM
δN

= 0⇔ (3)R− 1
N2

(
EijE

ij − E2
)
− 1
N2

(
φ̇−N i∂iφ

)2
− hij∂iφ∂jφ− 2V = 0. (C.25)

With the variation with respect to the shift vector N i we must be careful with the fact that
the extrinsic curvature also depends on this variable, in the procedure we must integrate by
parts and we get

δSADM
δN i

= 0⇔ − 1
N
∂iφ

(
φ̇−N j∂jφ

)
+Dj

( 1
N

(
Ej
i − h

j
iE
))

= 0, (C.26)

remember that in the previous expression Ei
j = hikEkj and E = Ei

i .

Our next step is to place ourselves in the comoving gauge, where δφ = 0 so all the spatial
derivatives of the inflaton vanish (since φ = φ̄(t)). With this the constraint equations will be

(3)R− 1
N2

(
EijE

ij − E2
)
− 1
N2

˙̄φ2 − 2V = 0, (C.27)

Dj

( 1
N

(
Ej
i − h

j
iE
))

= 0. (C.28)

On the other hand, in this gauge, the spatial metric hij takes the following form43

hij = a2(1− 2R)δij, hij = 1
a2(1− 2R)δ

ij. (C.29)

Additionally, this gauge fulfills that the Ricci scalar is

(3)R = 4
a2
~∇2R, (C.30)

where ~∇2 ≡ ∂i∂i.

43 This is the spatial metric on the comoving gauge that we defined in Chapter 3 and worked in Appendix A.
For the derivations shown in Chapter 6, that we detailed in Appendix E, we use an equivalent definition
with hij = a2e2ζδij
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What continues is to solve the equations (C.27, C.28) for N and N i in a first order
perturbatively in R, since in this way we obtain an action quadratic in R when replacing the
solutions in (C.24). For this, first of all, we separate the shift vector as:

Ni = ∂iψ + Ñi, ∂iÑi = 0. (C.31)

While we define the perturbation in the lapse as N = 1 + α and expand α, ψ and Ñi as

ψ = ψ1 + ψ2 + ..., α = α1 + α2 + ..., Ñi = Ñ
(1)
i + Ñ

(2)
i + ... . (C.32)

Where in the previous expression it is true for example that O(ψi) = O(Ri).

At first order, we can approximate DiNj ≈ ∂iNj in the extrinsic curvature Eij, then

Eij ≈
1
2
(
ḣij − ∂iNj − ∂jNi

)
= 1

2
(
2aȧ(1− 2R)δij − 2Ṙδij − ∂iNj − ∂jNi

)
= a2H

(
1− 2R− Ṙ

H

)
δij −

1
2(∂iNj + ∂jNi). (C.33)

With this, we can calculate EijEij, also approaching the first order hij

hij ≈ 1
a2 (1 + 2R)δij, (C.34)

so

EijE
ij = Eijh

ilhjmElm = 1
a4 (1 + 2R)2EijElmδ

ilδjm ≈ 1
a4 (1 + 4R)EijElmδilδjm, (C.35)

replacing the approximation for Eij

EijE
ij ≈ 1

a4 (1 + 4R)EijElmδilδjm

= δilδjm

a4 (1 + 4R)
[
a2H

(
1− 2R− Ṙ

H

)
δij −

1
2(∂iNj + ∂jNi)

]
×[

a2H

(
1− 2R− Ṙ

H

)
δlm −

1
2(∂lNm + ∂mNl)

]

≈ (1 + 4R)
a4

[
3a4H2

(
1− 4R− 2Ṙ

H

)
− 2a2H∂iNjδ

ij

]

≈ 3H2
(

1− 2Ṙ
H

)
− 2H

a2 ∂iNjδ
ij. (C.36)
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Additionally

Ei
j = hikEkj

≈ 1
a2 (1 + 2R)δik

[
a2H

(
1− 2R− Ṙ

H

)
δkj −

1
2(∂kNj + ∂jNk)

]

≈ H

(
1− Ṙ

H

)
δij −

δik

2a2 (∂kNj + ∂jNk) (C.37)

with this we can also deduce

E = Ei
i

≈ 3H
(

1− Ṙ
H

)
− 1
a2∂iNjδ

ij, (C.38)

which implies

E2 ≈
[
3H

(
1− Ṙ

H

)
− 1
a2∂iNjδ

ij

]2

≈ 9H2
(

1− 2Ṙ
H

)
− 6H

a2 ∂iNjδ
ij, (C.39)

putting together the results for EijEij and E we obtain that

EijE
ij − E2 ≈ 3H2

(
1− 2Ṙ

H

)
− 2H

a2 ∂iNjδ
ij − 9H2

(
1− 2Ṙ

H

)
+ 6H

a2 ∂iNjδ
ij

= −6H2
(

1− 2Ṙ
H

)
+ 4H

a2 ∂iNjδ
ij (C.40)

Replacing the equations (C.40) and (C.30) in the first constraint equation (eq. (C.27)),
we obtain

4
a2
~∇2R− 1

(1 + α1)2

(
−6H2

(
1− 2Ṙ

H

)
+ 4H

a2 ∂iNjδ
ij

)
− φ̇2

(1 + α1)2 − 2V = 0, (C.41)

where we replace N = 1 + α1. At first order, the above equation results:

4
a2
~∇2R− 12HṘ − 4H

a2 ∂iNjδ
ij − 12H2α1 + 2φ2α1 − φ̇2 − 2V + 6H2 = 0, (C.42)

if we use the Friedmann equation the last three terms vanish and we can rewrite the equation
in a simpler way

4
a2
~∇2R− 12HṘ − 4H

a2 ∂iNjδ
ij − 12H2α1 + 2φ2α1 = 0 (C.43)

While the second constraint equation, making the substitutions according to the expan-
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sion, remains

∂j

[
1

1 + α1

(
−2H

(
1− Ṙ

H

)
δji −

δjk

2a2 (∂kNi + ∂iNk) + δji
a2∂lNmδ

lm

)]
= 0, (C.44)

where in a first order we get

∂j

[
−2H

(
1− α1 −

Ṙ
H

)
δji −

δjk

2a2 (∂kNi + ∂iNk) + δji
a2∂lNmδ

lm

]
= 0. (C.45)

If we make the substitution for the shift vector that we write in the equation (C.31) to first
order, in the constraint equations (C.43, C.45), it results

4
a2
~∇2R− 12HṘ − 4H~∇2ψ1 − 4α1V = 0, (C.46)

2H∂i
(
α1 + Ṙ

H

)
− 1

2
~∇2Ñ

(1)
i = 0, (C.47)

where in both equations we incorporate the fact that first order ~∇2 = ∂i∂i ≈ a−2δij∂i∂j.
We can solve the second constraint equation directly since α1 and Ñ

(1)
i are independent

parameters, we obtain

α1 = −Ṙ
H
, Ñ

(1)
i = 0, (C.48)

the solution for Ñ (1)
i can be deduced since we are free to choose appropriate boundary con-

ditions. Replacing the solution for α1 in the first constraint equation, we solve for ψ1

~∇2ψ1 =
~∇2R
a2H

+ Ṙ
(
V

H2 − 3
)
, (C.49)

the term in the parentheses corresponds to the slow roll parameter ε = φ̇2/2H2 = 3− V/H2.
If we define the inverse Laplacian ~∇−2 in such a way that it satisfies ~∇−2~∇2 = 1, we solve
for ψ1

ψ1 = R
a2H

− ε~∇−2Ṙ. (C.50)

What follows is to separate the Lagrangian by order of magnitude up to second order,
that is

L = N (3)R + 1
N

(
EijE

ij − E2
)

+ φ̇2

N
− 2NV

= L0 + L1 + L2 + ..., (C.51)

to do this, the terms we need to expand are

1
N

= 1
1 + α

≈ 1− α + α2 = 1− α1 − α2 + (α1 + α2)2 ≈ 1− α1 − α2 − α2
1, (C.52)
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and (
EijE

ij − E2
)
≈
(
EijE

ij − E2
)(0)

+
(
EijE

ij − E2
)(1)

+
(
EijE

ij − E2
)(2)

. (C.53)

So the second order Lagrangian remains

L = (1 + α1 + α2)(3)R +
(
1− α1 − α2 − α2

1

)[(
EijE

ij − E2
)(0)

+
(
EijE

ij − E2
)(1)

+

(
EijE

ij − E2
)(2)

]
+
(
1− α1 − α2 − α2

1

)
φ̇2 − 2(1 + α1 + α2)V, (C.54)

that separated by order of magnitude in R (we make α2 = 0) is

L0 = φ̇2 − 2V +
(
EijE

ij − E2
)(0)

, (C.55)

L1 = (3)R− α1φ̇
2 − 2α1V +

(
EijE

ij − E2
)(1)
− α1

(
EijE

ij − E2
)(0)

, (C.56)

L2 = α1
(3)R + α2

1φ̇
2 +

(
EijE

ij − E2
)(2)
− α1

(
EijE

ij − E2
)(1)

+ α2
1

(
EijE

ij − E2
)(0)

. (C.57)

It is very important not to forget that we must also expand the square root of the determinant
of the spatial metric, so additional contributions will appear to the Lagrangian up to second
order. The expansion is

√
h =

√
a6(1− 2R)3 ≈ a3

(
1− 3R+ 3

2R
2
)
. (C.58)

Now we must expand the expression (EijEij − E2) to second order (remember that to
solve the constraint equations we expand said expression to first order), we start from the
definition of Eij:

Eij = 1
2
(
ḣij −DiNj −DjNj

)
= a2H

(
1− 2R− Ṙ

H

)
δij −

1
2(DiNj +DjNi), (C.59)

follows that at order two, the inverse spatial metric hij is

hij ≈ 1
a2

(
1 + 2R+ 4R2

)
δij, (C.60)

so

EijE
ij ≈ δilδjm

a4

(
1 + 2R+ 4R2

)2
[
a2H

(
1− 2R− Ṙ

H

)
δij −

1
2(DiNj +DjNi)

]
×[

a2H

(
1− 2R− Ṙ

H

)
δlm −

1
2(DlNm +DmNl)

]
,

we define Fij ≡ DiNj + DjNj to simplify the calculations (noting that δijFij = 2δijDiNj),
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we have

EijE
ij ≈ (1 + 2R+ 4R2)2

a4

[
3a4H2

(
1 + 4R2 + Ṙ

2

H2 − 4R− 2Ṙ
H

+ 4RṘ
H

)
−

2a2H

(
1− 2R− Ṙ

H

)
δijDiNj + 1

4δ
ilδjmFijFlm

]

≈ 3H2
(

1− 2Ṙ
H

+ Ṙ
2

H2 −
4RṘ
H

)
− 2H

a2

(
1 + 2R− Ṙ

H

)
δijDiNj + 1

4a4 δ
ilδjmFijFlm,

(C.61)

then

Ei
j = hikEkj

≈ 1
a2

(
1 + 2R+ 4R2

)
δik
[
a2H

(
1− 2R− Ṙ

H

)
δkj −

1
2(DkNj +DjNk)

]

≈ H

(
1− Ṙ

H
− 2RṘ

H

)
δij −

(1 + 2R)
2a2 (DkNj +DjNk)δik, (C.62)

this implies

E = Ei
i

≈ 3H
(

1− Ṙ
H
− 2RṘ

H

)
− (1 + 2R)

a2 δikDkNi (C.63)

⇒ E2 ≈
[
3H

(
1− Ṙ

H
− 2RṘ

H

)
− (1 + 2R)

a2 δikDkNi

]2

≈ 9H2
(

1− 2Ṙ
H

+ Ṙ
2

H2 −
4RṘ
H

)
− 6H

a2

(
1 + 2R− Ṙ

H

)
δijDiNj + 1

a4

(
δijDiNj

)2
.

(C.64)

Putting all of the above together, we have a version of EijEij − E2 up to second order

EijE
ij − E2 ≈ −6H2

(
1− 2Ṙ

H
+ Ṙ

2

H2 −
4RṘ
H

)
+ 4H

a2

(
1 + 2R− Ṙ

H

)
δijDiNj+

1
4a4 δ

ilδjmFijFlm −
1
a4

(
δijDiNj

)2
(C.65)

To continue, we must write the spatial covariant derivative DiNj explicitly, from its defi-
nition as

DiNj = ∂iNj + ΓkijNk, (C.66)

where Γkij = 1
2h

kl(∂ihlj + ∂jhli − ∂lhij). If we approximate up to order two, we have

DiNj ≈ ∂iNj + (∂iR)Nj + (∂jR)Ni − δijδklNk(∂lR). (C.67)
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With this expression, we can write the terms that have a covariant derivative of the equation
(C.65)

δijDiNj = δij∂iNj − δij(∂iR)Nj, (C.68)

δilδjmFijFlm ≈ δilδjm(∂iNj∂lNm + ∂iNj∂mNl + ∂jNi∂lNm + ∂jNi∂mNl), (C.69)(
δijDiNj

)2
≈
(
δij∂iNj

)2
. (C.70)

if we replace Nj = ∂jψ1, we get

δijDiNj = δij∂i∂jψ1 − δij∂iψ1∂jR = δij∂i∂jψ1(1 +R) = a2~∇2ψ1(1 +R), (C.71)

where in the second equality we integrate by parts while in the third we use that δij∂i∂j =
a2~∇2. By replacing these last results in the equation (C.65), we can omit the last two terms
since they cancel, we are left with

EijE
ij − E2 ≈ −6H2

(
1− 2Ṙ

H
+ Ṙ

2

H2 −
4RṘ
H

)
+ 4H

(
1 + 2R− Ṙ

H

)
(1 +R)~∇2ψ1. (C.72)

Replacing the solution for ψ1 obtained from the constraint equation (C.50), we obtain

EijE
ij − E2 ≈ −6H2 + 12HṘ − 6Ṙ2 + 24HRṘ+

4H
 ~∇2R
a2H

− εṘ − Ṙ
~∇2R
a2H2 −

εṘ2

H
+ 3R~∇2R

a2H
− 3εRṘ

. (C.73)

In order not to get confused, we are going to separate this expression by order of magnitude
first, that is,(

EijE
ij − E2

)(0)
= −6H2, (C.74)(

EijE
ij − E2

)(1)
= 4
a2
~∇2R+ 12HṘ − 4HεṘ, (C.75)(

EijE
ij − E2

)(2)
= −6Ṙ2 + 24HRṘ − 4

a2H
Ṙ~∇2R+ 4εṘ2 + 12

a2R~∇
2R− 12HεRṘ.

(C.76)

Replacing these expressions in the equations (C.55), (C.56) and (C.57), together with the
solution for α1 and the Friedmann equation for φ, we obtain

L0 = −6H2 + φ̇2 − 2V = −4V, (C.77)

L1 = 8
a2
~∇2R+ 12HṘ − 4HεṘ+ R

H

(
−6H2 + φ̇2 + 2V

)
= 8
a2
~∇2R+ 12HṘ − 4HεṘ, (C.78)

L2 = − 4
a2H
Ṙ~∇2R+ 24HRṘ+ 12

a2R~∇
2R− 12HεRṘ+ Ṙ2 φ̇

2

H2 . (C.79)

The first term in L1 is an boundary term so we can neglect it. Now, we must consider
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the contributions in the quadratic Lagrangian from the combination
√
h(L0 + L1). The

contribution of L0 is (3
2R

2
)
L0 = −6R2V, (C.80)

while the quadratic contribution of L1 is

(−3R)L1 = −36HRṘ+ 12εHRṘ. (C.81)

Putting these contributions together, the quadratic Lagrangian results

L(2)
ADM = a3

[(3
2R

2
)
L0 + (−3R)L1 + L2

]
= a3

[
−6R2V − 12HRṘ − 4

a2H
Ṙ~∇2R+ 12

a2R~∇
2R+ Ṙ2 φ̇

2

H2

]
. (C.82)

To conclude, we have to arrange this action in a convenient way. First we will focus on
the second term noting that we can rewrite it as

(∗) ≡ −12a3HRṘ = 6∂t
(
a3H

)
R2 + d

dt
(...), (C.83)

in this equation we get rid of the total derivative, then we do the time derivative and we are
left

(∗) = 6a3
(
3H2 + Ḣ

)
, (C.84)

then, we replace with the background equation Ḣ = −φ̇2/2, this is

(∗) = 6a3
(

3H2 + 1
2 φ̇

2
)
R2 = 6a3R2V. (C.85)

In the last equality we use the Friedmann equation 3H2 = φ̇2/2 + V . We notice then that
the second term of the action in the equation (C.82) cancels the first one perfectly. It follows
to do an equivalent procedure for the third term, where

(∗∗) ≡ −4a
H
Ṙ~∇2R = − 4

aH
Ṙδij∂i∂jR = 4

aH
δij∂iṘ∂jR, (C.86)

where in the first equality we use the definition of ~∇2R = a−2δij∂i∂j, while in the second
equality we integrate by parts in space. As in the procedure for (∗), we integrate by parts in
time

(∗∗) = −2∂t
( 1
aH

)
δij∂iR∂jR = 2

(aH)2

(
ȧH + aḢ

)
δij∂iR∂jR = 2

a

(
1 + Ḣ

H2

)
δij∂iR∂jR.

(C.87)
In the above expression, we can rearrange the first term by integrating by parts back into
space. Additionally we replace Ḣ from the background equations

(∗∗) = −2aR~∇2R+ 1
a

φ̇2

H2 δ
ij∂iR∂jR. (C.88)
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The second order Lagrangian remains (we use hij = a−2δij at first order)

L(2)
ADM = a3 φ̇

2

H2

[
Ṙ2 − 1

a2∂
iR∂iR

]
+ 10aR~∇2R. (C.89)

The last term disappears as it is a boundary term. Finally, if we use the Mukhanov variables,
that is

v = zR, z = a
φ̇

H
, (C.90)

and using the conformal time, we arrive at the Mukhanov-Sasaki action that we write in the
equation (3.80)

S(2) = 1
2

∫
dτd3x

(
(v′)2 + z′′

z
v2 + (∂iv)2

)
(C.91)
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Appendix D

Power Spectrum in Slow-Roll
Single-Field inflation

In this appendix we will derive the solutions for the mode fucntions in the case of slow roll
inflation and thus obtain the power spectrum expressed in the equation (3.97).

We will start by writing the slow roll parameters ε and η, where

ε ≡ − Ḣ

H2 , η ≡ 2ε− ε̇

2Hε. (D.1)

From the definition of the parameter ε, we can solve an approximation for the scale factor
as a function of the proper time, since

d

dτ

( 1
aH

)
= −(1− ε). (D.2)

If ε is considered a constant for this case, we integrate directly and obtain the following
approximate expression

a(τ) ≈ − 1
τH(1− ε) . (D.3)

Now we must solve the Mukhanov-Sasaki equation

v′′k +
(
k2 − z′′

z

)
vk = 0, (D.4)

for the case of slow-roll inflation. We should write z′′/z conveniently taking advantage of the
fact that ε and η are small parameters. With a little direct algebra (and getting rid of the
elements of order higher than two) we will arrive to

z′′

z
≈ 1
τ 2

(9
4 + 22ε2 + 9ε− 11εη − 3η + η2 − 1

4

)
≈ 1
τ 2

((3
2 + 3ε− η

)2
− 1

4

)
, (D.5)

where in the second approximation we assemble the perfect square by removing second order
elements. Writing z′′/z in this way is convenient since if we define

ν = 3
2 + 3ε− η, (D.6)
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the solution for the equation (D.4) can be written as a linear combination of Hankel functions

vk(τ) =
√
x
[
c1H

(1)
ν (x) + c2H

(2)
ν (x)

]
, (D.7)

where x ≡ k|τ |.

It follows to impose the boundary condition for a very early time (x = k|τ | → ∞), where
the mode functions are set equal to the ones of a minkowski space (eq. (3.87)). In this limit
for x the Hankel functions can be approximated as

H(1,2)
ν (x)→

√
2
πx

exp
[
±i
(
x− νπ

2 −
π

4

)]
. (D.8)

Taking care that |τ | = −τ in inflation, when imposing this limit c2 should disappear. The
solution for vk will be

vk = a1

√
πx

4kH
(1)
ν (x), (D.9)

whit a1 = exp[i(2ν + 1)π/4] a scale-invariant phase.

We are interested in obtaining the power spectrum of R at the time of the end of inflation.
For this, we can approximate H(1)

ν (x) for the limit where x→ 0 as

H(1)
ν (x) ≈ i

π
Γ(ν)

(
kτ

2

)−ν
, (D.10)

with Γ(ν) the Gamma function. In this limit, the mode function vk (moving the terms a bit)
we are left with

vk(τ) = i
a1π

−1/2
√

2k
2ν−1/2Γ(ν)(kτ)−ν+1/2. (D.11)

We obtain the power spectrum using the equation (3.93), if we additionally use the ap-
proximation of the proper time τ = 1/aH, we get

P
(SR)
R (k) = H2

2k3
π−1

2ε 22ν−1Γ2(ν)
(
k

aH

)−2ν+3

. (D.12)

If we use the fact that Γ(3/2) =
√
π/2, the power spectrum takes a rather convenient form

P
(SR)
R = PR22ν−3

(
Γ(ν)

Γ(3/2)

)2(
k

aH

)−2ν+3

, (D.13)

where PR is the power spectrum derived in the de Sitter space (eq. (3.96)).

First of all, let us note that it is straightforward to observe that this expression for the
power spectrum (eq. (D.13)) returns the scale-invariant solution for Sitter’s case if we impose
the limit ε = η = 0 (ν = 3/2). On the other hand, the spectral index presents corrections
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due to the Slow-Roll parameters

d ln ∆(SR)
R

d ln k ≡ ns − 1 = −6ε+ 2η, (D.14)

which is the final result that we expected to obtain in this appendix.
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Appendix E

Multifield Inflation Derivations

In this appendix we will make the derivations of multifield inflation, with the main objective
of obtaining the kinetic part of the second order Lagrangian expressed in the equation (6.11)44

We will start by explicitly calculating the equations of motion for the background fields
in multifield inflation. First, let us remember that the action with which we will start has
the following form

S = SEH −
1
2

∫
d4x
√
−g
[
γab(φ)∂µφa∂µφb + 2V (φ)

]
, (E.1)

where γab is the metric in the field space. If we vary this action with respect to the fields we
obtain

δS

δφc
= 1

2
√
−g
(
δγab
δφc

)
∂µφ

a∂µφb +
√
−gγab

δ(∂µφa)
δφc

∂µφb +
√
−gdV (φ)

dφc

= 1
2
√
−g∂̃cγab∂µφa∂µφb − ∂µ

(
γcb
√
−g∂µφb

)
+
√
−gVc, (E.2)

where in the second equality we integrate by parts the second term of the sum and define ∂̃c ≡
∂/∂φc and Vc ≡ dV/dφc 45. If in the same second term we use that, for the background FLRW
metric, ∂µ

√
−g = √−g 3Hδ0

µ is satisfied, and additionally we note that the background fields
depend only on time, it turns out

δS

δφc
=
√
−g
[1
2 ∂̃cγabφ̇

a
0φ̇

b
0 + γcb 3Hφ̇b0 − ∂̃aγcbφ̇a0φ̇b0 − γcbφ̈b0 + Vc

]
. (E.3)

Due to the symmetry of the indices a and b, we can group the first and third terms with the
definition of the Christoffel symbols for the field space metric Γ̃abc = 1

2γ
af
(
∂̃bγfc + ∂̃cγfb − ∂̃fγbc

)
.

By imposing that the variation of the action vanishes, we obtain the equation of motion for
the background fields:

Dtφ̇
a
0 − 3Hφ̇a0 − V a = 0, (E.4)

where we use the definition Dtφ̇
a
0 ≡ φ̈a0 + Γ̃abcφ̇b0φ̇c0 and V a = γabVb.

44 For more details on the derivation and the terms associated with the potential, check the references
[154, 191] and the references therein.

45 In this appendix we will use (̃) to identify operations in the field space
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It follows to note from the definition of the energy-momentum tensor associated with this
action46, that for the backround quantities is fulfilled

ρ = 1
2γabφ̇

a
0φ̇

b
0 + V (φ) ≡ 1

2 φ̇
2
0 + V (φ). (E.5)

Then, with the definition of φ̇2
0, the Friedmann equation for the multifield inflation case takes

the usual form of 3H2 = φ̇2
0/2 + V .

With the definition of φ̇2
0, we can define the unitary tangent and normal vectors47 to the

inflationary path followed in the field space

T a ≡ φ̇a0
φ̇0
, na ≡ − 1

ΩDtT
a (E.6)

where Ω ≡ naDtT
a. With this last definition, it is straightforward to deduce that the relation

Dtn
a = ΩT a holds for the covariant derivative of the normal vector.

What follows is to rewrite the action using the ADM formalism. Using the definitions we
introduce in Appendix C, the components of the 4-D metric are

g00 = − 1
N2 g0j = N j

N2 gij = hij − N iN j

N2 . (E.7)

With this, the kinetic term of the action for the case of multifield inflation is

γabg
µν∂µφ

a∂νφ
b = − 1

N2γabφ̇
aφ̇b + 2N i

N2 γab∂iφ
aφ̇b +

(
hij − N iN j

N2

)
γab∂iφ

a∂jφ
b. (E.8)

To make it easier to write the constraints equations, we will separate the action into two
parts. The first part with the terms associated with the curvature of space-time that is not
modified with respect to our derivation in Appendix C

SgADM = 1
2

∫
dtd3x

√
h
[
N (3)R + 1

N

(
EijE

ij − E2
)]
, (E.9)

while the other part of the action is the one that contains the multifield terms

SφADM = −1
2

∫
dtd3x

√
h

[
− 1
N
γabφ̇

aφ̇b + 2N i

N
γab∂iφ

aφ̇b +
(
Nhij − N iN j

N

)
γab∂iφ

a∂jφ
b + 2NV

]
.

(E.10)
First let’s see the variation of the action with respect to the lapse function N , where

δSgADM
δN

= 1
2

∫
dtd3x

√
h
[

(3)R− 1
N2

(
EijE

ij − E2
)]
, (E.11)

46 i. e. Tµν = 2√
−g

δSφ

δgµν
47 In this appendix, we will use the lowercase letter na to describe the normal vector so as not to confuse it
with the shift vector of the ADM formalism.
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while

δSφADM
δN

= −1
2

∫
dtd3x

√
h

[
1
N2γabφ̇

aφ̇b − 2N i

N2 γab∂iφ
aφ̇b +

(
hij + N iN j

N2

)
γab∂iφ

a∂jφ
b + 2V

]
.

(E.12)
Putting these two results together, the first constraint equation (i. e. δS/δN = 0) remains

(3)R− 1
N2

(
EijE

ij − E2
)
− 1
N2γabφ̇

aφ̇b + 2N i

N2 γab∂iφ
aφ̇b

−
(
hij + N iN j

N2

)
γab∂iφ

a∂jφ
b − 2V = 0. (E.13)

On the other hand, the variation with respect to the shift vector of the action contains

δSgADM
δN i

= 1
2

∫
dtd3x

√
h
[
Dj

( 1
N

(
Ej
i − hhiE

)])
, (E.14)

and
δSφADM
δN i

= −1
2

∫
dtd3x

√
h

[
2
N
γab∂iφ

aφ̇b − N j

N
γab∂iφ

a∂jφ
b

]
. (E.15)

With this, the second constraint equation is

Dj

[ 1
N

(
Ej
i − hhiE

)]
− 2
N
γab∂iφ

aφ̇b + N j

N
γab∂iφ

a∂jφ
b = 0 (E.16)

What follows is to define the spatial metric and the gauge that we will use. According
to the notation presented in Chapter 6, we will use the comoving gauge, where the spatial
metric (and its second-order approximation) is

hij = a2e2ζδij ≈ a2
(
1 + 2ζ + 2ζ2

)
δij, hij = a−2e−2ζδij ≈ a−2

(
1− 2ζ + 2ζ2

)
δij, (E.17)

with its determinant √
h = a3e3ζ ≈ a3

(
1 + 3ζ + 9

2ζ
2
)
. (E.18)

We immediately write the second order approximation since we know that our objective will
be to write the second order action in the perturbations. A priori, we will separate the
perturbations from the fields as

φa(~x, t) = φa0(t) + δφa. (E.19)

With this division for the fields, we will have to consider the second-order expansion for
the quantities that depend on the fields (as opposed to the derivation in Appendix C). That
is, we expand the field space metric and the potential as

γab ≈ γab + ∂̃cγabδφ
c + 1

2 ∂̃c∂̃dγabδφ
cδφd, (E.20)

V (φ) ≈ V + Vcδφ
c + 1

2Vc,dδφ
cδφd, (E.21)
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where Vc,d ≡ ∂Vc/∂φ
d. Later we will explain the fact that the perturbation of the fields is only

in the direction normal to the trajectory (we use this notation to simplify the calculations),
that is, the following identity is fulfilled:

γabφ̇
a
0δφ

b = 0. (E.22)

Only with this orthogonality rule, the terms of the action that contain the perturbations of
the fields can be written as

γabφ̇
aφ̇b =

(
γab + ∂̃cγabδφ

c + 1
2 ∂̃c∂̃dγabδφ

cδφd
)(
φ̇a0 + δφ̇a

)(
φ̇b0 + δφ̇b

)
= φ̇2

0 + 2γabφ̇a0δφ̇b + ∂̃cγabφ̇
a
0φ̇

b
0δφ

c + γabδφ̇
aδφ̇b + 2∂̃cγabφ̇a0δφ̇bδφc + 1

2 ∂̃c∂̃dγabφ̇
a
0φ̇

b
0δφ

cδφd

= φ̇2
0 − 2

(
∂̃cγabφ̇

c
0φ̇

a
0δφ

b + ∂̃cγabφ̇
a
0δφ̇

cδφb + γabφ̈
a
0δφ

b
)

+ ∂̃cγabφ̇
a
0φ̇

b
0δφ

c + γabδφ̇
aδφ̇b

+ 2∂̃cγabφ̇a0δφ̇bδφc + 1
2 ∂̃c∂̃dγabφ̇

a
0φ̇

b
0δφ

cδφd

= φ̇2
0 − 2φ̇a0φ̇b0δφcγcdΓdab − 2γabφ̈a0δφb + γabδφ̇

aδφ̇b + 1
2 ∂̃c∂̃dγabφ̇

a
0φ̇

b
0δφ

cδφd

= φ̇2
0 − 2γab(Dtφ̇

a
0)δφb + γabδφ̇

aδφ̇b + 1
2 ∂̃c∂̃dγabφ̇

a
0φ̇

b
0δφ

cδφd

= φ̇2
0 + 2Vaδφa + γabδφ̇

aδφ̇b + 1
2 ∂̃c∂̃dγabφ̇

a
0φ̇

b
0δφ

cδφd

≡ φ̇2
0 + A+B2, (E.23)

where
A ≡ 2Vaδφa, (E.24)

B2 ≡ γabδφ̇
aδφ̇b + 1

2 ∂̃c∂̃dγabφ̇
a
0φ̇

b
0δφ

cδφd. (E.25)

To obtain this result, in the third equality, we replace an identity obtained by taken the time
derivative of the orthogonality rule, while in the sixth equality, we use the equation of motion
for the background fields and the orthogonality condition.

In addition to these definitions for A and B, note that A = O(δφ) and B2 = O(δφ2). We
continue with the terms of the fields that have spatial derivatives:

γab∂iφ
aφ̇b = γab∂iδφ

a
(
φ̇b0 + δφ̇b

)
= γab∂iδφ

aδφ̇b + ∂̃cγabδφ
c∂iδφ

aφ̇b0, (E.26)

γab∂iφ
a∂jφ

b = γab∂iδφ
a∂jδφ

b. (E.27)

What follows will be to calculate the terms of the constraints equations up to second order
and then neglect the quadratic terms to solve the equations. In this way, we avoid repeating
calculations when we compute the second order action.
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Let’s start with Eij, where at second order we get

Eij = 1
2 ḣij −

1
2(DiNj +DjNi)

≈ a2H

(
1 + 2ζ + ζ̇

H
+ 2ζ2 + 2ζζ̇

H

)
δij −

Fij
2 , (E.28)

where Fij ≡ DiNj +DjNi. Then

EijE
ij = hilhjmEijElm

≈ 3H2
(

1 + 2ζ̇
H

+ ζ2

H2

)
− 2H

a2

(
1− 2ζ + ζ̇

H

)
δijDiNj + 1

4a4 δ
ilδjmFijFlm. (E.29)

On the other hand, to obtain E2 we must calculate

Ei
j = hikEkj

≈ H

(
1 + ζ̇

H

)
δij −

1
2a2 (1− 2ζ)δikFkj, (E.30)

this implies

E = Ei
i ≈ 3H

(
1 + ζ̇

H

)
− 1
a2 (1− 2ζ)δlmDlNm, (E.31)

and

E2 ≈ 9H2
(

1 + 2ζ̇
H

+ ζ̇2

H2

)
− 6H

a2

(
1− 2ζ + ζ̇

H

)
δlmDlNm + 1

a4

(
δlmDlNm

)2
. (E.32)

Putting these results together, we have

EijE
ij − E2 ≈ −6H2

(
1 + 2ζ̇

H
+ ζ̇2

H

)
+ 4H

a2

(
1− 2ζ + ζ̇

H

)
δlmDlNm+

1
4a4 δ

ilδjmFijFlm −
1
a4

(
δlm∂lNm

)2
. (E.33)

As in Appendix C, we will solve the second constraint equation first. If we separate the
lapse function as N = 1 + α = 1 + α1 + α2 + ..., we must use the following approximations

1
N

= 1
N + α

≈ 1− α + α2 ≈ 1− α1 + α2
1, (E.34)

1
N2 = 1

(1 + α)2 ≈ 1− 21 + 3α2
1. (E.35)

If we look at the equalities that we present in the equations (E.26) and (E.27), we note
that these terms are quadratic in the perturbations, so they do not contribute to the second
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constraint equation. Up to first order, we must solve

∂j

{
(1− α1)

[
H

(
1 + ζ̇

H

)
δji −

1
2a2 (1− 2ζ)δjkFki − δji

(
3H

(
1 + ζ̇

H

)
− δij∂iNj

)]}
= 0

(E.36)

0 = ∂j

{
(1− α1)

[
H

(
1 + ζ̇

H

)
δji −

1
2a2 (1− 2ζ)δjkFki − δji

(
3H

(
1 + ζ̇

H

)
− δij∂iNj

)]}

= ∂j

{
−2H(1− α1)

(
1 + ζ̇

H

)
δji −

1
a2

(1
2δ

jk(∂kNi + ∂iNk)− δji δlm∂lNm

)}
. (E.37)

If we use the fact that Ni = ∂iχ (we will not take into account vector perturbations), the
right parenthesis is canceled, and we obtain the following equation for α1

− 2H∂i
(
ζ̇

H
− α1

)
= 0. (E.38)

So, imposing appropriate initial conditions, the solution for α1 is

α1 = ζ̇

H
. (E.39)

To write the first constraint equation (eq. (E.13)), we will write up to first order each
term separately, this is

− 1
N2γabφ̇

aφ̇b ≈ −(1− 2α1)
(
φ̇2

0 + A
)
≈ −φ̇2

0 + 2 ζ̇
H
φ̇2

0 − A, (E.40)

(3)R = 2
a2 e

2ζ
(
2δij∂i∂jζ − δij∂iζ∂jζ

)
≈ 4
a2 δ

ij∂i∂jζ (E.41)

− 1
N2

(
EijE

ij − E2
)
≈ −(1− 2 ζ̇

H
)
(
−6H2

(
1 + 2 ζ̇

H

)
+ 4H

a2 δ
ij∂i∂jχ

)
≈ 6H2 − 4H

a2 δ
ij∂i∂jχ,

(E.42)
2V ≈ 2V + 2Vcδφc (E.43)

As we observe directly from the equations (E.26) and (E.27), the other terms associated with
the fields are of higher order, so we do not consider them in the solution of this constraint
equation. Replacing this approximations in the first constraint equation we have:

4
a2 δ

ij∂i∂jζ −
4H
a2 δij∂i∂jχ+ 2 ζ̇

H
φ̇2

0 + 6H2 − φ̇2
0 − 2V − 2Vcδφc − A = 0. (E.44)

Using Friedmann’s equation we cancel terms. Then, we solve for an expression for δij∂i∂jχ,
where

δij∂i∂jχ = δij∂i∂j
ζ

H
+ a2εζ̇ − a2

H
Vcδφ

c. (E.45)

With the solutions for α1 and χ, continue to write the action to second order. We will
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start with the part of the curvature SgADM , where at second order its constituents are

N (3)R ≈ 2
a2

(
2δij∂i∂jζ + 2δij ζ̇

H
∂i∂jζ + 4δijζ∂i∂jζ − δij∂iζ∂jζ

)
, (E.46)

1
N

(
EijE

ij − E2
)
≈ −6H2 − 6Hζ̇ + 4

a2 δ
ij∂i∂jζ + 4Hεζ̇

− 4Vcδφc −
4
a2 δ

ijζ∂i∂jζ − 4Hεζ̇ζ + 4ζVcδφc. (E.47)

Putting these results together with the second order expression for
√
h, we obtain a La-

grangian expression associated with this part of the action

2Lg = a3
(

8
a2 δ

ij∂i∂jζ + 8
a2H

δij ζ̇∂i∂jζ −
2
a2 δ

ij∂iζ∂jζ + 28
a2 δ

ijζ∂i∂jζ − 6H2 − 6Hζ̇ + 4Hεζ̇

− 4Vcδφc − 18H2ζ − 18Hζζ̇ + 8Hεζζ̇ − 8ζVcδφc − 27H2ζ2
)
. (E.48)

For the next part of the action, we note that the only terms contributing 48 are

1
N
γabφ̇

aφ̇b ≈ φ̇2
0 + A+B2 − φ̇2

0
ζ̇

H
− A ζ̇

H
+ φ̇2

0
ζ̇2

H2 , (E.49)

−Nhijγab∂iφa∂jφb ≈ −
δij
a2 γab∂iδφ

a∂jδφ
b, (E.50)

−2NV = −2
(

1 + ζ̇

H

)(
V + Vcδφ

c + 1
2Vc,dδφ

cδφd
)

≈ −2
(
V + Vcδφ

c + ζ̇

H
V + ζ̇

H
Vcδφ

c + 1
2Vc,dδφ

cδφd
)
. (E.51)

In the same way as Lg, we replace the expression for
√
h and we have the Lagrangian up to

second order of this part:

2Lφ = a3
(
φ̇2

0 +B2 − φ̇2
0
ζ̇

H
+ φ̇2

0
ζ̇2

H2 −
δij
a2 γab∂iδφ

a∂jδφ
b − 2V − Vc,dδφcδφd − 2 ζ̇

H
V

+ 3ζφ̇2
0 − 3φ̇2

0ζ
ζ̇

H
− 6ζV − 6ζ ζ̇

H
V − 4 ζ̇

H
Vcδφ

c + 9
2ζ

2φ̇2
0 − 9ζ2V

)
. (E.52)

48 The others are of higher order.
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Putting both parts of the Lagrangian together, we have

2L = a3
(
B2 − δij

a2 γab∂iδφ
a∂jδφ

b + 8
a2 δ

ij∂i∂jζ −
2
a2 δ

ij∂iζ∂jζ − 4V − 4Vcδφc − Vc,dδφcδφd

+ aζ + 28
a2 δ

ijζ∂i∂jζ − 3ζ
(
6H2 − φ̇2

0 + 2V
)
− 8ζVcδφc −

9
2ζ

2
(
6H2 − φ̇2

0 + 2V
)

+ 8
a2H

δij ζ̇∂i∂jζ −
ζ̇

H

(
6H2 + φ̇2

0 + 2V
)
− 4 ζ̇

H
Vcδφ

c − 3ζ ζ̇
H

(
6H2 + φ̇2

0 + 2V
)

+ ζ̇2 φ̇
2
0

H2 + 4Hεζ̇ + 8Hεζ̇ζ
)
. (E.53)

Separating by order of magnitude, we have

L(0) = −2a3V (E.54)

L(1) = a3

2

( 8
a2 δ

ij∂i∂jζ − 12V ζ − 12Hζ̇ + 4Hεζ̇ − 2Vcδφc
)

(E.55)

L(2) = a3

2

(
ζ̇2 φ̇

2
0

H2 + 28
a2 δ

ijζ∂i∂jζ − 18V ζ2− 2
a2 δ

ij∂iζ∂jζ + 8
a2H

δij ζ̇∂i∂jζ − 36Hζ̇ζ + 8Hεζ̇ζ
)

+ a3

2

(
−δij
a2 γab∂iδφ

a∂jδφ
b − 8ζVcδφc − 4 ζ̇

H
Vcδφ

c +B2 − Vc,dδφcδφd
)
. (E.56)

In this quadratic Lagrangian, we note that the terms within the first parentheses are those
that depend on the curvature perturbation. We can do the same integrations by parts that
we did in Appendix C to rewrite this part of the quadratic Lagrangian as

L(2)
ζ = a3

2
φ̇2

0
H2

(
ζ̇2 − 1

a2 (∇ζ)2
)

= a3

2

(
ζ̇2
c −

1
a2 (∇ζc)2

)
, (E.57)

where in the last equality we use the definition of ζc ≡
√

2εζ. If we integrate by parts, we
can rewrite the part of the Lagrangian that depends on the fields perturbations as

L(2)
δφ = a3

2

(
−δij
a2 γab∂iδφ

a∂jδφ
b − 4Vcδφc

ζ̇

H
+B2 − Vc,dδφcδφd

)
. (E.58)

If we write the isocurvature perturbation as δφa ≡ naψ, and we use the fact that in the first
order it is satisfied that ṅa = ΩT a and ncVc = φ̇0Ω, we have 49

L(2)
δφ = a3

2

(
− 1
a2 (∇ψ)2 − 4ζ̇cΩψ + 4Ω2ψ2 + ψ̇2 − Vc,dncndψ2 + 1

2R̃φ̇
2
0ψ

2
)
. (E.59)

Where R̃ is the Ricci scalar in the field space.

To conclude this appendix, we will put together the parts L(2)
ζ and L(2)

δφ of the Lagrangian

49 See [154] for more details
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and also use the definition of the covariant derivativeDtζc = ζ̇c−2Ωψ ≡ ζ̇c−λHψ. Obtaining,
on the one hand, the kinetic part corresponding to the equation presented in (6.11):

Lkin = a3

2

[
(Dtζc)2 − 1

a2 (∇ζc)2 + ψ̇2 − 1
a2 (∇ψ)2

]
, (E.60)

while we group the terms proportional to ψ2 in the potential U(ψ).
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Appendix F

Analysis of the Cubic Lagrangian

In this appendix we will show that the condition for a strong mixing between the fields (i. e.
Λ� 1) does not break the perturbativity of the system.

For this, we must analyze the cubic Lagrangian for this case of inflation with two fields.
This derivation has already been made in the work presented in [191]. If we want to analyze
the relation between the cubic and quadratic Lagrangian, we must look only at the predom-
inant terms of the cubic part and compare them with Dtζc.

If we make the correspondence between our notation and the one used in [191], we must
consider the relation: λF = ζ̇c−Dtζc. With this, we can write the leading order of the cubic
Lagrangian as

1
a3L

(3) ⊃ −εV3
ζ̇3

H3 + εV

H

ζ̇2

H2DT ζ −
2εV
3H2

ζ̇

H
(Dtζ)2 − εH

6 (Dtζ)3. (F.1)

So, the relation between the cubic and quadratic Lagrangian as

L(3)

L(2) = − ζ̇

H

ζ̇2

(Dtζ)2 + 3 ζ̇
2

H2
H

Dtζ
− 2 ζ̇

H
− H2

6
Dtζ

H

= − ζ̇

H

(
2 + ζ̇2

(Dtζ)2 − 3 ζ̇

Dtζ
+ H2

6
Dtζ

ζ̇

)
. (F.2)

From where we conclude what is expressed in the equation (6.24)

L(3)

L(2) ∼
ζ̇c√
2εH

� 1, (F.3)

also valid for λ� 1.
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Appendix G

Top-Hat Analytics

In this appendix, we will derive equation (6.33) in more detail. First, we are going to rewrite
the equations of motion for the fields using the number of e-folds as the variable through
N = Ht. Equations (6.26) - (6.26) can be written as50

e−3N
(
e3NDζ

)′
+ e2(Nk−N)ζ = 0, (G.1)

e−3N
(
e3Nψ′

)′
+ e2(Nk−N)ψ + λDζ = 0. (G.2)

In the above equations we use d/dN = ()′, additionally, we define e2Nk ≡ k2/H2 and
Dζ ≡ ζ ′ − λψ.

Then, we impose the shape of the λ coupling as a top-hat function

λ(N) = λ0

2 [θ(N −N1)− θ(N −N2)]. (G.3)

Where, we will also define

δN = N2 −N1, N0 = 1
2(N2 +N1) (G.4)

Thanks to the form of the λ(N) function, we separate the temporary solutions for ζ and
ψ into three regions as expressed in the figure G.1.

In region I, the equations of motion become

e−3N
(
e3Nζ ′

)′
+ e2(Nk−N)ζ = 0, (G.5)

e−3N
(
e3Nψ′

)′
+ e2(Nk−N)ψ = 0. (G.6)

With solutions that take the usual form

ζk(N) = Z(N)aζ(~k) + h.c.(−~k), (G.7)

ψk(N) = P (N)aψ(~k) + h.c.(−~k). (G.8)

50 For simplicity, we are going to omit the subscript in ζc from the canonically normalized version of ζ
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Figure G.1: Representation of the function λ(N) in our model, and the
different temporal regions in which we solve the equations.

Where Z(N) and P (N) correspond to the Bunch-Davies mode functions

Z(N) = P (N) = iH√
2k3

(
1− ieNk−N

)
eie

Nk−N (G.9)

In region II, we write the equations as

(Dζ)′ + κ2ζ = 0, (G.10)

ψ′′ + κ2ψ + λDζ = 0, (G.11)

With κ = eNk−N0 . We write the solutions in this region according to the ansatz

ζk(N) =
(
A+e

+iω−N + A−e
−iω−N +B+e

+iω+N +B−e
−iω+N

)
aζ(~k)+(

C+e
+iω−N + C−e

−iω−N +D+e
+iω+N +D−e

−iω+N
)
aψ(~k) + h.c.(−~k), (G.12)

ψk(N) =
(
E+e

+iω−N + E−e
−iω−N + F+e

+iω+N + F−e
−iω+N

)
aζ(~k)+(

G+e
+iω−N +G−e

−iω−N +H+e
+iω+N +H−e

−iω+N
)
aψ(~k) + h.c.(−~k). (G.13)

To find ω±, we plug this ansatz into the equation of motion for this region and obtain(
ω2
± + λ2 − κ2

)(
ω2
± − κ2

)
= λ2ω2

±. (G.14)

We choose the positive solution for ω± (to match in the case λ = 0), this is

ω± =
√
κ2 ± κλ =

√
k2 ± kk0λ. (G.15)
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Where in the last equality we use the definition of k0 = HeH(t1+t2)/2.

In region III, the form of the equations of motion will be the same as that expressed in
the equations (G.5) and (G.6), but the solutions are expressed as follows:

ζk(N) =
(
I+
(
1− ieNk−N

)
e+eNk−N + I−

(
1 + ieNk−N

)
e−e

Nk−N
)
aζ(~k)+(

J+
(
1− ieNk−N

)
e+eNk−N + J−

(
1 + ieNk−N

)
e−e

Nk−N
)
aψ(~k) + h.c.(−~k), (G.16)

ψk(N) =
(
K+

(
1− ieNk−N

)
e+eNk−N +K−

(
1 + ieNk−N

)
e−e

Nk−N
)
aζ(~k)+(

L+
(
1− ieNk−N

)
e+eNk−N + L−

(
1 + ieNk−N

)
e−e

Nk−N
)
aψ(~k) + h.c.(−~k). (G.17)

Before dealing with the initial conditions, let us see what conditions emerge from the
commutation relations (or Wronskian conditions) of the solutions in region II. First of all,
recall that in this region, the derivatives of the solutions are

ζ ′k =
[
iω−

(
A+e

+iω−N − A−e−iω−N
)

+ iω+
(
B+e

+iω+N −B−e−iω+N
) ]
aζ(~k)

+
[
iω−

(
C+e

+iω−N − C−e−iω−N
)

+ iω+
(
D+e

+iω+N −D−e−iω+N
) ]
aψ(~k) + h.c.(−~k),

(G.18)

ψ′k =
[
iω−

(
E+e

+iω−N − E−e−iω−N
)

+ iω+
(
F+e

+iω+N − F−e−iω+N
) ]
aζ(~k)

+
[
iω−

(
G+e

+iω−N −G−e−iω−N
)

+ iω+
(
H+e

+iω+N −H−e−iω+N
) ]
aψ(~k) + h.c.(−~k).

(G.19)

We continue noticing that the following commutation relations are automatically satisfied:

[ζk, ζq] = 0, (G.20)
[ψk, ψq] = 0, (G.21)

Therefore, we must check the following commutation relations

[ζk, ψq] = 0, (G.22)[
ζk, ψ

′
q

]
= 0, (G.23)

[ζ ′k − λψk, ψq] = 0, (G.24)
(G.25)
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[
ζ ′k − λψk, ψ′q

]
= 0, (G.26)[

ζ ′k − λψk, ζ ′q − λψq
]

= 0, (G.27)[
ψ′k, ψ

′
q

]
= 0, (G.28)

He3N
[
ζk, ζ

′
q − λψq

]
= i(2π)3δ(~k + ~q), (G.29)

He3N
[
ψk, ψ

′
q

]
= i(2π)3δ(~k + ~q), (G.30)

These are equivalent to

[ζk, ψq] = 0, (G.31)[
ζk, ψ

′
q

]
= 0, (G.32)

[ζ ′k, ψq] = 0, (G.33)[
ζ ′k, ζ

′
q

]
= 0, (G.34)[

ψ′k, ψ
′
q

]
= 0, (G.35)

He3N
[
ζk, ζ

′
q

]
= i(2π)3δ(~k + ~q), (G.36)

He3N
[
ψk, ψ

′
q

]
= i(2π)3δ(~k + ~q), (G.37)

He3N
[
ζ ′k, ψ

′
q

]
= λ0i(2π)3δ(~k + ~q), (G.38)

Of these, the following two are automatic

[
ζ ′k, ζ

′
q

]
= 0, (G.39)[

ψ′k, ψ
′
q

]
= 0, (G.40)

So we are left with

[ζk, ψq] = 0, (G.41)[
ζk, ψ

′
q

]
= 0, (G.42)

[ζ ′k, ψq] = 0, (G.43)
He3N

[
ζk, ζ

′
q

]
= i(2π)3δ(~k + ~q), (G.44)

He3N
[
ψk, ψ

′
q

]
= i(2π)3δ(~k + ~q), (G.45)

He3N
[
ζ ′k, ψ

′
q

]
= λ0i(2π)3δ(~k + ~q), (G.46)
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Let’s check them one by one. The first one is

0 =
[
A+e

+iω−N + A−e
−iω−N +B+e

+iω+N +B−e
−iω+N

]
×[

E∗+e
−iω−N + E∗−e

+iω−N + F ∗+e
−iω+N + F ∗−e

+iω+N

]

−
[
A∗+e

−iω−N + A∗−e
+iω−N +B∗+e

−iω+N +B∗−e
+iω+N

]
×[

E+e
+iω−N + E−e

−iω−N + F+e
+iω+N + F−e

−iω+N

]

+
[
C+e

+iω−N + C−e
−iω−N +D+e

+iω+N +D−e
−iω+N

]
×[

G∗+e
−iω−N +G∗−e

+iω−N +H∗+e
−iω+N +H∗−e

+iω+N

]

−
[
C∗+e

−iω−N + C∗−e
+iω−N +D∗+e

−iω+N +D∗−e
+iω+N

]
×[

G+e
+iω−N +G−e

−iω−N +H+e
+iω+N +H−e

−iω+N

]
. (G.47)

They imply the following conditions:

A+E
∗
− + C+G

∗
− − E+A

∗
− −G+C

∗
− = 0, (G.48)

B+F
∗
− +D+H

∗
− − F+B

∗
− −H+D

∗
− = 0, (G.49)

(A+F
∗
+ − F−A∗− + C+H

∗
+ −H−C∗−)−

(E+B
∗
+ −B−E∗− +G+D

∗
+ −D−G∗−) = 0, (G.50)

(A−F ∗+ − F−A∗+ + C−H
∗
+ −H−C∗+)+

(B−E∗+ − E−B∗+ +D−G
∗
+ −G−D∗+) = 0, (G.51)

(A−E∗− + A+E
∗
+ + C−G

∗
− + C+G

∗
+ − c.c.)+

(B−F ∗− +B+F
∗
+ +D−H

∗
− +D+H

∗
+ − c.c.) = 0. (G.52)
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Next, we go for the second commutation. This is:

0 =
[
A+e

+iω−N + A−e
−iω−N +B+e

+iω+N +B−e
−iω+N

]
×[

− iω−
(
E∗+e

−iω−N − E∗−e+iω−N
)
− iω+

(
F ∗+e

−iω+N − F ∗−e+iω+N
) ]

−
[
A∗+e

−iω−N + A∗−e
+iω−N +B∗+e

−iω+N +B∗−e
+iω+N

]
×[

iω−
(
E+e

+iω−N − E−e−iω−N
)

+ iω+
(
F+e

+iω+N − F−e−iω+N
) ]

+
[
C+e

+iω−N + C−e
−iω−N +D+e

+iω+N +D−e
−iω+N

]
×[

− iω−
(
G∗+e

−iω−N −G∗−e+iω−N
)
− iω+

(
H∗+e

−iω+N −H∗−e+iω+N
) ]

−
[
C∗+e

−iω−N + C∗−e
+iω−N +D∗+e

−iω+N +D∗−e
+iω+N

]
×[

iω−
(
G+e

+iω−N −G−e−iω−N
)

+ iω+
(
H+e

+iω+N −H−e−iω+N
) ]
.

(G.53)

They imply the following conditions (we only list new relations):

ω+(A+F
∗
+ − F−A∗− + C+H

∗
+ −H−C∗−)+

ω−(E+B
∗
+ −B−E∗− +G+D

∗
+ −D−G∗−) = 0, (G.54)

ω+(A−F ∗+ − F−A∗+ + C−H
∗
+ −H−C∗+)+

ω−(B−E∗+ − E−B∗+ +D−G
∗
+ −G−D∗+) = 0, (G.55)

ω−(A−E∗− + A∗−E− − A+E
∗
+ − A∗+E++

G−C
∗
− + C−G

∗
− −G+C

∗
+ − C+G

∗
+)+

ω+(B−F ∗− + F−B
∗
− −B+F

∗
+ − F+B

∗
++

H−D
∗
− +D−H

∗
− −H+D

∗
+ −D+H

∗
+) = 0. (G.56)

Following the same steps, the third commutation relation leads to (we only list new relations)

ω−(A+F
∗
+ − F−A∗− + C+H

∗
+ −H−C∗−)+

ω+(E+B
∗
+ −B−E∗− +G+D

∗
+ −D−G∗−) = 0, (G.57)

ω−(A−F ∗+ − F−A∗+ + C−H
∗
+ −H−C∗+)+

ω+(B−E∗+ − E−B∗+ +D−G
∗
+ −G−D∗+) = 0. (G.58)
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The fourth commutation relation implies:

B+A
∗
+ − A−B∗− +D+C

∗
+ − C−D∗− = 0, (G.59)

B−A
∗
+ − A−B∗+ +D−C

∗
+ − C−D∗+ = 0, (G.60)

2ω−(|A−|2 − |A+|2 + |C−|2 − |C+|2)+

2ω+(|B−|2 − |B+|2 + |D−|2 − |D+|2) = 1
H
e−3N0 . (G.61)

The fifth commutation relation gives:

F+E
∗
+ − E−F ∗− +H+G

∗
+ −G−H∗− = 0, (G.62)

F−E
∗
+ − E−F ∗+ +H−G

∗
+ −G−H∗+ = 0, (G.63)

2ω−(|E−|2 − |E+|2 + |G−|2 − |G+|2)+

2ω+(|F−|2 − |F+|2 + |H−|2 − |H+|2) = 1
H
e−3N0 . (G.64)

Finally, the sixth relation only gives the following new relation:

ω2
−(A−E∗− + A+E

∗
+ + C−G

∗
− + C+G

∗
+ − c.c)+

ω2
+(B−F ∗− +B+F

∗
+ +D−H

∗
− +D+H

∗
+ − c.c) = iλ0

H
e−3N0 . (G.65)

For convenience, let’s list all of the wronskian conditions

A+E
∗
− + C+G

∗
− − E+A

∗
− −G+C

∗
− = 0, (G.66)

B+F
∗
− +D+H

∗
− − F+B

∗
− −H+D

∗
− = 0, (G.67)

(A+F
∗
+ − F−A∗− + C+H

∗
+ −H−C∗−)−

(E+B
∗
+ −B−E∗− +G+D

∗
+ −D−G∗−) = 0, (G.68)

(A−F ∗+ − F−A∗+ + C−H
∗
+ −H−C∗+)+

(B−E∗+ − E−B∗+ +D−G
∗
+ −G−D∗+) = 0, (G.69)

(A−E∗− + A+E
∗
+ + C−G

∗
− + C+G

∗
+ − c.c.)+

(B−F ∗− +B+F
∗
+ +D−H

∗
− +D+H

∗
+ − c.c.) = 0, (G.70)

ω+(A+F
∗
+ − F−A∗− + C+H

∗
+ −H−C∗−)+

ω−(E+B
∗
+ −B−E∗− +G+D

∗
+ −D−G∗−) = 0, (G.71)

ω+(A−F ∗+ − F−A∗+ + C−H
∗
+ −H−C∗+)+

ω−(B−E∗+ − E−B∗+ +D−G
∗
+ −G−D∗+) = 0, (G.72)

ω−(A−E∗− + A∗−E− − A+E
∗
+ − A∗+E++

G−C
∗
− + C−G

∗
− −G+C

∗
+ − C+G

∗
+)

+ω+(B−F ∗− + F−B
∗
− −B+F

∗
+ − F+B

∗
++

H−D
∗
− +D−H

∗
− −H+D

∗
+ −D+H

∗
+) = 0, (G.73)

ω−(A+F
∗
+ − F−A∗− + C+H

∗
+ −H−C∗−)+

ω+(E+B
∗
+ −B−E∗− +G+D

∗
+ −D−G∗−) = 0, (G.74)
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ω−(A−F ∗+ − F−A∗+ + C−H
∗
+ −H−C∗+)+

ω+(B−E∗+ − E−B∗+ +D−G
∗
+ −G−D∗+) = 0, (G.75)

B+A
∗
+ − A−B∗− +D+C

∗
+ − C−D∗− = 0, (G.76)

B−A
∗
+ − A−B∗+ +D−C

∗
+ − C−D∗+ = 0, (G.77)

2ω−(|A−|2 − |A+|2 + |C−|2 − |C+|2)+

2ω+(|B−|2 − |B+|2 + |D−|2 − |D+|2) = 1
H
e−3N0 , (G.78)

F+E
∗
+ − E−F ∗− +H+G

∗
+ −G−H∗− = 0, (G.79)

F−E
∗
+ − E−F ∗+ +H−G

∗
+ −G−H∗+ = 0, (G.80)

2ω−(|E−|2 − |E+|2 + |G−|2 − |G+|2)+

2ω+(|F−|2 − |F+|2 + |H−|2 − |H+|2) = 1
H
e−3N0 , (G.81)

ω2
−(A−E∗− + A+E

∗
+ + C−G

∗
− + C+G

∗
+ − c.c)+

ω2
+(B−F ∗− +B+F

∗
+ +D−H

∗
− +D+H

∗
+ − c.c) = iλ0

H
e−3N0 . (G.82)

Now, equations (G.71) and (G.74) imply

(A+F
∗
+ − F−A∗− + C+H

∗
+ −H−C∗−) = 0, (G.83)

(E+B
∗
+ −B−E∗− +G+D

∗
+ −D−G∗−) = 0, (G.84)

whereas equations (G.72) and (G.75) imply

(A−F ∗+ − F−A∗+ + C−H
∗
+ −H−C∗+) = 0, (G.85)

(B−E∗+ − E−B∗+ +D−G
∗
+ −G−D∗+) = 0. (G.86)

These equations imply that (G.68) and (G.69) are automatically satisfied. In addition, (G.70)
and (G.82) imply:

(A−E∗− + A+E
∗
+ + C−G

∗
− + C+G

∗
+ − c.c) = iλ0

H(ω2
− − ω2

+)e
−3N0 , (G.87)

(B−F ∗− +B+F
∗
+ +D−H

∗
− +D+H

∗
+ − c.c) = iλ0

H(ω2
+ − ω2

−)e
−3N0 . (G.88)

We are then left with

A+E
∗
− + C+G

∗
− − E+A

∗
− −G+C

∗
− = 0, (G.89)

B+F
∗
− +D+H

∗
− − F+B

∗
− −H+D

∗
− = 0, (G.90)

(A+F
∗
+ − F−A∗− + C+H

∗
+ −H−C∗−) = 0, (G.91)

(E+B
∗
+ −B−E∗− +G+D

∗
+ −D−G∗−) = 0, (G.92)

(A−F ∗+ − F−A∗+ + C−H
∗
+ −H−C∗+) = 0, (G.93)

(B−E∗+ − E−B∗+ +D−G
∗
+ −G−D∗+) = 0, (G.94)
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ω−(A−E∗− + A∗−E− − A+E
∗
+ − A∗+E++

G−C
∗
− + C−G

∗
− −G+C

∗
+ − C+G

∗
+)

+ω+(B−F ∗− + F−B
∗
− −B+F

∗
+ − F+B

∗
++

H−D
∗
− +D−H

∗
− −H+D

∗
+ −D+H

∗
+) = 0, (G.95)

B+A
∗
+ − A−B∗− +D+C

∗
+ − C−D∗− = 0, (G.96)

B−A
∗
+ − A−B∗+ +D−C

∗
+ − C−D∗+ = 0, (G.97)

2ω−(|A−|2 − |A+|2 + |C−|2 − |C+|2)+

2ω+(|B−|2 − |B+|2 + |D−|2 − |D+|2) = 1
H
e−3N0 , (G.98)

F+E
∗
+ − E−F ∗− +H+G

∗
+ −G−H∗− = 0, (G.99)

F−E
∗
+ − E−F ∗+ +H−G

∗
+ −G−H∗+ = 0, (G.100)

2ω−(|E−|2 − |E+|2 + |G−|2 − |G+|2)+

2ω+(|F−|2 − |F+|2 + |H−|2 − |H+|2) = 1
H
e−3N0 , (G.101)

(A−E∗− + A+E
∗
+ + C−G

∗
− + C+G

∗
+ − c.c) = iλ0

H(ω2
− − ω2

+)e
−3N0 , (G.102)

(B−F ∗− +B+F
∗
+ +D−H

∗
− +D+H

∗
+ − c.c) = iλ0

H(ω2
+ − ω2

−)e
−3N0 . (G.103)

Additionally, we have the eigenvector relations (coming from the equations of motion):

A+ = −iλ0
ω−

ω2
− − κ2E+, (G.104)

A− = +iλ0
ω−

ω2
− − κ2E−, (G.105)

B+ = −iλ0
ω+

ω2
+ − κ2F+, (G.106)

B− = +iλ0
ω+

ω2
+ − κ2F−, (G.107)

C+ = −iλ0
ω−

ω2
− − κ2G+, (G.108)

C− = +iλ0
ω−

ω2
− − κ2G−, (G.109)

D+ = −iλ0
ω+

ω2
+ − κ2H+, (G.110)

D− = +iλ0
ω+

ω2
+ − κ2H−. (G.111)

These relations imply that (G.89) is trivial. They also imply that the pairs (G.91) and
(G.92), (G.93) and (G.94), (G.96) and (G.99), and (G.97) and (G.100) are equivalent. They
also imply that (G.95) is trivial. And that (G.98) and (G.101) follow from (G.102) and
(G.103). We are then left with
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A+F
∗
+ − F−A∗− + C+H

∗
+ −H−C∗− = 0, (G.112)

A−F
∗
+ − F−A∗+ + C−H

∗
+ −H−C∗+ = 0, (G.113)

B+A
∗
+ − A−B∗− +D+C

∗
+ − C−D∗− = 0, (G.114)

B−A
∗
+ − A−B∗+ +D−C

∗
+ − C−D∗+ = 0, (G.115)

(A−E∗− + A+E
∗
+ + C−G

∗
− + C+G

∗
+ − c.c) = iλ0

H(ω2
− − ω2

+)e
−3N0 , (G.116)

(B−F ∗− +B+F
∗
+ +D−H

∗
− +D+H

∗
+ − c.c) = iλ0

H(ω2
+ − ω2

−)e
−3N0 . (G.117)

Moreover (G.112) is equivalent to (G.114), and (G.113) is equivalent to (G.115). We therefore
have reduced the wronskian conditions to

A+F
∗
+ − F−A∗− + C+H

∗
+ −H−C∗− = 0, (G.118)

A−F
∗
+ − F−A∗+ + C−H

∗
+ −H−C∗+ = 0, (G.119)

(A−E∗− + A+E
∗
+ + C−G

∗
− + C+G

∗
+ − c.c) = iλ0

H(ω2
− − ω2

+)e
−3N0 , (G.120)

(B−F ∗− +B+F
∗
+ +D−H

∗
− +D+H

∗
+ − c.c) = iλ0

H(ω2
+ − ω2

−)e
−3N0 . (G.121)

We now use the eigenvector relations to express the wronskian conditions only in terms of
E, F , G, and H:

−E+F
∗
+ + F−E

∗
− −G+H

∗
+ +H−G

∗
− = 0, (G.122)

E−F
∗
+ − F−E∗+ +G−H

∗
+ −H−G∗+ = 0, (G.123)

2ω−(|E−|2 − |E+|2 + |G−|2 − |G+|2) = 1
2He−3N0 , (G.124)

2ω+(|F−|2 − |F+|2 + |H−|2 − |H+|2) = 1
2He−3N0 . (G.125)

These are the basic wronskian conditions.

Now, these conditions should be satisfied automatically, after imposing the initial condi-
tions together with the eigenvector relations. We shall verify this later on. Lets write down
the solutions with the eigenvector relations:
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ζk =
[
− iλ0

ω−
ω2
− − κ2 (E+e

+iω−N − E−e−iω−N)−

iλ0
ω+

ω2
+ − κ2 (F+e

+iω+N − F−e−iω+N)
]
aζ(~k)

+
[
− iλ0

ω−
ω2
− − κ2 (G+e

+iω−N −G−e−iω−N)−

iλ0
ω+

ω2
+ − κ2 (H+e

+iω+N −H−e−iω+N)
]
aψ(~k)

+
[

+ iλ0
ω−

ω2
− − κ2 (E∗+e−iω−N − E∗−e+iω−N) +

iλ0
ω+

ω2
+ − κ2 (F ∗+e−iω+N − F ∗−e+iω+N)

]
a†ζ(−~k)

+
[

+ iλ0
ω−

ω2
− − κ2 (G∗+e−iω−N −G∗−e+iω−N) +

iλ0
ω+

ω2
+ − κ2 (H∗+e−iω+N −H∗−e+iω+N)

]
a†ψ(−~k), (G.126)

ψk =
[
E+e

+iω−N + E−e
−iω−N + F+e

+iω+N + F−e
−iω+N

]
aζ(~k)

+
[
G+e

+iω−N +G−e
−iω−N +H+e

+iω+N +H−e
−iω+N

]
aψ(~k)

+
[
E∗+e

−iω−N + E∗−e
+iω−N + F ∗+e

−iω+N + F ∗−e
+iω+N

]
a†ζ(−~k)

+
[
G∗+e

−iω−N +G∗−e
+iω−N +H∗+e

−iω+N +H∗−e
+iω+N

]
a†ψ(−~k). (G.127)
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Then

ζ ′k = λ0

[
ω2
−

ω2
− − κ2

(
E+e

+iω−N + E−e
−iω−N

)
+

ω2
+

ω2
+ − κ2

(
F+e

+iω+N + F−e
−iω+N

) ]
aζ(~k)

+λ0

[
ω2
−

ω2
− − κ2

(
G+e

+iω−N +G−e
−iω−N

)
+

ω2
+

ω2
+ − κ2

(
H+e

+iω+N +H−e
−iω+N

) ]
aψ(~k)

+λ0

[
ω2
−

ω2
− − κ2

(
E∗+e

−iω−N + E∗−e
+iω−N

)
+

ω2
+

ω2
+ − κ2

(
F ∗+e

−iω+N + F ∗−e
+iω+N

) ]
a†ζ(−~k)

+λ0

[
ω2
−

ω2
− − κ2

(
G∗+e

−iω−N +G∗−e
+iω−N

)
+

ω2
+

ω2
+ − κ2

(
H∗+e

−iω+N +H∗−e
+iω+N

) ]
a†ψ(−~k), (G.128)

ψ′k =
[
iω−

(
E+e

+iω−N − E−e−iω−N
)

+

iω+
(
F+e

+iω+N − F−e−iω+N
) ]
aζ(~k)

+
[
iω−

(
G+e

+iω−N −G−e−iω−N
)

+

iω+
(
H+e

+iω+N −H−e−iω+N
) ]
aψ(~k)

+
[
− iω−

(
E∗+e

−iω−N − E∗−e+iω−N
)
−

iω+
(
F ∗+e

−iω+N − F ∗−e+iω+N
) ]
a†ζ(−~k)

+
[
− iω−

(
G∗+e

−iω−N −G∗−e+iω−N
)
−

iω+
(
H∗+e

−iω+N −H∗−e+iω+N
) ]
a†ψ(−~k). (G.129)

We now have the solutions in terms of E, F , G and H. Let’s impose on them the boundary
conditions in N1. Recall that these are:
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ζ(N1 − ε) = ζ(N1 + ε), (G.130)
ψ(N1 − ε) = ψ(N1 + ε), (G.131)

ζ ′(N1 − ε) = (ζ ′ − λψ)(N1 + ε), (G.132)
ψ′(N1 − ε) = ψ′(N1 + ε). (G.133)

As we did before, let us say that the solution from region I, evaluated at N1 have the form51

ζk = Zaζ + h.c(−~k), (G.134)
ζ ′k = Z ′aζ + h.c(−~k), (G.135)
ψk = Paψ + h.c(−~k), (G.136)
ψ′k = P ′aψ + h.c(−~k). (G.137)

Then, we obtain

−iλ0
ω−

ω2
− − κ2 (E+e

+iω−N1 − E−e−iω−N1)−

iλ0
ω+

ω2
+ − κ2 (F+e

+iω+N1 − F−e−iω+N1) = Z, (G.138)

−iλ0
ω−

ω2
− − κ2 (G+e

+iω−N1 −G−e−iω−N1)−

iλ0
ω+

ω2
+ − κ2 (H+e

+iω+N1 −H−e−iω+N1) = 0, (G.139)[
E+e

+iω−N1 + E−e
−iω−N1 + F+e

+iω+N1 + F−e
−iω+N1

]
= 0, (G.140)[

G+e
+iω−N1 +G−e

−iω−N1 +H+e
+iω+N1 +H−e

−iω+N1

]
= P, (G.141)

λ0

[
ω2
−

ω2
− − κ2

(
E+e

+iω−N1 + E−e
−iω−N1

)
+

ω2
+

ω2
+ − κ2

(
F+e

+iω+N1 + F−e
−iω+N1

) ]

−λ0

[
E+e

+iω−N1 + E−e
−iω−N1 + F+e

+iω+N1 + F−e
−iω+N1

]
= Z ′, (G.142)

λ0

[
ω2
−

ω2
− − κ2

(
G+e

+iω−N1 +G−e
−iω−N1

)
+

ω2
+

ω2
+ − κ2

(
H+e

+iω+N1 +H−e
−iω+N1

) ]

−λ0

[
G+e

+iω−N1 +G−e
−iω−N1 +H+e

+iω+N1 +H−e
−iω+N1

]
= 0, (G.143)

51 From now on, the quantities Z, Z ′, P and P ′ are evaluated at N1
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[
iω−

(
E+e

+iω−N1 − E−e−iω−N1
)

+ iω+
(
F+e

+iω+N1 − F−e−iω+N1
) ]

= 0, (G.144)[
iω−

(
G+e

+iω−N1 −G−e−iω−N1
)

+ iω+
(
H+e

+iω+N1 −H−e−iω+N1
) ]

= P ′. (G.145)

These are 8 equations for 8 unknown variables. We can group them in 2 set of equations.
The first set is to solve E and F :

−iλ0
ω−

ω2
− − κ2 (E+e

+iω−N1 − E−e−iω−N1)−

iλ0
ω+

ω2
+ − κ2 (F+e

+iω+N1 − F−e−iω+N1) = Z, (G.146)[
E+e

+iω−N1 + E−e
−iω−N1 + F+e

+iω+N1 + F−e
−iω+N1

]
= 0, (G.147)

λ0

[
κ2

ω2
− − κ2

(
E+e

+iω−N1 + E−e
−iω−N1

)
+

κ2

ω2
+ − κ2

(
F+e

+iω+N1 + F−e
−iω+N1

) ]
= Z ′, (G.148)[

iω−
(
E+e

+iω−N1 − E−e−iω−N1
)

+ iω+
(
F+e

+iω+N1 − F−e−iω+N1
) ]

= 0. (G.149)

They lead to
E+e

+iω−N1 − E−e−iω−N1 = iZ

λ0ω−

(ω2
− − κ2)(ω2

+ − κ2)
(ω2

+ − ω2
−) , (G.150)

E+e
+iω−N1 + E−e

−iω−N1 = Z ′

λ0κ2
(ω2
− − κ2)(ω2

+ − κ2)
(ω2

+ − ω2
−) , (G.151)

F+e
+iω+N1 − F−e−iω+N1 = − iZ

λ0ω+

(ω2
− − κ2)(ω2

+ − κ2)
(ω2

+ − ω2
−) , (G.152)

F+e
+iω+N1 + F−e

−iω+N1 = − Z ′

λ0κ2
(ω2
− − κ2)(ω2

+ − κ2)
(ω2

+ − ω2
−) . (G.153)

Combining them we find

E+ =
(
Z ′

κ2 + iZ

ω−

)
(ω2
− − κ2)(ω2

+ − κ2)
2λ0(ω2

+ − ω2
−) e−iω−N1 , (G.154)

E− =
(
Z ′

κ2 −
iZ

ω−

)
(ω2
− − κ2)(ω2

+ − κ2)
2λ0(ω2

+ − ω2
−) e+iω−N1 , (G.155)

F+ = −
(
Z ′

κ2 + iZ

ω+

)
(ω2
− − κ2)(ω2

+ − κ2)
2λ0(ω2

+ − ω2
−) e−iω+N1 , (G.156)

F− = −
(
Z ′

κ2 −
iZ

ω+

)
(ω2
− − κ2)(ω2

+ − κ2)
2λ0(ω2

+ − ω2
−) e+iω+N1 . (G.157)
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We now go for the next set:
ω−

ω2
− − κ2 (G+e

+iω−N1 −G−e−iω−N1)+
ω+

ω2
+ − κ2 (H+e

+iω+N1 −H−e−iω+N1) = 0, (G.158)[
G+e

+iω−N1 +G−e
−iω−N1 +H+e

+iω+N1 +H−e
−iω+N1

]
= P, (G.159)

κ2

ω2
− − κ2

(
G+e

+iω−N1 +G−e
−iω−N1

)
+

κ2

ω2
+ − κ2

(
H+e

+iω+N1 +H−e
−iω+N1

)
= 0, (G.160)[

iω−
(
G+e

+iω−N1 −G−e−iω−N1
)

+ iω+
(
H+e

+iω+N1 −H−e−iω+N1
) ]

= P ′. (G.161)

This implies
G+e

+iω−N1 +G−e
−iω−N1 = − ω

2
− − κ2

ω2
+ − ω2

−
P, (G.162)

G+e
+iω−N1 −G−e−iω−N1 = ω2

− − κ2

ω2
+ − ω2

−

iP ′

ω−
, (G.163)

H+e
+iω+N1 +H−e

−iω+N1 = ω2
+ − κ2

ω2
+ − ω2

−
P, (G.164)

H+e
+iω+N1 −H−e−iω+N1 = − ω

2
+ − κ2

ω2
+ − ω2

−

iP ′

ω+
. (G.165)

So

G+ = −1
2
ω2
− − κ2

ω2
+ − ω2

−

(
P − iP ′

ω−

)
e−iω−N1 , (G.166)

G− = −1
2
ω2
− − κ2

ω2
+ − ω2

−

(
P + iP ′

ω−

)
e+iω−N1 , (G.167)

H+ = 1
2
ω2

+ − κ2

ω2
+ − ω2

−

(
P − iP ′

ω+

)
e−iω+N1 , (G.168)

H− = 1
2
ω2

+ − κ2

ω2
+ − ω2

−

(
P + iP ′

ω+

)
e+iω+N1 . (G.169)
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Thus, the complete list of solutions are

E+ =
(
Z ′

κ2 + iZ

ω−

)
(ω2
− − κ2)(ω2

+ − κ2)
2λ0(ω2

+ − ω2
−) e−iω−N1 , (G.170)

E− =
(
Z ′

κ2 −
iZ

ω−

)
(ω2
− − κ2)(ω2

+ − κ2)
2λ0(ω2

+ − ω2
−) e+iω−N1 , (G.171)

F+ = −
(
Z ′

κ2 + iZ

ω+

)
(ω2
− − κ2)(ω2

+ − κ2)
2λ0(ω2

+ − ω2
−) e−iω+N1 , (G.172)

F− = −
(
Z ′

κ2 −
iZ

ω+

)
(ω2
− − κ2)(ω2

+ − κ2)
2λ0(ω2

+ − ω2
−) e+iω+N1 , (G.173)

G+ = −1
2
ω2
− − κ2

ω2
+ − ω2

−

(
P − iP ′

ω−

)
e−iω−N1 , (G.174)

G− = −1
2
ω2
− − κ2

ω2
+ − ω2

−

(
P + iP ′

ω−

)
e+iω−N1 , (G.175)

H+ = 1
2
ω2

+ − κ2

ω2
+ − ω2

−

(
P − iP ′

ω+

)
e−iω+N1 , (G.176)

H− = 1
2
ω2

+ − κ2

ω2
+ − ω2

−

(
P + iP ′

ω+

)
e+iω+N1 . (G.177)

We can simplify them

E+ = −κ4

(
Z ′

κ2 + iZ

ω−

)
e−iω−N1 , (G.178)

E− = −κ4

(
Z ′

κ2 −
iZ

ω−

)
e+iω−N1 , (G.179)

F+ = κ

4

(
Z ′

κ2 + iZ

ω+

)
e−iω+N1 , (G.180)

F− = κ

4

(
Z ′

κ2 −
iZ

ω+

)
e+iω+N1 , (G.181)

G+ = 1
4

(
P − iP ′

ω−

)
e−iω−N1 , (G.182)

G− = 1
4

(
P + iP ′

ω−

)
e+iω−N1 , (G.183)

H+ = 1
4

(
P − iP ′

ω+

)
e−iω+N1 , (G.184)

H− = 1
4

(
P + iP ′

ω+

)
e+iω+N1 . (G.185)

We should now check whether these solutions satisfy the wronskian conditions. The first,
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(G.122), reads

κ2
(
Z ′

κ2 + iZ

ω−

)(
Z ′∗

κ2 −
iZ∗

ω+

)
− κ2

(
Z ′

κ2 −
iZ

ω+

)(
Z∗′

κ2 + iZ∗

ω−

)
(G.186)

−
(
P − iP ′

ω−

)(
P ∗ + iP ∗′

ω+

)
+
(
P + iP ′

ω+

)(
P ∗ − iP ∗′

ω−

)
= 0, (G.187)

which is equivalent to

ZZ ′
∗ − Z ′Z∗ − (PP ′∗ − P ′P ∗) = 0, (G.188)

which is true. The same holds for (G.123). The last two conditions read

i

4(P ′P ∗ − PP ′∗ + Z ′Z∗ − ZZ ′∗) = 1
2He−3N0 . (G.189)

Indeed, we have

Z ′Z∗ − ZZ ′∗ = H2

2k3

(
1− ieNk−N1

)
e2(Nk−N1) − H2

2k3

(
1 + ieNk−N1

)
e2(Nk−N1)

= −iH
2

k3 e
3(Nk−N1) = − ie

−3N1

H
. (G.190)

Then (G.124) and (G.125) are satisfied since we have N0 ∼ N1.

We will continue toward obtaining a complete solution of the system at the end of inflation.
After N2, the exact solutions are of the form

ζk =
[
I+
(
1− ieNk−N

)
e+i k

H
e−N + I−

(
1 + ieNk−N

)
e−i

k
H
e−N

]
aζ(~k)

+
[
J+
(
1− ieNk−N

)
e+i k

H
e−N + J−

(
1 + ieNk−N

)
e−i

k
H
e−N

]
aψ(~k)

+
[
I∗+
(
1 + ieNk−N

)
e−i

k
H
e−N + I∗−

(
1− ieNk−N

)
e+i k

H
e−N

]
a†ζ(−~k)

+
[
J∗+
(
1 + ieNk−N

)
e−i

k
H
e−N + J∗−

(
1− ieNk−N

)
e+i k

H
e−N

]
a†ψ(−~k)

ψk =
[
K+

(
1− ieNk−N

)
e+i k

H
e−N +K−

(
1 + ieNk−N

)
e−i

k
H
e−N

]
aζ(~k)

+
[
L+

(
1− ieNk−N

)
e+i k

H
e−N + L−

(
1 + ieNk−N

)
e−i

k
H
e−N

]
aψ(~k)

+
[
K∗+

(
1 + ieNk−N

)
e−i

k
H
e−N +K∗−

(
1− ieNk−N

)
e+i k

H
e−N

]
a†ζ(−~k)

+
[
L∗+

(
1 + ieNk−N

)
e−i

k
H
e−N + L∗−

(
1− ieNk−N

)
e+i k

H
e−N

]
a†ψ(−~k) (G.191)
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with derivatives

ζ ′k = −e2(Nk−N)
(
I+e

+i k
H
e−N + I−e

−i k
H
e−N

)
aζ(~k)

−e2(Nk−N)
(
J+e

+i k
H
e−N + J−e

−i k
H
e−N

)
aψ(~k)

−e2(Nk−N)
(
I∗+e

−i k
H
e−N + I∗−e

+i k
H
e−N

)
a†ζ(−~k)

−e2(Nk−N)
(
J∗+e

−i k
H
e−N + J∗−e

+i k
H
e−N

)
a†ψ(−~k)

ψ′k = −e2(Nk−N)
(
K+e

+i k
H
e−N +K−e

−i k
H
e−N

)
aζ(~k)

−e2(Nk−N)
(
L+e

+i k
H
e−N + L−e

−i k
H
e−N

)
aψ(~k)

−e2(Nk−N)
(
K∗+e

−i k
H
e−N +K∗−e

+i k
H
e−N

)
a†ζ(−~k)

−e2(Nk−N)
(
L∗+e

−i k
H
e−N + L∗−e

+i k
H
e−N

)
a†ψ(−~k) (G.192)

The initial conditions for the region III are

ζ(N2 + ε) = ζ(N2 − ε), (G.193)
ψ(N2 + ε) = ψ(N2 − ε), (G.194)

ζ ′(N2 + ε) = (ζ ′ − λψ)(N2 − ε), (G.195)
ψ′(N2 + ε) = ψ′(N2 − ε). (G.196)

It follows that[
I+
(
1− ieNk−N2

)
e+i k

H
e−N2 + I−

(
1 + ieNk−N2

)
e−i

k
H
e−N2

]
= M1, (G.197)[

J+
(
1− ieNk−N2

)
e+i k

H
e−N2 + J−

(
1 + ieNk−N2

)
e−i

k
H
e−N2

]
= M2, (G.198)[

K+
(
1− ieNk−N2

)
e+i k

H
e−N2 +K−

(
1 + ieNk−N2

)
e−i

k
H
e−N2

]
= M3, (G.199)[

L+
(
1− ieNk−N2

)
e+i k

H
e−N2 + L−

(
1 + ieNk−N2

)
e−i

k
H
e−N2

]
= M4, (G.200)

−e2(Nk−N2)
(
I+e

+i k
H
e−N2 + I−e

−i k
H
e−N2

)
= M5, (G.201)

−e2(Nk−N2)
(
J+e

+i k
H
e−N2 + J−e

−i k
H
e−N2

)
= M6, (G.202)
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−e2(Nk−N2)
(
K+e

+i k
H
e−N2 +K−e

−i k
H
e−N2

)
= M7, (G.203)

−e2(Nk−N2)
(
L+e

+i k
H
e−N2 + L−e

−i k
H
e−N2

)
= M8, (G.204)

where we have defined:

M1 = −iλ0

[
ω−

ω2
− − κ2 (E+e

+iω−N2 − E−e−iω−N2) +

ω+

ω2
+ − κ2 (F+e

+iω+N2 − F−e−iω+N2)
]
, (G.205)

M2 = −iλ0

[
ω−

ω2
− − κ2 (G+e

+iω−N2 −G−e−iω−N2) +

ω+

ω2
+ − κ2 (H+e

+iω+N2 −H−e−iω+N2)
]
, (G.206)

M3 =
[
E+e

+iω−N2 + E−e
−iω−N2 + F+e

+iω+N2 + F−e
−iω+N2

]
, (G.207)

M4 =
[
G+e

+iω−N2 +G−e
−iω−N2 +H+e

+iω+N2 +H−e
−iω+N2

]
, (G.208)

M5 = λ0

[
κ2

ω2
− − κ2

(
E+e

+iω−N2 + E−e
−iω−N2

)
+

κ2

ω2
+ − κ2

(
F+e

+iω+N2 + F−e
−iω+N2

) ]
, (G.209)

M6 = λ0

[
κ2

ω2
− − κ2

(
G+e

+iω−N +G−e
−iω−N

)
+

κ2

ω2
+ − κ2

(
H+e

+iω+N +H−e
−iω+N

) ]
, (G.210)

M7 =
[
iω−

(
E+e

+iω−N2 − E−e−iω−N2
)

+ iω+
(
F+e

+iω+N2 − F−e−iω+N2
) ]
, (G.211)

M8 =
[
iω−

(
G+e

+iω−N2 −G−e−iω−N2
)

+ iω+
(
H+e

+iω+N2 −H−e−iω+N2
) ]
. (G.212)

Now we are only left to find expressions for the quantities I, J , K and L in terms of the
M ’s.

I+
(
1− ieNk−N2

)
e+i k

H
e−N2 + I−

(
1 + ieNk−N2

)
e−i

k
H
e−N2 = M1, (G.213)

J+
(
1− ieNk−N2

)
e+i k

H
e−N2 + J−

(
1 + ieNk−N2

)
e−i

k
H
e−N2 = M2, (G.214)

K+
(
1− ieNk−N2

)
e+i k

H
e−N2 +K−

(
1 + ieNk−N2

)
e−i

k
H
e−N2 = M3, (G.215)

L+
(
1− ieNk−N2

)
e+i k

H
e−N2 + L−

(
1 + ieNk−N2

)
e−i

k
H
e−N2 = M4, (G.216)
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I+e
+i k

H
e−N2 + I−e

−i k
H
e−N2 = −M5e

−2(Nk−N2), (G.217)
J+e

+i k
H
e−N2 + J−e

−i k
H
e−N2 = −M6e

−2(Nk−N2), (G.218)
K+e

+i k
H
e−N2 +K−e

−i k
H
e−N2 = −M7e

−2(Nk−N2), (G.219)
L+e

+i k
H
e−N2 + L−e

−i k
H
e−N2 = −M8e

−2(Nk−N2). (G.220)

They all have the same form, so it is enough to deal with one. In the end we obtain

I+ = i

2

[ (
1 + ieNk−N2

)
M5e

−2(Nk−N2) +M1

]
e−(Nk−N2)e−i

k
H
e−N2 , (G.221)

I− = − i2

[ (
1− ieNk−N2

)
M5e

−2(Nk−N2) +M1

]
e−(Nk−N2)e+i k

H
e−N2 , (G.222)

J+ = i

2

[ (
1 + ieNk−N2

)
M6e

−2(Nk−N2) +M2

]
e−(Nk−N2)e−i

k
H
e−N2 , (G.223)

J− = − i2

[ (
1− ieNk−N2

)
M6e

−2(Nk−N2) +M2

]
e−(Nk−N2)e+i k

H
e−N2 , (G.224)

K+ = i

2

[ (
1 + ieNk−N2

)
M7e

−2(Nk−N2) +M3

]
e−(Nk−N2)e−i

k
H
e−N2 , (G.225)

K− = − i2

[ (
1− ieNk−N2

)
M7e

−2(Nk−N2) +M3

]
e−(Nk−N2)e+i k

H
e−N2 , (G.226)

L+ = i

2

[ (
1 + ieNk−N2

)
M8e

−2(Nk−N2) +M4

]
e−(Nk−N2)e−i

k
H
e−N2 , (G.227)

L− = − i2

[ (
1− ieNk−N2

)
M8e

−2(Nk−N2) +M4

]
e−(Nk−N2)e+i k

H
e−N2 . (G.228)

(G.229)

This completes the computation.

So, equation (6.33) and the analytic version of the power spectrum that we showed in
Figure (6.1) are computed using

ζk =
[
I+ + I−

]
aζ(~k) +

[
J+ + J−

]
aψ(~k) + h.c.(−~k), (G.230)

and

Pζ(k) = |I+ + I−|2 + |J+ + J−|2. (G.231)
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Where

I+ = i

2

[ (
1 + ieNk−N2

)
M5e

−2(Nk−N2) +M1

]
e−(Nk−N2)e−i

k
H
e−N2 , (G.232)

I− = − i2

[ (
1− ieNk−N2

)
M5e

−2(Nk−N2) +M1

]
e−(Nk−N2)e+i k

H
e−N2 , (G.233)

J+ = i

2

[ (
1 + ieNk−N2

)
M6e

−2(Nk−N2) +M2

]
e−(Nk−N2)e−i

k
H
e−N2 , (G.234)

J− = − i2

[ (
1− ieNk−N2

)
M6e

−2(Nk−N2) +M2

]
e−(Nk−N2)e+i k

H
e−N2 , (G.235)

and where

M1 = −iλ0

[
ω−

ω2
− − κ2 (E+e

+iω−N2 − E−e−iω−N2) +

ω+

ω2
+ − κ2 (F+e

+iω+N2 − F−e−iω+N2)
]
, (G.236)

M2 = −iλ0

[
ω−

ω2
− − κ2 (G+e

+iω−N2 −G−e−iω−N2) +

ω+

ω2
+ − κ2 (H+e

+iω+N2 −H−e−iω+N2)
]
, (G.237)

M5 = λ0

[
κ2

ω2
− − κ2

(
E+e

+iω−N2 + E−e
−iω−N2

)
+

κ2

ω2
+ − κ2

(
F+e

+iω+N2 + F−e
−iω+N2

) ]
, (G.238)

M6 = λ0

[
κ2

ω2
− − κ2

(
G+e

+iω−N +G−e
−iω−N

)
+

κ2

ω2
+ − κ2

(
H+e

+iω+N +H−e
−iω+N

) ]
, (G.239)

with

E+ = −κ4

(
Z ′

κ2 + iZ

ω−

)
e−iω−N1 , (G.240)

E− = −κ4

(
Z ′

κ2 −
iZ

ω−

)
e+iω−N1 , (G.241)

F+ = κ

4

(
Z ′

κ2 + iZ

ω+

)
e−iω+N1 , (G.242)

F− = κ

4

(
Z ′

κ2 −
iZ

ω+

)
e+iω+N1 , (G.243)

G+ = 1
4

(
P − iP ′

ω−

)
e−iω−N1 , (G.244)
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G− = 1
4

(
P + iP ′

ω−

)
e+iω−N1 , (G.245)

H+ = 1
4

(
P − iP ′

ω+

)
e−iω+N1 , (G.246)

H− = 1
4

(
P + iP ′

ω+

)
e+iω+N1 , (G.247)

and finally with

Z = iH√
2k3

(
1− ieNk−N1

)
e+ieNk−N1

, (G.248)

P = iH√
2k3

(
1− ieNk−N1

)
e+ieNk−N1

, (G.249)

Z ′ = − iH√
2k3

e2(Nk−N1)e+ieNk−N1
, (G.250)

P ′ = − iH√
2k3

e2(Nk−N1)e+ieNk−N1
. (G.251)
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Appendix H

A top-down example

In this appendix we will show a concrete example of a multifield action, where the inflationary
trajectory can experience sudden turns, but keeping ε small and constant and U(ψ) = 0. This
can be achieved in the context of holographic inflation [192–194], where the potential V in
equation (6.1) is determined by a "fake" superpotential W like

V = 3W 2 − 2γabWaWb, (H.1)

with Wa = ∂W/∂φa. In this case, the background quantities obey the Hamilton-Jacobi
equations:

φ̇a = −2γabWb, H = W. (H.2)

It turns out that U is related to W [195] via:

∂2
ψU |ψ=0 = 6HWN N − 4W 2

N N + 2ẆN N , (H.3)

where WN N ≡ NaN b∇aWb. Then we can define appropriate expressions for γab and W
such that ε and λ have the desired time dependence. For instance, let us use the fields
(φ1, φ2) = (φ, χ) and consider the following dependency on the metric:

γab =
(
e2f(φ,χ) 0

0 1

)
. (H.4)

If we take a superpotential W that only depends on φ, then the equation (H.1) implies
that φ̇ = −2e2fẆφ and therefore χ̇ = 0 regardless of the location in the field space. However,
assuming φ̇ > 0, the tangent and normal vectors are

T a =
(
e−f , 0

)
, Na = (0, 1), (H.5)

and the turning rate becomes

Ω = −NaDtT
a = φ̇effχ, (H.6)

implying that λH = 2φ̇effχ. Furthermore, it follows that WN N = 0 and, thanks to the
equation (H.3), ∂2

ψU |ψ=0 = 0. Since this result is independent of χ, and ψ is a preturbation
in the direction of χ, then U = 0 exactly.
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Next, let us note that the function f can be expanded as

f(φ, χ) =
∑
n

1
n! (χ− χ0)nfn(φ). (H.7)

A redefinition of φ allows us to set f0(φ) = 0. Doing this, along the specific path χ = χ0,
we find that φ̇ = −2Wφ and λ =

√
8εf1[φ(t)]. As a consequence, ε = 2W 2

φ/W
2 and the

expansion rate depends only on W (φ), remaining unchanged by the turning rate λ. Finally,
one can always define W (φ) and f1(φ) to get the desired expressions for ε and λ.
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