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Thermalization Induced by Quantum Scattering
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We use quantum scattering theory to study a fixed quantum system Y subject to collisions with massive
particles X described by wave packets. We derive the scattering map for system Y and show that the
induced evolution crucially depends on the width of the incident wave packets compared to the level
spacing in Y. If Y is nondegenerate, sequential collisions with narrow wave packets cause Y to decohere.
Moreover, an ensemble of narrow packets produced by thermal effusion causes Y to thermalize. On the
other hand, broad wave packets can act as a source of coherences for Y, even in the case of an ensemble
of incident wave packets given by the effusion distribution, preventing thermalization. We illustrate our
findings on several simple examples and discuss the consequences of our results in realistic experimental
situations.
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I. INTRODUCTION

Many phenomena in quantum physics can be described
in terms of repeated collisions of moving particles X with
a fixed target system Y. The effect of such collisions on Y
is the subject of this paper. Such a framework is extremely
rich, as the particles X can be prepared in an arbitrary state
and used to control the dynamics of Y. Without loss of gen-
erality, we assume that these particles X have no internal
structure. Indeed, we will see that the internal structure of
X , if decorrelated from its center of mass motion, can be
effectively incorporated into that of Y. This allows us to
focus on how the motion of the center of mass of such par-
ticles—described by wave packets—affects the dynamics
of Y. Besides a notable exception [1], it is surprising that
such a simple question seems to have been little explored.
For instance, one would expect that phenomena such as
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decoherence and thermalization of Y occur as a result of
collisions with a thermal ensemble of wave packets X ,
but the conditions for this to happen have not been iden-
tified and the precise definition of the thermal ensemble
is also lacking. Our approach contrasts with the theory of
open quantum systems, in which a system is in perma-
nent contact with equilibrium reservoirs [2,3] or subjected
to continuous collisions with a quantum gas in thermal
equilibrium [4–8], where such phenomena are well under-
stood. One would also expect that a nonthermal ensemble,
instead of causing decoherence and thermalization, can
play the role of a thermodynamic resource for Y and bring
it in a suitable coherent state. Related questions have been
considered within the framework of repeated interaction
models [9–11], where instead of treating a true scattering
problem in real space, an interaction between X and Y is
switched on for a given time.

Our results in this paper rely on three main concepts.
The first is the scattering map, i.e., the quantum map for
Y induced by a collision with a particle X in a generic
(pure or mixed) state, defining the reduced dynamics of Y.
The second is the distinction between pure wave packets
whose energy width is smaller or larger than the smallest
energy-level spacing in Y, which we call narrow or broad
wave packets, respectively. These two concepts suffice to
prove our first result: that collisions with narrow wave
packets induce decoherence in a nondegenerate system Y,
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while collisions with broad packets can act as a source of
coherences. The third is the notion of a statistical ensemble
of effusing narrow packets, which we show not only deco-
heres but thermalizes Y, establishing our second and main
result.

This framework offers a rich platform to analyze the
interplays between various types of wave packets for X
interacting with Y. A quantum thermodynamic perspective
on the ensuing free energy transfers is left for future work.

The paper is organized as follows. The model and the
scattering map for the fixed system Y subject to collisions
with wave packets X are defined in Sec. II. The scat-
tering map is then expressed in terms of the scattering
matrix in Sec. III. Its properties when X is a pure wave
packet are studied in Sec. IV, where we prove that deco-
herence occurs for collisions with narrow—but not with
broad—wave packets. Mixtures, or statistical ensembles,
of thermally effusing wave packets are considered in Sec.
V. Narrow wave packets are shown to produce a detailed
balance map, which leads not only to decoherence of Y
but also to thermalization of its populations. Broad wave
packets, on the other hand, can prevent the system from
thermalizing by acting as a source of coherences. In Sec.
VI, we comment on the extension of our framework to
particles with an internal structure. In Sec. VII, we illus-
trate our findings in a simple model based on a Dirac-δ
potential. Conclusions are drawn in Sec. VIII. Appendix
A is used to recall some important results from scattering
theory used in our calculations. The solution of the scat-
tering problem used to illustrate the theory is detailed in
Appendix B.

II. THE MODEL AND THE SCATTERING MAP

We consider a particle X with mass m, which travels
freely before and after colliding with a fixed scatterer,
which we call the system Y, having internal states in a
Hilbert space HY. For simplicity, we restrict ourselves to
systems with finite dimension N and a one-dimensional
space for the particle. If the latter has no internal structure,
the Hilbert space of the global system is H = HX ⊗ HY,
where HX is the Hilbert space of a one-dimensional par-
ticle, i.e., the set of normalized wave functions ψ(x) with
x ∈ R (as we argue in Sec. VI, one can also consider parti-
cles with internal structure, e.g., spin, by extending HY).

The Hamiltonian for the global system is given by

H = H0 + V = p2

2m
⊗ IY + IX ⊗ HY + V(x)⊗ ν, (1)

where x and p are the position and momentum operators
of the particle X . The free Hamiltonian H0 ≡ p2/2m ⊗
IY + IX ⊗ HY is the sum of the kinetic energy of the par-
ticle X and the internal energy of the system Y, where IY
is the identity in HY (equivalently for X ) and the interac-
tion is given by V ≡ V(x)⊗ ν, with ν being an operator in

HY. Finally, we assume that the interaction potential V(x)
tends to zero sufficiently fast as x → ±∞, as is usual in
scattering theory [12].

For such a class of potentials, scattering theory guar-
antees the existence of a one-to-one map S between free
(incoming) states before the collision to free (outgoing)
states after the collision. More specifically, the total Hilbert
space H can be decomposed into the direct sum of scat-
tering and bound states. Only the asymptotic behavior
of the former is that of free states, i.e., its evolution
for t → ±∞ is given by the unitary evolution operator
U0(t) = exp[−itH0/�] corresponding to the free Hamilto-
nian H0, while the latter remain bound to the interaction
region in the same limit. If U(t) = exp[−itH/�] is the full
evolution operator, one can define the isometric Møller
operators [12]:

�± = lim
t→∓∞ U(t)†U0(t), (2)

which, respectively, map incoming and outgoing states
onto scattering states. The scattering operator defined as

S = �
†
−�+, (3)

is then unitary SS† = S†S = I and maps incoming states
onto outgoing states, providing all the information of how
the full system changes in a collision. We add that one
can prove mathematically, under mild conditions, that any
state in the Hilbert space H can be interpreted as a free
(incoming or outgoing) state. In other words, the domain of
the Møller and the scattering operator is the whole Hilbert
space H [12]. However, one is usually interested in incom-
ing states where the incident particle is localized in space,
far from the collision region and is approaching the scat-
terer in a state either from the left or from the right. These
are the incoming states considered in this paper.

In our approach, the incoming and outgoing states
are density operators associated to the Hilbert space H.
Namely, if the incoming state is factorized ρ = ρX ⊗ ρY,
then the outgoing state of the full system is ρ ′ = S(ρX ⊗
ρY)S†, and the effect of the collision on the internal state of
the system Y is given by

ρ ′
Y = TrX

[
S
(
ρX ⊗ ρY

)
S†
]

≡ SρY, (4)

where TrX denotes the partial trace over X . Finally, the
system Y can sequentially collide with a stream of parti-
cles in identical states ρX . Between collisions, the system
Y evolves isolated. The dynamics is then obtained by the
concatenation

ρ
(n)
Y = Eτn ◦ S ◦ · · · ◦ Eτ2 ◦ S ◦ Eτ1 ◦ S ρ

(0)
Y , (5)

where τi is the time between collision i and i + 1 and
Et(·) = exp [−itHY/�](·) exp [itHY/�] is the unitary map
associated to the free evolution with Hamiltonian HY.
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In the rest of the paper, we calculate and explore the
main properties of the superoperator S defining the dynam-
ics in Eqs. (4) and (5).

III. THE MAP IN TERMS OF THE SCATTERING
MATRIX

The scattering operator commutes with the free Hamil-
tonian [S, H0] = 0 (see Appendix A 1), implying that the
energy is conserved in a collision. As a consequence, it is
convenient to express S in terms of the eigenstates of H0.
We denote the eigenstates of HY by |j 〉 ∈ HY:

HY |j 〉 = ej |j 〉 , (6)

where the eigenvalue ej is the internal energy of the system
and consider the eigenvalues of HY ordered as e1 ≤ e2 ≤
· · · ≤ eN , denoting the Bohr frequencies by �jk/� with
�jk ≡ ej − ek. Then the generalized eigenstates of H0 are
the tensor products |p , j 〉 ≡ |p〉 ⊗ |j 〉, where |p〉 is a plane
wave, i.e., an improper (non-normalizable) state of HX ,
whose position representation reads

〈x|p〉 = eipx/�

√
2π�

, (7)

and satisfies the generalized orthogonality condition
〈p ′|p〉 = δ(p ′ − p). The eigenvalue equation for H0 reads

H0 |p , j 〉 =
(

p2

2m
⊗ IY + IX ⊗ HY

)
|p , j 〉

= (Ep + ej ) |p , j 〉 , (8)

Ep ≡ p2/2m being the kinetic energy of the plane wave
|p〉.

Due to the conservation of energy, the elements
of the scattering operator S in the eigenbasis of H0,
〈p ′, j ′| S |p , j 〉, are proportional to δ(Ep − Ep ′ −�j ′j ) (see
Appendix A 1). We express these elements as

〈p ′, j ′| S |p , j 〉 =
√|pp ′|

m
δ(Ep − Ep ′ −�j ′j )s

(α′α)
j ′j (Ep + ej ),

(9)

where s(α
′α)

j ′j (E) is an element of the so-called scatter-
ing matrix with α = sign(p) and α′ = sign(p ′) account-
ing for the initial and final direction of the momenta,
which can be positive (α,α′ = +) or negative (α,α′ = −).
These elements can be calculated by solving the stationary
Schrödinger equation with appropriate asymptotic bound-
ary conditions (see Appendices A 2 and A 3). Importantly,
Eq. (9) defines s(α

′α)
j ′j (E) only for E ≥ max{ej , ej ′ } because

p2 and p ′2 are non-negative. If j and j ′ fulfill this condition
for a given value of E, we say that the transition |j 〉 → |j ′〉

is an open channel. Consequently, the dimension of the
matrices s(α

′α)(E) is Nopen(E)× Nopen(E), where Nopen(E)
is the number of open channels for an energy E. For
example, if e1 < E < e2, there is only one open scatter-
ing channel (j = j ′ = 1) and, if E > eN , all channels are
open.

The scattering matrix is then ordered in four blocks

s(E) =
(

r̂L(E) t̂R(E)
t̂L(E) r̂R(E)

)
, (10)

all of dimension Nopen(E)× Nopen(E). The entries of
the transmission-from-the-left matrix t̂L(E) are s(++)

j ′j (E),
those of the transmission-from-the-right matrix t̂R(E) are
s(−−)

j ′j (E), those of the reflection-from-the-left matrix r̂L(E)

are s(−+)
j ′j (E), and those of the reflection-from-the-right

matrix r̂R(E) are s(+−)
j ′j (E). They define the conditional

probabilities

PL
j ′j (E) ≡ |t̂Lj ′j (E)|2 + |r̂L

j ′j (E)|2 =
∑
α=±

∣∣∣s(α+)
j ′j (E)

∣∣∣
2

(11)

for a transition |j 〉 → |j ′〉 in the system Y given that the
momentum of the plane wave is positive (coming from
the left) and the total energy is E. We similarly define
PR

j ′j (E) for negative momentum (coming from the right).
The normalization

∑
j ′ PL

j ′j = ∑
j ′ PR

j ′j = 1 follows from
the unitary property of s(E), which corresponds to the diag-
onal elements of the relation s†(E)s(E) = I satisfied by the
scattering matrix Eq. (10), as shown in Appendix A 4.

If we express the density matrix of the system in
the eigenbasis of HY, i.e., (ρY)jk ≡ 〈j |ρY|k〉 and (ρ ′

Y)jk ≡
〈j |ρ ′

Y|k〉, we write Eq. (4) as

(ρ ′
Y)j ′k′ =

∑
j ,k

S
jk
j ′k′(ρY)jk (12)

with the scattering map

S
jk
j ′k′ = 〈j ′| TrX

[
S
(
ρX ⊗ |j 〉 〈k| )S†

]
|k′〉 . (13)

The superoperator S can be expressed in terms of the
scattering matrix by introducing in Eq. (13) the decomposi-
tion ρX = ∫

dp dp ′′ρX (p , p ′′) |p〉 〈p ′′| in the eigenbasis of
HX :

S
jk
j ′k′ =

∫ ∞

−∞
dp ′

∫ ∞

−∞
dp
∫ ∞

−∞
dp ′′ρX (p , p ′′)

〈p ′, j ′| S |p , j 〉 〈p ′′, k| S† |p ′, k′〉 . (14)
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Substituting Eq. (9) in Eq. (14) and using dEp ′ = |p ′|dp ′/m
we obtain

S
jk
j ′k′ =

∑
α′=±

∫
dEp ′ dp dp ′′ρX (p , p ′′)

√|pp ′′|
m

δ(Ep − Ep ′ −�j ′j )s
(α′α)
j ′j

(Ep + ej )δ(Ep ′′ − Ep ′ −�k′k)
[
s(α

′α′′)
k′k (Ep ′′ + ek)

]∗
,

(15)

where the integrals over the momenta p , p ′′ run along the
entire real axis, whereas the integral over the energy Ep ′
runs from 0 to infinity and the sum over α′ accounts for
the positive and negatives values of p ′. We note that s(α

′α)
j ′j

and s(α
′α′′)

k′k are well defined only if the channels |j 〉 → |j ′〉
and |k〉 → |k′〉 are open at the energies in their arguments,
i.e., if Ep + ej ≥ max{ej , ej ′ } and Ep ′′ + ek ≥ max{ek, ek′ }.
These conditions are equivalent to Ep ≥ �j ′j and Ep ′′ ≥
�k′k, respectively, and are enforced by the δ functions.
Integration over the energy Ep ′ yields

S
jk
j ′k′ =

∑
α′=±

∫
dp dp ′′ρX (p , p ′′)

√|pp ′′|
m

× δ(Ep − Ep ′′ −�j ′j +�k′k)s
(α′α)
j ′j (Ep + ej )

×
[
s(α

′α′′)
k′k (Ep ′′ + ek)

]∗
, (16)

where the integrals run over the region where Ep ≥ �j ′j
and Ep ′′ ≥ �k′k.

IV. WAVE PACKETS AND DECOHERENCE

In this section we study the properties of the scatter-
ing map, Eq. (12), when the incoming particle is in a pure
state, i.e., ρX = |φ〉 〈φ|. We use the momentum represen-
tation φ(p) ≡ 〈p|φ〉 with

∫
dp|φ(p)|2 = 1. To simplify,

we consider that all components of |φ〉 travel to the right,
i.e., φ(p) = 0 if p < 0. For this pure state, ρX (p , p ′′) =
φ(p)φ∗(p ′′) and Eq. (16) reads

S
jk
j ′k′ =

∑
α′=±

∫
dp dp ′′φ(p)φ∗(p ′′)

√
pp ′′

m

× δ(Ep − Ep ′′ −�j ′j +�k′k)s
(α′+)
j ′j (Ep + ej )

×
[
s(α

′+)
k′k (Ep ′′ + ek)

]∗
. (17)

Recall that the integration domain in this expression is
defined by the inequalities Ep ≥ �j ′j and Ep ′′ ≥ �k′k.
Since dEp ′′ = |p ′′|dp ′′/m, the integration of the δ function

over p ′′ yields

S
jk
j ′k′ =

∑
α′=±

∫ ∞

pinf

dp φ(p)φ∗ [π(p)]
√

p
π(p)

s(α
′+)

j ′j (Ep + ej )

×
[
s(α

′+)
k′k (Ep −�j ′j + ek′)

]∗
, (18)

with π(p) = √
p2 − 2m(�j ′j −�k′k). The lower integra-

tion limit pinf is obtained from p2
inf/2m = max{0,�j ′j ,�j ′j

−�k′k}, which guarantees that the channels are open in the
integration domain.

We now focus on wave packets centered at a momentum
p0 and with a width 2�p , that is, states where the func-
tion φ(p) is zero except for p ∈ [p0 −�p , p0 +�p]. The
properties of the map, Eq. (18), depend crucially on the
product

φ(p)φ∗[π(p)], (19)

which is different from zero if and only if the arguments
are within the support of φ, that is,

p0 −�p < p < p0 +�p ,

p0 −�p < π(p) < p0 +�p .
(20)

Squaring the two inequalities, we have

(p0 −�p)2 < p2 < (p0 +�p)2,

(p0 −�p)2 < p2 − 2m(�j ′j −�k′k) < (p0 +�p)2

(21)

and, eliminating p , one gets the following necessary condi-
tion for the product (19) to be different from zero for some
value of p:

(p0 +�p)2 − (p0 −�p)2 > 2m|�j ′j −�k′k|

⇒ �p >
m|�j ′j −�k′k|

2p0
. (22)

This inequality defines an important distinction between
two types of incoming wave packets: (a) Those where
the function φ(p) is highly peaked around p0 so that �p
verifies Eq. (22) only when �j ′j = �k′k. Consequently, in
Eq. (18) the term S

jk
j ′k′ vanishes except for transitions with

equal energy change. From now on, we call them narrow
wave packets. (b) Those where the function φ(p) is broad
enough to verify Eq. (22) for at least a pair of transitions
|j 〉 → |j ′〉 and |k〉 → |k′〉 with �j ′j �= �k′k. We call them
broad wave packets and they allow for an overlap of the
two factors in Eq. (19) for some value of p; hence the
corresponding term S

jk
j ′k′ in Eq. (18) can be different from

zero.
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As we show below, narrow (wave) packets destroy most
of the coherences or off-diagonal terms of the density
matrix of the system, whereas they survive or are even
created after repeated collisions with broad packets.

This is one of the main results of the paper. It is worth
giving a physical interpretation of condition (22) and the
distinction between narrow and broad wave packets. In
order to do that, suppose that the initial state of the global
system is the pure state |φ〉 ⊗ |j 〉. After the collision, the
state can be written as

S |φ〉 ⊗ |j 〉 =
∑

j ′

∫
dp ′ |p ′, j ′〉 〈p ′, j ′| S [|φ〉 ⊗ |j 〉] ,

=
∑

j ′

∫
dp ′dp |p ′, j ′〉 〈p ′, j ′| S |p , j 〉φ(p).

(23)

Using Eq. (9) and integrating the δ function, the outgoing
state can be written as

S |φ〉 ⊗ |j 〉 =
∑

j ′

∑
α′=±

|φα′
j ′ 〉 ⊗ |j ′〉 . (24)

Here |φα′
j ′ 〉 are non-normalized wave packets, whose

momentum representation reads

〈p|φα′
j ′ 〉 =

√
|p|

|π̄(p)|s(α
′+)

j ′j (Ep + ej ′)φ[π̄ (p)]�(α′p),

(25)

with π̄(p) ≡ √
p2 + 2m�j ′j , and �(p) being the Heavi-

side step function. Hence, the state after the collision is
a superposition of wave packets |φα′

j ′ 〉 ⊗ |j ′〉, correspond-
ing to the different transitions |j 〉 → |j ′〉, that leave the
scatterer with positive (α = +, transmitted packets) or
negative (α = −, reflected packets) momentum. The sup-
port of this outgoing packet is given by the function φ and
is determined by the inequalities

p0 −�p <
√

p2 + 2m�j ′j < p0 +�p , (26)

with p > 0 for the transmitted packets and p < 0 for the
reflected ones.

Consider now the initial states |φ〉 ⊗ |j 〉 and |φ〉 ⊗ |k〉
and the corresponding transitions, |j 〉 → |j ′〉 and |k〉 →
|k′〉. The transmitted wave packets overlap in the momen-
tum representation if there is a positive p such that

p0 −�p <
√

p2 + 2m�j ′j < p0 +�p ,

p0 −�p <
√

p2 + 2m�k′k < p0 +�p .
(27)

It is straightforward to prove that these two conditions
are equivalent to Eq. (22). However, Eq. (27) provides an

FIG. 1. Narrow (upper plate) and broad (lower plate) wave
packets. The blurred gray zones represent the scatterer, which
undergoes the transitions |j 〉 → |j ′〉 and |k〉 → |k′〉. The figure
shows the two transmitted wave packets corresponding to these
specific transitions (notice that the collision will generate, in
general, much more outgoing packets than the two depicted).
The crucial difference is that the overlap of the outgoing wave
packets is zero in the narrow case, unless both have exactly
the same energy: �j ′j = �k′k. For broad packets, coherences
between states do not vanish and can even be created due to the
overlap (dark area) of the two outgoing packets depicted in the
lower plate.

illuminating interpretation of the distinction between nar-
row and broad wave packets, which is sketched in Fig. 1.
In the case of an incident narrow packet, condition (27)
means that the outgoing wave packets resulting from chan-
nels |j 〉 → |j ′〉 and |k〉 → |k′〉 do not overlap unless they
induce jumps in the system state with exactly the same
energy, that is, �j ′j = �k′k; in such a case, the outgoing
packets are identical. On the other hand, for a broad packet
obeying Eq. (27) for a pair of transitions with �j ′j �= �k′k,
outgoing wave packets with different energy may overlap,
as shown in the lower diagram of Fig. 1. If this occurs,
then the collision preserves the coherences between states
|j 〉 and |k〉 and can even create new coherences when a sin-
gle pure state |j 〉 jumps to a superposition of |j ′〉 and |k′〉
and the resulting wave packets overlap, as we show below
in detail.

The same results apply to a wave packet where φ(p)
decays and is almost zero far from its center at p0. We con-
sider, for instance, Gaussian wave packets |φp0,x0〉 of the
form:

〈p|φp0,x0〉 = (2πσ 2)−1/4 exp
[

− (p − p0)
2

4σ 2 − i
px0

�

]
,

(28)

where p0 = 〈φp0,x0 | p |φp0,x0〉 is the expectation value of
the momentum, σ > 0 its standard deviation, and x0 =
〈φp0,x0 | x |φp0,x0〉 is the expectation value of the position
operator. The condition φp0,x0(p) = 0 for p < 0, which we
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assume above, is practically satisfied if p0 is positive and
p0 � σ . The previous discussion applies to Gaussian wave
packets, for which the condition (22) for a narrow packet
is

σ � m|�j ′j −�k′k|
2p0

(29)

for every quadruplet {j , k, j ′, k′} with �k′k �= �j ′j .

A. Narrow wave packets

As discussed previously, a consequence of Eq. (22) is
that, in a collision with an incident narrow packet, elements
(ρY)jk contribute to (ρ ′

Y)j ′k′ only if �j ′j = �k′k. In this
case, π(p) = p in Eq. (18). Moreover, since the packet is
narrow, we can assume that the scattering matrix is approx-
imately constant in the support of φ(p) and that |φ(p)|2
is approximately normalized in the integration domain
[pinf, ∞). Under these assumptions, Eq. (18) reduces to

S
jk
j ′k′ �

∑
α′=±

s(α
′+)

j ′j (Ep0 + ej )
[
s(α

′+)
k′k (Ep0 + ek)

]∗

= t̂Lj ′j (Ep0 + ej )
[
t̂Lk′k(Ep0 + ek)

]∗

+ r̂L
j ′j (Ep0 + ej )

[
r̂L

k′k(Ep0 + ek)
]∗ , (30)

if �j ′j = �k′k and zero otherwise. Let us apply this condi-
tion first to the diagonal terms of the density matrix (ρY)jj ,
which are the populations of the energy levels. The con-
dition �j ′j = �k′k for j ′ = k′ implies ej = ek. If HY is
nondegenerate, then j = k and

S
jj
j ′j ′ =

[
|t̂Lj ′j (Ep0 + ej )|2 + |r̂L

j ′j (Ep0 + ej )|2
]

= PL
j ′j (Ep0 + ej ), (31)

where the transition probability PL
j ′j (E) is the one defined

in Eq. (11). We see that the evolution of the populations
or diagonal terms of the density matrix (ρY)jj is indepen-
dent of the off-diagonal terms or coherences. The diagonal
terms obey the master equation

(ρ ′
Y)j ′j ′ =

∑
j

PL
j ′j (Ep0 + ej )(ρY)jj , (32)

which conserves the trace or total probability since∑
j ′ PL

j ′j (E) = 1, due to the unitarity of the scattering
matrix s(E) [see the discussion below Eq. (11)].

Let us discuss the evolution of the coherences or off-
diagonal terms of the density matrix ρY, and suppose first
that HY is nondegenerate and the Bohr frequencies of the
system are nondegenerate, i.e., the only solutions to�j ′j =
�k′k are j ′ = j and k′ = k or j ′ = k′ and j = k. The sec-
ond case corresponds to the evolution of the populations

that we discussed previously. The first case corresponds
to S

jk
jk and yields the following evolution equation for the

off-diagonal terms:

(ρ ′
Y)jk = S

jk
jk(ρY)jk for j �= k. (33)

Therefore, each coherence evolves independently and is
simply changed by a multiplicative factor after a colli-
sion. Moreover, since |tLj ′j (E)|2 + |rL

j ′j (E)|2 ≤ 1 for any
E, j , and j ′, a direct application of the Cauchy-Schwarz
inequality yields

∣∣∣tLj ′j (E)t
L
k′k(E

′)∗ + rL
j ′j (E)r

L
k′k(E

′)∗
∣∣∣
2

≤
[
|tLj ′j (E)|2 + |rL

j ′j (E)|2
] [|tLk′k(E

′)|2 + |rL
k′k(E

′)|2]

≤ 1 (34)

for all j , j ′, k, k′, E, and E′. We conclude that all the entries
of the scattering map, Eq. (30), are bound as |Sjk

j ′k′ | ≤ 1,
and, according to Eq. (33), coherences either decay or
remain finite only if |Sjk

jk| = 1. The latter case happens
only when the two equalities |tLaa(E)|2 + |rL

aa(E)|2 = 1 for
a = j , E = Ep0 + ej , and a = k, E = Ep0 + ek are simul-
taneously satisfied. This is extremely unlikely in a mul-
tichannel scattering process. Therefore, generically one
observes the strict inequality, which leads to decoherence
in systems without degenerate Bohr frequencies. When the
Bohr frequencies are degenerate, the scattering map now
couples their coherences and is given by

(ρ ′
Y)j ′k′ =

∑
jk:

�j ′k′=�jk

S
jk
j ′k′(ρY)jk. (35)

If the incoming wave packet is narrow, repeated collisions
will nonetheless decohere system Y. Indeed, using Eq.
(30) and the Cauchy-Schwarz inequality, we find |Sjk

j ′k′ |2 ≤
PL

j ′j (Ep0 + ej )PL
k′k(Ep0 + ek) and therefore

|(ρ ′
Y)j ′k′ | ≤

∑
jk:

�j ′k′=�jk

|(ρY)jk|
√

PL
j ′j (Ep0 + ej )PL

k′k(Ep0 + ek),

(36)

with the sum over j and k restricted by the condition
�j ′k′ = �jk. Since

√
PL

j ′j (Ep0 + ej )PL
k′k(Ep0 + ek) ≤ 1, the

last expression shows that the amount of coherence
between a pair of levels after the collision is generally
smaller than the total amount of coherence present before
the collision.

In summary, we find that decoherence is generic for
systems with nondegenerate levels. Coupling between
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eigenbasis coherences and populations is only possible
if the energy spectrum displays degeneracies, in which
case it occurs within the degenerate subspace. Since in
that subspace the eigenenergy basis is arbitrary, the notion
of decoherence becomes ill defined. These findings are
reminiscent of those obtained using quantum master equa-
tions describing a system in weak contact with a thermal
reservoir in theory of open quantum systems [3,13].

B. Broad wave packets

If the momentum width of the wave packet is large
enough, the map S is more complex and can keep and cre-
ate coherences. For example, suppose that condition (22)
is satisfied for k = j and some j ′ �= k′, i.e.,

�p >
m|�j ′j −�k′j |

2p0
. (37)

In this case, the term S
jj
j ′k′ is different from zero. If the sys-

tem is initially in the pure state ρY = |j 〉 〈j | then, after the
collision, we have

(ρ ′
Y)j ′k′ = S

jj
j ′k′ �= 0, (38)

that is, a nonzero coherent or off-diagonal term.
Therefore, broad wave packets can induce coherences

in a system initially diagonal in the energy basis, even
for inelastic collisions. This is one of our main results,
which may seem unexpected at first sight, since inelastic
collisions are usually associated to thermalization or deco-
herence. In the case of broad packets, the origin of the
coherence is that after the collision, the global state is of the
form given by Eq. (24), where system Y is entangled with
nonorthogonal states of system X , namely, the overlapping
outgoing wave packets. Consequently, the partial trace
over system X , which fully describes system Y, exhibits
coherences that remain no matter the fate of those outgoing
wave packets. In Sec. VII, we explore this crucial phe-
nomenon and its contrast with the case of narrow packets
in specific examples.

V. ENSEMBLES OF WAVE PACKETS AND
THERMALIZATION

In this section we consider that the initial state of X is
given by a statistical ensemble of wave packets and dis-
cuss sufficient conditions that lead to thermalization for
system Y. Here, we assume that [HY, ν] �= 0 to ensure that
[S, IX ⊗ ν] �= 0, otherwise the scattering process induces
transitions only between the (common) eigenstates of HY
and ν with different eigenvalues, ruling out the possibility
of thermalization of Y by repeated collisions.

The first condition for thermalization is that the ensem-
ble consists of narrow wave packets. As we have just seen,
narrow wave packets lead to decoherence while broad ones

induce coherences even if the initial state of the system
is diagonal in the energy basis. This remains true for an
ensemble of packets described by a density matrix, as we
illustrate in the examples of Sec. VII.

A. Microreversibility

The second condition is microscopic reversibility, that
is, the invariance of the scattering operator under time
reversal. In quantum mechanics, time reversal is imple-
mented by an antiunitary operator T, which changes the
sign of all momenta and other odd magnitudes under time
reversal, like angular momentum, spin, and the magnetic
field. It takes different forms, depending on the system.
For instance, for a spinless point particle, T is the con-
jugation of the wave function in position representation:
〈x|T|ψ〉 = 〈x|ψ〉∗. In the momentum representation, on the
other hand, the operator changes the sign of the momenta:
〈p|T|ψ〉 = 〈−p|ψ〉. If the free and the total Hamiltonian
commute with T = TX ⊗ TY, where TX and TY are the
time-reversal operators acting on the Hilbert space of X
and Y, then the scattering operator also commutes with T
and the collision is invariant under time reversal. For sim-
plicity, we assume here that the eigenstates of HY are also
invariant, that is, TY |j 〉 = |j 〉. In this case, the scattering
matrix obeys the following symmetry relation:

s(α
′ α)

j ′j (E) = s(−α−α′)
jj ′ (E) (39)

or equivalently r̂L = (r̂L)t, r̂R = (r̂R)t, and t̂L = (t̂R)t,
where (·)t stands for transpose [12,14,15]. In other words,
Eq. (10) is a symmetric matrix.

In our previous discussion, we considered only parti-
cles incident from the left. This setting is not time-reversal
invariant. To satisfy microscopic reversibility, we have
to consider particles coming from both left and right,
as shown schematically in Fig. 2. That is, for every
wave packet |φp0,x0〉 in the ensemble, centered around the
momentum p0 > 0 and coming from the left (x0 < 0), there
must be a |φ−p0,−x0〉 centered around momentum −p0 < 0
and coming from the right (−x0 > 0). For narrow wave
packets, the position x0 becomes irrelevant and we omit it
from the notation. With these ideas in mind, we consider a
symmetric ensemble defined by the probability distribution
μ(p0), normalized in [0, ∞):

ρX =
∫ ∞

0
dp0

μ(p0)

2
(|φp0〉 〈φp0 | + |φ−p0〉 〈φ−p0 |). (40)

Inserting this incoming state into Eq. (16), and taking into
account that all the packets are narrow, one obtains

S
jj
j ′j ′ =

∫
dp0

μ(p0)

2

[
PL

j ′j (Ep0 + ej )+ PR
j ′j (Ep0 + ej )

]
,

(41)
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FIG. 2. Thermalization via collisions is achieved if the sys-
tem (scatterer) is bombarded by narrow wave packets coming
from equilibrium reservoirs at the two sides. If we remove one
of the reservoirs, the setup is out of equilibrium. Notice however
that, if the scatterer is symmetric, that is, if the interaction poten-
tial V(x) is even, V(x) = V(−x), then the second reservoir is not
necessary.

where the integral over p0 runs over all positive values
satisfying Ep0 ≥ �j ′j . Recall that PL

j ′j (E) is given by Eq.
(11) and similarly for PR

j ′j (E). To simplify the notation, we
define

Pj ′j (E) =
PL

j ′j (E)+ PR
j ′j (E)

2
(42)

and replace it in Eq. (41), which becomes

S
jj
j ′j ′ =

∫
dp0 μ(p0)Pj ′j (Ep0 + ej ). (43)

Let us recall that the energy in the argument of Pj ′j (E) is
such that the scattering channel |j 〉 → |j ′〉 is open. Finally,
from the definition of the transition probabilities in Eq. (11)
and the microreversibility condition (39), we obtain

PL
j ′j (E)+ PR

j ′j (E) = PL
jj ′(E)+ PR

jj ′(E)

⇒ Pj ′j (E) = Pjj ′(E). (44)

B. Detailed balance and thermalization

A third condition for the thermalization of the sys-
tem Y is that the statistics of the narrow wave packets
X is thermal. We show below that, in this case, the map
that evolves the populations obeys the detailed balance
condition, ensuring thermalization.

According to the discussion in Ref. [16] we take
μ(p0) = μeff(p0) with

μeff(p) = β
p
m

e−βp2/2m (45)

the effusion distribution, in which case Eq. (43) satisfies
the detailed balance relation

S
jj
j ′j ′e−βej = S

j ′j ′
jj e−βej ′ . (46)

To prove it, let us compute the left-hand side using Eq.
(43), Eq. (18), and the change of variable E = Ep0 + ej :

S
jj
j ′j ′e−βej =

∫ ∞

pinf

dp0
β p0

m
e−β(Ep0+ej )Pj ′j (Ep0 + ej )

= β

∫ ∞

max{ej ,ej ′ }
dE e−βEPj ′j (E), (47)

where pinf is
√

2m�j ′j if �j ′j > 0 and zero otherwise.
Similarly, the right-hand side of Eq. (46) reads

S
j ′j ′
jj e−βej ′ =

∫ ∞

pinf

dp0
β p0

m
e−β(Ep0+ej ′ )Pjj ′(Ep0 + ej ′)

= β

∫ ∞

max{ej ′ ,ej }
dE e−βEPjj ′(E), (48)

where now pinf is
√

2m�jj ′ if �jj ′ > 0 and zero other-
wise. Both integrands are the same because time-reversal
symmetry implies Pj ′j (E) = Pjj ′(E). Hence, the detailed
balance equality Eq. (46) is satisfied, which, in turn, guar-
antees the thermalization of system Y, that is, after a
number of collisions the system reaches the thermal state
ρY = exp [−βHY]/ZY with ZY = Tr(exp [−βHY]).

Notice that if, on the other hand, we take the Maxwell-
Boltzmann distribution μ(p0) = √

β/(2mπ) exp[−βp2
0/

(2m)] in Eq. (43), (SY)
jj
j ′j ′ does not satisfy detailed balance

and the map does not thermalize the system Y. The phys-
ical reason is that particles escaping from a small hole in
a thermal box are distributed in momentum according to
the effusion distribution, which is the Maxwell-Boltzmann
distribution weighted with a flux factor. See Ref. [16] for a
detailed discussion of this subtle issue.

We end this section with two remarks. First, if the poten-
tial V(x) has the spatial symmetry x → −x, then r̂L = r̂R

and t̂L = t̂R, and PL
j ′j (E) = PR

j ′j (E). The spatial reflection
symmetry x → −x plus time-reversal symmetry, Eq. (44),
imply PL

j ′j (E) = PL
jj ′(E). In this case, detailed balance (and

therefore thermalization) is satisfied with just left (or right)
incoming wave packets.

Second, we see that the narrow packets destroy coher-
ences in the eigenbasis of HY. Consequently, once the diag-
onal state is reached, the unitary free evolution between
collisions present in Eq. (5) does not change the density
matrix ρY. We conclude that narrow wave packets induce
thermalization independently of the time intervals between
collisions, which can be either random or deterministic.

C. Entropy production

The evolution of populations pj ≡ (ρY)jj in system Y is
ruled by the discrete-time stochastic master equation

p ′
j =

∑
k

Wjkpk, (49)
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where Wjk ≡ S
kk
jj satisfies

∑
j Wjk = 1 and detailed bal-

ance Wjke−βek = Wkj e−βej . This allows the identification
of the average energy change of Y with heat, i.e., �S ≥
β�E where the entropy S ≡ −∑j pj ln pj is given by the
Shannon entropy associated to system Y, and E = ∑

j ej pj
its average energy, as shown in Ref. [17] (see also Refs.
[18,19]). The energy change is determined by

Q ≡ �E =
∑

j

ej (p ′
j − pj )

=
∑
j ,k

ej (Wjk − δjk)pk (50)

that we denote Q, anticipating its interpretation as heat. We
now consider the change in the Shannon entropy of the
system Y

�S =
∑

j

(pj ln pj − p ′
j ln p ′

j ) = βQ +� (51)

that we split into two contributions. The first one is the
entropy flow given by

βQ = −
∑
j ,k

Wjkpk ln
Wjk

Wkj
, (52)

where we used the detailed balance condition ln(Wjk/Wkj )

= −β(ej − ek) for the identification with Eq. (50). The
second one is the entropy production given by

� =
∑
j ,k

Wjkpk ln
Wjkpk

Wkj p ′
j
. (53)

This quantity is non-negative as can be shown using Jensen
inequality. Indeed, since − ln x ≥ x − 1,

� ≥
∑
j ,k

Wjkpk

(
Wkj p ′

j

Wjkpk
− 1

)

=
∑
j ,k

(
Wkj p ′

j − Wjkpk

)
= 0. (54)

When the system reaches equilibrium, i.e., when pj =
p ′

j = exp [−βej ]/ZY, we have � = 0.

VI. EXTENSION TO PARTICLES WITH
INTERNAL STRUCTURE

We briefly comment on the statement from the introduc-
tion that if the incoming particle has an internal structure
and its state is of the form ρX ⊗ ρχ with ρX associated to
the translation degree of freedom and ρχ to the internal
structure, the effective system Y comprises χ and the fixed

scatterer, here called ϒ . The effective system Y before
the collision has a state ρY = ρχ ⊗ ρϒ and the effective
Hamiltonian is HY = Hχ + Hϒ , with Hχ the Hamiltonian
associated to the internal degrees of freedom of the trav-
eling particle and Hϒ that of the fixed scatterer. Narrow
wave packets (with respect to the smallest level spac-
ing of Y) induce decoherence in Y, and thus also in χ

and ϒ . Thermalization of ϒ after many collisions still
holds if ρX is a thermal ensemble of wave packets and
the internal structure of the particle is also thermal, i.e.,
ρχ ∼ exp [−βHχ ]. This follows from the detailed balance
property of S

jj
j ′j ′ . The index j stands now for the pair (x, y)

where x indexes the eigenvalues and eigenstates of Hχ and
y those from Hϒ . Due to the product structure of the state
of Y prior to the collision, the population of Y evolves
with the equation Px′y′ = ∑

xy S
(xy)(xy)
(x′y′)(x′y′) exp [−βεx]Py

and the reduced dynamics for the populations of ϒ

is given by Py′ = ∑
y R

y
y′Py with the reduced stochas-

tic map R
y
y′ = ∑

xx′ S
(xy)(xy)
(x′y′)(x′y′) exp [−βεx] also satisfy-

ing detailed balance and thus inducing thermalization
of ϒ .

VII. APPLICATIONS

In this section, we illustrate in simple models the results
previously obtained. We consider a system Y with finite
dimension N , i.e., HY = ∑N

j =1 ej |j 〉 〈j | interacting with X
via the coupling V(x)⊗ ν in Eq. (1) with V(x) = gδ(x)
being a Dirac δ potential with strength parameter g. The
scattering problem is solved in Appendix B. Since the
potential is symmetric under the spatial inversion x →
−x, the transmission and reflection matrices from the left
equal those from the right, i.e., r̂L(E) = r̂R(E) ≡ r̂(E) and
t̂L(E) = t̂R(E) ≡ t̂(E). The resulting scattering matrix in
Eq. (10) is given by

t̂j ′j =
√

pj ′

pj
tj ′j and r̂j ′j =

√
pj ′

pj
(δj ′j − tj ′j ), (55)

with 1 ≤ j , j ′ ≤ Nopen(E), where Nopen(E) = #{ej ′ ≤ E},
the number of levels with energy smaller than E, pj =√

2m(E − ej ) and tj ′j are the elements of the N × N matrix

t =
[
I + img

�2 D
−1

V

]−1

. (56)

In Eq. (56), the matrix D is diagonal with Djj = pj /� and
V the matrix with elements Vkj = 〈k| ν |j 〉 . We take in the
following numerical examples � = g = 1.

A. Narrow and broad wave packets

We first illustrate the role of the width of the wave
packet, i.e., the transition from narrow to broad wave pack-
ets. For this, the simplest is to investigate a two-level
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σx σy

σz

Narrow
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FIG. 3. Bloch sphere representation of the state ρ(n)Y under
repeated collisions (n = 200) with narrow and broad Gaussian
wave packets (blue circles and red triangles, respectively). The
colored arrows show the direction of the evolution of each state
in the sphere starting from the initial states, which are pure (i.e.,
they lie on the surface of the sphere) and given by (ρY)

(0)
11 = 1

and (ρY)
(0)
12 = 0 (upper panel) and (ρY)

(0)
11 = (ρY)

(0)
12 = 0.5 (lower

panel). All parameters are identical in the two panels,�Y = m =
1, p0 = 10, except the widths, which are σ/(m�Y/2p0) = 0.2 for
narrow wave packets and σ/(m�Y/2p0) = 20 for broad wave
packets.

system Y. Let us remind that, according to Eq. (29), a
Gaussian wave packet is considered to be narrow if σ �
m�Y/2p0 with �Y = e2 − e1. We take V = σ x + σ z (the
Pauli matrices) in Eq. (56) and compute the map S accord-
ing to Eq. (16). Between collisions, we simply take Eτn as
the identity for all n.

The results are shown in Fig. 3, where we plot the
state in the Bloch sphere representation according to ρY =
(I + �P · �σ)/2 and �P is the polarization vector. We take two
initially pure states (lying on the surface of the sphere), one
being in an excited state and the other in a superposition of
ground and excited states (Fig. 3, upper and lower panel,
respectively).

Collisions with narrow wave packets lead to
decoherence of Y for both initial states; see the blue dots
converging to the invariant state in the z axis near the
center of the sphere as the scattering map is iterated. The
populations of the invariant state can be computed by eval-
uating the invariant state of Eq. (32). For the two-level
system under consideration, the scattering matrix s(E)
depends only weakly on E and therefore PL

j ′j (Ep0 + ej ) ≈
PL

j ′j (Ep0) for all j ′j in Eq. (32). Since PL
j ′j (E) is a bis-

tochastic matrix, the invariant state of Eq. (32) is very close
to the maximally mixed state. In Fig. 3, upper panel, we
see (blue dots) that a state, which is initially diagonal in
the energy basis, remains diagonal throughout the evolu-
tion, i.e., its dynamics is confined to the z axis. In Fig. 3,
lower panel, an initial superposition state with an equal
amount of populations decoheres and changes its popu-
lations in an almost negligible way as it spirals towards
the invariant state. Conversely, collisions with broad wave
packets transfer coherences to an initially diagonal state
(which leaves the z axis) and couple the populations and
coherences of an initial superposition state (which quickly
leaves the x-y plane). For such broad wave packets, the
system evolves towards a steady state with coherences (red
triangles in Fig. 3).

We finish this subsection by discussing the role played
by adding a free system evolution of fixed time τ between
the collisions with the wave packets. This time may cor-
respond to integer or noninteger number of periods of
the free evolution T ≡ 2π�/(�Y). From Eq. (5), the map
Eτn is the identity in the former case. Figure 4 shows
the populations (left panel), modulus (middle panel), and
phase of coherences (last panel), for τ = 0 (no free evo-
lution) and τ = 3T/4, when considering both narrow and
broad wave packets. For narrow wave packets, we observe
that the free evolution does not affect the system popu-
lations. This is expected since populations do not evolve
under free evolution and are decoupled from coherences
during collisions. The free evolution also leaves the modu-
lus of the coherences unchanged and only changes their
phase, but eventually coherence will vanish due to the
collisions. Turning to broad wave packets, we note that
adding a free evolution between collisions modifies the
evolution of populations and coherences in a signifi-
cant way. Collisions in this case can induce coherences
in the system and couple them to populations. With or
without free evolution, the steady state displays coher-
ences, although less in the former case. It is interesting to
note that broad wave packets with free evolution display
results quite close (but not identical) to narrow packets.
To summarize, the results drawn in the previous sections
for narrow and broad wave packets are still valid when
free evolution is included. The effect of the free evolu-
tion on ensembles of broad wave packets is illustrated in
Sec. VII C.
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FIG. 4. Effect of free evolution between collisions on the populations (left panel), modulus and phase of coherences (middle and
right panel, respectively) for a two-level system colliding with narrow (N ) and broad (B) Gaussian wave packets. The system evolves
freely for 0 or 3/4 cycles between each collision. The initial state is (ρY)

(0)
22 = 0.9 and (ρY)

(0)
11 = 0.1, (ρY)

(0)
12 = 0.3. The remaining

parameters are �Y = m = 1, p0 = 6.3, and σ/(m�Y/2p0) = 0.12 for narrow wave packets and σ/(m�Y/2p0) = 12 for broad wave
packets.

B. Thermalization

In this section, we explore the dynamics of system Y
under repeated collisions with narrow wave packets as
described in Sec. V. In particular, we aim to illustrate
the thermalization property observed with S

jj
j ′j ′ in Eq. (43)

when μ = μeff.
For that purpose, we take a system Y of dimension 5 and

energy spectrum is {ej = j 2}5
j =1, which has nondegenerate

Bohr frequencies. As coupling matrix V, we take

V =

⎛
⎜⎜⎜⎝

0 1 0 1 0
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1
0 1 0 1 0

⎞
⎟⎟⎟⎠ . (57)

To check whether the collisions induce the thermalization
of system Y, we evaluate the quantities

B(n)jk ≡ − 1
ej − ek

ln
(ρ
(n)
Y )jj

(ρ
(n)
Y )kk

, (58)

where ρ(n)Y = S
nρ

(0)
Y and ρ(0)Y is the initial state. Since we

are interested in the evolution of the populations, the free
evolution of system Y between collisions does not play
a role. If as n grows, the system Y approaches a ther-
mal distribution exp [−βHY]/ZY, then all B(n)jk converge
to β. We see in Fig. 5 that, when the wave packets are
weighted with the effusion distribution μeff in Eq. (45), the
system Y thermalizes (upper panel). On the other hand, if
they are weighted with the Maxwell-Boltzmann distribu-
tion μ ∝ exp[−βp2/2m] (lower panel), the stationary state
is not thermal. The evolution of coherences are also tracked

(but not depicted) and observed to decay exponentially, as
predicted.

C. Ensemble of broad wave packets

To complement our analysis, we consider here a mix-
ture of broad wave packets, each being weighted according
to the effusion distribution μeff. Despite the fact that inci-
dent particles have the same distribution of velocities as
classical particles effusing from a gas at equilibrium, we
see that the system Y does not thermalize. To illustrate
this, we consider again a two-level system Y. The con-
dition for a narrow packet for incident momentum p0 is
Eq. (29). Since the effusion distribution has its maximum
at pmax = √

m/β, to satisfy the condition of broad wave
packet for most of the incident particles we set the width
of the packet as σ > �Y

√
mβ/2.

In the upper panel of Fig. 6, we plot the iteration of S

and observe that, despite the thermal distribution of the
average velocities of the wave packets, the asymptotic
state of Y is not thermal and in fact develops coherences
that were absent in the initial state. In the lower panel
of Fig. 6, we consider the iteration in Eq. (5) with the
times τi drawn from a random distribution with Poisso-
nian statistics. While this partially decoheres the system’s
state, the populations do not approach their thermal value
(orange straight lines). Instead, they fluctuate near a value
determined by the stationary state of the map for the
populations, i.e., the master equation with Wj ′j = S

jj
j ′j ′

where

S
jj
j ′j ′ =

∫
dpρX (p , p)2Pj ′j (Ep + ej ). (59)

Here Pj ′j (E) are the transition probabilities defined in
Eq. (42) and ρX (p , p) is the diagonal part of the density
matrix of Gaussian wave packets Eq. (28) weighted with
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Number of collisions (n)
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FIG. 5. Plot of B(n)jk defined in Eq. (58) computed for an ensem-
ble of narrow Gaussian wave packets weighted by the effusion
distribution in Eq. (45) and the Maxwell-Boltzmann (MB) distri-
bution (upper and lower panel, respectively) with β = 3. In both
cases, the initial state is the thermal state e−β ′HY/ZY with β ′ = 1
and the mass of the wave packet is m = 0.5. The orange line cor-
responds to β = 3. For clarity, not all pairs of indices (j , k) are
plotted.

the effusion distribution μeff Eq. (45). A cumbersome but
straightforward calculation yields

ρX (p , p)= βC

m

[
σ√
2π

e− p2

2σ2 + p
2
√

r
erf
(

p√
2rσ

)
e−βC

p2
2m

]
,

(60)

with

r = 1 + βσ 2

m
, βC = β

r
. (61)

The map for the populations given by Eq. (59) does not
satisfy detailed balance if σ is not negligible, implying that
the system does not thermalize when bombarded by these

0 100 200 300 400
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0.0

0.2

0.4

0.6

0.8

1.0 (ρ(n)
Y )11

(ρ(n)
Y )22

Re(ρ(n)
Y )12

Im(ρ(n)
Y )12
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0.0

0.2

0.4

0.6

0.8

1.0

Number of collisions (n)

FIG. 6. Evolution of ρ(n)Y when the state of X is a mixture of
broad Gaussian wave packets weighted with the effusion distribu-
tion. Upper panel: The values (ρY)

(n)
ij are obtained by composing

the map SY. In black we depict (ρY)
(n)
11 and (ρY)

(n)
22 in blue, while

the real and imaginary parts of (ρY)
(n)
12 are depicted in green

and red, respectively. Lower panel: The iterated map is given
in Eq. (5) with random Poissonian times τi. In both panels: The
orange lines indicates the thermal values (ρY)11 and (ρY)22 with
inverse temperature β. The light blue lines indicate the ther-
mal values (ρY)11 and (ρY)22 with inverse temperature βC. The
gray lines indicate the values (ρY)11 and (ρY)22 computed by
considering the master equation for the populations ruled by
Wik = S

kk
ii as given in Eq. (59). The initial state is (ρY)

(0)
11 = 0.3

and (ρY)
(0)
12 = 0. The remaining parameters are �Y = m = 0.5

with e2 = 2.5, e1 = 2, σ = 0.31 and β = 3.

broad packets. It is interesting to notice that the diagonal
part, Eq. (60), behaves like an effusion distribution with a
temperature βC for p � σ . As shown in the lower panel of
Fig. 6, for Poissonian collision times the system reaches an
effective temperature close to βC.

Notice, however, that the broad or narrow packet con-
dition depends on �Y, that is, on the energy spectrum of
the system. Hence, the same ensemble of packets used for
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Fig. 6 will thermalize the system to the temperature of the
ensemble β if the level spacing �Y is large enough. One
can even induce a crossover from narrow to broad wave
packets by decreasing �Y.

VIII. CONCLUSIONS

We consider a quantum scattering process between a
massive particle X described by a wave packet and a static
system Y and study the resulting quantum map on Y. We
find that the properties of the map strongly depend on the
properties of the wave packet. For wave packets whose
energy width is smaller than the smallest energy-level
spacing (narrow wave packet), eigenstate populations and
coherences decouple from each other if Y is nondegenerate
and the latter decay. Instead, for broad wave packets, pop-
ulations and coherences couple and influence each other.
Our central finding is that thermal ensembles of wave
packets, i.e., narrow wave packets distributed with the effu-
sion probability distribution function, induce decoherence
and thermalization in Y.

Our results strongly suggest that the distinction between
narrow and broad packets could be observable in certain
situations, like the interaction between single atoms and a
single electromagnetic mode in cavity-QED experiments.
Since the broadness of the packet depends on the level
spacing �Y, one could tune �Y to measure the width of
the packets and explore the wave-particle duality of atoms
and molecules escaping by effusion from a gas in thermal
equilibrium.

The scattering framework that we propose here is very
rich and opens many interesting perspectives for the
future. We are particularly interested in using it as a
basis for a quantum thermodynamics formulation. Indeed,
our present scattering approach avoids many difficulties
encountered using other formulations as it is formally
exact, autonomous, and the interaction energy is naturally
vanishing before and after the collisions.
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APPENDIX A: SCATTERING THEORY

The main goal of scattering theory is to obtain the scat-
tering operator S, which is a one-to-one map between free
(incoming) states before the collision to free (outgoing)
states after the collision. Whether or not such an opera-
tor exists depends on the dynamics during the collision
through the interaction potential, which in general can sup-
port states that are either free or bound to the interaction
region for very long times. However, its existence is guar-
anteed for a large class of potentials V(x), which vanish
fast enough at infinity. In this case, the Hilbert space H
of the full system can be expressed as a direct sum of
two mutually orthogonal subspaces H = S ⊕ B, where S
and B are the subspaces of scattering and bound states
[12,14,20,21].

According to their definition (2), the Møller operators
are isometries of H, i.e., they map state vectors onto the
subset of scattering states �± : H �→ S while preserving
the norm 〈ψ |�†

±�±|ψ〉 = 〈ψ |ψ〉 , ∀ |ψ〉 ∈ H. The isomet-
ric property reads �†

±�± = I. Note that a unitary operator
is necessarily an isometry, but the reverse is not true. For
instance, here the “inverse” Møller operator �†

± acts only
on scattering states �†

± : S �→ H, and one has �±�
†
± =

I − PB, with PB the projector onto the space B of bound
states. The Møller operators define the scattering operator
according to Eq. (3) in the main text. Its unitarity follows
from the fact that �± have the same range S , a property
called asymptotic completeness [12,14,20,21].

Some relevant properties of these operators are derived
in the next sections.

1. Intertwinning relation

One of the main properties of the Møller operators �±
is the so-called intertwining relation:

H�± = �±H0. (A1)

The proof follows from the definition of the Møller opera-
tors in Eq. (2)

eiHτ/��± = eiHτ/�
[

lim
t→∓∞ eiHt/�e−iH0t/�

]

= lim
t→∓∞ eiH(t+τ)/�e−iH0(t+τ)/�eiH0τ/�

= �± eiH0τ/�. (A2)

Differentiating with respect to τ at τ = 0, we obtain the
desired result, Eq. (A1). By writing Eq. (A1) as�†

±H�± =
H0, it is clear that such a transformation of the Hamilto-
nian H is not unitary, since it relates the full Hamiltonian
containing the interaction with the free Hamiltonian, which
has a different energy spectrum.
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From the intertwinning relation, we can straightfor-
wardly derive the important commutation property of the
scattering operator

SH0 = �
†
−�+H0 = �

†
−H�+

= H0�
†
−�+ = H0S ⇒ [S, H0] = 0, (A3)

which implies the conservation of the total energy in
the scattering event and that the elements of the scatter-
ing operator in the eigenbasis of H0, i.e., 〈p ′, j ′| S |p , j 〉,
are proportional to δ(Ep + ej − Ep ′ − ej ′) = δ(Ep − Ep ′ −
�j ′j ), allowing us to write these terms as in Eq. (9).

Another important consequence of the interwinning
relation is that, if |p , j 〉 is an improper eigenstate of H0
with energy E = Ep + ej = p2/(2m)+ ej , then �± |p , j 〉
is an eigenstate of the full Hamiltonian H with the same
energy:

H�± |p , j 〉 = �±H0 |p , j 〉 = E�± |p , j 〉 . (A4)

2. The T operator

A crucial tool in scattering theory are the resolvents
or Green’s operators associated to the free and the full
Hamiltonian:

G0(z) ≡ (z − H0)
−1, G(z) ≡ (z − H)−1 (A5)

defined for any complex number z, which does not belong
to the spectrum of H0 and H , respectively. It is not hard to
prove that these operators verify

G(z) = G0(z)+ G0(z)VG(z)

= G0(z)+ G(z)VG0(z). (A6)

We also define the T operator as

T(z) ≡ V + VG(z)V. (A7)

Applying G0(z) to this equation and making use of Eq.
(A6), we get

G0(z)T(z) = G(z)V, (A8)

which relates the two resolvents through the T operator and
the interaction potential.

To relate the scattering and the T operator, we rewrite
the Møller operators (2) as

�± = 1 +
∫ ∓∞

0
dt

d
dt
(eiHt/� e−iH0t/�)

= − lim
ε→0+

[
e±εt/�eiHt/� e−iH0t/�]∓∞

0

+ lim
ε→0+

∫ ∓∞

0
dt e±εt/� d

dt
(eiHt/� e−iH0t/�)

= lim
ε→0+

∓ ε
�

∫ ∓∞

0
dt e±εt/�eiHt/� e−iH0t/�, (A9)

where integration by parts is used from the second to the
third equality. Its action on the improper eigenstates of H0
gives

�± |p , j 〉 = lim
ε→0+

∓ ε
�

∫ ∓∞

0
dt e−i(E±iε)t/� eiHt/� |p , j 〉

= lim
ε→0+

± i ε G(E ± iε) |p , j 〉

= |p , j 〉 + G(E ± i0)V |p , j 〉 , (A10)

where E = Ep + ej = p2/(2m)+ ej is the energy of the
state |p , j 〉 and we introduce the notation f (z + i0) ≡
limε→0+ f (z + iε). The second equality follows from a
direct calculation of the integral in Eq. (A9), while the
third is obtained using Eq. (A6) and G0(z) |p , j 〉 = (z −
E)−1 |p , j 〉. Multiplying Eq. (A10) by V we get the useful
expression

V�± |p , j 〉 = T(E ± i0) |p , j 〉 . (A11)

Recalling the representation of the Dirac δ, πδ(x) =
limε→0+ Im(x − iε)−1, one can prove that Eq. (A10)
implies the identity

(�+−�−) |p , j 〉 = [G(E + i0)− G(E − i0)]V |p , j 〉
= −2π iδ(E − H)V |p , j 〉 . (A12)

The action of the scattering operator on an eigenstate of
H0 can now be computed from its definition (3) and Eq.
(A12):

S |p , j 〉 = �
†
−�+ |p , j 〉

= (1 +�
†
−(�+ −�−)) |p , j 〉

= |p , j 〉 − 2π i�†
−δ(E − H)V |p , j 〉 . (A13)

Closing the last expression with 〈p ′, j ′| and taking into
account that �− |p ′, j ′〉 is an eigenstate of H with eigen-
value Ep ′ + ej ′ , we get
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〈p ′, j ′| S |p , j 〉 = δj ′j δ(p ′ − p)− 2π iδ(Ep − Ep ′ −�j ′j ) 〈p ′, j ′|�†
−V |p , j 〉 . (A14)

We can eliminate the Møller operator using Eq. (A11) and the property T†(z) = T(z∗), yielding 〈p ′, j ′|�†
−V |p , j 〉 =

〈p ′, j ′| T(E + i0) |p , j 〉. Inserting this last expression into Eq. (A14), one finally gets

〈p ′, j ′| S |p , j 〉 = δj ′j δ(p ′ − p)− 2π iδ(Ep − Ep ′ −�j ′j )× 〈p ′, j ′|T(E + i0)|p , j 〉

= δ(Ep − Ep ′ −�j ′j )

[
δj ′j δα′α

|p|
m

− 2π i 〈p ′, j ′|T(E + i0)|p , j 〉
]

. (A15)

Comparing this expression with Eq. (9) and taking into account that j ′ = j implies |p ′| = |p|, we get

s(α
′α)

j ′j (E) = δj ′j δα′α − 2π i m√|pp ′| 〈p ′, j ′|T(E + i0)|p , j 〉 . (A16)

In this way, we relate the entries of the scattering matrix s to the T operator. In the next section of this appendix, we relate
the elements of the T operator to the transmission and reflection coefficients, which, in turn, can be computed by solving
the stationary Schrödinger equation.

3. Scattering states

The previous definitions and relationships can be used to compute the T operator and the scattering operator S in specific
situations. For this purpose, let us introduce the so-called scattering states |p , j 〉+ defined as

|p , j 〉+ ≡ �+ |p , j 〉 = |p , j 〉 + G(E + i0)V |p , j 〉
= |p , j 〉 + G0(E + i0)T(E + i0) |p , j 〉 . (A17)

Here, we use Eqs. (A10) and (A8). We also use the following identity derived from Eqs. (A11) and (A17):

|p , j 〉+ = |p , j 〉 + G0(E + i0)V |p , j 〉+ . (A18)

The scattering state |p , j 〉+ is an eigenstate of H with energy E = Ep + ej as shown in Eq. (A4). Moreover, the asymptotic
behavior of its wave function in real space 〈x|p , j 〉+ contains all the necessary information to calculate the operators T
and S. To prove this, we start by expressing Eq. (A18) in the position representation, using the plane wave introduced in
Eq. (7):

〈x|p , j 〉+ = eikx

√
2π�

|j 〉 +
∫ ∞

−∞
dx′
∫ ∞

−∞
dx′′ 〈x|G0(E + i0)|x′〉 〈x′|V|x′′〉 〈x′′|p , j 〉+

= eikx

√
2π�

|j 〉 +
∫ ∞

−∞
dx′ V(x′) 〈x|G0(E + i0)|x′〉 ν 〈x′|p , j 〉+ , (A19)

with k = p/�. The resolvent in position representation G+
0 (x, x′) ≡ 〈x|G0(E + i0)|x′〉 is an operator in HY that obeys the

equation
[

E − HY + �
2

2m
d2

dx2

]
G+

0 (x, x′) = δ(x − x′)⊗ IY. (A20)

The solution is

G+
0 (x, x′) =

∑
j ′

m
ikj ′�2 eikj ′ |x−x′| |j ′〉 〈j ′| , (A21)

with kj ′ = √
2m(E − ej ′)/�, as one can check by direct substitution. Inserting this expression in Eq. (A19), we get

〈x|p , j 〉+ = eikx

√
2π�

|j 〉 +
∑

j ′

m
ikj ′�2 |j ′〉

∫ ∞

−∞
dx′eikj ′ |x−x′|V(x′) 〈j ′| ν 〈x′|p , j 〉+ . (A22)
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We are interested in the asymptotic behavior of 〈x|p , j 〉+ far from the collision region. Consider first the case p > 0 and
x → −∞. Due to the presence of V(x′), only the values of x′ in the collision region contribute to the integral. Therefore,
we can replace |x − x′| by x′ − x, yielding

〈x|p , j 〉+ =
x→−∞

1√
2π�

⎡
⎣eikx |j 〉 +

∑
j ′

rL
j ′j e−ikj ′ x |j ′〉

⎤
⎦ , (A23)

where

rL
j ′j = m e−ikj ′ x

ikj ′�2

∫ ∞

−∞
dx′eikj ′ x′

V(x′) 〈j ′| ν 〈x′|p , j 〉+ . (A24)

Hence, the scattering state |p , j 〉+ is a superposition of wave packets with certain amplitudes rL
j ′j , which we need to relate

to T and the S operators. To achieve this, we express Eq. (A17) in position representation

〈x|p , j 〉+ = 1√
2π�

[
eikx |j 〉 +

∫ ∞

−∞
dx′
∫ ∞

−∞
dx′′eikx′′

G+
0 (x, x′) 〈x′|T(E + i0)|x′′, j 〉

]

= 1√
2π�

⎡
⎣eikx |j 〉 +

∑
j ′

m
ikj ′�2 |j ′〉

∫ ∞

−∞
dx′
∫ ∞

−∞
dx′′eikx′′

eikj ′ |x−x′| 〈x′, j ′|T(E + i0)|x′′, j 〉
⎤
⎦ . (A25)

To conform with the asymptotic behavior, Eq. (A23), the integrand must be localized in a finite region. We can then
replace again |x − x′| by x′ − x when x → −∞, obtaining

〈x|p , j 〉+ =
x→−∞

1√
2π�

⎡
⎣eikx |j 〉 +

∑
j ′

me−ikj ′ x

ikj ′�2 |j ′〉
∫ ∞

−∞
dx′
∫ ∞

−∞
dx′′eikx′′

eikj ′ x′ 〈x′, j ′|T(E + i0)|x′′, j 〉
⎤
⎦ . (A26)

Comparing Eqs. (A23) and (A26), we get

rL
j ′j = m

ikj ′�2

∫ ∞

−∞
dx′
∫ ∞

−∞
dx′′eikx′′

eikj ′ x′ 〈x′, j ′|T(E + i0)|x′′, j 〉 . (A27)

If we go back to the momentum representation taking into account that |p〉 = (
√

2π�)−1
∫∞
−∞ dx exp [ikx] |x〉 then Eq.

(A27) reduces to

rL
j ′j = −2π i

m
pj ′

〈−pj ′ , j ′|T(E + i0)|p , j 〉 , (A28)

with pj ′ = �kj ′ = √
p2 − 2m�j ′j . Introducing the value of 〈p ′, j ′|T(E + i0)|p , j 〉 given by Eq. (A28) in Eq. (A16), we

can express the entries of the scattering matrix in terms of the amplitudes rL
j ′j :

r̂L
j ′j ≡ s(−+)

j ′j (E) =
√

|p ′|
|p| rL

j ′j (A29)

since the sign of the momentum of the incident wave |p , j 〉 is α = + and the one of the reflected wave |−pj ′ , j ′〉 is α = −.
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The asymptotic behavior of |p , j 〉+ for x → +∞ is analyzed in a similar way. First we proceed as above to get the
analogous to Eq. (A23), which reads [notice that we can now include the first term in Eq. (A23) in the sum]:

〈x|p , j 〉+ =
x→+∞

1√
2π�

∑
j ′

tLj ′j eikj ′ x |j ′〉 . (A30)

The position representation of Eq. (A17) is still given by Eq. (A25), but now the absolute value in the exponential is
|x − x′| = x − x′, yielding

〈x|p , j 〉+ =
x→∞

1√
2π�

⎡
⎣eikx |j 〉 +

∑
j ′

meikj ′ x

ikj ′�2 |j ′〉
∫ ∞

−∞
dx′
∫ ∞

−∞
dx′′eikx′′

e−ikj ′ x′ 〈x′, j ′|T(E + i0)|x′′, j 〉
⎤
⎦ (A31)

and therefore

tLj ′j = δj ′j − 2π i
m
pj ′

〈pj ′ , j ′|T(E + i0)|p , j 〉 . (A32)

Finally, the corresponding entry in the scattering matrix reads

t̂Lj ′j ≡ s(++)
j ′j (E) =

√
|p ′|
|p| tLj ′j . (A33)

Summarizing, to obtain the entries of the scattering matrix with α = +, one has to solve the stationary Schrödinger
equation H |ψ〉 = E |ψ〉 for an improper state |ψ〉 whose position representation 〈x|ψ〉 ∈ HY has the following asymptotic
behavior:

〈x|ψ〉 =

⎧⎪⎪⎨
⎪⎪⎩

eikj x |j 〉 +
∑

j ′
rL

j ′j e−ikj ′ x |j ′〉 for x → −∞
∑

j ′
tLj ′j eikj ′ x |j ′〉 for x → +∞ . (A34)

The solution is unique and determines the amplitudes tLj ′j and rL
j ′j , which in turn determine the entries of the scattering

matrix t̂Lj ′j and r̂L
j ′j , as prescribed in Eqs. (A29) and (A33).

Repeating the whole analysis with p < 0, we get identical results. The solution of the Schrödinger equation now must
obey the asymptotic conditions:

〈x|ψ〉 =

⎧⎪⎪⎨
⎪⎪⎩

∑
j ′

tRj ′j e−ikj ′ x |j ′〉 for x → −∞

e−ikj x |j 〉 +
∑

j ′
rR

j ′j eikj ′ x |j ′〉 for x → +∞ (A35)

and we finally obtain

t̂Rj ′j ≡ s(−−)
j ′j (E) =

√
|p ′|
|p| tRj ′j

r̂R
j ′j ≡ s(+−)

j ′j (E) =
√

|p ′|
|p| rR

j ′j , (A36)

for transmission and reflection from the right, respectively.
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4. The scattering matrix

We order the channels such that the first Nopen are right propagating and the last Nopen are left propagating. In this way
we write

s(E) =
(

r̂L t̂R

t̂L r̂R

)
=
(

s−+ s−−
s++ s+−

)
, (A37)

which satisfies the identities

s(E)s†(E) =
(

r̂Lr̂L† + t̂Rt̂R† r̂Lt̂L† + t̂Rr̂R†

t̂Lr̂L† + r̂Rt̂R† t̂Lt̂L† + r̂Rr̂R†

)
=
(

1 0
0 1

)
, (A38)

s†(E)s(E) =
(

r̂L†r̂L + t̂L†t̂L r̂L†t̂R + t̂L†r̂R

t̂R†r̂L + r̂R†t̂L t̂R†t̂R + r̂R†r̂R

)
=
(

1 0
0 1

)
, (A39)

following from the unitarity of the scattering operator S†S = I and SS† = I, respectively. We sketch the proof of Eq. (A38).
Starting from

〈p ′, j ′| S†S |p , j 〉 = δ(p ′ − p)δj ′j , (A40)

inserting the resolution of identity and expressing the Dirac δ as a function of the kinetic energies, we get

∑
k

∫
dp ′′ 〈p ′, j ′| S† |p ′′, k〉 〈p ′′, k| S |p , j 〉 = |p|

m
δ(Ep ′ − Ep)δj ′j δα′α . (A41)

We now write the matrix elements of the operator S in terms of the scattering matrix s(α
′α)

j ′j using Eq. (9) and perform the
integral over p ′′ by recalling that dEp ′′ = |p ′′|dp ′′/m:

δ(Ep ′ − Ep −�j ′j )

√|p p ′|
m

∑
k

∑
α′′=±

[s(α
′′α′)

kj ′ (Ep ′ + ej ′)]∗s(α
′′α)

kj (Ep + ej ) = |p|
m
δ(Ep − Ep ′)δj ′j δα′α . (A42)

Taking into account that the δ function in the right-hand side of the equation implies j = j ′ ⇒ |p| = |p ′|, one obtains

∑
k

∑
α′′=±

[s(α
′′α′)

kj (E)]∗s(α
′′α)

kj (E) = δj ′j δα′α , (A43)

which is Eq. (A38) as a careful inspection shows. To prove Eq. (A39), one can follow similar steps starting from
〈p ′, j ′| SS† |p , j 〉 = δ(p ′ − p)δj ′j .

APPENDIX B: SCATTERING MATRIX FOR A δ POTENTIAL

Here we provide explicit computations of t̂ = t̂L = t̂R and r̂ = r̂L = r̂R for V(x) = gδ(x). According to Appendix A 3,
we have to solve the stationary Schrödinger equation H |ψ〉 = E |ψ〉 which, in position representation, can be written as

{
E − HY + �

2

2m
d2

dx2

}∑
k

ψk(x) |k〉 = V
∑

k

ψk(x) |k〉 , (B1)

where 〈x|ψ〉 = ∑
k ψk(x) |k〉. We look for solutions obeying the asymptotic boundary conditions Eq. (A34) or, equiva-

lently, Eq. (A35). Since the support of the potential is a single point at x = 0, the asymptotic conditions are fulfilled for
every x �= 0:
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〈x|ψ〉 =

⎧
⎪⎪⎨
⎪⎪⎩

eikj x |j 〉 +
∑

j ′
rj ′j e−ikj ′ x |j ′〉 for x < 0

∑
j ′

tj ′j eikj ′ x |j ′〉 for x > 0.

(B2)

Projecting the Schrödinger Eq. (B1) onto 〈j ′|, we get

(E − ej ′)ψj ′(x)+ �
2

2m
ψ ′′

j ′(x) = gδ(x)
∑

k

ψk(x) 〈j ′| ν |k〉 .

(B3)

The wave functions ψj ′(x) must be everywhere continu-
ous, while their first derivative ψ ′

j ′(x) has a jump discon-
tinuity at x = 0. Imposing the continuity condition to the
solution Eq. (B2), we get δj ′j + rj ′j = tj ′j or, in matrix
form

I + r = t. (B4)

To obtain the value of the jump discontinuity, we inte-
grate both sides of Eq. (B3) in an interval [−ε, ε] and then
take ε → 0+:

�
2

2m
[ψ ′

j ′(0+)− ψ ′
j ′(0−)] = g

∑
k

ψk(0) 〈j ′| ν |k〉 . (B5)

According to Eq. (B2), the derivatives at x = 0
are ψ ′

j ′(0+) = ikj ′ tj ′j and ψ ′
j ′(0−) = ikj ′(δj ′j − rj ′j ) =

ikj ′(2δj ′j − tj ′j ), where in the last equality we use Eq. (B4).
From continuity we also haveψk(0) = tkj . Collecting these
results, Eq. (B5) yields

i�2

m
kj ′[tj ′j − δj ′j ] = g

∑
k

tkj 〈j ′| ν |k〉 .

This relation can be expressed in matrix form by defining
D as the diagonal matrix with elements Djj = kj and V the
matrix with elements Vjk = 〈j | ν |k〉

D[t − I] = mg
�2i

V t,

hence

t =
[
I + img

�2 D
−1

V

]−1

, (B6)

which, together with Eq. (B4), determines the amplitudes
tj ′j and rj ′j for the δ potential in space.
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