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STABILITY ESTIMATE FOR THE SEMI-DISCRETE LINEARIZED
BENJAMIN-BONA-MAHONY EQUATION™***

RODRIGO LECAROS'®, JAIME H. ORTEGA%®**® AND ARIEL PEREZ?

Abstract. In this work we study the semi-discrete linearized Benjamin-Bona-Mahony equation
(BBM) which is a model for propagation of one-dimensional, unidirectional, small amplitude long
waves in non-linear dispersive media. In particular, we derive a stability estimate which yields a unique
continuation property. The proof is based on a Carleman estimate for a finite difference approximation
of Laplace operator with boundary observation in which the large parameter is connected to the mesh
size.
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1. INTRODUCTION AND RESULTS

In this work, we are interested in a linearized version of the Benjamin-Bona-Mahony equation (BBM)
Ut + Uy + Uy — Ugzr = 0, (1.1)

proposed by T. Benjamin et al. [2] as a model for propagation of one-dimensional, unidirectional, small amplitude
long waves in non-linear dispersive media.

In the last years, several authors have widely studied dispersive equations in the context of controllability
and inverse problems. Nevertheless, the BBM equation presents several particularities due to the structure of
the operator. In particular, the infinitesimal generator of the semigroup is given by (I — 82)~19,, which is a
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compact operator, in opposition with the most common situation in PDE where the generator is an unbounded
operator among others.

We note some interesting results about the unique continuation property (UCP) for BBM for the continuous
case. We refer to the reader to those works and their references for a more detailed discussion: L. Rosier and
B.-Y. Zhang in [14] developed a UCP for (1.1) on a periodic domain. Moreover, in [6] P. L. da Silva and I. L.
Freire give an alternative proof using geometrical arguments for the periodic case, and for the case when (1.1)
is solved in R. In [16], X. Zhang and E. Zuazua considered a linearized BBM equation with space-dependent
potential

U — Ugar = [o(2)u], + B(z)u, (x,t) € (0,1) x (0,T). (1.2)

In that work, the authors established that the only solution of (1.2), such that u(0,t) = u(1,t) = 0, is the trivial
one u = 0 provided that both o and 8 do not vanish on some open subset of (0, 1). Furthermore, if o(z) = —1
and S(z) = 0in (1.2), S. Micu proved in [12] a UCP with the additional boundary condition u,(1,t) = 0, and
study controllabily results. On the other hand, in [15], M. Yamamoto established a UCP for BBM-like equation
with time and space dependent potential

Opu(z,t) — 020su(x, t) = p(x, t)0pu(z, t) + q(x, t)u(z, t), (x,t) € (0,1) x (0,T), (1.3)

where p € L>((0,T) x (0,1)) and ¢ € L>(0,T; L?(0,1)). It was shown that the solution of (1.3) shall vanish
in (0,1) x (0,T), provided u(1,t) = Oyu(1,t) =0 for all ¢ € (0,T) and u(z,0) = 0 for x € (0,1). The main tool
to prove this result is a Carleman estimate for the Laplacian operator. Through a more refined version of this
Carleman estimate, a stability estimate can be formulated for equation (1.3) (see Sect. 5).

We note that the UCP’s have been well studied in several continuous partial differential equations, but it is
possible to see that the corresponding discrete case does not holds. For instance, if u is a harmonic function in a
domain 2 and v = d,u =0 on I' C 992 then v = 0 in €, it does not generally hold its discrete formulation. We
refer to the counterexample due to O. Kavian, presented by E. Zuazua in [18]. However, for (1.4) it is possible
to obtain a quantitative UCP under restriction over the mesh size. This result shall be discussed in more detail
in Section 1.2.

In this paper, we are interested whether a unique continuation property, as in the work of Yamamoto [15],
still holds for a semi-discrete approximation in space of (1.3). In this sense, for N € N given, we set the space
discretization parameter h := 1/(N 4 1). We consider the pairs (x;,t) with ¢t € (0,7), T > 0, and x; = ih,
for i = 1,...,N. Thus, the space semi-discrete approximation of equation (1.3) by using the centered finite
difference method with respect to the space variable is given by

3tui+1(t) — 23tuz(t) + 0tui,1(t) - Ui+1(t) — 'Ll/ifl(t)
- n2 =pi(t) 2h

Orui(t) + aqi(t)ui(t), (1.4)
fori e {1,2,...,N} and ¢t € (0,T), where u;(¢) stands for u(z;,t).

1.1. Notation

We introduce the notation of meshes and operators that shall be used throughout this paper and necessary
to state our results. We consider the following regular partition of the interval [0, 1] as

My :={x; |z;:=1ih, i=0,1,...,N+ 1},

for N € Nand h:=1/(N + 1). For any sets of points Wy C Mj,, we define the following dual meshes W, and
Wy as

Wy, =1 Wh) N1 (Wh), Wy =1 W) Ut (W), (1.5)
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FIGURE 1. Primal meshes, discretization of space variable.
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FIGURE 2. Dual meshes, discretization of space variable.

where
h
Tj:(Wh) = {.Z’h + 5 ‘ T € Wh}.

We shall denote Wy, = Wi* := (W;)* and W;, = Wy == (W;)'.
We note that if Wj, = W, then for two consecutive points ;, ZTiy1 € Wy we have x;11 — x; = h. Thus, any

subset W, C M, that verifies W), = W), is called regular mesh. Finally, we define the boundary of a regular
mesh W, as OW), :== W), \ Wj,. These sets defined above can be seen in Figures 1 and 2.

We introduce, using (1.5), the semi-discrete sets. Let us consider T > 0, we define @, := W), x (0,T). We
also define the dual semi-discrete sets by @), := W x (0,T) and Q}, :== W; x (0,T). Similarly, the semi-discrete
boundary is given by 0Qp = OW), x (0,T).

We define the average operator A; and the difference operator Dy, by

TrUp(Th,T) + Toup(Th,t
Ao, ) o= TR DL T,

t) — 71— t
Dy (up)(zn,t) :== T Un(2n, >hT un (1, ),

where Tup (xp, t) = up, (xh + %,t).
We denote by C(Qy,) the set of real-valued functions defined in Qj, and by L?(Q),) the set C(Q),) endowed
with the norm

T
2 2
ez = | Tulzom, .

where ||uh||i}2 (W) 18 induced by the inner product

<uh,’l)h>wh = /W Up Vp =h Z uh(xh)vh(xh).

p €Wh
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For uj, € C(Qp), we define its Ly°(Qp)-norm as

U oo = max up(Th,t)|t -
lunligeguy =, macx (D]}

To introduce the boundary conditions, we define the outward normal for (zp,t) € Q) as

1 (7—(an),t) € Qf, and (74 (zn), 1) ¢ QF,
np(@n, t) =< =1 (7—(zp),t) ¢ Q; and (74 (21),t) € Q},
0 otherwise.

We indicate by 0Q*1 (resp. Q™) the set of points such that np(zp,t) = 1 (resp. ny(zp,t) = —1). We also
introduce the trace operator for uj, € C(Qj) as

T_up(zh,t) nup(zn,t) =1,
V(zn,t) € 0Qn, tr(un) =< Toup(zh,t) np(Tp,t) = —1,
0 nh(xh,t) =0.

Let us finally introduce the discrete integration on the boundary for u;, € C(0W,,) as

/BWhuh = Z up(xh).

R €OWh

1.2. Discrete Carleman estimates with boundary observation

For the discrete Carleman estimate, we consider the weight function of the form r(z,t) = e¥@b for s > 1,
with o(z,t) = e*?(@1) where 1) is a continuous function whose domain of definition 2 is contained in an enlarged

smooth open and connected neighborhood Q. We also assume e Ck (Q) with k£ large enough such that it
satisfies the following property

Bu(z,t) > 0, (z,t) € Q x (0,T). (1.6)

The assumption of the higher-order derivatives is needed to obtain the estimates on the weight function
presented in Section 4, in contrast to the continuous case. We shall use the same notation for the sample of the
continuous function on the discrete or semi-discrete sets. We now state a uniform Carleman estimate for the
operator D,QL with boundary observation. Although for the Carleman estimate just the condition (1.6) is needed,
to achieve the UCP property for the system (1.4) we also consider the following assumption

Ab(z,t) <0, (z,t) € Qx (0,T). (1.7)
It is not difficult to find a function that verifies conditions (1.6) and (1.7), for instance the following function,
Y(2,t) i= (v — 20)? — 1%, 29 < 0. (1.8)

Theorem 1.1. (Discrete Carleman estimate)

Let v be a function verifying (1.6) and T > 0. For the parameter Ao > 1 sufficiently large, there exist so(Xg) > 1,
ho >0, g9 > 0 and C = C(eg, S0, \o) independent of h > 0 such that
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C (e Dionlfya o) + 5 @Ou Pt ()t (|IDpvnl®) +5° | (90:0)°tr(€2*)t (An(|vnl*))
Lh(Qh) 8Q+
h

2Q;

2 2
> 5| Ponl2s gy + 5 € DhvnllZa iy - (19)

Jor all h € (0, h), s € (so,e0/h) and vy, defined in Qp :== My, x (0,T).

Several recent works have been concerned with discrete and semi-discrete Carleman estimates for second-
order differential operators. The hyperbolic case has been developed for the one-dimensional case by L. Baudouin
and S. Ervedoza [1], to study the stability of an inverse problem to recover a potential term in a semi-discrete
wave equation. The elliptic case has been developed by F. Boyer et al. in [3], for the one-dimensional case, to
establish a relaxed observability estimate for the associated semi-discrete parabolic equation. In [7], S. Ervedoza
and F. de Gournay study the Laplacian operator in arbitrary dimension to prove the stability for the discrete
Calderon problem, with limiting Carleman weight function. Semi-discrete Carleman estimates for parabolic
operators have been established by F. Boyer and J. Le Rousseau in [4] for multidimensional Cartesian grids.
Moreover, in [13], T. N. T. Nguyen studied in the one-dimensional setting a semi-discrete parabolic operator
with discontinuous diffusion coefficient; both of them obtain relaxed controllability results for their respective
systems.

In the aforementioned works, the discretization was based on a finite difference scheme. Also, the Carleman
parameter cannot be arbitrarily large, which is related to the discretization step size, in contrast to the continuous
setting. Let us finally mentioned that recently in [10], a fully discrete Carleman estimates for parabolic operator
have been obtained by V. Herndndez-Santamaria and P. Gonzélez Casanova, where the spatial and time discrete
step-size parameters are connected to the Carleman parameter.

We recall that T. Carleman introduced an estimate, known as the Carleman estimate, to prove a UCP for
second-order elliptic partial differential equations in [5] when coefficients fail to be analytic. Nowadays, it has
become an efficient tool to prove UCP, the study of controllability, observability, and stabilization for PDEs.
We refer to the work of X. Fu et al. [8], and references therein, where the authors present a unified approach to
Carleman estimates for second-order PDEs and their applications to control theory and inverse problems.

One of the main difficulties in the development of discrete or semi-discrete Carleman estimates is to compute
multiple discrete operators such as Dy and A} on the Carleman weight functions. For this reason, we establish
Theorem 4.9 (see Sect. 4) to reduce some tedious computation, and it represents an extension of the results
presented by F. Boyer et al. in [3] related to discrete estimate on the weight function.

1.3. Semi-discrete setting and main results

With the notation we have introduced we can rewrite the semi-discretization (1.4) as
Oyup, — D} Opup, = pr Dy Apup + gruy, in Qp = M, x (0,7), (1.10)

where pp,qn € Ly°(Qp). In (1.10) up(t) provides an approximation of w(zp,t), u being the solution of the
continuous equation (1.3). d;uy, stands for the first order differentiation with respect to ¢ and the operators Dy,
and D,% are the classical central finite-difference approximation of the space derivatives. We assume that there
exists a constant M > 0 independent of h such that max{||ph||Lﬁo(Qh) , H%HL;’:’(Qh)} < M.

Theorem 1.2. (Stability for space semi-discrete BBM equation)
Let 4 be a function verifying (1.6) and (1.7), and T > 0. For A\g > 1 sufficiently large, there exist so(Ao, M) > 1,
ho > 0 depending on M, 9 > 0 and a constant C' > 0 independent of h > 0 such that the following estimate
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holds
2 2 2
57 lle*?unllzz (q,) + s* le**OrunllLz (q,) + s le® Dndeunllzz )

< 2s¢p 2
<Cs /a . PO Dudi ) "

08" [ (o0 (e e A0 )

for 0 < h < hy and s € (sg,e0/h) and up(zp,0) =0 in M.

As a consequence of Theorem 1.2, we have the following unique continuation property for semi-discrete BBM
equation (1.10).

Corollary 1.3. (UCP for a semi-discrete BBM equation)
There exists hg > 0 depending on M such that if up =0 on {1} x (0,T), Dpup, =0 on {1 —h/2} x (0,T) and
up(+,0) =0 in Mpy; then up(zp,t) =0 in Qp for all h € (0, hg).

The methodology of the proof of Theorem 1.2 is similar in spirit to [15], where it have been obtained a UCP
for equation (1.3). However, it cannot be followed straightly from the proof of the continuous case since the
parameter s cannot be arbitrarily large. As we mentioned above, this parameter is related to the mesh size.
Thus, a semi-discrete version of the Carleman estimate used in [15] is not enough. For this reason, we develop
a more refined Carleman estimate, (5.2), and its semi-discrete counterpart, see Theorem 1.1.

The rest of this article is organized as follows. First, in Section 2, we introduce and prove some discrete
calculus formulas for uniform meshes. Then, we establish a stability estimate for the semi-discrete numerical
approximation based on a uniform spatial discretization of equation (1.3) in Section 3. The last three sections
are devoted to the proof of the discrete Carleman estimate for a finite-difference approximation of Laplacian
operator with boundary observation. In Section 4, we extend the estimations developed in Section 3 of [3] for
arbitrary order, which reduce some computation in the proof of the Carleman estimate presented in Section 5.
Some calculations are postponed and computed in Section 6.

2. CALCULUS FORMULAS FOR UNIFORM MESHES

In this section, we state the elementary notions concerning discrete calculus formulas. First, we set some
useful identities that shall be used in what follows. Then, we present the integration by parts for the difference
and average operator. For the sake of presentation, we set the results in the discrete space variable framework
instead of the semi-discrete setting.

The following Lemma gives us a calculus rule for finite difference operators. Its proof can be found in [3].

Lemma 2.1. Let W), C My, be a regular mesh. For uy, vy, € C(My,), we have the following identities on W

Dy (upvn) = Dy (un)An(vn) + Ap(un)Dy(vn),

h2 (2.1)
Ah(uhvh) = Ah(uh)Ah('Uh) =+ ZDh(uh)Dh(Uh)-
As a direct consequence of Lemma 2.1, we point out some identities to develop the rest of this paper.
Corollary 2.2. Let W), C My, be a regular mesh.
— Foru € C(Wy,),
2 o b 2 .
Ap(uz,) = (Apur)” + — (Drup)”, on Wy, (2.2)

4
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In particular, for all u € C(Why,),
Ah(ui) > (Ahuh)Q, on Wi. (2.3)
— Foru e (Wy)
Dy (ul) = 2Dyuy, Apuy,. (2.4)

Note that as a consequence of the first identity in (2.1) of Lemma 2.1, it can be proved by induction the
following identity.

Corollary 2.3. Suppose that for n € N and h > 0, the set (nh/2,1 —nh/2) is not empty. Then, for each
u,v € COWy,) we have

Dy (uv) = (Z) DR Afu APEDFv on A, (2.5)

where

Y — M; N [nh/2,1—nh/2], ifnis odd,
" M N nh/2,1—nh/2], ifn is even.

Now, we state the following integration by parts presented for discrete space variable. We note that the
same identities could be considered in the semi-discrete setting since the temporal variable does not play any
significant role.

Proposition 2.4. Let W;, C My, be a regular mesh. For uy, € C(WV}y,) and vy, € COW}) we have

/ upDp(vp) = — Dy, (un)vn +/ upty(vp)np
Wi Wi W

and

oW,

h
/ uhAh(vh) = Ah(uh)vh — 5/ uhtr(vh).
Wh W;

Proof. We have

=/ T (up)v / (un ), (2.6)
w 14%% \7+(Wh)
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and

T (up)op,
—(Wh)

/Wh’ upT—(vp) =

Il
— S—

T4 (un)vn */ 7+ (un)vn (2.7)
Wi\T—(Wh)

T+(uh)1)h — / uhT_(’Uh).
T_%_Wh\Wh

Wi

I
s

*
h

Combining (2.6) and (2.7) it follows that

1
/ uhDh(vh) = — Dh(uh)vh — E/ uhT+(vh)
Wh W;Z TEWh\Wh

1
+7/ uhT,(Uh)
h T?rWh\Wh

= — Dh(uh)vh +/ uhtr(vh)nh.
Wi ow

Similarly, averaging the equations (2.6) and (2.7) we obtain

1
/ uhAh(vh) = Ah(uh)vh — i/ 'LLhT+(’Uh)
Wi, Wy 72 (Wi)\Wh
1

— 5 / UpT— (’l)h)
TEWr\Wp,

h
:/ Ah(uh)vh — 5/ Uhtr(vh)a
w oWy,

which completes the proof. O

*
h

Remark 2.5. One can consider the previous result for the meshes W, see for instance a similar result by S.
Ervedoza and F. de Gournay in [7]. In that case we should change the definition of the boundary nodes of our
mesh. As we are interested in the boundary that kind of integral-by-parts formulas does not fulfill our goal. In
contrast with the integration-by-part formulas from F. Boyer et al. [3], we do not make any distinction on the
difference and average operators, then we need to specify that difference in the respective meshes.

3. STABILITY ESTIMATE FOR SPACE SEMI-DISCRETE BMM EQUATION

This section is devoted to proof Theorem 1.2. We follow as close as possible the ideas from its continuous
formulation. For this reason we state a stability estimate for (1.3). The main tool for the proof is a Carleman
estimate for Laplacian operator. For sake of exposition we postpone that proof, see Section 5. It is worth to
mention that we refined the result presented in [15] (see Sect. 5.1).

3.1. The continuous case

We consider @ := (0,1) x (0,T), for T' > 0, and we define the classical inner product

(W, v)2(g) ::/ wvdzdt
Q
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and its respective L?-norm ”“”i%@) = (4, V) 12(q)
Following the methodology from [15] we can obtain a stability estimate for (1.3). The proof is based on the
Carleman estimate (5.2) and Lemma 6.4.2 from V. Isakov [11].

Theorem 3.1. Let 930Fu € C ([0,1] x [0,T]) with j =0,1,2 and k = 0,1. For X\ > 0 sufficiently large, there
exist constants sg > 0 and C(sg, Ao, %) > 0, such that

T
s 2 s 2 s 2 s
s le*ull 72y + 8% e Qull 2y + s lle*?Dudhull 2 g SCSS/O ((229)*p*e*?|0pul?) (1,1) dt -
3.1

T
1+ Cs / (0pe®?)0,00uf?) (1,1) dt,
0

for all s > sq, and u verify (1.3) with u(z,0) =0 for all x € (0,1).
As a Corollary of Theorem 3.1, it follows the main result presented in [15].
Corollary 3.2. Let 9i0Fu € C([0,1] x [0,T]) with 0,1,2 and k = 0,1. If u is solution of (1.3) such that
u(1,t) = Opu(1,t) =0 for all t € (0,T) and u(x,0) =0 in (0,1), then u(z,t) =0 in (0,1) x (0,T).
3.2. Proof of Theorem 1.2
As we mentioned above the proof of Theorem 1.2 is based on the continuous setting strategy. Then, we write

down a space semi-discrete version of Lemma 6.4.2 from [11], which is a Poincaré weighted inequality.

— 0
Lemma 3.3. Let ¢ € C1(Qy) be such that Ad <0, then

ot
t
/ / Uh(l'h,d)dO'
h 0

2
erga(wmt) §T2/ (uh(xh,t))QGQSw(mh)t),

h

for all up, € L7 (Qp).
Proof. We have

2 T
e2s<p(a:h ,t) dt <

=N

t | (u(zp, o)) ?@tdodt

ol
J

T
/ te2* @t (y(xy,, 0))2dtdo

/OT /Otu(xh,o)da

0

IN

T2/ ( (xh 0_))2 Zago(af;“o)do
0

and integrating over M r we complete the proof. O

3.2.1. Proof of Theorem 1.2

In this section, we shall give the proof of the Theorem 1.2.

Proof. Note that from (1.10) we have

D3 0yup, = dyun — pDrAnun — quup in Q.
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Then, applying the Carleman estimate (1.9) to v, = dyuy we obtain

s 2 s 2 s
e Dpunll7z o, + 5 €™ Dndrun| 72 or) <s /a - @0yt (e2°%)t, (| DpOyun|®)
h
- / (90:0)° (2t (An(|0yun]?)) (3.2)
oM
s 2
+ He ¥ (atuh — phDhAhuh — qhuh)HL%(Qh) s

for 0 < h < hg, s > sg and sh < gg.

On the other hand, we note that
t
DhAhuh(:rh,t) = / DhAhatuh({Eh,O')dO'
0
and
t
uh(xh,t) = / 3tuh(xh,o)d0,

0

since up(xp,0) =0 in M,. Thus, by Lemma 3.3 it follows that

s 2 2 s 2
le*# (Dpun — pnDuAnun — anun)llz2 @,y SCT? IpnllLe gy lle* DnAndrunlzz (g,
2 s 2
+C(1 417 ||‘Ih||Lz<>(Qh,)) lle POrunllzz ()
<CT*M” ||*? Dy Apdyunl|72 g,

+C(1+T*M?) ||ewatuh|\imh) .

Now, we focus on the first term of the right-hand side above. Using (2.3) and a discrete integration by parts
for the discrete average operator we get

”eS(‘pDhAhatuhHQL;"l(Qh) :/ 0259 (DhAhﬁtuh)Q
Qn
S/ e**? Ay, ((Dhatuh)2)
Qn

h
= [ An(e*?) (Dpowur)® — 5 /

GQSwtr ((Dhatuh)2>
Q; aQn

< [ An(e**?) (Dndrun)” .
o

From Proposition 4.5 we have Aj(e?$%) < Cye?**, we thus obtain

||€SSDDhAh8tUh||i,2L(Qh) < C, ||eSsDDh8tUhHL%L(Q*) . (3.4)
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Combining (3.2), (3.3) and (3.4) we get

s 2 s 2 s
s |le*?Qpunllzz2 g, + s lle”* Dndyunllz2 (or) <3/6Q+ POyt (e2*9)t, (| Dpdyun|?)
h

T O G A ) R

2772 s 2

+ T2 e DDy 23 s

We note that by choosing some s > T2/3(1 + M?)*/3 + T2 M, the last term on the right-hand side from (3.5) can
be absorbs by its left-hand side. Thus, recalling the hypothesis on s from the Carleman estimates, by choosing
s1 := max{sg, k(M,T)} > so large enough we obtain

h

s 2 s 2 s
s [|e Lpat“h”L%L(Qh) +s]le “’DhatuhHLi(Q*) SS/BQ+ 0Ot (€259t (| Dy Orup |?)
h

w0 [ (O (An (0 ),

provided s > s1, where k(M,T) := T2/3 (1 + M2)1/3 + T?2M?. Now, we need to connect the condition over the
Carleman parameter s with the mesh size h. Defining

€0
hl )
S1

it follows that for 0 < h < min{hg, h1} we have sh < gy provided s € (s1,e9/h), which conclude the proof. O

As a consequence, we obtain the UCP presented in Corollary 1.3 for semi-discrete BBM equation (1.10).

4. SOME PRELIMINARY DISCRETE CALCULUS RESULTS

In this section, we establish some previous estimates for the Carleman weight function that shall be used in
the next section to obtain the discrete Carleman estimate, see Theorem 1.1. Recall that our weight function is
defined as e*¢ for s > 1, with ¢ = e*¥, where 1 € C* for k sufficiently large and A > 1. Our goal is to generalize
the results presented previously in Section 3, obtained by F. Boyer et al. in [3], related to discrete operations
performed on the Carleman weight functions, considering estimates and expansions for higher order discrete
operators.

For easier comparison, we use the same notation by setting r = €% and p = r~!, these positive parameters s
and h shall be large and small respectively and limited by the condition sh < 1. The proofs are similar in spirit
to those given in [3].

We denote by Ox(sh) the functions that verify [[Ox(sh)||;« (g, ) < Cash for some constant C depending on
A. By O(1) we denote bounded functions and by Oy(1) a bounded function once \ is fixed.

We say that « is a multi-index if o = (a1, az, ..., a,) € N* and for y € R"™ we write:

|Oz‘2041+062+"'+04na aazagll...8s:, yo‘:y?l_.-yzn'
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Proposition 4.1. Let us consider n € N. Let f be a (n+ 2)—times differentiable and g a twice differentiable
functions on R. Then

w9 =9 + Rar(9),
Dpf=f" + Rpn(f).

where Rpr and Ran are given by

k=0

and

Rap(g) = 2n+2 Z( ) n — 2k) /01( —0)9(2)(-—&-@0)&1.

Proof. The proof of this proposition follows from Taylor expansion

y' @) ( (1-0)! )
gz +y) = Z Th( /07(1,_1)! g9 (z + oy)do. (4.1)
—2k)h
First, we use (4.1) Withi:2andy:(n%to obtain
— 2k)h —2k)n\* [* — 2k)h
T 2kg—g—i—(n 5 )g’+<(n 5 ) > /(1—0)9(2)(-—&-7(” 5 ) o)do.
0

Then, it follows that
n 1 n
nd =5 (T+ +7-)"g
1 < (n _
=5 <k>ﬂ -

k=0

1 < /n
E n—2k
_2” (k) + 9

k=0

:2% Zn: (Z) (g + (n_;k)hf/) + Ran(g)

k=0

Now, using Z <Z) = 2" and Z (Z) k=n2""! we write
k=0

k=0

Apg =g+ Ray(9).
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-2
On the other hand, applying (4.1) for f with i =n+2 and y = w, we have
n+1 n+2 +1
n 2%k 2]{?)}1 ) <(n — 2k)h> / (1 — O') (n+2) (n — Qk)h
f= Z ( >f+72 o o)

Thus, for the difference operator we get

th**( =1 )" f

k=0 7=0
+ Rpy (f)
_ b n+1 lhj " /n (—1)k (ﬁ _ k) 9 + Rpn(f)
hn e~ 4l k 2
§=0 k=0

Now, usi “F(") @ = k) =ntand S (=DF( ") (5 — k)t = btai
ow, usmng:O( ) (k)(z )" =n!an Z( ) (k (2 ) 0, we obtain

and the proof is complete.

Corollary 4.2. Let f be a (n + 4)—times differentiable function defined on R and m,n € N. Then
ApDrf = ™ + R4 (fF™) + Rpy (f) + Rappr(f),

where

_ o)t —2K)h
Rampr(f Z g,k / / RCESE (1 =) (z+ (n— 2]<:) ua’)do”da

2
kk'=

with

13
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Proof. 1t is enough to see that
AR (DR f) =A7 f™) + AR (Rpy (£))
=" + Rap (f™) + Rpp (f) + Rappp (f)-

O

Note that R Appp = Ram o Rpn = Rpp o Ram. Now, we consider two fundamental estimates for our weight
function. The proofs of these results can be found in [3]. We consider o = (o, o) € N? multi-indices.

Lemma 4.3. Let a and 8 be multi-indices. We have

% (ro%p) =|a|lPl(—sp)leI\letBl (g, p)oth
+ lal|Bl(s) “INHAO(1) + s Hal (o] — 1DOA(L) (4.2)
=0, (sl%h.

Moreover, let o € [0,1] and sh < 1, then 9°(r(x)(0%p)(z + oh)) = s1*1O5(1).
Corollary 4.4. Let o, § and § be multi-indices. We have

90 (r2(6“p)(96,0) =|o+ B|\5\(_8¢)|a+6|)\|a+l3+6|(azw)a+ﬁ+5
+ 6]l + Bl (sep) o HPINle+8+I=1 0 (1)
+ 517 (Jaf (Jaf = 1) + 18(18] = 1)) OA(1)
:(9,\(s|a+ﬁ|).

Corollary 4.2 and Lemma 4.3 yield.

Proposition 4.5. Let a be a multi-index and n, m € N. Provided sh < 1, we have
rATDROYp = 1R p + s O ((sh)?) = st O, (1).
Proof. From Corollary 4.2 we write
rARDR0%p =rd; 0% + rRam(9;0%p) + rRpn(0”p) + rRampr(0%p)

By Lemma 4.3 we have

r(2)(8720%) (z + (n — 2k)ho /2) = Ox(sl1H712)
and

r(2)0n 0% p(x 4 (n — 2k)ho /2) = Oy (sl
Then

rRap (970%p) = s Ox((sh)?),
rRpp (0%p) = s Oz ((sh)?),
rRap py (9%p) = s Ox((sh)"),
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which yields the result. O
Lemma 4.6. Let o and § multi-index and n € N. Provided sh < 1, we have
APDR (9% (r0“p)) = 0297 (r8%p) + h2Ox(sl°1)
Let o € [0, 1], we have A7 Do (r(z)0%p(x + oh)) = Ox(s*).
Proof. By Corollary 4.2 we write

A DR (07 (r0 p)) =00° (r0 ) + Ry (920" (r0°p))
+ R (9°(r0%p)) + Rag oy (9°(r0° ).

By Lemma 4.3, it follows that

(0208 (ro°p))(x + (n — 2k)ho /2) = Ox(s!*),
(02120 (10 ) (& + (n — 2K)ha/2) = Oy (s1°),
(0107 (r0% p))(w + (n — 2k)ha /2) = Ox(s),
which concludes the proof of the first result.
On the other hand, we set v(z,oh) := r(x)p(x 4+ oh) and p, := rd*p. Since rp = 1 it follows that r(z)0%p(x +
oh) = v(x,0h)u.(z + oh). Note that, by continuous Leibniz rule, 970 (vu,) is a linear combination of terms
of the form 9% 1% i, with B’ 4+ 5" = n + 3 and by Lemma 4.3 we write 0% v = 0y (1) and 9% ji,, = Oy (s11).

Besides, it holds for the terms 07120%(vu,) and 97149% (v, as well. Therefore, applying Corollary 4.2 to v
we obtain

AR DR (9% (r()0% p(z + ah))) = Ox(s1*) + 2 Ox(s1!) + R* O (s1).

Lemma 4.7. Let a, 3, § be multi-indices and n, m € N. Provided sh < 1, we have:

AT DY (2 (6%p) aﬁ’p) —on’ (r* (9°p) 3%) + h20,(sloIF18]
=0y (sl 181,

Let 0,0" €[0,1]. We have
A DR (r(z)? (0% p(a + oh)) 0% p(x + 0'h)) = Ox(s*IH1A1).
Proof. Applying Corollary 4.2 to 9° (7"2 (0%p) 0° p) we obtain

AP DR (12 (9% p) 9P p) =020 (2 (9°0) 9%p) + Ray: (9200 (12 (9%p) 9°p))
+ Rpy (85 (r? (8%p) 65;))) + Rappy (85 (r? (9%p) 65;))) .
Then, the first result follows from Corollary 4.4. For the second one, we proceed similarly as the proof of the

second result of Lemma 4.6, that is, we apply Corollary 4.2 to 12, g, then we use continuous Leibniz rule and
Lemma, 4.6 to conclude. O
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Lemma 4.8. Let a be a multi-index. For j, k,m,n € N and for sh <1, we have
Al DK™ (rA' Dy p) = 9F9° (rdlp) + s" Oy ((sh)?) = s"Ox(1).
Proof. By Corollary 4.2 we write
9%(rAy* Dy p) =0 (rop) + 0% (rRap (Orp)) +0° (T(RDZ (p)) + 0% (rRap py (p)) -
Then, applying again Corollary 4.2 to the first term of the above expression, we have

AL DFO*(rAp Dy p) = A} DEO(rdl p) + A DEO* (rRay (92p))
+ A} DFO* (r(Rpy (p) + A}, DEO™(rRay by (p))
=050%(rd} p) + R yy (9°(r0}p)) + Rpy (9% ()
+ A} Do (r(Rpy (p) + A} DFO* (rRap pp (p)).

Thus, by Lemma 4.3, we obtain

AL DFO* (r A Dt p) = 050 (rd}tp) + s"Ox((sh)?).

Theorem 4.9. Let «, 8 be multi-indices and j, k,l,m,n,p € N. Provided sh < 1, we have

A2 DL (r2 4] DE (9% p) A7 it () =0L0° (r2050%p p) + 5™ 41210, ((sh)?)

=s" TR0, (1).
Proof. We have

Ay Dy (p) =07 p + Rap (9;p) + Rpp (p) + Rap oy (p),
AL D} (0%p) =070%p + Ry (970%p) + Rpg (9%p) + R 47 pi (0%p).

By Lemma 4.7 we write
AL DLOP (2 A} DY (9% 0) A} D (p) = 0L0° (120507 pap) + 5™ 41210, ((sh)?),

which is our claim. O

Let us finally mention that the results of this section can be extended for time-dependent case. For instance,
if we consider a weight function of the form r(z,t) = e5®%#(®) then the condition sh < 1 must be replaced by
sh(maxp, ) 0(t)) < 1 which implies that s0(t)h < 1.

5. DISCRETE CARLEMAN ESTIMATE

In this section, we establish a discrete Carleman estimate with boundary observation for a finite difference
approximation of the Laplacian operator in the one-dimensional setting. In order to do so, it is natural to
look closer at the continuous version of such estimates. For this purpose, we follow the methodology of A. V.
Fursikov and O. Y. Imanuvilov [9] to obtain a Carleman estimate for Laplacian operator in the continuous
setting, which is similar to the estimate obtained by Yamamoto in [15]. The main difference with the one in [15]
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to our estimate is that we do not consider a density argument, and we thus obtain a Carleman estimate with
boundary observation. Then, following the methodology in [3] we establish a discrete Carleman estimate.

5.1. The continuous case

The proof of the following Carleman estimate has two steps. First, we consider the conjugate operator defined
by P,u = e*¢9%(e~*%u). In this case, our Carleman weight function is defined as e*% for s > 0 with ¢ = e*?,
where A > 0, and satisfy

Oz (z,t) >0, (z,t) € Q. (5.1)

Then, we split P, into the operators P; and P, and it is estimated the scalar product (Pyu, Pgu)LQ(Q).

Theorem 5.1. (Carleman estimate) Let ¢ € C(R?), and for any t € (0,T) let ¥(-,t) € C*(R) such that

O ¥(x,t) > 0 for (x,t) € Q. For the parameter \g > 0 sufficiently large, there exists so(Xo) > 0, and
C(s0, Ao, ¥) > 0, such that

T T
C [ el + 8] [ (0P oR) (L) + s [ (@ubee iosl) (1,1
@ 0 0 (5.2)
>0 [ @)l +53 [ (0.0 ool
Q Q
for all s > sq.
Proof. We set u = e°?v. Then the conjugate operator can be expanded as follows
Pou=e*¢02(e % )u + 2e°?0, (e *?)dpu + 02u. (5.3)
Adding —s92(p)u, (5.3) can be written as
Pou— s02(p)u = Piu+ Pau, (5.4)
where Piu := 02u + €5¢0%(e™*¢)u and Pyu := 290, (e~ %)dyu — 302 (p)u. Besides, from (5.4), we have
2 2 2
[P — sai(cp)uHLQ(Q) = [Prullzz ) + 1Paullpz () + 2 (Pru, Pau)g - (5.5)
Note that
2 2 2
|1Po = s02(@)ul32 gy < Co (IPsull7a(q) + 5 ull32()) (5.6)

since 92¢ is bounded in Q. On the other hand, defining Ciu := 92u, Cou := e*992(e~*%)u, Biu =
2e5%9, (e7%%)0,u and Bau := —s92()u we have

2
(Plu, PQU)LQ(Q) = Z (Cu Bj)LZ(Q) . (57)

ij=1
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We note that, integrating by parts in space, (5.7) can be rewritten as
(P, o) aigy 25" [ (@upP0feh® + [ 2 ((0h) — (0ue)® —aupte) = [ ol
s [T
+23/ D2()|0s u\2—s/ 02 ()|0pul? +§/ 85(90)|u|2
0

1
T
b [ e+ o] —s [ udueie)
0 0
0

0

Now, using the Young’s inequality on the last integral above, we have

(Pra Po) s gy 225 [ @upPoielul + | (020 = 0 ~ i) = 5 [ ool

T
vas [ .l s [ oo +§/O sHoul|

0
T T
_ 3 3 3 2| _ 3 2
[ @erne -3 [ @erue| <5 [Caar| <3 [l

1
T
+/ (=5°(020)° + 5200 0070) [ul®
0

1 0 1

0

For A large enough, there exist C, > 0 and Ay > 0 such that for A > Ay we obtain
Cay (Pra, Pa) 2 ) 2 [ (@)l + X [ @) o?ul? = sx* [ (0o oluP
Q Q Q

1 T
Y / (0a0) olu?
0

0

1 T
2N / (0ut))*?ul?
0

0

T
s /O (A0, 1)2oluf?

0

T
+s)\2/q?(8wz/))2<p|8wu|2—s)\/ Dpthip|Opu?
0

0
1

T
N / (020" ul?
0

0

T
. 2 2
s / (ADo)2elul

1

Now, if we fix A = X, there exist Cs », > 0 and s¢(Ag) > 0 such that

Caoro (Prit, Patt) 3 ) >5°A / (Da) P u? + N2 / (Ds) 0|02
Q Q

, (5.8)
33 01303 ul?
s / (0a)* %

T
—5)\/ 8:,31/1g0|8zu|2
0 0

0
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for s > sg. Note that |e320,v|? = |sudyp + dpul?> < Cp(s?|ul? + |0zul?). Thus, from (5.5), (5.6) and (5.8) we
obtain for A\ large enough

Chrg oo / 2520202 255X / (0u)' P o + s\2 / (00l 02
Q Q Q
1

T
—s)\/ Dutppe*? |00
0 0

1

)
0

T
—83)\3/ (axw)3<p3e2stp|v‘2
0

which proves the required result. O
Remark 5.2. Note that taking xg > 1, the observation data in (5.2) can be switched to the point (0,t), for
te (0,T).

5.2. Proof of the discrete Carleman estimate

Now, we establish a discrete Carleman estimate for the discrete operator D7. Note that this is the discrete
Laplacian in one-dimensional setting. There are Carleman estimates for this kind of operator (see F. Boyer
et al. [3, 4] and S. Ervedoza et al. [7]). The main difference respect to our estimate is the fact that we consider
boundary observation, due to the choice of the weight function. Indeed, our Carleman weight function is defined
as e%¢ for s > 1, with ¢ = e*¥ where ¢ € C* for k sufficiently large and A > 1. We also assume that

Datb(a,t) >0, (2,1) € Q. (5.9)
We follow a classical scheme based on conjugating the original operator with a well chosen exponential function.

5.2.1. Proof Theorem 1.1

We make the change of variable u;, = e*fv,. Our first task is to obtain an expression for P, :=
e*? D (e~ *Puy,) with the change of variable proposed. By using (2.5), we have

Ph.p, =e*? D (e *?)Afu + 2¢°? A, Dy, (e *?) Dy Apuyp, + €€ Az (e *?) Diuy,. (5.10)

We define the following coefficients ay := e3P A2 (e75%), ap := e*¥ D7 (e %) and B; := e*? A, Dy (e”%). On the
other hand, we set

Chiuy, == alDiuh,
Couyp, := agAiuh,
Biup, == 281Dy Apup,
Bouy, := —s(02p)uy,.

Equation (5.10) thus reads P ,up — s(02¢)up, = Pruy, + Pyuy,, where

Piuy, .= Crup, + Couy,
Pouy, := Biuy, + Bauy,.

We write

2 2 2
|| Prp — S<a§@)uh||Li(Qh) = [1Prunllzz ) + 1P2unllzz () + 2(Piun, Paun)q, - (5.11)
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Since 92¢ is bounded, we have

2 2 2
||PIL,ga - S(a§<‘0)uh||Li(Qh) <C (Hptpuh”[‘i(Qh) + 52 ”uh“Li(Qh)) .

Now, we shall estimate the scalar product

2
(Prun, Pyun)q, = Y (Ciun, Bjun)q, -
ij=1
For each term of (5.13), we obtain the following results.

Lemma 5.3. For sh <1, we have

(Crup, Byup) g, :/ sA2p(0,1)%| Dy |2 +/ sApd2| Dyup|* — X1 + Y1,
Q; Q

where

X, ;:/Q sOA((5h)2)| Dtn 2

*
h

and
v, ::/ (—sAp0yts + 5O ((sh)2))tn(| Duun ).
0Qn
Lemma 5.4. For sh <1, we have

(Crup, Baup)qg, 2/ sA?(0,) 0| Dpup ? +/ s 2| Dpup|* — Xo + Yo,

Q5 Qr
where
X2 2:/ SOA(1)|’UJ}L|2+/ SO)\(h2+(Sh)2)‘Dhuh|2
h Qr
and
Gom [ soampnf - [ 2oxwuf - [ 0\
OQn OQn aQn

Lemma 5.5. For sh <1, we have
(Coup, Biup)q, :3/ 3N 3(0,0)* Jup |2 +/ (sA@)2O(1)|up|* — X3 + Y3,
h Qnr

where

h Q5

Xy = / $205(1) + 205 ((sh)?)unl® — / SOA((sh)) [ Dyur?

(5.12)

(5.13)
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and
Y3 = /aQ (= (s200,9)° 4+ 5°Ox(1) + s> Ox((sh)?)) t (An(|un|*))nn

7/ SO)\((Sh)z)tr(‘Dhth)nh.

oQn

Lemma 5.6. For sh <1, we have

(Coun, Baup)q, > — / $* X403 (0,0) Hun |* + /Q $* N (0:)2 03 [un|* — X4
Qh h

where

s(’),\(sh)\uh|2+/ 5O ((sh)?)| Dpunl?,
@

Xy = /Q (32(’))\(1) + 830,\((8h)2)) |un|? +/

Qn

and

v [ O+ / SO + [ oAt (D Py

h

The proof of Lemmas 5.3-5.6 can be found in Section 6.

Combining the aforementioned Lemmas, for sh < 1 there exist A\; > 1 and ¢ small enough such that for
A >\ and 0 < sh < minf{e; (), 1} = e1(\), there exists a constant C), ., > 0 such that

4
Cxier (Prun, Paup)q, 2/ s(0x9)* | Dyuy|® +/ 50 (0u) Junl* + Vi — X (5.14)

Qs Qn i=1

Thus, from (5.11), (5.12) and (5.14) we get

4 4
2 2 R R
Cxier (IPholiz oy + 5% lunlfz o)) + DX 2D Vit s° /Q & (0,0) Jun?
=1 =1 h

s / (029)2 0| Dnun?.
Q

*
h

On the other hand, we have to deal with the boundary terms. To do this, we can estimate separately the right
and left boundary observation. Indeed, let us denote by Y¥;~ and Y;* the left and the right boundary observation
of the term Y;, respectively. Once )\ is fixed, for s large enough there exist positive constants Cy and C; such
that

C’os/ wﬁxwtr(|Dhuh|2)nh+C’053/
00— _

h oQ,

4
Myt < Cls/ag; 08t (| Dpun|?) + 0183/ (00:0)°tr (An(lunl?)).

+
i=1 oQy

(00:9)*t, (An(Jun?)) < Z Y,
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Therefore, if we fix A = A1, we can choose ¢¢ and hg sufficiently small, with 0 < g9 < €1(A1), and so > 1
sufficiently large, such that for s > sg, 0 < h < hg, and sh < ¢y we obtain

2 2 2
Cxvcaso (132 0 ) = 5% lunlEe (g + 51 DrtnllEz o)

~Cus [ tutDun = Crs® [ (@0 () (5

2Q;

s / 00ty (|Dyun]?) — Cos® / (00t (A ([un[?)):
0Q;, oQ,

Finally, we return to the variable vj. To this end, we need the following Lemma.

Lemma 5.7. For sh <1, we have

s ||€S¢thh||2Li(Q;) <C (s ||Dhuh||ii(Q;) + s* ”uh”ii(Qh)) + 520(sh) /8Q lun |?, (5.16)
h
/ 0.0t (| Dyun|?) <Cs® / P0a 0t (29 Ay (Jun )
Qi Qi+
+Cs / 0u 0ty (2| Do ), (5.17)
Q)
& / (00 )t (An(Jun]?)) <s° / (00:0)t, (2% Ay (jun2))
Q5 Qi
+50((sh)?) / (001), (22| Dpon?). (5.18)
oQ;)

For a proof see Section 6. . .
Combining (5.15) with Lemma 5.7, we can choose € > 0 and h > 0 sufficiently small, with 0 < h < ho, 0 < & < &,
and § sufficiently large, such that for s > 5, 0 < h < h, and sh < &, we obtain

s 2
$3 ||e (th”%ﬁ(Qh) + s HesthvhHii(QZ) <Cs; (HeSWD%LUhHLi(Qh) + 5/3Q+ @awwtr(e%w)tr“thh'Q)
h
+83/ (waz%b)?’tr(e%w)tr(flh(|Uh|2))>7
Q3

where we have dropped the left boundary observation, and the proof is complete.

6. PROOF OF INTERMEDIATE RESULTS

In this section, we shall prove some technical results used in the development of the discrete Carleman
estimate. We consider sh < 1 in the following Lemmas in order to ensure that every Lemma from Section 4
holds. Recall that our Carleman weight function defined as r(z) := e3#(®) for s > 1, with ¢(z) = e*?®) where
W € C* for k sufficiently large and A > 1. We denote p := r~! and 1 verifies 9,7 > 0 in @Qj. The proof
we develop in each Lemma is standard in the following sense. We begin rewritten the semi-discrete integral,
if necessary, using some identity related to the discrete operators from Corollary 2.2. Then we apply a semi-
discrete integration by parts from Proposition 2.4 to identify the leader terms of the Carleman estimate. Finally,
thanks to Theorem 4.9, we can obtain the estimate claimed in each Lemma.
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6.1. Proof of Lemma 5.3
Recalling the definition of Cy and By, and setting v11 := f1o and 11 := (Crup, Biun)g, , we write
111 Z:/ 2711D,21uhDhAhuh.
Qn
From Corollary 2.2 the semi-discrete integral I;; can be rewritten as
Iy =/ 1Dy, (|Drunl?) -
Qn

Using Proposition 2.4, for I;; we obtain

fn== [ DalnDwunP+ [ nta(Drn Py
Q; 0Qn

The proof is completed by showing that

Dp(m1) = —soX*(0:1))% — sApdatp + sOx((sh)?),
Y1 = —sApdutp + sOA((sh)?),

which follows from Theorem 4.9 and Corollary 4.4.
6.2. Proof of Lemma 5.4
Set I o := (Ciup, Bauyp) g, - From the definition of the operators C; and Bs, we have
Is = —s/ aiapaluhD;QLuh.
Qn

A semi-discrete integration by parts, Proposition 2.4, yields

Iy =s Dh(aigaoquh)Dhuh — s 3§<poquht,«(Duh)nh = I{g) — Il(g).
Q5 oQn

Let us focus on I\%. We note that thanks to Lemma 2.1, .2 can be rewritten as

Il(;) =S o Dh(aiwal)AhuhDhuh + s o Ah(8§@a1)|Dhuh|2 = I&Ll) + Il(gg).
h h

To estimate the term Il(;2), due to Lemma 2.1, we write

h2
An(@1030) = An(a1) An(930) + — Dn(e1) Da(0z0). (6.1)
By using Proposition 4.1 we obtain the following estimates

Ap(020) =020 + Ox(R?),
Dy (92¢) =02 + OA(K?).
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Moreover, Lemma 4.8 leads to

Ap(on) =1+ Ox((sh)?),
Dy (ar) =0x((sh)?).

The previous estimates enables us to write (6.1) as

An(0103p) = 030 + Ox(h* + (sh)?) = N*(0:9)*p + ApDatp + OA(h® + (sh)?).

Therefore, Il(;”) can be estimated as

g = [
Q

On the other hand, by using (2.3), 11(2“) can be rewritten as

* *
h h

15 = ;/Q Dy, (0102¢) Dy, (Junl?) -

*
h

A semi-discrete integration by parts with respect to the difference operator Dj leads to

a S S
1) == 5 [ DE @) w45 [ t(Du@pan)lun P
Qn 9Qn

By using (2.5), it follows that

D3 (92par) = Dy (93¢) Aj, (a1) + 2Dy Ap(920) AnDp(ar) + A7 (93¢) Dii (1)

Now, applying Lemma 4.8 to ay := e*¢ A7 (e %), we have

Aj (o) =0x(1),
ApDp(ar) =0x(1),
Dj (1) =0x(1).

Moreover, applying Proposition 4.1 to 92p, we get

Dj(02¢) =05¢ + Ox(h?) = OA(1),
DpAp(020) =02¢ 4+ Ox(h*) = OA(1),
A%(ngo) :83@ + O,\(hz) = 0x(1).

Thus, (6.3) can be estimated as
Dji(a193¢) = OA(1).
Similarly, we get

Dp(0n92) = Ox(1).

X2(0,1)? 0| Dyun® + / Ao | Dyun? + / SO (12 + (sh)?) Dyun >
Qr Q

(6.2)

(6.3)
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)

Hence, for I{gl we obtain

J( OA(1)|uh|2+s/ On (1) [un]2.
Qn OQn

Finally, by using the Young’s inequality, 1{;’) can be bounded as

) < & / 1OA (1) [un]? + / 1OA (L)t (| Dyun?).
OQh th

Therefore, collecting the estimates (6.2), (6.4) and (6.5) ,[;2 can be estimated as

1122/
Q

where X and Y5 are given by

SN2 (0,)2 0| Dyun ? + / NI Dyun? — X + Ya,

h @5

Xo :=/ SOA(1)|uh|2+/ sOx(h? + (sh)?)| Dpun|?
h Q

*
h

and

Y2 = / 80)\(1)|uh|2 - / 820)\(1)|uh|2 - 0)\(1)157‘(|Dhuh|2),
BQ;L BQ}L th

which is our claim.

6.3. Proof of Lemma 5.5
Setting vo1 := a2f1 and Ip := (Coup, Biun)q, - Let us compute

I = / 2721 Ajup Dy Apup.
Qn
By using Lemma 2.1 the above semi-discrete integral can be rewritten as

I :/ Yo1 Dy ((Apun)?).

h

A semi-discrete integration by parts with respect to the difference operator yields

Iy =~ [ Di(y21)(Anun)? +/ vaitr ((Aun)?) ny
Q; oQn

a b
=15+ I

Let us first estimate Ié‘f). Note that (2.2) leads to

a h?
1 =~ [ Daea ) + 5 [ DuGen D
h h

25
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Then, by Proposition 2.4 we obtain

a h h?
1) =~ [ anDutmlunl = 5 [ a4 5 [ Daoan) Dyunl
h oQ Q

Recalling that as 1= e D%(e™*?) and 3y := e*¢ Ay Dy (e~ %) we have
AnDn(y21) = =35* M@ (0:0)* + (sAp)°O(1) + s Ox(1) + 5°OA((sh)?)

and Dy, (721) = s30,(1), by virtue of Proposition 4.9 and Corollary 4.1. Hence, for 12(‘11) we obtain the following
estimate

10 =3590 / (O Jun? + / (702 O(L) un? — / (205(1) + 2O ((sh)?)un ?
Qn Qn Qn
(6.7)
—/ SON(sh)D) Dpunl? — 52 | O (sh)|unl2.
Q7 9Qn

On the other hand, Iéli) can be estimated as
i :/ (A p0ath)* + $205(1) + S Or((sh) D)t (An([un ), (6.8)
0Qn

since Y21 = —(sApd, )3 + 520, (1) + 52Oz ((sh)?), due to Proposition 4.9. Thus, combining (6.6) with (6.7) and
(6.8) the Lemma follows.

6.4. Proof of Lemma 5.6

Let Ioo := (Caup, Baup)q, - By definition of Cy and By, let us estimate the semi-discrete integral
Iy = —s/ 202 A% (up ) up,.
Qn
To this end, by using (2.2), Is2 can be rewritten as
_ > 2, —sh? 2 2 pla) )
I =—s aodiplup|* + 4 a0 oup Diup = 1oy + 1oy .
Qn Qn

Since sh < 1, from Proposition 4.5 and Lemma 4.3 we have for as := e5?D3?(e~*%) the following estimate
s = (sA@)2(0,)% + 50 (1) + 5204 ((sh)?).
Furthermore, noting that 92¢p = A\?(9,%)%p + Apd21), with the previous estimate for as we obtain

0020 =52 X3 (0,00)* + 82 X30%(0,10)20%9 + 505 (1) + 520 ((sh)?) = 520, (1). (6.9)

Then, IQ(;) is estimated as

Ji) :—53)\4/Q <p3(3$1p)4|uh|2—/Q (—5* X302 (0,)20%0 + 2OA(1) + 2O ((sh)?)) Jun . (6.10)

h
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Similarly, for 12(3)7 a semi-discrete integration by parts yields

2

sh? sh
Ig(g) = Dy (aad?pup,)Dpuy, — —— 202 pupt, (Dpup)ny, == Iégl) - 1532).
Q7 0Qn
Let us estimate 12(32). Note that by using (6.9) and Young’s inequality, ISZZ) can be bounded as
1215 [ 1Ot llunPrn+s [ 1OA(HPle (D ) (6.11)
BQh th

Now, let us focus on Iégl). Using Lemma 2.1 we write Dy, (|un|?) = 2Dpup, Apuy,. Thus, I;gl) can be written as

b0y _sh?

sh?
¢ Dy (2020) Dy (fun?) + 2 / A (02020)| Diun .
8 Jgr 4 Jo;

We now use a semi-discrete integration by parts on the first integral above to obtain

sh? sh2
IV =~~~ ( Dj () un|” + / uh|2tr<Dh<aza§ga>>nh) + / An(@2930)| Dy
Qn Qn Q7
To obtain an estimate for 12(1271) we claim that
Ap(ae02p) =520, (1), (6.12)
D (a203¢) =s*OA(1), (6.13)
Dy (az02p) =s20x(1). (6.14)

Indeed, to prove the estimate (6.12) we use Lemma 2.1 to write

h4
An(a282¢) = Ap(az) An(92¢) + gDh(az)Dh(f)ﬁ@)
Then, thanks to Lemma 4.8, we obtain

Ah(ag) 1820)\(1),
Dy (az) =s*Ox(1).

Moreover, using Proposition 4.1 we have

Ap(02¢) =020 + h*O\(1),
Dy(82¢) =02¢ + h*Ox(1),

and since 92 = 0, (1), (6.12) follows. For the estimate (6.13), applying (2.5) it follows that

Dj, (a203p) =Dt () A7 (92¢) + 2A1Dn(2) AnDp(930) + D3 (92¢) A, (a2) (6.15)
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Similarly, by using Lemma 4.8 and Proposition 4.1 we have
D3 () =520x (1), ApDp(az) = s20x(1), A3 (az) = s20x(1),
A} (020) =03 + hPO(1), AnDp(92¢) = Ol + h*Ox(1),

These estimates and (6.15) establishes (6.13). The same methodology works for (6.14).
We thus have, from (6.12)—(6.14), the following estimate for I2(l2)1)

) = O,\(sh)|uh\2+s/ OA,e((sh)2)|Dhuh|2+s/ Ox(1)|unl?. (6.16)
Qn Q5 OQn

Therefore, combining (6.10) with (6.16) and (6.11) proves the estimate for I2o.

6.5. Proof of Lemma 5.7

We begin proving the first inequality (5.16) of our Lemma. Recalling that vy, = upe™*¥, thanks to Lemma 2.1
and Young’s inequality, we have

HeSLpDhUhHii(Q;) < ||es‘pDh(uh)Ah(e*S4P)Hii( ) + ’|65‘pDh(675‘P)Ah(uh

2
Qn )HLi(QZ) (6.17)

::JI + J27

Let us first estimate Jo. Using (2.3) and a discrete integration by part respect to the average operator we obtain

b/?me%Me”D%WF+ZA%meDm6wwwm? (6.18)

Then, by virtue of Proposition 4.5, J> can be estimated as follows

T < 5/ |uh|2+sOA(sh)/ 2. (6.19)
h Qh,
It remains to proves that
120\ [ Dyl (6.20)
Qn

which it follows from Proposition 4.5, and the proof for (5.16) is complete.
To prove the inequality (5.17), we note that

Dhuh(h/27 t) = Dh(ess")Ahvh(h/Z t) + _Dh('l}h)Ah(6850)011/27 t), (621)
due to Lemma 2.1. Hence, Young’s inequality and Proposition 4.5 yield
B_QSW‘Dhth(h/Q,t) < C, (82|Ah’l}h|2(h/2, t) + |Dh’l}h|2(h/2,t)) , (6.22)

which establishes inequality (5.17).
We proceed similarly for (5.18). From (2.2) we have

h2
Ap(|unl?) = |Apun|® + Z|Dhuh‘2~
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Repeated application of Lemma 2.1 and Young’s inequality lead to
Ap(lun)®) € C (Ah(vi)|Ahes“’|2 + A Do |?| Dpes? |2 + h2| Dy |2 Ane®? | + h2|DheS“’|2|Ahv|2) .
Then, using Proposition 4.5 we obtain
e 2 Ap(up) <(OA(1) + Ox((sh)*) An(|vnl?) + (h* + h2Ox((sh)?))| Dra ?, (6.23)
which completes the proof.

7. COMMENTS

The results presented in Section 4 are of independent interest in view of its potential applications on problems
related to semi-discrete Carleman estimates. For instance, it could be used to answer the challenge proposed
by C. Zheng in [17], that is, to obtain a semi-discrete global Carleman estimates for fourth-order Schrodinger
equation and establish a semi-discrete counterpart of the main results presented in that paper. Even in the
continuous setting, there are few papers about the stability of an inverse problem for higher-order equations,
via Carleman estimates, due to tedious computation and the increased complexity. To our knowledge, there are
no results about discrete or semi-discrete Carleman estimates for higher-order operators. Thus, Theorem 4.9
can be a useful tool to obtain results in that direction.

A possible extension of this paper could be to reformulate Theorem 1.2 for some families of non-uniform
meshes. The Carleman estimate (1.11) is established for uniform mesh and could be adapted to some non-uniform
meshes obtained as the smooth image of a uniform grid, following the methodology of [3].

Another interesting question is to consider the fully discrete case of our problem, particularly due to the term
020y, which mixes time and space. Perhaps a first attempt is just consider the time-discrete case

u"tt —yn 92untl — 92y
At At

=p" o u " 4 gyt n=0,1,...,
which is a possible discretization in time.
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