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STABILITY ESTIMATE FOR THE SEMI-DISCRETE LINEARIZED

BENJAMIN-BONA-MAHONY EQUATION∗,∗∗
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Abstract. In this work we study the semi-discrete linearized Benjamin-Bona-Mahony equation
(BBM) which is a model for propagation of one-dimensional, unidirectional, small amplitude long
waves in non-linear dispersive media. In particular, we derive a stability estimate which yields a unique
continuation property. The proof is based on a Carleman estimate for a finite difference approximation
of Laplace operator with boundary observation in which the large parameter is connected to the mesh
size.
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1. Introduction and results

In this work, we are interested in a linearized version of the Benjamin-Bona-Mahony equation (BBM)

ut + ux + uux − uxxt = 0, (1.1)

proposed by T. Benjamin et al. [2] as a model for propagation of one-dimensional, unidirectional, small amplitude
long waves in non-linear dispersive media.

In the last years, several authors have widely studied dispersive equations in the context of controllability
and inverse problems. Nevertheless, the BBM equation presents several particularities due to the structure of
the operator. In particular, the infinitesimal generator of the semigroup is given by (I − ∂2

x)−1∂x, which is a
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∗∗A. Pérez was founded by the National Agency for Research and Development (ANID)/Scholarship Program/ Doctorado
Nacional Chile/2017 – 21170495. R. Lecaros was partially supported by FONDECYT(Chile) Grant 11180874. J.H. Ortega was
partially supported by Centro de Modelamiento Matemático (AFB170001) and FONDECYT(Chile) Grant 1201125.
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compact operator, in opposition with the most common situation in PDE where the generator is an unbounded
operator among others.

We note some interesting results about the unique continuation property (UCP) for BBM for the continuous
case. We refer to the reader to those works and their references for a more detailed discussion: L. Rosier and
B.-Y. Zhang in [14] developed a UCP for (1.1) on a periodic domain. Moreover, in [6] P. L. da Silva and I. L.
Freire give an alternative proof using geometrical arguments for the periodic case, and for the case when (1.1)
is solved in R. In [16], X. Zhang and E. Zuazua considered a linearized BBM equation with space-dependent
potential

ut − uxxt = [α(x)u]x + β(x)u, (x, t) ∈ (0, 1)× (0, T ). (1.2)

In that work, the authors established that the only solution of (1.2), such that u(0, t) = u(1, t) = 0, is the trivial
one u ≡ 0 provided that both α and β do not vanish on some open subset of (0, 1). Furthermore, if α(x) = −1
and β(x) = 0 in (1.2), S. Micu proved in [12] a UCP with the additional boundary condition ux(1, t) = 0, and
study controllabily results. On the other hand, in [15], M. Yamamoto established a UCP for BBM-like equation
with time and space dependent potential

∂tu(x, t)− ∂2
x∂tu(x, t) = p(x, t)∂xu(x, t) + q(x, t)u(x, t), (x, t) ∈ (0, 1)× (0, T ), (1.3)

where p ∈ L∞((0, T ) × (0, 1)) and q ∈ L∞(0, T ;L2(0, 1)). It was shown that the solution of (1.3) shall vanish
in (0, 1)× (0, T ), provided u(1, t) = ∂xu(1, t) = 0 for all t ∈ (0, T ) and u(x, 0) = 0 for x ∈ (0, 1). The main tool
to prove this result is a Carleman estimate for the Laplacian operator. Through a more refined version of this
Carleman estimate, a stability estimate can be formulated for equation (1.3) (see Sect. 5).

We note that the UCP’s have been well studied in several continuous partial differential equations, but it is
possible to see that the corresponding discrete case does not holds. For instance, if u is a harmonic function in a
domain Ω and u = ∂nu = 0 on Γ ⊂ ∂Ω then u ≡ 0 in Ω, it does not generally hold its discrete formulation. We
refer to the counterexample due to O. Kavian, presented by E. Zuazua in [18]. However, for (1.4) it is possible
to obtain a quantitative UCP under restriction over the mesh size. This result shall be discussed in more detail
in Section 1.2.

In this paper, we are interested whether a unique continuation property, as in the work of Yamamoto [15],
still holds for a semi-discrete approximation in space of (1.3). In this sense, for N ∈ N given, we set the space
discretization parameter h := 1/(N + 1). We consider the pairs (xi, t) with t ∈ (0, T ), T > 0, and xi = ih,
for i = 1, . . . , N . Thus, the space semi-discrete approximation of equation (1.3) by using the centered finite
difference method with respect to the space variable is given by

∂tui(t)−
∂tui+1(t)− 2∂tui(t) + ∂tui−1(t)

h2
= pi(t)

ui+1(t)− ui−1(t)

2h
+ qi(t)ui(t), (1.4)

for i ∈ {1, 2, . . . , N} and t ∈ (0, T ), where ui(t) stands for u(xi, t).

1.1. Notation

We introduce the notation of meshes and operators that shall be used throughout this paper and necessary
to state our results. We consider the following regular partition of the interval [0, 1] as

Mh := {xi | xi := ih, i = 0, 1, . . . , N + 1} ,

for N ∈ N and h := 1/(N + 1). For any sets of points Wh ⊂Mh, we define the following dual meshes W ′h and
W∗h as

W ′h := τ+ (Wh) ∩ τ− (Wh) , W∗h := τ+ (Wh) ∪ τ− (Wh) , (1.5)
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Figure 1. Primal meshes, discretization of space variable.

Figure 2. Dual meshes, discretization of space variable.

where

τ±(Wh) :=

{
xh ±

h

2
| xh ∈ Wh

}
.

We shall denote Wh =W∗∗h := (W∗h)
∗

and W̊h =W ′′h := (W ′h)
′
.

We note that if W̊h =Wh, then for two consecutive points xi, xi+1 ∈ Wh we have xi+1 − xi = h. Thus, any

subset Wh ⊂ Mh that verifies W̊h = Wh is called regular mesh. Finally, we define the boundary of a regular
mesh Wh as ∂Wh :=Wh \Wh. These sets defined above can be seen in Figures 1 and 2.

We introduce, using (1.5), the semi-discrete sets. Let us consider T > 0, we define Qh := Wh × (0, T ). We
also define the dual semi-discrete sets by Q′h :=W ′h× (0, T ) and Q∗h :=W∗h × (0, T ). Similarly, the semi-discrete
boundary is given by ∂Qh = ∂Wh × (0, T ).

We define the average operator Ah and the difference operator Dh by

Ah(uh)(xh, t) :=
τ+uh(xh, t) + τ−uh(xh, t)

2
,

Dh(uh)(xh, t) :=
τ+uh(xh, t)− τ−uh(xh, t)

h
,

where τ±uh(xh, t) := uh
(
xh ± h

2 , t
)
.

We denote by C(Qh) the set of real-valued functions defined in Qh, and by L2
h(Qh) the set C(Qh) endowed

with the norm

‖uh‖2L2
h(Qh) :=

∫ T

0

‖u‖2L2
h(Wh) dt,

where ‖uh‖2L2
h(Wh) is induced by the inner product

〈uh, vh〉Wh
:=

∫
Wh

uh vh := h
∑

xh∈Wh

uh(xh) vh(xh).
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For uh ∈ C(Qh), we define its L∞h (Qh)-norm as

‖uh‖L∞h (Qh) := max
(xh,t)∈Qh

{|uh(xh, t)|} .

To introduce the boundary conditions, we define the outward normal for (xh, t) ∈ ∂Qh as

nh(xh, t) :=


1 (τ−(xh), t) ∈ Q∗h and (τ+(xh), t) /∈ Q∗h,
−1 (τ−(xh), t) /∈ Q∗h and (τ+(xh), t) ∈ Q∗h,

0 otherwise.

We indicate by ∂Q+ (resp. ∂Q−) the set of points such that nh(xh, t) = 1 (resp. nh(xh, t) = −1). We also
introduce the trace operator for uh ∈ C(Q∗h) as

∀(xh, t) ∈ ∂Qh, tr(uh) :=


τ−uh(xh, t) nh(xh, t) = 1,

τ+uh(xh, t) nh(xh, t) = −1,

0 nh(xh, t) = 0.

Let us finally introduce the discrete integration on the boundary for uh ∈ C(∂Wh) as∫
∂Wh

uh :=
∑

xh∈∂Wh

uh(xh).

1.2. Discrete Carleman estimates with boundary observation

For the discrete Carleman estimate, we consider the weight function of the form r(x, t) = esϕ(x,t) for s ≥ 1,
with ϕ(x, t) = eλψ(x,t) where ψ is a continuous function whose domain of definition Ω is contained in an enlarged

smooth open and connected neighborhood Ω̃. We also assume ψ ∈ Ck
(

Ω̃
)

with k large enough such that it

satisfies the following property

∂xψ(x, t) > 0, (x, t) ∈ Ω̃× (0, T ). (1.6)

The assumption of the higher-order derivatives is needed to obtain the estimates on the weight function
presented in Section 4, in contrast to the continuous case. We shall use the same notation for the sample of the
continuous function on the discrete or semi-discrete sets. We now state a uniform Carleman estimate for the
operator D2

h with boundary observation. Although for the Carleman estimate just the condition (1.6) is needed,
to achieve the UCP property for the system (1.4) we also consider the following assumption

∂tψ(x, t) < 0, (x, t) ∈ Ω̃× (0, T ). (1.7)

It is not difficult to find a function that verifies conditions (1.6) and (1.7), for instance the following function,

ψ(x, t) := (x− x0)2 − t2, x0 < 0. (1.8)

Theorem 1.1. (Discrete Carleman estimate)
Let ψ be a function verifying (1.6) and T > 0. For the parameter λ0 ≥ 1 sufficiently large, there exist s0(λ0) ≥ 1,
h0 > 0, ε0 > 0 and C = C(ε0, s0, λ0) independent of h > 0 such that



STABILITY ESTIMATE FOR THE SEMI-DISCRETE LINEARIZED BENJAMIN-BONA-MAHONY EQUATION 5

C

(∥∥esϕD2
hvh
∥∥2

L2
h(Qh)

+ s

∫
∂Q+

h

ϕ∂xψtr(e
2sϕ)tr(|Dhvh|2) + s3

∫
∂Q+

h

(ϕ∂xψ)3tr(e
2sϕ)tr(Ah(|vh|2))

)
≥ s3 ‖esϕvh‖2L2

h(Qh) + s ‖esϕDhvh‖2L2
h(Q∗h) , (1.9)

for all h ∈ (0, h0), s ∈ (s0, ε0/h) and vh defined in Qh := M̊h × (0, T ).

Several recent works have been concerned with discrete and semi-discrete Carleman estimates for second-
order differential operators. The hyperbolic case has been developed for the one-dimensional case by L. Baudouin
and S. Ervedoza [1], to study the stability of an inverse problem to recover a potential term in a semi-discrete
wave equation. The elliptic case has been developed by F. Boyer et al. in [3], for the one-dimensional case, to
establish a relaxed observability estimate for the associated semi-discrete parabolic equation. In [7], S. Ervedoza
and F. de Gournay study the Laplacian operator in arbitrary dimension to prove the stability for the discrete
Calderon problem, with limiting Carleman weight function. Semi-discrete Carleman estimates for parabolic
operators have been established by F. Boyer and J. Le Rousseau in [4] for multidimensional Cartesian grids.
Moreover, in [13], T. N. T. Nguyen studied in the one-dimensional setting a semi-discrete parabolic operator
with discontinuous diffusion coefficient; both of them obtain relaxed controllability results for their respective
systems.

In the aforementioned works, the discretization was based on a finite difference scheme. Also, the Carleman
parameter cannot be arbitrarily large, which is related to the discretization step size, in contrast to the continuous
setting. Let us finally mentioned that recently in [10], a fully discrete Carleman estimates for parabolic operator
have been obtained by V. Hernández-Santamaŕıa and P. González Casanova, where the spatial and time discrete
step-size parameters are connected to the Carleman parameter.

We recall that T. Carleman introduced an estimate, known as the Carleman estimate, to prove a UCP for
second-order elliptic partial differential equations in [5] when coefficients fail to be analytic. Nowadays, it has
become an efficient tool to prove UCP, the study of controllability, observability, and stabilization for PDEs.
We refer to the work of X. Fu et al. [8], and references therein, where the authors present a unified approach to
Carleman estimates for second-order PDEs and their applications to control theory and inverse problems.

One of the main difficulties in the development of discrete or semi-discrete Carleman estimates is to compute
multiple discrete operators such as Dh and Ah on the Carleman weight functions. For this reason, we establish
Theorem 4.9 (see Sect. 4) to reduce some tedious computation, and it represents an extension of the results
presented by F. Boyer et al. in [3] related to discrete estimate on the weight function.

1.3. Semi-discrete setting and main results

With the notation we have introduced we can rewrite the semi-discretization (1.4) as

∂tuh −D2
h∂tuh = phDhAhuh + qhuh in Qh := M̊h × (0, T ), (1.10)

where ph, qh ∈ L∞h (Qh). In (1.10) uh(t) provides an approximation of u(xh, t), u being the solution of the
continuous equation (1.3). ∂tuh stands for the first order differentiation with respect to t and the operators Dh

and D2
h are the classical central finite-difference approximation of the space derivatives. We assume that there

exists a constant M > 0 independent of h such that max{‖ph‖L∞h (Qh) , ‖qh‖L∞h (Qh)} ≤M .

Theorem 1.2. (Stability for space semi-discrete BBM equation)
Let ψ be a function verifying (1.6) and (1.7), and T > 0. For λ0 ≥ 1 sufficiently large, there exist s0(λ0,M) ≥ 1,
h0 > 0 depending on M , ε0 > 0 and a constant C > 0 independent of h > 0 such that the following estimate
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holds

s3 ‖esϕuh‖2L2
h(Qh) + s3 ‖esϕ∂tuh‖2L2

h(Qh) + s ‖esϕDh∂tuh‖2L2
h(Q∗h)

≤ Cs
∫
∂Q+

h

ϕ∂xψtr(e
2sϕ)tr(|Dh∂tuh|2)

+ Cs3

∫
∂Q+

h

(ϕ∂xψ)3tr(e
2sϕ)tr(Ah(|∂tuh|2)),

(1.11)

for 0 < h ≤ h0 and s ∈ (s0, ε0/h) and uh(xh, 0) = 0 in M̊h.

As a consequence of Theorem 1.2, we have the following unique continuation property for semi-discrete BBM
equation (1.10).

Corollary 1.3. (UCP for a semi-discrete BBM equation)
There exists h0 > 0 depending on M such that if uh = 0 on {1} × (0, T ), Dhuh = 0 on {1− h/2} × (0, T ) and
uh(·, 0) = 0 in M̊h; then uh(xh, t) = 0 in Qh for all h ∈ (0, h0).

The methodology of the proof of Theorem 1.2 is similar in spirit to [15], where it have been obtained a UCP
for equation (1.3). However, it cannot be followed straightly from the proof of the continuous case since the
parameter s cannot be arbitrarily large. As we mentioned above, this parameter is related to the mesh size.
Thus, a semi-discrete version of the Carleman estimate used in [15] is not enough. For this reason, we develop
a more refined Carleman estimate, (5.2), and its semi-discrete counterpart, see Theorem 1.1.

The rest of this article is organized as follows. First, in Section 2, we introduce and prove some discrete
calculus formulas for uniform meshes. Then, we establish a stability estimate for the semi-discrete numerical
approximation based on a uniform spatial discretization of equation (1.3) in Section 3. The last three sections
are devoted to the proof of the discrete Carleman estimate for a finite-difference approximation of Laplacian
operator with boundary observation. In Section 4, we extend the estimations developed in Section 3 of [3] for
arbitrary order, which reduce some computation in the proof of the Carleman estimate presented in Section 5.
Some calculations are postponed and computed in Section 6.

2. Calculus formulas for uniform meshes

In this section, we state the elementary notions concerning discrete calculus formulas. First, we set some
useful identities that shall be used in what follows. Then, we present the integration by parts for the difference
and average operator. For the sake of presentation, we set the results in the discrete space variable framework
instead of the semi-discrete setting.

The following Lemma gives us a calculus rule for finite difference operators. Its proof can be found in [3].

Lemma 2.1. Let Wh ⊂Mh be a regular mesh. For uh, vh ∈ C(Mh), we have the following identities on W∗h

Dh(uhvh) = Dh(uh)Ah(vh) +Ah(uh)Dh(vh),

Ah(uhvh) = Ah(uh)Ah(vh) +
h2

4
Dh(uh)Dh(vh).

(2.1)

As a direct consequence of Lemma 2.1, we point out some identities to develop the rest of this paper.

Corollary 2.2. Let Wh ⊆Mh be a regular mesh.

– For u ∈ C(Wh),

Ah(u2
h) = (Ahuh)

2
+
h2

4
(Dhuh)

2
, on W∗h. (2.2)
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In particular, for all u ∈ C(Wh),

Ah(u2
h) ≥ (Ahuh)

2
, on W∗h. (2.3)

– For u ∈ (Wh)

Dh(u2
h) = 2DhuhAhuh. (2.4)

Note that as a consequence of the first identity in (2.1) of Lemma 2.1, it can be proved by induction the
following identity.

Corollary 2.3. Suppose that for n ∈ N and h > 0, the set (nh/2, 1 − nh/2) is not empty. Then, for each
u, v ∈ C(Wh) we have

Dn
h(u v) =

n∑
k=0

(
n

k

)
Dn−k
h AkhuA

n−k
h Dk

hv on Xh, (2.5)

where

Xh =

{
M∗h ∩ [nh/2, 1− nh/2], if n is odd,

Mh ∩ [nh/2, 1− nh/2], if n is even.

Now, we state the following integration by parts presented for discrete space variable. We note that the
same identities could be considered in the semi-discrete setting since the temporal variable does not play any
significant role.

Proposition 2.4. Let Wh ⊆Mh be a regular mesh. For uh ∈ C(Wh) and vh ∈ C(W∗h) we have

∫
Wh

uhDh(vh) = −
∫
W∗h

Dh(uh)vh +

∫
∂Wh

uhtr(vh)nh

and ∫
Wh

uhAh(vh) =

∫
W∗h

Ah(uh)vh −
h

2

∫
∂Wh

uhtr(vh).

Proof. We have

∫
Wh

uhτ+(vh) =

∫
τ+(Wh)

τ−(uh)vh

=

∫
W∗h

τ−(uh)vh −
∫
W∗h\τ+(Wh)

τ−(uh)vh

=

∫
W∗h

τ−(uh)vh −
∫
τ2
−(Wh)\Wh

uhτ+(vh).

(2.6)
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and ∫
Wh

uhτ−(vh) =

∫
τ−(Wh)

τ+(uh)vh

=

∫
W∗h

τ+(uh)vh −
∫
W∗h\τ−(Wh)

τ+(uh)vh

=

∫
W∗h

τ+(uh)vh −
∫
τ2
+Wh\Wh

uhτ−(vh).

(2.7)

Combining (2.6) and (2.7) it follows that∫
Wh

uhDh(vh) =−
∫
W∗h

Dh(uh)vh −
1

h

∫
τ2
−Wh\Wh

uhτ+(vh)

+
1

h

∫
τ2
+Wh\Wh

uhτ−(vh)

= −
∫
W∗h

Dh(uh)vh +

∫
∂W

uhtr(vh)nh.

Similarly, averaging the equations (2.6) and (2.7) we obtain∫
Wh

uhAh(vh) =

∫
W∗h

Ah(uh)vh −
1

2

∫
τ2
−(Wh)\Wh

uhτ+(vh)

− 1

2

∫
τ2
+Wh\Wh

uhτ−(vh)

=

∫
W∗h

Ah(uh)vh −
h

2

∫
∂Wh

uhtr(vh),

which completes the proof.

Remark 2.5. One can consider the previous result for the meshes W ′h, see for instance a similar result by S.
Ervedoza and F. de Gournay in [7]. In that case we should change the definition of the boundary nodes of our
mesh. As we are interested in the boundary that kind of integral-by-parts formulas does not fulfill our goal. In
contrast with the integration-by-part formulas from F. Boyer et al. [3], we do not make any distinction on the
difference and average operators, then we need to specify that difference in the respective meshes.

3. Stability estimate for space semi-discrete BMM equation

This section is devoted to proof Theorem 1.2. We follow as close as possible the ideas from its continuous
formulation. For this reason we state a stability estimate for (1.3). The main tool for the proof is a Carleman
estimate for Laplacian operator. For sake of exposition we postpone that proof, see Section 5. It is worth to
mention that we refined the result presented in [15] (see Sect. 5.1).

3.1. The continuous case

We consider Q := (0, 1)× (0, T ), for T > 0, and we define the classical inner product

(u, v)L2(Q) :=

∫
Q

u v dxdt
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and its respective L2-norm ‖u‖2L2(Q) = (u, v)L2(Q).

Following the methodology from [15] we can obtain a stability estimate for (1.3). The proof is based on the
Carleman estimate (5.2) and Lemma 6.4.2 from V. Isakov [11].

Theorem 3.1. Let ∂jx∂
k
t u ∈ C ([0, 1]× [0, T ]) with j = 0, 1, 2 and k = 0, 1. For λ0 > 0 sufficiently large, there

exist constants s0 ≥ 0 and C(s0, λ0, ψ) > 0, such that

s3 ‖esϕu‖2L2(Q) + s3 ‖esϕ∂tu‖2L2(Q) + s ‖esϕ∂x∂tu‖2L2(Q) ≤Cs
3

∫ T

0

(
(∂xψ)3ϕ3e2sϕ|∂tu|2

)
(1, t) dt

+ Cs

∫ T

0

(
∂xψϕe

2sϕ|∂x∂tu|2
)

(1, t) dt,

(3.1)

for all s ≥ s0, and u verify (1.3) with u(x, 0) = 0 for all x ∈ (0, 1).

As a Corollary of Theorem 3.1, it follows the main result presented in [15].

Corollary 3.2. Let ∂jx∂
k
t u ∈ C([0, 1] × [0, T ]) with 0, 1, 2 and k = 0, 1. If u is solution of (1.3) such that

u(1, t) = ∂xu(1, t) = 0 for all t ∈ (0, T ) and u(x, 0) = 0 in (0, 1), then u(x, t) = 0 in (0, 1)× (0, T ).

3.2. Proof of Theorem 1.2

As we mentioned above the proof of Theorem 1.2 is based on the continuous setting strategy. Then, we write
down a space semi-discrete version of Lemma 6.4.2 from [11], which is a Poincaré weighted inequality.

Lemma 3.3. Let ϕ ∈ C1(Qh) be such that
∂ϕ

∂t
≤ 0, then

∫
Qh

∣∣∣∣∫ t

0

uh(xh, σ)dσ

∣∣∣∣2 e2sϕ(xh,t) ≤ T 2

∫
Qh

(uh(xh, t))
2e2sϕ(xh,t),

for all uh ∈ L2
h(Qh).

Proof. We have

∫ T

0

∣∣∣∣∫ t

0

u(xh, σ)dσ

∣∣∣∣2 e2sϕ(xh,t)dt ≤
∫ T

0

t

∫ t

0

(u(xh, σ))2e2sϕ(xh,t)dσdt

=

∫ T

0

∫ T

σ

te2sϕ(xh,t)(u(xh, σ))2dtdσ

≤ T 2

∫ T

0

(u(xh, σ))2e2sϕ(xh,σ)dσ,

and integrating over M̊h we complete the proof.

3.2.1. Proof of Theorem 1.2

In this section, we shall give the proof of the Theorem 1.2.

Proof. Note that from (1.10) we have

D2
h∂tuh = ∂tuh − phDhAhuh − qhuh in Qh.
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Then, applying the Carleman estimate (1.9) to vh = ∂tuh we obtain

s3 ‖esϕ∂tuh‖2L2
h(Qh) + s ‖esϕDh∂tuh‖2L2

h(Q∗h) ≤s
∫
∂M̊+

h

ϕ∂xψtr(e
2sϕ)tr(|Dh∂tuh|2)

+ s3

∫
∂M̊+

h

(ϕ∂xψ)3tr(e
2sϕ)tr(Ah(|∂tuh|2))

+ ‖esϕ (∂tuh − phDhAhuh − qhuh)‖2L2
h(Qh) ,

(3.2)

for 0 < h ≤ h0, s ≥ s0 and sh < ε0.

On the other hand, we note that

DhAhuh(xh, t) =

∫ t

0

DhAh∂tuh(xh, σ)dσ

and

uh(xh, t) =

∫ t

0

∂tuh(xh, σ)dσ,

since uh(xh, 0) = 0 in M̊h. Thus, by Lemma 3.3 it follows that

‖esϕ (∂tuh − phDhAhuh − qhuh)‖2L2
h(Qh) ≤CT

2 ‖ph‖2L∞h (Qh) ‖e
sϕDhAh∂tuh‖2L2

h(Qh)

+ C(1 + T 2 ‖qh‖2L∞h (Qh)) ‖e
sϕ∂tuh‖2L2

h(Qh)

≤CT 2M2 ‖esϕDhAh∂tuh‖2L2
h(Qh)

+ C(1 + T 2M2) ‖esϕ∂tuh‖2L2
h(Qh) .

(3.3)

Now, we focus on the first term of the right-hand side above. Using (2.3) and a discrete integration by parts
for the discrete average operator we get

‖esϕDhAh∂tuh‖2L2
h(Qh) =

∫
Qh

e2sϕ (DhAh∂tuh)
2

≤
∫
Qh

e2sϕAh

(
(Dh∂tuh)

2
)

=

∫
Q∗h

Ah(e2sϕ) (Dh∂tuh)
2 − h

2

∫
∂Qh

e2sϕtr

(
(Dh∂tuh)

2
)

≤
∫
Q∗h

Ah(e2sϕ) (Dh∂tuh)
2
.

From Proposition 4.5 we have Ah(e2sϕ) ≤ Cλe2sϕ, we thus obtain

‖esϕDhAh∂tuh‖2L2
h(Qh) ≤ Cλ ‖e

sϕDh∂tuh‖L2
h(Q∗) . (3.4)
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Combining (3.2), (3.3) and (3.4) we get

s3 ‖esϕ∂tuh‖2L2
h(Qh) + s ‖esϕDh∂tuh‖2L2

h(Q∗h) ≤s
∫
∂Q+

h

ϕ∂xψtr(e
2sϕ)tr(|Dh∂tuh|2)

+ s3

∫
∂Q+

h

(ϕ∂xψ)3tr(e
2sϕ)tr(Ah(|∂tuh|2))

+ (1 + T 2M2) ‖esϕ∂tuh‖2L2
h(Qh)

+ CλT
2M2 ‖esϕDh∂tuh‖2L2

h(Q∗h) .

(3.5)

We note that by choosing some s ≥ T 2/3(1 +M2)1/3 +T 2M , the last term on the right-hand side from (3.5) can
be absorbs by its left-hand side. Thus, recalling the hypothesis on s from the Carleman estimates, by choosing
s1 := max{s0, k(M,T )} ≥ s0 large enough we obtain

s3 ‖esϕ∂tuh‖2L2
h(Qh) + s ‖esϕDh∂tuh‖2L2

h(Q∗h) ≤s
∫
∂Q+

h

ϕ∂xψtr(e
2sϕ)tr(|Dh∂tuh|2)

+ s3

∫
∂Q+

h

(ϕ∂xψ)3tr(e
2sϕ)tr(Ah(|∂tuh|2)),

provided s ≥ s1, where k(M,T ) := T 2/3
(
1 +M2

)1/3
+ T 2M2. Now, we need to connect the condition over the

Carleman parameter s with the mesh size h. Defining

h1 :=
ε0

s1
,

it follows that for 0 < h ≤ min{h0, h1} we have sh ≤ ε0 provided s ∈ (s1, ε0/h), which conclude the proof.

As a consequence, we obtain the UCP presented in Corollary 1.3 for semi-discrete BBM equation (1.10).

4. Some preliminary discrete calculus results

In this section, we establish some previous estimates for the Carleman weight function that shall be used in
the next section to obtain the discrete Carleman estimate, see Theorem 1.1. Recall that our weight function is
defined as esϕ for s ≥ 1, with ϕ = eλψ, where ψ ∈ Ck for k sufficiently large and λ ≥ 1. Our goal is to generalize
the results presented previously in Section 3, obtained by F. Boyer et al. in [3], related to discrete operations
performed on the Carleman weight functions, considering estimates and expansions for higher order discrete
operators.

For easier comparison, we use the same notation by setting r = esϕ and ρ = r−1, these positive parameters s
and h shall be large and small respectively and limited by the condition sh ≤ 1. The proofs are similar in spirit
to those given in [3].

We denote by Oλ(sh) the functions that verify ‖Oλ(sh)‖L∞(Qh) ≤ Cλsh for some constant Cλ depending on

λ. By O(1) we denote bounded functions and by Oλ(1) a bounded function once λ is fixed.
We say that α is a multi-index if α = (α1, α2, . . . , αn) ∈ Nn and for y ∈ Rn we write:

|α| = α1 + α2 + · · ·+ αn, ∂α = ∂α1
x1
. . . ∂αn

xn
, yα = yα1

1 . . . yαn
n .
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Proposition 4.1. Let us consider n ∈ N. Let f be a (n + 2)−times differentiable and g a twice differentiable
functions on R. Then

Anhg =g +RAn
h
(g),

Dn
hf =f (n) +RDn

h
(f).

where RDn
h

and RAn
h

are given by

RDn
h

(f) := h2
n∑
k=0

(
n

k

)
(−1)k

(
(n− 2k)

2

)n+2 ∫ 1

0

(1− σ)n+1

(n+ 1)!
f (n+2)(·+ (n− 2k)h

2
σ)dσ

and

RAn
h
(g) :=

h2

2n+2

n∑
k=0

(
n

k

)
(n− 2k)2

∫ 1

0

(1− σ)g(2)(·+ (n− 2k)h

2
σ)dσ.

Proof. The proof of this proposition follows from Taylor expansion

g(x+ y) =

i−1∑
j=0

yj

j!
h(j)(x) + yi

∫ 1

0

(1− σ)i−1

(i− 1)!
g(i)(x+ σy)dσ. (4.1)

First, we use (4.1) with i = 2 and y =
(n− 2k)h

2
to obtain

τn−2k
+ g = g +

(n− 2k)h

2
g′ +

(
(n− 2k)h

2

)2 ∫ 1

0

(1− σ)g(2)(·+ (n− 2k)h

2
σ)dσ.

Then, it follows that

Anhg =
1

2n
(τ+ + τ−)

n
g

=
1

2n

n∑
k=0

(
n

k

)
τn−k+ τk−g

=
1

2n

n∑
k=0

(
n

k

)
τn−2k
+ g

=
1

2n

n∑
k=0

(
n

k

)(
g +

(n− 2k)h

2
g′
)

+RAn(g)

Now, using

n∑
k=0

(
n

k

)
= 2n and

n∑
k=0

(
n

k

)
k = n2n−1 we write

Anhg = g +RAn
h
(g).
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On the other hand, applying (4.1) for f with i = n+ 2 and y =
(n− 2k)h

2
, we have

τn−2k
+ f =

n+1∑
j=0

1

j!

(
(n− 2k)h

2

)j

f (j) +

(
(n− 2k)h

2

)n+2 ∫ 1

0

(1 − σ)n+1

(n+ 1)!
f (n+2)(· +

(n− 2k)h

2
σ)dσ.

Thus, for the difference operator we get

Dn
hf =

1

hn
(τ+ − τ−)

n
f

=
1

hn

n∑
k=0

(
n

k

)
(−1)kτn−k+ τk−f

=
1

hn

n∑
k=0

(
n

k

)
(−1)kτn−2k

+ f

=
1

hn

n∑
k=0

(
n

k

)
(−1)k

n+1∑
j=0

1

j!

(
(n− 2k)

h

2

)j
f (j)

+RDn
h

(f)

=
1

hn

n+1∑
j=0

1

j!
hj

n∑
k=0

(
n

k

)
(−1)k

(n
2
− k
)j
f (j) +RDn

h
(f)

Now, using

n∑
k=0

(−1)k
(
n

k

)
(x− k)n = n! and

n∑
k=0

(−1)k
(
n

k

)
(
n

2
− k)n+1 = 0, we obtain

Dn
hf =

1

hn
1

(n)!
hn

n∑
k=0

(
n

k

)
(−1)k

(n
2
− k
)n

f (n)

+
1

hn
1

(n+ 1)!
hn+1

n∑
k=0

(
n

k

)
(−1)k

(n
2
− k
)n+1

f (n+1) +RDn(f)

=f (n) +RDn
h

(f),

and the proof is complete.

Corollary 4.2. Let f be a (n+ 4)−times differentiable function defined on R and m,n ∈ N. Then

Amh D
n
hf = f (n) +RAm

h
(f (n)) +RDn

h
(f) +RAm

h D
n
h

(f),

where

RAm
h D

n
h

(f) :=

n,m∑
k,k′=0

ak,k′

∫ 1

0

∫ 1

0

(1− σ)n+1

(n+ 1)!
(1− σ′)f (n+4)(x+ (n− 2k)

h

2
σ +

(m− 2k′)h

2
σ′)dσ′dσ

with

ak,k′ :=
h4

2m

(
m

k′

)(
n

k

)
(−1)k

(
(n− 2k)

2

)n+2
(m− 2k′)2

4
.
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Proof. It is enough to see that

Amh (Dn
hf) =Amh f

(n) +Amh (RDn
h

(f))

=f (n) +RAm
h

(f (n)) +RDn
h

(f) +RAm
h D

n
h

(f).

Note that RAm
h D

n
h

= RAm
h
◦RDn

h
= RDn

h
◦RAm

h
. Now, we consider two fundamental estimates for our weight

function. The proofs of these results can be found in [3]. We consider α = (αt, αx) ∈ N2 multi-indices.

Lemma 4.3. Let α and β be multi-indices. We have

∂β(r∂αρ) =|α||β|(−sϕ)|α|λ|α+β|(∂xψ)α+β

+ |α||β|(sϕ)|α|λ|α+β|−1O(1) + s|α|−1|α|(|α| − 1)Oλ(1)

=Oλ(s|α|).

(4.2)

Moreover, let σ ∈ [0, 1] and sh ≤ 1, then ∂β(r(x)(∂αρ)(x+ σh)) = s|α|Oλ(1).

Corollary 4.4. Let α, β and δ be multi-indices. We have

∂δ
(
r2(∂αρ)∂βρ

)
=|α+ β||δ|(−sϕ)|α+β|λ|α+β+δ|(∂xψ)α+β+δ

+ |δ||α+ β|(sϕ)|α+β|λ|α+β+δ|−1O(1)

+ s|α+β|−1 (|α|(|α| − 1) + |β|(|β| − 1))Oλ(1)

=Oλ(s|α+β|).

Corollary 4.2 and Lemma 4.3 yield.

Proposition 4.5. Let α be a multi-index and n,m ∈ N. Provided sh ≤ 1, we have

rAmh D
n
h∂

αρ = r∂nx∂
αρ+ s|α|+nOλ((sh)2) = s|α|+nOλ(1).

Proof. From Corollary 4.2 we write

rAmh D
n
h∂

αρ =r∂nx∂
αρ+ rRAm

h
(∂nx∂

αρ) + rRDn
h

(∂αρ) + rRAm
h D

n
h

(∂αρ)

By Lemma 4.3 we have

r(x)(∂n+2
x ∂αρ)(x+ (n− 2k)hσ/2) = Oλ(s|α|+n+2)

and

r(x)∂n+4
x ∂αρ(x+ (n− 2k)hσ/2) = Oλ(s|α|+n+4).

Then

rRAm
h

(∂nx∂
αρ) = s|α|+nOλ((sh)2),

rRDn
h

(∂αρ) = s|α|+nOλ((sh)2),

rRAm
h D

n
h

(∂αρ) = s|α|+nOλ((sh)4),
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which yields the result.

Lemma 4.6. Let α and β multi-index and n ∈ N. Provided sh ≤ 1, we have

Amh D
n
h

(
∂β (r∂αρ)

)
= ∂nx∂

β (r∂αρ) + h2Oλ(s|α|)

Let σ ∈ [0, 1], we have Amh D
n
h∂

β (r(x)∂αρ(x+ σh)) = Oλ(s|α|).

Proof. By Corollary 4.2 we write

Amh D
n
h(∂β(r∂αρ)) =∂nx∂

β(r∂αρ) +RAm
h

(∂nx∂
β(r∂αρ))

+RDn
h

(∂β(r∂αρ)) +RAm
h D

n
h

(∂β(r∂αρ)).

By Lemma 4.3, it follows that

(∂nx∂
β(r∂αρ))(x+ (n− 2k)hσ/2) = Oλ(s|α|),

(∂n+2
x ∂β(r∂αρ))(x+ (n− 2k)hσ/2) = Oλ(s|α|),

(∂n+4
x ∂β(r∂αρ))(x+ (n− 2k)hσ/2) = Oλ(s|α|),

which concludes the proof of the first result.

On the other hand, we set ν(x, σh) := r(x)ρ(x+σh) and µα := r∂αρ. Since rρ = 1 it follows that r(x)∂αρ(x+
σh) = ν(x, σh)µα(x+ σh). Note that, by continuous Leibniz rule, ∂nx∂

β(νµα) is a linear combination of terms
of the form ∂β

′
ν∂β

′′
µα, with β′ + β′′ = n+ β and by Lemma 4.3 we write ∂β

′
ν = Oλ(1) and ∂β

′′
µα = Oλ(s|α|).

Besides, it holds for the terms ∂n+2
x ∂β(νµα) and ∂n+4

x ∂β(νµα) as well. Therefore, applying Corollary 4.2 to νµα
we obtain

Amh D
n
h(∂β(r(x)∂αρ(x+ σh))) = Oλ(s|α|) + h2Oλ(s|α|) + h4Oλ(s|α|).

Lemma 4.7. Let α, β, δ be multi-indices and n,m ∈ N. Provided sh ≤ 1, we have:

Amh D
n
h∂

δ
(
r2 (∂αρ) ∂βρ

)
=∂nx∂

δ
(
r2 (∂αρ) ∂βρ

)
+ h2Oλ(s|α|+|β|)

=Oλ(s|α|+|β|).

Let σ, σ′ ∈ [0, 1]. We have

Amh D
n
h∂

δ
(
r(x)2 (∂αρ(x+ σh)) ∂βρ(x+ σ′h)

)
= Oλ(s|α|+|β|).

Proof. Applying Corollary 4.2 to ∂δ
(
r2 (∂αρ) ∂βρ

)
we obtain

Amh D
n
h∂

δ
(
r2 (∂αρ) ∂βρ

)
=∂nx∂

δ
(
r2 (∂αρ) ∂βρ

)
+RAm

h

(
∂nx∂

δ
(
r2 (∂αρ) ∂βρ

))
+RDn

h

(
∂δ
(
r2 (∂αρ) ∂βρ

))
+RAm

h D
n
h

(
∂δ
(
r2 (∂αρ) ∂βρ

))
.

Then, the first result follows from Corollary 4.4. For the second one, we proceed similarly as the proof of the
second result of Lemma 4.6, that is, we apply Corollary 4.2 to ν2µαµβ , then we use continuous Leibniz rule and
Lemma 4.6 to conclude.
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Lemma 4.8. Let α be a multi-index. For j, k,m, n ∈ N and for sh ≤ 1, we have

AjhD
k
h∂

α (rAmh D
n
hρ) = ∂kx∂

α(r∂nxρ) + snOλ
(
(sh)2

)
= snOλ(1).

Proof. By Corollary 4.2 we write

∂α(rAmh D
n
hρ) =∂α

(
r∂nxρ) + ∂α(rRAm

h
(∂nxρ)

)
+ ∂α

(
r(RDn

h
(ρ)) + ∂α(rRAm

h D
n
h

(ρ)
)
.

Then, applying again Corollary 4.2 to the first term of the above expression, we have

AjhD
k
h∂

α(rAmh D
n
hρ) =AjhD

k
h∂

α(r∂nxρ) +AjhD
k
h∂

α(rRAm
h

(∂nxρ))

+AjhD
k
h∂

α(r(RDn
h

(ρ)) +AjhD
k
h∂

α(rRAm
h D

n
h

(ρ))

=∂kx∂
α(r∂nxρ) +RAj

h
(∂α(r∂nxρ)) +RDk

h
(∂α(r∂nxρ))

+AjhD
k
h∂

α(r(RDn
h

(ρ)) +AjhD
k
h∂

α(rRAm
h D

n
h

(ρ)).

Thus, by Lemma 4.3, we obtain

AjhD
k
h∂

α(rAmh D
n
hρ) = ∂kx∂

α(r∂nxρ) + snOλ((sh)2).

Theorem 4.9. Let α, β be multi-indices and j, k, l,m, n, p ∈ N. Provided sh ≤ 1, we have

AphD
l
h∂

β(r2AjhD
k
h(∂αρ)Amh D

n
h(ρ)) =∂lx∂

β
(
r2∂kx∂

αρ∂nxρ
)

+ sn+k+|α|Oλ((sh)2)

=sn+k+|α|Oλ(1).

Proof. We have

Amh D
n
h(ρ) =∂nxρ+RAm

h
(∂nxρ) +RDn

h
(ρ) +RAm

h D
n
h

(ρ),

AjhD
k
h(∂αρ) =∂kx∂

αρ+RAj
h
(∂kx∂

αρ) +RDk
h
(∂αρ) +RAj

hD
k
h
(∂αρ).

By Lemma 4.7 we write

AphD
l
h∂

β(r2AjhD
k
h(∂αρ)Amh D

n
h(ρ)) = ∂lx∂

β
(
r2∂kx∂

αρ∂nxρ
)

+ sn+k+|α|Oλ((sh)2),

which is our claim.

Let us finally mention that the results of this section can be extended for time-dependent case. For instance,
if we consider a weight function of the form r(x, t) = esθ(t)ϕ(x) then the condition sh ≤ 1 must be replaced by
sh(max[0,T ] θ(t)) ≤ 1 which implies that sθ(t)h ≤ 1.

5. Discrete Carleman estimate

In this section, we establish a discrete Carleman estimate with boundary observation for a finite difference
approximation of the Laplacian operator in the one-dimensional setting. In order to do so, it is natural to
look closer at the continuous version of such estimates. For this purpose, we follow the methodology of A. V.
Fursikov and O. Y. Imanuvilov [9] to obtain a Carleman estimate for Laplacian operator in the continuous
setting, which is similar to the estimate obtained by Yamamoto in [15]. The main difference with the one in [15]
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to our estimate is that we do not consider a density argument, and we thus obtain a Carleman estimate with
boundary observation. Then, following the methodology in [3] we establish a discrete Carleman estimate.

5.1. The continuous case

The proof of the following Carleman estimate has two steps. First, we consider the conjugate operator defined
by Pϕu := esϕ∂2

x(e−sϕu). In this case, our Carleman weight function is defined as esϕ for s > 0 with ϕ = eλψ,
where λ > 0, and satisfy

∂xψ(x, t) > 0, (x, t) ∈ Q. (5.1)

Then, we split Pϕ into the operators P1 and P2, and it is estimated the scalar product (P1u, P2u)L2(Q).

Theorem 5.1. (Carleman estimate) Let ψ ∈ C(R2), and for any t ∈ (0, T ) let ψ(·, t) ∈ C4(R) such that
∂xψ(x, t) > 0 for (x, t) ∈ Q. For the parameter λ0 > 0 sufficiently large, there exists s0(λ0) ≥ 0, and
C(s0, λ0, ψ) > 0, such that

C

∫
Q

e2sϕ|∂2
xv|2 + s3λ3

0

∫ T

0

(
(∂xψ)3ϕ3e2sϕ|v|2

)
(1, t) + sλ0

∫ T

0

(
∂xψϕe

2sϕ|∂xv|2
)

(1, t)

≥ s3λ4
0

∫
Q

(∂xψ)4ϕ3e2sϕ|v|2 + sλ2
0

∫
Q

(∂xψ)2ϕe2sϕ|∂xv|2,
(5.2)

for all s ≥ s0.

Proof. We set u = esϕv. Then the conjugate operator can be expanded as follows

Pϕu =esϕ∂2
x(e−sϕ)u+ 2esϕ∂x(e−sϕ)∂xu+ ∂2

xu. (5.3)

Adding −s∂2
x(ϕ)u, (5.3) can be written as

Pϕu− s∂2
x(ϕ)u = P1u+ P2u, (5.4)

where P1u := ∂2
xu+ esϕ∂2

x(e−sϕ)u and P2u := 2esϕ∂x(e−sϕ)∂xu− s∂2
x(ϕ)u. Besides, from (5.4), we have

∥∥Pϕu− s∂2
x(ϕ)u

∥∥2

L2(Q)
= ‖P1u‖2L2(Q) + ‖P2u‖2L2(Q) + 2 (P1u, P2u)Q . (5.5)

Note that ∥∥Pϕu− s∂2
x(ϕ)u

∥∥2

L2(Q)
≤ Cϕ

(
‖Pϕu‖2L2(Q) + s2 ‖u‖2L2(Q)

)
, (5.6)

since ∂2
xϕ is bounded in Q. On the other hand, defining C1u := ∂2

xu, C2u := esϕ∂2
x(e−sϕ)u, B1u :=

2esϕ∂x(e−sϕ)∂xu and B2u := −s∂2
x(ϕ)u we have

(P1u, P2u)L2(Q) =

2∑
i,j=1

(Ci, Bj)L2(Q) . (5.7)
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We note that, integrating by parts in space, (5.7) can be rewritten as

(P1u, P2u)L2(Q) =2s3

∫
Q

(∂xϕ)2∂2
xϕ|u|2 +

∫
Q

s2
(
(∂2
xϕ)2 − (∂xϕ)2 − ∂xϕ∂2

xϕ
)
|u|2 − s

2

∫
Q

∂4
x(ϕ)|u|2

+ 2s

∫
Q

∂2
x(ϕ)|∂xu|2 − s

∫ T

0

∂x(ϕ)|∂xu|2
∣∣∣∣∣
1

0

+
s

2

∫ T

0

∂3
x(ϕ)|u|2

∣∣∣∣∣
1

0

+

∫ T

0

(−s3(∂xϕ)3 + s2∂xϕ∂
2
xϕ)|u|2

∣∣∣∣∣
1

0

− s
∫ T

0

u∂xu∂
2
x(ϕ)

∣∣∣∣∣
1

0

.

Now, using the Young’s inequality on the last integral above, we have

(P1u, P2u)L2(Q) ≥2s3

∫
Q

(∂xϕ)2∂2
xϕ|u|2 +

∫
Q

s2
(
(∂2
xϕ)2 − (∂xϕ)2 − ∂xϕ∂2

xϕ
)
|u|2 − s

2

∫
Q

∂4
x(ϕ)|u|2

+ 2s

∫
Q

∂2
x(ϕ)|∂xu|2 − s

∫ T

0

∂x(ϕ)|∂xu|2
∣∣∣∣∣
1

0

+
s

2

∫ T

0

∂3
x(ϕ)|u|2

∣∣∣∣∣
1

0

− s

2

∫ T

0

(∂2
xϕ)2|u|2

∣∣∣∣∣
0

− s

2

∫ T

0

(∂2
xϕ)2|u|2

∣∣∣∣∣
1

− s

2

∫ T

0

|∂xu|2
∣∣∣∣∣
0

− s

2

∫ T

0

|∂xu|2
∣∣∣∣∣
1

+

∫ T

0

(−s3(∂xϕ)3 + s2∂xϕ∂
2
xϕ)|u|2

∣∣∣∣∣
1

0

.

For λ large enough, there exist Cλ0
> 0 and λ0 > 0 such that for λ ≥ λ0 we obtain

Cλ0 (P1u, P2u)L2(Q) ≥s
3λ4

∫
Q

(∂xψ)4ϕ3|u|2 + s2λ4

∫
Q

(∂xψ)4ϕ2|u|2 − sλ4

∫
Q

(∂xψ)4ϕ|u|2

+ sλ2

∫
Q

(∂xψ)2ϕ|∂xu|2 − sλ
∫ T

0

∂xψϕ|∂xu|2
∣∣∣∣∣
1

0

+ sλ3

∫ T

0

(∂xψ)3ϕ|u|2
∣∣∣∣∣
1

0

− s3λ3

∫ T

0

(∂xψ)3ϕ3|u|2
∣∣∣∣∣
1

0

+ s2λ3

∫ T

0

(∂xψ)3ϕ2|u|2
∣∣∣∣∣
1

0

− s
∫ T

0

(λ∂xψ)2ϕ|u|2
∣∣∣∣∣
0

− s
∫ T

0

(λ∂xψ)2ϕ|u|2
∣∣∣∣∣
1

.

Now, if we fix λ = λ0, there exist Cs0,λ0
> 0 and s0(λ0) > 0 such that

Cs0,λ0
(P1u, P2u)L2(Q) ≥s

3λ4

∫
Q

(∂xψ)4ϕ3|u|2 + sλ2

∫
Q

(∂xψ)2ϕ|∂xu|2

− s3λ3

∫ T

0

(∂xψ)3ϕ3|u|2
∣∣∣∣∣
1

0

− sλ
∫ T

0

∂xψϕ|∂xu|2
∣∣∣∣∣
1

0

,

(5.8)
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for s ≥ s0. Note that |esϕ∂xv|2 = |s u ∂xϕ + ∂xu|2 ≤ Cϕ(s2|u|2 + |∂xu|2). Thus, from (5.5), (5.6) and (5.8) we
obtain for λ large enough

Cλ0,s0,ϕ

∫
Q

e2sϕ|∂2
xv|2 ≥s3λ4

∫
Q

(∂xψ)4ϕ3e2sϕ|v|2 + sλ2

∫
Q

(∂xψ)2ϕ|∂xv|2

− s3λ3

∫ T

0

(∂xψ)3ϕ3e2sϕ|v|2
∣∣∣∣∣
1

0

− sλ
∫ T

0

∂xψϕe
2sϕ|∂xv|2

∣∣∣∣∣
1

0

,

which proves the required result.

Remark 5.2. Note that taking x0 > 1, the observation data in (5.2) can be switched to the point (0, t), for
t ∈ (0, T ).

5.2. Proof of the discrete Carleman estimate

Now, we establish a discrete Carleman estimate for the discrete operator D2
h. Note that this is the discrete

Laplacian in one-dimensional setting. There are Carleman estimates for this kind of operator (see F. Boyer
et al. [3, 4] and S. Ervedoza et al. [7]). The main difference respect to our estimate is the fact that we consider
boundary observation, due to the choice of the weight function. Indeed, our Carleman weight function is defined
as esϕ for s ≥ 1, with ϕ = eλψ where ψ ∈ Ck for k sufficiently large and λ ≥ 1. We also assume that

∂xψ(x, t) > 0, (x, t) ∈ Q. (5.9)

We follow a classical scheme based on conjugating the original operator with a well chosen exponential function.

5.2.1. Proof Theorem 1.1

We make the change of variable uh = esϕvh. Our first task is to obtain an expression for Ph,ϕ :=
esϕD2

h(e−sϕuh) with the change of variable proposed. By using (2.5), we have

Ph,ϕ =esϕD2
h(e−sϕ)A2

hu+ 2esϕAhDh(e−sϕ)DhAhuh + esϕA2
h(e−sϕ)D2

huh. (5.10)

We define the following coefficients α1 := esϕA2
h(e−sϕ), α2 := esϕD2

h(e−sϕ) and β1 := esϕAhDh(e−sϕ). On the
other hand, we set

C1uh := α1D
2
huh,

C2uh := α2A
2
huh,

B1uh := 2β1DhAhuh,

B2uh := −s(∂2
xϕ)uh.

Equation (5.10) thus reads Ph,ϕuh − s(∂2
xϕ)uh = P1uh + P2uh, where

P1uh := C1uh + C2uh

P2uh := B1uh +B2uh.

We write ∥∥Ph,ϕ − s(∂2
xϕ)uh

∥∥2

L2
h(Qh)

= ‖P1uh‖2L2
h(Qh) + ‖P2uh‖2L2

h(Qh) + 2〈P1uh, P2uh〉Qh
. (5.11)
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Since ∂2
xϕ is bounded, we have

∥∥Ph,ϕ − s(∂2
xϕ)uh

∥∥2

L2
h(Qh)

≤ C
(
‖Pϕuh‖2L2

h(Qh) + s2 ‖uh‖2L2
h(Qh)

)
. (5.12)

Now, we shall estimate the scalar product

〈P1uh, P2uh〉Qh
=

2∑
i,j=1

〈Ciuh, Bjuh〉Qh
. (5.13)

For each term of (5.13), we obtain the following results.

Lemma 5.3. For sh ≤ 1, we have

〈C1uh, B1uh〉Qh
=

∫
Q∗h

sλ2ϕ(∂xψ)2|Dhuh|2 +

∫
Q∗h

sλϕ∂2
xψ|Dhuh|2 −X1 + Y1,

where

X1 :=

∫
Q∗h

sOλ((sh)2)|Dhuh|2

and

Y1 :=

∫
∂Qh

(−sλϕ∂xψ + sOλ((sh)2))tr(|Duh|2)nh.

Lemma 5.4. For sh ≤ 1, we have

〈C1uh, B2uh〉Qh
≥
∫
Q∗h

sλ2(∂xψ)2ϕ|Dhuh|2 +

∫
Q∗h

sλϕ∂2
xψ|Dhuh|2 −X2 + Y2,

where

X2 :=

∫
Qh

sOλ(1)|uh|2 +

∫
Q∗h

sOλ(h2 + (sh)2)|Dhuh|2

and

Y2 :=

∫
∂Qh

sOλ(1)|uh|2 −
∫
∂Qh

s2Oλ(1)|uh|2 −
∫
∂Qh

Oλ(1)tr(|Dhuh|2).

Lemma 5.5. For sh ≤ 1, we have

〈C2uh, B1uh〉Qh
=3

∫
Qh

s3λ4ϕ3(∂xψ)4|uh|2 +

∫
Qh

(sλϕ)3O(1)|uh|2 −X3 + Y3,

where

X3 :=

∫
Qh

s2Oλ(1) + s3Oλ((sh)2)|uh|2 −
∫
Q∗h

sOλ((sh)2)|Dhuh|2
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and

Y3 :=

∫
∂Qh

(
−(sλϕ∂xψ)3 + s2Oλ(1) + s3Oλ((sh)2)

)
tr(Ah(|uh|2))nh

−
∫
∂Qh

sOλ((sh)2)tr(|Dhuh|2)nh.

Lemma 5.6. For sh ≤ 1, we have

〈C2uh, B2uh〉Qh
≥−

∫
Qh

s3λ4ϕ3(∂xψ)4|uh|2 +

∫
Qh

s3λ3ϕ2(∂xψ)2∂2
xψ|uh|2 −X4

where

X4 :=

∫
Qh

(
s2Oλ(1) + s3Oλ((sh)2)

)
|uh|2 +

∫
Qh

sOλ(sh)|uh|2 +

∫
Q∗h

sOλ((sh)2)|Dhuh|2,

and

Y4 :=

∫
∂Qh

sOλ(1)|uh|2 +

∫
∂Qh

sOλ((sh)2)|uh|2 +

∫
∂Qh

sOλ((sh)2)tr(|Dhuh|2)nh.

The proof of Lemmas 5.3–5.6 can be found in Section 6.

Combining the aforementioned Lemmas, for sh ≤ 1 there exist λ1 ≥ 1 and ε small enough such that for
λ ≥ λ1 and 0 < sh ≤ min{ε1(λ), 1} = ε1(λ), there exists a constant Cλ1,ε1 > 0 such that

Cλ1,ε1〈P1uh, P2uh〉Qh
≥
∫
Q∗h

s(∂xψ)2ϕ|Dhuh|2 +

∫
Qh

s3ϕ3(∂xψ)4|uh|2 +

4∑
i=1

Yi −Xi. (5.14)

Thus, from (5.11), (5.12) and (5.14) we get

Cλ1,ε1

(
‖Ph,ϕ‖2L2

h(Qh) + s2 ‖uh‖2L2
h(Qh)

)
+

4∑
i=1

Xi ≥
4∑
i=1

Yi + s3

∫
Qh

ϕ3(∂xψ)4|uh|2

+ s

∫
Q∗h

(∂xψ)2ϕ|Dhuh|2.

On the other hand, we have to deal with the boundary terms. To do this, we can estimate separately the right
and left boundary observation. Indeed, let us denote by Y −i and Y +

i the left and the right boundary observation
of the term Yi, respectively. Once λ is fixed, for s large enough there exist positive constants C0 and C1 such
that

C0s

∫
∂Q−h

ϕ∂xψtr(|Dhuh|2)nh + C0s
3

∫
∂Q−h

(ϕ∂xψ)3tr(Ah(|uh|2)) ≤
4∑
i=1

Y −i ,

4∑
i=1

Y +
i ≤ C1s

∫
∂Q+

h

ϕ∂xψtr(|Dhuh|2) + C1s
3

∫
∂Q+

h

(ϕ∂xψ)3tr(Ah(|uh|2)).



22 R. LECAROS ET AL.

Therefore, if we fix λ = λ1, we can choose ε0 and h0 sufficiently small, with 0 < ε0 ≤ ε1(λ1), and s0 ≥ 1
sufficiently large, such that for s ≥ s0, 0 < h ≤ h0, and sh ≤ ε0 we obtain

Cλ1,ε0,s0

(
‖Ph,ϕ‖2L2

h(Qh)

)
≥ s3 ‖uh‖2L2

h(Qh) + s ‖Dhuh‖2L2
h(Q∗h)

−C1s

∫
∂Q+

h

ϕ∂xψtr(|Dhuh|2)nh − C1s
3

∫
∂Q+

h

(ϕ∂xψ)3tr(Ah(|uh|2))

+C0s

∫
∂Q−h

ϕ∂xψtr(|Dhuh|2)− C0s
3

∫
∂Q−h

(ϕ∂xψ)3tr(Ah(|uh|2)).

(5.15)

Finally, we return to the variable vh. To this end, we need the following Lemma.

Lemma 5.7. For sh ≤ 1, we have

s ‖esϕDhvh‖2L2
h(Q∗h) ≤C

(
s ‖Dhuh‖2L2

h(Q∗h) + s3 ‖uh‖2L2
h(Qh)

)
+ s2O(sh)

∫
∂Qh

|uh|2, (5.16)

s

∫
∂Q+

h

ϕ∂xψtr(|Dhuh|2) ≤Cs3

∫
∂Q+

h

ϕ∂xψtr(e
2sϕAh(|vh|2))

+ Cs

∫
∂Q+

h

ϕ∂xψtr(e
2sϕ|Dhvh|2), (5.17)

s3

∫
∂Q+

h

(ϕ∂xψ)3tr(Ah(|uh|2)) ≤s3

∫
∂Q+

h

(ϕ∂xψ)3tr(e
2sϕAh(|vh|2))

+ sO((sh)2)

∫
∂Q+

h

(ϕ∂xψ)3tr(e
2sϕ|Dhvh|2). (5.18)

For a proof see Section 6.
Combining (5.15) with Lemma 5.7, we can choose ε̃ > 0 and h̃ > 0 sufficiently small, with 0 < h̃ ≤ h0, 0 < ε̃ ≤ ε0,
and s̃ sufficiently large, such that for s ≥ s̃, 0 < h ≤ h̃, and sh ≤ ε̃, we obtain

s3 ‖esϕvh‖2L2
h(Qh) + s ‖esϕDhvh‖2L2

h(Q∗h) ≤Cε̃,s̃

(∥∥esϕD2
hvh
∥∥2

L2
h(Qh)

+ s

∫
∂Q+

h

ϕ∂xψtr(e
2sϕ)tr(|Dhvh|2)

+ s3

∫
∂Q+

h

(ϕ∂xψ)3tr(e
2sϕ)tr(Ah(|vh|2))

)
,

where we have dropped the left boundary observation, and the proof is complete.

6. Proof of intermediate results

In this section, we shall prove some technical results used in the development of the discrete Carleman
estimate. We consider sh ≤ 1 in the following Lemmas in order to ensure that every Lemma from Section 4
holds. Recall that our Carleman weight function defined as r(x) := esϕ(x) for s ≥ 1, with ϕ(x) = eλψ(x) where
ψ ∈ Ck for k sufficiently large and λ ≥ 1. We denote ρ := r−1 and ψ verifies ∂xψ > 0 in Qh. The proof
we develop in each Lemma is standard in the following sense. We begin rewritten the semi-discrete integral,
if necessary, using some identity related to the discrete operators from Corollary 2.2. Then we apply a semi-
discrete integration by parts from Proposition 2.4 to identify the leader terms of the Carleman estimate. Finally,
thanks to Theorem 4.9, we can obtain the estimate claimed in each Lemma.
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6.1. Proof of Lemma 5.3

Recalling the definition of C1 and B1, and setting γ11 := β1α1 and I11 := 〈C1uh, B1uh〉Qh
, we write

I11 :=

∫
Qh

2γ11D
2
huhDhAhuh.

From Corollary 2.2 the semi-discrete integral I11 can be rewritten as

I11 =

∫
Qh

γ1Dh

(
|Dhuh|2

)
.

Using Proposition 2.4, for I11 we obtain

I11 =−
∫
Q∗h

Dh(γ1)|Dhuh|2 +

∫
∂Qh

γ1tr(|Dhuh|2)nh.

The proof is completed by showing that

Dh(γ1) = −sϕλ2(∂xψ)2 − sλϕ∂2
xψ + sOλ((sh)2),

γ1 = −sλϕ∂xψ + sOλ((sh)2),

which follows from Theorem 4.9 and Corollary 4.4.

6.2. Proof of Lemma 5.4

Set I12 := 〈C1uh, B2uh〉Qh
. From the definition of the operators C1 and B2, we have

I12 := −s
∫
Qh

∂2
xϕα1uhD

2
huh.

A semi-discrete integration by parts, Proposition 2.4, yields

I12 = s

∫
Q∗h

Dh(∂2
xϕα1uh)Dhuh − s

∫
∂Qh

∂2
xϕα1uhtr(Duh)nh := I

(a)
12 − I

(b)
12 .

Let us focus on I
(a)
12 . We note that thanks to Lemma 2.1, I

(a)
12 can be rewritten as

I
(a)
12 = s

∫
Q∗h

Dh(∂2
xϕα1)AhuhDhuh + s

∫
Q∗h

Ah(∂2
xϕα1)|Dhuh|2 := I

(a1)
12 + I

(a2)
12 .

To estimate the term I
(a2)
12 , due to Lemma 2.1, we write

Ah(α1∂
2
xϕ) = Ah(α1)Ah(∂2

xϕ) +
h2

4
Dh(α1)Dh(∂2

xϕ). (6.1)

By using Proposition 4.1 we obtain the following estimates

Ah(∂2
xϕ) =∂2

xϕ+Oλ(h2),

Dh(∂2
xϕ) =∂3

xϕ+Oλ(h2).
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Moreover, Lemma 4.8 leads to

Ah(α1) =1 +Oλ((sh)2),

Dh(α1) =Oλ((sh)2).

The previous estimates enables us to write (6.1) as

Ah(α1∂
2
xϕ) = ∂2

xϕ+Oλ(h2 + (sh)2) = λ2(∂xψ)2ϕ+ λϕ∂2
xψ +Oλ(h2 + (sh)2).

Therefore, I
(a2)
12 can be estimated as

I
(a2)
12 =

∫
Q∗h

sλ2(∂xψ)2ϕ|Dhuh|2 +

∫
Q∗h

sλϕ∂2
xψ|Dhuh|2 +

∫
Q∗h

sOλ(h2 + (sh)2)|Dhuh|2. (6.2)

On the other hand, by using (2.3), I
(a1)
12 can be rewritten as

I
(a1)
12 =

s

2

∫
Q∗h

Dh

(
α1∂

2
xϕ
)
Dh

(
|uh|2

)
.

A semi-discrete integration by parts with respect to the difference operator Dh leads to

I
(a1)
12 =− s

2

∫
Qh

D2
h

(
∂2
xϕα1

)
|uh|2 +

s

2

∫
∂Qh

tr(Dh(∂2
xϕα1))|uh|2nh.

By using (2.5), it follows that

D2
h(∂2

xϕα1) = D2
h(∂2

xϕ)A2
h(α1) + 2DhAh(∂2

xϕ)AhDh(α1) +A2
h(∂2

xϕ)D2
h(α1). (6.3)

Now, applying Lemma 4.8 to α1 := esϕA2
h(e−sϕ), we have

A2
h(α1) =Oλ(1),

AhDh(α1) =Oλ(1),

D2
h(α1) =Oλ(1).

Moreover, applying Proposition 4.1 to ∂2
xϕ, we get

D2
h(∂2

xϕ) =∂4
xϕ+Oλ(h2) = Oλ(1),

DhAh(∂2
xϕ) =∂3

xϕ+Oλ(h2) = Oλ(1),

A2
h(∂2

xϕ) =∂2
xϕ+Oλ(h2) = Oλ(1).

Thus, (6.3) can be estimated as

D2
h(α1∂

2
xϕ) = Oλ(1).

Similarly, we get

Dh(α1∂
2
xϕ) = Oλ(1).
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Hence, for I
(a1)
12 we obtain

I
(a1)
12 = −s

∫
Qh

Oλ(1)|uh|2 + s

∫
∂Qh

Oλ(1)|uh|2. (6.4)

Finally, by using the Young’s inequality, I
(b)
12 can be bounded as

|I(b)
12 | ≤ s2

∫
∂Qh

|Oλ(1)||uh|2 +

∫
∂Qh

|Oλ(1)|tr(|Dhuh|2). (6.5)

Therefore, collecting the estimates (6.2), (6.4) and (6.5) ,I12 can be estimated as

I12 ≥
∫
Q∗h

sλ2(∂xψ)2ϕ|Dhuh|2 +

∫
Q∗h

sλϕ∂2
xψ|Dhuh|2 −X2 + Y2,

where X2 and Y2 are given by

X2 :=

∫
Qh

sOλ(1)|uh|2 +

∫
Q∗h

sOλ(h2 + (sh)2)|Dhuh|2

and

Y2 :=

∫
∂Qh

sOλ(1)|uh|2 −
∫
∂Qh

s2Oλ(1)|uh|2 −
∫
∂Qh

Oλ(1)tr(|Dhuh|2),

which is our claim.

6.3. Proof of Lemma 5.5

Setting γ21 := α2β1 and I21 := 〈C2uh, B1uh〉Qh
. Let us compute

I21 =

∫
Qh

2γ21A
2
huhDhAhuh.

By using Lemma 2.1 the above semi-discrete integral can be rewritten as

I21 =

∫
Qh

γ21Dh((Ahuh)2).

A semi-discrete integration by parts with respect to the difference operator yields

I21 =−
∫
Q∗h

Dh(γ21)(Ahuh)2 +

∫
∂Qh

γ21tr
(
(Auh)2

)
nh

:=I
(a)
21 + I

(b)
21 .

(6.6)

Let us first estimate I
(a)
21 . Note that (2.2) leads to

I
(a)
21 =−

∫
Q∗h

Dh(γ21)Ah(u2
h) +

h2

4

∫
Q∗h

Dh(γ21)|Dhuh|2.
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Then, by Proposition 2.4 we obtain

I
(a)
21 =−

∫
Qh

AhDh(γ21)|uh|2 −
h

2

∫
∂Q

tr(Dh(γ21))|uh|2 +
h2

4

∫
Q∗h

Dh(γ21)|Dhuh|2.

Recalling that α2 := esϕD2
h(e−sϕ) and β1 := esϕAhDh(e−sϕ) we have

AhDh(γ21) = −3s3λ4ϕ3(∂xψ)4 + (sλϕ)3O(1) + s2Oλ(1) + s3Oλ((sh)2)

and Dh(γ21) = s3Oλ(1), by virtue of Proposition 4.9 and Corollary 4.1. Hence, for I
(a)
21 we obtain the following

estimate

I
(a)
21 =3s3λ4

∫
Qh

ϕ3(∂xψ)4|uh|2 +

∫
Qh

(sλϕ)3O(1)|uh|2 −
∫
Qh

(s2Oλ(1) + s3Oλ((sh)2)|uh|2

−
∫
Q∗h

sOλ((sh)2)|Dhuh|2 − s2

∫
∂Qh

Oλ(sh)|uh|2.
(6.7)

On the other hand, I
(b)
21 can be estimated as

I
(b)
21 =

∫
∂Qh

−(sλϕ∂xψ)3 + s2Oλ(1) + s3Oλ((sh)2)tr(Ah(|uh|2))nh, (6.8)

since γ21 = −(sλϕ∂xψ)3 + s2Oλ(1) + s3Oλ((sh)2), due to Proposition 4.9. Thus, combining (6.6) with (6.7) and
(6.8) the Lemma follows.

6.4. Proof of Lemma 5.6

Let I22 := 〈C2uh, B2uh〉Qh
. By definition of C2 and B2, let us estimate the semi-discrete integral

I22 = −s
∫
Qh

α2∂
2
xϕA

2
h(uh)uh.

To this end, by using (2.2), I22 can be rewritten as

I22 =− s
∫
Qh

α2∂
2
xϕ|uh|2 +

−sh2

4

∫
Qh

α2∂
2
xϕuhD

2
huh := I

(a)
22 + I

(b)
22 .

Since sh ≤ 1, from Proposition 4.5 and Lemma 4.3 we have for α2 := esϕD2
h(e−sϕ) the following estimate

α2 = (sλϕ)2(∂xψ)2 + sOλ(1) + s2Oλ((sh)2).

Furthermore, noting that ∂2
xϕ = λ2(∂xψ)2ϕ+ λϕ∂2

xψ, with the previous estimate for α2 we obtain

α2∂
2
xϕ =s2λ4ϕ3(∂xψ)4 + s2λ3ϕ2(∂xψ)2∂2

xψ + sOλ(1) + s2Oλ((sh)2) = s2Oλ(1). (6.9)

Then, I
(a)
22 is estimated as

I
(a)
22 = −s3λ4

∫
Qh

ϕ3(∂xψ)4|uh|2 −
∫
Qh

(
−s3λ3ϕ2(∂xψ)2∂2

xψ + s2Oλ(1) + s3Oλ((sh)2)
)
|uh|2. (6.10)
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Similarly, for I
(b)
22 , a semi-discrete integration by parts yields

I
(b)
22 =

sh2

4

∫
Q∗h

Dh(α2∂
2
xϕuh)Dhuh −

sh2

4

∫
∂Qh

α2∂
2
xϕuhtr(Dhuh)nh := I

(b1)
22 − I(b2)

22 .

Let us estimate I
(b2)
22 . Note that by using (6.9) and Young’s inequality, I

(b2)
22 can be bounded as

|I(b2)
22 | ≤ s

∫
∂Qh

|Oλ((sh)2)||uh|2nh + s

∫
∂Qh

|Oλ((sh)2)|tr(|Dhuh|2). (6.11)

Now, let us focus on I
(b1)
22 . Using Lemma 2.1 we write Dh(|uh|2) = 2DhuhAhuh. Thus, I

(b1)
22 can be written as

I
(b1)
22 =

sh2

8

∫
Q∗h

Dh(α2∂
2
xϕ)Dh(|uh|2) +

sh2

4

∫
Q∗h

Ah(α2∂
2
xϕ)|Dhuh|2.

We now use a semi-discrete integration by parts on the first integral above to obtain

I
(b1)
22 =− sh2

8

(∫
Qh

D2
h(α2∂

2
xϕ)|uh|2 +

∫
∂Qh

|uh|2tr(Dh(α2∂
2
xϕ))nh

)
+
sh2

4

∫
Q∗h

Ah(α2∂
2
xϕ)|Dhuh|2.

To obtain an estimate for I
(b1)
22 we claim that

Ah(α2∂
2
xϕ) =s2Oλ(1), (6.12)

D2
h(α2∂

2
xϕ) =s2Oλ(1), (6.13)

Dh(α2∂
2
xϕ) =s2Oλ(1). (6.14)

Indeed, to prove the estimate (6.12) we use Lemma 2.1 to write

Ah(α2∂
2
xϕ) = Ah(α2)Ah(∂2

xϕ) +
h4

2
Dh(α2)Dh(∂2

xϕ).

Then, thanks to Lemma 4.8, we obtain

Ah(α2) =s2Oλ(1),

Dh(α2) =s2Oλ(1).

Moreover, using Proposition 4.1 we have

Ah(∂2
xϕ) =∂2

xϕ+ h2Oλ(1),

Dh(∂2
xϕ) =∂3

xϕ+ h2Oλ(1),

and since ∂2
xϕ = Oλ(1), (6.12) follows. For the estimate (6.13), applying (2.5) it follows that

D2
h

(
α2∂

2
xϕ
)

=D2
h(α2)A2

h(∂2
xϕ) + 2AhDh(α2)AhDh(∂2

xϕ) +D2
h(∂2

xϕ)A2
h(α2) (6.15)
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Similarly, by using Lemma 4.8 and Proposition 4.1 we have

D2
h(α2) =s2Oλ(1), AhDh(α2) = s2Oλ(1), A2

h(α2) = s2Oλ(1),

A2
h(∂2

xϕ) =∂2
xϕ+ h2Oλ(1), AhDh(∂2

xϕ) = ∂3
xϕ+ h2Oλ(1),

These estimates and (6.15) establishes (6.13). The same methodology works for (6.14).

We thus have, from (6.12)–(6.14), the following estimate for I
(b1)
22

I
(b1)
22 =− s

∫
Qh

Oλ(sh)|uh|2 + s

∫
Q∗h

Oλ,ε((sh)2)|Dhuh|2 + s

∫
∂Qh

Oλ(1)|uh|2. (6.16)

Therefore, combining (6.10) with (6.16) and (6.11) proves the estimate for I22.

6.5. Proof of Lemma 5.7

We begin proving the first inequality (5.16) of our Lemma. Recalling that vh = uhe
−sϕ, thanks to Lemma 2.1

and Young’s inequality, we have

‖esϕDhvh‖2L2
h(Q∗h) ≤

∥∥esϕDh(uh)Ah(e−sϕ)
∥∥2

L2
h(Q∗h)

+
∥∥esϕDh(e−sϕ)Ah(uh)

∥∥2

L2
h(Q∗h)

:=J1 + J2,
(6.17)

Let us first estimate J2. Using (2.3) and a discrete integration by part respect to the average operator we obtain

J2 =

∫
Qh

Ah((esϕDh(e−sϕ))2)|uh|2 +
h

2

∫
∂Qh

tr((e
sϕDh(e−sϕ))2)|uh|2. (6.18)

Then, by virtue of Proposition 4.5, J2 can be estimated as follows

J2 ≤ s
∫
Qh

|uh|2 + sOλ(sh)

∫
Qh

|uh|2. (6.19)

It remains to proves that

J1 ≤ Oλ(1)

∫
Qh

|Dhu|2, (6.20)

which it follows from Proposition 4.5, and the proof for (5.16) is complete.
To prove the inequality (5.17), we note that

Dhuh(h/2, t) = Dh(esϕ)Ahvh(h/2, t) +Dh(vh)Ah(esϕ)(h/2, t), (6.21)

due to Lemma 2.1. Hence, Young’s inequality and Proposition 4.5 yield

e−2sϕ|Dhuh|2(h/2, t) ≤ Cλ
(
s2|Ahvh|2(h/2, t) + |Dhvh|2(h/2, t)

)
, (6.22)

which establishes inequality (5.17).
We proceed similarly for (5.18). From (2.2) we have

Ah(|uh|2) = |Ahuh|2 +
h2

4
|Dhuh|2.
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Repeated application of Lemma 2.1 and Young’s inequality lead to

Ah(|uh|2) ≤ C
(
Ah(v2

h)|Ahesϕ|2 + h4|Dhvh|2|Dhe
sϕ|2 + h2|Dhvh|2|Ahesϕ|2 + h2|Dhe

sϕ|2|Ahv|2
)
.

Then, using Proposition 4.5 we obtain

e−2sϕAh(u2
h) ≤(Oλ(1) +Oλ((sh)2)Ah(|vh|2) + (h2 + h2Oλ((sh)2))|Dhvh|2, (6.23)

which completes the proof.

7. Comments

The results presented in Section 4 are of independent interest in view of its potential applications on problems
related to semi-discrete Carleman estimates. For instance, it could be used to answer the challenge proposed
by C. Zheng in [17], that is, to obtain a semi-discrete global Carleman estimates for fourth-order Schrödinger
equation and establish a semi-discrete counterpart of the main results presented in that paper. Even in the
continuous setting, there are few papers about the stability of an inverse problem for higher-order equations,
via Carleman estimates, due to tedious computation and the increased complexity. To our knowledge, there are
no results about discrete or semi-discrete Carleman estimates for higher-order operators. Thus, Theorem 4.9
can be a useful tool to obtain results in that direction.

A possible extension of this paper could be to reformulate Theorem 1.2 for some families of non-uniform
meshes. The Carleman estimate (1.11) is established for uniform mesh and could be adapted to some non-uniform
meshes obtained as the smooth image of a uniform grid, following the methodology of [3].

Another interesting question is to consider the fully discrete case of our problem, particularly due to the term
∂2
x∂t, which mixes time and space. Perhaps a first attempt is just consider the time-discrete case

un+1 − un

∆t
− ∂2

xu
n+1 − ∂2

xu
n

∆t
= pn+1∂xu

n+1 + qn+1un+1, n = 0, 1, ...,

which is a possible discretization in time.
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