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Abstract

This paper proposes an application of the recent metaheuristic rider optimization algo-
rithm (ROA) for determining the optimal size and location of renewable energy sources
(RES) including wind turbine (WT), photovoltaic (PV), and biomass-based Distributed
Generation (DG) units in distribution systems (DS). The main objective function is to min-
imize the total power and energy losses. Power loss-sensitivity factor (PLSF) is used with
the ROA to determine the suitable candidate buses and accelerate the solution process. The
Weibull and Beta probability distribution functions (PDF) are employed to characterize the
variability of wind speed and solar radiation, respectively. The high penetration of intermit-
tent renewable resource together with demand variations has introduced many challenges
to distribution systems such as power fluctuations, voltage rise, high losses, and low voltage
stability, therefore battery energy storage (BES) and dispatchable Biomass are considered
to smooth out the fluctuations and improve supply continuity. The standard 33 and 69-bus
test systems are used to verify the effectiveness of the proposed technique compared with
other well-known optimization techniques. The results show that the developed approach
accelerates to the near-optimal solution seamlessly, and in steady convergence characteris-
tics compared with other techniques.

1 INTRODUCTION

In recent years, considerable efforts have been made to increase
the usage of renewable energy sources (RES), such as wind tur-
bine (WT), photovoltaic (PV), and biomass in order to reduce
the harmful effects of global warning [1]. Many countries have
been introduced or are in the process of implementing renew-
able energy policies such as the Renewable Energy Portfolio
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Standard (RPS) [2]. By accepting an RPS, it is an obligation
to produce a certain percentage of total electricity generation
from RES during a specific date. However, the energy produc-
tion of wind and photovoltaic generation is determined by local
weather conditions, meaning that its production is variable and
difficult to predict. In case of high levels of RES, large and
sudden changes in the power generated by RES can threaten the
provision of a continuous power supply. Further, the amount
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of WT and PV energy that can be absorbed by the power sys-
tem may be significantly limited due to the inability of con-
ventional generating units to counteract the fluctuations in WT
and PV. To encourage the use of these energy sources and sup-
port the stability of the system, BES and dispatchable biomass-
based DG can be used to avoid violation of system constraints
and decrease power fluctuations in DS [3]. Several studies have
shown that the optimal allocation of DGs such as PV and WT
can improve the reliability, security and efficiency of the sys-
tem, by mitigating their variable nature problems. Indeed, an
unplanned distribution of RES can have various negative effects
on system operation and stability [4].

To date, many previous studies have been focused on deter-
mining the optimal allocation and sizing of RES in distri-
bution networks, in particular considering hybrid planning.
Recent trends are to use metaheuristic optimization methods
such as the Genetic Algorithm (GA) [5], the Bat Algorithm
(BA) and Particle Swarm Optimization (PSO) [6], An effi-
cient analytical [7], Stochastic Fractal Search Algorithm (SFSA)
[8]. In [9], Electrostatic Discharge Algorithm (ESDA) has
been used to solve the DG unit’s allocation problem with
the aim of minimizing the power losses and improving the
voltage stability. Mansur et al. have introduced an Artificial
Ecosystem-based Optimization method for optimal allocation
of DGs in the DS in terms of minimizing annual power losses
in [10].

An analytical method was presented in [11] for optimal siz-
ing autonomous hybrid PV+WT units, taking into account the
time factor and system costs for the given load. In [12, 13],
an effective optimization sizing model has been developed for
hybrid solar/wind power generation system. The mixed-integer
linear programming (MILP) approach has been used in [14] to
determine the optimal placement and sizing of DGs in radial
DSs. Koutroulis et al. [15] presented the genetic algorithm
(GA) for finding the optimal size of PV+WT units with BES
in distribution system. In [16] An improved Harmony Search
algorithm (HSA) approach have been presented, and the pro-
posed work is aimed at evaluating the optimization solution to
find the optimal size of the PV/battery hybrid unit to deliver
and achieve the required power demand of the case study. In
[17] Geographic Information System module-based structure
has been proposed to optimally size the stand-alone photo-
voltaic (PV) -diesel units in rural areas. This structure deter-
mines the best location based on technical, economic, reliabil-
ity, social and environmental criteria. In [18] hybrid structure
has been proposed to minimize the value of the life cycle and
employed to assess the viability of the grid independent PV
unit with hydrogen storage considering for the reliability of
the hybrid system (HS). In [19] hybrid fuzzy logic controller
(FLC) and the harmony search algorithm (HSA) has been pro-
posed. This work focuses on sizing a hybrid energy system
including the PV units and WT with/without considering the
backup system (ESS) to reduce economic costs and increase
reliability. In [20] probabilistic-based planning approach has
been presented for identifying the optimal fuel mix of differ-
ent types of renewable DG units in order to minimize the

annual energy losses in the DS without violating the system
constraints.

In [21] weighted aggregation particle swarm optimization
(WAPSO) method has been proposed for optimal location and
sizing of PV and WT DGs in DS by considering power loss
minimization, voltage stability and network security improve-
ment. The stochastic nature of solar irradiance and wind speed
are accounted using suitable probabilistic models. In [22–23]an
analytical method has been proposed to determine the optimal
size and power factor of individual DG unit, simultaneously, at
each location for minimizing power losses by considering the
time-varying load demand combined with the possible charac-
teristics of DG units. In [24] presents a concept for connect-
ing a hybrid PV and BES system in a commercial DS with the
aim to minimize energy loss and improvement voltage stability.
In this concept, the BES unit is considered as a dispatchable
source, whereas the PV unit is considered as a non-dispatchable
source. In [25], a hybrid energy system consisting of two sub-
systems with two scenarios has been developed. In the first one,
these two subsystems have been connected to allow load flow
between them while there is no connection between the sub-
systems in the second scenario. Determining the optimal size
of PV and WT with BES, as well as the best combination in
HS has been investigated in [26]. Power flow and related power
losses due to the influence of HSs with the grid have been also
examined. Mansur et al. have been introduced the tree growth
algorithm for optimal allocation of DGs in the DS for minimiz-
ing annual power losses [27]. A charge and discharge strategy
of BES units have been presented to mitigate the unexpected
changes in PV outputs [28]. Efficient voltage regulation in DSs
by managing the BES units’ output on the consumer side with
high PV penetration has been introduced in [29]. The optimal
size planning of BES units and PV-based DG units for mini-
mizing energy loss has been studied in [30]. In [31] proposed
the Crisscross Optimization Algorithm (COA) and Monte Carlo
Simulation (MCS) for allocation of DGs in the DS for mini-
mizing the power losses and the cost. In [32], a probabilistic
planning technique has been suggested based on mixed integer
nonlinear programming (MINLP) and has been implemented
for energy loss minimization with optimal integration of RESs
in a rural DSs. A simplified analytical method has been proposed
in [33] for optimal DG integration to reduce power loss in DS,
and the results of power loss reduction were analysed using the
other four methods for one, two and three DGs. In [34], the
exact loss equation-based analytical method has been used to
find the optimal size and the location of a single DG in dif-
ferent DSs. In [35] the mixed-integer nonlinear programming
(MINLP) method have been used to determine optimal loca-
tion and size of DGs with the aim of power loss minimization.
In [36], the classical Kalman filter algorithm is used to compute
the size and location of the DG. In [37] proposed Mixed Integer
Non-Linear Programming (MINLP) based DG planning model
for cost minimization. A Linear Programming (LP) based model
for maximizing DG injection in deregulated environment is pre-
sented in [38]. In [39], a multi-objective MINLP model for a
trade-off between operating cost and DG energy is proposed
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for rural microgrid. In [40] formulated optimal sizing and siting
problem as Mixed Integer Linear Programming (MILP) prob-
lem. Since the optimal placement DG unit is MINLP formula-
tion, linear model might affect the power flows in some cases.
The minimization of energy losses for stochastic renewable gen-
eration is formulated in [41].

Overall, the above review shows that significant work has
been done on the optimal size and placement of DG units
of various types with BESs in grid-connected and grid-
independent HSs. While most research has focused on off-grid
PV&WT generation systems, few studies have analysed grid-
connected hybrid power systems. Only a few studies have been
reported on the allocation of DG units taking into account time-
varying load demand to minimize energy losses [20–23]. In addi-
tion, most of these approaches assumed that the DG unit oper-
ates at fixed power factors. In these studies, only location and
size were considered, while the optimal power factor of a sin-
gle DG unit, which would be an important part of minimizing
energy losses, was ignored. Several papers have been discussed
on the optimal power factor to reduce power losses [24–25];
however, the optimal power factor of an individual DG unit for
each location was not considered. In addition, a “controlled”
power factor was proposed for each period in a given range
to minimize energy losses [10] and to minimize reactive sup-
port from the transmission network [12]. However, most of the
work presented assumes that the DG output is dispatchable
and controllable. Most of the available methods cannot sim-
ulate the stochastic nature of the power output of DG units.
This article addresses some of the shortcomings of existing
methods.

This paper first proposes an application of the recent heuris-
tic rider optimization algorithm (ROA) for optimal allocation
of PV and WT-based DGs in DSs. The optimal scheduling
BES and Biomass units is discussed with the aim of convert-
ing the system to be dispatchable and minimizing the total
energy losses. Power loss-sensitivity factors (PLSF) are used
to determine suitable candidate buses and accelerate the solu-
tion process. The voltage stability index (VSI) is calculated
after the optimization process to measure the performance of
the proposed method on the stability of the DS. The Weibull
and Beta probability distribution functions (PDF) are employed
to characterize the variability of wind speed and solar radia-
tion. The performance of the developed technique is tested
on the 33 bus and 69 bus DSs and for a fair compression
compared with Harris Hawks Optimizer (HHO) [42], Henry
gas solubility optimization (HGSO) [43] and other techniques
in the literature that solved the same problem. In addition,
comparison of statistical indicators of ROA vs HHO, and
HGSO has been done to check random nature of proposed
algorithm.

This paper is structured as follows: PLSF is described in Sec-
tion 2. Probabilistic power generation of PV and PV based DGs,
Biomass, BES, and load modelling are presented in Section 3.
Section 4 proposes the mathematical formulation and optimal
PV, WT, Biomass, and BES sizing. The solution process of the

FIGURE 1 The equivalent grid-connected two buses radial DS

proposed technique is presented in Section 5. Numerical results
are described in Section 6 and conclusions of the paper are men-
tioned in Section 7.

2 POWER LOSS SENSITIVITY FACTOR

In this paper, PLSF is used to determine the candidate buses to
reduce the search space. In order to explain the factor, Figure 1
shows the equivalent grid-connected two buses radial DS [1, 9].
where, Pi and Pk are active power flow out of bus i and k, Qi and
Qk are reactive power flow out of bus i and k, Vi and Vk are the
voltage magnitudes. Rik and Xik are distribution line resistance
and reactance between bus i and k. PPV +BES ,k and QPV +BES ,k

are the active and reactive power output of PV+BES at bus
k, respectively; Pd,i and Pd,k are the active power load at bus
i and k, Qd,i and Qd,k are reactive power load at bus i and k,
respectively.

The active power loss between buses i and k is calculated as
[1, 44, 45]:

Pik−loss =

(
P2

k
+ Q2

k

)
× Rik

(Vk )2
(1)

The total energy losses Eloss in 24 h are expressed as follows:

Eloss =

24∑
t=1

Pik−loss (t )Δt (2)

where, Δt is the time duration, in this study (1 h).
The PLSF is calculated by (3) [33, 34].

𝜕Pik−loss

𝜕Qk

=
2Qk ∗ Rik

(Vk )2
(3)

Figure 2 and Figure 3 show the PLSFs for the 33-bus and the
69-bus test systems, respectively. After calculating the PLSFs
of all buses, they are sorted in descending order. The buses
with higher PLSF are considered more suitable for installing
PV, WT, Biomass, and BESs units (up to 50% of system buses)
[44–46].
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FIGURE 2 The PLSF values of the 33-bus system

FIGURE 3 The PLSF values of the 69-bus system

3 PV, WT, BIOMASS, BES, AND LOAD
MODELING

3.1 Power generation by PV and WT model

Power generation from PV and WT is highly dependent on
weather conditions, such as solar radiation, ambient tempera-
ture, and wind speed. Hence, wind speed and solar radiation at
a specified location must be appropriate modelled in order to
obtain good solutions.

The standard deviation (SD) and mean of hourly wind speed
and solar radiation per day are calculated using collected his-
torical data. To incorporate the output power of the solar DG
and wind-based DG units as multistate variables in the plan-
ning formulation, the continuous probability distribution func-
tion (PDF) of each has been divided into states (periods), in
each of which the solar irradiance and wind speed are within
specific limits. In other words, for each time segment, there are
number of states for the solar irradiance and wind speed [20].
In this paper, the stage for solar radiation and wind speed are
0.05 kW/m2 and 1 m/s, respectively. The average value of each

FIGURE 4 Normalised daily active load, expected PV and WT output
power curves

stage is used for calculating the output power in this stage (i.e.
if the first stage of solar radiation, is within 0 and 0.05 kW/m2,
the average value of this stage is 0.025 kW/m2).

3.1.1 Solar radiation modelling

It is considered that the probabilistic nature of solar radiation
follows the Beta PDF [46, 47]. The Beta PDF of solar radiations
(kW/m2) in the time interval ‘t’is defined as Equation (4):

fb(st ) =

⎧⎪⎨⎪⎩
Γ(𝛼t + 𝛽t )

Γ(𝛼t )Γ(𝛽t )
st (𝛼t−1)(1 − st )(𝛽t−1), 0 ≤ st ≤ 1, 𝛼t , 𝛽t ≥ 0

0, otherwise

(4)

where, fb(st ) is the Beta PDF of st, αt and βt are the shape
rates of Beta PDF and Г depict Gamma function.

The shape rates of Beta PDF can be found using mean (μ)
and SD (σ) of radiation for a suitable time interval as follows
[46, 47]:

𝛽t = (1 − 𝜇t )

(
𝜇t (1 + 𝜇t )

𝜎t 2
− 1

)
(5a)

𝛼t =
𝜇t ∗ 𝛽t

1 − 𝜇t
(5b)

PV array power generation
The PV array hourly average power output corresponds to an
exact time interval ‘t’ (Pt

PV) expressed as Equation (6) [47].
A typical day for three years is generated in p.u., as shown in
Figure 4.

Pt
PV

=

ns∑
g=1

PPVo

(
st
g

)
fb
(
st
g

)
(6)
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where ‘g’ denotes a stage factor and ns is the solar radiation dis-
crete stage number. St

g is the gth stage of solar radiation at tth
time interval.

Solar radiation and ambient temperature are the basic dom-
inant factors that affect the PV array power output. The PV
power generation with average solar radiation (sag) for the gth
stage is estimated as [27, 47]:

PPVo
(sag ) = NPV mod × FF ×Vg × Ig (7)

where NPVmod is PV modules total number. The volt-ampere
characteristic of the PV module can be definite for a given stage
using the following equations [22, 27]:

FF =
VMPP × IMPP

VOC × ISC
(8a)

Vg = VOC − Kv × Tcg (8b)

Ig = sag

[
ISC + Ki (TC − 25)

]
(8c)

Tcg = TA + sag

(
NOT − 20

0.8

)
(8d)

where, TA(◦C) is ambient temperature; VMPP and IMPP are max-
imum power tracing voltage (V) and current (A); VOC and ISC

are open-circuit voltage and short circuit current, respectively;
Ki and Kv are respectively, Current and voltage temperature
coefficients (A/◦C and V/◦C); FF is the fill factor; Tcg is PV
module temperature at gth stage (◦C);

3.1.2 Wind speed modelling

Weibull PDF was chosen to evaluate the stochastic behaviour of
wind speed at a predetermined duration of time [21, 48]. Weibull
PDF for wind speed vt (m/s) at the tth time interval can be cal-
culated as:

fv (vt ) =
kt

ct
×

(
vt

ct

)kt−1

× exp

(
−

(
vt

ct

)kt−1)
for ct ≻ 1; kt ≻ 0 (9)

The shaping rate (kt ) and scale rate (ct ) at tth time interval are
expressed as [21, 36]:

kt =

(
𝜎t

𝜇t
v

)−1.086

(10a)

ct =
𝜇t

v

Γ(1 + 1∕kt )
(10b)

where, 𝜇t
v and 𝜎t are mean and SD of wind speed at time interval

‘t’.

WT power generation
The hourly WT average output power corresponds to a spe-
cific time interval ‘t’ (Pt

WT) can be expressed as Equation (11).
A typical day for three years is generated in p.u., as shown in
Figure 4.

Pt
WT

=

ns∑
g=1

PW To

(
vt
g

)
fb
(
vt
g

)
(11)

where ‘g’ denotes a stage factor and ns is the number of wind
speed discrete stage. vt

g is the gth stage of wind speed at tth time
interval.

The WT power generation [21] with an average wind speed
(vag) for stage “g” is expressed as:

PW To
=

⎧⎪⎨⎪⎩
0 vag ≺ vcin or vag ≻ vcout(
A × v3

ag + B × Pr

)
vcin ≤ vag ≤ vr

Pr vr ≤ vag ≤ vcout

(12)

where Pr is the nominal power rate that WT can be generated;
vcout is cut-out; cut-in (vcin) and nominal (vr) wind speed, respec-
tively, constants A and B are achieved as [21]:

A =
Pr(

v3
r − v3

cin

) (13a)

B =
v3
cin(

v3
r − v3

cin

) (13b)

3.2 Biomass modelling

Biomass has become one of the world’s largest energy sources
(REF). Despite the availability of various biomass resources, it
was not optimally used to contribute to improving the energy
sector’s production. The share of the agricultural sector in waste
production is higher. Recently, these types of wastes have been
used as a source of biogas to serve rural areas. In the devel-
opment of conversion technology, as in many countries, it can
be widely used to generate electricity [49]. Currently, the most
important biomass processing technologies are pyrolysis, gasifi-
cation, incineration, and digestion. The anaerobic digestion pro-
cess is used for raw materials such as bulgur, while other pro-
cesses include the use of dry feedstocks. The advantage of using
this type of renewable energy, biomass-based DG units produce
little emissions [50].

3.2.1 Dispatchable source

The biomass-based DG units used as a synchronous genera-
tor. Besides, the biomass-based DG output can be distributed
accordingly to the load curve. The Biomass-based DG unit’s
capacity factor (CF) is determined as the ratio of the area under
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the power output curve in p.u. to the total period [22].

CF =

24∑
t=1

p.u. DG output (t )
24

(14)

3.2.2 Nondispatchable source

The output of biomass-based DG can be also considered non-
intermittent (constant) at its nominal capacity for 24 h a day. Its
CF is equal to one.

3.3 BES modelling

Over the last few years, several types of energy storage (ES)
have been intensively studied. These include super-capacitors,
electrochemical battery, compressed air ES, flywheel ES, and
superconducting magnetic ES. For this paper lithium-ion
(Li-ion) BES is selected with a roundtrip efficiency of 77%. This
is the most popular type of BES for today’s portable electron-
ics, with one of the best energies and weight ratio, no memory
effect, and slow charge loss on non-use. Incorrect handling may
cause a Li-ion battery explosion. Lithium-ion BES is becoming
increasingly popular with defence, aerospace, and automotive
applications due to its high energy intensity [51].

The Charging and discharging of the BES are given in Equa-
tion (15) [51].

Discharge ∶ EBESk
(t + 1) = EBESk

(t ) − Δt ×
Pdisch

BESk

𝜂d
(15a)

Charge ∶ EBESk
(t + 1) = EBESk

(t ) + Δt × Pch
BESk

× 𝜂c

(15b)

where, Pdisch
BESk

is discharged power by the BES for a t time dura-

tion. Pch
BESk

is the power charged by the PV to the BES, that
is, the BES is being charged. EBESk

(t) is the energy stored in
the BES at the time (t). Δt is the time duration of each seg-
ment. 𝜂d and 𝜂c are respectively, the discharging and charging
efficiency.

BES must be satisfying the restrictions from Equations (16)
to (18).

Power limits [46, 51]:

0 ≤ Pdisch
BESk

≤ P
disch,max

BESk

0 ≤ Pch
BESk

≤ P
ch,max

BESk

(16)

Stored energy limits [39]:

EBESk min
≤ EBESk

(t ) ≤ EBESk max
(17)

Starting and ending energy limits [51]:

EBESk
(0) = EBESk

(T ) = EBESk s
(18)

where P
disch,max

BESk
is the maximum discharge power rate;Pch,max

BESk
is

the maximum charging power rate; EBESk min
and EBESk max

are
the minimum and maximum energy limits of the BES; EBESk

(0)
is the initial energy of the BES; EBESk s is the BES unit ini-
tial limit of stored energy. For the energy balance, the stored
energy EBESk

(T) is set the same as the initial stored energy. In
this paper, it is assumed that the BES unit’s minimum and max-
imum capacity limits are 20% and 90%, respectively [52].

3.4 Load modelling

A 24-hour daily load curve with a peak of 1 p.u. is used in the
proposed model, as shown in Figure 4 [53].

The load factor (LF) can be determined as Equations (19)
follows [17]:

LF =

24∑
t=1

p.u.Demand(t )

24
(19)

A time-varying voltage-dependent load demand model
depends on the time and voltage. Consequently, the voltage-
dependent load demand model in [54], which included variable
loads at time t, can be calculated as:

Pk(t ) = Pok(t ) ×V
np

k

Qk(t ) = Qok(t ) ×V
nq

k

(20)

where Pk and Qk are actual and reactive power which is at bus
k; Pok and Qok are load actual and reactive power at bus k; Vk

represents the voltage at buss k, and np = 1.51 and nq = 3.4 are
the actual and reactive load voltage indexes [54].

4 MATHEMATICAL PROBLEM
FORMULATION

4.1 Objective function

The considered objective function in this study is the minimiza-
tion of the total power and energy losses in grid connected HS.
In this study the PV, WT, WT+Biomass, and PV+BES units
are optimally integrated in the HSs to achieve the intended goal,
taking into account the operational constraints. The schematic
diagram of the grid connected HS is shown in Figure 5. The
objective function can be described as follows [20–23]:

Fob j = (minimize(Ploss )) × Δt = minimize(Eloss ) (21)

where, Eloss is the total energy loss.
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FIGURE 5 The schematic diagram of a grid connected HS

The VSI is used for indicating the voltage stability of DS.
High VSI of any bus identifies the less sensitive bus to the volt-
age collapse. The VSI of bus k is calculated as follows [9]:

VSI (k) = |Vi |4 − 4 × (Pk × Xik − Qk × Rik )2

− 4 × (Pk × Rik + Qk × Xik ) × |Vi |2 (22)

The objective function is subjected to following constraints
such as DG size, bus voltage, power factor, and transmission
line total power limitation.

4.1.1 Equality constraints

The generated power must meet the following constraints [9]:

Pswing +

NDG∑
i=1

PDG (i ) =
L∑

i=1

PLineloss (i ) +
N∑

k=1

Pd (k) (23a)

Qswing +

NDG∑
i=1

QDG (i ) =
L∑

i=1

QLineloss (i ) +
N∑

k=1

Qd (k) (23b)

where, Pslack and Qslack represent the active and reactive power of
slack bus. NDG is the installed DG units’ number, L is the total
branch number.

4.1.2 Inequality constraints

Voltage constraint
Bus voltages must meet the requirements between its lower
Vmin and upper Vmax limits:

Vmin ≤ |Vi | ≤ Vmax (24)

Integrated DG units power constraint
The installed DGs size must be limited as [9]:

Pmin
DG

≤ PDG (i ) ≤ Pmax
DG

(25a)

Qmin
DG

≤ QDG (i ) ≤ Qmax
DG

(25b)

where, Pmax
DG

and Pmin
DG

represent the maximum and minimum
DG unit’s active power, respectively. Qmax

DG
and Qmin

DG
represent

the maximum and minimum DG units’ reactive power, respec-
tively.

DG’s power factor limits
The DG unit’s PF must be within PFDG ,min and PFDG ,maxas [9]:

PFDG ,min ≤ PFDG ,i ≤ PFDG ,max (26)

Branch capacity limitation
The maximum capacity of branch must meet the following lim-
its:

SLi ≤ SLi (rated ) (27)

4.2 Determining the size of the
combination of PV and BESS (PV+BES)

4.2.1 PV sizing

Figure 6 [22, 23] shows the proposed grid-connected PV+BES
HS conceptual model. This HS is designed for installation on
the roofs of commercial buildings. The concept is to convert
every non-dispatchable PV unit output to a dispatchable PV
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FIGURE 6 PV power output and BES charging and discharging performance

unit with a combination of PV and BES unit, to minimize the
total power system loss for a given load level. This strategy can
generate a daily amount of dispatchable energy, E(PV +BES ) [22,
23]. The EPV is PV unit generating energy, during the 24 h
cycle of the day. EGrid

PV
is the transferred energy to the grid. The

PV unit’s excess energy is used to charge the BES unit, Ech
BES

instead of cutting it when the PV output power is bigger than
load during the day. When the output power of the PV is low
or zero overnight, this stored energy is then discharged to the
grid, Edisch

BES
. PV and BES units are located on the same bus to

avoid energy losses in the charge state of BES. The daily energy
amount of PV+BES unit for all the duration (T = 24 h) on bus
k is expressed as [22, 23, 46]:

E(PV +BES )
k
=

24∑
t=1

P(PV +BES )(t ) × Δt (28)

where, P(PV +BES )(t ) is the combination of PV and BES unit’s
active power output on bus k during a given day time interval t.

The daily charge and discharge energy at bus k, shown in
Figure 6, is calculated by Equation (29).

Ech
BESk

=

24∑
t=1

Pch
BESk

(t ) × Δt (29a)

Edisch
BESk

=

24∑
t=1

Pdisch
BESk

(t ) × Δt (29b)

The PV+BES and the PV based DG unit total output energy
on the given k bus are expressed as [23]:

E(PV +BES )
k
= EGrid

PVk
+ EDisch

BESk
(30a)

EPVk
= EGrid

PVk
+ Ech

BESk
(30b)

where, EGrid
PVk

is the PV unit energy amount transferring to the
grid on the bus k. The BES unit charge and discharge energy on
the bus k with a roundtrip efficiency (𝜂BES = 𝜂c × 𝜂d ) is given
as follows [22, 23]:

EDisch
BESk

= 𝜂BES × Ech
BESk

(31)

The PV unit total output energy on the bus k is given as [23]:

EPVk
=

E(PV +BES )
k
− (1 − 𝜂BES ) × EGrid

PVk

𝜂BES
(32)

The maximum PV unit power generation during a specific
time duration over a 24-hour cycle of the day is used to indi-
cate the PV unit nominal power or optimal size on the bus
k [22].

PPVk
= CF unit

PV
× EPVk

(33)

where, CF unit
PV

=
Punit

PV

Eunit
PV

, Punit
PV

is PV unit maximum power output,

and Eunit
PV

is the PV unit generated energy during 24 h.
Assuming 𝜂BES = 1, that is, EPVk

= E(PV +BES )
k
, the initial

size of PV is calculated as P′
PVk

= CF unit
PV

× E(PV +BES )
k
, and

EGrid ′

PVk
is then taken from Figure 6. When 𝜂BES is less than a

unit, PPVk
increases. Anyway, as shown by the simulation results,

EGrid
PVk

increases slightly compared to EGrid ′

PVk
. Therefore, the opti-

mal size of PV is obtained from Equations (32) and (33) as [22,
23]:

PPVk
= CF unit

PV
×
⎛⎜⎜⎝

E(PV +BES )
k
− (1 − 𝜂BES ) × EGrid ′

PVk

𝜂BES

⎞⎟⎟⎠ (34)
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FIGURE 7 Daily power generation of a wind-biomass DG

4.2.2 BES sizing

The optimal BES unit size at bus k is calculated based on the
nominal power (PBESk

) and the energy capacity (EBESk
) as well

as it can hold all the excess a PV unit energy, which reduces the
power losses for each time interval at the minimum. Maximum
charge and discharge over a specific duration during the 24-hour
cycle of the day is used to determine BES unit nominal power
[22, 23, 46]. The maximum energy of charge during this period
is used to identify BES unit energy capacity.

4.3 Sizing a combination of WT and
biomass (WT+Biomass)

Here, it is assumed that the WT based DG is non-dispatchable,
it belongs to the developers of the DG and it is controlled
by a utility company. The biomass-based DG is dispatchable,
owned, and controlled by a utility company. Figure 7. [24] shows
an example of the proposed WT and Biomass hybrid system
(WT+Biomass) power output curve. The concept is a combi-
nation of each non-dispatchable WT unit output and dispatch-
able Biomass units, to minimize the total power system loss for
a given load level [24]. The daily energy amount of WT and
Biomass unit for all the duration at bus k can be expressed as
[24]:

E(WT +Biomass)
k
=

24∑
t=1

P(WT +Biomass)(t ) × Δt (35)

where, P(WT +Biomass)(t ) is the output power of the combination
of WT and Biomass units at bus k during a given day time inter-
val t.

The proposed procedure of the combination WT+Bomass is
described as:

Stage 1: Run the power flow, determine the optimal size,
location, and PF of the WT+Biomass considering the
total minimum power loss over all the time interval.

Stage 2: Find each non-dispatchable WT unit optimal size
or maximum power output (Pmax

WT
) over all the time

interval on the condition that, WT unit power output
is no bigger than the output of WT+Biomass unit as
determined in Stage 1, at each time interval.

Stage 3: Find the optimal output power of each WT unit
for time interval t as expressed in Equation (36) [24].

Pt
WT

= Pmax
WT

× (p.u.DGWT output(t )) (36)

where, p.u. DGWToutput(t) is the WT output in p.u. at
time interval t.

Stage 4: Calculate the output power for each dispatchable
Biomass-based DG unit. This is equal to the power out-
put of the combination of WT and Biomass unit in Stage
1 minus the power output of the WT unit in Stage 3, for
each time interval t, then find the dispatchable Biomass-
based DG unit optimal size or maximum power output
overall time interval.

In Figure 7, the WT output power follows the expected WT
power generation curve in Figure 4. In this case, the wind power
penetration is at its maximum. The biomass-based DG units
are used as an additional dispatch source to fill a portion of the
energy that the WT based DG units cannot use.

5 RIDER OPTIMIZATION
ALGORITHM (ROA)

ROA is a recent metaheuristic optimization technique. It is
inspired by a group of riders [55]. The group number is divided
into four groups. The first group name is bypass rider (BR),
the second group is follower rider (FR), the third group is
overtaker rider (OR) and the fourth group is attacker rider
(AR). The group numbers have equal riders BR = F = O =
A = R∕4. The groups have different strategies to reach the final
solution.

The basic stages of the proposed algorithm can be summa-
rized as follows:

Stage 1: Randomly initialize the position of the group, and
parameters of rider, such as steering angle, brake, acceleration,
and gear [55].

Xt =
{

Xt ( j , k)
}
; 1 ≤ j ≤ R; 1 ≤ j ≤ D (37)

where, R is the number of total riders, it is also equal to the
number of groups (G). D is a dimension of coordinates.Xt ( j , k)
is the position of the jth rider at time t.

Tt =
{

Tt (i, j )
}
; 1 ≤ i ≤ R; 1 ≤ i ≤ D (38)
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Tt (i, j ) is steering angle of the ith rider vehicle at time t and can
be found as follows [55]:

Tt (i, j ) =

⎧⎪⎨⎪⎩
𝜃i i f j = 1

Ti, j−1 + 𝜑 i f j ≠ 1&Ti, j−1 + 𝜑 ≤ 360

Ti, j−1 + 𝜑 + 360 otherwise
(39)

where, 𝜃i is position of the ith rider vehicle,𝜑 is coordinate angle
and they can be expressed as:

𝜃i = i ∗
360◦

R
, 𝜑 =

360
D

(40)

The gear, accelerator and brake are can be initialized as fol-
lows [55]:

E = {Ei} ; 1 ≤ i ≤ R (41)

e = {ei} ; 1 ≤ i ≤ R (42)

K = {Ki} ; 1 ≤ i ≤ R (43)

where, Ei is the gear of the ith rider’s vehicle and at time t it takes
from the set {0, 1, 2, 3, 4}. The initial value of the gear is zero. ei

is the accelerator of the ith rider’s vehicle and ranges from 0 to
1. The initial value of the gear is zero. Ki is the brake of the ith
rider’s vehicle and its taking value is within 0–1. The initial value
of the brake is one.

The riders can adjust the speed of the vehicle. Therefore, the
maximum speed cane be expressed as [55]:

V i
max =

X i
U
− X i

L

TOFF
(44)

where, X i
U

and X i
L are maximum and minimum value in i th

rider’s position, respectively. TOFF is off time of race. V i
max is

maximum speed of the ith rider.
The speed limit of the gear for ith rider is can be expressed

as:

V E
i =

V i
max|E | (45)

where |E | is number of the gears.
Stage 2: The rider’s success rate (SR) is calculated as follows

[55].

r j =
1‖‖‖Xj − LT

‖‖‖ (46)

where Xj is jth rider position. LT is the position of the target.
Stage 3: The leading rider can be found as follows.
The nearest rider from the goal position is considered the

leading rider.

Stage 4: The riders’ positions can be updated as follows:

1. The BR can achieve the goal by bypassing the leading path.
This refers to the BR does not follow the LR.

BR’s position can be updated as follows:

X B
t+1( j , k) = 𝛿

[
Xt (𝜂, k) ∗ 𝛽(k)+ Xt (𝜉, k) ∗ [1− 𝛽(k)

]]
(47)

where, 𝛿 and 𝛽 are random [0,1] numbers, 𝜂 and 𝜉 are random
[1, R] numbers.

2. The FR is one who follows or depends on the LR on most
of the axis.

FR’s position can be updated as follows:

X F
t+1( j , i ) = X L (L, i ) +

[
cos(T t

j ,i ) × X L (L, i ) × d t
j

]
(48)

where, i is coordinate selector, X L is the LR position, L is the
LR index, T t

j ,i is angle of steering in the ith coordinate, d t
j is the

distance to be travelled of the ith rider.

3. The OR follows his position to achieve the goal, in confor-
mity with the nearest position of LR.

OR’s position can be updated as follows:

X O
t+1( j , i ) = Xt ( j , i ) +

[
QI

t ( j ) × X L (L, i )
]

(49)

where Xt ( j , i ) is the position of the rider in the ith coordinate,
QI

t is indicator of rider direction at time t.

4. The AR is an aggressive player. It takes the rider’s position
to achieve the goal using full speed.

AR’s position can be updated as follows:

X A
t+1( j , k) = X L (L, k) +

[
cos(T t

j ,k ) × X L (L, k)
]
+ d t

j (50)

where, X L (L, k) is the position of the rider in kth coordinate.
Stage 5: New LR can be found after the position update pro-

cess.
Stage 6: The riders’ parameters updating.
The parameters of rider use the activity counter for updat-

ing their value, which is updated in conformity with the
SR.

1. The activity counter update can be calculated as follows:

At+1
c (i ) =

{
1 i f rt+1(i ) ≻ rt (i )

0 otherwise
(51)
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TABLE 1 Parameters of proposed algorithm and operational constraints

Parameter Value

Population of riders 50

Total iteration numbers 50

Number of gears 5

Node system voltage constraints 0.9p.u. ≤ Vi ≤ 1.05p.u.

DG’s power generation constraints 0.2MW ≤ PDG ,i ≤ 3MW

DG’s power factor constraints 0.7 ≤ PFDG ,i ≤ 1

2. Steering angel update can be calculated as follows:

T t+1
i, j =

{
T t

i+1, j i f At+1
c (i ) = 1

T t
i−1, j i f At+1

c (i ) = 0
(52)

3. Gear update can be calculated as follows [43]:

Et+1
i =

⎧⎪⎨⎪⎩
Et

i + 1 i f At+1
c (i ) = 1&Et

i ≠ |E |
Et

i − 1 i f At+1
c (i ) = 0&Et

i ≠ 0

Et
i otherwise

(53)

4. Accelerator update can be calculated as follows [55]:

et+1
i =

Et+1
i|E | (54)

5. Brake update can be calculated as follows [55]:

K t+1
i =

[
1 −

Et+1
i|E |

]
(55)

Stage 7: Riding off time. At the end of the race, the LR
becomes the winner.

Table 1 presents the parameters of the proposed algorithm
and operational limitation of the study [1, 9, 55].

The overall procedure of proposed algorithm to solve opti-
mization problem in this study is shown in Figure 8.

6 NUMERICAL RESULTS

In this section, the proposed approach is examined on the stan-
dard 33-bus and 69-bus test systems. It is simulated using MAT-
LAB R2018b.

To prove the effectiveness of proposed approach, the follow-
ing scenarios are considered:

Scenario #1: In this scenario, the optimal allocation of mul-
tiple PV, WT units at unity and optimal power factors
for minimizing power losses without voltage-dependent
time-varying load demand is considered.

FIGURE 8 The overall process of proposed algorithm to solve
optimization problem in this study

Scenario #2: The uncertainty power generation model is
employed with time-varying commercial load demand
to show the impact of the stochastic nature of solar radi-
ation and wind speed on the energy losses and voltage
profile of the DS.

Scenario #3: Optimal planning of the PV+BES power
generation for minimizing the total energy losses and
improving the voltage profile.

Scenario #4: Optimal planning of the WT+Biomass power
generation for minimizing the total energy losses and
improving the voltage profile.

The single line diagram of these systems is shown in Figures 9
and 10 [1, 9]. Base kV and MVA of the system are 12.66 kW
and 100 MVA for 33-69-bus DSs. The active and reactive power
loads of the 33-bus test system are 3,715 kW and 2,3 kVAr,
respectively. Initial active power loss and the minimum voltage
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FIGURE 9 Single line diagram of the 33-bus system

FIGURE 10 The line diagram of the 69-bus system

of the test system are 210.9824 kW and 0.904 p.u, respectively.
Other information can be found in [56]. The active and reac-
tive power loads of the 69-bus test system are 3801.5 kW and
2694.6 kVAr, respectively. Initial active power loss and the min-
imum voltage of the test system are 224.98 kW and 0.90919 p.u,
respectively. Other information about the 69-bus test system
can be found in [57]. The mean and St for each hour per day
are calculated using historical data of solar radiation and wind
speed per hour and given in [21].

6.1 Scenario 1 considers the minimization
of power loss as the main objective function

6.1.1 33-bus system

The obtained results of proposed method for optimal size, loca-
tion and power factor of single and multiple DG units in the
33-bus system are listed in Table 2. From this table, it can
be seen that percentage of active power loss reductions are
47.3761 %,58.6854 %, and 65.5013% for one, two and three
PV-based DG units in DS respectively. The corresponding min-
imum voltages increased from 0.9038 up to 0.94237, 0.9685, and
0.96868 p.u. Minimum VSI raised from 0.6672 up to 0.7886,

FIGURE 11 Convergence curve of the 33-bus system

0.8799 and 0.8805 p.u. for integrated one, two, and three PV-
based DG units in the test DS, respectively. While the integrated
one, two, and three WT-based DG units in the test DS the per-
centage of active power loss reductions are 67.83%, 86.42%, and
94.43 %, respectively. The corresponding minimum voltages
increased from 0.9038 up to 0.95, 0.98, and 0.99 p.u. Minimum
VSI raised from 0.6672 up to 0.8435, 0.9805 and 0.9913 p.u.,
respectively. It is observed from Table 3–4 that the proposed
algorithm provides the minimum power loss in case of one
and multiple PV-based and WT-based DG units compared with
those obtained by EA [7], Hybrid approach [4], Hybrid Salp
Swarm Algorithm (HSSA) [58], PSO [7], Exhaustive Load Flow
(ELF) [36], Improved Analytical (IA) [36], Mixed Integer Non-
Linear Programming (MINLP) [36], Novel heuristic approach
(NHA) [59], HHO and HGSO. Besides, the convergence curves
of the three methods (i.e. ROA, HHO, and HGSO) are shown
in Figure 11. The results show that the ROA accelerates to
the near-optimal solution seamlessly, and in steady convergence
characteristics compared with HHO and HGSO algorithms.
In addition, the integration of WT-based DG provides better
results in terms of power loss reduction, voltage profile and VSI
compared with PV-based DG due to its capacity to generate
reactive power.

6.1.2 69-bus system

The results of proposed method for optimal size, location and
power factor of single and multiple DG units in the 69-bus sys-
tem are listed in Table 5. From this table, it can be observed
that percentage of active power loss reduction are 63.01%,
68.1412%, and 69.141% for one, two and three PV-based DG
units in DS, respectively. The corresponding minimum voltages
increased from 0.90919 to 0.96829, 0.97893, and 0.97897 p.u.
for one, two and three PV-based DG units in DS, respec-
tively. Minimum VSI raised from 0.6842 up to 0.88, 0.94, and
0.959 p.u. for integrated one, two, and three PV-based DG
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TABLE 2 Main obtained simulation results of the 33-bus system

With DG (position (size (KW/P.F))

One DG Two DG Three DG

Items Without DG PV WT PV WT PV WT

Active power loss (KW) 210.98 111.027 67.83 87.165 28.50 72.786 11.740

Reactive power loss (KVAR) 143.02 81.68 54.83 59.77 20.4 50.65 9.75

Percentage of active power
loss reduction

– 47.37 67.83 58.68 86.42 65.50 94.43

Minimum voltage (p.u.) 0.903 @bus 2 0.94 @ bus 18 0.95@ bus 18 0.96 @ bus 33 0.98@ bus 25 0.96 @ bus 33 0.99 @ bus 8

Total DG – 2590.2 2558.4/0.82 2009.14 858.4/0.91 2946.6 1069.9/0.90

1029.8/0.71

1089.09/0.7

793.8/0.9

VSI 0.6672 0.7886 0.8435 0.8799 0.9805 0.8805 0.9913

TABLE 3 Results of the first studied system obtained by different optimization algorithms (PV type)

One PV Two PV Three PV

Number of DG

method

Bus (Size

(KW/P.F))

Power loss

(KW)

Bus (Size

(KW/P.F))

Power

loss (KW)

Bus (Size

(KW/P.F))

Power loss

(KW)

HHO 6(2590.2/1) 111.035 30(1150.6/1)
13(855.93/1)

87.1682 14 (790.3/1)
24 (870/1)
30 (1119.51/1)

73.4478

HGSO 6(2616.8/1) 111.038 30(806.199/1)
11(1128.8/1)

89.999 12(919.2/1)
27(1237.1/1)
24 (504.8/1)

83.981

Hybrid approach [4] 6(2530/1) 111.42 13(844/1)
30(1149/1)

87.43 13 (798/1)
30 (1050/1)
24 (1099/1)

72.79

EA [7] 6(2530/1) 111.07 13(844/1)
30(1149/1)

87.172 13(798/1)
30(1050)
24 (1099)

72.79

HSSA [58] 6(2590.2/1) 111.027 30(1157.6/1)
13(851.5/1)

87.166 30(1053.6/1)
24(1091.3/1)
13(801.7/1)

72.786

PSO [7] 6(2590/1) 111.03 13(850/1)
30(1160/1)

87.170 14(770/1)
30(1070/1)
24(1090/1)

72.790

ELF [36] 6(2600/1) 111.10 12(1020/1)
30(1020/1)

87.63 13(900/1)
24(900/1)
30(900/1)

74.27

IA [36] 6(2600/1) 111.10 6(1800/1)
14(720/1)

91.63 6(900/1)
12(900/1)
31(720/1)

81.05

MINLP [36] 6(2590/1) 111.01 13(850/1)
30(1150/1)

87.166 13(800/1)
24(1090/1)
30(1050/1)

72.795

NHA [59] 6(2593.6/1) 111.03 13(840/1)
30(1134/1)

87.19 13(792/1)
24(1068/1)
30(1027/1)

72.84

Proposed ROA 6 (2590.2/1) 111.027 13(851.5/1)

30 (1157.6/1)

87.165 13(801.71/1)

30(1053.6/1)

24 (1091.3/1)

72.786
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TABLE 4 Results of the first studied system obtained by different optimization algorithms (WT type)

One WT Two WT Three WT

Number of DG

Method

Bus (Size

(KW/P.F))

Power loss

(KW)

Bus (Size

(KW/P.F))

Power loss

(KW)

Bus (Size

(KW/P.F))

Power loss

(KW)

HHO 26(2510.01/0.85) 69.443 30(1223.3/0.85)
10(1021.4/0.85)

32.0643 25 (477.6/0.85)
30(913.14/0.85)
9(1403.44/0.89)

26.1092

HGSO 6(2653.27/0.85) 68.1743 10(1114.1/0.863)
31(983.2/0.85)

36.0031 16(540.68/0.87)
5(1567.66/0.86)
31(994.5/0.864)

28.1267

Hybrid approach [4] 6 (3028/0.82) 67.937 13(1039/0.91)
30(1508/0.72)

28.98 13 (873/0.9)
30(1439/0.71)
24(1186/0.89)

11.76

EA [7] 6(3119/0.82) 67.937 13(938/0.90)
30(1573/0.73)

28.98 13(886/0.90)
30(1450/0.71)
24(1189/0.90)

11.8

HSSA [58] 6(3106.17/ 67.86 13(934.9/0.91)
30(1557.9/0.73)

28.50 13(877.2/0.91)
30(1445.6/0.72)
24(1178.2,0.89)

11.741

PSO [7] 6(3035/0.82) 67.928 13(914/0.91)
30(1535/0.73)

28.56 13(863/0.91)
30(1431/0.71)
24(1188/0.9)

11.76

IA [36] 6(2637/0.85) 68.157 6(1800/0.85)
30(900/0.85)

44.85 6(900/0.85)
14(630/0.85)
30(900/0.85)

23.05

MINLP [36] 6(2558/0.823) 67.854 13(819/0.883)
30(1550/0.8)

29.31 13(766/0.87)
24(1044/0.88)
30(1146/0.8)

12.74

Proposed ROA 6(2558.5/0.82) 67.83 13(858.3/0.91)

30 (1089.1/0.7)

28.50 24(1069.9/0.9)

30(1029.9/0.71)

13 (793.8/0.9)

11.740

TABLE 5 Main obtained simulation results of the 69-bus system

With DG (Position (size (KW/P.F))

One DG Two DG Three DG

Items Without DG PV WT PV WT PV WT

Active power loss (KW) 224.97 83.19 23.1681 71.674 7.19 69.4255 4.21

Reactive power loss
(KVAR)

102.1872 40.568 14.410 35.949 8.285 34.968 6.757

Percentage of active
power loss reduction

– 63.0082 89.7016 68.1412 96.5243 69.1408 98.0998

Minimum voltage (p.u) 0.90919 0.96829 @ bus 27 0.97247 @ bus 27 0.97893 @ bus 65 0.99343 @ bus 69 0.97897 @ bus 65 0.99427 @ bus 50

Total DG – 1872.70 1828.47/ 0.814 2312.95 1750.06/0.8195 2626.07 370.25/0.819

508.44/0.836

432.3717/0.7

1670.84/0.8102

VSI 0.6842 0.88 0.901 0.94 0.975 0.959 0.989

units in the test DS, respectively. While the integrated one,
two, and three WT-based DG units in the test DS the percent-
age of active power loss reductions are 89.7016%, 96.5243%,
and 98.0998 %, respectively. The corresponding minimum

voltages increased from 0.90919 p.u. up to 0.97247, 0.99343,
and 0.99427 p.u. Minimum VSI raised from 0.6672 up to
0.901, 0.975 and 0.989 p.u., respectively. From Tables 6 and 7,
it is observed that the proposed algorithm provides the
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TABLE 6 Results of the second studied system obtained by different optimization algorithms (PV type)

One PV Two PV Three PV

Number of

DG Method

Bus (Size

(KW/P.F))

Power loss

(KW)

Bus (Size

(KW/P.F))

Power loss

(KW)

Bus (Size

(KW/P.F))

Power loss

(KW)

HHO 61(1901/1) 83.24 12(814.0/1)
61(1735.3/1)

72.52 12(467.148/1)
15(346.77/1)
61(1734.2/1)

70.01

HGSO 61(1890/1) 83.25 61(1998/1)
17(502/1)

72.9 15(598.634/1)
61(1796.9/1)
57(200/1)

72.338

BA [6] 61(1900/1) 83.22 61(2000/1)
17(500/1)

73.3 61(2000/1)
22 (300/1)
13 (400/1)

72.6

PSO [6] 61(1900/1) 83.22 61(1900/1)
15(400/1)

73.1 66(700/1)
62(1900/1)
18 (300/1)

73.1

HSSA [58] 61(1872.7/1) 83.222 61(1781.5/1)
17(531.5/1)

71.6745 61(1719/1)
17(380.5/1)
11(526.7/1)

69.4266

EA [7] 61(1878/1) 83.23 61(1795/1)
17(534/1)

71.68 61(1795/1)
18(380/1)
11(467/1)

69.62

ELF [36] 61(1900/1) 83.55 61(1700/1)
17(510/1)

72.22 61(1700/1)
17(510/1)
11(530/1)

70.24

IA [36] 61(1900/1) 83.55 61(1700/1)
17(510/1)

72.22 61(1700/1)
17(510/1)
11(530/1)

70.24

MINLP [36] 61(1870/1) 83.48 61(1780/1)
17(530/1)

71.92 61(1720/1)
17(380/1)
11(530/1)

69.67

NHA [59] 61(1823/1) 83.3 61(1733/1)
17(520/1)

71.8 61(1689/1)
21(312/1)
12(471/1)

69.7

NLP&PLS [60] 61(1887.767/1) 83.23 – – – –

Proposed ROA 61 (1872.7/1) 83.19 61(1781.5/1)
17 (531.48/1)

71.674 18(380.3464/1)
11(526.9147/1)
61 (1718.8/1)

69.42553

minimum power loss in one and several PV-based and WT-
based DG units compared with those obtained by Bat Algo-
rithm [6] Particle Swarm Optimization (PSO) [6], Hybrid Salp
Swarm Algorithm (HSSA) [58], EA [7], Exhaustive Load Flow
(ELF) [36], Improved Analytical (IA) [36], Mixed Integer Non-
Linear Programming (MINLP) [36], Novel heuristic approach
(NHA) [59], combined Non-Linear programming with Power
Loss Sensitivity (NLP&PLS) [60], HHO and HGSO. Besides,
the convergence curves of the three methods (i.e. ROA, HHO,
and HGSO) are shown in Figure 12. The results show that the
ROA accelerates to the near-optimal solution seamlessly, and
in steady convergence characteristics compared with HHO and
HGSO algorithms. In addition, the integration of WT-based
DG provides better results in terms of power loss reduction,
voltage profile and VSI compared with PV-based DG due to its
capacity to generate reactive power.

FIGURE 12 Convergence curve of the 69-bus system
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TABLE 7 Results of the second studied system obtained by different optimization algorithms (PV type)

One WT Two WT Three WT

Number of

DG Method

Bus (Size

(KW/P.F))

Power loss

(KW)

Bus (Size

(KW/P.F))

Power loss

(KW)

Bus (Size

(KW/P.F))

Power loss

(KW)

HHO 61(1879.41 /0.82) 34.65 60(1678.5 /0.82)
11(898.19 /0.7)

22.97 61(1412.4/0.766)
16(796.43/0.875)
47(1.0493/0.995)

12.526

HGSO 60(1695.9 /0.78) 35.71 12(937.37 /0.87)
60(1394.2 /0.7)

24.66 8(937.06 / 0.84)
61(1457.4 / 0.81)
59(200 /1)

16.74

BA [6] 61(2100/0.98) 52.5 61(2000/0.98)
17(600/0.98)

38.7 61(2000/0.98)
49 (800/0.98)
19 (600/0.98)

37.1

PSO [6] 61(2100/0.98) 52.5 61(2200/0.98)
18(600/0.98)

41.1 61(1500/0.98)
59(600/0.98)
16 (500/0.98)

39.2

HSSA [46] 61(2243.9/0.82) 23.1688 61(2131.3/0.81)
17(630.7/0.83)

7.2013 61(2057.1/0.81)
17(454.9/0.84)
11(608.9/0.82)

4.269

EA [7] 61(2290/0.82) 23.26 61(2189, 0.82)
17(643/0.83)

7.35 61(2113/0.82)
18(458/0.83)
11(668/0.82)

4.48

IA [36] 61(1839/0.82) 23.24 17(540/0.82)
61(1799/0.82)

7.45 61(900/0.82)
17(630/0.82)
50(900/0.82)

5.09

MINLP [36] 61(1828/0.815) 23.31 17(522/0.824)
61(1735/0.814)

7.21 11(494/0.813)
17(379/0.828)
61(1674/0.814)

4.28

NLP&PLS [60] 61(1843.99/0.815) 23.18 – – – –

Proposed ROA 61 (1828.47/0.814) 23.1682 61(1750.06/0.819)
17 (432.371/0.7)

7.19 18(370.25/ 0.819)
11(508.44/0.836)
61(1670.84/0.810)

4.21

6.1.3 Comparison of statistical indicators of
ROA versus HHO, and HGSO

On the whole, the heuristic techniques are distinguished by its
randomness. Therefore, many tests have been performed to
prove the robustness of the ROA with 15 independent runs.
The optimization objective function’s convergence curves of the
three methods (i.e. ROA, HHO, and HGSO) of the Ploss are
shown in Figures 11 and 12, respectively. In comparison with
HHO, and HGSO algorithms, the results show that the ROA
accelerates to the near optimal solution seamlessly, and in steady
convergence characteristics. Also, the efficacy and robustness
of the proposed ROA over HHO, and HGSO algorithms are
verified based on statistical factors, where many trials have been
made. The minimum, maximum, mean, the standard deviation
(SD) of the objective function after 15 runs for standard 69-
node DS with integrating of three PVs with PLSF as presented
in Table 8 and without PLSF as presented in Table 9. These
compressions used to check if the near-optimal solution located
inside this limited search space or not. From these compres-
sions, we can see the PLSF is suitable for the optimization
problem. In addition, the proposed ROA algorithm has more
robust statistical indicators than the other algorithms, such as

TABLE 8 Statistical analysis for the ROA, HHO, and HGSO for power
loss with PLSF (69 bus system)

Methods Best Average Worst SD

HHO 70.01 71.09018 72.17035 1.080175

HGSO 72.338 73.64233 74.94666 1.30433

ROA 69.42553 69.63392 69.8423 0.208385

TABLE 9 Statistical analysis for the ROA, HHO, and HGSO for power
loss without PLSF (69 bus system)

Methods Best Average Worst SD

HHO 70.47606 71.76543 73.0548 1.28937

HGSO 73.524561 72.16764 70.81072 1.3569205

ROA 69.42556 69.68758 69.9496 0.26202

HHO, and HGSO. Similar indicators can be extended straight-
forwardly to other scenarios as well.
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FIGURE 13 Daily power generation curve of 3 PV and 3 WT DGs for
33-bus system

FIGURE 14 Daily power generation curve of 3 PV and 3 WT DGs for
69-bus system

6.2 Scenario 2 considers the minimization
of energy loss as the main objective function

In this scenario, uncertainty model of power generation is
applied using the optimal sizes and locations obtained in Sce-
nario 1, the time-varying daily load demand is used, as shown in
Figure 4. The effect of load variation on the voltage profile over
24 h for 33-bus and 69-bus are shown in Figure 21.

Three PV and WT units are integrated at buses 13, 24, and 30
for the 33-bus system and 18, 11, and 61 for the 69-bus system
with 24-hour power generated, as shown in Figures 13 and 14.

A significant improvement occurs in the voltage profiles and
loss reduction when the power of PV and WT is available
from 6:00 to 19:00 h and from 1:00 to 19:00 h, as shown in
Figure 21(b,c) and Figure 22(b,c). respectively. However, the lack
of integration of PV and WT is investigated after from 7:00 to
9:00 h and from 13:00 to 14:00 h, when the voltage is still under
the lower limit of 0.95 p.u., due to the very small probabilistic
depends of PV power and an increase in load demand. When the

FIGURE 15 Daily PV+BES outputs for the 33-bus system

FIGURE 16 Daily PV+BES outputs for the 69-bus system

voltage is over the upper limit of 1.05 p.u., due to the high prob-
abilistic depends of WT power and decrease in load demand.

6.3 Scenario 3 optimal planning of the
PV+BES power generation for minimizing the
total energy losses and improving the voltage
profile

As mentioned above, BESs are installed at the PV locations and
the proposed technique is used at every hour to optimally deter-
mine the power of the PV+BES with the aim of minimizing the
energy losses. Using the power of PV+BES, the optimal size for
the PV and BES can be achieved using the proposed model in
Section 4.2. Figures 15 and 16, shows the PV+BES units output
power curves at buses 13,24 30 for 33 bus systems and 11, 28,61
for 69 bus system. The power output curves of combination
model units follow the load demand curve in Figure 4 because
PV+BES units are considered dispatchable sources. Figures 17
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FIGURE 17 PV and PV+ BES power outputs curves at bus 13 of 33-bus
system

FIGURE 18 PV and PV+ BES power outputs curves at bus 11 of 69-bus
system

and 18 show the hourly output power of PV and PV + BES at
buses 13 and 11 for 33 bus and 69 bus systems, respectively. This
PV output curve exactly follows the expected PV power output
curve shown in Figure 4. The PV unit’s maximum power out-
put is determined at 12 h. and it specifies the optimal size of
PV-based DG. From Figures 17 and 18, it can be observed that
the PV unit generates the energy against PV+BES unit energy
accommodated by the system to keep the minimum power loss.
The hourly differences between the two schemes determine the
charge and discharge energy of the BES unit. Using the power
output of PV + BES, the optimal sizes for PV and BES can be
achieved using the PV + BES model.

The maximum power output difference is found at 13 h.,
which provides the maximum charging power or the nominal
power rating of the BES unit (PBES). Similarly, for the remain-
ing units at buses 24, 30, and 18, 61, the results are obtained.

Tables 10 and 11 present the results for the PV unit’s sizes as
well as the nominal power and power output of the BES units
for each location for 33-bus and 69-bus test systems, respec-
tively.

FIGURE 19 Optimal power generation curve of WT+Biomass DG units
at bus 13 of 33-bus system

FIGURE 20 Optimal power generation curve of WT+Biomass DG units
at bus 18 of 69-bus system

6.4 Scenario 3 optimal planning of the
WT+Biomass power generation for minimizing
the total energy losses and improving the
voltage profile

Figure 12 shows the optimal hourly output curves for WT and
Biomass units at bus 18. The total generation of DG units of
WT + biomass in each time interval in Figure 12 is also fol-
lows to the load demand curve in Figure 3. At the same time,

TABLE 10 Optimal size and location of PV+BES in 33-bus system

Position Bus 13 Bus 24 Bus 30 Total

PV size (kW) 1645 2234 2154 6033

BES rated power (kW) 880 1190 1150 3220

BES energy capacity (kWh) 5025 6810 6567 18402
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FIGURE 21 Effect of three DGs integration on voltage profile of 33-bus DS. (a) Voltage profile without DG, (b) voltage profile with 3 p.u.s, (c) voltage profile
with 3 WTs, (d) voltage profile with 3 p.u.+BES, (e) voltage profile with 3 WT+Biomass.
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FIGURE 22 Effect of three DGs integration on voltage profile of 69-bus DS

the wind power output corresponds to the wind power out-
put curve in Figure 3, provided that the wind power penetra-
tion is maximum. As noted above, biomass-based DG units
are used as additional supplies to fill some of the energy that
WT-based DG units cannot afford. The WT based DG units

in Figure 12 cannot afford the load demand of Figure 3. The
maximum power output difference found at hour 13, gives the
Biomass-based DGs maximum power output or nominal power
rating (PBiomass) of Biomass-based DG unit. Similar results are
obtained for the WT+Biomass units at buses 18 and 61. Also,
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TABLE 11 Optimal size and location of PV+BES in 69-bus system

Position Bus 11 Bus 18 Bus 61 Total

PV size (kW) 1065.46 783.783 3517.35 5366.593

BES rated power (kW) 564.6 420.48 1878.3 2863.38

BES energy capacity (kWh) 3219.989 2401.861 10722.98 16344.83

TABLE 12 Optimal size and location of WT+Biomass in 33-bus system

Position Bus 13 Bus 24 Bus 30 Total

WT size (kW) 382.236 517.035 496.797 1396.07

Biomass size (kW) 624.77 841.566 809.73 2276.066

Power factor (lag.) 0.905 0.90 0.713

Figure 13(d) shows the effects of combined DGs installation on
voltage profiles. From these figures it is observed that the volt-
age profile is significantly improved in the case of locating the
DGs in their optimal allocation and optimal power factor using
the proposed method. Besides, this improvement is increased
in the case of using WT+Biomass-based DG compared with
PV+BES-based DG units due to its ability to generate reactive
power and at optimal PF.

Table 12 and 13 summarize the simulation results obtained
in Scenario 4 for 33 bus and 69 bus test systems, respectively.
These tables include DG unit type, size, location, and PF for
each type.

6.5 Energy losses analysis: 33-bus and
69-bus test systems

A noticeable decrease in energy loss in scenarios 2–4 is observed
compared with the base case. The decline in the highest energy
loss is determined in scenario 3–4, while the smallest energy loss
is realized in Scenario 1. Total energy losses and its loss reduc-
tion for a given day are presented in Tables 14 and 15 for 33
bus and 69 bus systems, respectively. The maximum reduction
in energy loss is 94.04 % and 98 % for 33 bus and 69 bus sys-
tems, respectively.

7 CONCLUSION

In this paper, a recent metaheuristic rider optimization algo-
rithm (ROA) technique with power loss-sensitivity factor

TABLE 13 Optimal size and location of WT+Biomass in 69-bus system

Position Bus 11 Bus 18 Bus 61 Total

WT size (kW) 239.456 183.46 810.79 1233.706

Biomass size (kW) 388.86 298.067 1316.38 2003.307

Power factor (lag.) 0.8131 0.8333 0.8138

TABLE 14 Daily energy loss for 33-bus system

Scenario Energy loss (kW h) Loss reduction %

Base case 2044.796 –

With PV 1036.09 49

With WT 739.73 63

With PV +BES 717.901 64

With WT +Biomass 116.95 94

TABLE 15 Daily energy loss for 69-bus system

Scenario Energy loss (kW h) Loss reduction %

Base case 2173.85 –

With PV 1040.64 52

With WT 727.47 66

With PV +BES 688.129 68

With WT +Biomass 42.504 98

(PLSF) has been proposed to solve the optimal allocation
of single and multiple photovoltaic (PV), wind turbine (WT),
Biomass, PV+Battery energy storage (BES), and WT+Biomass
units in distribution systems, taking into account the time-
varying load demand, optimal power factor, and probabilis-
tic power generation. The voltage stability index (VSI) is cal-
culated after the optimization process to measure the perfor-
mance of the proposed method on the stability of the dis-
tribution systems. The Beta and Weibull probability distribu-
tion functions (PDF) models have been employed to describe
the stochastic nature of solar radiation and wind speed. The
objective function has been formulated as the minimization of
active power loss of distribution system. The 33-bus and 69-
bus test systems have been used to demonstrate the effective-
ness of the proposed approach. Three PV, WT PV+BES, and
WT+Biomass units have been considered to check the capabil-
ity of the proposed approach for minimizing energy loss and
enhancing voltage profile. The performance of the proposed
approach has been compared with those based on Harris Hawks
Optimizer (HHO), Henry gas solubility optimization (HGSO)
and other optimization techniques in literature. The total energy
loss has been significantly decreased in the case of integrating
WT+Biomass units, due to generating reactive power. Besides,
it observed that the proposed approach has better conver-
gence characteristics than other techniques. In addition, accord-
ing to the results integration of the PV, WT, PV+BES and
WT+Biomass units into 33-bus system can reduce energy losses
49 %, 63%,64% and 94% compared to base case, respectively.
For 69-bus system reduced to 52 %, 66%, 68% and 98% com-
pared to base case, respectively.
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