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Abstract: Gold nanoparticles (AuNPs) have been shown to be outstanding tools for drug deliv-
ery and biomedical applications, mainly owing to their colloidal stability, surface chemistry, and
photothermal properties. The biocompatibility and stability of nanoparticles can be improved by
capping the nanoparticles with endogenous proteins, such as albumin. Notably, protein coating of
nanoparticles can interfere with and decrease their cell penetration. Therefore, in the present study,
we functionalized albumin with the r8 peptide (All-D, octaarginine) and used it for coating NIR-
plasmonic anisotropic gold nanoparticles. Gold nanoprisms (AuNPrs) and gold nanorods (AuNRs)
were coated with bovine serum albumin (BSA) previously functionalized using a cell penetrating
peptide (CPP) with the r8 sequence (BSA-r8). The effect of the coated and r8-functionalized AuNPs
on HeLa cell viability was assessed by the MTS assay, showing a low effect on cell viability after BSA
coating. Moreover, the internalization of the nanostructures into HeLa cells was assessed by confocal
microscopy and transmission electron microscopy (TEM). As a result, both nanoconstructs showed an
improved internalization level after being capped with BSA-r8, in contrast to the BSA-functionalized
control, suggesting the predominant role of CPP functionalization in cell internalization. Thus,
our results validate both novel nanoconstructs as potential candidates to be coated by endogenous
proteins and functionalized with a CPP to optimize cell internalization. In a further approach, coating
AuNPs with CPP-functionalized BSA can broaden the possibilities for biomedical applications by
combining their optical properties, biocompatibility, and cell-penetration abilities.

Keywords: cell internalization; albumin; BSA; CPP; gold nanorods; gold nanoprisms; arginine-rich
peptide

1. Introduction

Research on nanomaterials has expanded in recent years for their use in drug delivery,
imaging, therapy, diagnosis, and combined therapy, among other fields [1–5]. Organic,
inorganic, biological-type, or hybrids between different structures have been proposed
for diverse medical/biomedical applications [6–14]. Among the prospective materials for
future applications, gold nanoparticles stand out, owing to their wide-ranging potential.
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AuNPs have characteristic optical properties that are derived from their localized
surface plasmon resonance (LSPR), allowing them to interact with light in a different way
than bulk materials do [10,15,16]. The plasmon excitation has two main decay mechanisms:
radiative and non-radiative, resulting in light scattering and absorption, respectively [17].
Light scattering of AuNPs has been extensively used to design diagnostic tools, contrast
agents, and Raman enhancement probes [18–20]. Conversely, absorption of light involves
relaxation via electron-electron collisions or electron-lattice-phonon couplings, yielding
light-to-heat conversion, [21] referred to as the photothermal effect, which can be used for
drug release and photodynamic and photothermal therapy [22].

Both LSPR and the optical properties of AuNPs are highly shape- and size-dependent.
In this regard, AuNRs and AuNPrs are two interesting AuNP geometries because their
light absorption can be synthetically modulated. Therefore, their maximum absorption
can be tuned to the biological window (the region that exhibits minimum light absorption
of the biological tissues) [23–26], with a strong optical extinction and for photothermal
applications [17,27].

Given the wide range of applications for AuNPs as biomedical platforms, it is es-
sential to consider the biocompatibility of this material. AuNPrs (synthesized by sodium
thiosulfate reduction) have been shown to be non-cytotoxic [28,29]. In contrast, AuNRs
are commonly synthesized using the CTAB surfactant, which has shown some cytotoxic
effects [30–32].

In order to avoid possible cytotoxic effects from our nanocarriers, we incorporated a
protein coating on both AuNPs to increase their biocompatibility and stability [6,29,33–36].
BSA shares 76% sequence identity with human serum albumin (HSA) [37] and is well
tolerated by humans [38]. This protein has been extensively used for the development
of nanomaterials for biomedical applications in drug delivery, therapy (photothermal or
combined), diagnosis, and theranostics [39–45].

Even though the presence of proteins as a coating on the nanoparticle’s surface im-
proves their biocompatibility and stability properties, it may also limit their internalization
capacity due to alterations of the protein corona composition and, consequently, the in-
teraction with receptors and membranes [46–48]. In this regard, the possible biomedical
applications of AuNPs can be expanded as their cell internalization ability is increased.
Accordingly, arginine-rich CPPs, (minimum amount of six Arg) are well known for their
ability to cross biological barriers [49,50]. Although other studies have reported the conju-
gation of nanoparticles with internalization peptides in a direct way [51–54], it is also well
known that the presence of BSA improves the circulation time of nanoparticles and controls
the composition of the protein corona in physiological media, hence the importance of
the inclusion of albumin in nanoparticles [37,55,56]. Therefore, we functionalized the BSA
protein with r8 to facilitate cell penetration of the AuNPs. Previous studies have shown
that the use of arginine-rich CPPs increases cell penetration of the nanocarriers, opening
the possibility for the improved cell internalization of AuNPs [51,57–59]. In particular,
r8 has been covalently linked to several molecules and nanosystems, such as insulin [60]
liposomes, [61] quantum dots, [62] and gold nanorods, [49,58] improving their uptake and
cell penetration in target sites. Nevertheless, coating AuNRs and AuNPrs (with absorption
in the first biological window) with BSA, functionalized with r8 for cell internalization, has
not been reported yet. In this study, we proposed that BSA-r8 enhances the cell internal-
ization of AuNPs, taking as examples two promissory anisotropic AuNPs with different
surface and charge: AuNRs and AuNPrs, with absorption on the first biological window
(650–950 nm) [63] for possible applications in biomedical nanoplatforms.

2. Materials and Methods
2.1. Materials

HAuCl4 (Gold (III) chloride hydrate), Na2S2O3 (sodium thiosulfate), hexadecyltrimeth-
ylammonium bromide (CTAB), NaBH4, and AgNO3 were acquired from Sigma-Aldrich
(St. Louis, MO, USA). Polyethylene Glycol 5 kDa (HS-PEG-COOH, 5 kDa) was from JenKem
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Technology (Beijing, China). Milli-Q water was obtained from the purification of distilled
water with the Simplicity SIMS 00001 equipment (Millipore, Molsheim, France). Cell culture
plates and flasks were from Corning Costar (Corning, NY, USA). Penicillin/streptomycin
and chemicals for cell culture were from Gibco (Gibco-BRL, Paisley, UK), fetal bovine serum
(FBS, Biological Industries, Cromwell, CT, USA). MTS/PMS [3-(4,5-dimethylthiazol-2-yl)-5-
(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt, MTS/phenazine
methosulfate, PMS], and CellTiter 96 kit were from Promega (Promega, Madison, WI, USA).
Atto-565 NHS ester (A565) was from Sigma (Sigma-Aldric Chemie, Buch, Switzerland).
Other reagents were from Sigma-Aldrich.

2.2. Experimental
2.2.1. AuNRs Synthesis

AuNRs were synthesized using a previously reported seed-mediated procedure [64].
Briefly, 5 mL of a 0.3 mM HAuCl4 solution in CTAB 0.1 M was reduced by ice-cold NaBH4
10 mM (300 µL), resulting in a brownish-yellow seed solution. Then, 10 mL of a 0.5 mM
HAuCl4 solution (in CTAB 0.1 M) was reduced by ascorbic acid in the presence of AgNO3,
until it reached a colorless growth solution. Finally, 120 µL of the seed solution was added
to the growth solution and allowed to rest for 30 min in a thermostatic bath at 27 ◦C. The
obtained AuNRs were centrifuged at 7030 g for 30 min, and the pellet was resuspended in
Milli-Q water.

2.2.2. AuNPrs Synthesis

AuNPrs were obtained by Na2S2O3 reduction of HAuCl4, as previously reported [28,36].
A 2 mM HAuCl4 solution was first reduced by 0.6 mM Na2S2O3 and allowed to rest for
9 min. Then, a second addition of 0.6 mM Na2S2O3 was performed, and the solution was
left undisturbed for 30 min. The purple solution containing the AuNPs was centrifuged
and resuspended in Milli-Q water. PEG functionalization was achieved at pH = 12 by
adding 15 µL of a 2.7 mM HS-PEG5000-COOH solution and allowing conjugation under a
magnetic stirrer for 3 h. Finally, AuNPrs were separated from smaller undesired AuNPs
using a successive differential centrifugation procedure, as reported [36].

2.2.3. Characterization of the Nanoparticles

AuNRs and AuNPrs were characterized before and after BSA-r8 coating by UV-Vis-
NIR absorption spectra, using a Lambda 25 spectrophotometer (Perkin Elmer, Waltham,
MA, USA). Dynamic light scattering (DLS) and Z potential measurements were acquired
in PBS pH = 7, at 25 ◦C, using a Zetasizer 3000 (Malvern Instruments, Malvern, UK), as
triplicates in aqueous solution at 25 ◦C.

TEM images of AuNRs were acquired with a JEOL JEM-1010 microscope (JEOL USA,
Peabody, MA, USA), using Formvar carbon-coated copper microgrids (200 mesh; Ted
Pella, Redding, CA, USA). For AuNPrs, TEM images were obtained using a Philips CM
120 transmission electron microscope with an accelerating voltage of 120 kV and a 300
mesh Formvar/Carbon-Coated Copper grid. For both AuNPs, liquid suspensions were
deposited on the microgrid and allowed to stand overnight before TEM image acquisition.

2.3. Peptide Synthesis

We synthesized the all-D peptide derived from D-amino acids for this study due
to their enhanced enzymatic stability [65]. Arginine-rich peptide (r8) was synthesized
by solid phase peptide synthesis (SPPS), using an H-Rink Amide Protide resin (loading:
0.56 mmol/g) in a Liberty Blue™ Automated Microwave Peptide Synthesizer. Linear
D-OctoArginine was synthesized on a 0.5 mmol scale using a 5 excess of Fmoc-amino acid
(0.2 M), relative to the resin. The Bromo acetic acid was coupled using 2 cycles of 30 min of
4 equivalents of OxymaPure, followed by 4 equivalents of N,N′-Diisopropylcarbodiimide,
and then 4 equivalents of bromo acetic acid. Fmoc deprotection was carried out using
10% (w/v) piperazine and 0.1 M OxymaPure in a 9:1 mixture of NMP and EtOH. The
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resin was cleaved using TFA/H2O/TIS (95%/2.5%/2.5%) for 6 h; the TFA was evaporated,
dissolved in a 50/50 H2O/ACN solution, and lyophilized. The peptide was purified by
semi-preparative HPLC on a Waters 2700 sample manager, equipped with a Waters 2487
dual-wavelength absorbance detector, a Waters 600 controller, a Waters fraction collector
and Masslynx software by using a Sunfire C18 column (150 × 10 mm × 3.5 µm, 100 Å,
Waters), flow rate 6.6 mL/min; solvent A = 0.1% TFA in water and solvent B = 0.1% TFA
in acetonitrile. Purity and identity were assessed by UPCL (Waters Acquity equipped
with Acquity photodiode array detector, flux rate 0.610 mL/min, Acquity UPLC BEH
C18 Column, 130 Å, 1.7 µm, 2.1 mm × 100 mm; solvents A = 0.045% TFA in water, and
B = 0.036% TFA in acetonitrile) and UPLC-MS (Waters Acquity UPLC System equipped
with ESI-SQ Detector2, flux rate 0.610 mL/min, Acquity UPLC BEH C18 Column, 130 Å,
1.7 µm, 2.1 mm × 100 mm; solvents A = 0.1% formic acid in water and B = 0.1% formic
acid in acetonitrile).

The crude compound was purified by RP-HPLC at a semi-preparative scale and charac-
terized by UPLC and UPLC-MS spectrometry (Supplementary Section 1, Figures S1 and S2)
to confirm the identity of the synthesized compound, obtaining high purity (>95%). Amino
acid content was analyzed by amino acid analysis; results are presented in Supplementary
Section 2, Table S1.

2.4. BSA Functionalization

BSA was functionalized with r8, as represented in Scheme 1, to improve the internal-
ization properties of the nanoconstructs, and Atto-565-NHS-ester was used as a fluorescent
probe for detection by fluorescence and confocal microscopy.
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BSA Labeling with r8 and Atto 565

• First step: 2-Iminothiolane functionalization

A 100 mg/mL 2-Iminothiolane solution (15 µL) was added to a 10 mg/mL BSA
solution (50 mg of BSA in 5 mL of PBS), in 4 intervals every 10 min (molar ratio 10:1
2-iminothiolane: BSA), and the reaction was performed for 1 h at 4 ◦C. The non-reacted
2-iminothiolane was removed using a P10 G25 desalting column from Sigma-Aldrich.

• Second step: r8 peptide functionalization

To the previously prepared protein, 52 µL of a 100 mg/mL Br-CH2-r8 solution was
added in 4 intervals every 10 min, and the reaction was left overnight at 4 ◦C (ratio 5:1
r8-Br:BSA). The product was purified with a P10 G25 desalting column and analyzed
by UV-Vis-NIR spectroscopy and amino acid analysis to determine the amount of r8 per
BSA molecule.

• Third step: amino acid analysis of BSA-r8

Amino acid analysis was performed following an acid hydrolysis procedure, adding
12 N HCl and a known concentration standard (Υ-aminobutyric acid, 0.1 mM), and allowed
to react at 110 ◦C for 72 h. Amino acid quantification was carried out in an HPLC-PDA
AccQ-Tag (C18; 4 µm; 3.9 × 15 mm). The amino acid content on the functionalized BSA
resulted in a 2.4 r8/BSA ratio, as shown in Supplementary Section 2, Table S1.
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• BSA-r8 fluorescent labeling

Fluorescent labeling of BSA was conducted as represented in Scheme 2. To 10 mg of
BSA-r8 of the previous step, 10.7 µL of a 10 mg/mL solution of Atto 565 NHS ester was
added and allowed to react for 1 h. The final product (BSA-r8-A565) was purified with a
P10 G25 desalting column and characterized by UV-Vis spectroscopy.
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According to UV-Vis spectroscopy measurements, the degree of labeling (DOL) was
calculated as follows:

DOL =
Absorbance 565× εAtto 565

Absorbance 280 (Absorbance 565× CFAtto 565 )× εBSA

where:
EAtto 565 = 1.2 × 105 M−1 cm−1, EBSA = 4.6 × 105 M−1 cm−1, and correction factor

Atto 565 (CFAtto 565) = 0.16
As a result, the DOL of BSA-r8 A565 was 0.66 mol Atto/mol BSA.

2.5. Circular Dichroism

The BSA and BSA-r8 1.5 × 10−5 M samples were prepared in PBS 0.1× in the same
conditions. The spectra were acquired at 20 ◦C, recorded from 200 to 250 nm in triplicate
and condensed into a single spectrum to reduce noise at a 1 nm/s rate in a JASCO J-815
instrument (JASCO, Easton, MA, USA), using a 1 mm pathlength quartz-cuvette. The
secondary structure content was calculated using the CDPro CONTIN 2DP (AUG 1982)
(2DP-SW PACK) version from JASCO.

The molar ellipticity at wavelength λ ([θmrw]) was calculated as follows:

[θmrw] =
MRW × θλ

10× d× c

where θλ is the observed ellipticity (degrees) at wavelength λ, d is the pathlength (cm), and
c is the protein concentration (g/mL) [66].

2.6. Capping of AuNPs with BSA or BSA-r8

BSA-r8 or BSA capping of the AuNPs was achieved by incubation, as previously
reported [36]. Briefly, to 1 mL of AuNRs or AuNPrs at a 1 nM concentration, a solution of
BSA or BSA-r8 was added (final concentration of BSA = 1 mg/mL in 0.1× PBS), incubating
for 2 h at 4 ◦C in low-binding 1.5 mL centrifuge tubes (Eppendorf®, Hamburg, Germany),
and the samples were centrifuged at 10,000 rpm for 10 min. The pellet containing the BSA
or BSA-r8 coated AuNPs was resuspended in 0.1× PBS. The protein content was quantified
on the supernatants using a Micro BCA™ Protein Assay Kit from Thermo Scientific™
(Pierce, Rockford, IL, USA), according to the manufacturer’s specifications, in triplicate.

2.7. Cell Culture

HeLa cells were cultured in complete DMEM, containing 1% penicillin/streptomycin,
10% FBS and 5% glutamine. The culture was maintained at 37 ◦C and 5% CO2.
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2.7.1. Cell Viability MTS Assays

HeLa cells (1 × 104 cells/well) were seeded in TC pretreated 96-well plates and al-
lowed to attach at 37 ◦C for 24 h. The treatments were added and allowed to incubate
for 24 h. The medium was then replaced by a phenol red-free medium containing the
MTS/PMS containing reagent, following the manufacturer’s recommendations. The ab-
sorbance of the culture medium after incubation for 1 h was recorded at 490 nm using a
microplate reader. Cell viability was calculated with respect to a non-treatment control
(live control). Each treatment and control were made in quintuplicate, minimum n = 3.
Statistical analysis was performed using GraphPad Prism V5.01.

2.7.2. Confocal Microscopy

HeLa cells (3 × 105 cells/plate) were seeded on collagen pre-coated MatTek glass-
bottom culture dishes (MatTek Corporation, Ashland, MA, USA) and attached for 48 h
at standard culture conditions. The medium was then replaced with fresh medium, and
the treatments were added considering 1 nM of each AuNP and incubated (1 or 24 h of
treatment). The cells were subsequently washed 3 times with PBS, and phenol red-free
medium containing the LIVE/DEAD® Cell Imaging Kit from ThermoFisher was added
(Molecular Probes Inc., Eugene, OR, USA). Fluorescence was detected on a Zeiss LSM
880 laser scanning microscope (Zeiss, Berlin, Germany) with Airyscan, equipped with a
CO2 and temperature-controlled environmental chamber. Hoechst was excited with an
Ar laser at 405 nm, and emission was recorded at 458 nm; Atto-565 was excited by a laser
at 405 nm, and emission was recorded at 458 nm. Images were processed using Image J
1.52 p software.

2.7.3. Internalization Evaluated by Transmission Electron Microscopy

In a Petri dish (90 × 15 mm), 1 × 106 HeLa cells were seeded and incubated at 37 ◦C
until a minimum confluence of 80%. The cells were then washed, the medium was replaced
with a treatment containing-medium (1 nM of BSA or BSA-r8 coated AuNPs), and the cells
were incubated for 24 h. Afterwards, the cells were washed and fixed with glutaraldehyde
2.5% in PBS 0.1×. The cells were scraped and centrifuged, and the obtained pellet was
fixed with OsO4 1% in PBS for 90 min and embedded in Epon resin. The resin was sliced
into slices of 80 nm thickness, and the slices were placed in a Cu grid and stained with
Reynold’s reagent and uranyLess staining kit, before visualization. TEM images were
acquired in a JEOL JEM-1010 microscope (JEOL Ltd., Tokyo, Japan).

3. Results and Discussion
3.1. Preparation of AuNRs-BSA-r8 and AuNPr-BSA-r8

The r8 peptide was synthesized and characterized by UPLC-MS, showing the char-
acteristic [M+2H]2+ = 695.02 m/z (Figure S1). Then, BSA was functionalized with r8
(2.4 r8/BSA) as described in the experimental section. The degree of BSA functionalization
was determined by amino acid analysis, resulting in 2.4 r8/BSA. To determine if the func-
tionalization of the protein led to a change in BSA secondary structure, circular dichroism
spectra were obtained. Figure 1 shows the CD spectrum of BSA and BSA-r8, indicating that
they shared a similar profile, with a non-significant change from 39% and 36% alpha helix
content before and after r8 functionalization, respectively.

BSA-r8 was functionalized with a fluorescent probe, namely A565, a known and
commonly used red fluorescent probe, obtaining a 0.66 A565/BSA-r8 degree of labeling,
which resulted in BSA-A565-r8. In this study, we tested whether AuNPrs were a suitable
alternative to more-traditional AuNRs; in this sense, AuNPrs were synthesized by simply
reducing Au3+ with Na2S203, thus avoiding the involvement of cytotoxic agents [28].
AuNRs and AuNPrs were synthesized with a characteristic morphology, as TEM images
show in Supplementary Section 3 (Figures S3 and S4), with a predominant aspect ratio of
3.5 for AuNRs and a 60 nm edge-length for AuNPrs.
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Figure 1. Circular dichroism spectrum of BSA before and after r8 functionalization. DOL: 2.4 r8/BSA.
BSA and BSA-r8 1.5 × 10−5 M samples were prepared in PBS.

It has been demonstrated by several spectroscopic techniques that BSA is sponta-
neously adsorbed in the surface of AuNPs via S-Au bonds between the free SH groups
of BSA and the gold atoms in the AuNP surface [42,67–71]. Therefore, both AuNRs and
AuNPrs were coated with BSA and the functionalized BSA-A565-r8 by incubation, as sum-
marized in Table 1 and Figures 2 and 3. Figures 2 and 3 show the UV-Vis-NIR spectra, size,
and Z potential of the BSA and BSA-A565-r8 functionalized AuNPs in PBS (pH = 7). For
AuNRs, a shoulder around 558 nm appeared after BSA-A565-r8 protein coating (Figure 2a),
as well as an increment in the intensity of the first plasmon in AuNPrs (Figure 3a), confirm-
ing the presence of A565 and therefore, the functionalization of BSA on the AuNPs surface.
In addition, the second plasmon of both AuNPs was shifted after the BSA and BSA-r8-
A565 coating, attributed to the modification in the dielectric constant of the AuNPs [72]
(Table 1 and Figures 2a and 3a), due to the presence of the protein on the AuNPs surface,
as reported in previous studies [36,73–75].

For both nanoparticles, the protein coating on the surface increased the hydrodynamic
diameter in similar proportions using either the BSA or BSA-A565-r8, as expected for
the presence of the protein (Table 1 and Figures 2b and 3b). For AuNRs, hydrodynamic
diameter increased from 2± 1, 59± 3 nm to 3± 1, 68± 3 nm and 6± 1, 79± 3 nm after the
BSA and BSA-A565-r8 coating, respectively. Meanwhile, for AuNPrs, the hydrodynamic
diameter shifted from 4 ± 1, 68 ± 4 nm to 10 ± 2, 142 ± 5 nm and 12 ± 2, 142 ± 5 nm due
to the BSA and BSA-A565-r8 coating, respectively.

Regarding the Z potential, a similar trend was observed, and both nanoparticles
showed similar Z potentials after the BSA or BSA-A565-r8 coating. AuNRs showed
an initial Z potential of +45 ± 3 mV, due to the presence of the cationic surfactant
CTAB [76,77]; in contrast, AuNPrs had an initial Z potential of −31 ± 3 mV, due to
the stabilizing agent HS-PEG-COOH on the surface [36]. Then, the Z potential exhibited
a shift to negative values; −21 ± 1 and −17 ± 1 for AuNR-BSA and AuNR-BSA-A565-r8
and −14 ± 1 and −18 ± 1 mV for AuNPr-BSA and AuNPr-BSA-A565-r8, respectively
(Table 1 and Figures 2c and 3c), due to the negative charge of BSA (pIBSA: 4.5–5.0) [78] on
the surface of both AuNPs. Notably, AuNPs exhibited similar negative Z potentials, with
adequate values to interact with cell membranes for internalization [60–62]. Stability of
AuNR-BSA-r8 and AuNPr-BSA-r8 was assessed 30 days after storage at 4 ◦C; DLS and Z
potential did not show significant differences over that time (Supplementary Section 4,
Figure S5).
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Table 1. Physicochemical parameters of the synthesized nanoparticles and nanoconstructs.

Samples Long. λmax (nm)
Hydrodynamic Diameter (nm)

PDI Z Potential (mV)
Transversal Longitudinal

AuNR 775 2 ± 1 59 ± 3 0.5 45 ± 3
AuNR-BSA 757 3 ± 1 68 ± 3 0.5 −21 ± 1

AuNR-BSA-A565-r8 750 6 ± 1 79 ± 3 0.5 −17 ± 1
AuNPr 865 4 ± 1 68 ± 4 0.4 −31 ± 3

AuNPr-BSA 845 10 ± 2 142 ± 5 0.5 −14 ± 1
AuNPr-BSA-A565-r8 829 12 ± 2 142 ± 5 0.5 −18 ± 1
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3.2. Cell Viability Assays
3.2.1. Effect of AuNRs and AuNRs-BSA-A565-r8 on Cell Viability

One of the main limitations of using AuNRs in biomedical applications is the cyto-
toxicity associated with the CTAB on the AuNP surface as the stabilizing agent in the
synthesis procedure [30]. In order to overcome this issue, AuNRs can be coated with
different materials, such as BSA [39,79–82] to increase their biocompatibility. In this regard,
Figure 4 shows that the freshly synthesized AuNRs drastically decreased the viability
of Hela cells, whereas AuNRs-A565-BSA-r8 did not cause a significant effect between
the 0.005–2.5 nM range at 48 h. Additionally, flow cytometry showed no effect of 1 nM
AuNRs-A565-BSA-r8 after 24 h of administration (Supplementary Section 5, Figure S6).
Similar results were found for BSA-coated AuNPs in previous studies; the BSA coating on
AuNRs improved their biocompatibility properties [83–85], highlighting the potential of
coated AuNRs for bioapplications.
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* Significant difference according to Tukey’s test p < 0.05 compared to medium control.

3.2.2. Effect of AuNPrs and AuNPrs-BSA-r8 on Cell Viability

AuNPrs were functionalized with PEG-COOH to increase their colloidal stability [86]
and subsequently coated with BSA-A565-r8 (AuNPr-BSA-A565-r8). Figure 5 shows cell
viability of HeLa cells treated with AuNPrs and AuNPr-BSA-A565-r8 at the 0.005–2.5 nM
range. As expected, neither AuNPrs nor AuNPrs-BSA-r8 showed any effect on HeLa cell
viability after 48 h of treatment by MTS assay. Flow cytometry also showed non-effect of
AuNPrs-BSA-r8 1 nM in the HeLa cells after 24 h of incubation (Supplementary Section 5,
Figure S6). This null effect on cell viability of AuNPrs was previously demonstrated in
studies such as those of Alfranca et al. and Bao et al., using Vero cells and HT-29 cells at
72 h, respectively [29,87]
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3.3. Cell Internalization
3.3.1. Confocal Microscopy

In a first step, we tested the internalization ability of the AuNPs capped with non-CPP
functionalized BSA, as shown in Figure 6. The comparison between the BSA, AuNR-BSA,
and AuNPr-BSA (labeled with A565) signals showed that BSA on the AuNP surface was
not able to promote cell uptake under the studied conditions ([BSA] = 5 µM, [AuNR-BSA
and AuNPr-BSA] = 1 nM, 24 h of incubation), as demonstrated by the absence of signal in
the red channel.
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Figure 6. Confocal microscopy images of HeLa cells after treatment by: (a) BSA-A565, (b) AuNR-
BSA-A565, (c) AuNPr-BSA-A565 incubated for 24 h. Scale 30 µm. [BSA] = 5 µM, [AuNR-BSA,
AuNPr-BSA] = 1 nM. Channels: bright blue (HOECHST), red (Atto-565), blue and red (merged).

Internalization of BSA-r8 and the AuNPs capped with BSA-r8 (labeled with A565) was
subsequently assessed by confocal microscopy. As Figure 7 shows, functionalization with r8
increased the uptake of the protein, as well as that of the protein-coated AuNRs and AuNPrs
in the red channel, using the same established conditions as in Figure 7 ([BSA] = 5 µM,
[AuNR-BSA-A565-r8] and [AuNPr-A565-r8] = 1 nM), suggesting the prevalent role of the
r8 for cell internalization in both nanoconstructs, regardless of their surface charge.

Although discussing the exact mechanism of internalization of the proposed nanocon-
structs was not the objective of our study, previous reports have indicated that nanocon-
structs conjugated with CPPs are internalized in vesicles inside cells via endocytic up-
take [29,51,59,88], while arginine-rich CPPs can electrostatically bind with the cell mem-
branes, promoting translocation into the cells [29,51,59,88].

To confirm that the internalization observed through confocal microscopy corre-
sponded to the functionalized AuNPs, and to elucidate the intracellular location of the
nanoconstructs in Hela cells, we performed a TEM study, as indicated in the next section.

3.3.2. TEM for Cell Internalization

The internalization of the BSA-A565-r8-coated AuNPs was assessed after 1 h and 24 h
of incubation. Supplementary Section 6 (Figures S7 and S8) shows internalization at 1 h,
indicating that the nanoconstructs started interacting with the cell membranes at this time,
to become ready for the internalization process. At 24 h, in contrast, internalization of both
AuNRs-BSA-A565-r8 and AuNPr-BSA-A565-r8 was considerable and observed under the
studied conditions, as shown in Figures 8 and 9.
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blue and red (merged).
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The TEM images allowed determination of the precise location of the AuNPs in the
cells. Both AuNRs and AuNPrs-based nanocarriers seemed to be located inside the cells
and accumulated into vesicles in the cytoplasm, in agreement with the proposed endocytic
uptake [29,51,59,88]. According to Liu et al. [89], the vesicles were labeled considering their
size as early endosomes (200 nm diameter, EE) and late endosomes (500 nm diameter, LE).
In Figures 8 and 9, vacant EE and LE as well as the EE and LE where AuNPs are located
were pointed out (blue and red circles, respectively). An average of 15 ± 5 AuNRs/vesicle
and 18 ± 6 AuNPrs/vesicle were counted for AuNRs-BSA-A565-r8 and AuNPr-BSA-A565-
r8, respectively (statistics of 30 vesicles from the TEM images).

4. Conclusions

In this work, we tested the internalization abilities of two novel nanoconstructs based
on anisotropic AuNPs with different surface and charge, AuNRs and AuNPrs coated with
BSA in the presence and absence of a CPP (r8), improving AuNP internalization in the
presence of r8. To the best of our knowledge, this is the first report that describes the
coating of AuNRs and AuNPrs (with absorption in the first biological window) with BSA
functionalized with r8 for improved cell internalization. These results point to the ability
to improve the biocompatibility and internalization of nanoconstructs into cells by using
endogenous proteins and CPPs. Nevertheless, as a further step, it would also be interesting
to add targeting agents to the proposed nanoconstructs to increase their selectivity.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pharmaceutics13081204/s1: Figure S1: Structure of the Br-CH2-r8 peptide, Figure S2: UPLC
trace (a) and MS spectra (b) of Br-r8 (BrCH2CO-r8), Figure S3: Microscopy characterization of AuNRs:
a, b. representative TEM images, scale 200 nm, c. Aspect ratio frequency distri-bution (length/width),
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statistics of at least 50 AuNRs, Figure S4: Microscopy characterization of AuNPrs: a, b. representative
TEM images, scale 200 nm, c. Edge length (nm) frequency distribution (length/width), statistics
of at least 50 AuNPrs, Figure S5: Characterization of BSA-r8 capped AuNPs after 24 h, DLS and
Zeta potential, Figure S6: Flow cytometry of Hela cells incubated by 24 h with: a. water, b. AuNR-
BSA-r8 1 nM in AuNRs, c. AuNPr-BSA-r8 1 nM AuNPrs, Figure S7: TEM images of HeLa cells after
treatment by AuNR-BSA-r8 incubated by 1 h, Figure S8: TEM images of HeLa cells after treatment by
AuNPr-BSA-r8 incubated by 1 h, Table S1: Amino acid analysis of BSA-r8 after acid digestion, using
Υ-aminobutiric acid as standard (aaba).
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