
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

A CROWD-SOURCING AND HEURISTIC APPROACH TO PROGUARD
RULE GENERATION FOR THIRD PARTY LIBRARIES AND KEY

SOURCE-CODE CONFLICTS

MEMORIA PARA OPTAR AL TÍTULO DE INGENIERO CIVIL EN COMPUTACIÓN

JUAN PABLO SUAZO SARROCCHI

PROFESOR GUÍA:
ALEXANDRE BERGEL
GEOFFREY HETCH

MIEMBROS DE LA COMISIÓN:
ALEJANDRO HEVIA ANGULO

PABLO GONZÁLEZ JURE

SANTIAGO DE CHILE
2021

RESUMEN DE LA MEMORIA PARA OPTAR
AL TÍTULO DE INGENIERO CIVIL
EN COMPUTACIÓN
BY: JUAN PABLO SUAZO SARROCCHI
DATE: 2021
PROF. GUÍA: ALEXANDRE BERGEL

UN ACERCAMIENTO USANDO CROWD-SOURCING Y HEURÍSTICAS
PARA LA GENERACIÓN DE REGLAS PROGUARD PARA LIBRERÍAS

EXTERNAS Y CONFLICTOS CLAVES

Dado que las aplicaciones móviles han adquirido protagonismo en rubro de la ingeniería
de software, siendo estas uno de los tipos de software más utilizados en todo el mundo, se
han creado diversas herramientas para facilitar su desarrollo. Los ofuscadores son una de
estas, dedicadas a la optimización, reducción y ofuscación del código de las aplicaciones.
Estos ofrecen claros beneficios al minimizar el tamaño de los archivos de las aplicaciones,
haciéndolas más rápidas y reduciendo la legibilidad del código para proteger la propiedad
intelectual.

A pesar de estas ventajas, la mayoría de las aplicaciones no utilizan ofuscadores. Esto
es especialmente desconcertante en el ecosistema de Android, donde ofuscadores como Pro-
Guard vienen incorporados y listos para su uso. Esta reticencia puede deberse a la dificultad
que presenta implementar ofuscadores y mantener su código usable. Específicamente, la
identificación de los conflictos entre la ofuscación y la funcionalidad del código, y la redac-
ción de reglas de configuración para resolverlos. Estas dificultades incrementan cuando se
trata de bibliotecas de terceros, ya que los desarrolladores tienen que lidiar con los conflic-
tos provocados por código ajeno. La detección de los conflictos y la redacción de las reglas
para abordarlos puede ser un proceso exhaustivo. Requiere que los desarrolladores tengan
familiaridad con el código y con la sintaxis de las reglas para poder implementar ProGuard
eficientemente. Esto podría disuadir a los desarrolladores de habilitar esta herramienta.

Se proponen dos soluciones para generar reglas de ProGuard para una aplicación de forma
automática, eliminando los obstáculos que impiden a los usuarios habilitar ProGuard. La
primera es un enfoque de crowdsourcing que pretende generar reglas para las dependencias
de las aplicaciones. Nuestra solución estudia el código fuente de un número considerable de
aplicaciones de código abierto. Nuestro enfoque limita los esfuerzos de los desarrolladores
en la implementación de la ofuscación al código con el que están familiarizados. Lo hace
detectando las dependencias de una aplicación, consultando la sabiduría de la multitud para
conocer las reglas utilizadas en otras aplicaciones con las mismas dependencias y aplicando
heurísticas para elegir las reglas pertinentes para la aplicación. La segunda solución pretende
detectar algunas de las prácticas clave, que poseen conflictos reflexivos con ProGuard, dentro
del código fuente de una aplicación y redactar reglas específicas para abordarlas.

Por último, observamos que la solución de reglas de dependencia es bastante precisa a
la hora de decidir qué reglas debe incluir para las dependencias de una aplicación. Genera
correctamente el 80% de estas reglas con un recall de 0,89. Por otro lado, lo hace arrastrando
reglas que no son relevantes para la aplicación y, aunque no generen ningún error, desordenan
los resultados y confunden al usuario. La segunda solución no tiene tanto éxito, ya que la
detección de conflictos resulto ser un gran desafío. Aun así, la primera solución es de gran
ayuda para poder habilitar ProGuard, ya que las reglas para dependencias representan la
mayoría de las reglas necesitadas por aplicaciones.

i

ii

ABSTRACT OF THE BACHELOR THESIS
TO OPT FOR THE TITLE OF
COMPUTING CIVIL ENGINEER
BY: JUAN PABLO SUAZO SARROCCHI
DATE: 2021
GUIDING PROF.: ALEXANDRE BERGEL

A CROWD-SOURCING AND HEURISTIC APPROACH TO PROGUARD
RULE GENERATION FOR THIRD PARTY LIBRARIES AND KEY

SOURCE-CODE CONFLICTS

As mobile applications have gained a prevalent spotlight in the field of software engineer-
ing, being one of the most used kinds of software worldwide, a diverse range of tools have
been created to aid in their development. Obfuscators are one of these tools dedicated to
the optimization, shrinking and obfuscation of an applications source-code. They offer clear
benefits by minimizing applications file size, making them faster and reducing code legibility
to protect intellectual property.

Despite the advantages of obfuscators, a majority of applications do without them. This
is particularly perplexing in the Android ecosystem, where obfuscators such as ProGuard are
built in and ready for use. This reluctance may be caused by the difficulties that develop-
ers must overcome to implement obfuscation while maintaining their code usable. Namely,
identifying the inherent conflicts between obfuscation and code functionality, followed by
redaction of configuration rules to address them. These difficulties are incremented when
dealing with third party libraries as developers have to deal with conflicts brought on by
external code.

The detection of the conflicts and the redaction of rules to address them can be an ex-
haustive process. It requires developers to have a firm understanding of the code and the
redaction of rules in order to efficiently implement ProGuard. This might deters developers
from enabling this tool.

We propose two solutions to generate ProGuard rules for applications automatically, re-
moving the hurdles that prevent users from using ProGuard. The first is a crowd-sourcing
approach that aims to generate rules for the dependencies of an application. Our solution
mines the source-code of a sizeable number of open-source applications. Our approach limits
the developers efforts in obfuscation implementation to the code they are familiar with. It
does so by detecting the dependencies of an app, consulting the wisdom of the crowd for
rules used in other applications with the same dependencies and applying heuristics to chose
rules relevant for the application. The second solution aims to detect some practices that
conflict with ProGuard within the code sources on an application and redact targeted rules
to address them.

We observe that the dependency rule solution is quite accurate when deciding which rules
need to be included by an application. It correctly generates 80% of dependency rules with
a recall of 0.89. On the other hand, it does so by dragging along rules not relevant for the
application that, while they may not generate any errors, clutter the results and confuse the
user. The second solution is not as successful as the detection of reflective conflicts proves to
be a great challenge. Still, the first solution greatly assists developers in enabling ProGuard
as dependency rules are found to represent the majority of rules.

iii

For my father Felipe, my mother Silvana,
my brother Andrés and my partner Jesu,

I could not have done it without you.

Love you always

iv

Acknowledgements

First of all, I must thank my family. Your unconditional love and support has been
essential throughout my life, especially during my time at university. Not only did you instill
a sense of curiosity and wonder in me from a young age, which would guide me in my choice
of career, you also made it possible for me to follow through with the ambitions that stemmed
from it, supporting me every step of the way. You have provided an incessant stream of love
and nurturing which enabled me to continue pushing forwards towards my goals, even in the
most testing of times. For this and a multitude of other reasons, I am eternally grateful.

I must also thank Alexandre Bergel and Geoffrey Hecht for accompanying me throughout
the process of this bachelor thesis. Your weekly guidance, insight and counsel was fundamen-
tal in the development of my work. Thank you for your dedication, continued commitment
and, above all, thank you for helping me organize the way I work. Our weekly meetings al-
lowed me to find some semblance of structure in a time where isolation and reclusion seemed
to erase any traces of it.

I would also like to thank my wolf pack: Moira M., Andrés R., Felipe G., Antonia A.,
Camila C., Catalina U., Crescente E., Eric P., Macarena M., Natalia B., Trinidad C., Nicolás
B. You are the best friends I could ever have asked for. Every moment I got to share with
you filled me with joy and energy, which allowed me to find strength in the face of adversity.
Thank you for being a source of light and laughter in my life.

Massive thanks go out to my scout family. To my amazing staff, Esther D. and Camilo.
P., thank you for being a great team to work with. Your dedication, passion and capabilities
are truly awe-inspiring. Thank you for your understanding and reliability, they allowed me
to take the time I needed to work on my bachelor thesis while resting assured that my
responsibilities were taken care of. To all “my kids” from the “Sol Naciente” clan, you are
awesome! Thank you for allowing me to be a part of your life. Watching you guys grow and
evolve into your best selves pushes me to do the same. I sincerely think you guys are amazing
and that you should have the best scout guides the world has to offer. Striving to become
the kind of example you deserve has made me a better guide, scout and person. Thank you.

A special thank you goes to my friend Romina M. Your understanding and support allowed
me to complete my journey through the university. You were with me during my darkest
hour and gave me hope that I could climb what, at the time, seemed like an impossibly tall
mountain. Thank you.

Last but not least, I would like to thank my partner, Jesu. Your unwavering love and
unconditional support has been essential during this last stretch of my education. Every
sleepless night or unending day was made better by the smallest demonstration of your
affection. Thank you for your kindness, encouragement and patience throughout this last
process. Above all, thank you for believing in me every step of the way.

v

Table of Contents

1. Introduction 1
1.1. Background . 1
1.2. The Problem . 2
1.3. Motivation . 3
1.4. Objectives . 3
1.5. Developed Solutions . 4

1.5.1. Dependency Rules Solution . 4
1.5.2. Application Specific Rules Solution 4

1.6. Validation . 5
1.6.1. Dependency Rules Solution Validation 5
1.6.2. Application Specific Rules Solution Validation 6

2. State of the Art 7
2.1. Android Studio . 7

2.1.1. Projects & Structure . 7
2.1.2. Builds & Gradle . 10

2.2. ProGuard . 12
2.2.1. How Does ProGuard Work? . 13
2.2.2. ProGuard Configuration Files . 15
2.2.3. Warning Rules . 19
2.2.4. Benefits & Usage of ProGuard . 20

2.3. Related Work . 21

3. Problem 22
3.1. Inherent Conflicts with Common Practices 22
3.2. Warnings . 24
3.3. The User’s Responsibility and Libraries . 25
3.4. Removing the Bottleneck . 25

4. Solution 27
4.1. Modeling and Studying the F-Droid Repository 27

4.1.1. Scrapping F-Droid . 28
4.1.2. Python Meta-Model . 28
4.1.3. Results of the Study . 37

4.2. MySQL Database . 40
4.2.1. Database Tables . 41
4.2.2. DBConnect Class . 42

4.3. Dependency Rules Solution . 43

vi

4.3.1. Data Loading . 44
4.3.2. Dependency Rules Generation . 46
4.3.3. Packaging the Solution . 51

4.4. Application Specific Rules Solution . 51
4.4.1. Resource Loading from the APK . 52
4.4.2. Java Code Called from the Native Side 52
4.4.3. Data Classes . 53
4.4.4. Redacting Rules . 54
4.4.5. Packaging the Solution . 55

5. Validation 56
5.1. Replicating Existing Rules . 56
5.2. The Tester Class . 57
5.3. Validation Results For Dependency Rules Solution 59
5.4. Cleaning Up The Generated Rules . 60
5.5. Effect of Generated Dependency Rules on Final APK Size 61
5.6. Overprotective Rules . 62

5.6.1. Overprotective Rule Detection Algorithm 63
5.6.2. Overprotective Class Reference Detection Algorithm 64
5.6.3. Prevalence of Overprotective Rules in Generated Dependency Rules. . 66

5.7. Validation Results For Application Specific Rule Solution 66

6. Conclusions 68
6.1. Summary of Work Done . 68
6.2. Objectives & Accomplishments . 70
6.3. Relevance of the Developed Solutions . 73

6.3.1. Dependency Rules Solution . 73
6.3.2. Application Specific Rule Solution . 73

6.4. Lessons Learnt . 74
6.4.1. Learning From Reality . 74
6.4.2. Good Design is a Valuable Tool . 75
6.4.3. Work Ethic During Isolation . 75

6.5. Future Works . 76
6.5.1. Further Validation of App Specific Rules Solution 76
6.5.2. Further Testing with Real Cases . 76
6.5.3. Growing Nurturing & Cleaning our Pool of Knowledge 77
6.5.4. Perfecting and Expanding Conflict Detection on Source-Code 77
6.5.5. Paring with Reflection Detectors . 77

Appendix A. Complete UML Diagrams 81
A.1. Application Class . 82
A.2. Tester Class . 83

Appendix B. Code 84
B.1. Overprotective Rule Detection Algorithm . 84
B.2. Class Reference Sub-Group Detection Algorithm 85

vii

Tables Index

2.1. Keep Rule Types. 18
4.1. Application Database Table. 41
4.2. Dependency Database Table. 41
4.3. Import Database Table. 41
4.4. Rule Database Table. 41
5.1. Performance Measurements for Generated Rules. 59
5.2. Analysis of missing rules. 60
5.3. Performance Measurements for AELF. 61
5.4. Size of Builds for Alldebrid. 62
5.5. Prevalence of Overprotective Rules in Generated Dependency Rules. 66
5.6. App specific Rule Generation. 67

viii

Illustrations Index

2.1. Android Studio Project of the Alldebrid Open-Source Application. 8
2.2. Class Specification Syntax . 16
4.1. Relationships Between Classes. 29
4.2. F-Droid Class UML Diagram. 30
4.3. FDroidAnalyser Class UML Diagram. 30
4.4. Application Class UML Diagram. 33
4.5. AppAnalyser Class UML Diagram. 33
4.6. AppClass and AppClassAnalyser Class UML Diagrams. 34
4.7. Visualization of Radix Tree Containing the Package Structure of an Application. 35
4.8. ProGuard and ProGuardAnalyser Class UML Diagrams. 37
4.9. Use of ProGuard and Obfuscation.. 38
4.10. Dependencies per App . 38
4.11. Rules per App. 39
4.12. Rules per Dependencies of an App. 39
4.13. Entity-Relationship Diagram of the Database. 42
4.14. DBConnect Class UML Diagram. 42
4.15. DataBaseAnalyser Class UML Diagram. 43
4.16. Data Loading Workflow. 44
4.17. Dependency Rule Recollection Workflow. 47
4.18. Recall and F1-Score of Different Percentages of Inclusion. 48
4.19. Full Package Structure Extraction Workflow. 50
5.1. Tester Class UML Diagram. 57
5.2. Workflow of the Tester Class. 58
A.1. Application Class UML Diagram. 82
A.2. Tester Class UML Diagram. 83

ix

Chapter 1

Introduction

1.1. Background

Currently, mobile applications represent one of the main development fields in the world.
According to Evans Data Corporation, in 2016 there were up to 12 million mobile developers
around the globe, near half of the total number of developers, projecting the number to
increase to 14 million by 2020. Furthermore, 5.9 million of those developers were dedicated
to Android applications [5].

Within the many development tools available in the Android Studio ecosystem, Android’s
IDE for app development, there are ProGuard and R8. Said tools are capable of shrinking,
optimizing and obfuscating the bytecode of an Android application when building the APK
file (Android Package). Shrinking is carried out by deleting unused classes, fields, methods,
and attributes. Optimizations are made to further reduce its size by using more aggressive
code removal tactics. Obfuscation is achieved by replacing the names of the remaining classes,
fields, methods and attributes to short coded names.

Besides, reducing the applications size and making it faster, ProGuard also helps with pro-
tecting the intellectual property of the user. When obfuscated, code legibility is significantly
reduced, making it much harder for a third party to reverse engineer the application and,
therefore, avoiding the cloning or reproduction of the application. This is a highly relevant
aspect of ProGuard as over 13% of all available Android applications are clones of legitimate
apps [9].

It is clear then that obfuscators such as ProGuard are valuable tools to be used by de-
velopers, especially in the Android ecosystem where they are included and ready for use.
Considering its benefits and ease of access, one would expect the use of ProGuard to be the
norm for Android applications, but this is far from accurate.

1

1.2. The Problem

Despite all the benefits ProGuard offers, its use in existing applications is considerably low.
Just 25% of applications have obfuscation enabled [6]. This might be due to the complications
developers face when enabling ProGuard.

Said difficulties arise due to the inherent conflicts that code obfuscation generates while
compiling and running an Android application. Practices like introspection and reflection
will fail if ProGuard is allowed to act on the entirety of the source-code [14]. This is due
to these practices depending on specific identifier names, which will be changed, or even
removed, during shrinking, optimization or obfuscation.

In order to handle these conflicts, ProGuard uses rules stored in configuration files to
control the way it operates on the code. These rules indicate which elements of the source-
code must remain untouched for the application to be able to run without errors. These rules
can be as broad as protecting a cluster of classes, or as specific as protecting a single field of
a class.

Along with the rule system, warnings are raised when building the application, indicating
possible conflicts that need to be resolved. These warnings can inform the user about a
myriad of possible complications such as: conflicting rules, errors in the configuration of
ProGuard and, more commonly, references to compile-time only dependencies.

Despite the efforts made by ProGuard to facilitate the use of obfuscation, these are not
enough to convince developers to use this tool. From the 75% of developers who are aware
of ProGuard and its benefits, 35% tried to enable it but abandoned these efforts due to
difficulties while implementing it [6]. In fact, ProGuard’s static analysis is not capable of
identifying most of the problematic blocks of code. This is troublesome as a single error
of this kind will prevent the application from being compiled or result in a run-time error.
This is especially true in applications with a high use of reflection, as ProGuard admits in
its documentation [17].

On the other hand, the redaction of ProGuard rules is an exhaustive process. One must go
through the whole code identifying the sections that must be kept intact for the application
to work. In addition, raised warnings will prevent the application from being built. It is then
the responsibility of the user to examine each warning and decide if it is safe to be ignored,
using a -dontwarn rule, or if it is indicating a real problem that must be fixed. This process
is especially long in large applications.

Furthermore, all these problems are amplified by the use of external libraries, a prevalent
practice in Android application development [13]. When using libraries, developers do not
only have to redact rules relevant to their own code, they also have to redact rules for third
party code. While some libraries may include a consumerProguard file which includes the
necessary ProGuard rules, its use is not systematic. It is more probable to find rules in an
applications README.md file, if at all [14].

2

1.3. Motivation

It can be seen then that, currently, the difficulties in the implementation of obfuscators
such as ProGuard set aside an important portion of developers as they are the only ones
responsible for overcoming the inherent conflicts between code functionality and obfuscation.
This deprives them from the benefits and protection that ProGuard offers.

If a solution capable of generating rules for ProGuard existed, automatically protecting
any class that requires it, all of the difficulties of implementing obfuscation would be removed.
The said solution would remove the bottleneck that stands before ProGuard implementation
and allow any developer to benefit from it. This would be of great help for the Android
developing community, one of the largest developing communities in the world.

1.4. Objectives

Our general objective is to develop a solution capable of generating the rules needed by an
application to enable ProGuard without any errors automatically. In order to achieve this,
we focus our work on the completion of the following specific objectives:

1. Studying the F-Droid Repository: We aim to gain better understanding about
the relationship between Android applications and ProGuard. To achieve this, we will
look at the applications in the F-Droid repository, the largest catalogue of free and
open-source applications for the Android platform.

2. Redaction of Dependency Rules: To address the conflicts brought on by third party
code, we aim to generate the rules needed by the dependencies of an application in order
to function correctly when ProGuard is enabled.

3. Detection of Source-Code Conflicts: We also seek to detect classes of the source-
code of an application which may conflict with obfuscation and, therefore, cause errors
while compiling or running the application. We will focus on detecting the following
practices that are known to cause errors if ProGuard is enabled:

• Data Classes.
• Java code called by JNI.
• Resource loading from APK.

4. Redaction of Rules for Source-code Conflicts: We aim to redact rules that will
solve the conflicts detected in the source-code.

It is considered that the completion of these objectives will result in a solution that allows
developers to easily enable ProGuard in their applications without having to worry about
the redaction of any rules.

3

1.5. Developed Solutions

The work done resulted in two solutions. First, the main focus of our work, a dependency
rules solution. We focused our work around the problem of dependency rules as previous
work has been done in respect to rules for the source-code of applications. Additionally,
dependencies present a particular problem for developers as the lack of knowledge about
their source code makes the process of rule redaction difficult for them.

A secondary solution was developed in order to detect common practices that rely on
reflection on the source-code of an application.

1.5.1. Dependency Rules Solution

The proposed solution for dependency rules works using a combination of crowd-sourcing
and heuristics to determine the rules needed by the dependencies of an application.

To achieve this, we first parse F-Droid, a repository of 2955 open-source Android appli-
cations. This is done by developing a Python library consisting of classes designed to model
F-Droid and Android Studio projects. These classes parse the files of the applications inside
F-Droid, allowing us to study their composition. We then analyze each of the applications,
determining their third party dependencies, whether they are enabling ProGuard or not and
which rules are they employing and save this information into a database. This way we are
crowd-sourcing the rules needed by the dependencies used in Android applications.

In order to generate rules for an application A, our solution uses the previously mentioned
Python classes we developed to detect the dependencies of A. It then looks in our database for
other applications which use one or more of said dependencies, have ProGuard enabled and
contain rules in their configuration files. The solution retrieves said rules and then applies
diverse heuristics to determine which rules being used across said applications could be useful
for A.

Finally, the solution cleans up the selected rules, removing rules that are not relevant to
the application, and writes the remaining rules into a ProGuard configuration file.

1.5.2. Application Specific Rules Solution

The solution created to detect classes with possible conflicts with ProGuard works by
using a combination of static analysis of the code, studying of the composition of the classes
and heuristics to determine which classes need to be protected.

The application specific rules solution analyses all the Java or Kotlin classes found in
the source-code of an application and detects if they are data classes by looking at their

4

composition, specifically the relationship between their fields and methods. It also searches
in these classes for methods calls looking to load resources from the APK. In both cases, the
solution records which classes were detected to contain said practices to generate rules for
them later.

Additionally, the solution analyses any native code present in the source-code of the
application, namely its C/C++ code files. Here it searches for calls that are referencing
Java/Kotlin classes of the source-code and the specific package names of said classes. The
solution records these package names to, later, generate rules for them.

The solution then uses a rule redacting module to generate rules for all classes which were
detected to need them. We generate specific rules designed to target each of the different
conflicting practices detected.

1.6. Validation

Lastly, we show the results of an experiment designed to test our solutions. This experi-
ment serves as validation for our solution, testing how effective they are at generating rules
for applications.

1.6.1. Dependency Rules Solution Validation

The dependency rule validation experiment consists of attempting to replicate the rules
present in applications which have ProGuard enabled. We randomly select 50 applications
fit for testing, those which have a relevant use of third party libraries and ProGuard rules,
and attempt to recreate their existing rules.

The dependency rules solution is then showed to be able to replicate correctly, on average,
73% of all original rules, and create 100% of the rules for 30% of the applications. These
results exemplify the prevalent role third party libraries have in the difficulties of enabling
ProGuard. In addition, only 6.38% of the correctly generated rules are protecting more code
than necessary, so the resulting rules are quite specific.

Also, only 16% of the missing rules are dependency rules, showing this solution to be
effective in generating rules for dependencies. In fact, the dependency rules solution has a
recall of 0.89, meaning that it does not leave out useful rules when selecting them.

On the other hand, the computed F1-score is 0.06, meaning that many rules generated are
false positives. This is a result expected when using heuristics, as by definition they are used
to trade precision for better results. These extra rules were included by applications with
ProGuard enabled, ergo, if not included in the original rules of an application, the referenced
classes must also not be present. Therefore, their inclusion will have no effect, as they are
pointing to nonexistent classes within the source-code of an application. While these extra

5

rules may have no negative effect, we still wish to remove them for the sake of the clarity
of the generated ProGuard configuration files which hold the rules. By implementing a rule
cleanup phase in our solution, we are able to nearly double the F1-score, but this result is
still lower than desired.

It is seen that the solution, while generating unnecessary clutter in the results, is effective
in generating rules for the dependencies of Android applications in the F-Droid repository.

1.6.2. Application Specific Rules Solution Validation

Similarly to the previously presented validation experiment, the one designed for the
application Specific rules solution consists of attempting to replicate the rules present in
applications which have ProGuard enabled. We randomly select 50 applications fit for testing,
those which presents a relevant use of rules targeting their own source-code, and attempt to
recreate their existing rules.

The experiment shows that only 7% of the generated rules are referencing conflicts targeted
by rules in the original configuration files. But, if we disable data class detection, this result
changes to 50%.

These results suggest that more work is needed to be able to effectively detect source-code
classes which require detection, especially when detecting data classes.

6

Chapter 2

State of the Art

This chapter presents the context behind our problem. We talk about the technologies
that are involved, how they work and how they are relevant to our solution.

First, we explain the general aspects of the Android Studio development platform which
need to be understood in order to comprehend how our solutions work.

Secondly, we talk about the ProGuard obfuscator. We explain how this tool works and
its effect on the source code. We also present the rule system used to configure ProGuard,
the syntax of these rules and the different types that ProGuard offers.

Finally, we talk about the currently available solutions that seek to generate ProGuard
rules for application. We present their approaches and what their results were.

2.1. Android Studio

Android Studio is the official IDE offered by Google for Android application development.
It was announced and released as early access on May 2013 [16]. It was created by Google
in collaboration with JetBrains. They based its design on IntelliJ, the Java IDE offered by
JetBrains, as Android development is done in said language [8]. But in contrast to IntelliJ,
Android Studio was designed specifically for Android development [16].

2.1.1. Projects & Structure

Each Android application is developed inside an Android Studio project. This is the
directory where the whole work-space of an application is defined, from its source-code and
assets to the tests designed for the application [3]. An example of an Android Studio project

7

can be seen in figure 2.1.

Figure 2.1: Android Studio Project of the Alldebrid Open-Source Applica-
tion.

In the above figure, we can appreciate most of the standard structure that all Android
Studio projects share. This structure is going to be relevant to the work presented in this
bachelor thesis, therefore it is explained in more detail below, as done in the documentation
of Android Studio [3]:

• module-name: Modules are a way of separating an application in many sub-applications,
dividing your project into discrete units of functionality. A simple application may con-
sist of just one module and a complex application may contain many of them.

– build: This directory holds all the files outputted when generating a build of the
application. This is explained in more detail in the Builds & Gradle section
below.

– libs: This directory, not shown on figure 2.1, contains any private library the
developer is using on its application.

8

– src: This directory holds all of the code and resource files for the module. It is
organized in the following sub-directories:

∗ androidTest:This directory contains the code needed for testing the application
on a hardware device or an emulator.

∗ main: This directory holds the actual code and resources used by our module
and application to run.
· java: Contains all Java code sources.
· res: Contains the resources of the module. Drawable files, layout files, and

UI string are all held in this directory.
· jni (not shown): Contains all native code using the Java Native Interface

(JNI).
· gen (not shown): Contains all of the Java code generated by Android Studio.

∗ test: Contains the code for unit tests for the Java code of the application.
– build.gradle: Build script that configures the building process of the module. This
is explained in more detail in the Builds & Gradle section below.

• build.gradle: Build script that configures the building process of the whole application.
This is explained in more detail in the Builds & Gradle section below.

Additionally, the code inside the src/main/java directory is structured using Java pack-
ages. This is the practice of saving Java classes in ordered directories depending on the type
and functions of each class [15]. This can be seen in figure 2.1, where the Java code sources
are saved in different directories depending on if they are used either for an API, for the
UI of the application or if they are utility classes. Each of these directories is then further
separated in sub-directories if needed. The convention for naming of packages is to start
their name with the reversed Internet domain name of the developing company, as to avoid
naming conflicts, continued by the names of the directories which hold Java files. These
names must use only lowercase letters, numbers and underscores [15].

This ordering of the Java files results in a package structure where each Java source file
is contained by a package dedicated to files similar to it. Within this structure, each file has
a package name that references its location within the package structure. For example, the
package name for the ‘‘Logg’’ class seen in figure 2.1 would be com.malek.alldebrid.utils.-
Logg while the package name for the ‘‘LinkOnMenu’’ class would be com.malek.alldebrid.-
ui.listener.LinkOnMenu. These names can then be used to reference these classes in a
precise way. If we desired to use the ‘‘Logg’’ class in another Java class, it would suffice to
use the following import declaration: import com.malek.alldebrid.utils.Logg.

Now that we know about the basic structure of a project, we need to learn how Android
Studio takes the files contained inside this project and generates the executable file that will
be installed on Android smart-phones.

9

2.1.2. Builds & Gradle

Android Studio allows the user to generate builds of the developed application. When
talking about generating builds, or building an application, we refer to the process of
packaging all of its parts in one file which is then used to install said application into a
smartphone. The file generated by building an Android application is called an “Android
Application Package”, or APK, which is a compressed file composed of the code, assets and
any other elements the application needs to run correctly.

When created, Google designed Android Studio to facilitate the configuration and cus-
tomization of the build process and the easy creation of build variants, different versions of
the same app [8]. To achieve this, Android Studio included Gradle in its ecosystem. [16].

Gradle is an open-source build automation tool that allows developers to generate builds
of an application. It also allows the user to configure and customize the builds and even
define different builds of an application meant for different purposes. This can be useful
for developers as they might wish to have a debug build meant for testing, along with a
free-to-use build with limited content and a premium build meant for paying users [8].

In order to configure the way Gradle builds an application, one must create a build script
named build.gradle [16]. These scripts define all the parts that need to be packaged into an
APK when generating a build. Also, the build.gradle file is used when defining the different
possible builds of an application. On it, the user declares the names and configurations of
each build variant [2]. The two main aspects of these configuration files we are interested in
is how they configure the building process for different build variants and how they declare
the dependencies of an application.

Configuring Build Variants

An example showing the declaration of two build variants can be seen in code 2.1. This
example is taken from the Android Studio documentation [2].

Code 2.1: Example build.gradle file.
1 android {
2 defaultConfig {
3 manifestPlaceholders = [hostName:"www.example.com"]
4 ...
5 }
6 buildTypes {
7 release {
8 minifyEnabled true
9 proguardFiles getDefaultProguardFile(’proguard-android.txt’), ’proguard-rules.pro’

10 }
11

12 debug {
13 applicationIdSuffix ".debug"

10

14 debuggable true
15 }
16 }
17 }

It can be seen that the declarations for a “release” and “debug” build are made inside
the buildType block. These are the standard build variants that are created automatically
by Android Studio [2]. By definition, all the code used by the release build is stored in the
src/main/java directory of the project. The code contained in this directory is also shared
with build variants.

In turn, any code used only by a specific build, must be placed in a directory named after
its respective build. For example, all code used exclusively for the “debug” build must be
placed in the src/debug/java directory. This way Gradle is able to determine which code is
meant for which of the different builds. Therefore, the APK generated for the “release” build
will contain all code in the main directory while the APK generated by the “debug” build
will additionally contain the code in the debug directory. These APKs are stored inside the
build directory of the project, where they are separated in different directories named after
their respective build variant.

We also observe from the figure how both build variants have different configurations,
declaring the value for different variables associated with the build process. For example, the
“debug” build variant declares the debuggable variable as true. This will result in Gradle
building an APK which includes the debugging tool offered by Android Studio.

Dependencies

As part of the build process, Gradle has to make sure to include all of the code that the
application needs to run. If an application uses third party libraries to function, the code of
said libraries must too be included in the APK generated when building it. This is done by
declaring these third party libraries as dependencies of the application on the build.gradle
file.

To add a dependency, this must be declared inside the dependencies bock of the build
script in the manner shown in figure 2.2 [1].

Code 2.2: Example build.gradle file declaring dependencies.
1 apply plugin: ’com.android.application’
2

3 android { ... }
4

5 dependencies {
6 // Dependency on a local library module
7 implementation project(":mylibrary")
8

9 // Dependency on local binaries

11

10 implementation fileTree(dir: ’libs’, include: [’*.jar’])
11

12 // Dependency on a remote binary
13 implementation ’com.example.android:app-magic:12.3’
14 }

The two initial declarations specify private libraries present in the developers work-space.
The last dependency declaration specifies the name, version and group of a third party
library being used by the application. In fact, implementation ’com.example.android:app-
magic:12.3’ is shorthand for implementation group: ’com.example.android’, name: ’app-
magic’, version: ’12.3’ [1].

These dependencies can be declared with different configurations. For example, the imple-
mentation configuration will add the dependency to the compile path (all files that need to
be compiled when building) and will package its source-code to the APK outputted when
building. In contrast, if this dependency was declared as compileOnly ’com...’, the de-
pendency would be added to the compile path but its source-code would not be included
in the APK generated by the build. Other configurations include: api, runtimeOnly,
annotationProcessor, lintChecks, lintPublish, apk (deprecared), compile (deprecated)
and provided (deprecated).

This way, Gradle is able to know which third party libraries need to be downloaded,
how they are being used by the application and what to do with them when building an
application. From now on we refer to the third party libraries used by an application as its
dependencies.

2.2. ProGuard

Next, we explain the basics of the obfuscators supported by Android Studio. Depending on
the version, the supported obfuscator may be ProGuard or, in newer versions, the upgraded
R8 [4].

From now on, we will be referring only to ProGuard as the standard obfuscator of Android
Studio. This is done as R8 and ProGuard are very similar in how they work. Indeed, they
are both configured in the same way [4], so they are equivalent for the purposes of the work
presented in this bachelor thesis. We use ProGuard as a reference as it has been present
in the Android Studio ecosystem since launch, while R8 was released in October 2018, and
Android developers might be more familiar with this name.

ProGuard is a Java class file shrinker, optimizer and obfuscator. Its goal is to analyse the
source-code of an application during the building process, making changes to it that minimize
the size of the generated APK, make it work faster and reduce its legibility.

To enable ProGuard on an Android project, one must add the minifyEnabled = true

12

declaration on the build.gradle file of the application, along with specifying the location of
the ProGuard configuration files [4]. This can be seen in the “release” build variant declared
on code 2.1.

2.2.1. How Does ProGuard Work?

Before ProGuard can start making changes to any source-code file, it first has to carry
out an analysis of the contained code. In order for this analysis to work, the user must define
the entry points of the application. These are the classes in the source-code where ProGuard
will start its analysis. These entry points must include all classes that the Android platform
may use to open the Activities or services of an application [4].

Android provides some general entry points which are defined in the standard android
ProGuard configuration file [4]. This file also contains some base configurations for Pro-
Guard to act on Android applications. These configurations can be added by using the
getDefaultProguardFile() call, as seen in code 2.1. Additionally, the user can define per-
sonalized entry points.

Once ProGuard knows the entry points, or seeds as they call them, it begins traversing
all of the code to determine which classes, methods, field and attributes are actually being
used, and which conform dead code that is never referenced. ProGuard is able to do this as
it is capable of processing the Java and Kotlin languages [17].

ProGuard makes changes to the code in the following three steps:

1. Shrinking: The first step carried out is to delete all the code that ProGuard deems
safe to remove. This includes all dead code, previously identified during the analysis,
along with any annotations present. In this step is where we see the biggest reduction
in file size [11].

2. Optimization: Next, ProGuard carries out a deeper inspection of the code with the
objective of further reducing its size and making the application faster. This is achieved
by deleting even more unused code or rewriting code into a shorter version of itself. For
example, in this step ProGuard may make, among many others, the following changes
to the source-code [4]:

• Delete else clauses which are never reached.
• Remove declared methods that are only called once and in-lining them at the call

location.
• Merge two classes if a class has a single unique subclass and the class itself is never

instantiated.

3. Obfuscating: Finally, ProGuard assigns new short and coded names to the remaining
classes and members that remain in the code and which are not entry points. It refactors
the whole code to reflect these changes globally.

13

Example The shrinking effect that ProGuard has on a Java class can be seen in the following
exemplifying code. For the purposes of this example, the presented class is the only one
present in an application.

Code 2.3: Example of a Java Class.
1 public class AClass{
2 private String AVariable = "Hello World !"
3

4 // a used method
5 private String aUsedMethod(){
6 return self.aVariable
7 }
8

9 // not using this
10 private String anUnusedMethod(){
11 return "Bye Bye world!"
12 }
13

14 public static void main(String[] args){
15 AClass object = new AClass()
16 String message = object.aUsedMethod()
17 System.out.print(message)
18 }
19 }

As seen from codes 2.3 and 2.4, during the shrinking step, ProGuard analyses the code
and determines that the anUnusedMethod() method is never called by the rest of the code.
Therefore, this method is removed from the code, ultimately reducing the size of the file
containing it.

Code 2.4: Example of a Shrunken Java Class.
1 public class AClass{
2 private String AVariable = "Hello World !"
3

4 private String aUsedMethod(){
5 return self.AVariable
6 }
7

8 public static void main(String[] args){
9 AClass object = new AClass()

10 String message = object.aUsedMethod()
11 System.out.print(message)
12 }
13 }

After shrinking the code, ProGuard then proceed to obfuscate its contents. The effect
obfuscation has on a class are exemplified on code 2.5.

Code 2.5: Example of an Obfuscated and Shrunken Java Class.

14

1 public class a{
2 private String b = "Hello World !"
3 private String c(){
4 return self.b
5 }
6 public static void main(String[] args){
7 a d = new a()
8 String e = d.c()
9 System.out.print(e)

10 }
11 }

On this code snippet we can see how ProGuard renames and refactors the class and its
members, using short meaningless codes for their new names. This simple example already
shows how obfuscation significantly reduces the legibility of the code. It can be seen that the
names and codes are mapped in the following way:

• AClass → a.

• AVariable → b.

• aUsedMethod → c.

• object → d.

• message → e.

Finally, ProGuard optimizes the class, resulting in the class seen in code 2.6. Here we
can see how the further modifications to the code result in the elimination of a method that
was used a single time. Instead, ProGuard moves its definition to the place where it is called.
ProGuard also detects the declaration of a variable that is only used once to hold the returned
value and replaces it by writing its contents directly on the location they are needed. This
results in a smaller code that takes fewer steps to complete its task.

Code 2.6: Example of an Optimized, Obfuscated and Shrunken Java Class.

1 public class a{
2 private String b = "Hello World !"
3

4 public static void main(String[] args){
5 System.out.print(new a().b)
6 }
7 }

2.2.2. ProGuard Configuration Files

We have talked about how the user has to define the entry points to its code so that
ProGuard knows where to begin its analysis of the code. This, and other configurations, are
communicated to ProGuard by declaring configurations files in the build.gradle build script
as seen in code 2.1, they are declared by stating their path relative to the build script. These
are text files that contain rules which determine the way ProGuard acts on the source-code
of an application.

15

There is a myriad of different rules that can be employed by a developer, for example,
the -optimizationpasses <n> rule tells ProGuard to repeat its optimization step n times in
the hopes of achieving better results. Additionally, the -dontoptimize, -dontshrink and -
dontobfuscate tell ProGuard which steps of its workflow the developer wishes to omit. From
all the kinds of rules that exist, only two are relevant for the work presented in this bachelor
thesis. We present each in detail in the following sections.

Keep Rules

Keep rules are the first kind of rule we are interested in. They play two roles in the
configuration of ProGuard. Firstly, they can be used to point to the entry points of the
application so that ProGuard. Secondly, they can be used to inform ProGuard of all the
sections of the code the user wishes to remain intact, protecting them from the effects of
ProGuard [17].

Their syntax consists of a rule type that defines the kind of protection applied and a class
specification that defines the code being protected. They are redacted in two segments as
follows: -keepRuleType classSpecification. Each of the segments of keep rules is explained
in the following sections.

Class Specification

In order for a developer to specify to ProGuard which parts of his code are targeted
by a rule, the developer must design class specifications that target said sections of code.
The general syntax of class specifications, as presented in the ProGuard manual [17], are as
follows:

[@annotationtype]1 [[!]public|final|abstract|@...]2 [!]interface|class|enum3

classname4 [extends|implements [@annotationtype] classname]5

[{6

[@annotationtype]
[[!]public|private|protected|static|volatile|transient ...]
<fields> | (fieldtype fieldname [= values]);

[@annotationtype]
[[!]public|private|protected|static|synchronized|native|abstract|...]
<methods> | <inti> (argumenttype,...) | methodname(argumenttype,...) |

(returntype methodname(argumenttype,...) [return values]);
}]

Figure 2.2: Class Specification Syntax

16

This definition may seem a little daunting at first sight, but class specifications are usually
less complex than their definitions allow them to be. Before we explain this syntax, we must
point out that any element inside brackets is optional for a class specification. Also, when
elements are separated by a | it means that any of these elements are an alternative for this
location. Finally, we can use the ! symbol as negation. We explain each of the elements
pointed at on figure 2.2:

1. First, one can optionally add an annotation reference when specifying classes. This
means that the class specification will only target classes which are marked with said
annotation. Annotations are declared with a @ symbol at the beginning followed by the
package name of the annotation.

Example If we wanted to target all classes marked with the @Keep annotation offered
by Android, we would add @android.support.annotation.Keep in this location.

2. Then, we can opt to specify the declaration modifiers a class must posses to be targeted.
This can be any of the modifiers offered by Java: public, final, abstract, etc. As Java
lets us use annotations in the modifiers, this can also be specified here.

Example To specify all public classes, we could write public on this location. On the
other hand, if we wished to specify all non-public classes, we can opt to negate the
modifier like this: !public.

3. Next, we must tell ProGuard if the specified code is inside a class, an enum, or an
interface. Again, we can negate these declarations to target all but the negated type.

4. Following this, we make the actual reference to the package name of the code we wish
to target. We call this the class reference. In this declaration, we may use wildcards
to match with more than one package name. The offered wildcards are: * and **. The
former matches with any character minus the package separator ‘‘.’’ while the latter
matches with any character including the package separator.

Example If we wished to target an interface named “Listeners” which is located in the
com/app/listen directory of the package structure, we could use the following declara-
tion: com.app.listen.Listeners.

The * wildcard can be used anywhere to define a pattern to be matched. For example,
to match any name with the word Data on it in the com.application.model package
location, we use com.application.model.*Data*. Alternatively, it can be used alone
at the end of a class reference to specify all elements inside a location of the package
structure. For example, com.application.model.* will specify everything inside the
com.application.model directory.

The ** wildcard can be used at the end of a class reference to target all elements con-
tained in a directory and all sub-directories of the package structure. For example,
com.application.model.** will specify everything inside the com.application.model
directory and all its sub-directories within the package structure. Alternatively, it

17

can be used in the middle of a class reference to target all elements in a directory,
and all its sub-directories that posses a defined suffix in their package names. For ex-
ample, com.application.model.**.foo.bar will target everything inside the com.appli-
cation.model directory, and all its sub-directories, whose package name has the suffix
foo.bar.

5. Optionally, we can decide to specify to specify classes which are either extending another
class or implementing an interface. Here we reference the implemented or extended
element in the same way we reference the primary element.

Example com.app.listen.EventListener extends com.app.listen.Listeners will spec-
ify any class that has the package name com.app.listen.EventListener and extends the
com.app.listen.Listeners class.

6. Next, we can choose to specify members of the class we are referencing. These mem-
bers can be fields or methods. Their specification syntax is similar to classes, one can
choose to specify annotation and declaration modifiers. To specify all fields, we can use
the <fields> declaration. To specify a specific field, we must declare its type and name
(optionally, we can define its value too).

For methods we have four options. First, we could specify all methods using <methods>.
Secondly, we may specify all initialization methods with the <init> (argumenttype,...)
declaration. Here we must also declare the types of the arguments taken by the meth-
ods we wish to specify. Thirdly, we can specify methods by declaring their name and
argument types, methodname(argumenttype,...). Lastly, we can specify methods by
specifying their returning values, returntype methodname(argumenttype,...), here we
must declare the type of the value returned and optionally specify the return declaration.

Keep Rule Types

Keep rules can have one of six total rule types, all of which offer different kinds of protec-
tion [17]. These are presented in table 2.1.

Table 2.1: Keep Rule Types.

Keep From Being Removed
or Renamed. From Being Renamed.

Classes and
Class Members -keep -keepnames

Class Members Only -keepclassmembers -keepclassmembersnames
Classes and

Class Members
if Class Members

Are Present

-keepclasseswithmembers -keepclasseswithmembersnames

Here we can see that we have two groups of rules, those which protect from shrinking and
obfuscation, and those which only offer protection from obfuscation. We can also observe

18

that some rules protect the entire class, while some only target the members of the class.
Moreover, we may choose to protect classes only if they have certain members present.

Example To get a better understanding of the syntax of keep rules we present the following
examples:

• -keep public class com.example.MyMain

Protects the public class MyMain, found in the com.example package location, from
obfuscation and shrinking.

• -keepclassmembersnames public class com.example.MyMain {
public void main(java.lang.String[]); }

Protects from obfuscation all public and void methods called “main” that take a list
of strings as an argument and are members of the public class MyMain, found in the
com.example package location.

• -keepclasseswithmembers !abstract class ** implements
@android.support.annotation.Keep **.*Data* {

java.lang.String[] *Name*;
*(java.lang.String[]);}

Protects from obfuscation and shrinking any class that is not abstract if, and only if:

– Implements any interface in any directory that has ‘‘Data’’ in its name and is
marked with the @android.support.annotation.Keep annotation.

– Has a field which is a list of strings and has ‘‘Name’’ in its name.
– Has any method whose only argument is a list of strings.

2.2.3. Warning Rules

The other kind of rules we are interested in are those that address warnings. Before
explaining their syntax and function, we must first explain what a warning is.

Warnings

Warnings are error messages raised during the analysis of the code ProGuard carries out.
They inform the user about possible problems in the configuration of ProGuard or in the
source-code that will result in an error later on when running the application.

One of the probable causes of warnings are conflicting rules in ProGuard configuration
files, like a keep rule protecting the name of a class while an applymapping rule is telling
ProGuard the specific name to which the class has to be renamed. Other, more common
reason warnings are generated is when referencing a compile-time only dependency [10]. For

19

example, the javax.annotation.Nullable annotation. If used in the code, ProGuard will not
find this reference on the application’s build path, and so it will raise a “reference not fund”
warning.

Warnings raised by ProGuard will actually halt the building of an application. Therefore,
all warnings must be addressed by either solving the error that generated it or including a
-dontwarn rule in the build.gradle file of the project.

Rules for Warnings

Depending on the reason for their generation, warnings can be ignored to allow for the
building process to run without being halted.

For example, we know warnings for provided compile-time dependencies can be ignored,
as they are a result of ProGuard not finding something in the source-code when in reality it
is provided by Java. This type of warnings can be ignored with a -dontwarn classReference
rule. This class reference has the same syntax as the ones found inside class specifica-
tions. For example, the -dontwarn javax.annotation.Nullable will ignore any warnings for
references to this annotation.

Since ProGuard may raise thousands of warnings, one may be tempted to ignore all of
them using the -ignorewarnings rule. This is not advised since some warnings may inform
the user about problems that will prevent the application from working correctly [10].

2.2.4. Benefits & Usage of ProGuard

The benefits that stem from code shrinking and optimization are easily understood. Hav-
ing a faster application with a smaller file size just by editing its source-code, but not how
it functions, is of great help to any developer. On the other hand, benefits taken from code
obfuscation are less obvious but rather important.

The main advantage gained from code obfuscation is a reduced legibility of the applications
source-code, which protects the application against being reversed engineered or cloned. A
quick Google search will reveal that there is no shortage of applications and services dedicated
to the decompilation of APK files, all of which ultimately reveal their source-code. This is
a major issue faced by the Android development community, as over 13% of all available
Android applications are clones of legitimate apps [9].

While these benefits may be seen as too good to pass on, the reality is that 75% of Android
applications do not have ProGuard enabled [6]. This seems odd for a tool integrated to the
Android Studio ecosystem and whose use is recommended in its documentation.

20

This reluctance by developers is not due to lack of awareness. As a study of obfuscation
use in Google Play revealed, nearly 75% of android developers know about ProGuard, but
55% of them decided not to enable it and 35% had the intention to enable it but desisted
because of the difficulties in implementing ProGuard [6]. These difficulties are part of the
problem addressed in this bachelor thesis.

2.3. Related Work

When researching the current situation of this problem, to the best of our knowledge, no
proposals or solutions were found to address this specific challenge. The only case of study
in this area that could be found is the one carried out by Hecht et al [7].

They focused their solution on the joint use of crowd-sourcing and machine learning.
Searching within F-Droid, a repository of 2038 free and open-source Android apps, 352
applications were found to have good practices in their obfuscation rules.

Three different learning models (SVM, neural network and random forest) were then
trained with the source-code and rules of these applications, labeling each existing class in
the source-code as maintained or not maintained post obfuscation.

With this method, the machine learning aspect was intended to recognize patterns within
the source-codes and their relationship to the rules included in their ProGuard configuration
files. Afterwards, classes from other applications were presented to the learning models in an
attempt to find the previously documented patterns and writing the respective obfuscation
rules deemed necessary.

Although this approach seems adequate, the results obtained were inconclusive. When
testing the method with applications that had already been obfuscated, to see if it was
possible to recreate the same rules already used, satisfactory keep rules were generated for
29% of applications. Then, it was tested with applications without active obfuscation and
that crashed when trying to run after having been obfuscated. In this case, it was not possible
to generate rules that would allow execution in any of the applications.

Additionally, this approach focused on the generation of rules for the source-code of an
application, leaving out the rules needed by dependencies.

In conclusion, little work has been done on this topic. This means there is great potential
for development in this area, specially in regards to the generation of rules for dependen-
cies.

21

Chapter 3

Problem

As exposed in the State of the Art chapter, most Android developers do not enable
ProGuard in their applications. This might be due to all the difficulties that the developer
must overcome in order to implement ProGuard.

Indeed, the effects that ProGuard has on code come in direct conflict with some common
practices of Android and Java development. These result in compile-time and run-time errors
and bugs that stem directly from the use of ProGuard. Additionally, the warnings raised
by the code analysis of ProGuard will prevent an application from being built, so they must
all be addressed and solved. Therefore, the main problem addressed by this bachelor thesis
is how to solve these problems, thus eliminating the bottleneck that keeps developers from
enabling ProGuard.

In the following chapter we present the practices commonly used by developers that conflict
with the shrinking, obfuscation and optimization of the code, the problems associated with
warnings, and why these difficulties would turn a developer away from ProGuard.

3.1. Inherent Conflicts with Common Practices

While the utilization of ProGuard in applications brings great benefits to the developer,
it can also cause headaches during its implementation. This is mainly because the shrinking
of code and renaming of classes and members come in direct conflict with many common
practices prevalent in many Android applications.

Reflection and introspection are responsible for these conflicts [17]. Both are practices
in which the code refers to itself at run-time. The problem arises when ProGuard removes
or renames the elements of the code that are being referenced. This will result in run-time
errors or bugs as the reflective/introspective self-referencing aspects of the code will not be
able to find what they are searching for. To ground these concepts, we present some common

22

reflective practices and explain why they would fail if compiled with ProGuard enabled.

Data Classes: The use of data classes in Java is a common practice. They are used to
model data within the application in a way that is easier to understand and use. The problem
is that these classes are usually loaded or serialized into another medium, like databases or
JSON files, to store the data [14]. Therefore, conflicts arise as these serializations rely on
reflection. Indeed, they inspect the names of the fields of the data class when representing
the data. If these names are later changed this process will fail as the new coded names will
not be found.

Example We present how a data class that is serialized into a JSON file conflicts with
ProGuard.

Code 3.1: Example of a Java Class.
1 public class Example {
2 private String example_name;
3 private String description;
4 }

If we had an instance of the data class shown on code 3.1 that holds the example name
“Data Class” and the description “A data class example.”, serializing it into a JSON file
would result in something like code 3.2. This JSON file is naturally saved in disk for later
use.

Code 3.2: Example of expected JSON.
1 {
2 "example_name" : "Data Class",
3 "description" : "A data class example.",
4 }

But if the fields of this data class were renamed by ProGuard to “a” and “b” , the resulting
JSON will also contain these new names. Therefore, any processes that use this JSON file
assuming the original names of the fields will fail.

JNI: Calling Java code from the native side will conflict with ProGuard. While ProGuard
provides a rule for protecting classes with methods implemented on the native side, it has
no way of detecting whether Java code is being called from the native side. This is because
ProGuard is not capable of reading C/C++ files [14]. Indeed, with the help of the JNI
library, native code may be reflectively referencing classes and methods by name.

Example The JNI method FindClass(classLocation) call will not work if the class in ques-
tion has been renamed, as the string contained in the classLocation variable will not match
any class. It is also possible that the referenced class is only used on the native side. If this
is the case, ProGuard will remove this class as it will consider it dead code. This will lead
to an error too.

23

Resource Loading from APK: Plain Java provides the option to load resources from
the JAR file or in the case of Android apps, the APK file. These resources are classified under
the classes own package names. So if the class name is changed, trying to load resources will
fail.

Annotations: As annotations are completely removed when shrinking the source-code,
any reliance on the active use of annotations at run-time will fail if these are removed.

Another concrete example can be seen in codes 2.3 and 2.3. If in another part of
the code there were an instance of getDeclaredMethod(‘aUsedMethod’), there will be an
error when running the application. Indeed, after obfuscation aUsedMethod() is renamed
to c(). Consequently, when the method getDeclaredMethod() looks for a method called
“aUsedMethod”, it will not find it and the application will fail to run, generating a Method
Not Found error.

This kind of conflicts are difficult to locate without deep knowledge of the source-code.
In its documentation, ProGuard states: “Obfuscating code that performs a lot of reflection
may require trial and error, especially without the necessary information about the internals
of the code.” Additionally, warnings will not guide the developer through these conflicts, as
ProGuard admits its analysis of the code is not capable of detecting reflection accurately [17].

Keep Rules

Keep rules can be used to resolve these kinds of conflicts. They can be employed to
instruct ProGuard to leave intact any class or class member which is involved in a reflective
functionality.

For example, to get rid of the Method Not Found error explained earlier, we could use the
rule -keepclassmembers class location.of.package.AClass to maintain the whole class pro-
tected from the effects of ProGuard. If we want to target only the necessary method, we can
use -keepclassmembers class location.of.package.AClass {private String aUsedMethod();}.

It is intuitive that the benefits of ProGuard are maximized when letting it affect as much
code as possible without generating errors. Therefore, as a rule of thumb, we want keep rules
to be as specific as possible, referencing just the specific parts of the code that have conflicts
with obfuscation. Protecting more code than needed, while not resulting in any kind of error,
will hinder ProGuard’s desired effects on the source-code.

3.2. Warnings

The warnings raised by the code analysis ProGuard carries out will prevent the building
of an application. Therefore, all warnings must too be addressed by the user. This can be

24

done by either solving the problem a warning points to or by recognizing that the warning
is pointing out a non-issue and ignoring it with a -dontwarn rule.

The problem is that ProGuard may raise thousands of warnings for an application. The
process of addressing all of them can be very time-consuming.

3.3. The User’s Responsibility and Libraries

We can see that the implementation of obfuscations comes with a fair set of difficulties
which have to be solved through the redaction of rules. Unfortunately for developers, the
task of addressing the entirety of the conflicts brought upon by obfuscation lies solely on
themselves.

Additionally, all of the previously exposed hardships are amplified when third party li-
braries are included as dependencies for applications. Certainly, using external libraries forces
the developer to address bugs and warnings generated by code with which they are not fa-
miliar. And if we take into account that many libraries are used to outsource the act of
serializing data (like GSON) or handling external reflective requests (like OKHTTP), we can
see that this practice presents a prevalent hurdle for the implementation of ProGuard.

While some libraries include a set of standard rules to include in the configuration of
ProGuard, some even including them automatically by including a consumerProguardRules
declaration in their build.gralde file, its more common to find said rules in the libraries
documentation if at all [11].

As mentioned previously, we want ProGuard to process as much of the source-code as
possible to maximize its benefits. Therefore, in order for a developer to be able to use
ProGuard efficiently, they must be able to write keep rules which are specific to the conflicting
parts of the code and address every warning individually. This entails counting with the
expertise and time to be able to carry out this process in an efficient manner. This can be an
exhaustive process, especially in large applications with a heavy use of reflection, and may
be the reason so many developers are discouraged when attempting to enable ProGuard.

3.4. Removing the Bottleneck

If a solution capable of generating the rules needed to solve these problems existed, it
would allow for many developers to be able to enjoy the benefits brought upon by the imple-
mentation of ProGuard in their Android projects. During this bachelor thesis, said solution
is the one we attempt to generate.

25

Requirements

In order for a solution to solve the presented problem completely, it must meet the following
requirements:

• Detection of third party libraries: The solution must be able to detect which third
party libraries are declared as dependencies of an application.

• Generate rules for the dependencies: Once detected, the solution must be able to
generate a ProGuard configuration file containing all rules needed by the dependencies
of an application.

• Detect conflicts with ProGuard: The solution must be able to detect which parts
of the source-code of an Android project come in conflict with the functionalities of
ProGuard.

• Generate rules for the detected Conflicts: Once detected, the solution must be
able to generate a ProGuard configuration file containing all the rules needed to solve
the conflicts in its source-code.

• Address warnings: The solution must address the warnings generated for both the
dependencies of an application and its source-code.

• Be easily used by an Android developer: The solution must be easy to use for
someone who has the capability of developing an Android application.

Additionally, to be considered a quality solution, the generated rules must allow for a
maximum acting coverage of ProGuard on the source-code. In other words, they must only
act on the parts of the code that are strictly necessary.

26

Chapter 4

Solution

In this chapter we present the solutions developed to address the presented problem.
Firstly, we present a Python library consisting of classes meant to model key elements of an
Android project. Additionally, we show how we use these classes to parse a repository of
Android applications and then use the information held in their fields to conduct a study of
the composition of the applications. Then we discuss the reasons that led us to implement
a database for our solutions long with the design of said database. Finally, we present two
solutions to our problem. The first solution focuses on the generation of rules for dependencies
while the second focuses on the generation of rules for specific conflicts within the source-code
of an application.

4.1. Modeling and Studying the F-Droid Repository

Before any development of a possible solution is undertaken, we first had to learn about
how many Android applications use ProGuard, how many rules they use, how many of
these rules are targeting dependencies and what type of problems they address. In order to
gain a better insight into the relationship between Android applications and ProGuard, we
conducted a study of the F-Droid repository.

F-Droid is a repository of free and open source software on the Android platform. On
its website one can find a myriad of Android applications ready to be downloaded. It was
selected as our data set for study as it not only offers the applications APK for download, but
additionally, one can choose to download the source tarball. This compressed file contains
the applications original Android Studio project files, the ideal resources we need to carry
out a comprehensive study. On top of this, it is the largest data-set of open source apps and
commonly used in studies related to Android applications.

27

4.1.1. Scrapping F-Droid

In order to obtain the desired files in a timely manner, we decided to make use of the
scripting capabilities for web scrapping the Python language possesses. We used the “request”
library to navigate the F-Droid website in tandem with the “BeautifulSoup” library to parse
each of the pages HTML code. After a brief inspection of the structure of the F-Droid website
and HTML code patterns of its pages, we were able to design a script that thoroughly
traversed through the applications contained in the repository, locating the HTML tags
containing the download links for their source tarballs and saving them into the local disk in
an orderly fashion.

With this script, we obtained the source Android Studio projects of 2,955 applications.
We were then required to transform this data into a format which would facilitate our study
of these applications. For this we decided to continue using Python as our main development
language. This was due to our familiarity with the Python programming language along
with its versatility. Indeed, the support Python provides for object-oriented programming,
reading and writing files, scripting and even functional programming were all valuable tools
used in the entirety of the following work.

4.1.2. Python Meta-Model

The first step taken to study the downloaded applications was to extract the desired
information from the F-Droid repository and store it in a way that facilitates their study. We
are looking to learn if an application enables ProGuard or not, what dependencies it declares,
which rules it is using and what are the contents and location of its source-code classes. For
this we designed a meta-model using Python classes in an object-oriented programming
approach.

For this model, four data classes were designed. They model the F-Droid repository,
the Android Studio projects (Applications), their Java (or Kotlin) classes and their associ-
ated ProGuard configuration files respectively. These classes will store all of the previously
specified data for us to use in our study and later work. The cardinality and ordinality
relationships of these classes can be seen in figure 4.1.

In order to obtain the needed information to fill the data classes and conduct our study,
all classes contain a respective analyser class. These are in charge of the file parsing and data
extraction required to obtain the desired information. All file parsing is done by making use
of the file reading capabilities of Python along with regular expressions designed to match
the specific locations where the data of interest is declared. The regular expression matching
operations were provided by the “Lib/re.py” Python module.

28

Figure 4.1: Relationships Between Classes.

F-Droid Class

These class models the F-Droid repository saved in the disk. It is initiated by providing
the path to the location where the repository is stored. The object then iterates through all
the directories contents (sub-directories containing the applications Android Studio projects)
creating an Application class instance for each of them. It then stores these Application class
instances in a field as a list.

It also sorts each application in different lists depending on whether they are obfuscated
or not, thereby facilitating a number of useful class methods such as: getting all obfuscated
or unobfuscated apps, getting a random obfuscated/unobfuscated app and getting the total
number of obfuscated/unobfuscated apps among others. The UML diagram for this class
can be seen on figure 4.2.

This class is associated with its respective analyser class: FDroidAnalyser. This is the
main class we use when exploring the composition of the F-Droid repository. It generates
each of the desired graphs to represent this data. Its UML class diagram can be seen in
figure 4.3 .

29

Figure 4.2: F-Droid Class UML Diagram.

Figure 4.3: FDroidAnalyser Class UML Diagram.

30

Application Class

Models each specific Android Studio project of the F-Droid applications and stores relevant
information needed for the study and posterior solutions. This includes its name, location
in the repository, location of build scripts, location of ProGuard configurations files, if it has
obfuscations enabled or not, its package structure and declared dependencies.

The initialization of this class is aided by the AppAnalyser class. This class is delegated
the task of reading and analysing the key configuration files of an application in order to
extract the needed data from them. Its first job is to determine whether the application
has ProGuard enabled or not. This is achieved by inspecting the build.gradle file (or the
project.properties file in some cases) contained in the project. This is the file in charge
of configuring the build process of applications and where obfuscation is enabled with the
minifyEnabled declaration. A standard declaration can be seen in Code 4.1 .

Code 4.1: Zapp App build.gradle File (extract).
1 buildTypes {
2 debug {
3 shrinkResources false
4 }
5 release {
6 shrinkResources true
7 minifyEnabled true
8 proguardFiles getDefaultProguardFile(’proguard-android.txt’), ’proguard-rules.pro’
9 }

10 }

The AppAnalyser method isAppObfuscatedG() reads this file looking for the buildTypes
declaration and the release declaration within it, as we want to detect those apps that enable
ProGuard in their release builds. The minifyEnabled can be declared true in different
ways (t, true or enabled indifferent to capitalization), so once we know we are inside the
release specifications, we use a regular expression designed to match with any of the possible
variations (accounting for inconsistent white-spaces throughout different files). If our regular
expression, minifyEnabled\s*=*\s*[tTeE], detects a match in the lines inside the release
specifications, we know ProGuard is enabled. In turn, if we reach the end of the release build
declarations without any match, ProGuard is not enabled on this application.

In the former case, we need to learn the location of the ProGuard configuration files
containing the rules used by the application. As seen in Code 4.1 , these locations are
specified within the proguardFiles declaration. This can be declared in various different ways
too, from simply listing them in a coma separated sentence, to declaring the directory where
a group of files is stored. The former is easily parsed by a regular expression that will match
with every string that is surrounded by quotation marks and has a file extension at the end,
’(.*?\..*?)’. If, on the other hand, we detect the declaration points to a directory where the
configuration is stored, we use a different regular expression, dir: ’(.*?)’, to match with the
directory location and then use Python’s own os.listdir() function to list every element in said

31

location. The isAppObfuscatedG() method then returns a list of all the declared ProGuard
configuration file locations (with an empty list signaling obfuscation is not enabled) which
is saved temporarily in the Application class object. If not enabled, the Application class
initialization is finished as there is nothing more we can learn about its relationship with
ProGuard. But if enabled, we proceed to a deeper inspection of the application.

As we know, third party libraries contribute to the difficulties of implementing obfusca-
tion. For this reason, we are interested in learning which third party libraries are being
used in applications that enable ProGuard. Fortunately, in order to use libraries in an An-
droid application, the user must declare them as dependencies in its build.gradle file. The
extractDependencies() method provided by the AppAnalyser class is then used to read the
Gradle file in search of declared dependencies. As the declarations of dependencies have
multiple variations, which can also change depending on the version of Gradle being used by
the application, we will not detail each of the different cases. As done before, when detecting
the location of ProGuard configuration files, we make use of the file reading capabilities of
Python to detect the dependencies { ... } declaration and the type of dependency declara-
tions encountered within. We then use a number of carefully designed regular expressions,
each one targeting a different kind of dependency declaration, to match with the library
name. These are returned as a list of dependency names and saved in the Application class
object.

Finally, we desire to know the location of the source-code files within the project. To
do this we explore the standard directory in which Android Studio stores the release code:
“src/main/java”. Here we look for every Java or Kotlin classes we can find by looking at file
extensions. Next, we use their locations to initialize AppClass objects, which model the Java
or Kotlin classes of an application, and store them in a list in their respective Application
class object. The UML diagrams for both the Application and AppAnalyser class are shown
in figures 4.4 and 4.5. The Application class methods are omitted to avoid an oversized
image, a full UML diagram can be appreciated in Annex A.1.

AppClass Class

Models each source-code class belonging to the application. As Android applications can
contain both Java and Kotlin classes, two sub-classes are created to handle the differences
between these two types of classes during initialization: the JavaClass and KotlinClass sub-
classes.

32

Figure 4.4: Application Class UML Diagram.

Figure 4.5: AppAnalyser Class UML Diagram.

This class stores the name, path and imports of the applications Java/Kotlin class files.
The imports are extracted by the AppClassAnalyser class, where, depending on whether it
is written in Java or Kotlin, different regular expressions are implemented to match with the
import declarations considering the slight differences in the two. For this, we also need to
adapt how the “re” module carries out the pattern matching. This is done by using flags

33

contained in the module (for example: re.MULTILINE indicates a string containing the
“\n” character). To do this in an efficient way, we implement a functional programming
trick. We design a Lambda function that takes the “re” module as an argument and returns
the desired flags, and pass it as an argument when analysing the source-code class file. This
can be appreciated in the code 4.2 extract. All elements being imported are then saved in
the AppClass object.

Code 4.2: Functional Programming Trickery for Java Classes.
1 # When calling the analyse method
2 self.analyser.analyseClass(self, path, ’^import(.*?);’, lambda x: x.MULTILINE | x.

↪→ DOTALL, app)
3

4 # In the Analyse Function
5 def analyseClass(appClass, path, imprt, flags, app):
6 imports = re.findall(imprt, file, flags(re))

We are also interested in registering the Applications package structure, this is the general
structure of the applications directories holding the source-code. To do this, when initializing
an AppClass object, we detect its location within the package structure by inspecting its path.
As the package structure begins in the “src/main/java/” directory, we just have to split the
class’s path in half where this sub-string is found and take the latter part of it. We then save
this package location in the Application class object respective to the AppClass. The UML
diagrams for these classes can be seen in figure 4.6.

Figure 4.6: AppClass and AppClassAnalyser Class UML Diagrams.

34

To store the package locations in the Application class, we use the pure Python implemen-
tation of the radix tree data structure provided by Google: pygtrie. In this implementation,
we use the classes package locations as keys and the classes file name as values. An example
of a stored package structure can be seen in figure 4.7.

Figure 4.7: Visualization of Radix Tree Containing the Package Structure
of an Application.

This decision was made because at some point we are going to use the package structure
of an application to determine if a rule is referencing classes in the source-code. If we stored
them in a list, when faced with n directories containing classes, we would take O(nk) time to
check if every rule is referencing a directory in the package structure, where k = the length
of the class reference contained inside the rule. Instead, the radix tree offers string insertion
and lookup with O(k) time. As we are going to be parsing thousands of applications with
their rules and classes, especially while validating our work, taking too much time in this
process will result in a slow development and solution.

Other data structures like self-balancing Binary Search Trees and Hash Tables (Python
dictionaries) were considered but discarded. BST has a slower search time of O(klog(n)) and
Hash Tables, while offering a search time of O(k), offers no advantages when dealing with
keys that share prefixes, a common occurrence in package locations.

Additionally, this particular implementation offers some attractive methods, such as the
‘‘has_subtrie(key)’’ method. With it we can determine if the key argument has an existing
prefix in the keys inside the tree. This will be useful when determining if rules that use
wildcards are referencing a package location.

35

ProGuard Class

Models the ProGuard configuration files which hold the rules used by an application. We
use the locations of these files, previously discovered when building the Application object, to
initialize these objects. Initially, we store the name and path of the configuration files in their
fields. We then initialize an instance of the ProGuardAnalyser class to inspect the contents
of each file. Code 4.3 shows some of the rules contained in the ProGuard configuration file
of the “AELF” application.

Code 4.3: Initial Contents of a ProGuard Configuration File.
1 -keep enum org.greenrobot.eventbus.ThreadMode { *; }
2

3 # Only required if you use AsyncExecutor
4 -keepclassmembers class * {
5 @org.greenrobot.eventbus.Subscribe <methods>;
6 }

This analyser class first reads the content of the file and removes all comments present
on it. It does this by taking advantage of the re.sub(pattern, substitute, string) method,
which substitutes the matching sections of a string with another desired string. Using the
(?m)^\s*#.*\n? pattern to match with comment lines in the entirety of the file, we replace
all of them with an empty string as seen in code 4.4.

Code 4.4: ProGuard Configuration File with comments removed.
1 -keep enum org.greenrobot.eventbus.ThreadMode { *; }
2

3 -keepclassmembers class * {
4 @org.greenrobot.eventbus.Subscribe <methods>;
5 }

Then, we use the Python String split() method in tandem with the Python String join()
method to eliminate any unnecessary white-spaces. The split() method transforms a string
into a list, making the wherever any white-space is found, independent of the amount or kind
(space, new-line, tab, etc.). When we join this list into a new string, using a single space as
the item separator, we make sure all extracted rules will be standardized. This will help us
avoid considering two rules different, even if they are the same, just because one developer
used tabs and another used a group of spaces. The results are shown in code 4.5. In these
example rules should be on the same line separated by a single space, but are separated for
the sake of clarity.

Code 4.5: ProGuard Configuration File with Standardized White-Spaces.
1 -keep enum org.greenrobot.eventbus.ThreadMode { *; }
2 -keepclassmembers class * { @org.greenrobot.eventbus.Subscribe <methods>; }

36

Next, as all rules are preceded by a hyphen, splitting this string wherever this character
is present will return a list containing each individual rule in the configuration file. As some
rules might contain multiple class references in their class specification, separated by commas,
we separate these declarations in individual rules for each of these references. This will avoid
considering two equivalent rules to be different just because one of them contains an extra
class reference. The extracted rules are then saved in a field of the AppClass instance, and
this instance is in turn saved in its respective Application object.

Figure 4.8: ProGuard and ProGuardAnalyser Class UML Diagrams.

Once we have all of these classes designed and available, we are able to study the applica-
tions inside the F-Droid repository as to better understand their relationship with ProGuard
and guide our next course of action.

4.1.3. Results of the Study

The next graphs are generated by our FDroidAnalyser class to achieve a better insight of
the composition of F-Droid. First, we want to know the ratio of applications with obfuscation
enabled vs not enabled. As we can see in figure 4.9.a, the number of applications which use
ProGuard is congruent with the previously exposed data. Barely a quarter of the repository,
649 of the total applications, enables ProGuard on their release build.

37

(a) Ratio of Apps with ProGuard Enabled. (b) Presence of Obfuscation Supression

Figure 4.9: Use of ProGuard and Obfuscation..

But a closer look is needed to determine how many applications are making use of the en-
tirety of ProGuard tools. Indeed, by inspecting the rules contained in the applications which
do enable ProGuard, we find that many of them include the -dontobfuscate rule. This rule
disables the obfuscation module of ProGuard, leaving only the shrinking and optimization
modules. As seen on figure 4.9.b, 28% of applications which enable ProGuard suppress the
obfuscation module through this rule. This might indicate that the conflicts that arise from
obfuscation are harder for the user to resolve, in contrast with shrinking and optimization,
as a significant number of developers explicitly declared their intentions to do without it.

Next we intend to learn more about the specifics of each application and their rules. Fields
of interest include the number of rules used, number of dependencies declared and the average
number of rules that target a declared dependency. It is worth mentioning that in all the
following histograms the greatest and sporadic values are gathered in the last bar for the
sake of clarity.

Figure 4.10: Dependencies per App

From figure 4.10 we learn that all applications declare at least one dependency, with
most declaring between one and five dependencies. On figure4.11 we see the number of

38

rules used by applications.

Figure 4.11: Rules per App.

Here we can observe that, excluding applications with no rules which have ProGuard
disabled, all applications have at least one rule with most having between one and ten.
Finally, on figure 4.12 we explore the number of rules dedicated to specific dependencies
included in the ProGuard configuration files of applications.

Figure 4.12: Rules per Dependencies of an App.

From this histogram we learn that most dependencies have between one and five rules
dedicated to them. This, paired with the knowledge that most applications declare at least
one dependency and have between one and ten rules if they enable ProGuard, indicates
that rules dedicated to dependencies have a prevalent role in the total number of rules for
applications.

39

We can also tell, by the number of dependencies exposed that the number of total de-
pendencies declared is far lesser than the number of applications. This is a revealing piece
of data that, paired with the knowledge that rules for dependencies conform an important
number of all rules, leads us to make the following conjecture:

Conjecture 4.1 Let A be an application that uses dependency d and r be the group of rules
needed by A to be able to use the dependency d with ProGuard enabled. If R is the group
of all rules used by other applications which use d with ProGuard enabled, we suspect that
r ⊆ R. In other words, we should be able to find the rules needed by an application for a
specific dependency within the rules of other applications that also use said dependency.

With this data on hand, and looking to prove the veracity of our conjecture, we set out to
develop a method which generates rules for the dependencies of an application by searching
for relevant rules included by other applications that declared the same dependencies.

But before we advanced, a development hurdle needed to be addressed: The parsing of
the repository takes a significant amount of time. Even after reordering the applications in
the disk into different directories depending on the necessity to avoid parsing all applications
every time (splitting them between obfuscated apps, unobfuscated apps and even a reduced
mixed set for testing) this was a time-consuming task. A solution was therefore needed to
avoid delays in development.

4.2. MySQL Database

A MySQL database was deemed necessary for two reasons. Firstly, the previously de-
scribed model had to parse the applications every time it was initiated, which took 15 min-
utes to parse 650 obfuscated apps. This might not seem an exceedingly long wait, but this
time begun pilling up while developing. As this model had to be loaded every time a test
was run, it was clear a faster approach was needed. Secondly, this load time will only get
worse if we add more applications to the repository, as might be done to grow our data-set
and broaden our rule selecting possibilities.

Initially, a parallelism approach was thought of to tackle this inconvenience, but this
was a solution whose effort in implementation begun outshining the benefit. Additionally,
even when parsing multiple applications at the same time, adding new applications to the
repository will result in a proportional increase to the load time.

An associated database brought multiple benefits. By using the indexed searching pro-
vided by MySQL and strategically designed queries, we are able to quickly obtain any data
needed. With this implementation, we only need to load the full repository in an object when
initially populating the database and when changes are made to the model. Along with this,
a database allows us to scale the size of the repository without greatly affecting search times.

40

4.2.1. Database Tables

The tables needed to mirror the data needed from the python model can be seen in tables
4.1 through 4.4:

Application:

Table 4.1: Application Database Table.

Attribute Type Description
Id Int Unique primary key.

Name Varchar Unique name of the app.
Path Varchar Path of the app.

Dependency:

Table 4.2: Dependency Database Table.

Attribute Type Description
Id Int Unique primary key.

Name Varchar Name of the dependency.
AppId Int, Foreign Key App to which the dependency belongs to.

Import:

Table 4.3: Import Database Table.

Attribute Type Description
Id Int Unique primary key.

Import Varchar Full import declaration.
AppId Int, Foreign Key App to which the import belongs to.

Rule:

Table 4.4: Rule Database Table.

Attribute Type Description
Id Int Unique primary key.

Rule Varchar The redacted rule.
AppId Varchar App to which the rule belongs to.

The entity-relationship diagram for this database can be seen in figure 4.13.

41

Figure 4.13: Entity-Relationship Diagram of the Database.

4.2.2. DBConnect Class

To handle the communication between the Python meta-model and the database, the
DBConnect class was designed. This class uses the mysql.connector library to connect with
the database. It also employs methods to create and execute queries meant to save the
desired data in the respective tables. Its UML diagram can be seen in figure 4.14.

Figure 4.14: DBConnect Class UML Diagram.

42

When using the DBConnect class to obtain data, we wanted to make as little calls to the
database as possible as making the connection to it is the most time-consuming aspect of
using a database. Therefore, instead of creating a dedicated method for each of the objects
of the meta-model, we design custom methods for each of the instances where data is needed.
We can assure this way that the queries made are as efficient as possible.

For example, we create a method that receives a list of dependency names as an argument.
This list is then used to build a nested query that will search for all applications which contain
one of the dependencies, along with its associated rules and any of its imports which fetch
classes or methods from the dependencies.

This also resulted in the need for creating the DataBaseAnalyser class. As we are obtaining
data in a case-by-case manner instead of loading it into our previous model, this class is used
to define the methods that will take the results of our queries as arguments. Its UML diagram
can be seen in figure 4.15.

Figure 4.15: DataBaseAnalyser Class UML Diagram.

4.3. Dependency Rules Solution

With the meta-model, database, DBConnect and DataBaseAnalyser class ready, we have
the necessary base tools to develop a solution for the dependency rules of an application. We
decided to focus our work on this solution for two reasons. Firstly, the previously conducted
study revealed that rules for dependencies conform a significant amount of the rules included
by applications. Secondly, as the redaction of rules entails solid knowledge of the code,
dependencies present a particularly challenging aspect of the implementation of ProGuard.

The solution works in two modules: the data-loading module and the dependency gener-
ation module. The first module uses the previously presented meta-model classes to parse a
collection of Android projects saved on disk. It employs the F-Droid class to iterate through
the projects and the Application, AppClass and ProGuard class to ascertain their dependen-
cies, imports and rules. Finally, it uses the DBConnect class instance saved inside the initial
F-Droid class instance to save all the data to a database.

The second module is the one in charge of generating rules for the dependencies of an appli-
cation. First, it uses the Application class to detect the declared dependencies of the Android
project of the application. It then uses the rulesForAllDepsExcludingApp() method, inside

43

the DataBaseAnalyser class, to consult the database for all the rules included in the Pro-
Guard configuration files of other applications with one or more of the same dependencies.
Next, it uses heuristics to determine which of the candidate rules could actually be of use to
our application. Finally, it cleans up the generated rule file by removing redundant rules.

4.3.1. Data Loading

Firstly, we present the data loading portion of the solution, where we use the previously
presented classes and database to collect and store the data needed by the second module.
This process is in charge of building the pool of collective knowledge surrounding depen-
dencies, and their rules that we are later going to consult when generating rules for the
dependencies of an application. For this means we continue using the Android projects
previously downloaded from the F-Droid repository.

The workflow of this process is presented in figure 4.16. Here we can see how we use the
created classes to learn which applications have ProGuard enabled, what dependencies they
declare, which rules they use for them, where their source-code classes are and what their
contents are.

Figure 4.16: Data Loading Workflow.

Step 1: We initialize an instance of the FDroid class object F with the path of the repos-
itory to be parsed. We use F iterate through the application directories and create an
Application class instance for each of them.

Step 2: Each Application class instance A performs the analysis of its configuration files
to determine the declared dependencies and if ProGuard is enabled on their release build. If
indeed enabled, we will continue to a further extraction of information. If not, we continue
with the next Application class instance on our F-Droid class instance.

44

Step 3: We extract and store the rules included in the ProGuard configuration files by
initializing and instance of the ProGuard class for each ProGuard configuration file found.
Configuration rules which are irrelevant to our problem are filtered out, leaving only the
rules dedicated to the protection of code and handling of warnings. Namely, the -keep and
-dontwarn rules.

We also filter out rules which represent bad practices in rule redaction as their inclusion
on the final returned file will hinder the functioning of ProGuard. This bad practices include
the complete suppression of warnings, -ingnorewarnings and -dontwarn ** rules, and rules
that are too broad to be practical. For example, if -keep class ** or -keep class com.app.**
rules are included, you might as well disable ProGuard entirely.

We also filter out rules referencing source-code classes that have nothing to do with de-
pendencies. The process of detecting application specific rules is detailed in theApplication
Specific Rule Detection section below.

Additionally, we initialize an instance of the AppClass class for each Java/Kotlin file
in the project to extract and store all import declarations made in the source-code of the
application.

Step 4: Finally, we use the FDroid class instance F to iterate through all applications
which enable ProGuard, using the DBConnect class to save all of the data associated to the
application, its dependencies, its rules and its import declarations.

Application Specific Rule Detection

To aid in the detection of application specific rules, we created a method that isolates
the class references inside of the class specification of rules. It does so by parsing rules in
accordance with their documented syntax, recognizing the locations in which class references
must be declared.

Once obtained, we check if the location referenced is present in the package structure of
the application, which is saved as a radix tree in the respective application object. To check
if it is an application specific rule, we have three cases to consider:

1. Specific Class Reference: If the class reference is pointing at a specific class, which
we check if it does not end in a wildcard, we must check if its declared location is present
as a key in the tree and if the name of the class is a value related to said key.

Example To check if the rule ‘‘-keep class com.app1.data.ClassA {*;}’’ is referenc-
ing the package structure represented in figure 4.7, we first extract its class refer-
ence: ‘‘com.app1.data.ClassA’’. As ‘‘com.app1.data’’ is a key present in the tree, and
‘‘ClassA.java’’ a value associated to it, we know the rule is application specific.

45

2. Class Reference Using “*”: As this wildcard is used to represent all elements in
the same directory, it is enough to check if the location reference is in fact a key in the
package structure tree.

Example To check if the rule ‘‘-keep class com.app1.data.* {*;}’’ is referencing the
package structure seen in figure 4.7, we notice that the ‘‘com.app1.data’’ prefix is
a key present in the tree, as there are values associated to it. This indicates it is an
application specific rule.

3. Class Reference Using “**”: As this wildcard is used to represent all elements in
the same directory and all sub-directories, it is not enough to check if the prefix of the
class reference is a key in the package structure tree, as the location specified might not
be a key. We must in turn check if the prefix is a sub-tree of the package structure tree.
If that is the case, it means that there must be sub-directories of the specified location
which are keys. Therefore, the rule is application specific.

Example We wish to determine if the rule ‘‘-keep class com.app1.** {*;}’’ is ref-
erencing the package structure seen in figure 4.7. At first glance, we can see that
‘‘com.app1’’ is not a key of the tree (it has no associated values) but rather it is a
sub-tree of it. This means that there are keys in the package structure tree that contain
the ‘‘com.app1’’ prefix. Therefore, it is an application specific rule.

4.3.2. Dependency Rules Generation

Once our database has been populated, we can use this data to predict which the known
rules are needed by the dependencies of an application. The rulesForAllDepsExcludingApp()
method of the DataBaseAnalyser class is in charge of this process. Its workflow can be seen
in figure 4.17.

This figure shows how, to generate rules for the dependencies of an application, we first
build a query for the database based on its declared dependencies. This query retrieves all
the applications that declare one or more of specified dependencies, along with their rules
and imports. We then use heuristics to determine which of the rules will be useful for the
application.

Step 1 First, to recollect rules for the dependencies of an application A, we create an
instance of an Application object with A’s path as the initializing argument. This object will
contain all of the information of A we need to proceed.

Example We initialize an Application object instance for the application “FreeTusky” : app
= App(’/F-Droid/FreeTusky’). This application was chosen as an example as it already
enables ProGuard, has rules in its ProGuard configuration files and includes comments spec-
ifying which rules are meant for each one of its dependencies. We will try to replicate the
rules for one of its dependencies.

46

Figure 4.17: Dependency Rule Recollection Workflow.

Step 2 Using the Application object method getDependencies(), we learn which depen-
dencies A has declared in it’s build.gradle file. We then use the getAppsWithDeps() method
of the DBConnect class to build a query that will retrieve all the data needed from the
database in one call.

This query will first search for all the applications which have a dependency in common
with A. Then, it finds all rules and imports associated to the selected applications. We select
only the imports which are referencing classes or methods of a dependency, making use of the
‘‘LIKE’’ query operator to search for the dependency name within the import declaration.
The response of the database then consists of rows containing an application name, the names
of its dependencies, its import declarations and its rules.

Example The X.getDependencies() method reveals “FreeTusky” uses, among others, the
“okhttp” library. The built query then retrieves the names, dependencies, imports and rules
from the “ArchWikiViewer” and “AuroraDroid” applications, among others which use the
“okhttp” library.

Step 3 We then proceed to select candidate rules from all those returned by our query by
using the following heuristics:

1. The first criteria for selection is explicitly mentioning one of the dependencies used by
A. This means that all rules which contain the name of a dependency declared by A in
their class reference will be selected.

47

2. As a second criteria, we select rules that explicitly mention classes, methods or annota-
tions being imported from dependencies, but that might not mention the dependency
itself. This is useful as there might be rules mentioning this kind of elements which are
imported from the dependency but not the dependency itself. Such is the case when
importing a class and then targeting every class that extends it with a rule.

3. Thirdly, assuming developers add rules for a specific dependency in the same block of
rules, we search for rules near those which do mention dependencies. As we learned
from the initial exploration of the composition of F-Droid, on average, each application
has between one and four rules for each dependency as seen in figure 4.12. Therefore,
we select rules that are within four lines of a dependency mentioning rule.

4. Lastly, we study the remaining rules not selected. For each of them, we calculate what
percentage of applications using dependencies of A they are present in. Those which
have a high inclusion percentage within applications that share dependencies with A,
are selected too.
The selected percentage is 25%. This decision was made by testing our method with dif-
ferent percentages, and comparing the resulting recall and F1-scores of each percentage.
We wished to maximize the values of the F1-score and recall, but, as the recall value
decreased when the percentage increase, the F1-score increased when the percentage de-
creased and the F1-score was consistently lower than the recall, we had to make certain
considerations. We decided to use the following function to find our ideal percentage:

PonderatedSum(percentage) = 0.3 ∗ recall(percentage) + 0.7 ∗ f1score(percentage)
(4.1)

The maximum value of this function will reflect a case when both recall and f1 score
are high, but gives more weight to the value of the f1Score as this is notoriously lower
than the recall. The results showing 25% to be our ideal percentage are shown in figure
4.18.

Figure 4.18: Recall and F1-Score of Different Percentages of Inclusion.

48

Example All four rules originally used for the okhttp library in the ProGuard rule file of
FreeTusky are found:

• ‘‘-keepnames class okhttp3.internal.publicsuffix.PublicSuffixDatabase’’: Is found in
the ArchWikiViewer application proguard rule files (among others) while searching for
rules mentioning okhttp.

• ‘‘-dontwarn okhttp3.internal.platform.ConscryptPlatform’’: Is found in the Arch-
WikiViewer application proguard rule files (among others) while searching for rules
mentioning okhttp.

• ‘‘-dontwarn org.codehaus.mojo.animal_sniffer.*’’: Is found in the AuroraDroid ap-
plication proguard rule files (among others) while searching for rules in proximity of
others which mention okhttp.

• ‘‘-dontwarn javax.annotation.**’’: It is found because it was included by 25% of all
applications that use the okhttp library.

Step 4 This step takes advantage of the existence of an APK from a debug build with
obfuscation disabled. This build must be generated by the user (a trivial task for a developer).
If such an APK is present in its default directory, the general package structure of the
app, with all dependencies included, is extracted from it. We can then compare the classes
referenced by rules to the APK package structure, and remove any rules that reference
nonexistent locations in the structure. This way we avoid adding unnecessary rules to the
final file returned. This process is presented with more detail in the Rule Cleanup section
below.

Step 5 The selected rules are then written into two different text files, one for keep rules
and another for -dontwarn rules. This is done to help with the clarity and legibility of these
files. Finally, the build.gradle file of the application is edited to indicate the location of these
new ProGuard configuration files.

Rule Cleanup

To carry out the rule cleanup, we employ a process similar to that detailed in the Ap-
plication Specific Rule Detection section. The difference is that during this process we
use the extended package structure of an application, including library packages, to filter the
rules instead of just the source-code package structure. The process of acquiring and storing
the full package structure from an APK is detailed in figure 4.19. This process is added as
an optional stage of the initialization of an Application class instance.

49

Figure 4.19: Full Package Structure Extraction Workflow.

Step 1: To acquire the extended package structure, we require the presence of a debug build
APK in the project. This build must be generated with ProGuard disable, as to preserve
the names of the packages. This is a viable requirement for our solution as the building of a
debug APK is a basic process of Android application development and easily carried out by
the user. If this APK is detected while initializing an instance of the Application class, we
can proceed to extract the extended package structure from it.

When located, as APK files are basically just compressed files, we use the “ZipFile”
Python library to extract all of its contents. Within the extracted files there will be a file
with the “.dex” extension, a Dalvik Executable, this file holds all of the class definitions and
adjunct data for the source-code and dependency classes.

Step 2: We need to transform this DEX file into a format we can use. To do this, we use
the “Dex3jar” library in combination with the ´´jd-cli” library. “Dex3jar” is an open-source
command line tool which takes a DEX file and reformats it into a JAR file. Once we have
the JAR file, we use “jd-cli”, an open-source command-line Java decompiler, to extract the
source files from it. This leaves us with a directory containing all Java and Kotlin classes
that belong to the app or its dependencies, ordered by packages.

Step 3: We traverse this directory saving all of the class locations into a radix tree as
previously done with the source-code package structure. This way, we obtain a package
structure representation similar to the one seen in figure 4.7, but that also includes the
package structure of the dependencies of the application. This radix tree is saved as a field of
the Application class instance, to be used to filter the rules selected during the dependency
rules recollection.

At the end of the process which generates rules for the dependencies of an app (figure
4.17), we compare the class references in the selected rules to the extended package structure
stored in the Application class object. This is done in the same manner explained in the
Application Specific Rule Detection section. Those which reference locations that are

50

not present in the extended package structure are removed, as they will have no effect on the
code of the dependencies.

This process can only be used to cleanup keep rules. As we know, -dontwarn rules might
be referencing compile-time only dependencies, which will not appear on the applications
extended package structure, and their exclusion will result in a process stopping warning
being raised when building the application. This is not something to be worried about, as
any -dontwarn rule that points to a nonexistent location will be telling ProGuard to ignore
warnings that are never going to be raised. The only downside to these extra rules is the
clarity and legibility of the resulting ProGuard configuration file, hence the separation of
-keep rules and -dontwarn rules in two files when returning the selected rules.

4.3.3. Packaging the Solution

The solution is packaged as a command-line tool. This decision was made as it was
an easy and practical way to distribute the functionalities of the developed Python library.
Additionally, it is assumed that the knowledge and experience needed to download, configure
and use a command line tool are congruent with the expected capabilities of an Android
Developer.

To use the solution, the user must use the command: generateDependencyRules <path-
to-andorid-project> <options>. The options offered are:

• -v: Makes the process verbose, printing details while running

• -d <directory>: Specifies where to save the generated ProGuard configuration files.

• -h: Prints the options information.

While the solution is running, it prints a progress bar on the console which informs the user
of the current stage of the process, the time elapsed and the estimated time to completion.
When all processes end, it prints a message notifying the user of the location of the generated
ProGuard configuration files.

4.4. Application Specific Rules Solution

Along with dependency rules, it is also desirable to be capable of generating rules specif-
ically for the source-code of the application. We complement our solution for dependency
rules with another that is dedicated to the generation of rules for the parts of the code that
conflict with ProGuard functionality.

To be able to do this, we first must be able to detect possible conflicts between code
functionality and obfuscation on the source-code classes. In order to do so, we carry out a

51

static analysis of the source-code by using the previously presented Application class. As the
general detection of reflection is a problem known to be challenging, we focused our efforts
on detecting three common practices that clash with code obfuscation:

1. Resource loading from the APK.

2. Java code called from the native side.

3. Data Classes

4.4.1. Resource Loading from the APK

This is the practice of saving data on the APK (images, audio, text, etc.) so that these
are available for the code later on. The convention is to search for these resources under the
package name of the class that uses them. Therefore, if the class name is obfuscated, trying
to load resources from the APK will fail as it will be searching for the resources under the
old name associated to the class.

To carry out resource loading in Java, one must use the Class.getResourceAsStream()
/ getResource() or ClassLoader.getResourceAsStream() / getResource() method calls.
The presence of these calls inside of a class indicates that the class is loading resources from
the APK.

To detect these calls, we take advantage of the Application class and AppClass class. As
we know, the Application class initializes instances of the App class for each of the classes
in its source-code. This AppClass instances already carry out a static analysis of the code
to detect import declarations. We extend this analysis by also searching for the desired
method calls. We use the regular expression \.getResource(AsStream)?\(to detect any of
the resource loading call variations.

We save the package locations of all classes that have a match with the regular expression
into a radix tree. This tree is saved as a field in the Application class object.

4.4.2. Java Code Called from the Native Side

With the Java Native Interface (JNI) it is possible to find and call Java classes and
methods from C/C++ code. As these calls are made referencing the package name of a
class, obfuscating the names of the called classes will result in an error.

To detect any usages of this practice, we must analyze the native side source-code files,
namely, all code written in the C or C++ language. We detect the location of these files
during the Application class object initialization and then proceed to analyse them.

The detection of the classes involved in this practice is tricky. It is not the class making the

52

call that must be protected, but rather the class being called by the env->FindClass(class-
Reference) JNI method. This can be difficult as the class package name may not be present
directly on the method call. More commonly, it will be saved in a variable either locally or
in another file entirely, as all JNI interactions may be delegated to a single file which is then
included by others.

To select which classes must be protected because of this practice, we inspect the C/C++
code files searching for files which are probably declaring string variables which are then going
to be used to call Java code. In order to do this, code files are selected as candidates if they
have either a ‘‘JNIEnv’’ en variable declaration (which holds the env->FindClass(classRefe-
rence) call), include the JNI header file (which contains the env->FindClass(classReference)
method declaration) or actually call the class finder method.

Then, we use the \"([a-zA-Z0-9_]+?/[a-zA-Z0-9_]+?[a-zA-Z0-9/_]*?)\" regular ex-
pression. This will match with any string declaration that follows the standard package
name convention, allowing us to extract the package locations of the classes which will be
called by the native code.

Lastly, we create a new radix tree in which we save all the package locations of classes
being referenced in the native side. This tree is saved as a field in the respective Application
class object.

4.4.3. Data Classes

While data classes have no inherent conflicts with code obfuscation, they are commonly
used to model data which is then serialized into another medium. This serialization often
relies on reflection, which will fail if the name of classes or its members are changed.

In the Kotlin language, data classes are defined at the class declaration in the following
manner: data class className. Therefore, to detect data classes in the Kotlin language, it
suffices to check if the word data is included in the class declaration. In Java, there is no
special syntax for data classes. This means that we must inspect the composition of classes
to deduce if they are data classes.

To do this, we make use of the python library javalang. This library can parse Java code
and present the elements of it in an ordered manner. To deduce if a class is possibly a data
class, we look at its composition and the proportion between their number of private fields
and non-null returning methods. We assume that every data class must have at least one
method that is used to retrieve the value of a certain private field, the so-called accessor
methods. We suspect a class to be a data class if they have n private fields and m methods
which return non-null values, where m > n and n > 0.

The locations of all suspected data classes are stored in a radix tree saved as a field in the
Application class object.

53

4.4.4. Redacting Rules

Once we have the package locations saved in radix trees, one for each kind of conflict, we
can employ a method to redact rules for these classes.

We design the getRulesForClasses() method for the Application class. This method takes
a radix tree, a rule prefix and a rule suffix as arguments. The rule prefix is the section of the
rule that goes before the class specification. In turn, the rule suffix is the section of the class
specification that specifies members of a class. The tree will be one of the three that hold the
location of conflicting classes (JNI, APK or data class). This method generates the desired
rules by concatenating the rule prefix, the package locations held in the provided tree and
the rule suffix respectively.

The rules needed for each of the conflicts are:

1. APK resource loading classes: We must protect the names of these classes from
obfuscation, as these names will be used when looking up the resources. Therefore, the
rule prefix needed will be -keepnames class and the rule suffix will be empty. This was,
we redact rules of the form: -keepnames class package.location.of.APKclass.

2. Classes called from JNI: We must protect the code of this class from shrinking and
obfuscation. Names are protected from obfuscation because class and method names
will be used in JNI calls. Shrinking must also be disabled for these classes as there
might be methods deemed to be dead code as they are not referenced by the Java
code but are used on the native side. We also need to protect the classes in the type
descriptors of the methods and fields of the class. This is to make sure that the parameter
types of native methods are not renamed. To achieve this effect, we use the preffix -
keep, includedescriptorclasses class and the suffix { *; }. This results in rules of the
form: -keep, includedescriptorclasses class package.location.of.JNIclass { *; }.

3. Data classes: As these classes may be used in diverse ways to serialize the data they
are holding, we must completely protect the classes suspected to be data classes. This
is done with the prefix -keep class and an empty suffix. This result in rules of the form:
-keep class package.location.of.dataClass

In addition, we wanted to take advantage of rule wildcards to avoid returning an unnec-
essary large number of rules. To achieve this, the method compares the package locations
held in the provided tree with the ones saved in the package structure tree of the Application
object.

If all files in a directory of the package structure are present in the provided tree, we can
use the ‘‘*’’ wildcard to redact a rule that points to all files in said location instead of a
single rule for each file.

54

4.4.5. Packaging the Solution

The functions provided by this solution are added to the command line tool packaging by
creating the command generateApplicationRules <path-to-android-project> <options>.
This command has the same options as the generateDependencyRules command with the
addition of the following:

• -noRes disables rule generation for resource loading from the APK;

• -noJNI disables rule generation for Java classes called from the native side;

• -noData disables rule generation for data classes.

55

Chapter 5

Validation

This chapter presents the different tests we carried out in order to validate our solutions.
Firstly, we introduce the experiment designed to test our methods for rule generation, followed
by a brief explanation of the tools developed to carry out said experiment.

Secondly we present the results of our experiment when testing the dependency rule gen-
eration module and discuss the significance of said results. We also present the effects of our
cleanup module on the generated dependency rules.

Then, we show the effects the generated dependency rules have on the size of an APK
built with ProGuard enabled. We compare the results of using generated rules with and
without the cleanup module and how they measure up to the effects the original rules of an
application have on the APK.

Next, we present a possible complication of our dependency rules solution, how it may be
protecting more classes than necessary. We explain the development of tools meant to detect
which generated rules are broader than those in the original configuration file and how we
use them to see the prevalence of these kinds of rules in our results.

Finally, we test our solution for application specific rules, present the results and discuss
their significance.

5.1. Replicating Existing Rules

In order to validate our solutions, we desire to know if they are able to recreate ProGuard
rules used by applications that enable obfuscation. To this end, the following validation
experiment was designed:

56

1. From the F-Droid applications, we randomly select 50 applications out of the 649 deter-
mined to have ProGuard enabled and which are suited to be tested. The requirement
for applications will change depending on which solution we are testing.

2. With our solutions, we generate dependency rules or application specific rules for each of
the selected applications. For the dependency rules solution, as the tested applications
are present in the crowd-sourced data, we must make sure to exclude their own saved
data when generating rules for it.

3. Finally, we compare the generated rules with the original rules present in the ProGuard
configuration files of the application. We note how many of the generated rules are
relevant for the application and, for the dependency solution, calculate the accuracy,
precision, recall and F1-score of our method.

This test is considered adequate to validate our solutions, as we use real applications
which have enabled ProGuard on their release build and try to replicate the actual rules the
developers included in order to do so. In this way, we can test how our solutions perform in
a grounded manner.

5.2. The Tester Class

To be able to run this experiment automatically and efficiently, the Tester class was de-
veloped. The methods included in this class give us all the tools needed to run the previously
described experiment. The UML diagram of this class can be seen in figure 5.1. The
method arguments are omitted for the sake of clarity, a full version can be found in Annex
A.2.

Figure 5.1: Tester Class UML Diagram.

To run an experiment, we use the ruleGeneratingTestDB() method. The arguments
of this method let us customize different aspects of each test we run, such as: number of
applications to test, database to use and inclusion percentage to use for heuristics. The
workflow of running a test is seen in figure 5.2

57

Figure 5.2: Workflow of the Tester Class.

Step 1: The method uses a DBConnect class instance to connect with the specified database
and uses its getAppsToTest()method to select applications that fulfill our test requirements,
getting their paths. Using these paths, we initialize an instance of the Application class for
each of these applications. Finally, the specific method that runs our solution is assigned
to a variable. The selected applications, specifications and method to test are passed as
arguments to the ruleGeneratingTestTemplate() method.

The ruleGeneratingTestTemplate() method was designed as initially solutions used data
loaded in a FDroid class instance rather than in a database. When making the changes needed
to adapt our solutions for database usage, we designed tests for each of these methods to
compare their results. Here, a design pattern was noticed that allowed us to create a higher
order method which receives a list of applications to test and a rule generating method.
With these arguments, the ruleGeneratingTestTemplate() method then runs our designed
experiment. This gives our Tester class better extensibility. If we want to test new methods
for rule generation in the future, it will suffice to create a new test method that feeds the
needed arguments to our template along with the new rule generating method.

Step 2: Once the ruleGeneratingTestTemplate() method has the applications selected for
the experiment and the method associated to the solution to test, it carries out our designed
validation experiment. For each Application class instance, it uses the specified method to
generate dependency rules for it. It also uses the Application class instance to obtain the
rules present in its original ProGuard configuration files.

Step 3: It then uses the listSimilarityPercentage() method to study the similarities be-
tween this two lists of rules, namely calculating the percentage of correctly generated rules.
This method also calculates the performance indicators for our solution. This entails de-
tecting which rules are true positives (correctly generated), false positives (rules generated
which are not in the original ProGuard files), true negatives (rules correctly ignored by our
heuristics) and false negatives (rules that should have been selected by our heuristics but
were not) and then using this knowledge to calculate the accuracy, precision, recall and F1-

58

score of our solution. Lastly, the listSimilarityPercentage() method studies the rules that
were not generated, determining why these rules were present in the ProGuard rules of the
application, and returns all results.

Step 4: Finally, the ruleGeneratingTestTemplate() method records results for each ap-
plication, along with the average of all results, in separate dedicated files.

5.3. Validation Results For Dependency Rules Solution

For this experiment, we wish to test our solution for generating rules for dependencies.
For an application to be able to be selected for this test, it must have ProGuard enabled,
have at least two rules which mention any of its dependencies and at least two dependencies.
We will be generating rules for the dependencies of these applications by choosing from a
pool of 5.589 total rules included by 600 applications of the F-Droid repository.

The rulesForAllDepsExcludingApp() method of the DataBaseAnalyser class is the one
that starts the processes of this solution. This method and the requirements for applications
are passed to the ruleGeneratingTestDB() method to carry out the experiment. The results
of this validation experiment are presented in table 5.1.

This data is the result of testing our solution with the cleanup module deactivated. This
decision was made as the cleanup step requires the presence of a debug build APK. This
entails the task of building an APK for each one of the apps to be tested, many of which
were developed with different versions of Android Studio, Java, Gradle and dependencies.
This made it impractical to include this step in random testing, as we would have to generate a
debug APK for every application, solving the specific conflicts in versioning and configuration
for each case. As this step is used to reduce the false-positive results of our method, we
expect the precision and F1-score of this test to be negatively affected. Later we present an
experiment made to illustrate how this phase reduces the false positives in the results.

Table 5.1: Performance Measurements for Generated Rules.

Performance Indicators Score
Avg. Correct Rules 0.73

Accuracy 0.69
Precision 0.03
Recall 0.89
F1-score 0.07

As we can see in table 5.1, nearly three fourths of all original rules were generated
correctly, this means they are exactly the same as the ones present in the original rules. This
is a very telling result. As we are testing the solution against the total number of original
rules, application specific rules included, these results convey that dependency rules conform
a huge portion of rules in F-Droid applications. In table 5.2 we present the composition of
the missing rules. We can see that 31% of the missing rules can be attributed to rules that

59

Table 5.2: Analysis of missing rules.

Type of Rule Percentage of missing rules
App Specific 31.0
Dependency 15.93
Java/Android 18.87

Others 34.2

target code specific to the application they are from.

If we take this into account and remove these rules when calculating the success of our
method, we see that we are generating correct rules for dependencies 80% of the time. In
fact, we are generating all the rules needed for dependencies for 30% of applications tested.
If we pair this with our recall score of 0.89 (as shown in table 5.1) we can see that when
determining if a rule should be added, most times, we do not leave out actual rules needed
to resolve conflicts brought upon by third party code.

This also conveys that the 15.93% of missing rules that reference dependencies are ones
that are likely unique to their applications, either by referencing dependencies that are not
popular among the community or having been redacted in a peculiar way. The rest of the
missing rules present are either rules referencing elements provided by Java and Android
studio (i.e, java.lang.String, android.app.Activity) or rules which are referencing elements
whose origin cannot be determined. This former set of rules may be referencing dependencies
which cannot be determined by parsing a project’s build.gradle file, such as second degree
dependencies: dependencies needed by an actual dependency of the application.

On the other hand, the precision and F1-score of our method calls for a closer look. This
indicators tell us that most rules generated are false positives, which may lead to ProGuard
protecting blocks of code unnecessarily. While at first this can look detrimental to the result
of the solution, the nature of ProGuard rules assures the extra ones will not affect the acting
coverage of ProGuard. This is because the extra rules are pointing to classes which required
said rule when present on other applications. We can then assume that if said rule isn’t on
the original rule file, it’s because said class isn’t being used. Therefore this extra rules will
be pointing to elements that are not present in the application’s source code, and thus not
affecting the coverage in which ProGuard acts. We take advantage of this fact while doing
cleanup step of our solution.

5.4. Cleaning Up The Generated Rules

To illustrate the effect that our cleanup module has on the results, we select an app with
a recent release, build a debug APK locally and use this to carry out the cleaning phase.
The app selected is “AELF”, which latest release was added to F-Droid on the 13th of may,
2020. Results are shown in table 5.3.

With the cleanup module enabled, we went from generating a total of 348 rules to 173

60

Table 5.3: Performance Measurements for AELF.

Cleanup Off Cleanup On
Avg. Correct Rules 0.57 0.57

Accuracy 0.74 0.86
Precision 0.03 0.06
Recall 0.76 0.76
F1-score 0.06 0.11

rules. As seen by the results, when we carry out the cleaning phase of the solution, our
precision and F1-score are nearly doubled. Still, their value is low. This is due to our
inability to filter -dontwarn rules, as they may be referencing compile-time dependencies
which will never appear on the final APK. In fact, from which 61% of all false positive rules
remaining after cleanup are either -dontwarn rules. On the other hand, our recall remains
the same, so the cleaning process is not disrupting the correct selection of rules.

5.5. Effect of Generated Dependency Rules on Final
APK Size

Finally, we wish to know how our generated rules are doing their job. To do this, we are
going to observe how the generated dependency rules affect the final size of the APK of an
application.

This is a tricky aspect to test. To carry out this experiment, we must find an application
for which we can generate all dependency rules and that does not need application specific
rules. While a number of applications met this criteria, most were small applications that
included a small number of rules. This are not very interesting cases to study.

We finally selected the “Alldebrid” application. While we cannot generate all of its rules,
it is still a valid case study as the only rule that eludes us is a -dontwarn rule. When building
the APK with our generated rules, a single ‘‘Reference not Found’’ warning prevented the
build. But with our knowledge of the probable causes of these kinds of warnings, we were
able to realize it was a non-issue and use a -dontwarn rule to solve this problem. While it
did not generate the entirety of the rules, our solution permitted a user with little knowledge
of the application to quickly generate the rules needed by it to generate a build.

To test the effects of the generated dependency rules on the final size of these applications
APK we had to generate 4 builds. The first is our control APK, generated with ProGuard
disabled. The second build is generated with ProGuard enabled and using the original rules
included in the ProGuard configuration files of the application. Thirdly, we generate a build
with ProGuard enabled using the generated dependency rules without enabling our cleanup
module. Lastly, we generate a build with ProGuard enabled using the generated dependency
rules with the cleanup module enabled. The results of this test can be seen in table 5.4.

61

Table 5.4: Size of Builds for Alldebrid.

Conditions of Build Size of APK (MB)
ProGuard Disabled 2.6

ProGuard Enabled, Original Rules 1.6
ProGuard Enabled, Generated Dependency Rules Rules, Cleanup Off 2.0
ProGuard Enabled, Generated Dependency Rules Rules, Cleanup On 1.9

We can see that the generated dependency rules, while not at the same level of the original
personalized rules which reduce the size of the APK in 38%, were quite effective in reducing
the size of the generated file. The uncleaned rules reduced the original size by 23% while the
ones that were cleaned up resulted in a decrease of 27%. This validates our conjecture that
the false positive rules contained in our generated ProGuard configuration files do not hinder
the effects of ProGuard in a significant manner. Still, the results are better when carrying
out the cleanup, so this process is valuable for our solution.

5.6. Overprotective Rules

There may be another way in which these extra rules are affecting the coverage of Pro-
Guard. As we saw before, rules can use the * and ** wildcards to match various classes at
once. Also, different rule types protect the referenced classes in different ways. This means
that while a generated rule might not be in the original rule file, it may be protecting blocks
of code protected by an original rule by referencing them in a broader way. Before we con-
tinue, we must explain the concept of weaker and stronger rules. We formally define weaker
or stronger rules in the following manner:

Definition 5.1 A rule type F is weaker than a rule type E if, and only if, the protection
from ProGuard offered by F is lesser than that of E. In the inverse case, we say F is stronger
than E.

Example The rule type -keppclassmembernames is weaker than -keepnames, as the for-
mer protects only class members (fields, methods, variables, etc.) from obfuscation while
the latter protects class members and classes from obfuscation. In turn, -keep is stronger
than -keepnames, as the latter offers protection against obfuscation and the former protects
against obfuscation and shrinking.

We use the definition of weaker rules to define overprotective rules:

Definition 5.2 Let A be a rule which references a group of classes C using a rule type E and
B a rule which references a group of classes D using a rule type F . Then, A is overprotective
in reference to B if, and only if, D ⊆ C and F is weaker than E.

Example ‘‘-keepnames class a.specific.class.A’’ and ‘‘-keep class a.specific.class.**’’ both
protect the class A from being affected by ProGuard, but the former also protects all classes
in the same directory as A as well as all classes in all sub-directories by using the ** wild-

62

card. Additionally, the first rule uses the -keepnames rule type, which is weaker than the
-keep rule type used by the latter. We say then that ‘‘-keep class a.specific.class.**’’ is
overprotective in reference to ‘‘-keepnames class a.specific.-class.A’’.

The question then arises: when generating rules for the dependencies of an application, are
we overprotecting its classes? As the benefits of ProGuard are maximized when applied to
the largest number of classes possible without incurring an error, we wish to avoid rules that
protect more classes than needed. To explore this issue, we designed an algorithm capable
of detecting if a rule is overprotective in reference to another rule.

5.6.1. Overprotective Rule Detection Algorithm

The algorithm takes as arguments two lists, one for the candidate overprotective rule A
and one for the rule B. Each list is the result of splitting A and B by their white spaces. It
then traverses the elements of the list from start to finish determining if B is overprotective
in reference to A.

To do this, it follows the following steps:

1. First, it checks if the length of both rules is equal. Rules with different lengths have
different compositions and are therefore different kinds of rules that can’t be related in
an overprotective way.

2. Then, as the rule type declarations are the first part of rules, we determine if the rule
type of A is weaker than the one of B.

3. We traverse the rest of the elements of both rules in tandem, recognizing if they are
class references or not.

• If the current element is a class reference, we use an auxiliary algorithm to determine
if the classes referenced in A are encompassed more broadly by the class references
of B.

• If not, it checks if the element in A is the same as the element in the same position
in B.

A pseudo-code explaining in more detail the inner workings of this algorithm can be found
in Annex B.1. An example of how this algorithm works is found below.

Example We wish to check if A is overprotective in reference to B.

A: -keep class classReference extends classReference2
B: -keepnames class classREference3 extends classReference4

The steps that our algorithm takes are the following:

63

0. len(A) = len(B)?: As A and B are the same length, we continue to examine each element
of both rules. If they had different lengths, it would mean one has more elements than
the other, signaling they are different types of rules and therefore not comparable. Such
is the case with -keep class aClass extends anotherClass and -keep class aClass,
where the first protects classes with the aClass name that extend the anotherClass
class, while the second protects classes with the aClass name that are not extending
another class. These are two disjointed groups of classes.

1. (-keep, -keepnames): The algorithm recognizes the first elements -keep and -keepnames
as rule type definitions. As -keepnames protects only from obfuscating and -keep from
both shrinking and obfuscation, we can say the rule type of B is weaker than A. So we
continue. If it were the other way around, and A was weaker than B, we can immediately
say A is not overprotective of B.

2. (class, class): We check the next element, as both are class, we continue. If in turn,
one was enum or interface, they would be targeting different types of Java files and are
therefore not comparable.

3. (classReference, classREference3): We use our auxiliary algorithm to check if class-
Reference also references the code referenced in classREference3 in an equal or broader
way. If this is the case, we will continue. If not, A is not overprotective of B.

4. (extends, extends): Same as step 2.

5. (classReference2, classREference4): Same as step 3.

6. (_, _): If we reach the end of both rules without interruptions, we know A is overpro-
tective in reference to B.

5.6.2. Overprotective Class Reference Detection Algorithm

The overprotective class reference algorithm was designed to be able to determine if all
the classes or directories referenced by a rule Y are also being referenced by a rule X.

It does so by traversing the elements of the class reference of Y using the class reference
of X as a map. This means, starting by the first element of the class reference of Y , we
only advance to the next element if this is a path that would be taken by the class reference
of X when referencing a package structure. These determinations are done by applying our
knowledge of class reference syntax and wildcard use.

This algorithm is quite long and considers various possible cases. Instead of explaining
each case here, a pseudo-code explaining in more detail the inner workings of this algorithm
can be found in Annex B.2. An example of different class references and whether they are
overprotective or not can be seen below.

Example 1 We wish to check the overprotective relationship between the following class
references:

64

A: a.specific.class.**
B: a.specific.class.reference

The steps that our algorithm takes for (A, B) are the following:

1. (a, a): As at this point both rules point to the same class/directory name, we see
if the rest of rule A is overprotective in reference to the rest of rule B. If they were
different, they would point to different directory/class names and therefore A cannot be
overprotective in reference to B.

2. (specific, specific): Same as 1.

3. (class, class): Same as 1.

4. (**, reference): Until this point we know that both rules are referencing the same
location. B point to a specific class in the current location. As A finishes with a **
wildcard, it references all classes in the current directory and all sub-directories. We
can see that A is overprotective in reference to B. This would also happen if A ended in
a * wildcard, as it references all classes in the current directory.

5. (_, _): If we reach the end of both, A is overprotective in reference to B.

Example 2 We wish to check the overprotective relationship between the following class
references:

A: a.**.class.reference
B: a.more.specific.class.reference

The steps that our algorithm takes for (A, B) are the following:

1. (a, a): As at this point both rules point to the same class/directory name, we see
if the rest of rule A is overprotective in reference to the rest of rule B. If they were
different, they would point to different directory/class names and, therefore, A cannot
be overprotective in reference to B.

2. (**, more): A has a ** wildcard at this position. As this wildcard represents any
character including the package separator “.”, and is present at the middle of a class
reference, it is used to reference all classes which match with the continuing suffix.
Basically, A is referencing classes in the current directory, or all sub-directories, whose
package name matchesclass.reference
. We are going to be looking for a reference to the next element of A, class in B, as this
will indicate if B is possibly referencing the same classes. As the next element of B is
not class, we continue to check the following element.

3. (**, specific): Almost the same as 2, but this time we see that the next element of B
is class, so we continue our search advancing in both rules. In turn, if we had reached
the end of B never finding class, A cannot be overprotective in reference to B.

65

4. (class, class): As at this point both rules point to the same class/directory name, we
see if the rest of rule A is overprotective in reference to the rest of rule B.

5. (reference, reference): Same as 4.

6. (_, _): If we reach the end of both, A is overprotective in reference to B.

5.6.3. Prevalence of Overprotective Rules in Generated Depen-
dency Rules.

We integrate these algorithms to the listSimilarityPercentage() method with the inten-
tion of finding out how prevalent overprotective rules are in the rules generated for depen-
dencies.

Table 5.5: Prevalence of Overprotective Rules in Generated Dependency
Rules.

Total Overprotective Rules. 11.7% of all generated rules.
Over Protected Correct Rules. 6.38% of correctly generated rules.

From table 5.5 we learn that, on average, 11.7% of all generated rules are so called over-
protective rules. Furthermore, 6.39% of the correctly generated rules are being overprotected.
So while some of the code of the applications might be protected needlessly, the majority of
it is being adequately protected, even if a small fraction of the rules are broader than needed.
From the results of our APK size test, we can infer these broader rules are responsible for the
difference in size between the APK built with original rules and the one built with generated
rules.

Additionally, while we could remove all detected overprotective rules to reduce the clutter
in the returned rules, we would also be hindering our results. In fact, when removing all
overprotective rules for our test, the average of the correctly generated rules drops from 73%
to 62%.

5.7. Validation Results For Application Specific Rule
Solution

Finally, we test our ability to generate rules for classes detected to need them. To do
this, we conduct a similar experiment to that of dependency rule generation. We generate
application specific rules for 50 applications and compare them to the previously existing app
specific rules included in their ProGuard configuration files. The main change is that for an
application to be eligible for testing, it has to include at least one application specific rule in
its ProGuard configuration files.

We consider this an appropriate validation method as if these practices are present on

66

an application with ProGuard enabled, there must exist a rule within its original ProGuard
configuration files addressing it. The results can be seen in table 5.6.

Table 5.6: App specific Rule Generation.

Avg. Correct Generated For
Resource Loading 0.50 0.8

JNI 0.0 0.10
Data Classes 0.05 0.84

For resource loading, we can see that 50% of the generated rules are also present on
the original rule files and that this practice is detected in 8% of the applications. But an
inspection of these results revealed an important detail: the results were quite binary, either
100% of the rules were relevant or 0% were.

A deeper manual inspection of this case was conducted as the number of involved appli-
cations was low. This inspection revealed that applications with 0% of the generated rules
present in their original ProGuard configuration were obfuscating most of their classes with
general rules. For example, we found 13 cases of this practice inside the application “Xab-
ber”, but the generated rules were not considered to be inside the original rule files as Xabber
protected all of its classes. This case repeated itself with all applications manually inspected
that had 0% correct rules for resource loading. Taking this into consideration, 100% of the
generated rules for this practice were correctly generated.

For Java code called from the native side, we see that none of the rules generated were
included in the original ProGuard configuration files. This result was quite alarming, so a
deeper inspection of the case was conducted.

This inspection consisted in using our method to detect all classes that employed this
practice and then using its path to determine the build.gradle file in charge of configuring
its build. This inspection revealed that in 100% of the cases, the classes detected to be called
by the native side were relegated to an independent secondary module within the application
which did not enable ProGuard in its build, therefore these rules would never appear on the
original rules.

This meant that our automatic validation could not be used for validation of the detection
of this practice. Alternatively, we conducted a manual inspection of the detected classes and
if they were being called from the native side. This inspection revealed that 100% of the
classes detected had an actual call from the native side. Still, this validation is inconclusive
as we are not able to tell if there are classes being called that are not detected.

For data classes, we see that while detecting them in 84% of the applications, only 5% of
the generated rules were present in the original rule files.

67

Chapter 6

Conclusions

In this chapter we present the conclusions of this bachelor thesis. Firstly, we present a
brief summary of the work carried out. Secondly, we recount the objectives we proposed for
our solutions and the degree to which they were, or were not, achieved. Thirdly, we discuss
the relevance a solution with our results has on the addressed problem. Next, we reflect
on the experiences and lessons we obtained during this bachelor thesis and how the unique
context in which it was developed affected our work. Finally, we present future works that
could stem from the solutions presented on this bachelor thesis. We consider new kinds of
solutions along with upgrades that could be made to the current solutions.

6.1. Summary of Work Done

During this bachelor thesis we first presented the problem we set out to solve. This
consisted in the difficulties developers experience when trying to enable ProGuard for their
builds and all the hassle they had to go through in order to solve them with the redaction
of rules. We explained how long and difficult to complete this process can be, resulting in a
technical bottleneck that keeps most developers away from ProGuard, and how developing a
solution for rule generation would benefit facilitate the implementation of obfuscators.

We then presented the design and functions of a library of Python classes meant to model
Android projects along with the main parts of them that are involved when implementing
ProGuard. We explained how these classes extract the data related to ProGuard from the
projects and how we later used this information to conduct a brief study of the applications
contained in the F-Droid repository. We then presented the results of this study and how it
led us to ideate a possible solution for dependency rules.

This solution consisted of two phases. First was the data loading phase. On it we re-
purposed the developed classes. We used them to recollect the data surrounding the rules
included by developers to address conflicts brought on by the dependencies of their appli-

68

cations. Then, we presented the DBConnect class and how it is used to save this data in a
database along with creating specific queries for quick and efficient access to it. This process
was meant to crowd-source the collective knowledge of developers which have successfully im-
plemented ProGuard. This was done in the hopes of making use of this wisdom to generate
rules for the dependencies of an application.

The second phase of the dependency solution was in charge of the actual generation of
rules. On it we used the Application class to analyse the application we wanted to generate
dependency rules for. We used the methods of this class to detect the declared dependencies
of the application. Additionally, we used the DBConnect class to build a query based on
these dependencies to retrieve the rules of all applications that share at least one of the
detected dependencies. Then we showed how we applied diverse heuristics to select, from
the retrieved rules, those that would be useful for our application. Finally, we presented
a method for cleaning up the generated rules in an attempt to reduce the number of false
positives in the results.

Then we presented a complementary solution that aimed to detect some of the most com-
mon conflicts code sources have with ProGuard. Instead of focusing on detecting reflection in
the code, which is known to be a challenging task, we focused on detecting specific common
practises on the code. We attempted to detect the presence of data classes, Java code being
called by the native side and resource loading from the APK by carrying out a static analysis
of the code paired with the use of heuristics. We then presented a module which generated
rules for the classes detected to need them, explaining the reasons why each problem had to
be addressed by a specific rule.

Afterwards, we proceeded to validate our solutions through different tests. First, we
presented a test designed to measure the efficacy of our solutions and the class developed
to carry it out automatically. The test consisted in using our solutions to generate rules
for applications which have successfully implemented ProGuard. We intended to see if our
solutions were able to replicate the rules found in the original ProGuard configuration files
of the applications.

We then proceeded to show the results of this test for our dependency rules solution.
Additionally, we tested the effects of our cleanup module on the generated rules and how
they affected the size of an APK when used to generate a build. We also presented a possible
complication of the generated solution in the form of overprotective rules. This concept refers
to when generated rule protects more code than necessary in reference to the original rules.
We presented the design of an algorithm meant to detect overprotective rules and the results
of applying said algorithm to the generated rules.

Finally, we tested our solution for application specific applications in a similar manner.
We wanted to know how many of the rules generated by our solution were targeting classes
that were too targeted by the original rules of applications that already enabled ProGuard.
We present the results for our solution and discuss their significance.

69

6.2. Objectives & Accomplishments

After carrying out the development of our solutions, which aimed to solve the problem
addressed by this bachelor thesis, we must now analyse how these solutions measure up to
our proposed objectives. Below we recount these objectives and discuss to which degree they
were fulfilled. The employed categorization of the completion of an objective is (From higher
to lower).

1. Completely achieved: The objective is considered to be completed in its entirety
without any reservations.

2. Satisfactorily achieved: The objective is considered to be completed but with some
minor reservations about how it was completed.

3. Partly achieved: The objective is considered to be almost completed but not entirely.
Further validation is needed to determine if it was completed.

4. Somewhat achieved: The objective is not completed, but some advancements were
made that signal an eventual completion of the objective.

5. Not achieved.

Studying the F-Droid Repository: We aim to better understand the relationship be-
tween Android applications and ProGuard.

We consider this objective to have been completely achieved.

Not only were we able to develop the necessary tools to conduct our study, we were
also capable of using the results of this study to guide the work done subsequently. The
information gained through the study made us realize the prevalent role dependencies play
in the difficulties of the implementation of ProGuard. We learnt that the majority of the
rules of F-Droid applications were targeting dependencies, and in turn, we learnt that most
dependencies were used by multiple applications. This knowledge led us to devise a solution
that took advantage of the rules different developers had used to successfully resolve the
conflicts brought upon by dependencies and use them for other applications which employed
the same dependencies.

Complementary to this, the tools developed for this study were valuable for the entirety
of the work done. The classes and methods generated in order to carry out our study were
permanently used in our solutions, proving this study not only helped us to better understand
the problem, it also set us on the right path to generate solutions for it.

Redaction of Dependency Rules: We aim to generate the rules needed by the depen-
dencies of an application in order to function correctly when ProGuard is enabled.

70

We consider this objective to be satisfactorily achieved.

As seen by the results of our validation of our solution for dependency rules, we were
able to design and develop a solution capable of generating rules for the dependencies of
an application. Our test showed the solution is capable of generating, on average, 80% of
dependency rules for applications with a recall of 0.89. This shows our solution is generating
most of the rules needed by the dependencies of an application while being quite accurate
when deciding which rules of our crowd-sourced pool of rules are useful.

While not generating the entirety of the rules, the generated ones are of massive help to
a developer. This can be witnessed in our study of APK sizes were, while not being able to
generate all rules and having no experience with the source-code of the tested application, the
generated rules significantly reduced the effort from our part and permitted us to generate
builds of this application with ProGuard enabled.

This objective is considered satisfactorily achieved and not completely achieved because
of the number of false positive rules included in the ProGuard configuration file generated,
reflected by an F1-score of 0.07. This is something we knew to be a possibility as the nature
of using heuristics entails trading precision in favor of accuracy, which is the reason for the
presence of so many false positives in our generated files. This is also caused by our inability
to filter out -dontwarn rules, as this can be used to ignore warnings associated with compile-
time only dependencies which will never end up on the APK used for this cleanup. A new
method is needed for this task.

While these extra rules generally do not have a major impact in the resulting configuration
of ProGuard, and some can be removed in a cleanup phase (increasing the F1-score to 0.11),
there are some that are overprotecting classes from the application which includes them.
These overprotective rules are suspected of being responsible for the differences between the
sizes of the APKs generated with and without the cleanup module enabled.

Additionally, these excess rules could confuse a user by their inclusion on the generated
files as they can be misinformed about the rules needed by their dependencies. More work
needs to be done in the cleanup phase of the solution in order to consider this objective
completely achieved.

Detection of Source-Code Conflicts: We seek to detect classes of the source-code of an
application which may conflict with obfuscation.

• Resource loading from APK: This objective is considered to have been partly
achieved.
We were able to detect parts of the code that employ this practice as its presence is
announced in a straight-forward way by the use of certain method calls. Nevertheless,
validation of this detection turned out to be quite difficult as the repository used for
validation presented only a few cases for us to study, and those that did use this practice
often relied on bad practice rules to address these problems (like protecting the entirety

71

of their classes).
In order to further validate the detection of this practice, and redaction of rules for it,
we need to procure a validating data-set which has a more prevalent use of this practice
and that does not include bad practice rules in their original files.

• Java code called by JNI: This objective is considered as partly achieved.
We were able to design a method that detects this practice in an application. Neverthe-
less, validation of this detection turned out to be difficult. This was because the times
this practice was used, it was relegated to a separate secondary module of the project
that was built with ProGuard disabled.
While a manual inspection of the detected instances of this practice revealed it to be
quite successful, this inspection is inconclusive as only the cases where it was detected
and ended up being present were observed. A deeper and more complete validation
where we thoroughly document the presence of this practice on multiple applications
and then test our ability to detect them is required. Unfortunately, this kind of study
requires an appropriate amount of time to be done correctly, and these deficiencies were
detected too late in the process of our work.

• Data Classes: This objective is considered not achieved.
This is because of the method employed to deduce if classes are data classes is quite
inaccurate, unable to detect instances of this practice correctly. This is reflected by the
high detection among the applications used for validation while the generated rules were
rarely included in the originals.
The reason behind this is our simplistic approach to the detection of data classes. Def-
initely, the method of observing the number of private fields and non-null returning
methods is not enough to let us deduce if a class is indeed a data class and a more
thought-out method needs to be designed.

Redaction of Rules for Source-code Conflicts: We aim to redact rules that will solve
the conflicts detected in the source-code.

This objective is considered satisfactorily achieved.

The methods designed to redact rules for these conflicts were successful in doing so. The
research done on the problem each of these practices presented allowed to correctly select
the type of rule needed to address them. Then, the module designed to redact rules for
classes, which allows us to define the specific rule we wish to redact, made it possible for us
to successfully generate rules for the classes deemed to need them.

Additionally, the module takes advantage of the wildcard system offered by ProGuard to
reduce the number of rules it generates by using the * wildcard to target numerous classes
within the same directory when possible.

Still, the utilization of the pattern matching system could be included to generate rules
that use regular expression to match with specific classes.

72

6.3. Relevance of the Developed Solutions

6.3.1. Dependency Rules Solution

We find our dependency rules solution to be highly relevant in regards to the redaction
of ProGuard rules by developers as this removes most of the hassle associated with the joint
use of dependencies and ProGuard.

Firstly, to the best of our knowledge, this is the first solution that targets this specific
problem. Its mere existence might shine a light on this problem and inspire more developers
to come up with their own solutions. The solution and results were considered relevant
enough to redact an academic paper detailing them.

As previously mentioned, ProGuard mentions in its documentation that in order to get
proper results, a developer must be familiar with the inner workings of the code. As this
solution is able of generating the majority of rules needed by dependencies, it will allow
developers to dedicate less time to addressing the difficulties in ProGuard implementation
brought on by third parties. This will be of great help to developers as it will remove the need
to redact rules for code they are completely unfamiliar with and allow them to concentrate
on their own code.

Additionally, this solution will reduce the time invested in the redaction of rules signifi-
cantly. As we learnt from our initial study, dependency rules conform a significant portion
of the total amount of the rules an application includes. Being able to generate 80% of them
will greatly reduce the total time spent redacting rules.

Finally, as this solution reduces the time needed for ProGuard implementation and the
complexity associated with the redaction of rules for third party code, it might encourage
more developers to implement ProGuard. Consequently, this might aid in reducing the
average size of Android applications and decrease the number of applications which are
cloned.

6.3.2. Application Specific Rule Solution

While less relevant than the one developed for dependency rules, our solution for the
generation of application specific rules might still be of use for developers.

Specifically, our methods for detecting Java code called from the native side and resource
loading may be helpful to developers by pointing out probable causes of conflicts with Pro-
Guard in their source-code and writing rules for them. This would reduce the time invested
in the redaction of rules.

This can also be applied to the source-code of third party libraries. In the case our

73

dependency rules solution is not able to generate all the needed rules for a determined de-
pendency, we could use the application specific rules solution to detect possible conflicts in
its source-code and help developers fill in the missing rules.

In conclusion, we can see that both our solutions serve to alleviate the effort made by de-
velopers while implementing ProGuard in their applications, promoting its use and spreading
the associated benefits.

6.4. Lessons Learnt

While the process of carrying out the work related to the generation of our solutions was
an enriching experience that resulted in many lessons, we can single out three which were
found to be paramount among them.

6.4.1. Learning From Reality

While it might seem obvious that knowing more about a problem will help in the devel-
opment of a solution, this relates more to the source of said knowledge.

At the beginning of the process of this bachelor thesis, after learning about ProGuard and
the problem surrounding it in an academic manner, starting development on the proposal
of a solution was difficult. This was because there were no clear paths as to where to start
working as there were almost no studies made about the matter at hand and no comparable
solutions. Additionally, only comprehending the problem and its causes in a theoretic manner
played against us. The perceived complexity of it made the idea of a possible solution quite
daunting.

It was at this moment that the guiding professors made the suggestion of carrying out a
short study of real Android applications that implement ProGuard. This small study of real
life cases was able to ground our knowledge and helped us devise a possible solution to the
problem.

This taught us that before being intimidated by our theoretical knowledge of a problem,
exacerbated by anxious imagination, we should always remain calm and study the problem
in a real manner.

In our case, the study not only provided guidance as to where to focus our efforts, it also
served as motivation to develop the Python library that ended up being used in the entirety
of the following work. This leads us to the next lesson learnt.

74

6.4.2. Good Design is a Valuable Tool

When we started working on the Python library to conduct our study, we were faced with
a choice: Do we take the easy way out and just parse the files of the projects and immediately
study them, or do we make the effort to create classes to hold this data first? Fortunately,
the latter option was chosen.

By creating these classes early in the development process, we inadvertently created valu-
able tools that were used for the rest of the work to come. As we followed an object-oriented
programming approach to generate these classes, what resulted was a library modularized
by its functions respecting the different actors involved in the problem.

As we continued our work and re-purposed these classes for different uses, the design
decisions made at the beginning facilitated the modification, extension and debugging of
each of the classes of the library. Even when making the change from holding the data on
class instances to the use of a database or going from focusing on dependencies to focusing on
the source-code, the design of these classes made development easier. If this design had not
been present from the beginning in a simplistic form which allowed us to gradually increment
its complexity, the creation of the library may have resulted in a much more convoluted and
messy group of methods.

This taught us that an early and thoughtful design, even if tedious or seemingly unneces-
sary, is incredibly helpful to a developer by allowing a slow and manageable escalation of its
complexity.

6.4.3. Work Ethic During Isolation

For this section I will be speaking in the first person as it is is a more personal subject.

The unique context in which the development was carried out obligated me to take a more
aggressive approach to the organization of the work that needed to be done.

During the whole process of this bachelor thesis the world was shaken by the Covid-19
pandemic. This resulted in being in a state of physical isolation and reclusion while working
on the solutions. This had a myriad of effects.

Firstly, any semblance of a routine or structure was quickly erased. The small rituals I
commonly used to pace my life were erased. My commute to and from the university, which
I commonly used to plan what I had to do that day or the next, disappeared. As did the
spaces I usually used to focus my mind. During my life as a student I had grown accustomed
to only working in the faculty and resting at home. The separation of these spaces helped
me concentrate and rest whenever it was needed. The lockdown we experienced made me
have to rewire my habits and transform my resting spaces into my work spaces.

75

Secondly, the psychological effects of the lockdown played against me. The lack of social
interaction and the monotony of life spent in isolation had a negative effect on my mental
health. Finding motivation to work became exceedingly difficult the more time passed.

Thirdly, the nature of this bachelor thesis, in which I had no development team to rely on
besides my professors, meant that I was the only one in charge of organizing and distributing
the workload. Normally this would not have been a major issue, but in summation to the
previously mentioned lack of structure in my life and worsened mental health, it resulted in
having trouble organizing my times and avoiding procrastination.

This meant a more concrete solution for the organization of my time was required. The
method I employed was the Kanban framework. I used masking tape and post-its to create
a board on the wall of my room, where I would be obligated to see it when waking up and
when going to sleep. On it I did not only organize the work related to my solutions, but also
mundane things of my life like making my bed and exercising.

This solution helped me find structure again as I would grow accustomed to the routine of
waking up, updating the board and start completing my morning personal tasks to then move
on to general work tasks. It also helped me with my mental health, as the small successes
of moving post-its from "to-do" to "doing" and finally "done" kept me motivated to continue
completing tasks and served as rewards. This resulted in me being able to have a better
organization of my work, allowing me to work faster and more efficiently.

6.5. Future Works

6.5.1. Further Validation of App Specific Rules Solution

The first work that should be carried out is to carry out a further validation of the
application specific rules solution.

In order to do this, we must procure a data-set more suitable for the job, where these
practices are used along with ProGuard. Open source applications may not be ideal for this,
and we must procure another source of testing.

Additionally, more thorough testing of our detection capabilities must be carried out,
taking the time to document the appearances of practices on applications and testing if our
solution is capable of detecting them completely.

6.5.2. Further Testing with Real Cases

Another work that stems out of the solutions developed is to carry out further testing of
them. This will help us better understand their strengths and weaknesses in order to guide

76

future development.

The testing we have in mind is to use our solutions on applications that have release builds
with ProGuard disabled. To do this, we must find applications that present errors or bugs
when built with ProGuard enabled and then generate rules for them using our solutions. We
then must generate a new build of the application and see what problems are solved and
which remain.

With this test we look to test if our solutions are actually capable of working in applications
that did not have ProGuard in mind during development.

6.5.3. Growing Nurturing & Cleaning our Pool of Knowledge

An important thing to do after the development of the dependency rules solutions is to
grow our data-set. But this growth must be careful, we must procure to be nurturing our
collective knowledge and not hindering it. When adding applications to the database we
must ensure they employ specific appropriate rules.

It would also be beneficial to develop further our detection of bad practice rules in order
to clean our pool of knowledge from any element of it whose presence is more damaging than
its absence.

6.5.4. Perfecting and Expanding Conflict Detection on Source-
Code

More work needs to be poured into our detection of data classes. As we were not able to
carry out a precise detection of data classes for our solution, this must be amended during
future works.

Also, expanding our knowledge about practices that cause conflicts with ProGuard func-
tionality, how to detect them and which rules to redact for them will better our application
specific rules solution.

6.5.5. Paring with Reflection Detectors

Lastly, as we realized that the detection of conflicts with ProGuard functionality is quite
difficult, we could take advantage of tools that enable users to detect reflection on their apps.

Although not specifically related to the generation of rules for obfuscators, the work done
by Li et al [12] is considered important. They focused on the development of DroidRA, an
open source tool capable of detecting reflection in Android applications. With their approach

77

they achieved significant results, detecting 81.2% of reflection instances in 500 randomly
selected apps.

Although their paper does not cover the use of this tool in the generation of obfuscation
rules, it does mention that it could be of great help for traditional code analyzers that have
problems with reflection. As this tool provides an equivalent version of the application but
with the reflective calls enhanced with standard java calls, facilitates the static analysis of
the code, this tool could aid us in analysing source-code in search for possible conflicts with
ProGuard within them.

Additionally, this tool can be very useful in the field of generating obfuscation rules. As
it contains a module that provides a list of classes, methods and values that use reflection,
one of the big problems when obfuscating, it could be paired with our rule redaction module
to generate rules far all detected reflective instances.

78

Bibliography

[1] Android: Add build dependencies, Jul 2021. https://developer.android.com/studio/
build/dependencies, visited on 13 July, 2021.

[2] Android: Configure build variants, Jul 2021. https://developer.android.com/studio/
build/build-variants, visited on 13 July, 2021.

[3] Android: Projects overview, May 2021. https://developer.android.com/studio/projects,
visited on 13 July, 2021.

[4] Android: Shrink, obfuscate, and optimize your app, Jul 2021. https://developer.android.
com/studio/build/shrink-code, visited on 13 July, 2021.

[5] Corporation, Evans Data: Mobile developer population reaches 12m worldwide, expected
to top 14m by 2020, 2016. https://evansdata.com/press/viewRelease.php?pressID=244,
visited on 6 May, 2020.

[6] Dominik Wermke, et al: A large scale investigation of obfuscation use in google play. In
34th Annual Computer Security Applications Conference, pages 222–235, 2018.

[7] Hecht, Geoffrey, Cyprien Neverov, and Alexandre Bergel: Vision: Alleviating android
developer burden on obfuscation. In IEEE/ACM 7th International Conference on Mo-
bile Software Engineering and Systems (MOBILESoft ’20), New York, NY, USA, 2020.
Association for Computing Machinery. https://doi.org/10.1145/3387905.3388611.

[8] Hohensee, Barbara: Introducción a Android Studio, page 8–58. BadPress, 2014.

[9] Kai Chen, Peng Liu and Yingjun Zhang: Achieving accuracy and scalability simultane-
ously in detecting application clones on android markets. In In Proceedings of the 36th
International Conference on Software Engineering, pages 175–186, 2014.

[10] Kaliciński, Wojtek: Troubleshooting proguard issues on android, 2017. https://medium.
com/androiddevelopers/troubleshooting-proguard-issues-on-android-bce9de4f8a74, vis-
ited on 24 June, 2021.

[11] Kaliciński, Wojtek: Practical proguard rules examples, 2018. https://medium.com/
androiddevelopers/practical-proguard-rules-examples-5640a3907dc9, visited on 24 June,
2021.

79

https://developer.android.com/studio/build/dependencies
https://developer.android.com/studio/build/dependencies
https://developer.android.com/studio/build/build-variants
https://developer.android.com/studio/build/build-variants
https://developer.android.com/studio/projects
https://developer.android.com/studio/build/shrink-code
https://developer.android.com/studio/build/shrink-code
https://evansdata.com/press/viewRelease.php?pressID=244
https://doi.org/10.1145/3387905.3388611
https://medium.com/androiddevelopers/troubleshooting-proguard-issues-on-android-bce9de4f8a74
https://medium.com/androiddevelopers/troubleshooting-proguard-issues-on-android-bce9de4f8a74
https://medium.com/ androiddevelopers/practical-proguard-rules-examples-5640a3907dc9
https://medium.com/ androiddevelopers/practical-proguard-rules-examples-5640a3907dc9

[12] Li, Li, Tegawendé F. Bissyandé, Damien Octeau, and Jacques Klein: Reflection-aware
static analysis of android apps. In 31st IEEE/ACM International Conference on Au-
tomated Software Engineering, ASE 2016, page 756–761, New York, NY, USA, 2016.
Association for Computing Machinery, ISBN 9781450338455. https://doi.org/10.1145/
2970276.2970277.

[13] Michael Backes, Sven Bugiel, Erik Derr: Reliable third-party library detection in android
and its security applicationss. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, page 356–367, 2016.

[14] MindOrks: Things to care while using proguard in android application, 2019. https:
//bit.ly/3wTHjSL, visited on 7 May, 2020.

[15] Oracle: Creating and Using Packages. https://docs.oracle.com/javase/tutorial/java/
package/packages.html, visited on 13 July, 2021.

[16] Pelgrims, Kevin: Gradle for Android, page 1–33. Packt Publishing Limited, 2015.

[17] ProGuard: Proguard manual, 2019. https://www.guardsquare.com/manual/home, vis-
ited on 7 May, 2020.

80

https://doi.org/10.1145/2970276.2970277
https://doi.org/10.1145/2970276.2970277
https://bit.ly/3wTHjSL
https://bit.ly/3wTHjSL
https://docs.oracle.com/javase/tutorial/java/package/packages.html
https://docs.oracle.com/javase/tutorial/java/package/packages.html
https://www.guardsquare.com/manual/home

Appendix A

Complete UML Diagrams

81

A.1. Application Class

Figure A.1: Application Class UML Diagram.

82

A.2. Tester Class

Figure A.2: Tester Class UML Diagram.

83

Appendix B

Code

B.1. Overprotective Rule Detection Algorithm

Code B.1: Overprotective Rule Detection Algorithm Pseudo-Code.
1 # Inputs are lists where each list element is a singular rule element,
2 # B is the rule candidate to be overprotective in reference to A.
3 input: list<string> A, list<string> B
4 output: boolean
5

6 begin
7 # Detect the amount of elements in the rules
8 int lenA ← length(A)
9 int lenB ← length(B)

10

11 # Detect the class references of the rule
12 list<string> classreferencesA ← isolate_class_references(A)
13 list<string> classreferencesB ← isolate_class_references(B)
14

15 # Detect the amount of class references in the rules
16 int lenClassA ← length(classreferencesA)
17 int lenClassB ← length(classreferencesB)
18

19 # If the lengths of the rules are no the same or
20 # the number of class references is not the same the
21 # rules have different definitions and are therefore
22 # not comparable
23 if lenA = lenB and lenClassA = lenClassB
24 for i in range(lenA)
25 # we compare each element from the rules
26 segmentA = A[i]
27 segmentB = B[i]
28

29 # If the classes referenced by A are not encompassed by the
30 # class references in B, B is not overprotective in reference to A,

84

31 # we use an auxiliary algorithm to check this
32 if segmentA and segmentB are both class references
33 if not recursive_call(segmentA, segmentB)
34 return False
35 # Ff the rule type of A is not weaker than the rule type of B,
36 # B is not overprotective in reference to A
37 elif segmentA and segmentB are rule type declarations
38 if segmentA is not weaker rule type than segmentB
39 return Flase
40 # Finally, if any segment that is not a class reference or rule type
41 # declaration are not the same, i.e segmentA = "class" and segmentB = "interface"
42 # the rules are not coparable
43 elif segmentA 6= segmentB
44 return False
45 else
46 return False
47

48 # If we arrive here, both rules have been traversed completely
49 # and we can assure that B is overprotective in reference to A
50 return True
51 end

B.2. Class Reference Sub-Group Detection Algorithm

Code B.2: Overprotective Rule Detection Algorithm Pseudo-Code.
1 # Inputs are lists where each list element is a singular class reference element.
2 # Y is the class reference to determine if is sub-group of X
3 input: list<string> X, list<string> Y
4 output: boolean
5

6 begin
7 # Detect the head and tail for both lists
8 string headX ← head(X)
9 string headY ← head(Y)

10

11 list<string> tailX ← tail(X)
12 list<string> tailY ← tail(Y)
13

14 # Detect we reached the end of either X or Y
15 bool end_of_X ← is_empty(tailX)
16 bool end_of_Y ← is_empty(tailY)
17

18 # We know a single * wildcard is use to signal all classes in a directory.
19 # The single * can only be used at the end of a class reference
20 if headX = "*"
21 # If Y has also a * at the end they are equivalent
22 if headY = "*"

85

23 return True
24 # If Y has a ** it cant be overprotected by X, as X points
25 # to all classes in a directory and Y to something past this directory
26 elif headY = "**"
27 return False
28 else
29 # If not a wildcard, and Y ended, X is pointing to all classes in the same location as
30 # the class referenced in Y
31 if end_of_Y
32 return True
33 # If Y not ended, it still has classes to specify further
34 # but as X has * at the end, Y points to a location unaffected by X
35 elif not end_of_Y
36 return False
37 elif headX = "**"
38 # If head of Y is *, it has to be the end of Y
39 if headY = "*"
40 # If end of Y and not X, X points to a directory deeper than that of Y
41 if not end_of_X
42 return False
43 # If both end, as ** is broader than *, X overprotects Y
44 elif end_of_X
45 return True
46 elif headY = "**"
47 # If both end in **, they are equivalent
48 if end_of_Y and end_of_X
49 return True
50 # if neither ends, we check if what is specified beyond the ** in X is referenced
51 # by the tail of Y. As Y has a ** in this location, by definition it cant be followed
52 # by ** or * (redundant), therefore to reference the tail of X in the next location
53 # the next reference must be equal. We continue checking their tails.
54 elif not end_of_Y and not end_of_X
55 if tailY[0] = tailX[0]
56 return recursive_call(tailX, tailY)
57 # if not, X can still be referenced in the tail of Y, we check if its true
58 else
59 return recursive_call(X, tailY)
60 # If Y ends in ** but X continues to specify, Y is broader than X
61 elif end_of_Y
62 return False
63 # If X ends but Y not, X is referencing everything referenced by Y by definition
64 elif end_of_X
65 return True
66 else
67 # if X end in ** and Y in a class name, X is overprotective in reference to Y
68 if end_of_Y and end_of_X
69 return True
70

71 # If neither end here, the next position of X must be a directory or class name
72 # and the next element of Y can be **, * or class/directory name
73 elif not end_of_Y and not end_of_X
74 # if the next elements are equal, they are both directory/class name. Meaning,

86

75 # to this point they are referencing the same directory/class name. We check
76 # if the tail of X is overprotective of the tail of Y
77 if tailY[0] = tailX[0]
78 return recursive_call(tailX, tailY)
79 else
80 # If not equal, if the next element of Y is **, as the next element of X
81 # must be pointing to a directory/class name, Y is broader than X
82 if tailY[0] = ’**’
83 return False
84 # Else, the next element of Y must be a directory name or *.
85 # If a name, X can be still be referencing elements in the tail of Y.
86 # we make a recursive call to check. If its *, this is the end of Y and
87 # the recursive call will return false as intended
88 return recursive_call(X, tailY)
89 # if Y ends but X continues, Y points to a specific class and
90 # X to something past this class. X cant be overprotective to Y
91 elif end_of_Y
92 return False
93 # if X ends in ** but Y doesn’t, X is overprotective to Y.
94 elif end_of_X
95 return True
96 else
97 # If X has a class/directory in this location and Y ends in a *,
98 # if, X ends, Y is brader than X. If X continues, it points to something
99 # in a deeper location than Y. Either way we return False

100 if headY = "*"
101 return False
102 # If X has a class/directory in this location and Y has a **,
103 # in this location X traverses a single directory/class while
104 # Y traverses all. Y is broader than X.
105 elif headY = "**"
106 return False
107 else
108 # If both end in a class name, if they are equal, they are equivalent
109 if end_of_Y and end_of_Y
110 return headY = headX
111 # If both have a directory name in this location, if its the same it means
112 # that until this point X references the same directory than Y. We check if
113 # tail of X overprotects Y. If not, they reference different directories and
114 # therefore X cant be overprotecting Y.
115 elif not end_of_Y and not end_of_Y
116 if headY = headX
117 return recursive_call(tailX, tailY)
118 else
119 return False
120 # If X does not end but Y does, Y is pointing to a class in a
121 # deeper location than that referenced by X. X cant be
122 # overprotecting Y
123 elif end_of_Y
124 return False
125 # If X ends but Y does not, X its pointing to a class and Y
126 # to something in a deeper location.

87

127 elif end_of_X
128 return False
129 end

88

	Summary
	Summary
	Acknowledgements
	Table of Contents
	Tables Index
	Illustrations Index

	1 Introduction
	1.1 Background
	1.2 The Problem
	1.3 Motivation
	1.4 Objectives
	1.5 Developed Solutions
	1.5.1 Dependency Rules Solution
	1.5.2 Application Specific Rules Solution

	1.6 Validation
	1.6.1 Dependency Rules Solution Validation
	1.6.2 Application Specific Rules Solution Validation

	2 State of the Art
	2.1 Android Studio
	2.1.1 Projects & Structure
	2.1.2 Builds & Gradle

	2.2 ProGuard
	2.2.1 How Does ProGuard Work?
	2.2.2 ProGuard Configuration Files
	2.2.3 Warning Rules
	2.2.4 Benefits & Usage of ProGuard

	2.3 Related Work

	3 Problem
	3.1 Inherent Conflicts with Common Practices
	3.2 Warnings
	3.3 The User's Responsibility and Libraries
	3.4 Removing the Bottleneck

	4 Solution
	4.1 Modeling and Studying the F-Droid Repository
	4.1.1 Scrapping F-Droid
	4.1.2 Python Meta-Model
	4.1.3 Results of the Study

	4.2 MySQL Database
	4.2.1 Database Tables
	4.2.2 DBConnect Class

	4.3 Dependency Rules Solution
	4.3.1 Data Loading
	4.3.2 Dependency Rules Generation
	4.3.3 Packaging the Solution

	4.4 Application Specific Rules Solution
	4.4.1 Resource Loading from the APK
	4.4.2 Java Code Called from the Native Side
	4.4.3 Data Classes
	4.4.4 Redacting Rules
	4.4.5 Packaging the Solution

	5 Validation
	5.1 Replicating Existing Rules
	5.2 The Tester Class
	5.3 Validation Results For Dependency Rules Solution
	5.4 Cleaning Up The Generated Rules
	5.5 Effect of Generated Dependency Rules on Final APK Size
	5.6 Overprotective Rules
	5.6.1 Overprotective Rule Detection Algorithm
	5.6.2 Overprotective Class Reference Detection Algorithm
	5.6.3 Prevalence of Overprotective Rules in Generated Dependency Rules.

	5.7 Validation Results For Application Specific Rule Solution

	6 Conclusions
	6.1 Summary of Work Done
	6.2 Objectives & Accomplishments
	6.3 Relevance of the Developed Solutions
	6.3.1 Dependency Rules Solution
	6.3.2 Application Specific Rule Solution

	6.4 Lessons Learnt
	6.4.1 Learning From Reality
	6.4.2 Good Design is a Valuable Tool
	6.4.3 Work Ethic During Isolation

	6.5 Future Works
	6.5.1 Further Validation of App Specific Rules Solution
	6.5.2 Further Testing with Real Cases
	6.5.3 Growing Nurturing & Cleaning our Pool of Knowledge
	6.5.4 Perfecting and Expanding Conflict Detection on Source-Code
	6.5.5 Paring with Reflection Detectors

	Anexos
	Appendix A Complete UML Diagrams
	A.1 Application Class
	A.2 Tester Class

	Appendix B Code
	B.1 Overprotective Rule Detection Algorithm
	B.2 Class Reference Sub-Group Detection Algorithm

