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ABSTRACT

In the new era of very large telescopes, where data is crucial to expand scientific knowledge, we have witnessed many deep
learning applications for the automatic classification of lightcurves. Recurrent neural networks (RNNs) are one of the models
used for these applications, and the LSTM unit stands out for being an excellent choice for the representation of long time series.
In general, RNNs assume observations at discrete times, which may not suit the irregular sampling of lightcurves. A traditional
technique to address irregular sequences consists of adding the sampling time to the network’s input, but this is not guaranteed
to capture sampling irregularities during training. Alternatively, the Phased LSTM unit has been created to address this problem
by updating its state using the sampling times explicitly. In this work, we study the effectiveness of the LSTM and Phased LSTM
based architectures for the classification of astronomical lightcurves. We use seven catalogs containing periodic and nonperiodic
astronomical objects. Our findings show that LSTM outperformed PLSTM on 6/7 datasets. However, the combination of both

units enhances the results in all datasets.
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1 INTRODUCTION

Every night, terabytes of photometric data are being collected by
wide-field telescopes (Bellm et al. 2018). The amount of data will
increase considerably by 2023 when the Vera C. Rubin Observatory
will begin operations (Ivezic et al. 2019). These time-domain surveys
scan a large portion of the sky, capturing several time-variable
phenomena. The data from these variable sources are usually
represented as lightcurves that describe underlying astrophysical
properties, allowing scientists to identify and label different astro-
nomical objects (Bonanos 2006; Tammann et al. 2008; Pietrzyriski
2018). For some astrophysical events, it is crucial to obtain this
classification in real-time to promptly follow-up individual targets
(Abbott et al. 2017a; Abbott et al. 2017b; Schulze et al. 2018). In
this context, human visual inspection is not enough to rapidly label
incoming data. During the last decade, many Machine Learning
(ML) models have been proposed to speed up the automatic
classification of objects.

Classical ML models have been successfully applied in As-
tronomy for the classification of photometric data (Lochner et al.
2016; Mackenzie et al. 2016; Lochner et al. 2016; Castro et al. 2017;
Devine et al. 2018; Bai et al. 2018; Martinez-Palomera et al. 2018;
Castro et al. 2018; Fotopoulou & Paltani 2018; Valenzuela & Pichara
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2018; Mahabal et al. 2019; Sanchez et al. 2019; Villar et al. 2019;
Boone 2019; Zorich et al. 2020; Sanchez-Saez et al. 2021). These
“classical" methods require an initial feature extraction module,
in which the scientist defines ad hoc features. This procedure is
time-consuming and, depending on the features chosen, it could
scale the number of operations significantly, implying a high
computational cost. Moreover, the features, obtained by expert
knowledge, may be insufficient for the models to learn in certain
domains e.g., classifying transients using periodic-based features.

Since 2015, Deep learning (DL) algorithms have been ap-
plied to Astronomy and have outperformed many classical ML
models (e.g. Dieleman et al. (2015), Gravet et al. (2015); Cabrera-
Vives et al. (2017); Mahabal et al. (2017), George & Huerta (2018)).
DL methods aim to automatically extract the features needed to
perform a particular task, avoiding the feature engineering process
(LeCun et al. 2015).

Recently, recurrent neural networks (RNN, Rumelhart et al.
1986) have been applied to classify sequential data such as
lightcurves (Charnock & Moss 2017, Moss 2018; Naul et al. 2018;
Muthukrishna et al. 2019; Becker et al. 2020; Chaini & Kumar
2020; Neira et al. 2020; Jamal & Bloom 2020) and sequences of
astronomical images (Carrasco-Davis et al. 2019, Gémez et al. 2020,
Moller & de Boissiere 2020). However, most DL models are not
ideal for processing lightcurves as they assume regular and discrete
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sampling, while lightcurves measurements have different cadences
in a continuous domain.

In the previous paragraph, most of the works use sampling
times within the network’s input to learn time-related features,
which may help with the irregularity. However, even when
using time as an input, the weight updates remain regular and
discrete, regardless of the spacing between observations. Other
approaches try to regularize lightcurve times so we can fit the
model assumptions. For example, Naul et al. 2018 folds lightcurves
to decrease the sampling gaps from the continuous timescale,
and Muthukrishna et al. 2019 interpolates observations at 3-day
intervals. However, folding lightcurves do not assure eliminating
the irregularity because it is still an approximation that depends on
the number of measurements. On the other hand, interpolation may
break variability patterns that come from the astrophysical properties.

Alternatively, Neil et al. 2016 introduced a novel recurrent
unit, called the Phased Long Short Term Memory (PLSTM),
an extension of the Long Short Term Memory (LSTM) that
incorporates a time gate in charge of considering the effect
of irregular sampling on the neural weights updates. We bet on
the use of this unit to cover the information lost by the others methods.

In this work, we explore the effectiveness of classifying as-
tronomical time series using both the PLSTM and traditional
methods, such as the Long Short Term Memory (LSTM), and
a Random Forest trained on features. We test our models using
OGLE (Udalski et al. 1997), MACHO (Alcock et al. 1995), ASAS
(Pojmanski & Maciejewski 2005), LINEAR (Stokes et al. 2000),
Catalina Sky Survey (Drake et al. 2009), Gaia (Collaboration et al.
2016), and WISE (Wright et al. 2010), which are widely-used
catalogs containing periodic and non-periodic variable stars.
We do not fold the lightcurves for periodical classes because it
requires period calculation, which is time-consuming and limits
nonperiodical objects’ classification.

We propose the L+P architecture, a new classifier that com-
bines a PLSTM with an LSTM, the later includes sampling times in
its input. We compare this model with a Random Forest (RF) trained
on features and the state-of-the-art of the mentioned catalogs. Since
our model uses unprocessed observations, it is faster to predict and
more accurate than the RF when we have lightcurves with less than
20 observations.

This is paper is organized as follows: In Section 2 we pro-
vide an overview of the theoretical background of recurrent neural
networks, specifically within the context of describing both LSTM
and Phased LSTM units. In Section 3, we present the data catalogs
used in this work. Section 4 introduces data preprocessing, the
architecture of the proposed model, metrics, and model selection.
Finally, we show the results and draw the conclusions in sections 5
and 6, respectively.

2 BACKGROUND

Neural networks (NN) are parametric functions capable of trans-
forming a vector input x € RP to an expected target y. We will
focus on a classification task, where the output consists of one of K
classes. Hereafter, we assume y € RK is a one-hot encoded vector
that is 1 for the actual class and zero otherwise.
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A NN comprises neurons that transform the input by multi-
plying it by a weight matrix W and adding a vector of biases b.
This transformation is passed through an element-wise nonlinear
activation function g. When training a NN, the goal is to learn W and
b, capturing nonlinear relationships between variables. Equation 1
describes a Fully-Connected (FC) layer which receives x as input,

h=g(W'x+b), (1)

where h is the layer output. Stacking FC layers increases the
classification capacity of the NN by learning features at multiple
levels of abstraction (Glorot & Bengio 2010). In this case, the
output of each stacked layer serves as input for the next one. These
particular types of neural networks are called multi-layer perceptron
(MLP) (Rumelhart et al. 1986).

MLPs have been widely used for regression and classification
tasks. Their matrix representation allows fast computation, which
can be parallelized on GPU (Oh & Jung 2004). Usually, MLPs
assume that each entry within the input is independent of each other.
However, this is not the case of a time series, where the input is a
sequence of measurements, and each point may be conditioned on
the previous points.

In the following sections we explain the architecture of the
recurrent neural network (RNN), an extension of the MLPs capable
of learning time-based patterns from data (Section 2.1). We also
describe the operation of the LSTM (Section 2.2) and PLSTM
(Section 2.3), as they are the two types of recurrent neurons used in
this work.

2.1 Recurrent Neural Networks

Recurrent neural networks are capable of learning dependencies on
sequential data. They use a hidden state vector A that preserves the
information of previous time steps. Formally, a vanilla recurrent unit
is given by:

1O = g (Wi + WTR(-D +b), @)

where [W3, W] are the weights for x the input and / the hidden
state at the current (/) and previous (/ — 1) time step, respectively.
Note the representation is quite similar to an MLP. However,
recurrent neurons combine the current observations x /) with the
previous activation (or hidden state) RV to build the input to the
[-th layer.

Figure la shows a vanilla recurrent neural unit corresponding
to Equation 2. Notice that the information flows in the sense
of arrows. The arrow bifurcation in the last part of the diagram
indicates the potential of the neuron to make predictions while
connecting with the next step. In other words, the hidden state )
represents a feature vector that describes the time series up to the
current step. Usually, RNNs use a FC layer that receives the hidden
state to classify new observations,

ﬁ(l) = softmax(Wgh(l) +bo) 3)

where W and b,, are the weights and biases of the FC layer, and
y @ is the predicted label at the /-th step.

During the training of RNNs, the gradients flow through the
steps of the network. To calculate the gradients, we differentiate the



loss function regarding the activation of each time step. Thus, if the
gradient is backpropagated until the first time step, as the length of
the sequence increases, several matrix multiplications are performed
because of the chain rule (Werbos et al. 1990). If at some time in the
recurrence, the gradients have low values (< 1), the total product
may vanish. On the other hand, if the values are high (> 1), the
gradient could explode. This problem is known as the exploding and
vanishing of the gradient (Pascanu et al. 2012) and is the motivation
for creating the Long Short Term Memory (LSTM) recurrent unit.

2.2 Long Short Term Memory (LSTM)

The Long Short Term Memory unit, introduced by Hochreiter &
Schmidhuber 1997b, is a recurrent unit capable of learning long-term
dependencies from time series. Unlike the vanilla recurrent unit, the
LSTM has an additional cell state that scales the neuron’s output
according to long-term relevant information stored in it.

Both the LSTM cell (c(l)) and the hidden (h(l)) state vectors
have the same dimensionality, but their values are updated differ-
ently. Updates are controlled by recurrent gates, MLPs that receive
the current observation and the previous hidden state to learn
specific tasks. Typically, the LSTM uses a gate to save sy and
another one to forget (f O long-term patterns. A third gate (o)
scales the output of the unit. Formally,

cD=fDoel-DysDoe @
D = 0D o tanh (C(l)) )

where © is the Hadamard product of vectors, € is a candidate cell
state defined as,

¢ =tanh WLx W + WCThh(l*]) +bc) (©)
and

O =aWix®+wWlr(-D 4 b)) )
sO = o (Wix®W + Wl R0V 4 p) (8)
o = (Wiax® + W] n1"D 4 p,). ©
In this formulation, [Wg, W, brl, [Wsx, Wen, bs], and

[Wox, Won, bo] are the weights and biases of the forget, save,
and output gate, respectively.

Figure 1b. shows the LSTM structure and its operations. The
network’s input is formed by the new observations and the previous
hidden and cell states, typically initialized to zero.

LSTM signified a breakthrough for long time series analysis
in many fields of science (Hochreiter & Schmidhuber 1997a; Greff
et al. 2016). However, this unit does not consider irregular sampling
times when updating the states in equations 4 and 5. Consequently,
it assumes that all step updates weigh the same regardless of how far
they are from the last observation.

2.3 Phased Long Short Term Memory (PLSTM)

The Phased Long Short Term Memory proposed by Neil et al.
2016 is an extension of the LSTM unit for processing inputs
sampled at irregular times. The idea is to consider sampling times
explicitly during the state updates. To do this, the PLSTM assumes
the observations come from periodic sampling and, therefore, the
neurons should be controlled by independent rhythmic oscillations

following these periodicities.

Every neuron in the H-dimensional state has a learnable in-
dependent period, forming the vector T € RF . Then, for a given [-th
step, we calculate the phase of neurons ¢(l) as

¢(l) _ D = 5) mod t
T

; 10)

where s € R represents the trainable shift of the signal and 1D is
the /-th sampling time. PLSTM adds a time gate which is defined as
a piece-wise function depending on the phases and a trainable vector
p € R that controls the duration of the openness phase,

26D ,
B ire0 <dp

PO 2_%1) iflp <9 <p (11)
agp® otherwise.

In Equation 11 « is a leak parameter close to zero which allows
gradient information flow (He et al. 2015) for those cases where
the gate is closed. The time gate k) controls how much of the
proposed states should flow to the next recurrence. Unlike the LSTM,
the PLSTM does not consider every update equally important to
each other, and therefore, it weighs the updates by using the current
sampling time. Using the output of the time gate formulation in
Equation 11, we update the cell states in the following way:

PO f(l) ocD 150 e (12)
PONY A0 .5(1)_,_(] _k(l)).c(l—l) (13)

W =00 o gc®) (14)

U}

D =D j +(1—k(l))-h(17]) (15)

where ¢é; and h ; are the candidate states at /-th step. Note that if we
replace kD =1, then we get the LSTM output.

For irregular sampled continuous-time sequences, the obser-
vation time controls the update of each neuron (see Figure 2),
allowing improvements in the convergence ratio as well as the loss
minimization. The Phased LSTM has also been used for multi-event
time series in which independent sequences describe the same
phenomena (Anumula et al. 2018; Liu et al. 2018).

3 DATA

Our classification domain is composed of variable stars in the form
of photometric lightcurves. Each light curve corresponds to a set of
observations taken at different times and varies in length depending
on the objective of the surveys. In this context, we collected data
from seven widely used surveys that we describe as follows:

The Massive Astrophysical Compact Halo Objects (MACHO):

The MACHO project (Alcock et al. 2000) results from a collab-
oration between different institutions to look for dark matter in
the halo of the Milky Way. Based on several years of observation,
astronomers tried to find the dark matter by its effect on the bright
matter. We used the catalog from Kim et al. 2011. Table 1 shows
the MACHO dataset composition following the same blue-band
selection made by Nun et al. 2014. The objects are principally
periodic variable stars except for Quasars (QSO) and Microlensings
(MOA).

MNRAS 000, 1-17 (2015)



4 C.Donoso Oliva

[£]
Iil

RU-D— [ y

C. Phased LSTM

R-1)
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Figure 2. Time gate openness phases controlling the update rate for the
states of a single lightcurve. The trainable openness duration p depends on
a particular neuron, while the leak parameter « is shared across the state. A
neuron is fully updated when the curve is in the peak, i.e., k; = 1. Otherwise,
it is partially updated, as described in Equation 11.

The Lincoln Near-Earth Asteroid Research (LINEAR):

LINEAR (Stokes et al. 2000) is a collaborative program aiming at
monitoring asteroids, founded by the US Air Force and NASA, and
has the collaboration of The Lincoln Laboratory at the Massachusetts
Institute of Technology. Table 2 shows the training set composition
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made by Naul et al. 2018, which contains periodical lightcurves
measured in r < 18 red band (see Palaversa et al. 2013 for more
details).

The All Sky Automated Survey (ASAS):

With two observation stations, ASAS (Pojmanski & Maciejewski
2005) is a low-cost project focused on photometric monitoring of
the entire sky. A catalog of variable stars constitutes one of the main
goals of this project. We use V-band periodical lighcurves selected
by Naul et al. 2018. Table 3 describes the number of object per class.

The Optical Gravitational Lensing Experiment (OGLE):

OGLE (Udalski et al. 1997) is an observation project, currently
operational (OGLE-1V), that started in 1992 (OGLE-I) under
the initiative of the University of Warsaw. Like MACHO, this
project studies the dark matter in the Universe using microlensing
phenomena. In 2001, the third phase (OGLE-III) of the project
began by including observations at Las Campanas Observatory,
Chile (Udalski 2004). We used a selection made by Becker et al.
2020 shown in Table 4 corresponding to I-band lightcurves.

Wide-field Infrared Survey Explorer (WISE):

The WISE project (Wright et al. 2010) collects observations of the
whole sky in four photometric bands. Approximately six months
was necessary to complete the first full coverage. Since then, the
telescope was intermittently used mainly to detect asteroids. In
2013, a release including the whole dataset was published with their
corresponding catalog and other tabular data. In this work, we used



Label  Quantity

Be 128
CEPH 101
EB 255
LPV 365
MOA 582
QSO 59
RRL 610
Total 2100

Table 1. MACHO dataset composition

Label Quantity
Beta_Persei 291
Delta_Scuti 70

RR_Lyrae_FM 2234
RR_Lyrae_FO 749
W_Ursae_Maj 1860

Total 5204
Table 2. LINEAR dataset composition

the W1-band selection (Nikutta et al. 2014) of lightcurves used by
Becker et al. 2020. The dataset composition is shown in Table 6.

Gaia DR2 Catalog of variable stars (Gaia):

The Gaia mission (Collaboration et al. 2016), promoted by the Euro-
pean Space Agency, is a collaboration to chart a three-dimensional
map of the galaxy to study the structure, composition, and evolution
of the Milky Way. The second data release (DR2) (Gaia et al. 2018)
includes observations for more than 1.3 billion objects in three
photometric bands of which we only use the G-passband. As in
WISE and OGLE, we used the Becker’s selection (Becker et al.
2020) of lightcurves. The objects used in this work are described in
Table 7.

The Catalina Sky Survey (CSS):

CSS (Drake et al. 2009) is a project led by NASA and is fully ded-
icated to discovering and tracking near-Earth objects. Specifically,
we worked with the second release, which contains photometries
derived from seven years of observation. We combined south
and northern variable stars with transient objects, being the most
heterogeneous dataset of this work. All the objects were measured
in the V-passband. Due to the diversity of objects, the cadences
deviation is higher than in other surveys, as shown in Table 8, and the
number of samples per class is hugely imbalanced. We balanced the
training set by undersampling the most numerous classes up to 300
and removing those with less than 100 samples, -i.e., Cepheid Type
I (CEP]), Low-amplitude 6 Scutis (LADS), Post-common-envelope
binaries (PCEB), and Periodic variable stars with unclear behavior
(Hump). The final dataset composition can be seen in Table 5.

4 METHODOLOGY

In this section, we describe our models, architectures and training
methodology used in this work. First, we introduce the preprocessing
step to prepare the data as input for the recurrent model (Section 4.1).

Label Quantity
Beta Persei 349
Classical Cepheid 130
RR Lyrae FM 798
Semireg PV 184
W Ursae Maj 1639
Total 3100

Table 3. ASAS dataset composition

Label Quantity

EC 6862

ED 21503
ESD 9475
Mira 6090

OSARG 234932

RRab 25943
RRc 7990

SRV 34835
CEP 7836
DSC 2822

NonVar 34815

Total 393103
Table 4. OGLE dataset composition

Label Quantity
Blazkho 243
CEPII 277
DSC 147
EA 300
EA_UP 153
ELL 142
EW 300
HADS 242
LPV 300
Misc 298
RRab 300
RRc 300
RRd 300
RS_CVn 300
Rotational Var 300
Transient 300
beta_Lyrae 279
Total 4481

Table 5. CSS dataset composition

Label Quantity
CEP 1884
DSCT_SXPHE 1098
Mira 1396
NC 2237
NonVar 32795
OSARG 53890
RRab 16412
RRc 3831
SRV 8605
Total 122148

Table 6. WISE dataset composition

MNRAS 000, 1-17 (2015)
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Label Quantity
CEP 6484
DSCT_SXPHE 8579
MIRA_SR 150215
RRAB 153392
RRC 32206
RRD 829
T2CEP 1736
Total 353441

Table 7. Gaia dataset composition

Dataset Cadence [days]
MACHO 2.65 + 6.64
OGLE 3.70 + 12.88

WISE 4.01 +£25.53
ASAS 5.59 +19.76
LINEAR 8.41 +31.41
CSS 14.67 + 42.26
Gaia 26.82 + 32.33

Table 8. Survey cadences in days

We describe two normalization techniques, the zero-padding strat-
egy for dealing with the variable-length problem, and a resampling
routine to decrease the number of computations within the network
loop. Then, we present the training architecture and the combina-
tion of the recurrent units to predict for new unobserved lightcurves
(4.2). Finally, we explain the metrics used (Section 4.4) and the model
selection strategy (Section 4.6), which are invariant to the number
of samples per class, addressing the consequences of training with
imbalanced datasets.

4.1 Data Preprocessing

Lightcurves in the form of time series fed the input of the network.
Each lightcurve is a matrix of L X D observations, where L is the
length or number of time steps, and D represents the dimension-
ality of the input parameters. In this work, we used observation
times, the mean, and the uncertainty of the magnitudes, hence D = 3.

As a preprocessing step, we start by scaling and shifting the
input parameters to help the optimization process. (Shanker et al.
1996, Jayalakshmi & Santhakumaran 2011). Many studies in
the literature use folded lightcurves where the observations are
shifted to the phase domain, facilitating the recognition of patterns.
However, the folding process is time-consuming because it requires
knowledge of the period, which is O(Llog(L)) (VanderPlas 2018)
and O(L) approximated (Mondrik et al. 2015). Moreover, this only
works on periodic signals, and we are also interested in classifying
nonperiodic objects. Thus, the time complexity of the proposed
method should be insignificant concerning the forward pass of the
network. It should also be as general as possible, avoiding any
assumptions on the domain, such as periodicity. Without these
considerations, we would be falling into the same problems of
models trained on features.

4.1.1 Normalization

We define two methods to scale and shift the observations. The first
normalization method (N1) uses a min-max scaler along the samples.

MNRAS 000, 1-17 (2015)

The second normalization (N2) calculates the z-score of each sample
separately to have zero mean and unit standard deviation. The best
normalization method for a given dataset is selected after training
as a hyperparameter of the model. The effect of the normalization
procedure may have a strong impact on the results of our models.
As an example, Figure 3 shows the distribution of the lightcurve
magnitudes of Cepheids and RR Lyrae, from the ASAS dataset. The
N1 normalization keeps the bimodality of the classes, which is more
straightforward than N2, where the network is forced to separate by
time dependencies instead of the current magnitude.

4.1.2 Padding Lightcurves

Working with real lightcurves implies dealing with the variable-
length problem of time series. The number of observations between
astronomical objects differs and, therefore, it is not possible to train
a matrix-based model such as neural networks. Consequently, we
need to standardize the length among samples.

The most typical solutions rely on the interpolation and padding
of lightcurves. Interpolation consists of estimating intermediate
values in the observation sequence. On the other hand, the padding
technique equalizes the lengths by inserting filler values (typically
zero) and removing them during loss calculation. This technique
is also known as zero-padding. In this work, we use the padding
technique since interpolation could affect the underlying astrophysics
properties of the lightcurves.

Even though zero padding solved the variable-length problem, a
large variance in the number of observations could be inefficient
in memory management. For example, on the ASAS dataset, the
longest lightcurve has 1745 observations, while the shortest has 7
observations (see Table 3). Using the padding technique implies
masking 1738 dummy observations for the shortest lightcurve or,
in other words, 1738 loop-operations without contribution to training.

We sampled from the original lightcurves to reduce the vari-
ance in the number of observations, as shown in Figure 4. Each
dashed line on the top chart defines a subset. The input of the
network will be L’ consecutive time steps such that L’ < L
the original number of observations. In this work, we defined
L’ = 200. It is important to highlight we only sample during
training, so we use the full length lightcurves on testing. The
subsampling process is also an alternative to the truncated back-
propagation (Werbos et al. 1990), which decomposes the gradient
as a sum of the losses at each time step (Puskorius & Feldkamp 1994).

4.2 Neural Network Architecture

The network architecture is presented in Figure 5. We use two
unidirectional layers of RNN, where ), the recurrent unit, is either
LSTM or PLSTM. Both layers have the same number of neurons
(H = 256) and are initialized with zero states (cq, hg). We use
a batch size of B=400 samples for training. Notice that an epoch
consists of N/B iterations, where N is the number of samples.

We apply layer normalization according to Ba et al. 2016
over each recurrent unit output. Additionally, we use a dropout
(Semeniuta et al. 2016) of 0.5 probability over the second-layer
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Figure 4. Masking and split preprocess step. A semi regular variable (SRV)
from OGLE-III dataset is shown on the top chart. On the bottom figure, a
zoom over a subsample of 200 observations is displayed in order to visualize
the new input of the network. If we have less than 200 observations, we fill
the last split with zeros (see the zero-padding portion in the top figure).

output. The last part of the architecture is a Fully Connected (FC)
classifier, which uses the hidden state to build a K-dim probability
vector; K is the number of classes.

After training, we fix the best weight configuration for the
LSTM and PLSTM classifiers, and we compute the forward pass
to generate [y, ¥1], the corresponding probability vectors, as
shown in Figure 6. The final prediction y is the average between the
predictions. We named this testing setup the L+P architecture.

4.3 Backpropagation

The backpropagation step (Boden 2002), starts with the loss esti-
mation that was carried out by the categorical cross-entropy (CCE)
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Figure 5. Recurrent network architecture. B, L, H, D and K are the batch
size (or number of samples), time steps, hidden units, input parameters, and
number of classes, respectively. The »; symbol represents the recurrent unit
operations. The first layer receives the input matrix x(©) with I = {0, ..., L}
and the states ¢!, kD). Note that the 0 superscript at the beginning defines
the initial states while the recurrent layer is defined by the subscript. In the
third layer we used a fully connected layer (F C) + softmax to obtain the class
probabilities.
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N Yo+
Yy=—7—

Figure 6. Testing architecture based on the combination of LSTM and PLSTM
adjusted models.
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function (also called softmax loss). For each b-th batch sample, we
calculate the corresponding loss at each [-th time step as follows:

B L K

. 1
Lece(Yxixk) =3 D000 vorklog(Fuin)- (16)
b=11=1 k=1

In the above formulation, y, € ZX is a one-hot vector associated
with the class label of each b-th sample, and §;,; € RX is prediction
vector at the /-th time step. Using the sum of losses along the L
time steps forces the network to predict as soon as possible, getting
better classification results when we have fewer observations in the
lightcurve.

Finally, we applied Adaptive Moment Estimation (ADAM) in-
troduced by Kingma & Ba 2014 with an initial learning rate of
0.001 to update the network weights. The learning curves associated
with the validation loss are presented in Appendix B.

4.4 Evaluation Metrics

Since the training sets are imbalanced, we employed the macro F1
score (Van Asch 2013), a harmonic mean of precision and recall
calculated separately for each k € K class,

Iil 5% Precisiony, x Recally

Fl = — —
Precisiony + Recally

K

k=0
where,

True Positivesy

Recall; = — :
¥~ True Positives  + False Negatives,

True Positivesy

Precisiony, = — — .
*~ True Positives; + False Positivesy

The precision score determines how many of our predicted
labels are actually true, and the recall indicates the number of true
labels we were able to identify correctly. Using the macro average,
all classes contribute equally regardless of how often they appear in
the dataset.

4.5 Random Forest Classifier

As mentioned in previous sections, we used a Random Forest (RF)
trained on features for comparison purposes. An RF is a classical
machine learning method that combines the outputs of several de-
cision trees for predicting (Breiman 2001). Each decision tree splits
the feature space to create isolated subgroups that separate objects
with similar properties. We usually run a feature extraction process
on the observations to characterize sequences using a standard set of
descriptors. In this work, we use a python library published by (Nun
et al. 2015) called FATS (Feature Analysis for Time Series), which
facilitates the extraction of time-series features, such as the period
and the autocorrelation function. Table C1 shows all the single-band
features we selected for training. Because of library constraints, we
only calculate features on lightcurves with at least ten observations.

4.6 Model Selection

We use k-fold cross-validation, with k=3. Each k-fold is composed
of training (50%), validation (25%), and testing (25%) random
subsets. We use the validation set during training to see how well

MNRAS 000, 1-17 (2015)

our recurrent classifier generalizes over unseen objects. We perform
the validation step at the end of each training epoch with a maximum
of 2000 repetitions. However, we can stop the training process if
the validation loss does not decrease compared to the best historical
loss. In this case, we set 30 epochs as patience for the early stopping.
In the case of RF, the validation set was used to find hyperparameters.

After k-fold training, we test our models using all available
observations. For RNNs, we use the last hidden state of every
lightcurve to build the final prediction. The best model is the one
that maximizes the mean F1 scores of the cross-validated models.

5 RESULTS

This section compares our model based on LSTM and PLSTM
recurrent units with a RF trained on features and other models from
the literature (Naul et al. 2018; Becker et al. 2020; Zorich et al. 2020).

Evaluation was shown to compute metrics using all available
observations in the lightcurve (offline) and incrementally in-time
(streaming). We observed significant improvements with the
proposed recurrent model to classify lightcurves with less than 20
observations, being an excellent alternative to classify objects with
less number of points in their lightcurves.

Next, we discuss the benefits of using recurrent models against an
RF regarding the feature extraction process and time complexity.
Confusion matrices and learning curves are shown in the Appendix
A.

5.1 Offline Evaluation

We start by testing models using the whole lightcurve and evaluating
them at the last time step. According to our cross-validation strategy
(see Section 4.6), we ran each model 3 times. For each architecture,
we select the type of normalization that maximizes the mean
F1-score. Table 9 summarizes the performance of each model based
on their precision, recall and F1-score.

For OGLE, WISE, Gaia, and LINEAR, the F1 score of the
single LSTM and PLSTM are higher than that of RF. For MACHO,
CSS, and ASAS, the PLSTM performs worse than the RF; however,
the LSTM models outperform the RF. Combining PLSTM and
LSTM recurrent neural networks works better in all datasets,
obtaining the best performance in terms of the F1 score. Notice that
for WISE, Gaia, LINEAR, and ASAS, the RF achieves a higher
recall score than the neural-based models. However, the RNNs
models obtain a higher precision than the RF (except for the PLSTM
trained on CSS data). We analyze these results in detail in Appendix
A.

We compared the performance of our models against other
state-of-the-art deep learning classifiers. Becker et al. 2020 applied
a Gated Recurrent Unit (GRU Cho et al. 2014) over the unfolded
lightcurves of WISE, OGLE, and Gaia. As shown in Table 9, our
combination of LSTM and PLSTM models obtain a higher F1-score,
outperforming Becker’s results.

For the LINEAR and ASAS datasets, we compare our model
against the recurrent autoencoder trained over folded lightcurves by
Naul et al. 2018. For the best configuration according to Table 9,



we obtained an accuracy of 0.903 + 0.007 for LINEAR and 0.971
+ (0.002 for ASAS. Naul et al. 2018 obtained an accuracy of 0.988
+ 0.003 for LINEAR, and 0.971 + 0.006 for ASAS using folded
lightcurves. However, our approach does not depend on folding
the lightcurves, saving the computation time of calculating the
periods. Naul et al. 2018 also report their accuracy over unfolded
lightcurves, decreasing to 0.781 for LINEAR, significantly lower
than our results. They did not explicitly report their accuracy for
ASAS.

For the MACHO dataset, Zorich et al. 2020 reached an Fl1
score of 0.86 by using a RF with incremental features over two
bands. They also obtain an F1 score of 0.91 using an RF trained
on FATS features (Nun et al. 2015). Our model outperforms both
results by obtaining an F1 score of 0.921 + 0.017 even though we
use only the B band.

Taking advantage of the PLSTM properties, we have shown
that the L+P model improves the offline classification of lightcurves
even when the single PLSTM performs worse than the other models
(i.e., LSTM and RF). Our model is able to classify using unfolded
lightcurves, which avoids the computational cost of calculating the
period to fold the lightcurves, and the number of points needed to
perform classification on a given lightcurve.

5.2 Streaming Evaluation

In Section 5.1, we evaluate our models using all lightcurve
observations. However, when analyzing real-world data, we require
classifying sources online (Borne 2007; Saha et al. 2014; Borne
2009; Forster et al. 2020). To assess our models’ quality in this
scenario, we evaluate them in terms of the number of observations
presented in the lightcurve.

Figure 9 shows the Fl-score of the RF, LSTM, PLSTM, and
L+P models for each dataset in terms of the number of points used
for the classification. As we mention on Section 4, the classifiers
were trained using all observations in the lightcurves subsamples,
while this evaluation is performed in terms of the number of points
of the lightcurves. As the number of observations increases, the F1
scores of neural-based models increase faster than those for the RF.
We hypothesize that some pre-calculated features could be more
affected by short-length lightcurves than the representations made by
RNNSs. We study this premise in Fig. 7, where we show the features
importance according to the RF model for the LINEAR dataset.
Attributes related to position, dispersion, and central tendency are
important to separate classes in this case. These features depend
on the number of observations. Conversely, RNNs propagate the
classification error at each time step during training, forcing the
network to discover better separability of the classes in early epochs.

Our L+P model takes advantage of the LSTM and PLSTM
units, improving the scores at different instants of the lightcurve. In
most cases, the LSTM and PLSTM models achieve similar results
(with the exception of LINEAR and CSS, where the LSTM model
significantly outperforms the PLSTM model). The L+P improves or
equals the F1-score of the best models by averaging the probabilities
of both recurrent architectures.

For the RF, most of the features need to be re-calculated
when a new sample arrives, which is time-consuming compared to
the RNNs. Figure 8 shows the mean and standard deviation of the
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Figure 7. LINEAR Feature importance according to the Gini-score of the
Random Forest classifier.
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Figure 8. Testing run-times in function of the number of observations among
different surveys.

prediction times for the feature-based classifier and RNNs tested on
the entire sequence across all datasets. The execution time of the
RFs for classifying lightcurves grows faster than RNNs because it
depends on the feature extraction process. For example, the period
estimation is O(L log L) and the autocorrelation function is O(L2),
where L is the number of observations. In contrast, RNNs only need
to update the last hidden state, O(1) for a single observation and
O(L) for the entire sequence.

6 CONCLUSIONS

In this work, we addressed the problem of the automatic classifi-
cation of unfolded real lightcurves. We introduced a deep learning
model (L+P) that combines the output probabilities from an LSTM
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Dataset Model Normalization F1 Score Recall Precision
LSTM N1 0.881 £0.008 0.879 £0.006 0.878 + 0.003
PLSTM N2 0.765 £ 0.034  0.803 +£0.010 0.777 £ 0.023
OGLE LSTM + PLSTM N1 & N2 0.881 + 0.005  0.881 + 0.004  0.879 + 0.005
RF N1 0.799 £0.025 0.842+0.030 0.780 + 0.017
Becker et.al., 2020 0.737 £0.005 0.730 £ 0.005  0.777 + 0.006
LSTM N1 0.598 £0.009 0.531 £0.008 0.543 + 0.004
PLSTM N1 0.585 +£0.006 0.529 £ 0.006 0.541 + 0.006
WISE LSTM + PLSTM N1 & N1 0.646 + 0.034  0.537 £ 0.003  0.551 + 0.002
RF N1 0472 £0.006 0.563 £ 0.006 0.463 + 0.007
Becker et.al., 2020 0462 +£0.004 0.450+0.010 0.551 +0.055
LSTM N1 0.805+0.016 0.734 £0.022 0.760 + 0.016
PLSTM N1 0.802 £0.027 0.733 £0.006 0.754 + 0.003
GAIA LSTM + PLSTM N1 & N1 0.863 £0.040 0.741 £0.009  0.772 + 0.010
RF N1 0.591 £0.000 0.814 + 0.004  0.569 + 0.000
Becker et.al., 2020 0.668 +£0.004 0.657 £0.006 0.713 + 0.007
LSTM N2 0.858 £0.016 0.848 +0.019  0.851 + 0.003
LINEAR PLSTM N2 0.764 £0.026  0.763 £0.042  0.758 + 0.030
LSTM + PLSTM N2 & N1 0.877 £ 0.021  0.822 +0.023  0.844 + 0.008
RF N1 0.736 £ 0.007  0.850 + 0.012  0.687 + 0.008
LSTM N2 0.836 £0.037 0.814+0.012 0.813 +£0.019
MACHO PLSTM N2 0.755+0.032 0.771 £0.014  0.745 £ 0.018
LSTM + PLSTM N2 & N1 0.921 + 0.017 0.867 + 0.008  0.886 + 0.015
RF N1 0.787 £0.082 0.818 £0.087 0.772 £ 0.078
LSTM N2 0.500 +£0.027  0.506 +£ 0.011  0.490 + 0.016
css PLSTM N1 0.396 £ 0.008 0.403 £0.016 0.386 + 0.013
LSTM + PLSTM N2 & N1 0.505 £ 0.030 0.519 £ 0.019  0.496 + 0.020
RF N1 0464 £0.004 0.493 £0.004 0.474 + 0.006
LSTM N2 0.931 £0.005 0.902 +£0.027 0911 +0.017
ASAS PLSTM N2 0.892 £0.020 0.894 +£0.016 0.891 +£0.014
LSTM + PLSTM N2 & N1 0.957 £ 0.007 0.920 +£0.015  0.935 + 0.011
RF N1 0.917 £0.023  0.961 + 0.012  0.891 + 0.027

Table 9. Offline table corresponding to the model evaluation using the entire lightcurve. The first and second columns are associated with the dataset and the
classification model, respectively. The third column denotes the normalization technique associated with the best cross-validated metrics on columns 4, 5, and
6. We also include the available scores from Becker et al. 2020, which is the current state of the art for WISE, Gaia, and OGLE.

and PLSTM classifiers. Empirical evaluations on seven single-band
catalogs, including periodic and nonperiodic astronomical objects,
demonstrated the L+P model outperforms models trained on features
and state-of-the-art classifiers.

We tested our proposed model both using the whole lightcurve and
incrementally in time. The L+P architecture obtained the best F1
score among all datasets in both scenarios. Moreover, the model
turned out to be an excellent alternative to classify short-length
lightcurves where the number of observations is less than 20.
The cumulative loss used to update weights forces the network to
accurately predict all time steps, not just in the last observation.

Recurrent neural networks need only the last hidden state to
predict new observations. The hidden states save features of the
lightcurve up to the last observed point. The update process is O(1),
which is ideal for streaming scenarios, unlike the RF that needs to
recalculate features using all time steps.

Since the neural-based models learn representations of the
unprocessed raw data, we can capture features without restricting
the domain using prior knowledge, such as the object’s periodicity.
However, the optimization process may be suboptimal when we have

a low number of samples to fit the model parameters. Future works
will focus on providing more information to the network by adding,
for example, stellar coordinates or multiple bands during training.

We have proved the robustness of our architecture on differ-
ent kinds of stars and astronomical catalogs. Our classifier works on
unfolded periodic and nonperiodic lightcurves, achieving compara-
ble or better-than results than other state-of-the-art approaches. We
will continue to delve into these neural architectures facing the new
generation of telescopes and their new real-world applications.
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DATA AVAILABILITY

All data can be found at https://drive.google.com/
drive/folders/1m2£fXgn25LYSyG5jEbpM3Y£dbpx9EQCD0O?
usp=sharing or downloading directly as indicated in
https://github.com/cridonoso/plstm_tf2.
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Figure Al. LINEAR confusion matrices for the predictions of the
LSTM+PLSTM (L+P) and the Random Forest (RF) classifiers.
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APPENDIX A: CONFUSION MATRICES

This section presents and analyzes the confusion matrices associated
with the best L+P and RF results, according to Table 9. Figures
A1-A7 show the confusion matrices for the seven datasets we used
in this work. Each percentage within the matrices indicates the
classifier prediction as a fraction of the total number of true labels
per class. Note that low dispersion in rows is related to a high
precision score. Similarly, a high recall score is associated with low
dispersion in columns.

Confusion matrices show that the L+P model tends to be
more precise than RF when predicting. RNNs learn representations
of data to separate classes while the RF receives predefined features,
standard for any time series. However, recurrent models depend
strongly on the training set, which directly affects the representation’s
quality. For example, in Figure A3, the L+P can identify most of
the ab-type RR Lyrae (RRab), but it is missing all c-type RRLyra
(RRc), and most of the SX Phoenicis Delta Scuti (DSCT_SXPHE).

High precision scores often expose an overfitting problem re-
lated to class imbalance. In the example of Figure A3, the RRab
has 16412 samples versus the 3831 RRc and 1098 DSCT_SXPHE.
It means that RRab dominates training in terms of the number of
samples, that the learned features will therefore be loaded towards
this class. Though the network overfits RRab, it can separate similar
pulsating time-scales, such as d-scutis and RR Lyrae, because of
their variability similitude. We use red boxes inside the matrices
for grouping similar classes. We hypothesize that the significant
variance in time scales (see Table 8) affects the network to separate
short-period objects.
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Figure A2. ASAS confusion matrices for the predictions of the
LSTM+PLSTM (L+P) and the Random Forest (RF) classifiers.
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Figure A3. WISE confusion matrices for the predictions of the
LSTM+PLSTM (L+P) and the Random Forest (RF) classifiers.
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Figure A4. MACHO confusion matrices for the predictions of the
LSTM+PLSTM (L+P) and the Random Forest (RF) classifiers.
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Figure AS. Gaia confusion matrices for the predictions of the LSTM+PLSTM
(L+P) and the Random Forest (RF) classifiers.
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Figure A6. OGLE confusion matrices for the predictions of the
LSTM+PLSTM (L+P) and the Random Forest (RF) classifiers.

APPENDIX B: LEARNING CURVES

Figure B1 shows the learning curves corresponding to the LSTM
and PLSTM, trained with min-max scaler (N1) and standardization
(N2) as input normalization technique. Each plot presents the mean
and standard deviation of the validation losses according to the
cross-validation strategy explained in section 4.6.

In all datasets, the N2 normalization converged faster than
the NI1. However, it is not a guarantee of achieving the best
validation loss. For example, in the WISE and Gaia dataset, the
model trained on lightcurves N2 converged faster than N1 but with
a worse validation loss.

In general, the N2 normalization is similar to N1 in terms of
minimum values but slower to converge. However, since the N2
normalization shift and scales lightcurves to have zero mean and unit
standard deviation, the optimization becomes more manageable than
in N1. We can see this effect in the variance of the learning curves in
Figure B. We also tried using N1 on each lightcurve separately and
N2 over the entire dataset. However, the results were not significant,
and we empirically decided to use the highest scoring alternatives.
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Figure A7. CSS confusion matrices for the predictions of the LSTM+PLSTM (L+P) and the Random Forest (RF) classifiers.
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Figure B1. Validation Loss for the LSTM and PLSTM. The curves show the mean and standard deviation of the 3-fold execution. The input was normalized
using min-max scaler (N1) or z-score standardization (N2)

APPENDIX C: FATS FEATURES

Table C1 shows the features used to train the RF model. We used all
single-band features on lightcurves with at least 10 observations.

This paper has been typeset from a TgX/IATgX file prepared by the author.
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FATS Feature Name

Reference

FATS Feature Name Reference
MedianAbsDev Richards et al. (2011)
PeriodLS Kim et al. (2011)

Freql_harmonics_amplitude_1

Richards et al. (2011)

Autocor_length

Kim et al. (2011)

Freql_harmonics_amplitude_2

Richards et al. (2011)

Q31

Kim et al. (2014)

Freql_harmonics_amplitude_3

Richards et al. (2011)

FluxPercentileRatioMid35

Richards et al. (2011)

Freql_harmonics_rel_phase_0

Richards et al. (2011)

FluxPercentileRatioMid50

Richards et al. (2011)

Freql_harmonics_rel_phase_1

Richards et al. (2011)

FluxPercentileRatioMid65

Richards et al. (2011)

Freql_harmonics_rel_phase_2

Richards et al. (2011)

FluxPercentileRatioMid20

Richards et al. (2011)

Freql_harmonics_rel_phase_3

Richards et al. (2011)

Beyond1Std

Richards et al. (2011)

Freq2_harmonics_amplitude_0

Richards et al. (2011)

Skew

Richards et al. (2011)

Freq2_harmonics_amplitude_1

Richards et al. (2011)

Con

Kim et al. (2014)

Freq2_harmonics_amplitude_2

Richards et al. (2011)

Gskew

Nun et al. (2015)

Freq2_harmonics_amplitude_3

Richards et al. (2011)

Meanvariance

Kim et al. (2011)

Freq2_harmonics_rel_phase_0

Richards et al. (2011)

StetsonK

Richards et al. (2011)

Freq2_harmonics_rel_phase_1

Richards et al. (2011)

FluxPercentileRatioMid80

Richards et al. (2011)

Freq2_harmonics_rel_phase_2

Richards et al. (2011)

CAR_sigma

Pichara et al. (2012)

Freq2_harmonics_rel_phase_3

Richards et al. (2011)

CAR_mean

Pichara et al. (2012)

Freq3_harmonics_amplitude_0

Richards et al. (2011)

CAR_tau

Pichara et al. (2012)

Freq3_harmonics_amplitude_1

Richards et al. (2011)

MedianBRP

Richards et al. (2011)

Freq3_harmonics_amplitude_2

Richards et al. (2011)

Rcs

Kim et al. (2011)

Freq3_harmonics_amplitude_3

Richards et al. (2011)

Std

Richards et al. (2011)

Freq3_harmonics_rel_phase_0

Richards et al. (2011)

SmallKurtosis

Richards et al. (2011)

Freq3_harmonics_rel_phase_1

Richards et al. (2011)

Mean

Kim et al. (2014)

Freq3_harmonics_rel_phase_2

Richards et al. (2011)

Amplitude

Richards et al. (2011)

Freq3_harmonics_rel_phase_3

Richards et al. (2011)

StructureFunction_index_21

Nun et al. (2015)

StructureFunction_index_31

Nun et al. (2015)

Freql_harmonics_amplitude_0

Richards et al. (2011)

Table C1. FATS features used for Random Forest training
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Psi_CS Kim et al. (2014)
Psi_eta Kim et al. (2014)
AndersonDarling Kim et al. (2009)
LinearTrend Richards et al. (2011)
PercentAmplitude Richards et al. (2011)
MaxSlope Richards et al. (2011)
PairSlopeTrend Richards et al. (2011)
Period_fit Kim et al. (2011)

StructureFunction_index_32

Nun et al. (2015)
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