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Abstract: Piscine orthoreovirus (PRV) belongs to the family Reoviridae and has been described mainly
in association with salmonid infections. The genome of PRV consists of about 23,600 bp, with
10 segments of double-stranded RNA, classified as small (S1 to S4), medium (M1, M2 and M3) and
large (L1, L2 and L3); these range approximately from 1000 bp (segment S4) to 4000 bp (segment
L1). How the genetic variation among PRV strains affects the virulence for salmonids is still poorly
understood. The aim of this study was to describe the molecular phylogeny of PRV based on an
extensive sequence analysis of the S1 and M2 segments of PRV available in the GenBank database to
date (May 2020). The analysis was extended to include new PRV sequences for S1 and M2 segments.
In addition, subgenotype classifications were assigned to previously published unclassified sequences.
It was concluded that the phylogenetic trees are consistent with the original classification using the
PRV genomic segment S1, which differentiates PRV into two major genotypes, I and II, and each of
these into two subgenotypes, designated as Ia and Ib, and IIa and IIb, respectively. Moreover, some
clusters of country- and host-specific PRV subgenotypes were observed in the subset of sequences
used. This work strengthens the subgenotype classification of PRV based on the S1 segment and can
be used to enhance research on the virulence of PRV.

Keywords: Piscine orthoreovirus; PRV; genotype; subgenotype; phylogeny

1. Introduction

Heart and skeletal muscle inflammation (HSMI) is an infectious disease caused by
Piscine orthoreovirus (PRV) and was described for the first time in Norway [1–3]. PRV
belongs to the genus Orthoreovirus [4], subfamily Spinareovirinae in the Reoviridae family [1].

PRV has been detected in numerous wild and farmed salmonid species in Nor-
way [5–9], Canada [10–14], Chile [10,15], the United States [12,16], Japan [17], Scotland,
Ireland, the Faroe Islands, Iceland, Germany, Sweden, Denmark, Italy, France [18–23] and
the Czech Republic [24].
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In Atlantic salmon (Salmo salar) and Coho salmon (Oncorhynchus kisutch) in Chile
the clinical signs of affected fish are mainly characterized by systemic circulatory dis-
turbance. Histopathologically, the fish present myocarditis and myositis of the red mus-
culature [2,15,25,26]. Moreover, during PRV infection, the presence of intracytoplasmic
inclusion bodies in erythrocytes has been described [26–28].

The genome of PRV consists of about 23,600 bp, which encode at least 11 proteins
distributed across ten segments of double-stranded RNA, classified as small (S1, S2, S3
and S4), medium (M1, M2 and M3) and large (L1, L2 and L3); these range approximately
from 1000 bp (segment S4) to 4000 bp (segment L1) [1,4,10]. Phylogenetic analysis, based
mainly on the PRV S1 segment, differentiates the virus into two genotypes, I and II,
and each of these into two major subgenotypes, designated as Ia and Ib, and IIa and IIb,
respectively [10,15]. Alternatively, Garseth et al. [29] described four genogroups, I, II, III and
IV. A complementary classification using the coding sequence of PRV segments described
three subtypes of PRV, designated as PRV-1, PRV-2 and PRV-3 [17,19], with subgenotypes
Ia and Ib making up the PRV-1 subtype and subgenotypes IIb and IIa corresponding to the
PRV-2 and PRV-3 subtypes, respectively [30].

PRV subgenotypes Ia and Ib have been associated with HSMI in Atlantic salmon and
HSMI-like disease in Rainbow trout (Oncorhynchus mykiss) and Coho salmon [1,3,7,13,15].
In Canada, the infection of Chinook salmon (O. tshawytscha) with PRV subgenotype Ia is
associated with Jaundice disease [14,31] and in Japan, infection with the PRV-2 (subgeno-
type IIb) causes erythrocytic inclusion body syndrome (EIBS) [17]. No PRV subgenotype
or subtype has been described to be host-specific or geographically exclusive, apart from
PRV-Ib, which has not been found in Canada or the USA to date [10,32], and PRV-2, which
to date has been reported only in Japan [17]. Consequently, the wide range of hosts, clinical
signs and geographic distribution have turned PRV into an emerging virus in the salmon
aquaculture industry worldwide.

The aim of this study was to revisit the molecular classification, based on phylogenetic
analysis, of almost all PRV sequences available to date (May 2020) in the GenBank database,
with a focus on the S1 and M2 genome segments, including unpublished new sequences
generated for this work. Our results strengthen the subgenotype classification of PRV
based on the S1 segment and allow the classification of previously unclassified, publicly
available sequences into the PRV subgenotypes through phylogenetic dendrograms.

2. Results
Phylogenetic Analyses of PRV Genomic Sequences

We retrieved all the available sequences for the ten genomic segments of PRV listed
under the Tax ID: txid1157337 in the National Center for Biotechnology Information (NCBI)
GenBank database (Supplementary Table S1). New sequences for the S1 and M2 segments
were added in preparation for this work, resulting in the obtainment of between 38 and
390 sequences with respect to the PRV segments used in the study (Table 1).

Table 1. Number of sequences for each Piscine orthoreovirus (PRV) genomic segment used in the
study.

PRV Genomic Segment

L1 L2 L3 M1 M2 M3 S1 S2 S3 S4

Number of sequences 53 38 40 41 61 43 390 101 42 100

The sequences collected were used to perform an initial phylogenic analysis based
on subgenotype classifications, obtaining a clear differentiation using PRV S1 and M2
segments. In accordance with previous observations, it was concluded that the use of
these segments would enable the grouping of the PRV into subgenotypes [10,15]. We
performed a restrictive analysis of the S1 and M2 segments, discarding sequences with
less than 400 nucleotides for the S1 segment and less than 1000 nucleotides for the M2



Pathogens 2021, 10, 41 3 of 12

segment, to cover the conserved coding sequences of σ3 and µ1 proteins. A total of 356
and 59 sequences, respectively, were retained in the end, including the 11 new sequences
each for S1 and M2 segments reported in this work (Table 2). The circular dendrogram
of the PRV S1 sequences is presented in Figure 1, showing the assignment of new and
published unclassified sequences according to their positions in the dendrogram branches.
A rectangular version of Figure 1 is provided to enable better exploration of the data
(Supplementary Figure S1). The phylogenetic tree of PRV M2 sequences is presented in
Figure 2, showing the assignment of new and published unclassified sequences according
to their positions in the dendrogram branches. These phylogenetic analyses were able to
group the PRV genogroups and allowed us to classify both new sequences (Table 2) and
published unclassified sequences into the PRV subgenotypes (Supplementary Table S2).
The remaining eight genomic segments had lower resolution and representativity and did
not allow for a clear ordination using either subgenotype [10] or subtype [20] classifications
(Supplementary Figure S2).

Table 2. New sequences of PRV segments S1 and M2 produced in this study.

GenBank
Accession Number

PRV
Segment

PRV
Subgenotype

Collection
Date Fish Species 1 Location in Chile Farming

Conditions

MT598071 M2 Ib 06-04-2018 O. kisutch Chiloé (Calen) Seawater
MT598072 M2 Ia 12-04-2018 S. salar Chiloé (Quellón) Seawater
MT598073 M2 Ia 26-04-2018 O. kisutch Chiloé (Quellón) Seawater
MT598068 M2 Ia 12-06-2018 O. kisutch Chiloé (Quellón) Seawater
MT598074 M2 Ia 19-06-2018 O. kisutch Chiloé (Caucahue) Seawater
MT598069 M2 Ia 21-06-2018 O. kisutch Chiloé (Detico) Seawater
MT598075 M2 Ib 27-03-2018 O. kisutch Pargua (P. Montt) 2 Freshwater
MT598076 M2 Ib 05-12-2018 S. salar Chiloé (Voigue) Seawater
MT598077 M2 Ib 19-12-2019 S. salar Lenca rFeshwater
MT598078 M2 Ib 19-12-2019 S. salar Lenca Freshwater
MT598070 M2 Ib 04-12-2018 S. salar Chiloé (Quicavi) Seawater
MT598079 S1 Ib 06-04-2018 O. kisutch Chiloé (Calen) Seawater
MT598080 S1 Ia 12-04-2018 S. salar Chiloé (Quellón) Seawater
MT598081 S1 Ia 26-04-2018 O. kisutch Chiloé (Quellón) Seawater
MT598082 S1 Ia 12-06-2018 O. kisutch Chiloé (Quellón) Seawater
MT598083 S1 Ia 19-06-2018 O. kisutch Chiloé (Caucahue) Seawater
MT598084 S1 Ia 21-06-2018 O. kisutch Chiloé (Detico) Seawater
MT598085 S1 Ib 27-03-2018 O. kisutch Pargua (P. Montt) 2 Freshwater
MT598086 S1 Ib 04-12-2018 S. salar Chiloé (Quicavi) Seawater
MT598087 S1 Ib 05-12-2018 S. salar Chiloé (Voigue) Seawater
MT598088 S1 Ib 17-06-2019 S. salar Pargua (P. Montt) 2 Seawater
MT598089 S1 Ia 07-08-2019 O. kisutch Puerto Cisne Seawater

1 O. kisutch (Oncorhynchus kisutch); S. salar (Salmo salar); 2 P. Montt, Puerto Montt.
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dendrogram branches.

We then used 14 and 17 genomic sequences belonging to M2 and S1 segments, re-
spectively, to graphically show the distances between the sequences according to their
classification by subgenotype. Both genomic distances matrixes obtained show good fitness
in differentiating between the PRV subgenotypes (Figures 3 and 4). Then, we extended
this analysis using 40 and 61 amino acidic sequences belonging to M2 and S1 segments
that encode the proteins µ1 and σ3, respectively, including the new sequences produced
in this work, classified by subgenotype, subtype, country and host. The distance ma-
trix built using the amino acid sequences of the protein µ1 (M2 segment), presented in
Supplementary Figure S3, shows less robustness in the heatmaps used to cluster PRV
by subgenotype or subtype. In contrast, the protein σ3 heatmaps show better clustering
using subgenotype and subtype classifications (Supplementary Figure S4). Thus, two clear
clusters belonging to subgenotypes Ia and Ib were observed in the PRV-1 subtype; these
served to strengthen this subtype classification (Figure 4 and Supplementary Figure S3).
Country (Supplementary Figure S5) and host species (Supplementary Figure S6) clustering
were observed when heatmaps were drawn using these metadata variables. We observed,
mainly with the protein σ3 (S1 segment), that the Chile, Norway and Canada sequences
shared low distance, suggesting high similarity. However, in the Chile sequences there were
two marked groups, one sharing low distance sequences with Canada and Norway and
the other clustering with a few Italy and Denmark sequences (Supplementary Figure S5).
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This agrees with previous reports of the presence of two subgenotypes in Chile [10,15].
Regarding the host species, the distance matrixes inside the Coho salmon sequences were
found to have two clear clusters, thereby indicating that this host may carry two PRV
subgenotypes. In addition, Coho salmon was found to share low distance clusters with
Rainbow trout and a few sequences belonging to Atlantic salmon, suggesting that they
harbor similar PRV subgenotypes. We found similar observations in the case of Atlantic
salmon. First, we observed two clusters of low distance, suggesting that Atlantic salmon
harbors two kinds of PRV sequences. Moreover, Atlantic salmon shared low distance
clustering with Chinook salmon and a few sequences of Rainbow trout and Coho salmon
(Supplementary Figure S6).
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3. Discussion

We extended the geographical range of the already characterized PRV isolates by com-
piling all the available sequences to date (May 2020) associated with the NCBI Taxonomy
ID: 1157337 of PRV. Moreover, we added new sequences for the S1 and M2 segments of 11
PRV isolates from Chile, where salmonids are non-native species and where Coho salmon,
Rainbow trout and Atlantic salmon are farmed in the same regions, which contributes
to the understanding of the phylogenetics of PRV. This study supports the original clas-
sification using the PRV genomic segment S1, which differentiates PRV into two major
genotypes, I and II, and each of them into two subgenotypes designated as Ia and Ib, and
IIa and IIb, respectively [10,15]. Through massive phylogenetic dendrograms with all
available sequences, we provided additional evidence that strengthens this classification
using new PRV S1 and M2 segment sequences. These dendrograms allowed us to classify,
by subgenotype, already published sequences of S1 and M2 segments that were previously
unclassified in the GenBank database. This assignment showed that a significant number
of the publicly available sequences belong to the PRV-1 subtype (subgenotypes Ia and
Ib) and, to a lesser extent, to the PRV-3 subtype (subgenotype IIa). However, the lack of
sequences of PRV-2 (subgenotype IIb) points to the need to perform further analysis to
understand the contribution of this variant to the worldwide PRV phylogeny. Furthermore,
this kind of study should be complemented by using methodologies based on whole
genome sequencing.

The distance analyses of the PRV genomic M2 and S1 segments and the amino acid
sequences of proteins σ3 (S1 segment) and µ1 (M2 segment) show clear clustering between
sequences belonging to the same subgenotype. This contrasts with the PRV-1 subtype
classification [20], which shows, in protein σ3 alignments, two marked clusters belonging to
subgenotypes Ia and Ib, thereby strengthening the subgenotype classification. Although no
country- or host-specific PRV subgenotype has been described, some clusters were observed
in the subset of sequences used. These latter observations indicate the need to perform a
deep meta-analysis to elucidate whether relationships between virulence and subgenotypes
can be described. In fact, the PRV subgenotypes Ia and Ib (PRV-1) have been associated
with HSMI in Atlantic salmon, this being a trending topic in aquaculture surveillance. In
farmed Atlantic salmon, PRV-Ib has been shown to be the cause of HSMI [3]—whereas
experimental studies have shown PRV-Ia to be of low virulence, although it is associated
with moderate heart lesions in sockeye salmon [31]—and in Pacific Canada the associated
disease in farmed Atlantic salmon was referred to as HSMI-like disease [33]. The higher
virulence of PRV-Ib was linked to the evolution of PRV in Norwegian salmonid aquaculture
possibly resulting from gene reassortment involving PRV segments S1 and M2 [34]. This
prompted the development of a real-time reverse transcription polymerase chain reaction
(RT-qPCR) assay specific for PRV-Ib associated with HSMI [35]. However, the study linking
PRV-Ib to higher virulence [34] was largely speculative because, although eight of the PRV
segment S1 sequences used in that study were of PRV-Ia from HSMI in BC Canada [13,14],
the so-called “HSMI Clade” included only PRV-Ib isolates. Moreover, some of the PRV-
Ib isolates have not been associated with HSMI [6,36]. In fact, an experimental study
comparing the virulence of three PRV-1b isolates and three PRV-1a isolates in farmed
Atlantic salmon showed no differences in PRV RNA in blood cells among the different
isolates when measured by RT-qPCR from one to ten weeks post-challenge. However, two
of the PRV-1b isolates resulted in more severe heart histopathology scores than the other
PRV-1b isolate and the three PRV-1a isolates, although even in these PRV isolates with less
severe histopathological lesions, a few individual fish were observed to have lesion scores
high enough to qualify as HSMI [37]. It therefore follows that the variation in virulence
found in PRV-1b isolates would be expected to also occur among PRV-1a isolates. The
identification of the sequence relationships and the subgenotype classification performed
in the present study can be used to enhance research on the virulence of PRV.
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4. Materials and Methods
4.1. Extensive Phylogeny of PRV Segments

Sequences in FAST-All (FASTA) format for all PRV segments were retrieved from
the NCBI GenBank public database [38]. Sequences from 2007 to the present date (May
2020) were selected by means of the rentrez package [39] under R environment v3.5.2 [40],
utilizing the NCBI Taxonomy ID: txid1157337 assigned to PRV. To increase the accuracy of
our analysis, multiple sequence alignments (MSAs) [41] were performed using the T-Coffee
software [42]. Additionally, IQ-TREE, software to calculate trees using the maximum
likelihood algorithm [43], was used to find the best model substitution automatically
through its ModelFinder feature [44]. Trees were built using the ggtree [45] and ggplot2
packages [46], both based on the R statistical language [40] and scripted utilizing the
integrated development environment R-Studio [47]. To graphically show the distance
between σ3 and µ1 amino acidic sequences, the nucleotide sequences were translated to
amino acidic sequences using Blastx [48]. Heatmaps were drawn using the distance matrix
calculated by the phangorn R library [49] from the alignments obtained by the maximum
likelihood algorithm using the Clustal Omega software, including the model substitution
parameter [50]. The resulting distance information was postprocessed and formatted using
the library reshape2 [51] and represented using the pheatmap package [52] under the R
statistical language.

4.2. Nucleic Acid Sequencing of New Isolates

Viral sequencing was performed following the methods previously described to
sequence genomic PRV segments [10,15]. Briefly, the RNA was isolated using a modified
extraction protocol based on equilibrated phenol and stabilized chloroform, isoamyl alcohol
(25:24:1) (PanReac Applichem, Chicago, IL, USA), and repurified using the E.Z.N.A.® Total
RNA Kit I ( Omega Bio-tek, Inc., Norcross, GA, USA). The RNA was tested by RT-qPCR
to detect the presence of PRV, using ELF-1α as internal control, following the protocol
described by Kibenge et al. [10]. Only samples with a cycle threshold (Ct) below 25
were utilized to perform the DNA sequencing of segments S1 and M2 using the primers
described in Kibenge et al. [10]. Sequences were deposited in the NCBI GenBank database
under the accession numbers listed in Table 2.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-081
7/10/1/41/s1, Figure S1: Rectangular version of phylogenetic distances from the alignment of S1
sequences above 400 nucleotides; Figure S2: Phylogenetic trees of segments L1, L2, L3, M1, M3, S2, S3
and S4; Figure S3: Phylogenetic distances from the alignment of 40 µ1 amino acid sequences grouped
by genotype and represented as heatmaps; Figure S4: Phylogenetic distances from the alignment of 61
σ3 amino acid sequences grouped by genotype and represented as heatmaps; Figure S5: Phylogenetic
distances from the alignment of µ1 sequences in Figure S4, grouped by country and represented
as heatmaps; Figure S6: Phylogenetic distances from the alignment of σ3 sequences in Figure S4,
grouped by host and represented as heatmaps; Table S1: GenBank Accession Numbers and metadata
for PRV sequences of all ten genomic segments listed under the Tax ID: txid1157337 in the NCBI
GenBank database to date (May 2020). Accession numbers and metadata of all sequences retrieved
from NCBI GenBank used in this study; Table S2: GenBank accession numbers and metadata of PRV
segments S1 and M2 sequences listed under the Tax ID: txid1157337 in the NCBI GenBank database
to date (May 2020) used in this study.
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