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Protein disulfide isomerase ERp57 protects 
early muscle denervation in experimental ALS
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Abstract 

Amyotrophic lateral sclerosis (ALS) is a progressive fatal neurodegenerative disease that affects motoneurons. Muta-
tions in superoxide dismutase 1 (SOD1) have been described as a causative genetic factor for ALS. Mice overexpress-
ing ALS-linked mutant SOD1 develop ALS symptoms accompanied by histopathological alterations and protein 
aggregation. The protein disulfide isomerase family member ERp57 is one of the main up-regulated proteins in tissue 
of ALS patients and mutant SOD1 mice, whereas point mutations in ERp57 were described as possible risk factors 
to develop the disease. ERp57 catalyzes disulfide bond formation and isomerization in the endoplasmic reticulum 
(ER), constituting a central component of protein quality control mechanisms. However, the actual contribution of 
ERp57 to ALS pathogenesis remained to be defined. Here, we studied the consequences of overexpressing ERp57 
in experimental ALS using mutant SOD1 mice. Double transgenic SOD1G93A/ERp57WT animals presented delayed 
deterioration of electrophysiological activity and maintained muscle innervation compared to single transgenic 
SOD1G93A littermates at early-symptomatic stage, along with improved motor performance without affecting survival. 
The overexpression of ERp57 reduced mutant SOD1 aggregation, but only at disease end-stage, dissociating its role as 
an anti-aggregation factor from the protection of neuromuscular junctions. Instead, proteomic analysis revealed that 
the neuroprotective effects of ERp57 overexpression correlated with increased levels of synaptic and actin cytoskel-
eton proteins in the spinal cord. Taken together, our results suggest that ERp57 operates as a disease modifier at early 
stages by maintaining motoneuron connectivity.
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Introduction
Amyotrophic lateral sclerosis (ALS) is a progressive and 
fatal late-onset neurodegenerative disease character-
ized by loss of motoneurons leading to muscle weak-
ness, paralysis and death [1]. Although most of ALS cases 
have no familial records being referred to as sporadic 
(sALS), around 10% are inherited and termed familial 
ALS (fALS) [2]. Genetic studies of fALS cases have led 

to the identification of causative mutations in several 
genes. The most common genetic alterations in ALS are 
the GGG​GCC​ (G4C2) hexanucleotide repeat expansion 
in C9ORF72, nonsynonymous mutations in the genes 
encoding superoxide dismutase 1 (SOD1), trans-active 
response (TAR) DNA-binding protein 43 (TDP-43), 
and fused in sarcoma (FUS) [2, 3]. Mice overexpress-
ing distinct ALS-linked mutant SOD1 develop progres-
sive motor impairment with different degrees of severity 
depending on the specific mutation and transgene copy 
number [4]. Mutant SOD1G93A transgenic mouse line 
is the most well-characterized preclinical ALS model 
because it recapitulates key disease features such as pro-
gressive decrease of motor performance, neuromuscular 
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junction (NMJ) denervation, loss of spinal motoneurons 
concomitantly with astrogliosis and microgliosis, orga-
nelle dysfunction and presence of intracellular mutant 
SOD1 inclusions [5, 6]. In addition, misfolding and aggre-
gation of wild-type SOD1 have been also reported in 
sALS cases [7, 8].

Independent studies identified two protein disulfide 
isomerase family members (PDIs), PDI and ERp57 (also 
known as PDIA3 or GRP58), among the main proteins 
induced in spinal cord of ALS rodents at different disease 
stages, suggesting that dysregulation of redox folding in 
the endoplasmic reticulum (ER) contributes to disease 
pathogenesis [9–11]. PDI and ERp57 were also found 
up-regulated in post-mortem spinal cord tissue of sALS 
patients [10, 12]. In addition, increased levels of PDI 
were also detected in cerebrospinal fluid of sALS patients 
[10], while a proteomic screening in blood cells revealed 
ERp57 as the most reliable biomarker of sALS progres-
sion [13].

We have previously reported missense mutations in 
PDIA1 and PDIA3 genes, which encode for PDI and 
ERp57, respectively, as risk factors to develop ALS [14]. 
Moreover, intronic SNPs in PDIA1 gene have been asso-
ciated to decreased survival of two different population 
of ALS patients [15, 16]. We discovered that these PDIs 
enhance neuritogenesis in motoneurons, a function 
impaired by the ALS-linked mutations [17]. Further-
more, ERp57 deficiency in the nervous system resulted 
in altered NMJs and impaired motor function in mice 
[17]. In addition, PDI nitrosylation and co-localization 
with protein inclusions in spinal motoneurons of sALS 
cases suggest compromised chaperone function possibly 
due to protein oxidation and aggregation [10, 18]. Over-
expression of PDI and ERp57 has been proposed to pro-
vide protection in cell culture models of ALS by reducing 
aggregation of SOD1 and TDP-43, an activity lost by the 
ALS-linked PDI mutants [11, 19]. Finally, PDIs have been 
linked to the progression of other neurodegenerative dis-
eases linked to protein misfolding including Alzheimer’s, 
Huntington’s, Parkinson’s and Prion-related diseases 
(reviewed in [20]), highlighting the protective effects of 
overexpressing ERp57 in cell culture and mice infected 
with prions [21, 22].

Despite the accumulating evidence linking PDIs to 
ALS pathogenesis, the actual contribution of these ER 
foldases to the disease process in  vivo remains specu-
lative. To date, no pharmacological or genetic studies 
have been reported to directly address the participation 
of PDIs in experimental ALS using preclinical models 
in mice. Here, we investigated the consequences of the 
artificial enforcement of ERp57 in the nervous system of 
mutant SOD1G93A mice. Our data supports a protective 
role of ERp57 to motor function during early stages of 

ALS progression, preserving NMJ structure and delaying 
motor and electrophysiological impairment of affected 
muscles. Contrary to expectations, this motor unit pro-
tection did not correlate with a reduction in SOD1 aggre-
gation. We speculate that experimental strategies to 
improve ER folding may translate into important benefi-
cial effects to ALS patients.

Materials and methods
Animals
SOD1G93A ALS mouse model carrying high copy num-
ber in C57BL/6 strain (B6.Cg-Tg (SOD1*G93A)1Gur/J) 
from Jackson Laboratory (strain number: 004435) was 
employed. SOD1G93A transgene has human SOD1 pro-
moter and approximately 25 copies inserted in tan-
dem at mouse non-sexual chromosome 12 [4, 5, 23]. 
This promoter assures ubiquitous expression of human 
SOD1G93A. Importantly, this transgenic line is used 
in a heterozygous fashion recapitulating ALS features 
described previously [6]. Symptomatic mice were pro-
vided with pellet food on the floor of the cages in order to 
facilitate food intake. This was performed to reduce non-
motor-related noise in disease progression parameters 
such as body weight and clinical score.

Mice from C57BL/6 strain that overexpress human 
form of wild-type ERp57 (termed ERp57WT) were gen-
erated in Centro de Estudios Científicos (CECs), Val-
divia, Chile and characterized previously [24, 25]. This 
transgenic line employs the Prion protein promoter to 
express human ERp57 conjugated with a FLAG tag at the 
C-terminus.

All mice were housed in cages supplied with water and 
pellet food ad libitum in a light/dark cycle of 12 h/12 h at 
22 ± 2 °C. General guidelines from the National Institutes 
of Health guide for the care and use of laboratory ani-
mals and from preclinical animal research in ALS/MND 
were followed [26]. The experimental procedures involv-
ing these mouse lines were approved by the Institutional 
Review Board for Animal Care of the Faculty of Medi-
cine of the University of Chile (approved protocol CBA 
#0821-FMUCH). To generate double transgenic animals, 
heterozygous female mice from ERp57WT colony were 
crossed with heterozygous male mice from SOD1G93A 
line (see Additional file 1: Table S1).

Phenotypic characterization
SOD1G93A ALS model is characterized by progressive loss 
of body weight, due to muscle atrophy and impairment 
of muscles involved in feeding (chewing and swallowing, 
mainly), in addition to hindlimb muscle denervation and 
paralysis [6]. Disease progression was followed using wire 
hang test, body weight measurements, rotarod test, and 
clinical score analysis. Disease end point was considered 
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as the time point when the mouse was unable to right 
itself within 10 s when put on its side.

Wire hang test consists on placing the mouse by its 
forepaws in a horizontal metal wire suspended by two 
vertical plastic bars 30 cm above the table surface (floor). 
Wire hang test score was determined as a function of 
mouse performance in trying to reach one of the verti-
cal bars and then climbing down and reaching the floor 
within 30 s. The scale used to score performance was: 0: 
mouse falls on the floor before the first 10 s; 1: the mouse 
falls on the floor between 10 and 30 s; 2: the mouse tries 
to reach the horizontal bar using the hindlimbs without 
success; 3: the mouse reaches the horizontal bar with at 
least one of the hindlimbs; 4: the mouse reaches the hori-
zontal bar with all limbs including the tail; 5: the mouse 
reaches and climbs on one of the vertical bars; 6: the 
mouse reaches the floor. Wire hang test was performed in 
a single session of 3 trials once a week starting at 6 weeks 
of age. Disease onset was defined as the time point when 
mice started to lose performance. Details for body weight 
measurements, rotarod test and clinical score analysis are 
provided in SI Materials and Methods.

Electromyography (compound muscle action potential)
Male mice were anesthetized using isoflurane/oxygen 
mixture supplied by precision vaporizer RC2 Rodent Cir-
cuit Controller Anesthesia System (VetEquip Inc.). Gas-
trocnemius and tibialis muscles are well known to show 
denervation in mutant SOD1 mice models predicting 
onset of motor problems and survival [27]. Mice were 
laid on a non-conductive plastic procedure bed. Power 
lab 26T data acquisition system with LabChart software 
for data analysis (ADInstruments, New South Wales, 
Australia) was used. Two electrode pairs were used. One 
pair for recording and the other for delivering the elec-
trical stimulus. For the recording electrode pair: a posi-
tive needle electrode was inserted intramuscularly to 
record compound muscle action potential (CMAP). Its 
ground electrode was placed subcutaneously in the ipsi-
lateral paw. For stimulus electrode pair: ground electrode 
for the stimulus was inserted in the perianal region. The 
positive electrode for stimulation was manually placed 
on the surface of the skin (without insertion) at the lum-
bar spine region. The stimulation protocol consisted in a 
single stimulus of 20  mA given at the fifth second after 
protocol initiation. This latency time was used to ensure 
correct position of stimulation electrode. CMAP was cal-
culated as the total amplitude of the sinusoidal recording 
(half period voltage amplitude). At least two sinusoidal 
responses were recorded at two different regions for each 
muscle. CMAP value for each muscle at each time point 
was defined as the maximum value obtained in that ses-
sion, since it is interpreted as the maximum electrical 

response capacity of the motor units. Mice were closely 
observed after sessions to assure proper recovery. For 
CMAP time course experiment, the same hindlimb (right 
side) was assessed over time.

Lumbrical muscle innervation analysis
The hindlimb lumbrical muscles were dissected as 
described [28]. Briefly, the hindlimb plant skin was 
removed and the flexor digitorum longus tendon was cut 
and removed together with the lumbrical muscles of each 
hindlimb. The tissue was pinned down in a Sylgard 184 
silicone elastomer-covered petri dish and immersed in 
cold phosphate buffered saline (PBS), where the first to 
fourth deep lumbrical muscles were carefully dissected 
from the surrounding connective tissue under a dissec-
tion microscope. Muscles were fixed in 0.5% paraform-
aldehyde, permeabilized with PBS-T (0.5% Triton X-100 
in PBS), blocked with 4% BSA in PBS-T (blocking solu-
tion) over night at 4  °C and then incubated with 1:300 
anti-NF-M (Developmental Studies Hybridoma Bank, 
2H3) and 1:50 anti-SV2 (Developmental Studies Hybri-
doma Bank, AB_2315387) antibodies diluted in blocking 
solution over night at 4 °C. After washing, samples were 
incubated with the corresponding 1:300 anti-donkey sec-
ondary antibody (Jackson) along with 1:500 Alexa-488 
conjugated α-bungarotoxin during 2 h at room tempera-
ture (RT). The lumbrical muscles were post-fixed in 1% 
paraformaldehyde, washed and subsequently mounted in 
DAKO fluorescence medium. Confocal z-plane optical 
1  μm sections were captured using inverted Zeiss LSM 
780 multiphoton and LSM 700 laser scanning confocal 
microscopes (CMA BioBio facility, University of Con-
cepcion, Chile). Confocal pre- and post-synaptic z-stack 
channels were projected, binarized, noise-reduced, and 
overlapped according to NMJ-morph guidelines [29]. 
Endplate area and overlap were quantified using “analyze 
particle” function from Fiji [30] setting a μm size thresh-
old from 50 to infinity in order to automatize the process 
and make it unbiased. These same regions of interests 
were used to quantify the overlap with pre-synaptic sig-
nal. A number of 3 to 9 images per animal containing 10 
to 36 endplates each were used. Gaussian distributions 
were fitted using GraphPad Prism 7.0 software.

Lumbar spinal cord histological analysis
Mice were deeply anesthetized with ketamine/xylazine 
and perfused transcardially with 0.9% NaCl followed by 
4% paraformaldehyde in PBS. Laminectomy was per-
formed to dissect whole spinal cord. Using sciatic nerve 
as reference, L5 segment was sectioned with a blade fol-
lowed by a second sectioning 5 mm rostral-ward the first 
section in order to obtain L5 to L2 region. Spinal cords 
were post-fixed in 4% paraformaldehyde in PBS for 24 h 
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at 4 °C. Tissues were dehydrated in sucrose gradient (7.5–
15–30% sucrose in PBS for 1 h each at RT). Dehydrated 
tissues were embedded in O.C.T. Compound (Sakura 
FineTek) and cryosectioned (Leica CM 1510S cryostat) at 
25 μm per section.

For staining of misfolded SOD1 and FLAG positive 
cells, immunofluorescence (IF) using anti-FLAG anti-
body (Sigma, F7425) and C4F6 anti-SOD1 antibody 
(Medimabs, MM-0070-2-P), was performed. Spinal cord 
sections were mounted on Superfrost slides (VWR Inter-
national). Epitope retrieval was performed using citrate 
buffer pH 6.0 for 20 min at 95 °C. Sections were blocked 
in 1% BSA diluted in 0.02% Triton X-100 in PBS (blocking 
buffer) for 1 h at RT and then incubated with 1:250 anti-
FLAG and 1:100 C4F6 in blocking buffer overnight at 
4 °C. Sections were then washed in PBS containing 0.2% 
Triton X-100 three times for 5  min each and incubated 
with 1:1000 anti-rabbit Alexa-488 and 1:1000 anti-mouse 
Alexa-568 conjugated secondary antibodies (Molecular 
Probes), and 1:5000 Hoechst 33342 (Molecular Probes) 
for nuclear staining, in blocking buffer for 2 h at RT. After 
four washes in PBS, sections were covered with cover-
slips using Fluoromount-G (Thermo Fisher Scientific) as 
mounting medium. Confocal microscopy (Nikon eclipse 
C2+) was used to obtain microphotographs.

For staining of vulnerable motoneurons, IF analysis 
using anti-ChAT antibody (Millipore, AB144P) and anti-
MMP-9 antibody (Abcam, ab38898) was performed. 
Free-floating spinal cord sections were blocked in 5% 
donkey serum diluted in 0.05% Triton X-100 in PBS 
(donkey serum blocking buffer) for 1  h at RT and then 
incubated with 1:200 anti-ChAT and 1:200 anti-MMP-9 
in donkey serum blocking buffer overnight at RT with 
gentle agitation. Sections were then washed in PBS four 
times for 10  min each and incubated with 1:1000 anti-
goat Alexa 488 and 1:1000 anti-rabbit Alexa 564 conju-
gated secondary antibody (Molecular Probes), and 1:5000 
Hoechst 33342 (Molecular Probes) for nuclear staining, 
in donkey serum blocking buffer for 3 h at RT. After four 
washes in PBS, sections were mounted on Superfrost 
slides (VWR International) and covered with cover-
slips using Fluoromount-G (Thermo Fisher Scientific) as 
mounting medium. Confocal microscopy (Nikon eclipse 
C2+) was used to obtain microphotography of both ven-
tral horns per section. ChAT and MMP-9 positive moto-
neurons were manually counted.

Cell culture and constructs
NSC-34 motoneuron-like cell line was obtained from 
Dr. Neil Cashman (University of British Columbia, Van-
couver, Canada). Cells were cultured in DMEM supple-
mented with 1 mM pyruvate, 2 mM glutamine, 5% fetal 
bovine serum, and antibiotics (10,000 U/mL Penicillin, 

10  µg/mL streptomycin), at 37  °C and 5% CO2. For 
SOD1G93A aggregation assays, 250,000 cells per well were 
seeded in 6-well plates. Constructs for expression of 
C-terminus EGFP-tagged human SOD1 (SOD1-EGFP) 
and SOD1-EGFP targeted to secretory pathway (ER-
SOD1-EGFP) containing superoxide dismutase 3 (SOD3, 
extracellular SOD) signal peptide in the protein N-termi-
nus were generous gift from Dr. Julie Atkin (Macquarie 
University, Sydney, Australia) [31]. SOD1 constructs and 
C-terminus V5 tagged human ERp57 were transfected 
using Effectene reagent (Qiagen) following manufactur-
er’s instructions 24 h post seeding. The amount of plas-
mid used was 0.8 μg for each construct.

Tissue homogenization and protein extracts
NSC-34 cells were harvested 48  h after transfection by 
resuspension and centrifugation (3000  g, 5  min, 4  °C) 
following one wash in ice-cold PBS and cell pellets were 
kept frozen at − 80 °C until analysis. Animals were euth-
anized using CO2 chamber and lumbar spinal cord was 
dissected on ice and immediately stored at − 80 °C. Spi-
nal cord tissue and NSC-34 cell pellet were homogenized 
in TEN buffer (10 mM Tris–HCl, 1 mM EDTA, 100 mM 
NaCl, pH 8.0) with proteases and phosphatases inhibitors 
(Roche). Homogenates were separated into two fractions: 
(1) for protein analysis, tissue and cells homogenates 
were diluted in TEN buffer with proteinase and phos-
phatase inhibitors plus 1% NP-40 and 50 mM iodoaceta-
mide (to inhibit artificial disulfide bond formation); (2) 
for RNA analysis, tissue homogenates were diluted in 
TRIzol reagent (Thermo Fisher Scientific). Protein frac-
tions were sonicated for 15  s and quantified using BCA 
protein assay (Thermo Fisher Scientific).

For SDS-PAGE and western blot analysis, protein sam-
ples were prepared using 100  mM DTT or deionized 
water (to assess the effect of disulfide bonds on protein 
aggregates) in 5× loading buffer (0.2 M Tris–HCl pH 6.8, 
10% SDS, 0.05% bromophenol blue and 20% glycerol). 
Protein samples were incubated at 95 °C for 5 min before 
SDS-PAGE. Polyacrylamide gel electrophoresis was per-
formed under denaturing conditions using molecular 
weight markers (Thermo Fisher Scientific) and proteins 
were electrotransferred onto PVDF membranes. The 
membranes were blocked in 5% non-fat dry milk in PBS 
(blocking solution) and primary antibodies were diluted 
in blocking solution and incubated over night at 4 °C. The 
following primary antibodies and dilutions were used: 
1:3000 sheep anti-SOD1 (Merck, 574597); 1:1000 mouse 
anti-ERp57 (Abcam, ab13506); 1:1000 rabbit anti-ERp57 
(Santa Cruz Biotechnology, SC-28823); 1:5000 mouse 
anti-V5 tag (Thermo Fisher Scientific, R960-25); 1:1000 
rabbit anti-Marcks (Thermo Fisher Scientific, PA5-
105296); 1:20,000 mouse anti-β actin (MP Biomedicals, 
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C4). Membranes were washed thrice in 0.1% Tween in 
PBS (PBS-T) for 5 min each and incubated with the cor-
responding 1:2000 HRP-conjugated secondary antibodies 
(Life Technologies) in blocking buffer for 2 h at RT. After 
washing thrice in PBS-T, the western blot was developed 
using the ECL method (Thermo Fisher Scientific) fol-
lowing manufacturer’s instructions. Chemiluminescence 
signal and protein ladder images were acquired using 
ChemiDoc Imaging System (BioRad).

For filter trap, sonicated protein fractions were treated 
with 100 mM DTT or deionized water for 30 min on ice 
and then diluted in PBS containing 1% SDS (PBS-SDS). 
Final protein concentration in PBS-SDS was 0.25  μg/
μL to avoid artificial clumping of the membrane pores. 
Protein samples were vacuum filtered through a cellu-
lose acetate membrane with 0.22  μm pore size. Mem-
brane was then washed once with PBS-SDS and twice 
with PBS-T for 5  min at RT each and blocked with 5% 
non-fat dry milk in PBS for 30 min at RT. Membrane was 
incubated with 1:3000 sheep anti-SOD1 (Merck, 574597) 
primary antibody over night at 4  °C diluted in block-
ing buffer. Membranes were washed thrice in PBS-T for 
5 min each and incubated with 1:2000 anti-sheep HRP-
conjugated secondary antibody (Life Technologies) in 
blocking buffer for 2  h at RT. After washing in PBS-T, 
filter trap was developed using ECL method (Thermo 
Fisher Scientific) following manufacturer’s instructions. 
Chemiluminescence signal was detected using Chemi-
Doc Imaging System (BioRad).

For analysis of disulfide-dependent high molecu-
lar weight (HMW) protein aggregates, protein extracts 
alkylated with iodoacetamide were treated or not with 
100 mM of the thiol reducing agent dithiothreitol (DTT) 
in TEN buffer supplemented with 50 mM Tris–HCl pH 
8.0 for 30 min on ice. Samples were diluted in Laemmli’s 
loading buffer in the absence or presence of 100 mM of 
DTT and incubated 5  min at 95  °C. Then, the samples 
under non-reducing and reducing conditions were run 
separately on SDS-PAGE mini gels at 80 V. Before elec-
troblotting of proteins on PVDF membranes, the gels 
were incubated for 30 min in SDS-PAGE running buffer 
containing 50 mM DTT under gentle agitation to assure 
even transfer of disulfide reduced and oxidized proteins. 
Membranes were then submitted to western blot proce-
dures described above.

Quantitative real‑time PCR analysis
For RT-qPCR, a total of 1  μg RNA was isolated from 
tissue using TRIzol reagent (Thermo Fisher Scientific) 
following manufacturer’s instructions. cDNA was syn-
thesized with SuperScript III (Thermo Fisher Scientific) 
using random primers p(dN)6 (Roche) according to 
manufacturer’s instructions. Quantitative real-time PCR 

(qPCR) reactions employed EvaGreen™ reagent (Bio-
tium) in a mix of 4 μL of 1:20 cDNA: nuclease-free water 
dilution, 0.5 μL of 10 μM primers, 10 μL of EvaGreen™ 
and 7.5 μL of nuclease-free water in a final volume of 20 
μL. qPCR was performed in Stratagene Mx3000P system 
(Agilent Technologies). Thermal profile used for qPCR 
was: 1 denaturing cycle of 95  °C for 10  s; 40 amplifica-
tion cycles of 95 °C for 15 s, 60 °C for 18 s, 72 °C for 15 s; 
1 final amplification cycle of 95 °C for 15 s, 25 °C for 1 s, 
70 °C for 15 s and 95 °C for 1 s. The relative amounts of 
mRNAs were calculated from the values of comparative 
threshold cycle by using Actin mRNA as control. Primer 
sequences: SOD1: forward 5′-CAT​CAG​CCC​TAA​TCC​
ATC​TGA-3′ and reverse 5′-CGC​GAC​TAA​CAA​TCA​
AAG​TGA-3′; ERp57: forward 5′-GTC​ATA​GCC​AAG​
ATG​GAT​GCC-3′ and reverse 5′-TTA​ATT​CAC​GGC​
CAC​CTT​CATA-3′; Xbp1s: forward 5′-TGC​TGA​GTC​
CGC​AGC​AGG​TG-3′ and reverse 5′-GAC​TAG​CAG​ACT​
CTG​GGG​AAG-3′; Chop: forward 5′-GTC​CCT​AGC​TTG​
GCT​GAC​AGA-3′ and reverse 5′-TGG​AGA​GCG​AGG​
GCT​TTG​-3′; Edem1: forward 5′-AAG​CCC​TCT​GGA​
ACT​TGC​G-3′ and reverse 5′-AAC​CCA​ATG​GCC​TGT​
CTG​G-3′; Pdia1: forward 5′-CAA​GAT​CAA​GCC​CCA​
CCT​GAT-3′ and reverse 5′-AGT​TCG​CCC​CAA​CCA​
GTA​CTT-3′; Actin: forward 5′-CTC​AGG​AGG​AGC​AAT​
GAT​CTT​GAT​-3′ and reverse 5′-TAC​CAC​CAT​GTA​CCC​
AGG​CA-3′.

Quantitative proteomic analysis
Lumbar spinal cord tissue was homogenized in TEN buffer 
as described above. For each sample, 10 μg of lysate was 
precipitated with chloroform/methanol. Samples for mass 
spectrometry analysis were prepared as described [32]. 
Air-dried pellets were resuspended in 1% RapiGest SF 
(Waters) and diluted to final volume in 100  mM HEPES 
(pH 8.0). Proteins were reduced with 5 mM Tris(2-carbox-
yethyl)phosphine hydrochloride (Thermo Fisher Scien-
tific) for 30 min and alkylated with 10 mM iodoacetamide 
(Sigma Aldrich) for 30  min at room temperature in the 
dark. Proteins were digested for 18 h at 37 °C with 0.5 μg 
trypsin (Thermo Fisher Scientific). After digestion, the 
peptides from each sample were reacted for 1 h with the 
appropriate tandem mass tag (TMTpro 16plex) isobaric 
reagent (Thermo Fisher Scientific) in 40% (v/v) anhydrous 
acetonitrile and quenched with 0.4% ammonium bicar-
bonate for 1  h. Samples with different TMT labels were 
pooled and acidified with 5% formic acid. Acetonitrile 
was evaporated on a SpeedVac and debris removed by 
centrifugation for 30 min at 18,000  g. MudPIT microcol-
umns were prepared as described [33]. LC–MS/MS analy-
sis was performed using a Exploris 480 mass spectrometer 
equipped with an Ultimate 3000 nLC 1000 (Thermo Fisher 
Scientific). MudPIT experiments were performed by 10 
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μL sequential injections of 0, 10, 20, 30, …, 100% buffer C 
(500 mM ammonium acetate in buffer A) and a final step 
of 90% buffer C/10% buffer B (100% acetonitrile, 0.1% for-
mic acid, v/v/v) and each step followed by a gradient from 
buffer A (95% water, 5% acetonitrile, 0.1% formic acid) to 
buffer B. Electrospray was performed directly from the 
analytical column by applying a voltage of 2.2  kV with 
an inlet capillary temperature of 275  °C. Data-dependent 
acquisition of MS/MS spectra was performed with the fol-
lowing settings: eluted peptides were scanned from 375 
to 100  m/z with a resolution of 120,000. Precursor ions 
from full scans were fragmented under TopSpeed setting 
using a cycle time of 3  s, HCD collision energy of 29%, 
isolation window of 0.4 m/z, a resolution of 30,000 using 
TurboTMT option, normalized ACG target 200%, maxi-
mum IT 120 ms, and scanned with first mass at 110 m/z. 
Dynamic exclusion was set to 10 s. Peptide identification 
and protein quantification was performed using Proteome 
Discoverer 2.4 (Thermo Fisher Scientific). Spectra were 
searched using SEQUEST against a UniProt mouse pro-
teome database (accessed on Nov. 2019). Searches were 
carried out using a decoy database of reversed peptide 
sequences using Percolator node for filtering and the fol-
lowing settings: 20  ppm peptide precursor tolerance, 6 
amino acid minimum peptide length, trypsin cleavage (2 
missed cleavage events), static Cys modification of 57.0215 
(carbamidomethylation), variable Met oxidation, and static 
N-terminal and Lys modification of 304.207 (TMTpro 
16plex), FDR 0.01, and a minimum of 2 peptide IDs per 
protein. Normalization of TMT reporter ion intensities 
was carried out based on total peptide abundance in each 
channel, and subsequently, TMT intensity ratios for each 
identified protein were calculated between sample groups: 
Non-Tg (n = 4), ERp57WT (n = 4), SOD1G93A (n = 4) and 
SOD1G93A/ERp57WT (n = 3). TMT intensities were log2-
transformed to calculate abundance differences. Signifi-
cance was assessed by multiple two-tailed unpaired t-tests 
using the FDR approach and two-stage step-up method of 
Benjamini, Krieger, and Yekutieli with Q = 5% in Graphpad 
Prism 8.4. Raw data along with ERp57 peptides analysis are 
provided in Additional file 2: Table S2.

Cell culture neuritogenesis assay
NSC-34 cell line expressing wild-type SOD1 (SOD1WT) 
or mutant SOD1 (SOD1G93A) in a stable form were main-
tained in proliferation medium composed of DMEM, 
4.5  g/L Glucose, 8  mM l-Glutamine (HyClone), anti-
biotics (10,000 U/mL Penicillin, 10  µg/mL streptomy-
cin) (Biological Industries), 15% fetal bovine serum and 
0.4  mg/mL G418 (Merck) as selection antibiotic for the 
plasmid [34].

For neuritogenesis assay, NSC-34 cells were grown on 
18 × 18 mm glass coverslips and incubated in OptiMEM 

medium (Invitrogen) and transfected using a Lipo-
fectamine Plus Reagent mix (Invitrogen), according to 
manufacturer’s instructions for 24  h. The amounts of 
plasmid used were: 0.8  μg of YFP as control or 0.8  μg 
of human ERp57WT-V5 tagged. Both plasmids were in 
pcDNA3.1 backbone. Cells were rinsed once with PBS 
and induced to differentiate using Neurobasal medium 
(Invitrogen) without FBS for 24  h. To identify cells 
expressing ERp57, anti-V5 (Thermo Fisher Scientific, 
R960-25) immunostaining was performed. The medium 
was removed and cells were rinsed with cold PBS, fixed 
with 4% paraformaldehyde in PBS for 30 min at 4 °C and 
subsequently permeabilized with 0.1% Triton X-100 in 
Tris-buffered saline (TBS). Cells were washed with TBS 
and then incubated with 1:1000 anti-V5 primary anti-
body diluted in 1% BSA in TBS, for 15  h at 4  °C. Cov-
erslips were incubated for 2 h at room temperature with 
anti-mouse Alexa-488 conjugated secondary antibody 
(Invitrogen) in 1% BSA in TBS. After 3 washes, nuclei 
were labeled with DAPI and coverslip mounted with 
Faramount mounting medium (Dako). Images were 
acquired with a laser confocal LSM780 Zeiss microscope. 
Acquired images were analyzed using ImageJ software. 
The number of differentiated cells was determined con-
sidering cells having at least one neurite with a minimum 
size equal to the cell soma diameter. For each condition, 
10 fields from 3 different experiments were quantified.

Statistical analysis
Statistics were performed using Graphpad Prism 7.0 
(GraphPad Software). Data were compared using One-way 
ANOVA or Two-way ANOVA for unpaired groups fol-
lowed by multiple comparison post-test to compare more 
than two groups as stated in each figure. Student’s t-test 
was performed for unpaired group comparison between 
two groups; Log-rank test was performed to evaluate 
significance in Kaplan–Meier survival curves. Statisti-
cal analysis of Gaussian fits for NMJ overlap analysis was 
performed using non-linear fit followed by extra sum-of-
squares F test. For proteomic experiment, statistical anal-
ysis was performed using multiple t-test with two-stage 
step-up method of Benjamini, Krieger and Yekutieli, with 
a False Discovery Rate of 5% in Graphpad prism 8.4. In all 
plots, p values are shown as indicated: *p ≤ 0.05, **p ≤ 0.01 
and ***p ≤ 0.001 and were considered significant.

Results
ERp57 overexpression improves motor function of mutant 
SOD1G93A mice at early‑symptomatic stage
To define the functional impact of increasing ERp57 lev-
els on ALS onset and progression, we crossed SOD1G93A 
mice with a transgenic line overexpressing ERp57WT 
under the Prion promoter previously generated in our 
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laboratory [24, 25] to obtain SOD1G93A/ERp57WT double 
transgenic mice and control littermates (Fig.  1a). These 
animals were viable and born at Mendelian ratio (Addi-
tional file  1: Table  S1). Mice were monitored until end-
stage to assess disease signs and determine lifespan, in 
addition to perform histopathological and biochemical 
analysis (Fig.  1b). We confirmed equivalent expression 
levels of SOD1 and ERp57 transgenes in double trans-
genic animals when compared to single transgenic lit-
termates at both mRNA and protein levels (Fig.  1c, d). 
Histological analysis of spinal cord ventral horn indi-
cated the expression of FLAG-tagged ERp57 in motoneu-
rons accumulating misfolded SOD1 (Fig.  1e), consistent 
with the previously reported neuronal expression of the 
transgene [24, 25].

Wire hang test was employed to monitor motor capac-
ity over the course of the disease. SOD1G93A mice showed 
a progressive decrease of performance, associated with 
loss of coordination, equilibrium, and strength (Fig.  1f 
and Additional file  1: Fig. S1a). Double transgenic male 
mice had significant better performance in this test dur-
ing the symptomatic period (Fig.  1f ), indicating protec-
tive effects of enforcing ERp57 expression in ALS. At 17 
and 18  weeks of age, over half of the double transgenic 
mice were able to hold themselves on the wire while 
their SOD1G93A counterparts fell on the floor before 
10  s (Fig.  1g). Interestingly, ERp57WT single transgenic 
mice performed better than non-Tg littermates for sev-
eral weeks, supporting the notion that ERp57 can boost 
motor performance, even in non-diseased animals 
(Fig.  1f ). However, double transgenic mice had no dif-
ference in other global disease parameters compared to 
SOD1G93A mice (Additional file  1: Fig. S1b–f). Despite 
predictions that ERp57 overexpression would extend 
lifespan in ALS [19], SOD1G93A and double transgenic 
mice showed the same survival rate (Fig.  1h and Addi-
tional file 1: Fig. S1c), suggesting that ERp57 operates as 
an ALS modifier at early-symptomatic stages impacting 
motor performance.

ERp57 overexpression reduces mutant SOD1 aggregation 
at late disease stage
Mutant SOD1 is prone to misfold and form oligom-
ers (high molecular weight (HMW) species) and large 
aggregates (larger than 0.22 μm in diameter). ERp57 has 
been proposed as a molecular chaperone able to reduce 
toxic aggregated forms of SOD1 due to its disulfide 
isomerase activity [11, 19]. ERp57 is mainly located in 
the ER, with a pool of the protein also residing in the 

plasma membrane [35]. On the other hand, SOD1 is 
a cytosolic protein that can be distributed to different 
subcellular locations including the ER [36–38]. How-
ever, the possible effects of ERp57 over SOD1 aggre-
gates formation or clearance remain undefined in vivo. 
Thus, we determined if ERp57 overexpression influ-
ences SOD1G93A aggregation using cell culture and 
our mouse model through the biochemical analysis 
of protein extracts under reducing and non-reducing 
conditions (with addition of the thiol reductant dithi-
othreitol, DTT) to discriminate disulfide-crosslinked 
species. We first performed experiments using the 
motoneuron-like NSC-34 cell line [39]. We trans-
fected cells with constructs to express SOD1G93A or 
ER-SOD1G93A, an ER-targeted version of the protein, 
to examine the contribution of the subcellular locali-
zation on protein aggregation. In line with previous 
observations [19], ERp57 overexpression reduced DTT-
sensitive SOD1G93A large aggregates as detected by 
filter-trap analysis (Fig.  2a, b). Moreover, the localiza-
tion of SOD1G93A to the ER favored protein aggregation 
through disulfide-crosslinks (Fig. 2a, b). ERp57 overex-
pression markedly decreased both aggregated and total 
levels of ER-SOD1G93A, supporting its function on qual-
ity control of misfolded and aggregated SOD1G93A in 
the ER (Fig. 2b).

The analysis of SOD1G93A aggregates in the spinal cord 
of double transgenic mice at different disease stages 
revealed a complex scenario in  vivo. Mutant SOD1 
aggregation and accumulation in the ER increases over 
the course of the disease [36, 40–43]. Thus, we meas-
ured SOD1G93A aggregate levels in mice at end-stage. 
Consistent with our results in cell culture, filter-trap and 
western blot analysis showed that ERp57 overexpression 
reduces DTT-sensitive mutant SOD1 aggregates in ter-
minally ill animals (Fig. 2c, d and Additional file 1: Fig. 
S2). To verify whether improved motor function of dou-
ble transgenic mice was correlated with a reduction of 
SOD1 aggregates, we examined samples of mice at early-
symptomatic stage (Fig. 2e). Unexpectedly, we observed 
a trend to augmented levels of aggregated SOD1 in dou-
ble transgenic mice at this temporal window (Fig.  2f ). 
Additionally, UPR activation was not observed at this 
disease stage as assessed by real time PCR of classi-
cal makers Xbp1s and Chop (Additional file  1: Fig. S3). 
Taken together, our results suggest that the effects of 
ERp57 overexpression on motor function are not due 
to a reduction of mutant SOD1 aggregation, and that 
ERp57 may act on aggregates accumulating at ER lumen 
only at advanced disease stage.
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Late motoneuron loss and neuroinflammation are 
unaffected in spinal cord of double transgenic mice
We assessed motoneuron number using anti-choline 
acetyltransferase (ChAT) staining in the lumbar segment 
of the spinal cord spanning L5-L2 regions, which cor-
responds to the primary affected zone in the SOD1G93A 
mouse model [44]. ERp57WT transgenic mice had the 
same number of motoneurons as non-transgenic litter-
mates (Additional file 1: Fig. S4a). SOD1G93A and double 
transgenic mice presented around 50% motoneuron loss 
at end-stage compared to non-diseased controls.

Microgliosis and astrogliosis are common histopatho-
logical features of ALS induced at symptomatic stages [2, 
3]. These two parameters were assessed in end-stage mice 
using anti-Iba1 and anti-GFAP staining, respectively 
(Additional file  1: Fig. S4b–c). There was an increase of 
microgliosis and astrogliosis to the same extent in lum-
bar spinal cord of SOD1G93A and double transgenic mice 
measured as percentage of ventral horn area stained with 
the glial marker. In addition, basal levels of Iba1 or GFAP 
staining were not modulated by ERp57 overexpression. 
These results suggest that ERp57 might affect the func-
tionality of motoneurons rather than improving their via-
bility or the proinflammatory environment in the spinal 
cord tissue.

ERp57 overexpression delays electrophysiological 
impairment in SOD1G93A mice hindlimbs
Loss of NMJ integrity due to motoneuron denervation 
is an early pathogenic event in ALS patients and mouse 
models, representing a key parameter for ALS diagnosis 
[45]. Denervation occurs before the symptomatic stage 
and translates into reduced electric potential in affected 
muscles [27]. We measured compound muscle action 
potential (CMAP) in gastrocnemius and tibialis anterior 
before onset of motor problems (from 44 to 72 days old). 
CMAP is the addition of action potentials at the muscle 
in response to non-invasive spinal cord electrical stimu-
lation, and decreasing values reflect NMJ denervation 
in the mutant SOD1G93A mouse model [27] (Fig.  3a). 
SOD1G93A mice displayed a decline in CMAP values in 
both muscles before appearance of motor problems as 
detected by wire hang test (Fig.  3b). Double transgenic 
mice presented consistently higher CMAP values than 
SOD1G93A single transgenic littermates in gastrocnemius 
and tibialis anterior muscles at this disease time point, 
suggesting a protective role for ERp57 in maintaining 
skeletal muscle innervation (Fig. 3b).

To address if CMAP differences were the result of the 
loss of vulnerable motoneurons in the spinal cord, we 
performed immunostaining using anti-ChAT along with 
anti-matrix metalloproteinase 9 (MMP9) [46] (Fig.  3c). 

In line with our results at end-stage, ERp57 overexpres-
sion did not affect MMP9+ vulnerable motoneuron count 
in early-symptomatic mice, suggesting that ERp57 influ-
ences motoneuron function and possibly NMJ integrity 
rather than neuronal survival.

ERp57 overexpression preserves hindlimb muscle 
innervation in SOD1G93A mice
To investigate if the protection of motor units in 
hindlimb muscles by ERp57 overexpression was due to 
NMJ maintenance, we performed morphological analy-
sis of lumbrical muscle at early-symptomatic stage. This 
distal muscle represents an ideal source for motor unit 
information in the mutant SOD1 mouse model since it 
suffers denervation at pre-symptomatic stages and has a 
thin and flat anatomy that enables en face quantification 
of almost the entire content of NMJs [47]. We assessed 
NMJ innervation by measuring the overlap between pre-
synaptic anti-neurofilament (NF)/anti-synaptic vesicle 
protein 2 (SV2) and post-synaptic α-bungarotoxin stain-
ing (Fig. 4a, b) [29]. Early-symptomatic SOD1G93A trans-
genic mice had reduced innervation levels compared to 
non-Tg littermates (Fig. 4c, d), a phenomenon prevented 
in double transgenic mice as shown by significantly 
higher occupancy of lumbrical muscle endplates (Fig. 4c, 
d). Furthermore, ERp57 overexpression also increased 
the overlap between pre- and post-synaptic markers in 
non-diseased animals (Fig. 4c, d), suggesting a physiolog-
ical role at basal levels. Overall, this data indicates that 
ERp57 overexpression enhances NMJ innervation, con-
tributing to its maintenance at early-symptomatic stages 
of experimental ALS.

To further explore the significance of ERp57 as a pro-
tective factor supporting motoneuron connectivity in 
ALS, we studied neurite outgrowth in NSC-34 cells sta-
bly expressing wild-type SOD1 (SOD1WT) or SOD1G93A. 
We transiently transfected SOD1WT or SOD1G93A NSC-
34 cells with constructs to express human ERp57 coupled 
to V5 tag (ERp57WT-V5) or YFP as control. Neuritogen-
esis was induced by serum deprivation for 24 h and the 
percentage of cells with neurites was quantified (Fig. 4e, 
f ). As we previously reported [34], mutant SOD1G93A 
decreased the number of cells with neurites compared to 
SOD1WT. ERp57 fully rescued neuritogenesis in NSC-34 
cells overexpressing SOD1G93A. In addition, ERp57 over-
expression increased basal neuritogenesis in SOD1WT 
NSC-34 control cells, consistent with our previous find-
ings [17].

To identify possible molecular mechanisms associated 
to the neuroprotection exerted by ERp57 overexpres-
sion in the mutant SOD1 mice, we performed quantita-
tive proteomics of lumbar spinal cord tissue derived from 
early-symptomatic animals. This analysis corroborated 
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similar overexpression levels of ERp57 and SOD1 in 
double transgenic mice compared to single transgenic 
littermates, along with induction of endogenous copper 
chaperone for SOD1 (Ccs) in ALS mice (Fig.  4g, Addi-
tional file  1: Fig. S5 and Additional file  2: Table  S2). At 
this disease stage, the most prominent proteomic altera-
tions detected in the mutant SOD1 model reflected pro-
tective pathways, with up-regulation of the atypical E3 
ubiquitin-protein ligase Myc-binding protein 2 (Mycbp2) 
and Galectin-3 (Lgals3) (Fig. 4g and Additional file 1: Fig. 
S6). Mycbp2 participates in axonal growth and synap-
togenesis [48, 49] and is up-regulated in the brain cortex 

of sALS patients [50]. Galectin-3 has been previously 
identified as a major proteomic hit up-regulated in tissue 
of transgenic SOD1G93A mice and ALS patients, and may 
contribute to regulate inflammatory features of microglia 
and serve as a disease biomarker [51, 52]. Thus, the prot-
eomic data obtained from mutant SOD1G93A spinal cord 
is coherent with reported changes in ALS tissue. Moreo-
ver, the actin cytoskeleton regulators Filamin C (Flnc) 
and Vimentin (Vim) were also induced in SOD1G93A 
mice (Additional file 1: Fig. S6). Mutations in Flnc have 
been linked to myopathy [53, 54], while Flnc up-regula-
tion has been reported in brain tissue of frontotemporal 
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ChAT+/MMP9+ vulnerable motoneurons number in lumbar spinal cord quantified from at least 4 serial sections per animal. Statistical analysis was 
performed using one-way ANOVA with Tukey’s multiple comparison test. Mean ± S.E. is shown; p values: n.s., p > 0.05; *, p ≤ 0.05 (n = 3–7 animals 
per genotype)
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lobar degeneration with TDP-43 inclusions (FTLD-TDP) 
patients [55]. The overexpression of ERp57 had minor 
effects on proteins modulated by mutant SOD1G93A, with 
14 out of 23 hits also having significant changes in double 
transgenic mice (Fig. 4h and Additional file 1: Fig. S6; see 
Additional file 2: Table S2 for the complete set of quanti-
fied proteins).

Interestingly, Fasciculation and elongation protein 
zeta-1 (Fez1) and Disheveled-associated activator of 
morphogenesis 1 (Daam1), two down-regulated proteins 
in mutant SOD1G93A involved in neuronal morphology 
and actin cytoskeleton organization, respectively, were 
rescued in double transgenic mice (Additional file 1: Fig. 
S6). The analysis of ERp57WT transgenic mice revealed 
evident proteomic hits that were also observed in dou-
ble transgenic animals when compared to non-Tg lit-
termates (Fig. 4g, h and Additional file 1: Fig. S6). From 
these proteomic modifications, we highlight Ras-related 
GTP-binding protein B (Rragb, which responds to starva-
tion), and regulating synaptic membrane exocytosis pro-
tein 3 (Rims3), a synaptic component previously found 
transcriptionally induced in the brain cortex of sALS 
patients [50]. Furthermore, ERp57 overexpression in ALS 
mice led to the induction of Erbin, a regulator of synaptic 
transmission at the NMJ, and Myristoylated alanine-rich 
C-kinase substrate (Marcks), another protein involved 
in actin cytoskeleton control (Additional file  1: Fig. S6). 
We also observed enhanced expression of Marcks in spi-
nal cord from double transgenic mice using western blot, 
confirming the proteomic analysis (Additional file 1: Fig. 
S7). These results suggest the occurrence of quantitative 

changes at the proteomic level triggered by ERp57 that 
might contribute to improve synaptic function in mutant 
SOD1 mice. Further studies are needed to address the 
significance of these proteins to the neuroprotective 
effects of ERp57.

Discussion
PDIs are major oxidoreductases that catalyze disulfide 
bond formation, reduction and isomerization in the 
ER, promoting the folding and quality control of mem-
brane and secreted proteins [56]. The impairment of 
PDIs function may have important implications for ALS 
pathogenesis and other neurodegenerative diseases [57, 
58]. Inactivation of PDI by S-nitrosylation has been 
found in spinal cord of ALS mouse models and post-
mortem tissue of sALS and fALS patients [57, 59]. PDI 
S-nitrosylation has been correlated with the aggrega-
tion of mutant SOD1 in vitro and in the spinal cord of 
ALS mouse models [57, 60]. Silencing of PDI or ERp57 
expression enhances mutant SOD1 aggregation in neu-
ronal cell culture [19, 59], whereas PDI and ERp57 over-
expression decreases mutant SOD1 aggregates in  vitro 
[11, 19, 59]. Moreover, PDI co-localizes with inclusions 
of ALS-linked mutant proteins like FUS, VAPB and 
TDP43 [61–63]. A recent report also suggested that 
PDI overexpression can improve motor performance 
in a zebrafish model of ALS, although the mechanism 
of action was not investigated [11]. Based on this evi-
dence, PDIs up-regulation is proposed as a neuropro-
tective response in ALS that may alleviate the burden of 
misfolded and aggregated proteins and reduce ER stress 

Fig. 4  ERp57 preserves neuromuscular junction connectivity of ALS mice. a Neuromuscular junction (NMJ) staining of lumbrical muscle at 
post-natal day 90. Anti-SV2 and anti-NF-M staining correspond to pre-synaptic component (pseudocolored red). α-Bungarotoxin coupled to Alexa 
488 (pseudocolored green) corresponds to post-synaptic endplate. Representative confocal optical sections of three animals per genotype are 
shown. Scale bar: 50 μm. b Analysis of NMJ integrity of lumbrical muscle at post-natal day 90. Confocal optical sections of pre- and post-synaptic 
components were binarized and automatically subtracted to quantify endplate area without pre-synaptic component (unoccupied NMJ). 
Representative confocal optical sections of non-Tg and SOD1G93A mice are shown. Scale bar: 50 μm. c Distribution of NMJ occupied area (as 
percentage of endplate area) in lumbrical muscle at post-natal day 90. NMJ overlap histograms with Gaussian fits are shown. Statistical analysis 
was performed using non-linear fit followed by extra sum-of-squares F test comparing different genotype curve fits to non-Tg fit. p values: n.s., 
p > 0.05; ***, p ≤ 0.001 (n = 4 animals per genotype with 65–201 NMJ per animal quantified). d Analysis of c showing NMJ occupied area as average 
percentage of total endplate areas. Statistical analysis was performed using one-way ANOVA with Tukey’s multiple comparison test. Mean ± S.E. is 
shown; p values: *, p ≤ 0.05; ***, p ≤ 0.001 (n = 4 animals per genotype with 65–201 NMJ per animal quantified). e NSC-34 cell lines stably expressing 
wild-type SOD1 (SOD1WT) or mutant SOD1 (SOD1G93A) were transfected with constructs to express wild-type human ERp57 coupled to V5 tag 
(ERp57WT-V5) or YFP (Control, pseudocolored green). Cells were differentiated by serum deprivation for 24 h. Immunofluorescence staining against 
V5 tag was performed (pseudocolored green) along with Hoechst 33,342 staining (pseudocolored blue). Scale bar: 20 μm. f Analysis of neurite 
sprout of cells described in e. –FBS: serum deprivation. Statistical analysis was performed using one-way ANOVA with Tukey’s multiple comparison 
test. Mean ± S.E. is shown; p values: n.s., p > 0.05; *, p ≤ 0.05; ***, p ≤ 0.001 (n = 3 independent experiments). g Volcano plots of proteomic analysis 
of lumbar spinal cord at post-natal day 90. Each panel shows a different comparison between genotypes. Statistical analysis was performed 
using multiple t-test with two-stage step-up method using Benjamini, Krieger and Yekutieli approach with a False Discovery Rate of 5%. Hits with 
q-value ≤ 0.05 and p value ≤ 0.05 are highlighted on each plot (grey dots and black border). Selected hits with q-value ≤ 0.05 and p value ≤ 0.05 
that are contributions from each genotype are highlighted on each plot (ERp57WT: solid green, SOD1G93A: solid red, SOD1G93A/ERp57WT: solid blue) 
(n = 3–4 animals per genotype). h Venn diagram of proteomic hits from genotype pair comparisons. Hits with q-value ≤ 0.05 and p value ≤ 0.05 
were considered for analysis. i Schematic representation of ERp57 involvement in molecular and cellular pathways of ALS pathophysiology

(See figure on next page.)
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[18, 19]. All this evidence prompted us to study the con-
sequences of overexpressing ERp57 in the progression 
of experimental ALS.

We have approached this problem by crossing a trans-
genic line overexpressing human ERp57 with the mutant 
SOD1G93A mouse model. Contrary to the expectations 
based on the current literature, overexpression of ERp57 
did not reduce motoneurons loss or extend lifespan of 

ALS mice. Rather, double transgenic SOD1G93A/ERp57WT 
mice showed delayed deterioration of motor perfor-
mance when clinical symptoms were already apparent. 
Interestingly, our results temporally dissected the effects 
of ERp57 on NMJ function from its possible role in 
mutant SOD1 aggregation [64–66]. Although we corrob-
orated that ERp57 overexpression reduces mutant SOD1 
aggregates in NSC-34 cells and late-stage mutant SOD1 
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mice, this phenomenon was not replicated at early-symp-
tomatic stages. Thus, the protection afforded by ERp57 
overexpression over the NMJ is likely to be unrelated to 
the modulation of abnormal protein aggregation, sug-
gesting that distinct molecular mechanisms operate in 
ALS pathophysiology depending on the disease stage.

Regarding motoneuron physiology, double trans-
genic mice exhibited improved electrical activity and 
morphological integrity of NMJ, showing significantly 
higher CMAP values and reduced muscle denervation 
compared to SOD1G93A littermates. These results are 
in accordance to our previous study suggesting a role 
for ERp57 on NMJ maturation under non-disease con-
ditions [17]. However, it was unknown whether ERp57 
overexpression could protect from the deterioration 
observed in ALS. While SOD1G93A transgenic mice 
develop a pronounced CMAP decay already at 8 weeks 
of age, the extent of NMJ impairment at early-sympto-
matic disease stage was insufficient to cause motor dys-
function in our and other studies [67, 68]. The motor 
impairment detected at later time points may be due 
to a second wave of CMAP decay, possibly due to fur-
ther pruning of innervation of different pools of moto-
neurons [67]. Despite the early protection of NMJ, the 
effects of ERp57 in motoneurons appear to be transient 
and not sufficient to slow disease progression at the 
global level or enhance survival. This observation may be 
related to additional pathological mechanisms that alter 
NMJ biology beyond dysfunction of ER proteostasis in 
motoneurons, as well as redox inactivation of ERp57, 
as reported for PDI [57, 59, 60]. Indeed, we observed 
that ERp57 reduces end-stage mutant SOD1 aggrega-
tion, possibly through intermediacy of mixed disulfide 
crosslinks that compromise its enzymatic activity. Fur-
thermore, in our transgenic model ERp57 is predicted 
to have negligible interference on cell non-autonomous 
mechanisms that drive neurodegenerative cascades [3]. 
In fact, we have shown that overexpression of ERp57 
enhances axonal regeneration and locomotor recovery 
after sciatic nerve damage in mice, but not dopaminergic 
neuron loss in a model of Parkinson’s disease, illustrating 
contrasting outcomes of the same genetic manipulation 
in different neurodegenerative contexts [25]. In addition, 
ERp57 overexpression in the brain was unable to modify 
the up-regulation of UPR markers in a pharmacological 
paradigm of ER stress [24]. In the case of experimental 
ALS, the damaging tissue environment could explain the 
unaltered disease progression in double transgenic mice, 

despite the protection of motoneuron physiology exerted 
by ERp57 overexpression. This neuroprotective action of 
ERp57 at the nerve terminal of mutant SOD1G93A mice 
is predicted to result from improved ER proteostasis 
enhancing the folding and expression of proteins com-
posing NMJ, since ERp57 deficiency in the nervous sys-
tem leads to altered folding of certain synaptic proteins 
[17]. Accordingly, we reported that ERp57 expression 
augments steady-state levels of the Prion protein [24], a 
factor involved in axonal growth and synaptic function 
[69, 70].

To determine possible molecular mechanisms of 
NMJ protection, we performed an unbiased approach 
with proteomic analysis of lumbar spinal cord at early-
symptomatic stage of the disease. Induction of Mycbp2 
in SOD1G93A model along with the actin cytoskeleton 
regulators FlnC and Vim corresponded to major prot-
eomic alterations detected likely reflecting a motoneu-
ron response to cope with axonal damage and/or NMJ 
denervation. Importantly, Rims3 has been shown to be 
up-regulated in tissue of sALS patients along with other 
synaptic proteins [50]. The role of these proteomic hits in 
ALS requires further investigation, in addition to defin-
ing the mechanisms that explain their modulation when 
ERp57 is overexpressed. Overall, our results suggest that 
the upregulation of ERp57 in observed ALS may repre-
sent an adaptive response to sustain NMJ in this patho-
logical context (see model in Fig. 4i).

Conclusions
Dysregulation of ER proteostasis is emerging as a trans-
versal pathogenic mechanism in ALS. Previous studies 
have suggested that strategies to up-regulate the ER oxi-
doreductase ERp57 in ALS may have therapeutic value by 
improving the adaptive reaction against protein aggrega-
tion and ER stress. Here, we defined the significance of 
ERp57 to ALS pathophysiology in vivo and demonstrated 
that ERp57 exerts neuroprotective roles associated to 
improved NMJ stability and function, a phenomenon 
that may be dissociated from SOD1 aggregation. Since 
strategies to strengthen NMJ may prove key to main-
tain motor capacity in ALS, the combination of ERp57 
overexpression using gene therapy or pharmacological 
approaches with interventions to tackle other pathogenic 
mechanisms may pave the way for future translational 
development.
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