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RESUMEN DE LA MEMORIA PARA OPTAR
AL TÍTULO DE DOCTOR EN CIENCIAS DE LA INGENIERÍA,
MENCIÓN MODELACIÓN MATEMÁTICA
POR: MARÍA EUGENIA MARTÍNEZ MARTINI
FECHA: 2021
PROF. GUÍA: CLAUDIO ANTONIO MUÑOZ CERÓN

ASYMPTOTIC DESCRIPTION OF DYNAMICS IN PLASMA AND WATER-WAVES
TYPE MODELS

This thesis is devoted to the study of the asymptotic dynamics in several fluid models of
key interest. These are on the one hand related to the classical Schrödinger equation and
on the other hand can be derived from the Zakharov Water Waves model, in the Craig-
Sulem-Zakharov formulation. Precisely, the models to be considered here are the following:
the Nonlinear Schrödinger equation (NLS), the Hartree equation, the Zakharov and Klein-
Gordon-Zakharov systems, the Zakharov-Rubenchik/Benney-Roskes system, and finally, the
Zakharov Water Waves problem. All these models are analyzed in one dimension, which is
interesting because of the lack of suitable dispersive estimates in the nonlinear setting.

Additionally, in terms of key questions, this thesis is divided in three main parts: a
first part where local virial estimates will provide spatial decay on compact sets, a second
part where time-expanding virial estimates permit to prove extensive decay properties for
completely untreated physical systems, and finally, a constructive part related to the existence
of nonlinear solitary waves in variable bottom water waves.

First of all, Chapter 2 is devoted to the study of the Nonlinear Schrödinger equation (with
and without potential), and the Hartree equation. We consider the decay property as a form
of nonlinear scattering in one dimension. We use virial identities to prove decay in compact
intervals in space for both equations under oddness (and sometimes smallness) condition on
the initial data.

Zakharov and Klein-Gordon-Zakharov systems are considered in Chapter 3, where we
prove two types of decay: one in compact intervals around the origin, and another one
for the energy norm in compact intervals along curves outside the light cone. No oddness
conditions are imposed for the second result.

Chapter 4 analyses decay properties of the Zakharov-Rubenchik/Benney-Roskes system
using different virial techniques. This time, we want to show strong local decay in extensive
regions of space, which is somehow unknown in the previous models. Taking advantage of
the underlying characteristic curves for the equation under work, a new virial method is
introduced to prove a decay result in growing compact intervals around these curves. We
also prove decay of the energy norm along curves outside the light cone.

The main part of this thesis is Chapter 5, which is concerned with the solitary wave
problem for the Zakharov water waves equation under variable domain. Indeed, we assume
a slightly changing, nonflat bottom. Adapting and extending the techniques introduced by
Martel, and recently by Ming, Rousset and Tzvetkov, we prove the existence of a soliton-like
solution for the nonflat bottom problem before it encounters the strong interaction regime.
The collision problem remains the main open question to be considered in the future.

Finally, Chapter 6 is devoted to the conclusion of this work, as well as new ideas and
forthcoming projects. Some of them have been remained elusive for us during these years,
but we plan to attack them in the near future.

i



ii



RESUMEN DE LA MEMORIA PARA OPTAR
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POR: MARÍA EUGENIA MARTÍNEZ MARTINI
FECHA: 2021
PROF. GUÍA: CLAUDIO ANTONIO MUÑOZ CERÓN

ASYMPTOTIC DESCRIPTION OF DYNAMICS IN PLASMA AND WATER-WAVES
TYPE MODELS

Esta tesis está dedicada al estudio de la dinámica asintótica en varios modelos de fluidos
de interés clave. Estos están por un lado relacionados con la ecuación clásica de Schrödinger
y por otro lado pueden derivarse del modelo de Zakharov Water Waves, en la formulación
de Craig-Sulem-Zakharov. Precisamente, los modelos a considerar aquí son los siguientes: la
ecuación no lineal de Schrödinger (NLS) y Hartree, los sistemas de Zakharov y Klein-Gordon-
Zakharov, el sistema de Zakharov-Rubenchik/Benney-Roskes, y finalmente, el problema de
Water Waves de Zakharov. Todos estos modelos se analizan en una dimensión, muy intere-
sante debido a la falta de estimaciones nolineales dispersivas adecuadas.

Además, en términos de preguntas clave, esta tesis se divide en tres partes principales:
una primera parte donde las estimaciones viriales locales proporcionarán decaimiento en
conjuntos de espacio compactos, una segunda donde las estimaciones viriales que se expanden
en el tiempo permiten demostrar propiedades de dispersión para sistemas físicos que no han
sido tratados, y finalmente, una parte constructiva relacionada con la existencia de ondas
solitarias no lineales en Water Waves de fondo variables.

En primer lugar, el Capítulo 2 está dedicado al estudio de las ecuaciones NLS (con y sin
potencial) y Hartree. Consideramos la propiedad de decaimiento como una forma de disper-
sión no lineal. Usamos identidades viriales para probar dispersión en intervalos compactos
en espacio en condiciones de imparidad (y a veces, pequeñez) para el dato inicial.

Los sistemas de Zakharov y Klein-Gordon-Zakharov se consideran en el Capítulo 3, donde
probamos dos tipos de decaimiento: uno en intervalos compactos alrededor del origen y otro
para la norma de energía en intervalos compactos a lo largo de curvas fuera del cono de luz.
No se imponen condiciones de imparidad para el segundo resultado.

El Capítulo 4 analiza las propiedades de decaimiento del sistema Zakharov-Rubenchik /
Benney-Roskes utilizando diferentes técnicas viriales. Esta vez, queremos mostrar un fuerte
decaimiento local en extensas regiones del espacio, desconocidas para los modelos anteriores.
Aprovechando las curvas características subyacentes para la ecuación en estudio, se introduce
un nuevo método virial para probar un resultado de dispersión en intervalos compactos
crecientes alrededor de estas curvas. También demostramos la dispersión de la norma de
enería a lo largo de las curvas fuera del cono de luz.

La parte principal de esta tesis es el Capítulo 5, que trata el problema de onda solitaria para
la ecuación ondas de agua de Zakharov, bajo un dominio variable. Asumimos un fondo no
plano ligeramente cambiante. Adaptando y ampliando las técnicas introducidas por Martel,
y por Ming, Rousset y Tzvetkov, probamos la existencia de una solución tipo solitón para
el problema de fondo no plano antes de que encuentre el régimen de interacción fuerte. El
problema de las colisiones sigue siendo la principal pregunta abierta a considerar en el futuro.

Finalmente, el Capítulo 6 está dedicado a la conclusión de este trabajo, así como a nuevas
ideas y proyectos futuros, algunos esquivos durante estos años.

iii



iv



Agradecimientos

Esta tesis se considera, a todas luces, un producto de mi persona. Sin embargo, para ser
honesta, creo que fue un trabajo en conjunto, no sólo por la ayuda matemática que recibí en
forma de discusión e ideas, sino también por el apoyo emocional que me dio la gente de mi
entorno a lo largo de los últimos cinco años. Tomo el doctorado como un proyecto personal,
no sólo académico, y no estaría escribiendo estos agradecimientos si no fuera por quienes me
acompañaron y me dieron afecto en el proceso.

En primer lugar, me gustaría agradecer a mi familia. Mamá y papá, gracias por apoyarme
a ciegas en cualquiera de mis proyectos, sin cuestionar mis decisiones ni siquiera cuando tal
vez quisieran. Por enseñarme que no hay carreras de chicas ni de chicos, por escucharme
con paciencia cuando se me ocurre hablarles de matemáticas, por aprender lo que son las
ecuaciones dispersivas. Su cariño es invaluable para mí.

También quiero agradecer a mis amigos, Rodrigo, Eve y Christopher, por ser mi familia
en Chile, el almuerzo de los domingos, los cafés después del almuerzo y una inacabable fuente
de apoyo y consuelo. Llevo la oficina 416 en mi corazón.

A Nata, que fue mi amiga, una hermana mayor prestada que no duda en ofrecerme su
ayuda cuando la necesito, que me saca de apuros a último momento. Gracias por ser un
salvavidas adentro del DIM y una compatriota con quien puedo compartir argentinismos sin
tener que explicarlos. Aprovecho también para agradecer a las y los funcionarios del DIM,
en particular a Silvia Mariano, Karen Hernández y a Cookie, por su trabajo y esfuerzo para
hacer del departamento un agradable lugar de trabajo.

A mis amigos, chilenos o argentinos, matemáticos o no, por ser mi espacio de descargo
y de recreación. A mis amigas de Río Cuarto, que monopolizan mis pausas virtuales y mis
vacaciones; a mis amigos matemáticos, por escuchar mis miedos y compartir mis almuerzos.

A Rodrigo, por acompañarme en la cuarentena no tan autoimpuesta justo antes de la
defensa, por su cariño y su comprensión en el último tramo del doctorado.

I would like to thank Prof. Frédéric Rousset and Juan Soler, for their kindness and
hospitality during my visit to their universities. Also, I should like to express my gratitude
to Prof. Hanne Van Den Bosch, Prof. Carlos Kenig, Prof. Michal Kowalczyk, Prof. Frédéric
Rousset and Prof. Catherine Sulem for having accepted to be part of the commission of this
thesis. Thank you for your time and dedication reading this work.

v



Finalmente, quiero agradecer enormemente a mi director de tesis, Prof. Claudio Muñoz,
por tener siempre un trato amable y preocuparse por el bienestar emocional y físico de sus
alumnos, por guiarme en mi carrera y no sólo en mi doctorado. Gracias, Claudio, por no
limitarte a ser sólo director de tesis, sino también consejero y mentor.

vi



Contents

I Introduction 1

1 Introduction 2
1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Notion of dispersion and decay . . . . . . . . . . . . . . . . . . . . . 3
1.2 Introducing Schrödinger Models . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Nonlinear Schrödinger equation . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Hartree equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.3 Zakharov and Klein-Gordon Zakharov system . . . . . . . . . . . . . 7
1.2.4 Zakharov-Rubenchik/Benney-Roskes system . . . . . . . . . . . . . . 10
1.2.5 The virial method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Zakharov Water Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.1 Derivation of the model . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.1 Asymptotic dynamics of small solutions for NLS and Hartree equations 17
1.4.2 Zakharov systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4.3 Zakharov-Rubenchik/Benney-Roskes . . . . . . . . . . . . . . . . . . 21
1.4.4 The solitary wave for Zakharov water waves . . . . . . . . . . . . . . 23

II Two Schrödinger models 32

2 Decay of small odd solutions for long range Schrödinger and Hartree equa-
tions in one dimension 33
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2 Schrödinger equation without potential . . . . . . . . . . . . . . . . . . . . . 40

2.2.1 A virial identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2.2 Analysis of a bilinear form . . . . . . . . . . . . . . . . . . . . . . . . 42
2.2.3 Estimates of the terms on (2.20) . . . . . . . . . . . . . . . . . . . . . 43
2.2.4 End of proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . 47

2.3 NLS with potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.3.1 Virial Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.3.2 Analysis of a modified bilinear form . . . . . . . . . . . . . . . . . . . 49
2.3.3 Estimates of the terms on (3.25) . . . . . . . . . . . . . . . . . . . . . 52
2.3.4 Proof main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.4 The Hartree Equation. Proof of Theorem 2.4 . . . . . . . . . . . . . . . . . . 53
2.4.1 Virial Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

vii



2.4.2 Proof of Theorem 2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3 On the decay problem for the Zakharov and Klein-Gordon Zakharov sys-
tems in one dimension 62
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.1.1 Main results for Zakharov system . . . . . . . . . . . . . . . . . . . . 66
3.1.2 Main results for Klein-Gordon-Zakharov system . . . . . . . . . . . . 69

3.2 Decay on compact intervals for Zakharov . . . . . . . . . . . . . . . . . . . . 71
3.2.1 Virial argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.2.2 Proof of Theorem 3.1: . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.3 Decay in regions along curves for Zakharov . . . . . . . . . . . . . . . . . . . 78
3.3.1 First part of the proof of Theorem 3.2 . . . . . . . . . . . . . . . . . 79
3.3.2 Second part of the proof of Theorem 3.2 . . . . . . . . . . . . . . . . 80

3.4 Decay on compact intervals for Klein-Gordon-Zakharov . . . . . . . . . . . 83
3.4.1 Virial argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.4.2 Conclusion of the proof . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.5 Decay in regions along curves for Klein-Gordon-Zakharov . . . . . . . . . . . 86
3.5.1 Proof Theorem 3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

III The Zakharov-Rubenchik / Benney-Roskes model 92

4 On long-time behavior of solutions of the Zakharov-Rubenchik/Benney-
Roskes system 93
4.1 Introduction and main results . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.1.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.1.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.2 Preliminary lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.2.1 Virial identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.2.2 Uniform boundedness of the energy norm . . . . . . . . . . . . . . . . 102

4.3 Proof of Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.3.1 Time integrability of |ψ|2 . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.3.2 Time Integrability of the full solution . . . . . . . . . . . . . . . . . . 105

4.4 Decay in far field regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.4.1 Time integrability of the weighted L2-norm . . . . . . . . . . . . . . . 112
4.4.2 Decay of the L2-norm . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.4.3 Time-integrability of the full solution . . . . . . . . . . . . . . . . . . 114
4.4.4 Decay of the full solution . . . . . . . . . . . . . . . . . . . . . . . . . 117

IV The Zakharov Water Waves problem under variable bottom122

5 Existence of solitary waves in the Water Waves Zakharov system with
slowly varying bottom 123
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.1.1 Setting and main result . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.2.1 Study of the Dirichlet-Neumann operator . . . . . . . . . . . . . . . . 130

viii



5.2.2 Shape derivatives for the Dirichlet-Neumann operator . . . . . . . . . 136
5.2.3 Linearization around the solitary wave . . . . . . . . . . . . . . . . . 137

5.3 Error produced by the solitary wave in a non-flat bottom system . . . . . . . 141
5.4 Construction of an approximate solution . . . . . . . . . . . . . . . . . . . . 147

5.4.1 The homogeneous linear equation . . . . . . . . . . . . . . . . . . . . 149
5.4.2 Lower-order estimates . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.4.3 Proof of Theorem 5.13 . . . . . . . . . . . . . . . . . . . . . . . . . . 162
5.4.4 Proof of Theorem 5.13 . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.5 Construction of the exact solution . . . . . . . . . . . . . . . . . . . . . . . . 168

V Conclusion 201

6 Conclusions and Perspectives 202
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

6.2.1 Decay for non-small odd solutions to semilinear Schrödinger equation 203
6.2.2 Decay result for focusing Hartree equation . . . . . . . . . . . . . . . 204
6.2.3 Behavior of solitons for Zakharov Water Waves models under changes

in the bottom of the fluid . . . . . . . . . . . . . . . . . . . . . . . . 204

7 Bibliography 207

ix



x



Part I

Introduction

1



Chapter 1

Introduction

Contents
1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Notion of dispersion and decay . . . . . . . . . . . . . . . . . . . . 3

1.2 Introducing Schrödinger Models . . . . . . . . . . . . . . . . . . . 5

1.2.1 Nonlinear Schrödinger equation . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Hartree equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.3 Zakharov and Klein-Gordon Zakharov system . . . . . . . . . . . . 7

1.2.4 Zakharov-Rubenchik/Benney-Roskes system . . . . . . . . . . . . . 10

1.2.5 The virial method . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Zakharov Water Waves . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.1 Derivation of the model . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4.1 Asymptotic dynamics of small solutions for NLS and Hartree equations 17

1.4.2 Zakharov systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4.3 Zakharov-Rubenchik/Benney-Roskes . . . . . . . . . . . . . . . . . 21

1.4.4 The solitary wave for Zakharov water waves . . . . . . . . . . . . . 23

1.1 Preliminaries

Physics, as every science, became an important source of questions and, eventually, (although,
not always) of answers. As a consequence, the joint growth of both physics and mathematics,
the last one being the main tool to model the observable world, became more complex and
more synergetic. Such evolution of mathematical methods for application to problems in
physics is commonly referred to as mathematical physics. The study of Partial Differential
Equations is, perhaps, one of the theories most closely associated with this concept.
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In physics, dispersion relations constitute the characterization of the plane wave motion in
a medium. They represent an important part of mathematical physics and cover various types
of classical and quantum scattering phenomena, describing the behaviour and interaction
between solutions to partial differential equations. Hence, the study of dispersive equations
becomes essential to understand physical events. In this context, the Schrödinger equation
is probably one of the most relevant equations of the area. Not only it constitutes the basis
for quantum mechanics, it is also a good dispersive model, as it is usually simpler in terms
of techniques than others in the area, such as the wave equation or the Korteweg-de Vries
equation.

In fluid dynamics, dispersion of water waves usually means that waves of different wave-
lengths travel at different phase speeds, that is, frequency dispersion. In fluids with a free
surface, water waves are travelling waves dealing with surface tension and gravity forces,
that coerce its elevation into the resting state. Such interaction between restoring forces and
surface elevation shape what is considered a dispersive medium, and different mediums imply
specific mathematical models. For instance, if the water depth is large compared to the wave
length of the water waves (deep water), envelope solitons described by Schrödinger equa-
tion may occur. Another deep water model for the description of gravitational waves is the
Zakharov-Rubenchik/Benney-Roskes system. In this context, an important model that has
exhibited an increasing interest in the bibliography over the last years is the Zakharov/Craig-
Sulem formulation. It arises when considering a non-vanishing shoreline and assuming that
the flow is at rest at infinity, which essentially means to be away from the coast. We will
give a more detailed derivation of the Zakharov/Craig-Sulem model in Chapter 5.

Other examples of dispersive fluid models that we will consider in this work are the
Zakharov systems, which describe long-wavelength small-amplitude Langmuir oscillations in
a ionized plasma, and Zakharov-Rubenchik/Benney-Roskes, mainly treated in Chapter 3.

This thesis was made with important collaborations and research visits. Part of this work
was done while I was visiting Université Paris-Saclay (Paris) and Universidad de Granada
FisyMat (Granada). I would like to acknowledge professors Juan Soler and Frédéric Rousset
for their great support and their help making these travels possible.

Before moving to the description of the models considered in this thesis, we shortly recall
some important notions for this work. We concentrate ourselves in the concept of dispersion
and decay.

1.1.1 Notion of dispersion and decay

Dispersion occurs when pure plane waves of different wavelengths have different propagation
velocities, so that a wave packet of mixed wavelengths tends to spread out in space; they
scatter. A linear PDE is said to be dispersive if plane wave type solutions present such
dispersion.

For instance, let us consider the linear Schrödinger equation

iut `∆u “ 0, pt, xq P Rˆ Rd. (1.1)

3



Then, wave plane solutions of amplitude A of the form upt, xq “ Aeipkx´ωtq satisfy that the
frequency ω is given by the square of the wave-number k, namely ωpkq “ |k|2. Moreover,
using Fourier transform we obtain an explicit convolution representation from which we also
have the dispersive inequality:

}uptq}L8pRdq Àd |t|
´d{2

}up0q}L1pRdq. (1.2)

Such decay estimate holds for any solution whose initial data up0q belongs to L1pRdq.

Now, the non-linear case is another matter in terms of what to expect from solutions and
their asymptotic behaviour. The main issue in this regard is the existence of non-decaying
solutions such as solitons, that is, travelling non-dissipative waves that maintain their shape
while they propagate at a constant velocity. Moreover, the interest produced by the di-
chotomy between the existence of dispersion and solitary waves for non-linear models even-
tually hinted what is called the "soliton resolution conjecture". This conjecture essentially
means that solutions with generic initial data should eventually resolve into a finite number
of solitons, moving at different speeds, plus a radiative term which goes to zero. Hence,
we can no longer count on decaying solutions without any further condition. The balance
between non-linearity and dispersion enables the existence of solitary waves and enriches the
study of large-time behaviour of solutions.

In this thesis, when dealing with non-linear dispersive models, we will say that a form
of scattering or dispersion is present if a solution decays to zero in some sense as time
tends to 8. In particular, we refer to scattering to a free solution when a global solution
behaves asymptotically like solutions to the linear equation. More precisely, for the nonlinear
Schödinger equation (NLS):

Definition 1.1. A global solution u of NLS equation is said to scatter in the space X to a
free solution as tÑ ˘8 if there exists u˘ P X such that

lim
tÑ˘8

}eit∆u˘ ´ upt, ¨q}X “ 0,

where eit∆ is the semi-group associated to the Scrödinger equation.

The smaller the dimension, the less probable that scattering occur, and modifications are
needed. This thesis is concerned with decay properties for the following one dimensional
Schrödinger type models: NLS and Hartree equations, Zakharov, Klein-Gordon Zakharov
(KG Zakharov), and Zakharov-Rubenchik/Benney Roskes systems (ZR/BR). When proving
decay results, the main goal is to avoid encounters with solitary waves, multi-solitions and
other non-decaying solutions. To do so, we shall make use of appropriate virial identities,
constructed essentially to ensure soliton-free regimes. In addition, in Section 5, we shall study
the existence for soliton-type solutions to the Zakharov Water Waves system (ZWW). We
will construct a solution to the ZWW that behaves asymptotically (as time tends to ´8)
like a travelling wave. To that end, we shall also study the already known solitary waves for
ZWW (in this case, in the flat-bottom regime).
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1.2 Introducing Schrödinger Models

Schrödinger equation was first introduced by Erwin Schrödinger in 1925, as he decided to
find a proper 3-dimensional wave equation for the electron. It is the fundamental law of
non-relativistic quantum mechanics, a physical theory that deals with those phenomena that
occur at microscopic scales of the order of Planck’s constant. From a mathematical point of
view, the Schrödinger equation is a delicate problem, and it has a jumble of properties of
parabolic and hyperbolic equations.

Schrödinger’s nonlinear equation has received great attention in mathematics over the
past 50 years, in part because of its many applications, such as in nonlinear optics or in deep
water models. Variants and generalizations appeared over the years, extending its study and
giving rise to new models.

We are concerned with the following models: NLS and Hartree equations, Zakharov, Klein-
Gordon Zakharov, and Zakharov-Rubenchik/Benney Roskes systems. As mentioned before,
we are interested in their scattering properties and long-time behaviour, which ultimately
imply the need to understand their non-decaying solutions, as well. Throughout this section,
we shall introduce the precise models, along with some basic properties, and a summarized
study on their non-decaying solutions.

1.2.1 Nonlinear Schrödinger equation

In Chapter 2, we will consider the non-linear Schrödinger equation (NLS)

iut ` uxx “ µV pxqu` f
`

|u|2
˘

u, pt, xq P Rˆ R, (1.3)

where the potential V : RÑ R is a Schwartz even function and f : RÑ R is a function such
that for 1 ă p ă 5,

|fpsq| À s
p´1
2 ,

and satisfies that f ˝ s2 is locally Lipschitz continuous.

In the particular case,

fpsq “ σs
p´1
2 , 1 ă p ă 5

the semilinear Schrödinger equation is recovered. We will say the equation is focusing
when σ “ 1. Otherwise (σ “ ´1), we will be in the defocusing case. For p “ 3, the model is
integrable.

The equation (1.3) is Hamiltonian, and it is characterized by having at least the following
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conservation laws, defined as Mass, Energy and Momentum, respectively:

Mpuptqq :“

ż

R
|uptq|2dx “Mpup0qq, (1.4)

Epuptqq :“

ż

R
|∇uptq|2dx´ σ 2

p`1
|uptq|p`1dx “ Epup0qq, (1.5)

P puptqq :“ Im
ż

R
uptquxptqdx “ P pup0qq. (1.6)

It is well-known that this one-dimensional semilinear Schödinger equation is globally well-
posed for initial data in H1pRq when 1 ă p ă 5, and blow up may occur if p ě 5, as was
proved by Glassey, [25], Merle-Raphaël [43] and other subsequent works.

Solitons, multi-solitons and breathers: For a better understanding of decay and scattering
for NLS (1.3), we need to study non-decaying solutions and how to rule them out from our
results. Equation (1.3) presents solitons or solitary waves of the form

upt, xq “ eictQcpxq

where Qc ą 0 is a stationary solution to the ODE Q2c `|Qc|
pp´1qQ´ cQc “ 0, Qc P H

1. Early
on, Zakharov and Shabat proved that this solution is even in space and small in H1 provided
c " 1, (see [81]). Moreover, because of the many symmetries that the equation presents, for
any v, x0, γ P R,

upt, xq “ Qcpx´ x0 ´ vtqe
ipp1{2qvx´p1{4qv2t`ct`γq

is also a solution. Such solutions are stable, as stated, for instance, by Cazenave-Lions [8]
and Weinstein [74].

In addition, there are also multi-solitons solutions that are not even, which means that even
though parity conditions are a good way to rule out solitary waves, they are not completely
effective. Indeed, Martel, Merle and Tsai [35] proved the existence (and H1 stability) of
solutions that decompose like the sum of solitary waves with non-zero speed plus radiation
(later improved by Vihn [52]), and these solutions could very well be odd.

Finally, equation (1.3) can present breathers, that is periodic in time solutions but with
non-trivial period. Such is the case for the (scattering) critical one-dimensional NLS (p “ 3),
that possesses explicit breather solutions, such as the Satsuma-Yajima breather [66],

BSY pt, xq :“
4
?

2eitpcoshp3xq ` 3e8it coshpxqq

coshp4xq ` 4 coshp2xq ` 3 coshp8tq
,

or the Peregrine breather [63],

BP pt, xq :“ eit

ˆ

1´
4p1` 2itq

1` 4t2 ` 2x2

˙

.

Both breathers satisfy that are even and arbitrarily small.
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1.2.2 Hartree equation

The Hartree equation is a non-local model that can be written in one dimension of space as

iut ` uxx “ σ
`

|x|´α ˚ |u|2
˘

u, pt, xq P Rˆ R. (1.7)

where 0 ă α ă 1 and σ “ ˘1 determines the focusing (σ “ ´1) or defocusing (σ “ 1) nature
of the model.

This equation was first derived by Douglas Hartree in 1927, as he sets himself the goal to
first calculate the solutions to Schrödinger’s equation for individual electrons. The solution
to the original Schrödinger equation is a wave function which describes all of the electrons.
He assumed that the nucleus together with the electrons formed a spherically symmetric
field and found an equation for each electron. Then, the wavefunction of a system could
be computed as a combination of wavefunctions of individual particles, solving Hartree’s
equations for each electron.

The Hartree equation (1.7) is locally well-posed, extended to global well posedness for
small initial data. In addition, this equation conserves the Mass, Momentum and Energy,
defined (respectively) below:

Mpuptqq :“

ż

R
|uptq|2dx “M0,

Epuptqq :“
1

2

ż

R
|∇uptq|2dx`

σ

4

ż

R

`

|x|´a ˚ |u|2
˘

|u|2dx “ E0,

P puptqq :“ Im
ż

R
uptquxptqdx “ P0.

Non-decaying solutions for Hartree: Regarding the existence of solitary waves, the situa-
tion is fairly similar to NLS. Focusing Hartree equation (1.7) (σ “ 1) admits solitary waves
solutions (or solitons) of the form

upt, xq “ eictQcpxq P H
1

where the ground state Qc : R Ñ R is an H1-solution of the Choquard equation ∆Q `
´

1
|x|a
˚ |Q|2

¯

Q ´ cQ “ 0, c P R. These solutions are, up to translation and inversion of the
sign, positive and radially symmetric functions, see, for instance, the works of Cingolani-
Secchi-Squassina [11] and Ruiz [64] for the proofs of such properties, or VanSchaftingen for
a beautiful review of the Choquard equation [46]. Moreover, solitary waves for the focusing
Hartree equation are stable, as was proven by Cazenave and Lions in [8]. It is not expected
for the defocusing Hartree equation (σ “ ´1) to present soliton-like solutions.

1.2.3 Zakharov and Klein-Gordon Zakharov system

In Chapter 3, we will deal with the Cauchy problem for the one dimensional Zakharov system
iut `∆u “ nu, pt, xq P Rˆ R,
α´2ntt ´∆n “ ∆|u|2, pt, xq P Rˆ R,
pu, nq pt “ 0q “ pu0, n0q, ntpt “ 0q “ n1,

(1.8)
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where upt, xq : Rˆ RÑ C, npt, xq : Rˆ RÑ R and α ą 0.

Chapter 3 also studies the Cauchy problem for Klein-Gordon Zakharov system in one
dimension

c´2utt ´∆u` c2u “ ´nu, pt, xq P Rˆ R,
α´2ntt ´∆n “ ∆|u|2 pt, xq P Rˆ R,
pu, nq pt “ 0q “ pu0, n0q, put, ntq pt “ 0q “ pu1, n1q,

(1.9)

where upt, xq : Rˆ RÑ R, npt, xq : Rˆ RÑ R, α ą 0, c ą 0.

Plasma is one of the most abundant form of ordinary matter in the universe, second
only to dark matter and dark energy, greatly studied in astrophysics, and can be artificially
generated by heating a neutral gas or subjecting it to a strong electromagnetic field. The
Zakharov systems, first derived by Zakharov in 1921 [79], model long-wavelength small-
amplitude Langmuir waves (rapid oscillations of the electron density in conducting media)
in a ionized plasma. They describe nonlinear interactions between high-frequency, electro-
magnetic waves and low-frequency, acoustic type waves. Here, the unknowns represent the
mean mode of the ionic fluctuations of density in the plasma n and the changing amplitude of
electric field u, which varies slowly compared to the unperturbed plasma frequency. Constants
α and c are the ion sound speed and the plasma frequency, respectively.

Zakharov systems can be derived from the two-fluid Euler–Maxwell system by considering
a plasma as two interpenetrating fluids, an electron fluid and an ion fluid. See the work of
Sulem-Sulem [71] and of Texier [72], where the authors expose a very detailed derivation of
the model.

An appealing aspect of these equations are the limiting cases. From the Klein-Gordon-
Zakharov system (1.9) in the high frequency case (c " 1), one could recover Zakharov (1.8)
as a limiting equation. Indeed, if one considers ũ “ eic2tu in (1.9), then it follows that

c´2ũtt ´ 2iũt ´∆ũ “ ´nũ,

α´2ntt ´∆n “ ∆|ũ|2.

Thus, formally, taking cÑ 8, the Zakharov system (1.8) is obtained.

Another interesting limiting case accurs in the subsonic regime (α ă c), in which density
perturbations are changing slowly. This would imply that taking α Ñ 8, the Langmuir
waves follow the cubic semilinear Schrodinger equation. Both subsonic and high frequency
limits were extensively studied in the work of Masmoudi and Nakanishi [36]-[39].

System (1.8) in one dimension is globally well-posed for initial data in H1pRq ˆ L2pRq ˆ
Ĥ´1pRq, where

w P Ĥs if there exists v : Rd
Ñ Rd such that w “ ∇ ¨ v and }w}Ĥs “ }v}Hs`1 .

Some works in this regard are Sulem-Sulem [70] for local well-posedness in d “ 1, 2, 3, ex-
tended to global well posedness by Ozawa-Tsutsumi [60], Colliander [13] and Pecher [62].
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For KGZ (1.9), well-posedness results hold in the energy space H1 ˆ L2 ˆ L2 ˆ Ĥ´1. See,
for instance, Ozawa-Tsutaya-Tsutsumi [57]-[58], Otha-Todorova [56], Masmoudi-Nakanishi in
[39]-[40].

The Zakharov system (1.8) preserves the mass }uptq}L2pRq “ }up0q}L2pRq and both systems
preserve the energy:

• Energy associated to Zakharov (1.8)

HSptq :“

ż

R
|∇upt, xq|2 ` 1

2

´

|npt, xq|2 `
1

α2
|D´1ntpt, xq|

2
¯

` npt, xq|upt, xq|2dx,

• Energy associated to KGZ (1.9)

HKGptq “

ż

R
c2
|upt, xq|2 ` |∇upt, xq|2 ` 1

c2
|utpt, xq|

2
`

1

2
|npt, xq|2

`
1

2

ˇ

ˇαD´1ntpt, xq
ˇ

ˇ

2
` npt, xq|upt, xq|2dx “ HKGp0q,

where D “
?
´∆. We point out that the energy for both systems could very well be negative.

Nevertheless, an interesting property of the one-dimensional Zakharov systems (1.8) and (1.9)
is the fact that, even though not conserved, it is possible to find uniform bounds for the energy
norm of global solutions. Indeed, using Gagliardo-Nirenberg inequality:

}u}4L4 ď }ux}L2}u}3L2

one can prove the existence of constants depending on initial such that:

• For a global solution of Zakharov system (1.8):
ż

R

`

|uxpt, xq|
2
` |upt, xq|2 ` |D´1ntpt, xq|

2
` |npt, xq|2

˘

dx ď KS, (1.10)

• For a global solution of KGZ system (1.9):
ż

R
|utpt, xq|

2
` |uxpt, xq|

2
` |upt, xq|2 ` |npt, xq|2 ` |D´1ntpt, xq|

2dx ď KKG. (1.11)

A more detailed proof of both bounds can be found in Chapter 3, Lemmas 3.6 and
3.13.

Non-decaying solution for Zakharov sistem: Solitary waves for the Zakharov system are
solutions of the form

upt, xq “ e´iωtei c
2
px´ctquω,cpx´ ctq, npt, xq “ nω,cpx´ ctq, (1.12)

where uω,c and nω,c are even functions (the explicit formula can be found in Chapter 3) and
c, ω are real numbers satisfying 4ω ` c2 ě 0 and 1 ´ c2 ą 0. Under such conditions, the
travelling wave turns out to be orbitally stable, as proven by Wu in [77]. Moreover, for
solitons pu, nq described by (1.12), it is easy to see that u, n are both even in space, which
inspires parity conditions for our results.
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In addition to soliton-like solutions, there also exist solutions that blow up both in finite
and infinite time. Merle [41, 42] adapts the Glassey technics [25] and uses virial identies to
prove that negative energy solutions blow up. Indeed, he considered the perturbed virial
quantity:

d2

dt2

ˆ

1

4

ż

R
|x|2|u|2 `

ż t

0

1

α2

`

x ¨D´1nt
˘

n

˙

“ dHs ´ pd´ 2q

ż

R
|∇u|2 ´ 1

α2
pd´ 1q

ż

R
|D´1nt|

2.

Consequently, for solutions to (1.8) in dimension d “ 2, 3 and such that Hs ă 0, blow-up is
obtained.

Non-decaying solutions for KGZ: Similarly to the Zakharov equation, travelling waves for
the KGZ system (1.9) can be constructed as solutions described by

upt, xq “ e´iωtei c
2
px´ctquω,cpx´ ctq,

npt, xq “ nω,cpx´ ctq,

with even functions uω,c, nω,c, described more precisely in Chapter 3. Then, solitary waves
exist when the real constants ω and c satisfy 1 ´ c2 ´ ω2 ą 0. Moreover, Chen [10] proved
they are orbitally stable.

1.2.4 Zakharov-Rubenchik/Benney-Roskes system

Chapter 4 deals with the decay properties for solutions of the initial value problem (IVP)
associated with the Zakharov-Rubenchik/Benney-Roskes (ZR/BR) system in one space di-
mension

iBtψ ` ωB
2
xψ “ γ

`

η ´ 1
2
αρ` q|ψ|2

˘

ψ, pt, xq P Rˆ R
θBtρ` Bx

`

η ´ αρ
˘

“ ´γBxp|ψ|
2
q, pt, xq P Rˆ R

θBtη ` Bx
`

βρ´ αη
˘

“ 1
2
αγBxp|ψ|

2
q, pt, xq P Rˆ R

pψ, ρ, ηq pt “ 0, xq “ pψ0, ρ0, η0q ,

(1.13)

where

ω ą 0, β ą 0, γ ą 0, β ´ α2
ą 0, 0 ă θ ă 1, and q :“ γ `

αpαγ ´ 1q

2pβ ´ α2q
,

are all real parameters.

Model (1.13) corresponds to the one-dimensional case of the most general system de-
rived by Zakharov and Rubenchik [80] to describe the interaction of spectrally narrow high-
frequency wave packets of small amplitude with low-frequency acoustic type oscillations. The
unknown ψpt, xq, ρpt, xq and ηpt, xq stand for:

• ψ : Rˆ RÑ C, the amplitude of the carrying (high frequency) waves,
• ρ, η : Rˆ RÑ R, low-frequency oscillations.

This system was also independently found by Benney and Roskes [5] in the context of
gravity waves. System (1.13) has also been derived in several other physical situations, such
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as for example, in the study of Alfvén waves (transverse oscillations of the magnetic fields)
in the Magneto-Hydrodynamics equations (see for instance [9, 61]).

A characteristic that makes this model so rich is the many limiting cases it contains. For
instance, in the supersonic limit, the classical (scalar) Zakharov system (1.8) is recovered. In
the subsonic limit it is possible to obtain (formally) the Davey-Stewartson, a generalization
in dimensions d “ 2, 3 of Schrödinger equations, but the rigorous proof remains still open.
In the one dimensional case, we can also consider the adiabiatic limit, that is, to take θ Ñ 0
in (1.13), from where we can formally see that ρpt, xq and ηpt, xq satisfy now the following
relations

ρ “ ´
γα

2pβ ´ α2q
|ψ|2, η “ ´γ

β ´ α2{2

β ´ α2
|ψ|2.

Then, we infer that the complex amplitude ψ solves the cubic nonlinear Schrödinger equation

iBtψ ` ωB
2
xψ “ ´

γα

3pβ ´ α2q
|ψ|2ψ.

A rigorous justification of such limit was introduced by Oliveira in [54].

On the other hand, the ZR/BR system (1.13) is Hamiltonian and preserves the Mass,
Energy and Momentum:

M
`

ψptq, ρptq, ηptq
˘

:“

ż

R
|ψpt, xq|2dx “Mpψ0, ρ0, η0q,

E
`

ψptq, ρptq, ηptq
˘

:“

ż

R

´

ω|ψx|
2
`

γq
2
|ψ|4 ` β

2
ρ2
` 1

2
η2
`

γ
2
p2η ´ αρq|ψ|2 ´ αρη

¯

dx

“ Epψ0, ρ0, η0q,

P
`

ψptq, ρptq, ηptq
˘

:“ Im

ż

R
ψψx ´ θ

ż

R
ρpt, xqηpt, xqdx “ P pψ0, ρ0, η0q.x

Similar to the Zakharov systems, introduced in the previous subsection, even though the
energy could very well be negative, one can use it along with the mass to find a uniform
bound on the energy norm. Indeed, thanks to Gagliardo-Nirenberg inequality, one finds that

}ψptq}2H1 ` }ρptq}2L2 ` }ηptq}2L2 ď C, @t P R.

The precise statement (and proof) can be found in Chapter 4, Lemma 4.5.

System (1.13) is globally well-posed for the one-dimensional case in the energy space
H1p Rq ˆ L2pRq ˆ L2pRq. The first approach in this regard is found in [53], where Oliveira
proved local and global well-posedness in the space H2pRq ˆH1pRq ˆH1pRq, later improved
by Linares and Matheus [33] to well-posedness for initial data in the energy space H1pRq ˆ
L2pRq ˆ L2pRq.

Existence of solitary waves :

Regarding the existence of solitary waves, in the case β´α2 ą 0, γ ą 0 and θ ă 1, Oliveira
has proved in [53] the existence and the orbital stability of solitary waves of the form

`

ψ, ρ, ηqpt, xq :“
`

eiλteicx{2ωRpx´ ctq, apcq|Rpx´ ctq|2, bpcq|Rpx´ ctq|2
˘

, (1.14)
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where λ P R, c ě 0 and Rp¨q is an positive, even and exponentially decaying complex-valued
function, while apcq and bpcq are given by the following formulas

apcq :“ ´
γpβ ´ α

2
pcθ ` αqq

β ´ pcθ ` αq2
, bpcq :“ ´

γpcθ ` 1
2
αq

β ´ pcθ ` αq2
.

under the conditions

apcq ´
α

2
bpcq ` q ă 0 and

c2

4ω
´ λ ă 0. (1.15)

In particular, we point out that condition (1.15) implies the existence of standing solitary
waves only for α ‰ 0. In other words, for the specific case α “ 0, it is not necessary to avoid
standing waves in decay results, since they are not expected to happen.

1.2.5 The virial method

Virial, a word derived from the latin vis meaning "force" or "energy", was first used in the
context of physics by Clausius in the so called Virial Theorem. The original statement of
Clausius’ theorem reads: "The mean vis viva of the system is equal to its virial", which, in
other words, means that the average kinetic energy is equal to 1

2
the average potential energy.

In mathematics, virial identities are related to conservation laws. The idea is to study the
properties of a conserved quantity, perturbed with an appropriate weight. In dispersive equa-
tions, the virial method was introduced by Glassey [25] in 1977, as he presented a blow-up
result for the focusing NLS equation. Although the result holds for a more general nonlin-
earity, let us explain the idea with the semilinear Schrödinger equation. Taking advantage of
the conserved momentum (1.6), Glassey considered a weight |x| “ r and computed,

d

dt

ˆ

Im
ż

Rd

ruurdx

˙

“

„

d

ˆ

p` 1

2
´ 1

˙

´ 2


ż

Rd

|∇u|2dx´ d

ˆ

p` 1

2
´ 1

˙

E0,

where E0 stands for the conserved energy, defined in (1.5), and d is the space dimension.
The } ¨ }H1 norm is bounded by below by Im

ş

Rd ruurdx, which turns out to be increasing
assuming E0 ă 0 and p ą 1` 4

d
. Therefore, as a consequence, solutions with initial data such

that E0 ă 0 blow up. Needless to say, the monotonicity of the modified momentum plays a
crucial role in the proof.

Since then, virial methods have been generalized to meet different needs and adapt to
various equations. They are used not only to prove blow-up, but also stability or inestability
results, and even scattering, almost every time taking advantage of monotonic quantities.
In a few words, the idea is the following: if you intend on proving blow-up, you want the
norm to be larger than something increasing, whereas if what you need is decay, than you
would look for the norm to be smaller than something decreasing. In this thesis, we use virial
methods to prove decay properties for the Scrödinger models previously mentioned.

We proceed to give an idea of the method. To that end, let us consider again our typical
example, the NLS equation. For an appropriate (bounded) weight ω P C8 and making use
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of the conserved momentum, we prove that

´
d

dt

ˆ

Im
ż

R
ωuuxdx

˙

ě 0.

Then, integrating in time, we can deduce decay properties for the H1-norm localized in the
support of the weight, under certain conditions on the solution (mainly, small initial data for
the focusing case). More precisely,

ż 8

0

}uptq}2H1
ω
dt ď C.

Consequently, the results depend on the conserved quantity considered and on the weight
used, since it defines the region in which the decay property holds. In Subsection 1.4, we
present the main theorems proved in this thesis.

1.3 Zakharov Water Waves

1.3.1 Derivation of the model

Zakharov water waves arises as a free surface model for an irrotational and incompressible
fluid under the influence of gravity. Such fluid is considered in a domain with rigid bottom:

Ωt “
 

px, zq P R2 such that ´ haεpxq ď z ď ηpt, xq
(

,

where h ą 0, aε : R Ñ R (to be properly defined later) and η : r0,8q ˆ R2 Ñ R is the
(unknown) free surface elevation.

Figure 1.1: Description of the domain.

The following assumptions are made on the fluid and on the flow:
(H1) The fluid is homogeneous and inviscid.
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(H2) The fluid is incompressible.
(H3) The flow is irrotational.
(H4) The surface and the bottom can be parametrized as graphs above the still water level.
(H5) The fluid particles do not cross the bottom.
(H6) The fluid particles do not cross the surface.
(H7) There is surface tension.
(H8) The fluid is at rest at infinity.
(H9) The water depth is always bounded from below by a nonnegative constant.

We denote u the velocity of the fluid. By (H3), there exists a scalar function Φ such
that inside the fluid domain Ωt,

u “ pBxΦ, BzΦq “ ∇x,zΦ in Ω.

Assumptions (H1) ´ (H2) imply that the velocity of the fluid u follows the the free surface
Euler equation, which, interms of the velocity potential Φ, turn into the free surface Bernoulli
equations :

BtΦ`
1

2
|∇x,zΦ|

2
` gz “ ´

1

ρ
pP ´ Patmq in Ωt.

∆x,zΦ “ 0 p∇ ¨ u “ 0q in Ωt.

where P pt, x, zq is the pressure at time t at the point px, zq and Patm is the constant atmo-
spheric pressure. If Bn is the upwards normal derivative, the fact that the fluid does not cross
the bottom nor the surface ((H5)´ (H6)) imply the following boundary conditions

BnΦ “ 0, on tz “ ´haεu.

Btη `
a

1` |Bxη|2 BnΦ “ 0 on tz “ ηpt, xqu.
(1.16)

Figure 1.2: The unitary normal vector pointing upwards.

Finally, since we are considering surface tension, over the surface we obtain the condition:

1

ρ
pP ´ Patmq “ ´β∇ ¨

˜

∇η
a

1` |∇η|2

¸

on tz “ ηpt, xqu,
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where β is the surface tension coefficient.

As noted by Zakharov, if Φ denotes the velocity potential, then η along with the trace of
the velocity potential at the surface ϕ “ Φ|z“η fully determines the flow. Later, Craig, Sulem
and Sulem [16] introduced a new formulation invoking the Dirichlet-Neumann operator

Grη, as : ϕ ÞÑ
a

1` |∇η|2 BnΦ
ˇ

ˇ

z“η
.

Taking into account the pressure over the surface, the system that models the fluid reads
$

’

’

&

’

’

%

Btη “ Grη, asϕ

Btϕ “ ´
1
2
|Bxϕ|

2
` 1

2

pGrη, asϕ` Bxϕ ¨ Bxηq
2

1` |Bxη|
2 ´ gη ` βBx ¨

¨

˝

Bxη
b

1` |Bxη|
2

˛

‚

(1.17)

where g is the gravitational constant and β is the tension surface coefficient. The velocity
potential can be recovered as the solution to the elliptic equation

$

&

%

∆X,zΦ “ 0 pt,X, zq P r0,8q ˆ Ωt

Φ
ˇ

ˇ

z“η
“ ϕ

BnΦ
ˇ

ˇ

z“´H`a
“ 0.

(1.18)

System (1.17) has a Hamiltonian structure [78] in the variable pη, ϕq. Indeed, we can re-write
(1.17) as

Bt

ˆ

η
ϕ

˙

“

ˆ

0 I
´I 0

˙ˆ

BηH
BϕH

˙

where the Hamiltonian H is the total energy given by

Hpη, ϕq “ 1

2

ż

R2

ϕGrη, asϕ` gη2
` 2β

´

a

1` |∇η|2 ´ 1
¯

dxdz. (1.19)

Regarding the well-posedness for the Zakharov water waves problem in the presence of
surface tension, the 3-dimensional Zakharov water-waves problem is globally well-posed for
small initial data under rather restrictive smothness conditions, as studied by Germain,
Masmoudi and Shatah [19, 20]. For the 2-dimensional problem, local well-posedness for the
Cauchy problem in the space Hs`1{2ˆHs, s ą 5{2 is proved by Alazard, Burq and Zuily [1].

Existence and long-time behavior of solitary waves:

The study of solitary waves for equation (1.17) was mainly devoted to the flat-bottom
case (aε “ 1). Indeed, existence of solitary waves [3] of speed c „

?
gh was shown when the

parameters g, β and h satisfy the condition

gh

c2
“ 1` λ2,

β

hc2
ą

1

λ
,

for ε ą 0 sufficiently small. These travelling waves are solutions Qc of the form

Qcpx´ ctq “ pηcpx´ ctq, ϕcpx´ ctqq “
`

hηλph
´1
px´ ctqq, chϕλph

´1
px´ ctqq

˘
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Figure 1.3: AK Solitary wave.

with
ηλpxq “ λ2Θ1pλx, λq ϕλpxq “ λΘ2pλx, λq

These profiles Θ1 and Θ2 satisfy an exponential decay. As noted in [3, 65], the profiles
Θ1px, λq and Θ2px, λq have smooth expansions in λ. Then, we are entitled to study the
particular case λ “ 0, for which we get

Θ1px, 0q “ cosh´2

ˆ

x

2pβ{phc2q ´ 1{3q1{2

˙

.

Thus, the KdV solitary wave is recovered.

A rather characteristic property of the one-dimensional Zakharov water waves model is
the fact that the surface of the fluid is invariant by translation. As a result, usual Lyapounov
stability cannot be expected. Nevertheless, orbital stability of the solitary waves holds, as
was proven by Mielke [44]. On the other hand, when considering the 2-dimensional case, the
situation changes, and solitons turn out to be unstable under transverse perturbations [65].
There also exist multi-solitons solutions, that is solutions that are time asymptotic to a sum
of decoupling solitary waves, as constructed by Ming, Rousset and Tzvetkov in [45].

1.4 Main results

The results proved in this thesis are part of the following articles:

1. M. E. Martínez, Decay of small odd solutions for long range Schrödinger and Hartree
equations in one dimension, published in Nonlinearity, 2020. (Chapter 2).

2. M. E. Martínez, On the decay problem for the Zakharov and Klein–Gordon–Zakharov
systems in one dimension, published in Journal of Evolutions Equations, 2021. (Chap-
ter 3).

3. M. E. Martínez and J. M. Palacios, On long-time behavior of solutions of the Zakharov-
Rubenchik/Benney-Roskes system , accepted in Nonlinearity, available in arXiv, 2021.
(Chapter 4).
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4. M. E. Martínez, Existence of solitary waves in the Water Waves Zakharov system with
slowly varying bottom, preprint 2021. (Chapter 5).

Now we briefly describe these results.

1.4.1 Asymptotic dynamics of small solutions for NLS and Hartree
equations

Local decay results for NLS:

A great deal of literature proves that for the subcritical (in the sense of GWP and scat-
tering) semilinear NLS equation (3 ă p ă 5), scattering to a free solution exists (see, for
instance, Ginibre and Velo [24], Tsutsumi [73] and Nakanishi-Ozawa [50], to name a few).
Nevertheless, Strauss [69] and Barab [4] showed that one cannot expect the same scattering
for the critical pp “ 3q and super critical case (p ă 3). Instead, modified scattering is believed
to occur.

The first results on modified scattering for d dimensional NLS under small initial con-
ditions, were introduced by Ozawa [55] and by Ginibre and Ozawa [22]. Moreover, it was
shown that solutions u of such equations present the decay

}uptq}L8 À p1` |t|q
´d{2, (1.20)

when the initial data is sufficiently small in weighted Sobolev spaces (see also Hayashi-
Naumkin [18], and Kato-Pusateri [30], for instance).

Modified scattering also holds for the NLS case with potential V , although it seems nec-
essary to assume spectral conditions on the functional ´1

2
∆` V , see [17, 51, 21].

In this thesis, we focus on the decay problem for the super-critical case (p ă 3), with
and without potential (although the result is for a more general nonlinearity, including the
critical p “ 1 and subcritical 3 ă p ă 5 cases). We present the first result, that deals with
decay for the Schrödinger equation (1.3) without potential in compact intervals:

Theorem 1.2 (Theorem (2.1), Chapter 2). Suppose uptq P H1pRq is a global odd solution of
the equation (1.3) for 1 ă p ă 5 and µ “ 0 such that, for some ε ą 0 small,

}upt “ 0q}H1pRq ď ε. (1.21)

Then,
lim
tÑ8

´

}uptq}L2pIq ` }uptq}L8pIq

¯

“ 0, (1.22)

for any bounded interval I Ă R. Moreover, if the equation is defocusing, the smallness
condition (1.21) is not needed.

Similarly, the following theorem deals with the decay in compact intervals for NLS with
potential:
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Theorem 1.3 (Theorem 2.3, Chapter 2). Assume V ‰ 0 even as in (1.3). Under the
assumptions of Theorem 2.1, suppose additionally that V satisfies

ż

R
p|V pxq| ` |V 1pxq|q coshp2xqdx ă `8. (1.23)

Then there exists µ0 ą 0 such that for all µ P p0, µ0q, (1.22) holds for any bounded interval
I Ă R.

The proofs of Theorems 2.1 and 2.3 combine the use of a virial identity, derived from
the conserved momentum, and spectral characteristics of the Schrödinger operator. Indeed,
spectral properties are used to justify the monotonicity of for the adapted momentum, as
commented in Subsection 1.2.5. To do so, the oddnes condition comes into play to rule out
solitary waves and breathers. On the other hand, the fact that we are considering fixed
intervals, allows us to forget about not only travelling waves, but also solutions that can
be written as a sum of solitary waves with different speeds (and sufficiently away from each
other) plus radiation. This is due to the fact that, since such solitons are moving at a
speed different to zero, then for any given fixed interval, one can wait sufficiently long and,
eventually, all solitons move away from our space interval.

Local decay for Hartree:

Similar to the critical and super-critical NLS equation (1 ă p ď 3), scattering to a free
solution does not exist for Hartree equation, as was stated recently by Murphy and Nakanishi
[49].

Nevertheless, modified scattering holds for Hartree equation for dimension d ě 2 and the
solution presents the expected dispersive estimation (1.20). The first result in this regard
shows decay for Hartree equation with Coulomb potential

gpuq “ σ
`

|x|´1
˚ |u|2

˘

u, d ě 2,

and small initial condition [55, 22]. See also [18] or [30] . We point out that,as general as the
results mentioned above are, they do deal with the decay problem for the one-dimensional
case.

It is our goal to prove decay properties for the Hartree equation (both focusing and
defocusing) in the one-dimensional case. When the dimension is larger than two (d ě 2),
there seems to be an extensive study of the long-time behavior of solutions. Nevertheless, it
has come to our attention that the case d “ 1 is still fairly open. A first step in that direction
is the following result:

Theorem 1.4 (Theorem 2.4, Chapter 2. Defocusing Hartree equation). Suppose that u P
H1pRq is a global odd solution of equation (2.1) with (2.5) and σ “ 1. Then

lim
tÑ8

p}uptq}L2pIq ` }uptq}L8pIqq “ 0, (1.24)

for any bounded interval I Ă R.
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The arguments that we used in Chapter 2 are based on the previous work of [31] and [32],
where the decay problem for the Klein-Gordon equation is considered. Because of the the
dynamics of the Schrödinger model, in the virial method some uncontrollable H2 terms arise,
which prevents us from proving decay in the energy norm.

1.4.2 Zakharov systems

Decay for Zakharov system:

It is known that for dimension d “ 2, 3, there exist solutions to the Zakharov equation
(1.8) that decay to zero in the energy space H1ˆL2ˆĤ´1. Indeed, Ozawa and Tsutsumi [60],
Ginibre and Velo [23], and Shimomura [68], proved existence and uniqueness of asymptotically
free solutions of (1.8). Scattering theory for Zakharov system as we know it is presented by
Guo and Nakanishi [27], where they prove that all (energy) small, radially symmetric solutions
for the Zakharov system in d “ 3 scatter. By using generalized Strichartz estimates for the
Schrödinger equation, Guo, Lee, Nakanishi and Wang in [26] were able to improve [27] by
showing scattering of small solutions without the radial assumption.

In Chapter 3, we will be interested in the decay problem for the one dimensional Zakharov
system. We study the decay in very specific regions: compact intervals around curves that
exist outside the light cone. We present the first result, dealing with decay in compact
intervals:

Theorem 1.5 (Theorem 3.1). Assume Es ă 8. Let pu, n, vq P C pR`, H1pRq ˆ L2pRq ˆ L2pRqq
be a solution of (3.4) such that u is odd and satisfies, for some ε ą 0 small,

sup
tě0
}uptq}H1pRq ă ε.

Then, for every compact interval I Ă R,

lim
tÑ8

}uptq}L8pIq ` }uptq}L2pIq ` }nptq}L2pIq ` }D
´1ntptq}L2pIq “ 0. (1.25)

The proof of Theorem 3.1 is based on the Schrödinger case, and follows the idea of Theorem
2.1. In the same spirit, we construct a virial identity from the conserved momentum for the
Zakharov system.

Our second result deals with decay in far field regions along curves.

Theorem 1.6 (Theorem 3.2, Chapter 3). Assume pu, nq is a global solution of (1.8). Then,
for any pair of constants c1, c2, the following holds:

1. If pu, n, vq P C pR`, H1pRq ˆ L2pRq ˆ L2pRqq, then, for any µ P C1pRq satisfying
µptq Á t logptq1`δ, δ ą 0, and setting Ωµptq :“ tx P R : c1µptq ď |x| ď c2µptqu, the
following limit holds

lim
tÑ8

}uptq}L2pΩµptqq “ 0. (1.26)
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2. If pu, n,D´1ntq P C pR`, H2pRq ˆ L2pRq ˆ L2pRqq and there exists fptq P C1pRq a non-
decreasing function such that

}uptq}H2pRq À fptq, (1.27)

then, for any µ P C1pRq satisfying µptq Á t logptq1`δfptq, δ ą 0,

lim
tÑ8

}uptq}H1pΩµptqq ` }nptq}L2pΩµptqq ` }D
´1ntptq}L2pΩµptqq “ 0. (1.28)

The proof of Theorem 3.2 follows an argument introduced by Muñoz, Ponce and Saut
in [48], where they deal with the long time behaviour of intermediate long wave equation.
Hypothesis (1.27) it is not due to the method, but on the model itself. It works mainly
controlling H2-terms that appear in the dynamics of the H1-norm of u. However, it allows
us to obtain decay of the } ¨ }H1-norm, which was not present in results established in [48]
nor in Theorem 2.1 for NLS.

An intuitive sketch of the region where the decay is described can be seen in Figure 1.4.

Figure 1.4: Sketch of Ωµ

Decay for Zakharov and KGZ.

Following the idea in [27], Guo, Nakanishi and Wang [28] proved scattering in the energy
space for radially symmetric solutions with small energy for the system (1.9) in three dimen-
sions, as well. In [29], they continue the study of global dynamics of radial solutions in three
dimensions and find a dichotomy between scattering and blow-up. More specifically, relying
on virial identities, they show that if the initial data is radially symmetric and its energy is
below the energy of the ground state then the solution to (3.2) can either (for both i “ 1, 2):
scatter or blow up in finite time.

As we did for (1.8), we prove decay of solutions to (1.9) in two different ways: over compact
intervals of time and over far field regions along curves. Our result for compact intervals is
the following:

Theorem 1.7 (Theorem 3.4, Chapter 3). Let

pu, ut, n,D
´1ntq P C

`

R`, H1
pRq ˆ L2

pRq ˆ L2
pRq ˆ L2

pRq
˘

20



be a solution of (1.9) such that u is odd and satisfies

sup
tě0
}uptq}H1pRq ď ε and sup

tě0
}utptq}L2pRq ď C (1.29)

for some C ą 0 and ε ą 0 small. Then, for every compact interval I Ă R,

lim
tÑ8

}uptq}H1pIq ` }utptq}L2pIq ` }nptq}L2pIq ` }D
´1ntptq}L2pIq “ 0. (1.30)

The last theorem is devoted to the decay of the solutions to (3.15) in regions along curves
outside the light cone:

Theorem 1.8 (Theorem 3.5, Chapter 3). Let

pu, ut, D
´1nt, vq P C

`

R`, H1
pRq ˆ L2

pRq ˆ L2
pRq ˆ L2

pRq
˘

be a global solution to (1.9) such that

sup
tě0
}uptq}H1pRq ď ε (1.31)

for some 0 ă ε ď 1. Then, for any pair of constants c1, c2, and µ P C1pRq satisfying
µptq Á t logptq1`δ, δ ą 0, and setting and setting Ωµptq :“ tx P R : c1µptq ď |x| ď c2µptqu, th
efollowing limit holds,

lim
tÑ8

}uptq}H1pΩµptqq ` }utptq}L2Ωµptq ` }nptq}L2pΩµptqq ` }D
´1ntptq}L2pΩµptqq “ 0. (1.32)

Notice that for the KGZ system, no hypothesis regarding a controlled growth of the H2-
norm was needed.

1.4.3 Zakharov-Rubenchik/Benney-Roskes

In Chapter 4, we deal with the decay problem for the Zakharov-Rubenchik/Benney-Roskes
(ZR/BR) system (1.13). The main idea that inspired the first result is the fact that one can
recover transport equations from the acoustic type functions η, ρ. Indeed notice that we can
make the change of variables

µ1 “
a

βρ` η, µ2 “ ´
a

βρ` η.

Then, if pψ, η, ρq a solution to (1.13), we get that µ1 and µ2 solve the transport equations

Btµ1 ` p
a

β ´ αqBxµ1 “ γ
´

´
a

β `
α

2

¯

Bxp|ψ|
2
q,

Btµ2 ´ p
a

β ` αqBxµ1 “ γ
´

a

β `
α

2

¯

Bxp|ψ|
2
q.

Take, for instance, µ1. Thus, formally, integrating by parts

d

dt

ż

R
µ1pt, x` p

a

β ´ αqtqdx “ γ
´

´
a

β `
α

2

¯

ż

R
Bxp|ψ|

2
qpt, x` p

a

β ´ αqtqdx “ 0.

Although this quantity might not be well-defined for solutions in the energy space, this
"conservation law" inspired the following result:
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Theorem 1.9 (Theorem 4.1, Chapter 4). Let υ˘ :“ ˘θ´1
`?

β˘α
˘

fixed. Consider pψ, ρ, ηq P
CpR, H1 ˆ L2 ˆ L2q to be any solution to system (4.1) emanating from an initial data
pψ0, ρ0, η0q P H

1 ˆ L2 ˆ L2. Then, for any c P R`, the following inequality holds
ż `8

0

1

µ˚ptq

ż

Ω˘ptq

|ψpt, xq|2dxdt ă `8,

where Ω˘ptq :“ tx P R : ´cλptq ď x´ υ˘t ď cλptqu, κ :“ 10100 and

λptq :“ t2{3 log log´2{3
pκ` tq and µ˚ptq :“ t logpκ` tq log logpκ` tq.

Furthermore, we have the following scenarios:

1. If ˘α ă 0, then, the following inequality holds
ż `8

0

1

µ˚ptq

ż

Ω˘ptq

`

|ψxpt, xq|
2
` |ψpt, xq|2 ` ρ2

pt, xq ` η2
pt, xq

˘

dxdt ă `8.

In particular, we have that

lim inf
tÑ`8

ż

Ω˘ptq

`

|ψxpt, xq|
2
` |ψpt, xq|2 ` ρ2

pt, xq ` η2
pt, xq

˘

dx “ 0.

2. If α “ 0, then, the following inequality holds
ż `8

0

1

µ˚ptq

ż

Ω0ptq

´

|ψxpt, xq|
2
` |ψpt, xq|4 ` η2

pt, xq ` ρ2
pt, xq

¯

dxdt ă `8,

where λ and µ˚ defined as above and Ω0ptq :“ tx P R : cλptq ď |x| ď Cλptqu. In
particular, the following is satisfied

lim inf
tÑ`8

ż

Ω0ptq

´

|ψxpt, xq|
2
` |ψpt, xq|4 ` η2

pt, xq ` ρ2
pt, xq

¯

dx “ 0.

Remark 1.1. In the previous statement, the condition ˘α ă 0 must be understood accord-
ing to the sets Ω˘. In other words, if `α ă 0, then both results for Ω` hold, while if ´α ă 0,
then both results for Ω´ hold. Notice that if α ă 0, the result for Ω´ is not necessarily true.

This result follows the idea from the decay results in compact intervals for NLS, Hartree
and Zakharov systems, but differs in the sense that it does not involve spectral properties.
In addition, we point out the lack of parity conditions, caused by the fact that parity is not
conserved by the flow. Also, we were able to approach compacts sets centered at the origin
because from (1.15) we already know that standing waves do not occur if α “ 0

Our second main result states that, in the so-called far-field region, solutions (in the energy
space) must decay to zero.

Theorem 1.10 (Theoreom 4.2, Chapter 4). Let pψ, ρ, ηq P CpR, H1ˆL2ˆL2q be any solution
to system (4.1) emanating from an initial data pψ0, ρ0, η0q P H

1 ˆ L2 ˆ L2. Then, for any
pair of constants c1, c2 ą 0 the following properties holds:
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1. Consider any non-negative function ζ P C1pRq satisfying that, there exists δ ą 0 such
that, for all t ą 0 it holds

ζptq Á t logpκ` tq1`δ and ζ 1ptq Á logpκ` tqδ`1.

Then, setting Ωζptq :“ tx P R : c1ζptq ď |x| ď c2ζptqu, the following limit holds

lim
tÑ8

}ψptq}L2pΩζptqq “ 0. (1.33)

2. Assume additionally that pψ, ρ, ηq P CpR, H2 ˆH1 ˆH1q is a solution emanating from
an initial data pψ0, ρ0, η0q P H

2 ˆ H1 ˆ H1. Then, for any non-negative ζ P C1pRq
satisfying that, there exists δ ą 0 such that, for all t ą 0,

ζptq Á t2`δ and ζ 1ptq Á t1`δ,

the following decay for the local energy norm holds

lim
tÑ8

`

}ψptq}H1pΩζptqq ` }ρptq}L2pΩζptqq ` }ηptq}L2pΩζptqq

˘

“ 0.

The condition 1.33 is expected to happen at least for smooth initial data. Indeed, a
polinomial bound for the growth of the Hs-norm of ψ was stated in [33]. More specifically,
they proved that, for smooth initial data, solutions to system (4.1) satisfies the following
property:

}ψ}HspRq À 1` |t|ps´1q` .

1.4.4 The solitary wave for Zakharov water waves

Chapther 5 is devoted to the study of the solitary wave for the water waves Zakharov system
(1.17). Specifically, we analyse the behavior of the solitary wave solution of the flat-bottom
problem (that is, when aε “ 0), given by Amick and Kirchgässner (AK) [3] when the bottom
actually presents a (slight) change at some point. We consider a a slightly changing bottom
described by aε “ apε¨q P C2

b pRq, where ε ą 0 and a is assumed to satisfy the following
conditions:

There exist K ą 0, 0 ă κ ă 1 and γ1, γ2 ą 0 such that:
1´ κ ă aprq ă 1, @r P R,

1´ aprq ď Keγ2r, @r ď 0,

lim
rÑ´8

aprq “ 1, lim
rÑ8

aprq “ 1´ κ, (1.34)

|a1prq| ă Ke´γ1|r|, @r P R,

a1 does not change sign.

However simple the sketch of the approach might be (Figure 1.5), in reality the situation
is fairly different. The description of the bottom has a (nonlinear) non-local interaction
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Figure 1.5: A solitary wave in nonflat bottom.

with the flow (see the boundary condition on the elliptic equation (1.16)). Consequently,
one cannot assume the existence of the AK solitary wave. Instead, our goal is to prove the
existence of a solution

ˆ

η
ϕ

˙

Ñ

ˆ

ηc
ϕc

˙

px` A´ ctq as tÑ ´8. (1.35)

where A P R is a large (safe) distance away from the changing point A " 1, and Qc “
`

ηc, ϕc
˘

is a solitary wave of the flat-bottom problem (the Amick-Kirchgässner solitaary wave). It
will be convenient to define

Rpt, xq “ Qcpx´ ct` Aq.

The precise result reads:

Theorem 1.11 (Theorem 5.2, Chapter 5). Let us fix s ě 0. Suppose that the speed c ą 0
satisfy (5.10) with a parameter λ. Then, there exists λ˚ such that for every λ P p0, λ˚q, and
A ą 0 sufficiently large (depending on ε), there exists a solution U “ pη, ϕqt to (5.6) defined
in the time interval p´8, 0s, that satisfies

U´R P Cbpp´8, 0s, Hs
pRq ˆHs

pRqq,

and
lim
tÑ8

}Uptq ´Rptq}HspRq “ 0.

The proof of Theorem 5.2 is based on the argumnts used by Ming, Rousset and Tzvetkov
to prove multisolitons-like solutions for the Zakharov water waves problem with flat bottom
[45]. The most important step for such goal is the construction of an approximate solution
Uap, approximate in the sense that BtUap “ FpUapq ` rap Ñ FpUapq exponentially fast. To
that end, we construct:

Uappt, xq “ Rpt, xq `
N
ÿ

j“1

ρjVjpt, xq,

where Vjpt, xq (to be defined) are solutions to linear problems (linearization of (1.17) about
the solitary wave) with exponentially decaying source terms. The decay of both the error
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rap produced by the approximate solution and the solutions Vj of the linearized problem are
described in the following theorem:

Theorem 1.12 (Theorem 5.13, Chapter 5). For every N P N, there exists

Uap “ Qc `V “ Qc `

N
ÿ

j“1

ρjVjpt, xq,

where Vj P C
8pR, H8pRqq such that

|Vj|Es ď Ap2j´1q{4Cs,jpδ0qe
´jδ0c|t| @t ď 0. (1.36)

In addition, Uap is an approximate solution of (5.6) in the sense that the remainder rap
defined as

BtUap ´ FpUapq “ rap

satisfies the exponential decay

|rap|Es ď Ap2N`1q{4CN,spδ0qρ
N`1e´pN`1qδ0c|t| @t ď 0.

This result provides, as far as we understand, the first construction of a solitary wave like
solution in the case of non flat bottom. Now the collision problem becomes key to understand,
since the bottom strongly interacts with this solitary wave after some large positive time.
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Chapter 2

Decay of small odd solutions for long
range Schrödinger and Hartree equations
in one dimension

Abstract. We consider the long time asymptotics of (not necessarily small) odd solutions to the nonlinear
Schrödinger equation with semi-linear and nonlocal Hartree nonlinearities, in one dimension of space. We
assume data in the energy space H1pRq only, and we prove decay to zero in compact regions of space as time
tends to infinity. We give three different results where decay holds: semilinear NLS, NLS with a suitable
potential, and defocusing Hartree. The proof is based on the use of suitable virial identities, in the spirit
of nonlinear Klein-Gordon models [30], and covers scattering sub, critical and supercritical (long range)
nonlinearities. No spectral assumptions on the NLS with potential are needed.

This chapter has been published as: M. E. Martínez, Decay of small odd solutions for long range
Schrödinger and Hartree equations in one dimension, Nonlinearity, 2020.
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2.4.2 Proof of Theorem 2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.1 Introduction

In this section of chapter II our goal is to study the long time behavoir of small odd global
solutions of the one-dimensional nonlinear Schrödinger (NLS) and Hartree equations

iut ` uxx “ gpuq, pt, xq P Rˆ R. (2.1)

In the Schrödinger case (see Ginibre-Velo [22], Cazenave-Weissler [8] and Cazenave [6]), we
shall assume that the nonlinearity takes the form

gpuq “ µV pxqu` f
`

|u|2
˘

u, (2.2)

where the potential V : RÑ R is a Schwartz even function and f : RÑ R is a function such
that for 1 ă p ă 5 (L2 subcritical case),

|fpsq| À s
p´1
2 , (2.3)

and that satisfies that f ˝ s2 is locally Lipschitz continuous. In this context, we denote
F psq “

şs

0
fpvqdv, for all s ą 0, and

Gpuq “
µ

2

ż

R
V pxq|u|2dx`

1

2

ż

R
F p|u|2qdx.

In the Hartree case, we have

gpuq “ σ
`

W ˚ |u|2
˘

u, Gpuq “
σ

4

ż

R

`

W ˚ |u|2
˘

|u|2dx, (2.4)

where σ “ ˘1 and the potential W is given by

W pxq “
1

|x|a
, with 0 ă a ă 1. (2.5)

The equation (2.1) is Hamiltonian, and it is characterized by having at least the following
conservation laws:

• Mass:
Mpuptqq :“

ż

R
|uptq|2dx “Mpup0qq, (2.6)

• Energy:

Epuptqq :“
1

2

ż

R
|∇uptq|2dx`Gpuptqq “ Epup0qq, (2.7)

• Momentum:
P puptqq :“ Im

ż

R
uptquxptqdx “ P pup0qq. (2.8)
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The NLS equation (2.1)-(2.2) with nonlinearity fpsq “ ˘s
p´1
2 is commonly known as the

semilinear Schrödinger equation [6]. In particular, if fpsq “ ´s
p´1
2 , we say that the equation

is focusing, while the defocusing case takes place when fpsq “ s
p´1
2 . It is well-known that

this one-dimensional semilinear Schödinger equation is globally well-posed for initial data in
H1pRq when 1 ă p ă 5, and blow up may occur if p ě 5, see e.g. [23, 35] and subsequent
works.

On the other hand, the Hartree equation (2.1) with (2.4) is also locally well-posed in
H1pRq, and globally well-posed for small data, see [6, Corollary 6.1.5] for instance. This
comes from the fact that the potential W in (2.5) is an even function that satisfies the
following properties:

• W P L1pRq ` L8pRq,
• The function pW ˚ |u|2q|u|2 is integrable. For the case (2.5), one has the estimate

ż

R

`

|x|´a ˚ |u|2
˘

|u|2dx ă 8,

(we prove this using the Hardy-Littlewood-Sobolev inequality [32, Theorem 4.3, p. 106]
with p “ r “ 2

2´a
).

This means that we are in the case of [6, Example 3.2.11] and [6, Corollary 4.3.3], which
implies the local well-posedness of the Hartree equation.

In this paper we are interested in the asymptotic behavoir of small solutions to (2.1), both
in the NLS case (with and without potential), and in the nonlocal Hartree case, at least
in the defocusing case. The literature on this subject is huge; we present now a (far from
complete) account of the most relevant results.

It is known that for subcritical (in the sense of GWP and scattering) semilinear NLS
equation (fpsq “ ˘s

p´1
2 , 3 ă p ă 5), scattering to a free solution exists (see, for instance,

Ginibre and Velo [22], Tsutsumi [54] and Nakanishi-Ozawa [40]). Nevertheless, in Strauss
[51] and Barab [3] it was proven that one cannot expect the same scattering for the critical
pp “ 3q and super critical case (p ă 3), and modified scattering is believed to occur. This
was generalized recently by Murphy and Nakanishi [38] for the semilinear NLS equation with
potential and Hartree-type nonlinearities as (2.5).

Precisely, modified scattering for d dimensional critical NLS equation with nonlinearities

gpuq “ σ|u|p´1u, p “ 1`
2

d
, d “ 1, 2, 3;

and the Hartree equation with Coulomb potential

gpuq “ σ
`

|x|´1
˚ |u|2

˘

u, d ě 2,

and small initial condition, was first proved by Ozawa [43] and by Ginibre and Ozawa [21].
Moreover, it was shown that solutions u of such equations present the decay

}uptq}L8 À p1` |t|q
´d{2, (2.9)
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when the initial data is sufficiently small in weighted Sobolev spaces (see also Hayashi-
Naumkin [16], and Kato-Pusateri [27], for instance). Through a thorough analysis of the
solution profile, a simplified proof of scattering in the critical defocusing NLS and Hartree
equations has been exhibited in [27].

Similar recent results hold for the NLS case with a potential, as was shown by Cuccagna,
Visciglia and Georgiev [14] for p ą 3, and Naumkin [41] and Germain-Pusateri-Rousset [20]
for the critical case p “ 3 (see also [19]). Nakanishi [39] considered 3D NLS with a potential
having a single negative eigenvalue, and proved asymptotics for large time. Indeed, assuming
that the potential V is such that ´1

2
∆`V does not have negative eigenvalues nor resonances

at zero, they were able to prove the decay (1.20) for solutions of subcritical (p ą 3) and
critical (p “ 3) NLS equation in one dimension. However different the methods to prove this
decay are from each other, it is not clear to us if they still hold by assuming less restrictive
spectral conditions.

Finally, following idea introduced in [29], about considering odd data only, Delort [17]
proved modified scattering for small (smaller than a parameter ε) odd solutions u to (2.9)
with data in H0,1XHN , N large, and showed (among other things) the precise decomposition
for large time

upt, xq “
ε
?
t
Aε

´x

t

¯

exp

„

´i
x2

2t
` iε2 log t

ˇ

ˇ

ˇ
Aε

´x

t

¯ˇ

ˇ

ˇ

2


` rpt, xq,

where the continuous function Aε is bounded in L2pRq X L8pRq, θ P p0, 1
4
q and

}rpt, ¨q}L8 “ Opεt´
3
4
`θ
q, }Aεpxqxtxy

´2
}L8 “ Opεt´

1
4
`θ
q,

and
}rpt, ¨q}L2 “ Opεt´

1
4
`θ
q, }Aεpxqxtxy

´2
}L2 “ Opεt´

5
8
` θ

2 q.

Notice that all positive decay/scattering results above mentioned cannot deal with the
one dimensional NLS (for p ă 3) and Hartree equations. This is in part explained by the
lack of precise nonlinear estimates in the case of long range nonlinearities.

Our main goal in this paper is to extend in some sense the recently mentioned results
[41, 20, 27, 17] and show decay of small solutions to the above equations, regardless the
(supercritical with respect to scattering) power of the nonlinearity. In particular, we consider
nonlinearities NLS with 1 ă p ă 5 and Hartree long range supercritical in one dimension.

Our first result covers the NLS case without potential (1 ă p ă 5).

Theorem 2.1. Suppose uptq P H1pRq is a global odd solution of the equation (2.1)-(2.2) and
µ “ 0 such that, for some ε ą 0 small,

}upt “ 0q}H1pRq ď ε. (2.10)

Then,
lim
tÑ8

´

}uptq}L2pIq ` }uptq}L8pIq

¯

“ 0, (2.11)
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for any bounded interval I Ă R. Moreover, if the equation is defocusing, the smallness
condition (2.10) is not needed.

Remark 2.1. NLS (2.1) preserves the oddness of the initial data along the flow.

Remark 2.2. As far as we could understand, Theorem 2.1 is the first decay result for small
data NLS in the long range supercritical nonlinearities 1 ă p ă 3. Although we do not give a
precise description of a possible limiting profile as in the previous literature, our results show
dispersion after all.

Remark 2.3. Theorem 2.1 is sharp. Indeed, it is not true for uptq P H1 even. A simple
counterexample in this case is the non decaying soliton itself:

upt, xq “ Qcpxqe
ict, 0 ă c ! 1, (2.12)

and Qc ą 0 solving Q2c ´ cQc`Q
p
c “ 0, Qc P H

1. Note that this solution is even in space and
small in H1 provided c ! 1. Also, the Satsuma-Yajima breather solution (see [46] and [1,
eqn. (1.16)]) is an arbitrarily small non decaying even solution to NLS (2.2) in the integrable
[57] case p “ 3.

Remark 2.4. For an interval I “ Iptq growing in time, Theorem 2.1 is also sharp. Indeed,
see the works [33, 42] for the construction of odd solutions composed of two solitary waves
with non zero speeds for finite time. These asymptotic 2-soliton solutions can be arbitrarily
small in the energy space, but they separate each other as time evolves, leaving any compact
region in space for sufficiently large time. In this sense, these solutions do not contradict
Theorem 2.1.

Remark 2.5. From the identity

d

dt

ż

R
x|upt, xq|2dx “ ´2 Im

ż

R
uptquxptqdx “ ´2P puptqq,

valid if xupt “ 0q P L2, we can see that nontrivial, non decaying periodic-in-time solutions
(i.e. breathers) of NLS may exist only if their momentum vanishes. See [37] for more details
on these properties of breather solutions.

Remark 2.6. Sometimes, instead of assuming odd data, the additional assumption }xupt “
0q}L2 ! 1 is considered. This condition works with even data, and rules out the existence of
small solitary waves as in (2.12), since solitary waves with smallH1-norm satisfy }xQc}L2 " 1.

Remark 2.7. Note that (2.11) does not contain the 9H1 norm of the solution. This is a
standard open issue in the field, see e.g. [17] for similar results. In our case, the lack of
control on the decay of this semi-norm is due to the emergence of uncontrolled H2 terms in
the dynamics of the energy norm.

Remark 2.8. In the defocusing case, we expect better results. For instance, we can prove
that lim inftÑ`8 }uxptq}L2p|x|À|t| log´1 |t|q “ 0, but a better decay property is out of reach for
the moment.
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The proof of Theorem 2.1 is based on the introduction of a virial identity adapted to the
NLS dynamics. Following the ideas presented in [30, 29], which considered the nonlinear
Klein-Gordon case, we use here a functional adapted to the momentum (2.8). Once this
virial identity is established, decay is proved in a standard form.

Compared with the available results for Klein-Gordon [30], where H1 decay is proven,
the main novelty here is that we avoid the lack of H1 decay in time for NLS (Remark 2.7)
by proving time decay in L8x instead; also, we consider the cases of NLS with a nontrivial
potential and with Hartree nonlinearities (see below), both of important physical interest,
and not treated in [30].

Using inverse scattering techniques, Deift and Zhou [15] described the asymptotic behavior
of solutions of the defocusing, nearly integrable quintic perturbation of cubic NLS

iut ` uxx “ |u|
2u` ε|u|4u, ε ą 0. (2.13)

Using the techniques of this paper, we are able to give a partially complementary result to
the one stated in [15]:

Corollary 2.2. Let ε ‰ 0, and let u P CpR;H1pRqq be a global small odd solution of (2.13).
Then (2.11) is satisfied.

The proof of this result immediately follows from Theorem 2.1.

Our second result deals with NLS (2.1) with nonzero potential in (2.2). In this case, we
also provide time decay results in the case µV small and spatially decaying fast enough,
complementing [14, 17, 41, 20].

Theorem 2.3 (NLS with potential). Assume V ‰ 0 even as in (2.2). Under the assumptions
of Theorem 2.1, suppose additionally that V satisfies

ż

R
p|V pxq| ` |V 1pxq|q coshp2xqdx ă `8. (2.14)

Then there exists µ0 ą 0 such that for all µ P p0, µ0q, (2.11) holds for any bounded interval
I Ă R.

Remark 2.9. Note that Theorem 2.3 does not require that the operator ´B2
x ˘ µV satisfies

specific spectral properties as in [14, 41, 20]; only the decay hypothesis (2.14) is needed. In
particular, no non resonance condition is needed for having (2.11). This fact reveals that the
non resonance condition is essentially linked to the evenness of the involved data.

Remark 2.10. We can ask for V decaying slower than in (2.14), but proofs are probably
more complicated; we hope to consider this problem elsewhere.

Finally, we deal with the Hartree case.
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Theorem 2.4 (Defocusing Hartree equation). Suppose that u P H1pRq is a global odd solu-
tion of equation (2.1) with (2.5) and σ “ 1. Then

lim
tÑ8

p}uptq}L2pIq ` }uptq}L8pIqq “ 0, (2.15)

for any bounded interval I Ă R.

Remark 2.11. Theorem 2.4 proves the non-existence of odd standing waves solutions for
the equation (2.1) with defocusing Hartree type non-linearities.

Remark 2.12. Theorem 2.4 does not include the focusing case, which is an open problem of
independent interest. In that sense, the scattering problem for the d ě 2 generalized Hartree
equation was recently treated in Arora-Roudenko [2].

Remark 2.13. Focusing Hartree equation (2.1) with (2.5) (σ “ ´1) admits solitary waves
solutions (or solitons)

upt, xq “ eictQcpxq P H
1

where Qc : RÑ R is an H1-solution of the Choquard equation

∆Q`

ˆ

1

|x|a
˚ |Q|p

˙

Q´ λQ “ 0, c P R. (2.16)

These solutions are, up to translation and inversion of the sign, positive and radially symmet-
ric functions [9, 36]. Moreover, solitary waves for the focusing Hartree equation are stable,
as was proven by Cazenave and Lions in [7]. See also Ruiz [45] for more details on solitary
waves for Hartree.

Remark 2.14 (NLS around solitary waves). Solitary waves in mass subcritical NLS exist
and they are stable. The first results on stability were provided by Cazenave and Lions in [7],
where orbital stability of solitary waves for the NLS equation (2.1)-(2.2) without potential
was proven (see also [56, 25]). Stability of several NLS solitons well-decoupled was proved
in [34], and in [26] for the integrable case. The asymptotic stability for the same equation
was studied by Buslaev and Perelman in [4] in the supercritical regime; this result was later
generalized by Cuccagna in [10, 11, 13] for dimensions d ě 3, and under special spectral
conditions on the linearized operator around the solitary wave. The one dimensional case,
under similar spectral assumptions and even data perturbations of the standing wave, was
studied by Buslaev and Sulem [5]. For the NLS equation with potential (2.1)-(2.2), results
for asymptotic stability of ground states (also, under spectral conditions) were provided by
Soffer and Weinstein in [49, 50], see also [48, 18, 52, 53], and [44] for the case of multi-solitons
in general dimensions. We believe that some of the ideas in this paper can be generalized
to the case of asymptotic stability for solitary waves, but with harder proofs. See e.g. the
recent paper by Cuccagna and Maeda [12], and the NLKG paper by Kowalczyk, Martel and
Muñoz [31].
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Notation

To simplify the notation we will denote u1 “ Re u, u2 “ Im u. Let αpxq ě 0 be a weight.
We also denote by

}uptq}2L2
αpRq :“

ż

R
αpxq|upt, xq|2dx,

}uptq}2H1
αpRq :“

ż

R
αpxq

`

|uxpt, xq|
2
` |upt, xq|2

˘

dx,

(2.17)

the weighted L2-norm and H1-norm with weight α.

Organization of this paper

This paper is written as follows. In Section 2.2 we prove Theorem 2.1, NLS without potential.
Section 2.3 is devoted to the proof of Theorem 2.3, namely NLS with potential. Finally,
Section 2.4 deals with the Hartree case (Theorem 2.4).

2.2 Schrödinger equation without potential

In this Section we prove Theorem 2.1. Consider the equation (2.1) with (2.2) and V ” 0.
That is,

iut ` uxx “ f
`

|u|2
˘

u, u P H1 odd. (2.18)

As claimed in the introduction, the proof here follows the ideas in [30], with some minor
differences.

2.2.1 A virial identity

We shall introduce a standard virial identity adapted to (2.18). Let ϕ P C8pRq be bounded
and to be chosen later, uptq P H1pRq a solution of equation (2.18) and define

Ipuptqq :“ Im
ż

R
ϕpxqupt, xquxpt, xqdx. (2.19)

Then we have the following:

Lemma 2.5. For u P CpR;H1pRqq one has Ipuptqq well-defined and bounded in time. More-
over, we have the virial identity

´
d

dt
Iptq “ 2

ż

R
ϕx|ux|

2dx´
1

2

ż

R
ϕxxx|u|

2dx´

ż

R
ϕx

“

F
`

|u|2
˘

´ fp|u|2q|u|2
‰

dx. (2.20)
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Proof. Let uptq P H1pRq such that it satisfies equation (2.18). Then, we integrate by parts

d

dt
Ipuptqq “ Im

ż

R
ϕutuxdx` Im

ż

R
ϕuuxtdx

“ Im
ż

R
ϕutuxdx´ Im

ż

R
pϕuqx utdx.

Then,

d

dt
Ipuptqq “ ´Im

ż

R
iϕ piutquxdx´ Im

ż

R
i pϕuqx iutdx

“ ´Re
ż

R
ϕiutuxdx´ Re

ż

R
pϕuqx iutdx.

Computing the derivative on the second term above

d

dt
Ipuptqq “ ´2Re

ż

R
ϕiutuxdx´ Re

ż

R
ϕxuiutdx

“ ´2Re
ż

R
ϕpiutquxdx´ Re

ż

R
ϕx piutqudx.

(2.21)

Thus, using (2.18), we get

d

dt
Ipuptqq “ 2Re

ż

R
ϕuxxuxdx` Re

ż

R
ϕxuxxudx

´ 2Re
ż

R
ϕf

`

|u|2
˘

uuxdx´ Re
ż

R
ϕxf

`

|u|2
˘

uudx.

We notice that 2Re puxuq “ 2Re puuxq “ p|u|2qx, then

d

dt
Ipuptqq “

ż

R
ϕ
`

|ux|
2
˘

x
dx` Re

ż

R
ϕxuxxudx

´

ż

R
ϕf

`

|u|2
˘ `

|u|2
˘

x
dx´

ż

R
ϕxf

`

|u|2
˘

|u|2dx.

Recall the definition of F psq “
şs

0
fpvqdv, which implies that pF psqqx “ fpsqsx. Furthermore,

d

dt
Ipuptqq “

ż

R
ϕ
`

|ux|
2
˘

x
dx` Re

ż

R
ϕxuuxxdx

´

ż

R
ϕ
`

F
`

|u|2
˘˘

x
dx´

ż

R
ϕxf

`

|u|2
˘

|u|2dx.

Integrating by parts, we obtain

d

dt
Ipuptqq “ ´ 2

ż

R
ϕx|ux|

2dx´ Re
ż

R
ϕxxuuxdx`

ż

R
ϕx

“

F
`

|u|2
˘

´ f
`

|u|2
˘

|u|2
‰

dx

“´ 2

ż

R
ϕx|ux|

2dx´
1

2

ż

R
ϕxx

`

|u|2
˘

x
dx`

ż

R
ϕx

“

F
`

|u|2
˘

´ f
`

|u|2
˘

|u|2
‰

dx.

We integrate by parts again on the second term to obtain

d

dt
Ipuptqq “ ´ 2

ż

R
ϕx|ux|

2dx`
1

2

ż

R
ϕxxx|u|

2dx`

ż

R
ϕx

“

F
`

|u|2
˘

´ f
`

|u|2
˘

|u|2
‰

dx.

�
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2.2.2 Analysis of a bilinear form

With the identity (2.20) in mind, we define the bilinear form

Bpwq “ 2

ż

R
ϕxw

2
xdx´

1

2

ż

R
ϕxxxw

2dx, w “ ui, i “ 1, 2. (2.22)

Here, u “ u1 ` iu2, with u1, u2 real-valued.

Let λ P p1,8q. As we explained before, our intention is to prove some estimation of B
using the weighted H1

α-norm introduced in (2.17). To obtain this, we will consider ϕpxq “
λ tanh

`

x
λ

˘

on the virial identity (2.20) and define the auxiliar function αpxq “
a

ϕxpxq. Now,
we estimate each term of the bilinear form B:

ż

R
pαwq2x dx “

ż

R
α2
pwxq

2 dx` 2

ż

R
ααxwwxdx`

ż

R
pαxq

2w2dx

“

ż

R
ϕx pwxq

2 dx`

ż

R
ααx

`

w2
˘

x
dx`

ż

R
pαxq

2w2dx

“

ż

R
ϕx pwxq

2 dx´

ż

R
ααxxw

2dx,

using integration by parts in the last equality. Thus
ż

R
ϕx pwxq

2 dx “

ż

R
pαwq2x dx`

ż

R

αxx
α
pαwq2 dx. (2.23)

Furthermore, noticing that ϕxxx “ pα2qxx “ 2 pααxx ` α
2
xq, we get

ż

R
ϕxxxw

2dx “ 2

ż

R

ˆ

αxx
α
`
α2
x

α2

˙

pαwq2 dx. (2.24)

Hence, from (2.23) and (2.24),

Bpwq “ 2

ż

R
pαwq2x dx´

ż

R

ˆ

α2
x

α2
´
αxx
α

˙

pαwq2 dx.

Since αpxq “ sech
`

x
λ

˘

, then

αxpxq “ ´
1

λ
sech

´x

λ

¯

tanh
´x

λ

¯

αxxpxq “
1

λ2

´

sech
´x

λ

¯

tanh
´x

λ

¯

´ sech3
´x

λ

¯¯

which implies that

Bpwq “ 2

ż

R
pαwq2x dx´

1

λ2

ż

R
sech2

´x

λ

¯

pαwq2 dx.

In order to prove Theorem 2.1 we need to prove that the bilineal part of (2.20) is coercive in
some way. To be more precise, we would like the following

Bpwq ě

ż

R
pαwq2x dx. (2.25)
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We introduce the auxiliar function v “ αw. Then we can set

Bpvq “ 2

ż

R
v2
xdx´

1

λ2

ż

R
sech2

´x

λ

¯

v2dx

so that
Bpvq “ Bpwq.

This way, coercivity of the operator B implies (2.25). We recall now

Proposition 2.6 (See [30]). Let v P H1pRq be odd, λ ą 0. Then

Bpvq ě 3

2

ż

R
v2
xdx. (2.26)

Sketch of proof. We write

Bpvq “ 3

2

ż

R
v2
xdx`

1

2

ˆ
ż

R
v2
xdx´

2

λ2

ż

R
sech2

´x

λ

¯

v2dx

˙

.

Notice that
´

d2

dx2
´

2

λ2
sech2

´x

λ

¯

has only one negative eigenvalue corresponding to an even eigenfunction. This comes from
the fact that (see [24, Exercise 12]) the index of the operator

´
h2

ν

d2

dx2
´ γ sech2

´x

a

¯

is equal to the largest integer N such that

N ă
1

2

a

8γνa2h´2 ` 1´
1

2
.

Since v is odd,
ż

R
v2
xdx´

2

λ2

ż

R
sech2

´x

λ

¯

v2dx ě 0, (2.27)

and then (2.26) holds. �

2.2.3 Estimates of the terms on (2.20)

Lemma 2.7. Let u P H1pRq be odd. Then for some C ą 0, u “ u1 ` iu2,

}u}2H1
αpRq ď C pBpu1q `Bpu2qq . (2.28)

Proof. We take λ “ 100. First, notice that from (2.27), we have
ż

R
pαwq2x ě

2

1002

ż

R
sech2

´ x

100

¯

pαwq2 dx.
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Using Proposition 2.6, this implies that

Bpwq ě
3

2

ż

R
pαwqx dx Á

ż

R
sech4

´ x

100

¯

u2dx Á

ż

R
sechpxqw2dx. (2.29)

Thus,
ż

R
sechpxqu2

i dx À Bpuiq, i “ 1, 2. (2.30)

On the other hand,
ż

R
pαwq2x dx Á

ż

R
α2
pαwq2x dx

“

ż

R
α4w2

xdx`

ż

R
α3αx

`

w2
˘

x
dx`

ż

R
α2α2

xw
2dx.

We integrate by parts,
ż

R
pαwq2x dx Á

ż

R
α4w2

xdx´

ż

R

`

α3αx
˘

x
w2dx`

ż

R
α2α2

xw
2dx

“

ż

R
α4w2

xdx´

ż

R

`

2α2α2
x ` α

3αxx
˘

w2dx.

Then, from the definition of α,
ż

R
pαwq2x dx Á

ż

R
sechpxqw2

xdx´

ż

R
sech4

´ x

100

¯

w2dx.

In other words,
ż

R
sechpxqw2

xdx À

ż

R
pαwq2x dx`

ż

R
sech4

´ x

100

¯

w2dx.

Then, from (2.29), we have that
ż

R
sechpxqw2

xdx À

ż

R
pαwq2x dx. (2.31)

Hence, using Proposition 2.6,
ż

R
sechpxqui

2
xdx À Bpuiq, i “ 1, 2. (2.32)

Finally, from (2.30) and (2.32), we get

}uptq}2H1
αpRq À Bpu1q `Bpu2q.

�

Lemma 2.8. There exists ε ą 0 such that:
If u is an odd solution of (2.18) satisfying (2.10), then

´
d

dt
Ipuptqq ě C}uptq}2H1

αpRq. (2.33)

where C ą 0.
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Proof. Recall from (2.20) and the analysis of the previous section that

´
d

dt
Ipuptqq “ 2

ż

R
ϕx|ux|

2dx´
1

2

ż

R
ϕxxx|u|

2dx´

ż

R
ϕx

“

F
`

|u|2
˘

´ fp|u|2q|u|2
‰

dx

“ Bpu1q `Bpu2q ´

ż

R
ϕx

“

F
`

|u|2
˘

´ fp|u|2q|u|2
‰

dx.

Consequently, in order to complete the proof, we need to control the remaining terms of
(2.20), since the terms involving the bilinear form B have already been estimated by Lemma
2.7.

Note that
ˇ

ˇF
`

|u|2
˘

´ fp|u|2q|u|2
ˇ

ˇ À |u|p`1.

Since u is odd,
ż

R
sech2

´x

λ

¯

|u|p`1dx “ 2

ż 8

0

sech2
´x

λ

¯

|u|p`1dx

“ 2

ż 8

0

sech´pp´1q
´x

λ

¯

sechp`1
´x

λ

¯

|u|p`1

»

ż 8

0

epp´1qx{λ sechp`1
´x

λ

¯

|u|p`1dx.

With a slight abuse of notation, set vpt, xq :“ sech
`

x
λ

˘

upt, xq. Note that vpt, 0q “ 0 and
vanishes at infinity @t P R. Then, integrating by parts,

ż 8

0

epp´1qx{λ
|v|p`1dx “ ´

λ

p´ 1

ż 8

0

epp´1qx{λ
`

|v|p`1
˘

x
dx

“ ´
λpp` 1q

p´ 1
Re

ż 8

0

epp´1qx{λ
|v|p´1v̄vxdx.

Hence,
ż 8

0

epp´1qx{λ
|v|p`1dx “ ´

λpp` 1q

p´ 1
Re

ż 8

0

epp´1qx{2λ
|v|

p´1
2 vvx

´

epp´1qx{2λ
|v|

p´1
2

¯

dx

À }u}
pp´1q{2
L8pRq Re

ż 8

0

epp´1qx{2λ
|v|

p´1
2 vvxdx

À }u}
pp´1q{2
L8pRq

ż 8

0

epp´1qx{2λ
|v|

p´1
2 |v||vx|dx

“ }u}
pp´1q{2
L8pRq

ż 8

0

epp´1qx{2λ
|v|

p`1
2 |vx|dx.

By Young’s inequality,
ż 8

0

epp´1qx{λ
|v|p`1dx À }u}p´1

L8pRq

ż 8

0

|vx|
2dx`

ż 8

0

epp´1qx{λ
|v|p`1dx

» }u}p´1
L8pRq

ż 8

0

|vx|
2dx`

ż 8

0

sechp´1
´x

λ

¯

sechp`1
´x

λ

¯

|u|p`1dx

“ }u}p´1
L8pRq

ż 8

0

|vx|
2dx`

ż 8

0

sech2
´x

λ

¯

|u|p`1dx,
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which actually means that
ż

R
sech2

´x

λ

¯

|u|p`1dx À }u}p´1
L8pRq

ż 8

0

| pαuqx |
2dx.

By Sobolev’s embedding,
ż

R
sech2

´x

λ

¯

|u|p`1dx À }u}p´1
H1pRq

ż 8

0

| pαuqx |
2dx.

Now, it is a fact that for every 0 ă ε ă 1, there exists δpεq such that }up0q}H1pRq ď δpεq
implies that sup

tPR
}u}H1pRq ă ε (see [6, Corollary 6.1.4] or the conservation of energy and mass

(2.7)-(2.6)). This way, from Proposition 2.6, we get
ż

R
sech2

´x

λ

¯

|u|p`1dx À εp´1
pBpu1q `Bpu2qq .

So, choosing ε sufficiently small, (2.33) is proved. �

Remark 2.15 (Defocusing case). Note that in the semilinear defocusing case fp|u|2q “
|u|p´1,

F
`

|u|2
˘

´ fp|u|2q|u|2 “

ˆ

2

p` 1
´ 1

˙

|u|p`1.

Since p ą 1, 2
p`1
|u|p`1 ´ 1 ă 0 which means that the remaining term on (2.20) involving the

nonlinearity is positive:

´

ż

R
ϕx

“

F
`

|u|2
˘

´ fp|u|2q|u|2
‰

dx ě 0

and then Lemma 2.7 is enough to conclude Lemma 2.8.

With this estimation, we can now prove the key to get Theorem 2.1.

Proposition 2.9. There exists a constant C ą 0 such that
ż 8

0

}uptq}2H1
αpRqdt ď Cε2. (2.34)

Proof. Let τ ą 0. We integrate (2.33) over r0, τ s
ż τ

0

}uptq}2H1
αpRqdt ď C pIpup0qq ´ Ipupτqqq ď CIpup0qq

From Hölder inequality and (2.10) we get that

Ipup0qq ď }up0q}L2pRq}uxp0q}L2pRq ď ε2.

This last fact implies that
ż τ

0

}uptq}2H1
αpRqdt ď Cε2.

Now, taking τ Ñ 8, we conclude the proof. �
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2.2.4 End of proof of Theorem 2.1

Now Theorem 2.1 is ready to be proved:

Step 1: The L2 norm tends to zero: Let ϕ P C8pRq be bounded. Then we compute

d

dt

ˆ

1

2

ż

R
ϕ|uptq|2dx

˙

“ Re
ż

R
ϕuutdx “ ´Re

ż

RRiϕu piutq dx

“ Im
ż

R
ϕu piutq dx.

Hence, using equation (2.18) and integrating by parts

d

dt

ˆ

1

2

ż

R
ϕ|uptq|2dx

˙

“ ´Im
ż

R
ϕuuxxdx` Im

ż

R
ϕfp|u2

|quudx

“ Im
ż

R
ϕuxuxdx` Im

ż

R
ϕxuuxdx` Im

ż

R
ϕfp|u2

|q|u|2dx

“ Im
ż

R
ϕ|ux|

2dx` Im
ż

R
ϕxuuxdx` Im

ż

R
ϕfp|u2

|q|u|2dx.

Since the integrals on the first and third term are real, we get the following identity

d

dt

ˆ

1

2

ż

R
ϕ|uptq|2

˙

“ Im
ż

R
ϕxuuxdx. (2.35)

Thus
ˇ

ˇ

ˇ

ˇ

d

dt

ˆ

1

2

ż

R
ϕ|uptq|2dx

˙
ˇ

ˇ

ˇ

ˇ

ď

ż

R
|ϕx||uptq||uxptq|dx

À

ż

R
|ϕx||uptq|

2dx`

ż

R
|ϕx||uxptq|

2dx.

We take ϕpxq “ sechpxq and get
ˇ

ˇ

ˇ

ˇ

d

dt
}uptq}2L2

αpRq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

d

dt

ˆ
ż

R
sechpxq|upt, xq|2dx

˙ˇ

ˇ

ˇ

ˇ

À

ż

R
sechpxq|upt, xq|2dx`

ż

R
sechpxq|uxpt, xq|

2dx “ }uptq}2H1
αpRq.

From (2.34), there exists a sequence tn P R, tn Ñ 8 such that }uptnq}2L2
wpRq

Ñ 0. Consider
t P R, integrate over rt, tns, and take tn Ñ 8. Then

}uptq}2L2
αpRq À

ż 8

t

}upsq}2H1
αpRqds.

In consequence
lim
tÑ8

}uptq}L2
wpRq “ 0. (2.36)

Step 2: The L8 norm tends to zero: We state the following:
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Claim 2.10. For every interval I there exists x̃ptq P I such that, as t tends to infinity,

|upt, x̃ptqq|2 Ñ 0.

Proof. Let I P R be an interval. By contradiction, Suppose that there exists ε0 ą 0 such
that @n ą 0, Dtn ą n

|uptn, xq|
2
ą ε0 @x P I.

Integrating over I, we get
ż

I

|uptn, xq|
2dx ą |I|ε0,

which contradicts (2.36). �

Let x P I. By Fundamental Theorem of calculus and Hölder’s inequality

|upt, xq|2 ´ |upt, x̃ptqq|2 “

ż x

x̃ptq

`

|u|2
˘

x
dx ď 2

ż x

x̃ptq

|u||ux|dx

ď 2}uptq}L2pIq}uxptq}L2pIq.

Then we get
|upt, xq|2 À |upt, x̃ptqq|2 ` 2}uptq}L2pIq}uxptq}L2pIq, @x P I. (2.37)

Now, since (2.10) holds for ε ą 0 as small as needed,

sup
tPR
}uptq}H1pRq ă 8.

Also, this smallness condition is not needed if the nonlinearity is defocusing. Hence, taking
tÑ 8 in (3.38), from Claim 2.10 and (2.36), we get that

|upt, xq|2 Ñ 0, @x P I.

Which implies (2.11). The proof of Theorem 2.1 is complete.

2.3 NLS with potential

This section is devoted to the proof of Theorem 2.3. We consider now the NLS equation with
a nontrivial potential V :

iut ` uxx “ µV pxqu` f
`

|u|2
˘

u, pt, xq P Rˆ R. (2.38)

As done in the previous section, we introduce a virial identity that will be used to estimate
the H1

α-norm of a solution of equation (2.38). However, because of the potential term V , new
estimates must be proved in order to get Theorem 2.3.

48



2.3.1 Virial Identity

Suppose again ϕ P C8pRq bounded and recall from Subsection 2.2.1 the definition

Ipuptqq “ Im
ż

R
ϕpxqupt, xquxpt, xqdx.

Following the proof of Lemma 2.5, we have now

Lemma 2.11. Let uptq P H1pRq be a bounded in time solution of equation (2.38). Then

´
d

dt
Iptq “ 2

ż

R
ϕx|ux|

2dx´
1

2

ż

R
ϕxxx|u|

2dx´ µ

ż

R
ϕVx|u|

2dx

´

ż

R
ϕx

“

F
`

|u|2
˘

´ fp|u|2q|u|2
‰

dx.

(2.39)

Sketch of proof. From the proof of Lemma 2.5 (equation (2.21)) we know that

d

dt
Ipuptqq “ ´2Re

ż

R
ϕpiutquxdx´ Re

ż

R
ϕx piutqudx.

We use (2.38) to obtain

d

dt
Ipuptqq “ 2Re

ż

R
ϕuxxuxdx` Re

ż

R
ϕxuxxudx´ 2µRe

ż

R
ϕV uuxdx

´ µRe
ż

R
ϕxV uudx´ 2Re

ż

R
ϕf

`

|u|2
˘

uuxdx´ Re
ż

R
ϕxf

`

|u|2
˘

uudx.

From the last equation, we are only interested in the terms involving the potential V , since
the rest of them were analyzed in the proof of Lemma 2.5. Then we compute

2Re
ż

R
ϕV uuxdx` Re

ż

R
ϕxV uudx “

ż

R
ϕV

`

|u|2
˘

x
dx`

ż

R
ϕxV |u|

2dx

“ ´

ż

R
ϕVx|u|

2dx.

Combining this with Lemma 2.5, we conclude (2.39). �

2.3.2 Analysis of a modified bilinear form

In the following analysis, we will see more clearly the difference between the cases with and
without potential. In this occasion, we define a new bilinear form (u “ u1 ` iu2, ui P R)

Bpwq “ 2

ż

R
ϕxw

2
xdx´

1

2

ż

R
ϕxxxw

2dx´ µ

ż

R
ϕVxw

2dx, w “ ui, i “ 1, 2.

Consider λ P p1,8q, ϕpxq “ λ tanh
`

x
λ

˘

and αpxq “
a

ϕxpxq. Since α2 “ ϕx, we can write
ż

R
ϕVxw

2dx “

ż

R
Vx

ϕ

ϕx
pαwq2 dx. (2.40)
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Thus, from (2.23), (2.40) and (2.24),

Bpwq “ 2

ż

R
pαwq2x dx´

ż

R

ˆ

α2
x

α2
´
αxx
α

˙

pαwq2 dx´ µ

ż

R
Vx

ϕ

ϕx
pαwq2 dx.

Then, from computations of subsection 2.2.2 we have that

Bpwq “ 2

ż

R
pαwq2x dx´

1

λ2

ż

R
sech2

´x

λ

¯

pαwq2 dx´ µ

ż

R
Vx

ϕ

ϕx
pαwq2 dx.

We set
Bpvq “ 2

ż

R
v2
xdx´

1

λ2

ż

R
sech2

´x

λ

¯

v2dx´ µ

ż

R
Vx

ϕ

ϕx
v2dx,

where v “ αw. Then
Bpvq “ Bpwq.

Now we prove a modified version of Proposition 2.6.

Proposition 2.12. Let v P H1pRq be odd. Then, for λ ą 0 sufficiently small,

Bpvq ě 1

2

ż

R
v2
xdx. (2.41)

Proof. We introduce

Lpvq “
ż

R
v2
xdx´

1

λ2

ż

R
sech2

´x

λ

¯

v2dx

and
Kpvq “

ż

R
v2
xdx` µ

ż

R
V0v

2dx,

where V0 “ ´Vx
ϕ
ϕx
. Then,

Bpvq “ Lpvq `Kpvq.

Arguing as in the proof of Proposition 2.6, we write

Lpvq “ 1

2

ż

R
v2
xdx`

1

2

ˆ
ż

R
v2
xdx´

2

λ2

ż

R
sech2

´x

λ

¯

v2dx

˙

.

Since v is odd,
ż

R
v2
xdx´

2

λ2

ż

R
sech2

´x

λ

¯

v2dx ě 0,

because the index N of such an operator is the integer that satisfies N ă 1
2

?
17 ´ 1

2
ă 2.

Hence, we get that

Lpvq ě 1

2

ż

R
v2
xdx. (2.42)

Then, in order to get the (2.41) it will be sufficient to demonstrate that Kpvq ě 0.

To prove the positiveness of K, we make use of the following result by Simon [47, Theorem
2.5] (see also [28] for improved results):
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Lemma 2.13. Let V0 be a non-identically zero potential that obeys
ż

R

`

1` x2
˘

|V0pxq|dx ă 8.

Then

´
d2

dx2
` µV0

has a unique negative eigenvalue for all positive µ sufficiently small if and only if
ż

R
V0pxqdx ď 0. (2.43)

Moreover, since V0 is even, such an eigenvalue is associated to an even eigenfunction.

Remark 2.16. We remark that in the case
ş

R V0 ą 0 there is no negative eigenvalue ´ d2

dx2
`

µV0, µ ą 0 sufficiently small.

Notice that, from the definition of ϕ and (2.14), we have
ż

R
V0dx “ ´

ż

R
Vx

ϕ

ϕx
dx “ ´λ

ż

R
Vxsinh

´x

λ

¯

cosh
´x

λ

¯

dx

We integrate by parts and get
ż

R
V0dx “

ż

R
cosh

ˆ

2x

λ

˙

V dx.

Since λ ą 1, (2.14) tells us that V0 integrates in space. Besides, since V is a Schwartz
function,

ż

R

`

1` x2
˘

ˇ

ˇ

ˇ

ˇ

Vx
ϕ

ϕx

ˇ

ˇ

ˇ

ˇ

dx ď

ż

R

`

1` x2
˘

|Vx| cosh

ˆ

2x

λ

˙

dx ă 8.

Then, Lemma 2.13 implies that there exists µ0 ą 0 such that

´
d2

dx2
` µV0

has a unique negative eigenvalue for all µ ă µ0 and λ ą 1. Since the corresponding eigen-
function is even, we have Kpvq ě 0 for v odd. �

The conclusion that we obtain from Proposition 2.41 is that for i “ 1, 2,

Bpuiq ě
1

2

ż

R
pαuiq

2
x dx.

This property of the bilinear form B will allow us to get an estimation of the operator
d
dt
Ipuptqq that will lead us to conclude the proof of Theorem 2.3.

51



2.3.3 Estimates of the terms on (3.25)

Lemma 2.14. Let u be an odd solution of (2.38). Then,

}u}2H1
αpRq ď C pBpu1q `Bpu2qq . (2.44)

for some C ą 0.

Proof. Direct from Lemma 2.7. �

Lemma 2.15. There exists ε ą 0 such that for every odd solution u of (2.38) satisfying

}uptq}H1pRq ď ε @t P R, (2.45)

then
´

d

dt
Ipuptqq ě C}uptq}2H1

αpRq. (2.46)

where C ą 0.

Proof. The virial identity we have is

´
d

dt
Iptq “ 2

ż

R
ϕx|ux|

2dx´
1

2

ż

R
ϕxxx|u|

2dx´ µ

ż

R
ϕVx|u|

2dx

´

ż

R
ϕx

“

F
`

|u|2
˘

´ fp|u|2q|u|2
‰

dx

“ Bpu1q `Bpu2q ´

ż

R
ϕx

“

F
`

|u|2
˘

´ fp|u|2q|u|2
‰

dx.

As we already have an estimation for Bpu1q `Bpu2q given by Lemma 2.14, we need to check
that the remaining terms can be controled. Replicating the proof of Lemma 2.8, we get that

ż

R
ϕx

“

F p|u|2q ´ fp|u|2q|u|2
‰

dx À

ż

R
sech2

´x

λ

¯

|u|p`1dx

À }u}p´1
H1pRq

ż 8

0

ˇ

ˇ

ˇ

´

sech
´x

λ

¯

u1

¯

x

ˇ

ˇ

ˇ

2

dx

` }u}p´1
H1pRq

ż 8

0

ˇ

ˇ

ˇ

´

sech
´x

λ

¯

u2

¯

x

ˇ

ˇ

ˇ

2

dx.

Thus, Proposition 2.12 implies that
ż

R
ϕx

“

F p|u|2q ´ fp|u|2q|u|2
‰

dx À }u}p´1
H1pRq

`

Bpu1q `Bpu2q
˘

.

Now, since }u}H1pRq is small enough, we conclude. (In the defocusing case, this condition is
not needed.) �

We can modify the proof of Proposition 2.34, using Lemma 2.15 instead of Lemma 2.8 to
obtain the following:

Proposition 2.16. There exists a constant C ą 0 such that
ż 8

0

}uptq}2H1
αpRqdt ď Cε2. (2.47)
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2.3.4 Proof main result

Step 1: The L2 norm tends to zero:

Let ϕ P C8pRq. Since Im
ş

R ϕV |u|
2dx “ 0, computing as in Subsection 2.2.4, we have

d

dt

ˆ

1

2

ż

R
ϕ|uptq|2

˙

“ Im
ż

R
ϕxuuxdx (2.48)

This identity implies that
ˇ

ˇ

ˇ

ˇ

d

dt

ˆ

1

2

ż

R
ϕ|uptq|2dx

˙ˇ

ˇ

ˇ

ˇ

À

ż

R
|ϕx||uptq|

2dx`

ż

R
|ϕx||uxptq|

2dx.

Taking ϕpxq “ sechpxq we obtain
ˇ

ˇ

ˇ

ˇ

d

dt
}uptq}2L2

αpRq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

d

dt

ˆ
ż

R
sechpxq|uptq|2

˙
ˇ

ˇ

ˇ

ˇ

À

ż

R
sechpxq|upt, xq|2dx`

ż

R
sechpxq|uxpt, xq|

2dx “ }uptq}2H1
αpRq.

From (2.47), there exists a sequence tn P R, tn Ñ 8 such that }uptnq}2L2
αpRq

Ñ 0. Consider
t P R, integrate over rtn, ts, and take tn Ñ 8. Then

}uptq}2L2αpRq À

ż 8

t

}uptq}2H1
αpRqdt.

Passing to the limit
lim
tÑ8

}uptnq}L2
αpRq “ 0. (2.49)

Step 2: The L8 norm tends to zero:

One uses the same arguments as in Subsection 2.2.4. We skip the proof.

2.4 The Hartree Equation. Proof of Theorem 2.4

Our goal in this section is to extend Theorem 2.1 to the Hartree equation,

iut ` uxx “ σ
`

|x|´a ˚ |u|2
˘

u, pt, xq P Rˆ R (2.50)

where σ “ ˘1 and 0 ă a ă 1. We start out with a virial identity.
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2.4.1 Virial Identity

As before (see (2.19)), let us consider ϕ P C8pRq bounded and let

Jpuptqq :“ Im
ż

R
ϕpxqupt, xquxpt, xqdx, (2.51)

then we state the following result.

Lemma 2.17. Let u P H1pRq be a solution of (2.50), then

´ ImJpuptqq “ 2

ż

R
ϕx|ux|

2dx´
1

2

ż

R
ϕxxx|u|

2dx` σa

ż

R
ϕ

ˆ

x

|x|a`2
˚ |u|2

˙

|u|2dx. (2.52)

Proof. Recall (2.21) from the proof of Lemma 3.25,

d

dt
Jpuptqq “ ´2Re

ż

R
ϕpiutquxdx´ Re

ż

R
ϕxupiutqdx.

We use (2.50) to get

d

dt
Jpuptqq “ 2Re

ż

R
ϕuxxuxdx` Re

ż

R
ϕxuuxxdx

´ σ2Re
ż

R
ϕ
`

|x|´a ˚ |u|2
˘

uuxdx´ σRe
ż

R
ϕx

`

|x|´a ˚ |u|2
˘

uudx

“

ż

R
ϕ
`

|ux|
2
˘

x
dx` Re

ż

R
ϕxuuxxdx

´ σ

ż

R
ϕ
`

|x|´a ˚ |u|2
˘ `

|u|2
˘

x
dx´ σ

ż

R
ϕx

`

|x|´a ˚ |u|2
˘

|u|2dx.

We integrate by parts once on the last term and twice on the second term to obtain

d

dt
Jpuptqq “ ´2

ż

R
ϕx|ux|

2dx´ Re
ż

R
ϕxxuuxdx` σ

ż

R
ϕ
`

|x|´a ˚ |u|2
˘

x
|u|2dx

“ ´2

ż

R
ϕx|ux|

2dx´
1

2

ż

R
ϕxx

`

|u|2
˘

x
dx` σ

ż

R
ϕ
`

|x|´a ˚ |u|2
˘

x
|u|2dx

“ ´2

ż

R
ϕx|ux|

2dx`
1

2

ż

R
ϕxxx|u|

2dx` σ

ż

R
ϕ
`

|x|´a ˚ |u|2
˘

x
|u|2dx.

Computing the derivative on the last term,

d

dt
Jpuptqq “ ´2

ż

R
ϕx|ux|

2dx`
1

2

ż

R
ϕxxx|u|

2dx´ σa

ż

R
ϕ

ˆ

x

|x|a`2
˚ |u|2

˙

x

|u|2dx.

�

Let us analyze the RHS of (2.52). Notice that if ϕ is a non-decreasing weight function,
the integral on the last term in (2.52) is positive:

ż

R

ż

R
ϕpxq

x´ y

|x´ y|a`2
|upyq|2|upxq|2dydx ě 0. (2.53)
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Indeed, we compute (all the computations below are justified by choosing suitably compactly
supported functions, and taking the standard limit procedure)

ż

R
ϕ
`

|x|´a ˚ |u|2
˘

x
|u|2dx “´ a

ż

R
ϕ

ˆ

x

|x|a`2
˚ |u|2

˙

|u|2dx

“ ´a

ż

R

ż

R
ϕpxq

x´ y

|x´ y|a`2
|upyq|2|upxq|2dydx.

We have that
ż

R

ż

R
ϕpxq

x´ y

|x´ y|a`2
|upyq|2|upxq|2dydx “

ż

R

ż

R
pϕpxq ´ ϕpyqq

x´ y

|x´ y|a`2
|upyq|2|upxq|2dydx

`

ż

R

ż

R
ϕpyq

x´ y

|x´ y|a`2
|upyq|2|upxq|2dydx.

After a change of variables on the second integral, we get
ż

R

ż

R
ϕpxq

x´ y

|x´ y|a`2
|upyq|2|upxq|2dydx “

ż

R

ż

R
pϕpxq ´ ϕpyqq

x´ y

|x´ y|a`2
|upyq|2|upxq|2dydx

´

ż

R

ż

R
ϕpxq

x´ y

|x´ y|a`2
|upyq|2|upxq|2dydx.

Then, we obtain that
ż

R

ż

R
ϕpxq

x´ y

|x´ y|a`2
|upyq|2|upxq|2dydx “

1

2

ż

R

ż

R
pϕpxq ´ ϕpyqq

x´ y

|x´ y|a`2
|upyq|2|upxq|2dydx.

If ϕ is non-decreasing, then pϕpxq ´ ϕpyqq px´ yq ě 0. Moreover,
ż

R

ż

R
pϕpxq ´ ϕpyqq

x´ y

|x´ y|a`2
|upyq|2|upxq|2dydx ě 0.

This implies that
ż

R

ż

R
ϕpxq

x´ y

|x´ y|a`2
|upyq|2|upxq|2dydx ě 0,

as claimed.

2.4.2 Proof of Theorem 2.4

Assume σ “ 1 in (2.50) and let u “ u1 ` iu2 P H
1pRq be an odd solution of this equation.

As done in Section 2.2, we define the bilinear form

Bpuiq “ 2

ż

R
ϕxui

2
xdx´

1

2

ż

R
ϕxxxu

2
i dx, i “ 1, 2.

This means that we can re-write the virial identity (2.51) as

´
d

dt
Jpuptqq “ Bpu1q `Bpu2q ´ σ

ż

R
ϕ
`

|x|´a ˚ |u|2
˘

x
|u|2dx. (2.54)

55



Now, as usual, take λ ą 1, ϕ “ λ tanh
`

x
λ

˘

and α “
?
ϕx. From (3.28) and (3.29) and

reasoning as before, we have that

Bpuiq “ 2

ż

R
pαuiq

2
x dx´

1

λ2

ż

R
sech2

´x

λ

¯

pαuiq
2 dx, i “ 1, 2.

Thus, Proposition 2.6 implies that

Bpuiq ě
3

2

ż

R
pαuiq

2
x dx, for i “ 1, 2. (2.55)

Moreover, if we consider

}uptq}H1
αpRq “

ż

R
sechpxqu2

pt, xqdx`

ż

R
sechpxqu2

xpt, xqdx,

then, from Proposition 2.7 we obtain

}u}2H1
αpRq À Bpu1q `Bpu2q. (2.56)

Since
ż

R

ż

R
ϕpxq

x´ y

|x´ y|a`2
|upyq|2|upxq|2dydx ě 0,

it follows that
´

d

dt
Jpuptqq ě }u}2H1

αpRq.

Replicating the proof of Proposition 2.9, we use the last inequality to obtain
ż 8

0

}uptq}2H1
αpRqdt ď Cε2. (2.57)

Step 1: The L2 norm tends to zero: Let φ P C8pRq bounded. Then we compute

d

dt

ˆ

1

2

ż

R
φ|uptq|2dx

˙

“ Re
ż

R
φuutdx

“ ´Re
ż

R
iφu piutq dx

“ Im
ż

R
φu piutq dx.

Hence, using equation (2.50) with σ “ 1 and integrating by parts

d

dt

ˆ

1

2

ż

R
φ|uptq|2dx

˙

“ ´Im
ż

R
φuuxxdx` Im

ż

R
φ
`

|x|´a ˚ |u|2
˘

uudx

“ Im
ż

R
φuxuxdx` Im

ż

R
φ
`

|x|´a ˚ |u|2
˘

|u|2dx

“ Im
ż

R
φ|ux|

2dx` Im
ż

R
φxuuxdx` Im

ż

R
φ
`

|x|´a ˚ |u|2
˘

|u|2dx.
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Since the only integral that can have an imaginary part is the second one, we have that

d

dt

ˆ

1

2

ż

R
φ|uptq|2

˙

“ Im
ż

R
φxuuxdx (2.58)

Thus
ˇ

ˇ

ˇ

ˇ

d

dt

ˆ

1

2

ż

R
φ|uptq|2dx

˙
ˇ

ˇ

ˇ

ˇ

ď

ż

R
|φx||uptq||uxptq|dx

À

ż

R
|φx||uptq|

2dx`

ż

R
|φx||uxptq|

2dx.

We take φpxq “ sechpxq and get
ˇ

ˇ

ˇ

ˇ

d

dt
}uptq}2L2

αpRq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

d

dt

ˆ
ż

R
sechpxq|uptq|2

˙
ˇ

ˇ

ˇ

ˇ

À

ż

R
sechpxq|upt, xq|2dx`

ż

R
sechpxq|uxpt, xq|

2dx “ }uptq}2H1
αpRq.

From (2.57), there exists a sequence tn P R, tn Ñ 8 such that }uptnq}2L2
αpRq

Ñ 0. Consider
t P R, integrate over rt, tns, and take tn Ñ 8. Then

}uptq}2L2
αpRq À

ż 8

t

}upsq}2H1
αpRqds.

In consequence
lim
tÑ8

}uptq}L2
αpRq “ 0. (2.59)

The rest of the proof is exactly the same as in the proofs of Theorems 2.1 and 2.3.
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Chapter 3

On the decay problem for the Zakharov
and Klein-Gordon Zakharov systems in
one dimension

Abstract. We are interested in the long time asymptotic behaviour of solutions to the scalar Zakharov
system

iut `∆u “ nu,
ntt ´∆n “ ∆|u|2

and the Klein-Gordon Zakharov system

utt ´∆u` u “ ´nu,
ntt ´∆n “ ∆|u|2

in one dimension of space. For these two systems, we give two results proving decay of solutions for initial
data in the energy space. The first result deals with decay over compact intervals assuming smallness and
parity conditions (u odd). The second result proves decay in far field regions along curves for solutions whose
growth can be dominated by an increasing C1 function. No smallness condition is needed to prove this last
result for the Zakharov system. We argue relying on the use of suitable virial identities appropiate for the
equations and follow the technics of [20, 23] and [32].

This chapter has been published as M. E. Martínez, On the decay problem for the Zakharov and
Klein–Gordon–Zakharov systems in one dimension, Journal of Evolutions Equations, 2021.
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3.3.2 Second part of the proof of Theorem 3.2 . . . . . . . . . . . . . . . 80

3.4 Decay on compact intervals for Klein-Gordon-Zakharov . . . . . 83

3.4.1 Virial argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.4.2 Conclusion of the proof . . . . . . . . . . . . . . . . . . . . . . . . 85

3.5 Decay in regions along curves for Klein-Gordon-Zakharov . . . . 86

3.5.1 Proof Theorem 3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.1 Introduction

In this work, we are concerned with the one dimensional Zakharov system

iut `∆u “ nu, pt, xq P Rˆ R,
α´2ntt ´∆n “ ∆|u|2, pt, xq P Rˆ R,

(3.1)

with initial data

upt “ 0, xq “ u0pxq, npt “ 0, xq “ n0pxq, ntpt “ 0, xq “ n1pxq.

where upt, xq : Rˆ RÑ C, npt, xq : Rˆ RÑ R and α ą 0.

We are also interested in the Klein-Gordon Zakharov system in one dimension

c´2utt ´∆u` c2u “ ´nu, pt, xq P Rˆ R,
α´2ntt ´∆n “ ∆|u|2 pt, xq P Rˆ R,

(3.2)

with initial data
upt “ 0, xq “ u0pxq, utpt “ 0, xq “ u1pxq

npt “ 0, xq “ n0pxq, ntpt “ 0, xq “ n1pxq.

where upt, xq : Rˆ RÑ R, npt, xq : Rˆ RÑ R, α ą 0, c ą 0.

The Zakharov systems are simplified models for the description of long-wavelength small-
amplitude Langmuir oscillations in a ionized plasma [49]. Langmuir waves are rapid oscilla-
tions of the electron density; electrons and ions oscillate out of phase. Zakharov equations
model the nonlinear interactions between the mean mode of the ionic fluctuations of density
in the plasma n and the changing amplitude of electric field u, which varies slowly compared
to the unperturbed plasma frequency. The constant α is the ion sound speed and c is the
plasma frequency.

In the subsonic limit (α Ñ 8), in which density perturbations are changing slowly, the
term ntt of the wave equation in (3.1) is negligible. This would imply that the Langmuir
waves follow the cubic NLS equation

iut `∆u` |u|2u “ 0.
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If one considers ũ “ eic2t in (3.2), then it follows that

c´2ũtt ´ 2iũt ´∆ũ “ ´nũ,

α´2ntt ´∆n “ ∆|ũ|2.

Thus, formally, in the high-frequency limit (that is, taking c Ñ 8) of the Klein-Gordon-
Zakharov (3.2), the Zakharov system is recovered.

These high-frequency and subsonic limits were extensively studied in [1, 38, 46] and [26]-
[29]. See, also, [45, 42, 4] for more details on the physical derivation.

The Zakharov system (3.1) preserves the mass }uptq}L2pRq “ }up0q}L2pRq and the energy

HSptq :“

ż

R
|∇upt, xq|2 ` 1

2

´

|npt, xq|2 `
1

α2
|D´1ntpt, xq|

2
¯

` npt, xq|upt, xq|2dx,

where D “
?
´∆. The Klein-Gordon-Zakharov system (3.2) preserves the following energy,

as well:
HKGptq “

ż

R
c2
|upt, xq|2 ` |∇upt, xq|2 ` 1

c2
|utpt, xq|

2
`

1

2
|npt, xq|2

`
1

2

ˇ

ˇ|αD|´1ntpt, xq
ˇ

ˇ

2
` npt, xq|upt, xq|2dx “ HKGp0q.

The system (3.1) in one dimension is globally well-posed for initial data in H1pRqˆL2pRqˆ
Ĥ´1pRq, where

w P Ĥs if there exists v : Rd
Ñ Rd such that w “ ∇ ¨ v and }w}Ĥs “ }v}Hs`1 .

The first approach in this regard was presented by Sulem and Sulem in [44], where they
stated local well-posedness of (3.1) for dimensions d “ 1, 2, 3 and initial data

pu0, n0, n1q P H
m
pRd
q ˆHm´1

pRd
q ˆ

´

Hm´2
X Ĥ´1

¯

pRd
q, m ě 3.

Using the Brezis-Gallouët inequality

}u}L8 À 1` }u}H1plnp1` }∆u}L2qq, (3.3)

valid if u P H2pR2q, Added and Added in [1] improved [44] to global well-posedness for small
initial data in the 2-dimensional case. The local well posedness result (d “ 1, 2, 3) was
refined by Ozawa and Tsutsumi [39], for data pu0, n0, n1q P H

2ˆH1ˆL2, and by Colliander
[7] for pu0, n0, n1q P H

1 ˆ L2 ˆ Ĥ´1. In fact, in [7], using a priori estimates on the H1-norm
of u, Colliander shows global well-posedness for small data in the one-dimensional case.
Finally, on [40], Pecher proves that the Zakharov system is globally well posed for rough
data pu0, n0, n1q P H

s ˆ L2 ˆ Ĥ l´1, 1 ą s ą 9{10 for dimension d “ 1 without any smallness
condition. More results on local and global well-posedness for other dimensions and more
general nonlinearities are stated in [5, 8, 10, 31], and on the torus in [3].

Regarding well-posedness for system (3.2), the first result was presented in [36], where
the authors followed a method based on the theory of normal forms to prove that (3.2) in
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dimensions d “ 1, 2, 3 with c “ α “ 1, admits a unique global solutions for small initial
data with rather restrictive regularity conditions. Also, they give a completeness result for
the 3-dimensional case, as they show the existence of global solutions that tend to behave
asymptotically (when tÑ 8) as the free solutions.

Using Sobolev invariant spaces, Tsutaya [47], improved the regularity conditions of the
global existence result in [36] for dimension d “ 3. The low-frequency case (0 ă α ă 1) in
three dimensions was addressed in [37], where the authors rely on the different propagation
speed (normalized c “ 1 in the Klein Gordon equation, while assumed 0 ă α ă 1 in the wave
equation) to prove local and then global well-posedness for small initial data in the energy
space:

pu0, u1, n0, n1q P H
1
ˆ L2

ˆ L2
ˆ Ĥ´1.

Following the idea stated in [37], Otha and Todorova [35] extended the well-posedness result
for all α ą 0 and d ă 3. The high-frequency, subsonic case in dimension d “ 3 was later
treated by Masmoudi and Nakanishi in [30]-[31], where they presented local well-posedness
in the energy space under the assumption α ă c.

In this paper, we are interested in the decay of solutions to systems (3.1) and (3.2).

It is known that for dimension d “ 2, 3, there exist solutions to (3.1) that decay to zero in
the energy space H1 ˆ L2 ˆ Ĥ´1. Indeed, Ozawa and Tsutsumi [39], Ginibre and Velo [11],
and Shimomura [43], proved existence and uniqueness of asymptotically free solutions of (3.1)
by solving the system with final data given at t Ñ 8, instead of the initial value problem;
that is, for u` and n` free solutions of the Schrödinger and wave equations respectively,

}uptq ´ u`ptq}H1 ` }∇nptq ´∇n`}L2 ` }Btnptq ´ Btn`ptq}L2 Ñ 0, as tÑ 8.

Completeness results were also obtained for the 3-dimensional Klein-Gordon-Zakharov (3.2).
In fact, Ozawa, Tsutaya and Tsutsumi [36] proved the existence of global solutions that
behave asymptotically as free solutions in space

ÿ

j“0,1

}B
j
t puptq ´ u`ptqq}H52´j `

ÿ

j“0,1

}B
j
t pnptq ´ n`ptqq}H51´j Ñ 0 as tÑ 8.

In [13], Guo and Nakanishi prove that radially symmetric solutions for the Zakharov
system in d “ 3 with small energy do scatter. By using generalized Strichartz estimates for
the Schrödinger equation, Guo, Lee, Nakanishi and Wang in [12] were able to improve [13]
by showing scattering of small solutions without the radial assumption.

Following the idea in [13], Guo, Nakanishi and Wang [14] proved scattering in the energy
space for radially symmetric solutions with small energy for the system (3.2) in three dimen-
sions, as well. In [15], they continue the study of global dynamics of radial solutions in three
dimensions and find a dichotomy between scattering and blow-up. More specifically, relying
on virial identities, they show that if the initial data is radially symmetric and its energy is
below the energy of the ground state then the solution to (3.2) can either (for both i “ 1, 2):

• scatter when Jipu0q ě 0, or
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• blow up in finite time when Jipu0q ă 0,

where Ji are scaling derivative of the static Klein-Gordon energy:

J0pvq “

ż

|u|2 ` |∇u|2 ´ |u|4dx and J2pvq “

ż

|∇u|2 ´ 3

4
|u|4dx.

The behavior of radially symmetric solutions of (3.1) was also studied in [24]. Using virial
identities, Merle in [24] showed blow up at either finite or infinity time for radially symmetric
solutions to (3.1) that satisfy Es ă 0 for d “ 2, 3. In [25], Merle improved the results in [24]
by presenting lower estimates on the blow-up of the Zakharov system in the 2-dimensional
case.

Notice that all positive decay/scattering results above mentioned do not deal with the
case d “ 1.

From now on, we consider the one-dimensional case. In the following subsections, we
introduced a reduction of order for the Zakharov and Klein-Gordon-Zakharov systems and
present the main results of this work.

3.1.1 Main results for Zakharov system

In order to simplify the computations, from now on we consider system (3.1) with α “ 1,
although the analysis still works for α ‰ 1. With the purpose of reducing (3.1) into a first
order system, we introduce the real function v such that:

iut ` uxx “ nu,

nt ` vx “ 0,

vt `
`

n` |u|2
˘

x
“ 0,

(3.4)

and
upt “ 0, xq “ u0pxq, npt “ 0, xq “ n0pxq, vpt “ 0, xq “ v0.

Such supposition is possible because we study the Zakharov system (3.1) in the Hamiltonian
case, meaning that we assume that there exists v0 P L

2pRq such that ´∇¨v0 “ ntp0q; property
that is preserved by the flow. This way, to consider pu, n, ntq P H1pRq ˆ L2pRq ˆ 9H´1pRq
solution of (3.1) is equivalent to study pu, n, vq P H1pRq ˆ L2pRq ˆ L2pRq solution to (3.4).

The system (3.4) preserves:

• Mass:
Msptq :“

ż

R
|upt, xq|2dx “Msp0q, (3.5)

• Energy:

Esptq :“

ż

R
|uxpt, xq|

2
`

1

2

´

|npt, xq|2 ` |vpt, xq|2
¯

` npt, xq|upt, xq|2dx “ Esp0q, (3.6)
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• Momentum:

Psptq :“ Im
ż

R
upt, xquxpt, xqdx´

ż

R
vpt, xqnpt, xq dx “ Psp0q. (3.7)

In the present work, we show decay for solutions of (3.4) in one dimension in two different
ways. On one hand, we prove decay on any compact interval for solutions to (3.4) under
parity assumptions (u odd). On the other hand, we are able to show decay, without any
oddness condition but with sufficient regularity (}uptq}H2 P L8), in regions along curves
outside the “light cone”.

Theorem 3.1. Assume Es ă 8. Let pu, n, vq P C pR`, H1pRq ˆ L2pRq ˆ L2pRqq be a solution
of (3.4) such that u is odd and satisfies, for some ε ą 0 small,

sup
tě0
}uptq}H1pRq ă ε. (3.8)

Then, for every compact interval I Ă R,

lim
tÑ8

}uptq}L8pIq ` }uptq}L2pIq ` }nptq}L2pIq ` }vptq}L2pIq “ 0. (3.9)

Remark 3.1. Asking for u to be odd implies necessarily for n to be even. This property is
preserved by the flow.

Remark 3.2. The fact that u is odd allows to rule out solitary waves. The first result
regarding solitary waves was stated by Wu in [48], where he proves existence and orbital
stability of solutions

upt, xq “ e´iωteiqpx´ctquω,cpx´ ctq, (3.10)

and
npt, xq “ nω,cpx´ ctq, (3.11)

for

uω,cpxq “

c

p4ω ` c2qp1´ c2q

2
sech

ˆ

?
4ω ` c2

2
x

˙

,

nω,cpxq “

ˆ

2ω `
c2

2

˙

sech2

ˆ

?
4ω ` c2

2
x

˙

, q “
c

2
,

satisfying
4ω ` c2

ě 0 and 1´ c2
ą 0.

Angulo and Banquet [2] studied existence of periodic travelling wave forms such as (3.10)-
(3.11), in this case for uω,c and nω,c being periodic functions, and prove their orbital stability
as well. See also [9, 34, 17, 18, 50] for other results on solitary waves for generalized Zakharov
systems.

Remark 3.3. We do not prove decay in the energy space H1ˆL2ˆ 9H´1pRq. This is because
uncontrolled H2-terms emerge when considering semi-norm 9H1 for the solution u of the
Schrödinger equation. We show L8 decay instead.
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Remark 3.4. The result also holds for a generalized Zakharov system when adding a po-
tential term |u|pu in the Schrödinger equation. See [23] for the details on how to treat the
new non-linear term.

Remark 3.5. In [41, 22], the authors study the asymptotic behaviour of the Zakharov-
Rubenchik system. They prove that solutions blow up if the energy is negative and give
instability results for the solitary wave in the case d “ 3. Such system is of special interest
since in the supersonic limit it has been proven that it converges to (3.1).

The proof of Theorem 3.1 is based on the use of suitable virial identities. The argument
follows from [20, 21], where the authors deal with the Klein Gordon case. The idea is to
argue as in [23], where a functional adapted to the momentum for the nonlinear Schödinger
equation was considered. Unfortunately, the identity used for the NLS equation, which allows
us to conclude, it is not appropriate in this case. Instead, as in [24, 25], we need to work
with a virial identity that comes from the quantity

P ptq :“ Im
ż

R
upt, xquxpt, xqdx´

ż

R
vpt, xqnpt, xq dx.

Such virial has an uncontrolled term that we manage by adding the condition (3.8).

Our second result deals with decay in far field regions along curves.

Theorem 3.2. Assume Es ă 8 and Ms ă 8. Let pu, n, vq satisfy (3.4).

1. If pu, n, vq P C pR`, H1pRq ˆ L2pRq ˆ L2pRqq, then, for any µ P C1pRq satisfying
µptq Á t logptq1`δ, δ ą 0,

lim
tÑ8

}uptq}L2p|x|„µptqq “ 0. (3.12)

2. If pu, n, vq P C pR`, H2pRq ˆ L2pRq ˆ L2pRqq and there exists fptq P C1pRq a non-
decreasing function such that

}uptq}H2pRq À fptq, (3.13)

then, for any µ P C1pRq satisfying µptq Á t logptq1`δfptq, δ ą 0,

lim
tÑ8

}uptq}H1p|x|„µptqq ` }nptq}L2p|x|„µptqq ` }vptq}L2p|x|„µptqq “ 0. (3.14)

A direct consequence of the proof of Theorem 3.2 is the following result for the NLS
equation:

Corollary 3.3. Let uptq P H1pRq be a solution of the non-linear Schrödinger equation

iut ` uxx ˘ |u|
p´1u “ 0,

where 1 ă p ă 5, with initial data upt “ 0, xq “ u0 satisfying }upt “ 0q}H1pRq ă 8. Then,

lim
tÑ8

}uptq}L2p|x|„µptqq “ 0.
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The proof of Theorem 3.2 follows an argument recently introduced by Muñoz, Ponce and
Saut in [32], where they deal with the long time behaviour of intermediate long wave equation.
This method proves to be independent of the integrability of the equation and does not need
size restriction. However, when dealing with the Zakharov system, because of the presence of
uncontrolled H2-terms in the dynamics of the H1-norm of u, we need the additional condition
(3.13). Note that such condition allows as to obtain decay of the } ¨ }H1-norm, which was not
present in results established in [32].

3.1.2 Main results for Klein-Gordon-Zakharov system

We will consider system (3.2) with α “ c “ 1, although the computations still hold for
different values of α, c P R. As we did for the Zakharov system (3.1), we reduce (3.2) by
introducing a real function v satisfying ´∇ ¨ v “ nt for all t ě 0. That is, we get a new first
order system,

utt ´ uxx ` u “ ´nu,

nt ` vx “ 0,

vt `
`

n` |u|2
˘

x
“ 0,

(3.15)

and
upt “ 0, xq “ u0pxq, utpt “ 0, xq “ u1pxq

npt “ 0, xq “ n0pxq, vpt “ 0, xq “ v0pxq.

The system (3.15) preserves:

• Energy:

EKGptq :“

ż

R
|upt, xq|2 ` |uxpt, xq|

2
` |utpt, xq|

2

`
1

2

´

|npt, xq|2 ` |vpt, xq|2
¯

` npt, xq|upt, xq|2dx “ EKGp0q,

(3.16)

• Momentum:

PKGptq :“

ż

R
utpt, xquxpt, xqdx´

1

2

ż

R
vpt, xqnpt, xq dx “ PKGp0q. (3.17)

As we did for (3.4), we prove decay of solutions to (3.15) in two different ways: over
compact intervals of time and over far field regions along curves. Our result for compact
intervals is the following:

Theorem 3.4. Assume EKG ă 8. Let pu, ut, n, vq P C pR`, H1pRq ˆ L2pRq ˆ L2pRq ˆ L2pRqq
be a solution of (3.4) such that u is odd and satisfies

sup
tě0
}uptq}H1pRq ď ε and sup

tě0
}utptq}L2pRq ď C (3.18)

for some C ą 0 and ε ą 0 small. Then, for every compact interval I Ă R,

lim
tÑ8

}uptq}H1pIq ` }utptq}L2pIq ` }nptq}L2pIq ` }vptq}L2pIq “ 0. (3.19)
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Remark 3.6. The oddness condition rules out solitary waves. Indeed, solitary waves of
(3.15) exist and they are orbitally stable. They were first introduced by Chen in [6], where
he stated that solitons of the form

upt, xq “ e´iωteiqpx´ctquω,cpx´ ctq,

npt, xq “ nω,cpx´ ctq,

with

uω,cpxq “
a

2p1´ c2 ´ ω2q sech

ˆ

?
1´ c2 ´ ω2

1´ c2
x

˙

,

nω,cpxq “ ´2
p1´ c2 ´ ω2q

1´ c2
sech2

ˆ

?
1´ c2 ´ ω2

1´ c2
x

˙

, q “
ωc

1´ c2
.

exists when the real constants ω and c satisfy 1´ c2´ω2 ą 0. There also exist solitary waves
puω,c, putqω,c, nω,c, vω,cq of (3.15) of the form

uω,cpxq “
a

2p1´ c2 ´ ω2q sech

ˆ

?
1´ c2 ´ ω2

1´ c2
x

˙

e
i ωc
1´c2

x
, putqω,c “

ˆ

iω ` c
B

Bx

˙

uω,cpxq,

nω,cpxq “ ´2
p1´ c2 ´ ω2q

1´ c2
sech2

ˆ

?
1´ c2 ´ ω2

1´ c2
x

˙

,

vω,cpxq “ 2c
p1´ c2 ´ ω2q

1´ c2
sech2

ˆ

?
1´ c2 ´ ω2

1´ c2
x

˙

,

with 1´ 2c2 ´ 2ω2 ă 0 and are orbitally stable [6].

Remark 3.7. The result holds when considering cubic nonlinear KGZ system, that is, when
adding an additional term |u|2u in the Klein Gordon equation. We do not address this case
in the proof, but it follows naturally from the analysis of the non-linear term in [20].

The proof of this results follows more closely the idea in [20]. Indeed, we construct a virial
identity that comes from the momentum:

PKG “

ż

R
utpt, xquxpt, xqdx´

1

2

ż

R
vpt, xqnpt, xqdx.

But, since there are uncontrolled terms involving u and ut in the identity from the potential,
we need to consider ut uniformly bounded. Notice that we obtain now decay in the whole
energy norm (that is, even for the H1-norm).

The last theorem is devoted to the decay of the solutions to (3.15) in regions along curves
outside the light cone:

Theorem 3.5. Assume EKG ă 0. If pu, ut, n, vq P C pR`, H1pRq ˆ L2pRq ˆ L2pRq ˆ L2pRqq
is a solution to (3.15) such that

sup
tě0
}uptq}H1pRq ď ε (3.20)

for some 0 ă ε ď 1, then, for any µ P C1pRq satisfying µptq Á t logptq1`δ, δ ą 0,

lim
tÑ8

}uptq}H1p|x|„µptqq ` }utptq}L2p|x|„µptqq ` }nptq}L2p|x|„µptqq ` }vptq}L2p|x|„µptqq “ 0. (3.21)
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Notation

We introduce
}uptq}2L2

ωpRq
:“

ż

R
ωpxq|upt, xq|2dx,

}uptq}2H1
ωpRq

:“

ż

R
ωpxq

`

|uxpt, xq|
2
` |upt, xq|2

˘

dx,

(3.22)

as the weighted L2-norm and H1-norm.

This paper is organized as follows. In Section 3.2 we prove Theorem 3.1; the virial ar-
gument is given in Subsection 3.2.1. Section 3.3 is devoted to the proof of Theorem 3.2.
Sections 3.4 and 3.5 contain the KGZ system results, Theorems 3.4 and 3.5, respectively.

3.2 Decay on compact intervals for Zakharov

This section is devoted to the proof of Theorem 3.1. Before we begin with the virial analysis,
we give the following result, which states boundness of the energy norm for every solution to
(3.4) with finite energy, It will be useful also in Section 3.3.

Lemma 3.6. Let pu, n, vq P C pR`, H1pRq ˆ L2pRq ˆ L2pRqq be a solution of (3.4) such that
Es ă 8 and Ms ă 8. Then, there exists Ks ą 0 (Ks depending only on the initial data)
such that

ż

R

`

|uxpt, xq|
2
` |upt, xq|2 ` |vpt, xq|2 ` |npt, xq|2

˘

dx ď Ks. (3.23)

Proof. We have that
ż

R
|ux|

2
`

1

2

`

|v|2 ` |n|2
˘

dx “

ż

R
|ux|

2
`

1

2

`

|v|2 ` |n|2
˘

` 2n|u|2dx´ 2

ż

R
n|u|2dx

ď

ż

R
|ux|

2
`

1

2

`

|v|2 ` |n|2
˘

` 2n|u|2dx` 2

ż

R
|n||u|2dx.

Using Young inequality for products, for ε ą 0 we get
ż

R
|ux|

2
`

1

2

`

|v|2 ` |n|2
˘

dx

ď

ż

R
|ux|

2
`

1

2

`

|v|2 ` |n|2
˘

` 2n|u|2dx`
1

ε

ż

R
|n|2dx` ε

ż

R
|u|4dx.

(3.24)

Now, Gagliardo-Nirenberg inequality [19, 33], implies that
ż

R
|u|4dx ď CGN}ux}L2pRq}u}

3
L2pRq ď

CGN
2
}ux}

2
L2pRq `

CGN
2
}u}6L2pRq,

where

CGN “

?
3

3
,

71



and Q is the solution to Q2`Q3´Q “ 0. Then, going back to (3.24) and taking, for instance,
ε “ 2, we obtain

ż

R
|∇u|2 ` 1

2

`

|v|2 ` |n|2
˘

dx ď 2Esp0q `

?
3

6
Msp0q

3

Which means that there exists a constant Ks depending onMsp0q and Esp0q such that (3.23)
holds. �

3.2.1 Virial argument

Step 1: Virial identity.
We now introduce suitable virial identities that allow us to work out our argument. Let
ϕ P C8pRq be a bounded real function. Define

Iptq “ Im
ż

R
ϕpxqupt, xquxpt, xqdx´

ż

R
ϕpxqvpt, xqnpt, xqdx.

Then, we have the following:

Lemma 3.7 (Virial identity). Let pu, n, vq be a solution to (3.4). Then,

´
d

dt
Ipuptqq “ 2

ż

R
ϕ1pxq |uxpt, xq|

2 dx´
1

2

ż

R
ϕ3pxq|upt, xq|2dx`

ż

R
ϕ1pxqnpt, xq|upt, xq|2

`
1

2

ż

R
ϕ1pxq|npt, xq|2dx`

1

2

ż

R
ϕ1|vpt, xq|2dx.

(3.25)

Proof. We compute

d

dt
Ipuptqq “Im

ż

R
ϕpxqutpt, xquxpt, xqdx` Im

ż

R
ϕpxqupt, xqutxpt, xqdx

´

ż

R
ϕpxqvtpt, xqnpt, xqdx´

ż

R
ϕpxqvpt, xqntpt, xqdx.

Integrating by parts,

d

dr
Iptq “ 2Im

ż

R
ϕpxqutpt, xquxpt, xqdx´ Im

ż

R
ϕ1pxqupt, xqutpt, xqdx

´

ż

R
ϕpxqvtpt, xqnpt, xqdx´

ż

R
ϕpxqvpt, xqntpt, xqdx

“ ´2Re
ż

R
ϕpxqiutpt, xquxpt, xqdx´ Re

ż

R
ϕ1pxqupt, xqiutpt, xqdx

´

ż

R
ϕpxqvtpt, xqnpt, xqdx´

ż

R
ϕvpt, xqntpt, xqdx.
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Now, since pu, n, vq is a solution of the system (3.4),

d

dt
Iptq “

ż

R
ϕpxq

`

|uxpt, xq|
2
˘

x
dx´

ż

R
ϕpxqnpt, xq

`

|upt, xq|2
˘

x
dx` Re

ż

R
ϕ1pxqupt, xquxxpt, xqdx

´

ż

R
ϕ1pxq|upt, xq|2npt, xqdx`

ż

R
ϕpxq

`

|upt, xq|2 ` npt, xq
˘

x
npt, xqdx

`
1

2

ż

R
ϕpxq

`

|vpt, xq|2
˘

x
dx.

We integrate by parts once more and get

d

dt
Iptq “ ´2

ż

R
ϕ1pxq |uxpt, xq|

2 dx´
1

2

ż

R
ϕ2pxq

`

|upt, xq|2
˘

x
dx´

ż

R
ϕ1pxqnpt, xq|upt, xq|2

´

ż

R
ϕ1pxq|npt, xq|2dx`

1

2

ż

R
ϕpxq

`

|npt, xq|2
˘

x
dx´

1

2

ż

R
ϕ1pxq|vpt, xq|2dx

“ ´2

ż

R
ϕ1pxq |uxpt, xq|

2 dx`
1

2

ż

R
ϕ3pxq|upt, xq|2dx´

ż

R
ϕ1pxqnpt, xq|upt, xq|2

´
1

2

ż

R
ϕ1pxq|npt, xq|2dx´

1

2

ż

R
ϕ1pxq|vpt, xq|2dx.

Then, the identity follows. �

Step 2: Estimations of the terms on the virial.
In order to find a more compact expression of (3.25), we define the bilinear form

Bpuq “ 2

ż

R
ϕ1 |ux|

2 dx´
1

2

ż

R
ϕ3|u|2dx. (3.26)

Then identity (3.25) turns into

´
d

dt
Ipuptqq “ Bpuq `

ż

R
ϕ1n|u|2 `

1

2

ż

R
ϕ1|n|2dx`

1

2

ż

R
ϕ1|v|2dx. (3.27)

Following the argument in [23], for λ ą 0, let us take ϕ pxq “ λ tanh
`

x
λ

˘

and ωpxq “
a

ϕ1pxq.
Notice that if u “ u1 ` iu2, where u1, u2 are real functions, then Bpuq “ Bpu1q `Bpu2q. We
take η “ ui, i “ 1, 2, and find estimations for Bpηq. From now on, we are going to assume u
odd, which implies that η is also odd. Note that, by integration by parts,

ż

R
pωηq2x dx “

ż

R
ϕ1 pηxq

2 dx`

ż

R
ωω1

`

η2
˘

x
dx`

ż

R
pω1q

2
η2dx

“

ż

R
ϕ1 pηxq

2 dx´

ż

R
ωω2η2dx,

It follows that
ż

R
ϕ1 pηxq

2 dx “

ż

R
pωηq2x dx`

ż

R

ω2

ω
pωηq2 dx. (3.28)
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On the other hand, we can re-write ϕ3 “ pω2q
2
“ 2 pωω2 ` pω1q2q, and obtain

ż

R
ϕ3η2dx “ 2

ż

R

ˆ

ω2

ω
`
pω1q2

ω2

˙

pωηq2 dx. (3.29)

Thus, from (3.28) and (3.29),

Bpηq “ 2

ż

R
pωηq2x dx´

ż

R

ˆ

pω1q2

ω2
´
ω2

ω

˙

pωηq2 dx.

Since ωpxq “ sech
`

x
λ

˘

, then

Bpηq “ 2

ż

R
pωηq2x dx´

1

λ2

ż

R
sech2

´x

λ

¯

pωηq2 dx.

Now, introducing a new variable ζ “ ωη, we set

Bpζq “ 2

ż

R
ζ2
xdx´

1

λ2

ż

R
sech2

´x

λ

¯

ζ2dx

so that
Bpζq “ Bpηq.

At this point, we would like to prove that the bilinear B is coercive, which would imply

Bpηq “ Bpζq Á }ζx}2L2pRq “ } pωηqx }
2
L2pRq

That way, we could have an estimation for the bilinear part on (3.27), Bpuq, using the
weighted norm } ¨ }H1

ω
.

Lemma 3.8 (See [23]). Let ζ P H1pRq be odd. Then,

Bpζq ě 3

2

ż

R
ζ2
xdx.

We refer to [23, Proposition 2.2] for the details of the proof.

Finally, to conclude the analysis of the linear term Bpuq, we need to bound this term by
}u}H1

ωpRq.

Lemma 3.9 (See [23]). Let u P H1pRq be odd, u “ u1 ` iu2. Then there exists a positive
constant c0 ă 1 such that

Bpuq ě c0}u}
2
H1
ωpRq

(3.30)

We omit the proof, see [23, Lemma 2.3].

Step 3: Conclusion of the argument.
The key ingredient of the virial argument is the subsequent proposition:
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Proposition 3.10. Let pu, n, vq be a solution of (3.4) such that u is odd and satisfies (3.8),
for ε ą 0 sufficiently small. Then, there exists C ą 0 such that

ż 8

0

}uptq}2H1
wpRq

`
1

2
}vptq}2L2

wpRq
`

1

2
}nptq}2L2

wpRq
dt ď C. (3.31)

In particular,
ż 8

0

}uxptq}
2
L2
wpRq

`
1

2
}vptq}2L2

wpRq
`

1

2
}nptq}2L2

wpRq
dt ď C. (3.32)

Proof. From (3.27) and (3.30), we have that

´
d

dt
Iptq ě c0}uptq}

2
H1
ωpRq

`
1

2

ż

R
ϕ1
`

v2
` n2

˘

dx`

ż

R
ϕ1n|u|2dx. (3.33)

Now, following the idea of the proof of Lemma 3.6, by Young inequality, for some ε ą 0 we
get

ż

R
ϕ1|n||u|2dx ď

1

2ε

ż

R
ϕ1n2dx`

ε

2

ż

R
ϕ1|u|4dx. (3.34)

At this point, we need to absorb the negative terms using the weighted-norm (3.22). Since u
is odd,

ż

R
sech2

´x

λ

¯

|u|4dx “ 2

ż 8

0

sech2
´x

λ

¯

|u|4dx

“ 2

ż 8

0

sech´2
´x

λ

¯

sech4
´x

λ

¯

|u|4

»

ż 8

0

e2x{λsech4
´x

λ

¯

|u|4dx.

With a slight abuse of notation, set ζpt, xq :“ sech
`

x
λ

˘

upt, xq. Note that ζpt, 0q “ 0 and
vanishes at infinity @t P R. Then, integrating by parts,

ż 8

0

e2x{λ
|ζ|4dx “ ´

λ

2

ż 8

0

e2x{λ
`

|ζ|4
˘

x
dx

“ ´2λRe
ż 8

0

e2x{λ
|ζ|2ζ̄ζxdx.

Hence,
ż 8

0

e2x{λ
|ζ|4dx “ ´2λRe

ż 8

0

ex{λ|ζ|ζζx
`

ex{λ|ζ|
˘

dx

À }u}L8pRqRe
ż 8

0

ex{λ|ζ|ζζxdx

À }u}L8pRq

ż 8

0

ex{λ|ζ|2|ζx|dx.
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By Young’s inequality,
ż 8

0

e2x{λ
|ζ|4dx À }u}L8pRq

ż 8

0

|ζx|
2dx` }u}L8pRq

ż 8

0

e2x{λ
|ζ|4dx

» }u}L8pRq

ż 8

0

|ζx|
2dx` }u}L8pRq

ż 8

0

sech´2
´x

λ

¯

sech4
´x

λ

¯

|u|4dx

“ }u}L8pRq

ż 8

0

|ζx|
2dx` }u}L8pRq

ż 8

0

sech2
´x

λ

¯

|u|4dx.

By Sobolev’s embedding and (3.8) with 0 ă ε ă 1, this actually means that
ż

R
sech2

´x

λ

¯

|u|4dx À ε

ż 8

0

| pωuqx |
2dx.

From Lemma 3.8 and Lemma 3.9, we obtain
ż

R
sech2

´x

λ

¯

|u|4dx À c0ε}u}
2
H1
ω
.

Then, going back to (3.33), taking ε “ 2 and ε sufficiently small, one gets

´
d

dt
I Á }uptq}2H1

ωpRq
` }nptq}2L2

ωpRq
` }vptq}2L2

ωpRq
.

Now, we integrate in time over r0, τ s for τ ą 0,
ż τ

0

}uptq}2H1
ωpRq

` }nptq}2L2
ωpRq

` }vptq}2L2
ωpRq

dt À |Ipτq| ` |Ip0q|.

Thanks to Lemma 3.6, one obtains that

|Iptq| ď }uptq}2H1pRq ` }nptq}
2
L2pRq ` }vptq}

2
L2pRq ď Ks, @t ě 0.

Finally, taking τ Ñ 8, we conclude. �

3.2.2 Proof of Theorem 3.1:

Now, we proceed to conclude the proof of Theorem 3.1.

Let φ P C8pRq. Using equation (3.4), we can compute

d

dt

ż

R
φ
`

|u|2 ` |v|2 ` |n|2
˘

dx “´ 2Im
ż

R
φ1uuxdt´ 2

ż

R
φv

`

|u|2 ` n
˘

x
dx´ 2

ż

R
φnvxdx.

By integration by parts, one obtains

d

dt

ż

R
φ
`

|u|2 ` |v|2 ` |n|2
˘

dx “ ´2Im
ż

R
φ1uuxdt` 2

ż

R
φ1vn dx´ 2

ż

R
φv

`

|u|2
˘

x
dx.

76



This implies that

d

dt

ż

R
φ
`

|u|2 ` |v|2 ` |n|2
˘

dx “ ´2Im
ż

R
φ1uuxdx` 2

ż

R
φ1vn dx´ 4Re

ż

R
φvuuxdx. (3.35)

From Hölder inequality and (3.8), taking φpxq “ sechpxq, we can conclude that

d

dt

ˆ

}uptq}2L2
wpRq

`
1

2
}vptq}2L2

wpRq
`

1

2
}nptq}2L2

wpRq

˙

ď 2

ż

R
sechpxq

`

|u|2 ` |ux|
2
` |v|2 ` |n|2

˘

dx` 2ε

ż

R
sechpxq

`

|v|2 ` |ux|
2
˘

dx

À }uptq}2H1
wpRq

`
1

2
}nptq}2L2

wpRq
`

1

2
}vptq}2L2

wpRq
.

(3.36)

By (3.32) we have that there exists a sequence ttnu Ă R, tn Ñ 8 such that

}uptnq}
2
L2
wpRq

`
1

2
}vptnq}

2
L2
wpRq

`
1

2
}nptnq}

2
L2
wpRq

Ñ 0.

We integrate (3.36) over rt, tns, for some t P R and take tn Ñ 8.

}uptq}2L2
wpRq

`
1

2
}vptq}2L2

wpRq
`

1

2
}nptq}2L2

wpRq

À

ż 8

t

}upsq}2H1
wpRq

`
1

2
}npsq}2L2

wpRq
`

1

2
}vpsq}2L2

wpRq
ds.

Finally, taking tÑ 8, in view of (3.32), we obtain

lim
tÑ8

}uptq}2L2
wpRq

` }vptq}2L2
wpRq

` }nptq}2L2
wpRq

“ 0. (3.37)

To show decay of the L8-norm, we use the following claim, proven in [23]:

Claim 3.11. For every interval I there exists x̃ptq P I such that, as t tends to infinity,

|upt, x̃ptqq|2 Ñ 0.

Now, if x P I, by Fundamental Theorem of calculus and Hölder’s inequality

|upt, xq|2 ´ |upt, x̃ptqq|2 “

ż x

x̃ptq

`

|u|2
˘

x
dx ď 2

ż x

x̃ptq

|u||ux|dx

ď 2}uptq}L2pIq}uxptq}L2pIq.

Then,
|upt, xq|2 À |upt, x̃ptqq|2 ` 2}uptq}L2pIq}uxptq}L2pIq, @x P I. (3.38)

Using Lemma 3.6, we get
sup
tPR
}uptq}H1pRq ă 8.

Hence, taking tÑ 8 in (3.38), from Claim 3.11 and (3.37), we get that

|upt, xq|2 Ñ 0, @x P I.
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3.3 Decay in regions along curves for Zakharov

From now on, let us assume λ, µ P C1pRq are functions depending on time. For ϕ P C2pRq X
L8pRq, define

Kptq “
1

2

ż

R
ϕ

ˆ

x` µptq

λptq

˙

|upt, xq|2dx,

and

Jptq “

ż

R
ϕ

ˆ

x` µptq

λptq

˙ˆ

|uxpt, xq|
2
`

1

2
|vpt, xq|2 `

1

2
|npt, xq|2 ` npt, xq|upt, xq|2 ` |upt, xq|2

˙

dx.

As we did in the previous section, we obtain a virial identity from which we are going to
construct the argument.

Lemma 3.12. Let pu, n, vq P H1 ˆ L2 ˆ L2 a solution to (3.4). Then,

1.

d

dt
Kptq “

1

λptq
Im

ż

R
ϕ1
ˆ

x` µptq

λptq

˙

upt, xquxpt, xqdx`
µ1ptq

2λptq

ż

R
ϕ1
ˆ

x` µptq

λptq

˙

|upt, xq|2dx

´
λ1ptq

2λptq

ż

R
ϕ1
ˆ

x` µptq

λptq

˙ˆ

x` µptq

λptq

˙

|upt, xq|2dx.

(3.39)

2.

d

dt
Jptq “

1

λptq

ż

R
ϕ1
ˆ

x` µptq

λptq

˙ˆ

`

n` |u|2
˘

v

˙

pt, xqdx

`
2

λptq
Im

ż

R
ϕ1
ˆ

x` µptq

λptq

˙ˆ

uxuxx ` nuux ` uux

˙

pt, xqdx

`
µ1ptq

2λptq

ż

R
ϕ1
ˆ

x` µptq

λptq

˙

´

2|ux|
2
` 2n|u|2 ` |u|2 ` |v|2 ` |n|2

¯

pt, xqdx

´
λ1ptq

2λptq

ż

R
ϕ1
ˆ

x` µptq

λptq

˙ˆ

x` µptq

λptq

˙

´

2|ux|
2
` 2n|u|2 ` |u|2 ` |v|2 ` |n|2

¯

pt, xqdx.

(3.40)

Proof. The proof follows from (3.35). �

Let us consider ϕ P C2pRq a decreasing bounded funtion such that ϕpsq “ 1 for s ď ´1
and ϕpsq “ 0 for s ě 0. Thus, we get that supppϕ1q Ă r´1, 0s and

ϕ1psq ď 0, ϕ1psqs ě 0 @s P R.

Now, we want to take λ such that λ´1 integrates finite in time over an interval such as rT,8s,
T ą 0. With this idea in mind, define, for δ ą 0 and t ě 2, λpsq “ t log1`δ

ptq and µptq “ λptq.
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In fact, we are considering µ “ λ but in the following we will see that is possible to take
µptq Á λptq and the computations would still work. Then, for t ě 2 we have

λ1ptq

λptq
“
µ1ptq

λptq
ě

1

t
`

1` δ

t logptq
.

So now, whereas λ´1ptq is integrable in r2,8s, λ1
λ
is not.

3.3.1 First part of the proof of Theorem 3.2

In this subsection, we prove (3.12). The idea is to take adventage of the non-integrability of
λ1

λ
(and of µ1

λ
, as well) by using the virial identity from Kptq. Let us rearrange the terms in

(3.39):

λ1ptq

2λptq

ż

R
ϕ1
ˆ

x` µptq

λptq

˙ˆ

x` µptq

λptq

˙

|upt, xq|2dx´
µ1ptq

2λptq

ż

R
ϕ1
ˆ

x` µptq

λptq

˙

|upt, xq|2dx

“ ´
d

dt
Kptq `

1

λptq
Im

ż

R
ϕ1
ˆ

x` µptq

λptq

˙

upt, xquxpt, xqdx

(3.41)
Notice that, because of our election of ϕ, each term on the LHS is positive. Now, our aim
is to control the RHS so that we get integrability on that part of the equation. Indeed,
computing the integral of the RHS over r2,8s, from Lemma 3.6 we have that

ż 8

2

1

λpτq
Im

ż

R
ϕ1
ˆ

x` µptq

λpτq

˙

upτ, xquxpτ, xqdxdτ ď

ż 8

2

1

λpτq
}upτq}L2pRq}uxpτq}L2pRqdτ

À

ż 8

2

1

λpτq
dτ ă 8.

Thus, we integrate equation (3.41) in time and obtain:
ż 8

2

λ1pτq

2λpτq

ż

R

„

ϕ1
ˆ

x` µpτq

λpτq

˙ˆ

x` µpτq

λpτq

˙

´ ϕ1
ˆ

x` µpτq

λpτq

˙

|upτ, xq|2dxdτ ă 8. (3.42)

This implies the existence of a sequence ttnu Ă R, tn Ñ 8, such that
ż

R

„

ϕ1
ˆ

x` µptnq

λptnq

˙ˆ

x` µptnq

λptnq

˙

´ ϕ1
ˆ

x` µptnq

λptq

˙

|uptn, xq|
2dxÑ 0. (3.43)

Now, take φ P C1
0pRq such that φpsq P r0, 1s for all s P R, supppφq “ r´3{4,´1, 4s, satisfying

φpsq À |ϕ1psq| and |φ1psq| À |ϕ1psq| for all s P R.

Then, if we consider φ instead ϕ in (3.39), we obtain
ˇ

ˇ

ˇ

ˇ

d

dt

ż

R
φ

ˆ

x` µptq

λptq

˙

|upt, xq|2dx

ˇ

ˇ

ˇ

ˇ

À
1

λptq
`
µ1ptq

2λptq

ż

R

ˇ

ˇ

ˇ

ˇ

φ1
ˆ

x` µptq

λptq

˙

´ φ1
ˆ

x` µptq

λptq

˙ˆ

x` µptq

λptq

˙ˇ

ˇ

ˇ

ˇ

|upt, xq|2dx

À
1

λptq
`
µ1ptq

2λptq

ż

R

ˇ

ˇ

ˇ

ˇ

φ1
ˆ

x` µptq

λptq

˙
ˇ

ˇ

ˇ

ˇ

|upt, xq|2dx,
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Integrating over rt, tns and taking tn Ñ 8, one gets from (3.43) that
ˇ

ˇ

ˇ

ˇ

ż

R
φ

ˆ

x` µptq

λptq

˙

|upt, xq|2dx

ˇ

ˇ

ˇ

ˇ

À

ż 8

t

1

λpτq
dτ `

ż 8

t

µ1pτq

2λpτq

ż

R

ˇ

ˇ

ˇ

ˇ

φ1
ˆ

x` µpτq

λpτq

˙
ˇ

ˇ

ˇ

ˇ

|upτ, xq|2dxdτ.

Thus, because (3.42) holds, we can take tÑ 8 and conclude that

lim
tÑ8

ˇ

ˇ

ˇ

ˇ

ż

R
φ

ˆ

x` µptq

λptq

˙

|upt, xq|2dx

ˇ

ˇ

ˇ

ˇ

À 0

Finally, the region of the convergence comes from the fact that ´3
4
ď

x`µptq
λptq

´ 1
4
is equivalent

to x „ µptq.

3.3.2 Second part of the proof of Theorem 3.2

This section deals with the proof of (3.14). The idea of the proof is the same as before, but
since our aim is to show decay of the solution pu, n, vq, we need to consider the virial identity
(3.40). As before, we re-write the terms in (3.40) and get

λ1ptq

2λptq

ż

R
ϕ1
ˆ

x` µptq

λptq

˙ˆ

x` µptq

λptq

˙

´

2|ux|
2
` 2n|u|2 ` |u|2 ` |v|2 ` |n|2

¯

pt, xqdx

´
µ1ptq

2λptq

ż

R
ϕ1
ˆ

x` µptq

λptq

˙

´

2|ux|
2
` 2n|u|2 ` |u|2 ` |v|2 ` |n|2

¯

pt, xqdx

“ ´
d

dt
Jptq `

1

λptq
Im

ż

R
ϕ1
ˆ

x` µptq

λptq

˙ˆ

2uxuxx ` uux

˙

pt, xqdx

`
1

λptq

ż

R
ϕ1
ˆ

x` µptq

λptq

˙ˆ

2Im nuux `
`

n` |u|2
˘

v

˙

pt, xqdx.

(3.44)

Just as before, we need to take λ such that λ´1 integrates finite in time over an interval
rT,8s, T ą 0. Then, for δ ą 0 and t ě 2, we define λpsq “ t log1`δ

ptqfptq and µptq “ λptq
(although the computations will still work for µptq Á λptq). Then, for t ě 2 we have

λ1ptq

λptq
“
µ1ptq

λptq
ě

1

t
`

1` δ

t logptq
.

Notice that, if }uptq}H2pRq ď C for all t ě 0 for some C ą 0, then we take fptq “ C and
get that λptq´1 “ 1

t log1`δptqfptq
h 1

t log1`δptq
. Furthermore, in the case }uptq}H2pRq increasing

infinitely, there would exist T ą 0 and C ą 0 such that 1
fptq

ď C for t ě T . Then, either way,
we get that there exists T ě 2

λptq´1
À

1

t log1`δ
ptq
, for t ą T.

Thus, we get that λ´1 integrates finite over rT,8q, while λ1

λ
does not.
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We estimate each term on the RHS of (3.40) after integrating in time. From Lemma 3.6
we have that

ż 8

T

2

λpτq

ż

R
ϕ1
ˆ

x` µpτq

λpτq

˙

uxpτ, xquxxpτ, xqdxdτ À

ż 8

T

1

λpτq
}uxpτq}L2pRq}uxxpτq}L2pRqdτ

À

ż 8

T

fpτq

λpτq
dτ ă 8.

The same way, we get
ż 8

T

2

λpτq

ż

R
ϕ1
ˆ

x` µpτq

λpτq

˙

upτ, xquxpτ, xqdxdτ ă 8.

Also, from Lemma 3.6 and Sobolev embeddings,
ż 8

T

2

λpτq
Im

ż

R
ϕ1
ˆ

x` µpτq

λpτq

˙

npτ, xqupτ, xquxpτ, xqdxdt

À }uptq}L8pRq

ż 8

T

2

λpτq

ż

R
|npτ, xq|2 ` |uxpτ, xq|

2dxdt À

ż 8

T

2

λpτq
dt ď 8,

ż 8

T

1

λpτq

ż

R
ϕ1
ˆ

x` µpτq

λpτq

˙

npτ, xqvpτ, xqdxdt À

ż 8

T

1

λpτq

ż

R
|npτ, xq|2 ` |vpτ, xq|2dxdt ă 8

and
ż 8

T

1

λpτq

ż

R
ϕ1
ˆ

x` µpτq

λpτq

˙

|upτ, xq|2vpτ, xqdxdt À }uptq}L8pRq

ż 8

T

1

λpτq

ż

R
|upτ, xq|2`|vpτ, xq|2dxdt ă 8.

Consequently, integrating (3.44) over rT,8s, one obtains
ż 8

T

λ1pτq

2λpτq

ż

R
ϕ1
ˆ

x` µpτq

λpτq

˙ˆ

x` µpτq

λpτq

˙

´

2|ux|
2
` 2n|u|2 ` |u|2 ` |v|2 ` |n|2

¯

pτ, xqdx

´
µ1pτq

2λpτq

ż

R
ϕ1
ˆ

x` µpτq

λpτq

˙

´

2|ux|
2
` 2n|u|2 ` |u|2 ` |v|2 ` |n|2

¯

pτ, xqdx dτ ă 8.

(3.45)
Furthermore,

ż 8

T

µ1pτq

2λpτq

ż

R

ˇ

ˇ

ˇ

ˇ

ϕ1
ˆ

x` µpτq

λpτq

˙
ˇ

ˇ

ˇ

ˇ

´

2|ux|
2
` |u|2 ` |v|2 ` |n|2

¯

pτ, xqdxdt ă 8. (3.46)

Indeed, from (3.45) and Young inequality for products,

8 ą

ż 8

T

λ1pτq

2λpτq

ż

R
ϕ1
ˆ

x` µpτq

λpτq

˙ˆ

x` µpτq

λpτq

˙

´

2|ux|
2
` 2n|u|2 ` |u|2 ` |v|2 ` |n|2

¯

pτ, xqdx

´
µ1pτq

2λpτq

ż

R
ϕ1
ˆ

x` µpτq

λpτq

˙

´

2|ux|
2
` 2n|u|2 ` |u|2 ` |v|2 ` |n|2

¯

pτ, xqdx dt

ě

ż 8

T

λ1pτq

2λpτq

ż

R
ϕ1
ˆ

x` µpτq

λpτq

˙ˆ

x` µpτq

λpτq

˙

´

2|ux|
2
` |u|2 ` |v|2 `

1

2
|n|2 ´ 2|u|4

¯

pτ, xqdx

´
µ1pτq

2λpτq

ż

R
ϕ1
ˆ

x` µpτq

λpτq

˙

´

2|ux|
2
` |u|2 ` |v|2 `

1

2
|n|2 ´ 2|u|4

¯

pτ, xqdx dt.
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By Sobolev embedding and (3.42), we have that
ż 8

T

µ1pτq

λpτq

ż

R

ˆ

ϕ1
ˆ

x` µpτq

λpτq

˙ˆ

x` µpτq

λpτq

˙

´ ϕ1
ˆ

x` µpτq

λpτq

˙˙

|upτ, xq|4dxdt

À

ż 8

T

µ1pτq

λpτq

ż

R

ˆ

ϕ1
ˆ

x` µpτq

λpτq

˙ˆ

x` µpτq

λpτq

˙

´ ϕ1
ˆ

x` µpτq

λpτq

˙˙

|upτ, xq|2dxdt ă 8.

Then, (3.46) holds. Thus, there exists a sequence ttnu, tn Ñ 8 satisfying
ż

R

ˇ

ˇ

ˇ

ˇ

ϕ1
ˆ

x` µptnq

λptnq

˙
ˇ

ˇ

ˇ

ˇ

´

|ux|
2
` |u|2 ` |v|2 ` |n|2

¯

ptn, xqdxÑ 0. (3.47)

Furthermore, using Sobolev embedding and Lemma 3.6, we have from (3.47) that
ˇ

ˇ

ˇ

ˇ

ż

R
ϕ1
ˆ

x` µptnq

λptnq

˙

nptn, xq|uptn, xq|
2dx

ˇ

ˇ

ˇ

ˇ

À

ż

R

ˇ

ˇ

ˇ

ˇ

ϕ1
ˆ

x` µptnq

λptnq

˙
ˇ

ˇ

ˇ

ˇ

|nptn, xq|
2dx`

ż

R

ˇ

ˇ

ˇ

ˇ

ϕ1
ˆ

x` µptnq

λptnq

˙
ˇ

ˇ

ˇ

ˇ

|uptn, xq|
2dxÑ 0.

Then,
ˇ

ˇ

ˇ

ˇ

ż

R
ϕ1
ˆ

x` µptnq

λptnq

˙

´

|ux|
2
` |u|2 ` |v|2 ` |n|2 ` n|u|2

¯

ptn, xqdx

ˇ

ˇ

ˇ

ˇ

Ñ 0. (3.48)

We argue as before and consider φ P C1
0pRq such that φpsq P r0, 1s for all s P R, supppφq “

r´3{4,´1, 4s,
φpsq À |ϕ1psq| and |φ1psq| À |ϕ1psq| for all s P R.

One gets,
ˇ

ˇ

ˇ

ˇ

d

dt

ż

R
φ

ˆ

x` µptq

λptq

˙ˆ

|ux|
2
`

1

2
|u|2 `

1

2
|n|2 `

1

2
|v|2 ` n|u|2

˙

pt, xqdx

ˇ

ˇ

ˇ

ˇ

À
2

λptq

ż

R

ˇ

ˇ

ˇ

ˇ

φ1
ˆ

x` µptq

λptq

˙
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ

uxuxx ` nuux

˙

pt, xq

ˇ

ˇ

ˇ

ˇ

dx

`
1

λptq

ż

R

ˇ

ˇ

ˇ

ˇ

φ1
ˆ

x` µptq

λptq

˙
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ

uux `
`

n` |u|2
˘

v

˙

pt, xq

ˇ

ˇ

ˇ

ˇ

dx

`
µ1ptq

2λptq

ż

R

ˇ

ˇ

ˇ

ˇ

φ1
ˆ

x` µptq

λptq

˙ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´

2|ux|
2
` 2n|u|2 ` |u|2 ` |v|2 ` |n|2

¯

pt, xq
ˇ

ˇ

ˇ
dx

À
1

λptq
`
µ1ptq

2λptq

ż

R

ˇ

ˇ

ˇ

ˇ

φ1
ˆ

x` µptq

λptq

˙
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´

2|ux|
2
` 2|n|2 ` |u|4 ` |u|2 ` |v|2

¯

pt, xq
ˇ

ˇ

ˇ
dx

Integrate over rt, tns, t ě T and take tn Ñ 8. Thanks to (3.48), we obtain
ˇ

ˇ

ˇ

ˇ

ż

R
φ

ˆ

x` µptq

λptq

˙ˆ

|ux|
2
`

1

2
|u|2 `

1

2
|n|2 `

1

2
|v|2 ` n|u|2

˙

pt, xqdx

ˇ

ˇ

ˇ

ˇ

À

ż 8

t

1

λpτq
dt`

ż 8

t

µ1pτq

2λpτq

ż

R

ˇ

ˇ

ˇ

ˇ

φ1
ˆ

x` µpτq

λpτq

˙ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´

2|ux|
2
` |n|2 ` |u|4 ` |u|2 ` |v|2

¯

pτ, xq
ˇ

ˇ

ˇ
dxdt

Now, as in subsection 3.3.1, taking tÑ 8, we obtain

lim
tÑ8

ˇ

ˇ

ˇ

ˇ

ż

R
φ

ˆ

x` µptq

λptq

˙ˆ

|ux|
2
`

1

2
|u|2 `

1

2
|n|2 `

1

2
|v|2 ` n|u|2

˙

pt, xqdx

ˇ

ˇ

ˇ

ˇ

ď 0
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Note that by Hölder inequality and Lemma 3.6,
ż

R
φ

ˆ

x` µptq

λptq

˙

`

n|u|2
˘

pt, xqdx À }nptq}L2pRq

ˆ
ż

R
φ

ˆ

x` µptq

λptq

˙

|upt, xq|2dx

˙
1
2

À

ˆ
ż

R
φ

ˆ

x` µptq

λptq

˙

|upt, xq|2dx

˙
1
2

.

Thanks to (3.12), we conclude the proof.

3.4 Decay on compact intervals for Klein-Gordon-Zakharov

Before we present the proof of Theorems 3.4 and 3.5, we give an estimation of the energy
norm of a solution for (3.15), that will be useful in the following.

Lemma 3.13. Let pu, ut, n, vq P C pR`, H1pRq ˆ L2pRq ˆ L2pRq ˆ L2pRqq be a solution of
(3.4) such that EKG ă 8 and it satisfies (3.18) for some C ą 0 and ε ą 0 not necessarily
small. Then, there exists KKG ą 0 such that

ż

R
|utpt, xq|

2
` |uxpt, xq|

2
` |upt, xq|2 ` |npt, xq|2 ` |vpt, xq|2dx ď KKG.

Proof. We write

1

2

ż

R
|ut|

2
` |ux|

2
` |u|2 ` |n|2 ` |v|2dx

ď

ż

R
|ut|

2
`

1

2
|ux|

2
` |u|2 `

1

2
|n|2 ` |v|2 ` 2n|u|2dx´ 2

ż

R
n|u|2dx.

The first integral in the RHS can be bounded by the energy. Thus, we need to control the
remaining term. By Young inequality and Gagliardo-Nirenberg inequality [19, 33], for ε ą 0
we have that

2

ż

R
nu2dx ď

1

ε

ż

R
n2dx` ε

ż

R
u4dx ď

1

ε

ż

R
n2dx` εCGN}ux}L2pRq}u}

3
L2pRq,

where

CGN “

?
3

3

and Q is the solution to Q2 `Q3 ´Q “ 0. Then, taking ε “ 2, we get

2

ż

R
nu2dx ď

1

2

ż

R
n2dx` 2

?
3

3
}ux}L2pRq}u}

3
L2pRq ď

1

2

ż

R
n2dx`

?
3

3

ż

R
u2
xdx`

?
3

3
}u}6L2pRq.

Finally, this means that

1

2

ż

R
|ut|

2
` |ux|

2
` |u|2 ` |n|2 ` |v|2dx ď 2E0 `

?
3

3
}u}6L2pRq.

Thanks to (3.18), we conclude. �
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3.4.1 Virial argument

During this section, we are going to consider pu, n, vq a solution such that u is odd and
satisfies (3.18), for some C ą 0 and ε small. As in Section 3.2, let ϕ P C8pRq a bounded real
function and define

Iptq “ 2

ż

R
ϕpxquxpt, xqutpt, xqdx´

ż

R
ϕpxqvpt, xqnpt, xqdx`

ż

R
ϕ1pxqupt, xqutpt, xqdx.

We get the following virial identity:

Lemma 3.14 (Virial Identity). Let pu, ut, n, vq be a solution to (3.15). Then,

´
d

dt
Iptq “ 2

ż

R
ϕ1u2

xdx´
1

2

ż

R
ϕ3u2dx`

1

2

ż

R
ϕ1n2dx`

1

2

ż

R
ϕ1v2dx`

ż

R
ϕ1u2ndx. (3.49)

Proof. Using equation (3.15), we compute

d

dt
Iptq “2

ż

R
ϕuxtutdx` 2

ż

R
ϕuxuxxdx´ 2

ż

R
ϕuxudx´ 2

ż

R
ϕnuxudx`

ż

R
ϕ
`

n` u2
˘

x
ndx

`

ż

R
ϕvvxdx` 2

ż

R
ϕ1ututdx`

ż

R
ϕ1uuxxdx´

ż

R
ϕ1uudx´

ż

R
ϕ1uundx

“

ż

R
ϕpu2

t qxdx`

ż

R
ϕpu2

xqxdx´

ż

R
ϕpu2

qxdx´

ż

R
ϕnpu2

qxdx`
1

2

ż

R
ϕpn2

qxdx

`

ż

R
ϕ
`

u2
˘

x
ndx`

1

2

ż

R
ϕpv2

qxdx`

ż

R
ϕ1u2

tdx`

ż

R
ϕ1uuxxdx´

ż

R
ϕ1u2dx´

ż

R
ϕ1u2ndx.

We integrate by parts
d

dt
Iptq “ ´ 2

ż

R
ϕ1u2

xdx´
1

2

ż

R
ϕ1n2dx´

1

2

ż

R
ϕ1v2dx´

ż

R
ϕ2uuxdx´

ż

R
ϕ1u2ndx

“´ 2

ż

R
ϕ1u2

xdx`
1

2

ż

R
ϕ3u2dx´

1

2

ż

R
ϕ1n2dx´

1

2

ż

R
ϕ1v2dx´

ż

R
ϕ1u2ndx.

�

Notice that now we have a very similiar virial identity to the one obtained in Subsection
3.2.1. In fact, the RHS is the same. Then, we are entitled to use the estimations for the
bilinear part of (3.25). Indeed, we can write

´
d

dt
Iptq “ Bpuq `

1

2

ż

R
ϕ1n2dx`

1

2

ż

R
ϕ1v2dx`

ż

R
ϕ1u2ndx,

where B is defined in (3.26). Just as before, for λ ą 0, consider ϕpxq “ λ tanhpx{λq and
ωpxq “

a

ϕ1pxq. Finally, using the arguments in Subsection 3.2.1 and by estimation (3.30),
we have that

´
d

dt
Iptq Á }uptq}2H1

ωpRq
`

1

2

ż

R
ϕ1n2dx`

1

2

ż

R
ϕ1v2dx`

ż

R
ϕ1u2ndx, (3.50)

where } ¨ }H1
ωpRq is the weighted-norm introduced in (3.22).

In order to conclude the argument, we present the following proposition:
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Proposition 3.15. Let pu, n, vq be a solution of (3.15). Then, there exists C ą 0 such that
ż 8

0

}utptq}L2
ωpRq ` }uptq}H1

ωpRq ` }nptq}L2
ωpRq ` }vptq}L2

ωpRqdt ď C.

Proof. Thanks to (3.50) and (3.18), the proof follow as in Proposition 3.10. �

3.4.2 Conclusion of the proof

Let φ be a C8pRq function to be defined later. Then, since pu, n, vq is a solution to equation
(3.15),

d

dt

1

2

ż

R
φpxq

`

|u|2 ` |ut|
2
` |ux|

2
` |n|2 ` |v|2

˘

pt, xqdx

“

ż

R
φpxqutpt, xquxxpt, xqdx´

ż

R

φpxqnpt, xqutpt, xqupt, xqdx

`

ż

R
φpxquxpt, xquxtpt, xqdx´

ż

R
φpxqnpt, xqvxpt, xqdx´

ż

R
φpxqvpt, xq

`

n` |u|2
˘

x
pt, xqdx.

After integration by parts, one gets

d

dt

1

2

ż

R
φpxq

`

|u|2 ` |ut|
2
` |ux|

2
` |n|2 ` |v|2

˘

pt, xqdx

“´

ż

R
φ1pxqutpt, xquxpt, xqdx´

ż

R
φpxqnpt, xqutpt, xqupt, xqdx`

ż

R
φ1pxqvpt, xqnpt, xqdx

` 2

ż

R
φpxqvpt, xqupt, xquxpt, xqdx.

(3.51)
Thus, if we take φpxq “ sechpxq, we have that

d

dt

1

2

ż

R
sechpxq

`

|u|2 ` |ut|
2
` |ux|

2
` |n|2 ` |v|2

˘

pt, xqdx

À }uptq}2H1
ωpRq

` }utptq}
2
L2
ωpRq

` }vptq}2L2
ωpRq

` }nptq}2L2pRq.

Proposition 3.15 implies the existence of a sequence ttnu Ă R, tn Ñ 8, such that

}uptnq}
2
H1
ωpRq

` }utptnq}
2
L2
ωpRq

` }vptnq}
2
L2
ωpRq

` }nptnq}
2
L2pRq Ñ 0.

Then, we integrate over rt, tns, take tn Ñ 8 and obtain

}uptq}2H1
ωpRq

` }utptq}
2
L2
ωpRq

` }vptq}2L2
ωpRq

` }nptq}2L2pRq

À

ż 8

t

}upτq}2H1
ωpRq

` }utpτq}
2
L2
ωpRq

` }vpτq}2L2
ωpRq

` }npτq}2L2pRqdτ.

Thanks to Proposition 3.15, the RHS of the last equation is finite. Consequently, we can
take tÑ 8 and conclude the proof.
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3.5 Decay in regions along curves for Klein-Gordon-Zakharov

To construct the virial identity, consider ϕ P C2pRq a bounded real function and λ, µ P C1pRq
functions depending on time. We define

Jptq “
1

2

ż

R
ϕ

ˆ

x` µptq

λptq

˙ˆ

|ux|
2
` |u|2 ` |ut|

2
`

1

2
|v|2 `

1

2
|n|2 ` n|u|2

˙

pt, xqdx.

Lemma 3.16. Let pu, n, vq be a solution to (3.15). Then,

d

dt
Jptq “

1

λptq

ż

R
ϕ1
ˆ

x` µptq

λptq

˙ˆ

1

2
vn`

1

2
v|u|2 ´ utux

˙

pt, xqdx

`
µ1ptq

2λptq

ż

R
ϕ1
ˆ

x` µptq

λptq

˙ˆ

|ux|
2
` |u|2 ` |ut|

2
`

1

2
|v|2 `

1

2
|n|2 ` n|u|2

˙

pt, xqdx

´
λ1ptq

2λptq

ż

R
ϕ1
ˆ

x` µptq

λptq

˙ˆ

x` µptq

λptq

˙ˆ

|ux|
2
` |u|2 ` |ut|

2
`

1

2
|v|2 `

1

2
|n|2 ` n|u|2

˙

pt, xqdx.

We skip the proof of Lemma 3.16, since it follows from (3.51)

3.5.1 Proof Theorem 3.5

As we did in Section 3.3, we consider ϕ P C2pRq a decreasing function satisfying ϕpsq “ 1 for
s ď ´1 and ϕpsq “ 0 for s ě 0. It follows that supppϕ1q Ă r´1, 0q and

ϕ1psq ď 0, ϕ1psqs ě 0 @s P R.

Also, for δ ą 0, we take λptq “ t log1`δ
ptq and µptq “ λptq. Just as before, we are going to

take adventage of the fact that λ´1 is integrable in time over the time interval rT,8q, for
some T ě 2, while λ1

λ
is not.

We re-arrange the virial identity (3.16) as:

λ1ptq

2λptq

ż

R
ϕ1
ˆ

x` µptq

λptq

˙ˆ

x` µptq

λptq

˙ˆ

|ux|
2
` |u|2 ` |ut|

2
`

1

2
|v|2 `

1

2
|n|2 ` n|u|2

˙

pt, xqdx

´
µ1ptq

2λptq

ż

R
ϕ1
ˆ

x` µptq

λptq

˙ˆ

|ux|
2
` |u|2 ` |ut|

2
`

1

2
|v|2 `

1

2
|n|2 ` n|u|2

˙

pt, xqdx

“ ´
d

dt
Jptq `

1

λptq

ż

R
ϕ1
ˆ

x` µptq

λptq

˙ˆ

1

2
vn`

1

2
v|u|2 ´ utux

˙

pt, xqdx.

(3.52)
We have that, by Gagliardo-Nirenberg inequality and Lemma 3.13

ż

R
ϕ1
ˆ

x` µptq

λptq

˙ˆ

1

2
vn`

1

2
v|u|2 ´ utux

˙

pt, xqdx

À }vptq}2L2pRq ` }nptq}
2
L2pRq ` }uxptq}

2
H1pRq ` }utptq}

2
L2pRq ` }uptq}

6
L2pRq ď K,
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whereK ą 0, is a constant depending on the energy and the L2-norm of u. Thus, we integrate
equation (3.52) in time over r2,8q and get that
ż 8

2

`
λ1ptq

2λptq

ż

R
ϕ1
ˆ

x` µptq

λptq

˙ˆ

x` µptq

λptq

˙ˆ

|ux|
2
` |u|2 ` |ut|

2
`

1

2
|v|2 `

1

2
|n|2 ` n|u|2

˙

pt, xqdx

´
µ1ptq

2λptq

ż

R
ϕ1
ˆ

x` µptq

λptq

˙ˆ

|ux|
2
` |u|2 ` |ut|

2
`

1

2
|v|2 `

1

2
|n|2 ` n|u|2

˙

pt, xqdxdt ă 8.

Note that by Sobolev embeddings and (3.20),

´

ż

R
φ

ˆ

x` µptq

λptq

˙

`

|n||u|2
˘

pt, xqdx ě ´

ż

R
φ

ˆ

x` µptq

λptq

˙ˆ

1

3
|npt, xq|2 `

3

4
|upt, xq|4

˙

dx

ě ´

ż

R
φ

ˆ

x` µptq

λptq

˙ˆ

1

3
|npt, xq|2 `

3

4
|upt, xq|2

˙

dx.

(3.53)
Then, we argue as in Subsection 3.3.2 and obtain that there exists a sequence of time ttnu,
tn Ñ 8, such that,

ż

R

ˇ

ˇ

ˇ

ˇ

ϕ1
ˆ

x` µptnq

λptnq

˙
ˇ

ˇ

ˇ

ˇ

ˆ

|ux|
2
` |u|2 ` |ut|

2
`

1

2
|v|2 `

1

2
|n|2 ` n|u|2

˙

ptn, xqdxÑ 0. (3.54)

As in Section 3.3, we consider φ P C1
0pRq such that φpsq P r0, 1s for all s P R, supppφq “

r´3{4,´1, 4s,
φpsq À |ϕ1psq| and |φ1psq| À |ϕ1psq| for all s P R.

Following the computations for ϕ, one gets,
ˇ

ˇ

ˇ

ˇ

d

dt

ż

R
φ

ˆ

x` µptq

λptq

˙ˆ

|ux|
2
` |u|2 ` |ut|

2
`

1

2
|n|2 `

1

2
|v|2 ` n|u|2

˙

pt, xqdx

ˇ

ˇ

ˇ

ˇ

À
1

λptq

ż

R

ˇ

ˇ

ˇ

ˇ

φ1
ˆ

x` µptq

λptq

˙
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ

1

2
vn`

1

2
v|u|2 ´ utux

˙

pt, xq

ˇ

ˇ

ˇ

ˇ

dx

`
µ1ptq

2λptq

ż

R

ˇ

ˇ

ˇ

ˇ

φ1
ˆ

x` µptq

λptq

˙ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´

|ux|
2
` |u|2 ` |ut|

2
`

1

2
|v|2 `

1

2
|n|2 ` n|u|2

¯

pt, xq

ˇ

ˇ

ˇ

ˇ

dx.

Integrate over rt, tns, t ě T and take tn Ñ 8. Thanks to (3.54), we obtain
ˇ

ˇ

ˇ

ˇ

ż

R
φ

ˆ

x` µptq

λptq

˙ˆ

|ux|
2
` |u|2 ` |ut|

2
`

1

2
|n|2 `

1

2
|v|2 ` n|u|2

˙

pt, xqdx

ˇ

ˇ

ˇ

ˇ

À

ż 8

t

1

λpτq
dτ `

ż 8

t

µ1pτq

2λpτq

ż

R

ˇ

ˇ

ˇ

ˇ

φ1
ˆ

x` µpτq

λpτq

˙
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´

|ux|
2
` |u|2 ` |ut|

2
` |n|2 ` |v|2 ` n|u|2

¯

pτ, xq
ˇ

ˇ

ˇ
dxdτ

Now, taking tÑ 8, we obtain

lim
tÑ8

ˇ

ˇ

ˇ

ˇ

ż

R
φ

ˆ

x` µptq

λptq

˙ˆ

|ux|
2
` |u|2 ` |ut|

2
`

1

2
|n|2 `

1

2
|v|2 ` n|u|2

˙

pt, xqdx

ˇ

ˇ

ˇ

ˇ

ď 0

Consequently, taking into account (3.53), one gets

lim
tÑ8

ż

R
φ

ˆ

x` µptq

λptq

˙ˆ

|ux|
2
`

1

4
|u|2 ` |ut|

2
`

1

6
|n|2 `

1

2
|v|2

˙

pt, xqdx

ď lim
tÑ8

ż

R
φ

ˆ

x` µptq

λptq

˙ˆ

|ux|
2
` |u|2 ` |ut|

2
`

1

2
|n|2 `

1

2
|v|2 ` n|u|2

˙

pt, xqdx “ 0.

Then, (3.21) follows.
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Chapter 4

On long-time behavior of solutions of the
Zakharov-Rubenchik/Benney-Roskes
system

Abstract. We study decay properties for solutions to the initial value problem associated with the one-
dimensional Zakharov-Rubenchik/Benney-Roskes system. We prove time-integrability in growing compact
intervals of size tr, r ă 2{3, centered on some characteristic curves coming from the underlying transport
equations associated with the ZR/BR system. Additionally, we prove decay to zero of the local energy-norm
in so-called far-field regions. Our results are independent of the size of the initial data and do not require
any parity condition.

This work is contained in M. E. Martínez and J. M. Palacios, On long-time behavior of solutions of
the Zakharov-Rubenchik/Benney-Roskes system, accepted in Nonlinearity, available in arXiv, 2021.
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4.1 Introduction and main results

4.1.1 The model

In this work we seek to show decay properties for solutions of the initial value problem
(IVP) associated with the Zakharov-Rubenchik/Benney-Roskes (ZR/BR) system in one space
dimension

$

’

’

’

&

’

’

’

%

iBtψ ` ωB
2
xψ “ γ

`

η ´ 1
2
αρ` q|ψ|2

˘

ψ,

θBtρ` Bx
`

η ´ αρ
˘

“ ´γBxp|ψ|
2q,

θBtη ` Bx
`

βρ´ αη
˘

“ 1
2
αγBxp|ψ|

2q,

ψp0, xq “ ψ0pxq, ρp0, xq “ ρ0pxq, ηp0, xq “ η0pxq.

(4.1)

Here ψpt, xq denotes a complex-valued function, while ρpt, xq and ηpt, xq are both real-valued
functions, and t, x P R. All Greek letters pω, α, β, γ, θq denote real parameters, and in the
sequel we shall always assume that

ω ą 0, β ą 0, γ ą 0, β ´ α2
ą 0, 0 ă θ ă 1, and q :“ γ `

αpαγ ´ 1q

2pβ ´ α2q
.

Model (4.1) corresponds to the one-dimensional case of the most general system derived by
Zakharov and Rubenchik [19] to describe the interaction of spectrally narrow high-frequency
wave packets of small amplitude with low-frequency acoustic type oscillations. This system
was also independently found by Benney and Roskes [1] in the context of gravity waves, and
in the 3-dimensional case has the following form

$

’

&

’

%

iBtψ ` ivgBzψ “ ´
ω2

2
B2
zψ ´

vg
2k

∆Kψ ` pq|ψ|
2 ` βρ` αBzηqψ,

Btρ` ρ0∆η ` αBz|ψ|
2 “ 0,

Btη `
c2

ρ0
ρ` β|ψ|2 “ 0,

(4.2)

where ∆K “ B
2
x ` B

2
y . In this context, ψpt, xq stands for the amplitude of the carrying (high

frequency) waves with wave number k, frequency ω “ ωpkq and vg “ ω1pkq stands for its
group velocity. On the other hand, ρpt, xq and ηpt, xq correspond to the density fluctuation
and the hydrodynamic potential respectively.

System (4.2) has also been derived in several other physical situations, such as for ex-
ample, in the study of Alfvén waves (transverse oscillations of the magnetic fields) in the
Magneto-Hydrodynamics equations (see for instance [2, 17]). Moreover, system (4.2) con-
tains various important models as limiting cases, such as the classical (scalar) Zakharov
system and the Davey-Stewartson systems. We refer to [3] for a rigorous justification of the
Zakharov limit (supersonic limit) of the ZR/BR system. However, the rigorous proof of the
Davey-Stewartson limit from system (4.2) remains still open.
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In the one dimensional case the situation is a little better understood. In fact, in this case
we can also consider the adiabiatic limit, that is, to take θ Ñ 0 in (4.1), from where we can
formally see that ρpt, xq and ηpt, xq satisfy now the following relations

ρ “ ´
γα

2pβ ´ α2q
|ψ|2, η “ ´γ

β ´ α2{2

β ´ α2
|ψ|2.

Then, we infer that the complex amplitude ψ solves the cubic nonlinear Schrödinger equation

iBtψ ` ωB
2
xψ “ ´

γα

3pβ ´ α2q
|ψ|2ψ.

A rigorous justification of such limit (for well-prepared initial data) was proved by Oliveira
in [16]. Therefore, we can certainly see that the ZR/BR system is thus richer than those
models.

On the other hand, the ZR/BR system (4.1) and (4.2) posses a Hamiltonian structure
[19], and hence, it follows (at least formally) that the energy of system (4.1) is conserved
along the trajectory, which in the one-dimensional case can be written as

E
`

ψptq, ρptq, ηptq
˘

:“

ż

R

´

ω|ψx|
2
`

γq
2
|ψ|4 ` β

2
ρ2
` 1

2
η2
`

γ
2
p2η ´ αρq|ψ|2 ´ αρη

¯

dx

“ Epψ0, ρ0, η0q.

Moreover, the ZR/BR system (4.1) also conserves (formally) the mass and the momentum
of the solution, which are given by the following relations (respectively)

M
`

ψptq, ρptq, ηptq
˘

:“

ż

|ψpt, xq|2dx “Mpψ0, ρ0, η0q, and,

P
`

ψptq, ρptq, ηptq
˘

:“ Im

ż

R
ψψx ´ θ

ż

R
ρpt, xqηpt, xqdx “ P pψ0, ρ0, η0q.

Additionally, related to these conservation laws, the ZR/BR system (4.1) is invariant under
space-time translations, as well as invariant under phase rotations.

Regarding the existence of solitary waves, in the case β´α2 ą 0, γ ą 0 and θ ă 1, Oliveira
has proved in [15] the existence and the orbital stability of solitary waves of the form

`

ψ, ρ, ηqpt, xq :“
`

eiλteicx{2ωRpx´ ctq, apcq|Rpx´ ctq|2, bpcq|Rpx´ ctq|2
˘

, (4.3)

where λ P R, c ě 0 and Rp¨q is an positive, even and exponentially decaying complex-valued
function, while apcq and bpcq are given by the following formulas

apcq :“ ´
γpβ ´ α

2
pcθ ` αqq

β ´ pcθ ` αq2
, bpcq :“ ´

γpcθ ` 1
2
αq

β ´ pcθ ` αq2
.

In particular, the analysis carried out by Oliveira shows that a necessary condition for these
solitary waves to exists is that the following two inequalities must be satisfied

apcq ´
α

2
bpcq ` q ă 0 and

c2

4ω
´ λ ă 0. (4.4)
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On the other hand, recently in [7] Luong et al. studied the existence of the so-called bright
and dark solitons for system (4.1). They proved their existence under some conditions on
the coefficients of the equations (similar to the one in (4.4)). Then, they used these solitons
to construct line-solitons for the higher dimensional case. However, none of these solitons
belongs to the energy space since they do not decay at ˘8 (see [7] for further details).

Finally, concerning the well-posedness for system (4.1), Oliveira [15] proved local and
global well-posedness for the one-dimensional case in H2pRqˆH1pRqˆH1pRq. Later, Linares
and Matheus [5] extended the result given by Oliveira showing local (and then global) well-
posedness for inital data in the energy spaceH1pRqˆL2pRqˆL2pRq. Additionally, a polinomial
bound for the growth of the Hs-norm of ψ was stated in [5]. More specifically, they proved
that, for smooth initial data, solutions to system (4.1) satisfies the following property:

}ψ}HspRq À 1` |t|ps´1q` .

In fact, Linares and Matheus used this property to show that system (4.1) is globally well-
posed in HkpRq ˆ Hk´ 1

2 pRq ˆ Hk´ 1
2 pRq for all k ě 0. Moreover, regarding the higher

dimensional cases, Ponce and Saut [18] have proved that (4.2) is locally well posed in
HspRdq ˆ Hs´ 1

2 pRdq ˆ Hs` 1
2 pRdq, for s ą d{2, where the space-dimension d “ 2, 3. Lastly,

we mention that Luong et al. have recently proved the well-posedness (under some extra
conditions) of system (4.2) in the background of a line-soliton [7].

4.1.2 Main results

In the remainder of this work we focus in decay properties for general solutions of (4.1) in
the energy space. Our first main result states that there exists two specific characteristic
curves such that, along them, there is an additional time-integrability property on growing
compact sets.

Theorem 4.1. Let υ˘ :“ ˘θ´1
`?

β ˘ α
˘

fixed. Consider pψ, ρ, ηq P CpR, H1 ˆ L2 ˆ L2q to
be any solution to system (4.1) emanating from an initial data pψ0, ρ0, η0q P H

1 ˆ L2 ˆ L2.
Then, for any c P R`, the following inequality holds

ż `8

0

1

µ˚ptq

ż

Ω˘ptq

|ψpt, xq|2dxdt ă `8,

where Ω˘ptq :“ tx P R : ´cλptq ď x´ υ˘t ď cλptqu, κ :“ 10100 and

λptq :“ t2{3 log log´2{3
pκ` tq and µ˚ptq :“ t logpκ` tq log logpκ` tq.

Furthermore, we have the following scenarios:

1. If ˘α ă 0, then, the following inequality holds
ż `8

0

1

µ˚ptq

ż

Ω˘ptq

`

|ψxpt, xq|
2
` |ψpt, xq|2 ` ρ2

pt, xq ` η2
pt, xq

˘

dxdt ă `8.
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In particular, we have that

lim inf
tÑ`8

ż

Ω˘ptq

`

|ψxpt, xq|
2
` |ψpt, xq|2 ` ρ2

pt, xq ` η2
pt, xq

˘

dx “ 0.

2. If α “ 0, then, the following inequality holds
ż `8

0

1

µ˚ptq

ż

Ω0ptq

´

|ψxpt, xq|
2
` |ψpt, xq|4 ` η2

pt, xq ` ρ2
pt, xq

¯

dxdt ă `8,

where λ and µ˚ defined as above and Ω0ptq :“ tx P R : cλptq ď |x| ď Cλptqu. In
particular, the following is satisfied

lim inf
tÑ`8

ż

Ω0ptq

´

|ψxpt, xq|
2
` |ψpt, xq|4 ` η2

pt, xq ` ρ2
pt, xq

¯

dx “ 0.

Remark 4.1. In the previous statement, the condition ˘α ă 0 must be understood accord-
ing to the sets Ω˘. In other words, if `α ă 0, then both results for Ω` hold, while if ´α ă 0,
then both results for Ω´ hold. Notice that if α ă 0, the result for Ω´ is not necessarily true.

Remark 4.2. It is important to notice that, as soon as α ‰ 0 we cannot deduce any time-
integrability nor decay property on compacts sets centered at the origin. Of course, this is a
consequence of (and consistent with) the existence of the standing-wave solution presented in
(4.3). On the other hand, when α “ 0, condition (4.4) does not allow standing-wave solutions
to exists, more specifically, the first inequality in (4.4) is not satisfied when c “ α “ 0, and
hence item 2 is not contradictory with the existence of such family of solutions.

Our second main result states that, in the so-called far-field region, solutions (in the energy
space) must decay to zero.

Theorem 4.2. Let pψ, ρ, ηq P CpR, H1ˆL2ˆL2q be any solution to system (4.1) emanating
from an initial data pψ0, ρ0, η0q P H

1 ˆ L2 ˆ L2. Then, for any pair of constants c1, c2 ą 0
the following properties holds:

1. Consider any non-negative function ζ P C1pRq satisfying that, there exists δ ą 0 such
that, for all t ą 0 it holds

ζptq Á t logpκ` tq1`δ and ζ 1ptq Á logpκ` tqδ`1.

Then, setting Ωζptq :“ tx P R : c1ζptq ď |x| ď c2ζptqu, the following limit holds

lim
tÑ8

}ψptq}L2pΩζptqq “ 0. (4.5)

2. Assume additionally that pψ, ρ, ηq P CpR, H2 ˆH1 ˆH1q is a solution emanating from
an initial data pψ0, ρ0, η0q P H

2 ˆ H1 ˆ H1. Then, for any non-negative ζ P C1pRq
satisfying that, there exists δ ą 0 such that, for all t ą 0,

ζptq Á t2`δ and ζ 1ptq Á t1`δ,

the following decay for the local energy norm holds

lim
tÑ8

`

}ψptq}H1pΩζptqq ` }ρptq}L2pΩζptqq ` }ηptq}L2pΩζptqq

˘

“ 0.
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Remark 4.3. Note that none of the above theorems require any smallness assumption in
terms of the initial data }ψ0}H1 ! 1. Moreover, they do not require any parity assumption
either (as their counterparts founded in [11, 12]), nor any extra decay hypotheses in terms
of weighted Sobolev norms, such as }xψ}L2 ! 1 for example.

Remark 4.4. One important difference between the results above and those in [11, 12] is
that, in both of those works, the equations under study preserve the oddness of the initial
data (for the Schrödinger component ψ), while system (4.1) does not. Hence, the analysis
presented there assuming parity conditions on the initial data cannot be applied to system
(4.1).

Remark 4.5. To the best of our knowledge, these are the first results dealing with global
properties of system (4.1) in the one dimensional case.

Finally, it is worth mentioning that the techniques involved in the proof of Theorems 4.1
and 4.2 have already been used before in some other contexts. We refer to [11] for the use of
some of these ideas in context of the one-dimensional Schrödinger equation, and to [12] for
scalar Zakharov system (as well as the Klein-Gordon Zakharov system). On the other hand,
for other type of systems that have served us for motivations we refer to [4, 6, 14]. However,
as previously described, system (4.1) has some important differences with respect to the
above cases (see Remark 4.4), what does not allow us to apply the same ideas. In particular,
the presence of some transport equations in (4.1) breaks the symmetry properties used in
previous works to study Schrödinger-type equations/systems with these specific techniques.
Finally, it is important to mention that most of these ideas come from classical works, such
as [8, 9, 10, 13].

4.2 Preliminary lemmas

4.2.1 Virial identities

In this section we seek to establish the key virial identities required in our analysis. In order
to do that we consider the following weight function

Φpxq :“ tanhpxq, and hence Φ1 “ sech2
pxq.

Additionally, we consider time-dependent scaling functions λ1ptq, λ2ptq and µptq given by

λ1ptq :“ pκ` tq2{3 log log´2{3
pκ` tq,

λ2ptq :“ pκ` tq2{3 log log1{3
pκ` tq, (4.6)

µptq :“ pκ` tq1{3 logpκ` tq log log5{3
pκ` tq,

where κ :“ 10100. The role of µptq and λiptq is to provide some extra time-decay so that we
can somehow neglect bad terms (with no sign) that prevent us to conclude the properties
claimed in the above theorems. Additionally, one can think of λ1ptq as the rate of growth of
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the set Ω˘ptq and Ω0ptq defined in Theorem 4.1. The key idea for considering exactly these
definitions for µptq and λiptq is that

1

µptqλ2ptq
,

λ1iptq

µptqλiptq
,
µ1ptq

µ2ptq
P L1

pR`q, while
1

µptqλ1ptq
R L1

pR`q.

In the sequel we shall exploit these two properties. Moreover, for the sake of simplicity we
introduce the following useful notation

υ´ :“ ´θ´1
`

a

β ´ α
˘

and υ` :“ θ´1
`

a

β ` α
˘

. (4.7)

Then, with all of the above notations, we define the modified mean functionals J1ptq and
J2ptq, adapted to the curves x´ υ˘t, which are given by

J1ptq :“
θ

µptq

ż

R

´

a

βρ
`

t, x´ υ´t
˘

` η
`

t, x´ υ´t
˘

¯

Φ

ˆ

x

λ1ptq

˙

Φ1
ˆ

x

λ2ptq

˙

dx,

J2ptq :“
θ

µptq

ż

R

´

a

βρ
`

t, x´ υ`t
˘

´ η
`

t, x´ υ`t
˘

¯

Φ

ˆ

x

λ1ptq

˙

Φ1
ˆ

x

λ2ptq

˙

dx.

The reason why we evaluate solutions on these translated points x ´ υ˘t is to be able to
take advantage of the characteristics of the underlying transport equations associated to
(4.1). Moreover, another key quantity that shall play a fundamental role in our proof is the
modified momentum functional Iptq, which is given by

Iptq :“
1

µptq
Im

ż

R
ψpt, xqψxpt, xqΦ

ˆ

x

λ1ptq

˙

dx´
θ

µptq

ż

R
ρpt, xqηpt, xqΦ

ˆ

x

λ1ptq

˙

dx.

For the sake of simplicity and the clarity of computations, we split the previous functional
into two parts, namely,

I1ptq :“
1

µptq
Im

ż

R
ψpt, xqψxpt, xqΦ

ˆ

x

λ1ptq

˙

dx,

I2ptq :“
θ

µptq

ż

R
ρpt, xqηpt, xqΦ

ˆ

x

λ1ptq

˙

dx.

We anticipate that, thanks to the explicit form of Φ and the conservation of the momentum
and the energy, if pψ, ρ, ηq is a solution to system (4.1) belonging to the class CpR, H1ˆL2ˆ

L2q, then, all the modified functionals above J1ptq, J2ptq and Iptq are well defined for all
times t P R (see Lemma 4.6 for further details).

The following three lemmas give us the first basic virial identities satisfied by the modified
functionals J1ptq, J2ptq and Iptq above.

Lemma 4.3. Let pψ, ρ, ηq P CpR, H1 ˆ L2 ˆ L2q be any solution to system (4.1). Then, for
all t P R, the following identity holds

´
d

dt
Iptq “ 2ω

µλ1

ż

|ψx|
2Φ1 ´

ω

2µλ3
1

ż

|ψ|2Φ3 `
1

2µλ1

ż

η2Φ1 `
β

2µλ1

ż

ρ2Φ1

`
γq

2µλ1

ż

|ψ|4Φ1 ´
α

µλ1

ż

ρηΦ1 `
γ

µλ1

ż

`

η ´ α
2
ρ
˘

|ψ|2Φ1 ´
θµ1

µ2

ż

ρηΦ (4.8)

`
µ1

µ2
Im

ż

ψψxΦ`
λ11
µλ1

Im

ż
ˆ

x

λ1

˙

ψψxΦ
1
´
θλ11
µλ1

ż
ˆ

x

λ1

˙

ρηΦ1.
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Proof. The proof is somehow straightforward and follows from direct computations; we shall
only proceed formally. Notice that the following reasoning can be made rigorously by stan-
dards approximation and density arguments.

Directly differentiating the definition of the functional I1, using system (4.1) and perform-
ing several integration by parts we obtain

d

dt
I1ptq “

1

µ
Im

ż

ψtψxΦ`
1

µ
Im

ż

ψψtxΦ´
λ11
µλ1

Im

ż
ˆ

x

λ1

˙

ψψxΦ
1
´
µ1

µ2
Im

ż

ψψxΦ

“
2

µ
Im

ż

ψtψxΦ´
1

µλ1

Im

ż

ψψtΦ
1
´

λ11
µλ1

Im

ż
ˆ

x

λ1

˙

ψψxΦ
1
´
µ1

µ2
Im

ż

ψψxΦ

“
2

µ
Re

ż

´

ωψxx ´ γ
`

η ´ α
2
ρ` q|ψ|2

˘

ψ
¯

ψxΦ´
µ1

µ2
Im

ż

ψψxΦ

`
1

µλ1

Re

ż

´

ωψxx ´ γ
`

η ´ α
2
ρ` q|ψ|2

˘

ψ
¯

ψΦ1 ´
λ11
µλ1

Im

ż
ˆ

x

λ1

˙

ψψxΦ
1

“ ´
2ω

µλ1

ż

|ψx|
2Φ1 `

γ

µλ1

ż

´

η ´ α
2
ρ` q

4
|ψ|2

¯

|ψ|2Φ1 ´
µ1

µ2
Im

ż

ψψxΦ

`
γ

µ

ż

`

ηx ´
α
2
ρx
˘

|ψ|2Φ`
ω

2µλ3
1

ż

|ψ|2Φ3 ´
λ11
µλ1

Im

ż
ˆ

x

λ1

˙

ψψxΦ
1

´
γ

µλ1

ż

`

η ´ α
2
ρ` q|ψ|2

˘

|ψ|2Φ1

“ ´
2ω

µλ1

ż

|ψx|
2Φ1 ´

µ1

µ2
Im

ż

ψψxΦ`
γ

µ

ż

`

ηx ´
α
2
ρx
˘

|ψ|2Φ

`
ω

2µλ3
1

ż

|ψ|2Φ3 ´
γq

2µλ1

ż

|ψ|4Φ1 ´
λ11
µλ1

Im

ż
ˆ

x

λ1

˙

ψψxΦ
1

Now we compute the time-derivative of the second functional I2. In fact, by direct differen-
tiation again, using system (4.1) and performing several integration by parts we get

d

dt
I2 “

θ

µ

ż

ρtηΦ`
θ

µ

ż

ρηtΦ´
θλ11
µλ1

ż
ˆ

x

λ1

˙

ρηΦ1 ´
θµ1

µ2

ż

ρηΦ

“
1

2µλ1

ż

η2Φ1 `
α

µ

ż

ρxηΦ`
γ

µ

ż

ηx|ψ|
2Φ`

γ

µλ1

ż

η|ψ|2Φ1 ´
θλ11
µλ1

ż
ˆ

x

λ1

˙

ρηΦ1

`
β

2µλ1

ż

ρ2Φ1 `
α

µ

ż

ρηxΦ´
αγ

2µ

ż

ρx|ψ|
2Φ´

αγ

2µλ1

ż

ρ|ψ|2Φ1 ´
θµ1

µ2

ż

ρηΦ

“
1

2µλ1

ż

η2Φ1 ´
α

µλ1

ż

ρηΦ1 `
γ

µ

ż

ηx|ψ|
2Φ`

γ

µλ1

ż

η|ψ|2Φ1 ´
θµ1

µ2

ż

ρηΦ

`
β

2µλ1

ż

ρ2Φ1 ´
αγ

2µ

ż

ρx|ψ|
2Φ´

αγ

2µλ1

ż

ρ|ψ|2Φ1 ´
θλ11
µλ1

ż
ˆ

x

λ1

˙

ρηΦ1.

Hence, gathering both previous identities we conclude the desired result. �

Lemma 4.4. Let pψ, ρ, ηq P CpR, H1 ˆ L2 ˆ L2q be any solution to system (4.1). Then, for
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all t P R, the following identities hold:

p1 q
d

dt
J1ptq “

γp2
?
β ´ αq

2µptqλ1ptq

ż

ˇ

ˇψ
`

t, x´ υ´t
˘
ˇ

ˇ

2
Φ1

ˆ

x

λ1ptq

˙

Φ1
ˆ

x

λ2ptq

˙

`
γp2
?
β ´ αq

2µptqλ2ptq

ż

ˇ

ˇψ
`

t, x´ υ´t
˘
ˇ

ˇ

2
Φ

ˆ

x

λ1ptq

˙

Φ2
ˆ

x

λ2ptq

˙

´
θµ1ptq

µ2ptq

ż

`

a

βρ` η
˘

pt, x´ υ´tqΦ

ˆ

x

λ1ptq

˙

Φ1
ˆ

x

λ2ptq

˙

´
θλ11ptq

µptqλ1ptq

ż
ˆ

x

λ1ptq

˙

`

a

βρ` η
˘

pt, x´ υ´tqΦ
1

ˆ

x

λ1ptq

˙

Φ1
ˆ

x

λ2ptq

˙

´
θλ12ptq

µptqλ2ptq

ż
ˆ

x

λ2ptq

˙

`

a

βρ` η
˘

pt, x´ υ´tqΦ

ˆ

x

λ1ptq

˙

Φ2
ˆ

x

λ2ptq

˙

.

p2 q
d

dt
J2ptq “

γp2
?
β ` αq

2µptqλ1ptq

ż

R

ˇ

ˇψ
`

t, x´ υ`t
˘
ˇ

ˇ

2
Φ1

ˆ

x

λ1ptq

˙

Φ1
ˆ

x

λ2ptq

˙

`
γp2
?
β ` αq

2µptqλ2ptq

ż

R

ˇ

ˇψ
`

t, x´ υ`t
˘
ˇ

ˇ

2
Φ

ˆ

x

λ1ptq

˙

Φ2
ˆ

x

λ2ptq

˙

´
θµ1ptq

µ2ptq

ż

`

a

βρ´ η
˘

pt, x´ υ`tqΦ

ˆ

x

λ1ptq

˙

Φ1
ˆ

x

λ2ptq

˙

´
θλ11ptq

µptqλ1ptq

ż
ˆ

x

λ1ptq

˙

`

a

βρ´ η
˘

pt, x´ υ`tqΦ
1

ˆ

x

λ1ptq

˙

Φ1
ˆ

x

λ2ptq

˙

´
θλ12ptq

µptqλ2ptq

ż
ˆ

x

λ2ptq

˙

`

a

βρ´ η
˘

pt, x´ υ`tqΦ

ˆ

x

λ1ptq

˙

Φ2
ˆ

x

λ2ptq

˙

.

Proof. Similarly to the previous lemma, we proceed by a direct computation. For the sake
of simplicity, throughout this proof we will denote by Φi, Φ1i and Φ2i the functions given by
Φipxq :“ Φ

`

x
λiptq

˘

, Φ1ipxq :“ Φ1
`

x
λiptq

˘

and Φ2i pxq :“ Φ2
`

x
λiptq

˘

, with i “ 1, 2. Also, we shall only
write ρ, η, Φ1 and Φ2, ommiting their arguments.

Indeed, taking the time derivative of the functional, using system (4.1) and performing
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some integration by parts we obtain

d

dt
J1ptq “

?
βθ

µ

ż

ρtΦ1Φ12 `
β ´ α

?
β

µ

ż

ρxΦ1Φ12 ´
θ
?
βµ1

µ2

ż

ρΦ1Φ12 `
θ

µ

ż

ηtΦ1Φ12

`

?
β ´ α

µ

ż

ηxΦ1Φ12 ´
θµ1

µ2

ż

ηΦ1Φ12 ´

?
βθλ11
µλ1

ż
ˆ

x

λ1

˙

ρΦ11Φ12

´
θλ11
µλ1

ż
ˆ

x

λ1

˙

ηΦ11Φ12 ´

?
βθλ12
µλ2

ż
ˆ

x

λ2

˙

ρΦ1Φ22 ´
θλ12
µλ2

ż
ˆ

x

λ2

˙

ηΦ1Φ22

“
α
?
β

µ

ż

ρxΦ1Φ12 ´

?
β

µ

ż

ηxΦ1Φ12 ´
γ
?
β

µ

ż

p|ψ|2qxΦ1Φ12 `
α

µ

ż

ηxΦ1Φ12

`
β ´

?
βα

µ

ż

ρxΦ1Φ12 ´

?
βθµ1

µ2

ż

ρΦ1Φ12 ´
β

µ

ż

ρxΦ1Φ12 ´
θµ1

µ2

ż

ηΦ1Φ12

`
αγ

2µ

ż

p|ψ|2qxΦ1Φ12 `

?
β ´ α

µ

ż

ηxΦ1Φ12 ´

?
βθλ11
µλ1

ż
ˆ

x

λ1

˙

ρΦ11Φ12

´
θλ11
µλ1

ż
ˆ

x

λ1

˙

ηΦ11Φ12 ´

?
βθλ12
µλ2

ż
ˆ

x

λ2

˙

ρΦ1Φ22 ´
θλ12
µλ2

ż
ˆ

x

λ2

˙

ηΦ1Φ22

“
γ
?
β

µλ1

ż

|ψ|2Φ11Φ12 `
γ
?
β

µλ2

ż

|ψ|2Φ1Φ22 ´

?
βθµ1

µ2

ż

ρΦ1Φ12 ´
θµ1

µ2

ż

ηΦ1Φ12

´
αγ

2µλ1

ż

|ψ|2Φ11Φ12 ´
αγ

2µλ2

ż

|ψ|2Φ1Φ22 ´

?
βθλ11
µλ1

ż
ˆ

x

λ1

˙

ρΦ11Φ12

´
θλ11
µλ1

ż
ˆ

x

λ1

˙

ηΦ11Φ12 ´

?
βθλ12
µλ2

ż
ˆ

x

λ2

˙

ρΦ1Φ22 ´
θλ12
µλ2

ż
ˆ

x

λ2

˙

ηΦ1Φ22.

Thus, by gathering terms we conclude the proof of the lemma. The proof of the second
formula follows the same arguments. Hence, we omit it. �

Remark 4.6. We emphasize that none of these Virial Lemmas require the explicit definition
of Φ nor the one for the scaling functions λi and µ that we gave at the beginning of this section.
In fact, in Section 4.4 we shall exploit (4.8) for completely different definitions of Φ, λ and µ
(as soon as all quantities are well-defined). However, unless stated otherwise, throughout the
proof of Theorem 4.1 we shall always assume that we are referring to the functions defined
at the beginning of this section.

4.2.2 Uniform boundedness of the energy norm

The following lemma is a direct consequence of the conservation laws and give us the time-
uniform boundedness of the H1 ˆ L2 ˆ L2-norm.

Lemma 4.5. Let pψ, ρ, ηq P CpR, H1ˆL2ˆL2q be a global solution emanating from an initial
data pψ0, ρ0, η0q P H

1 ˆ L2 ˆ L2. Then, there exists a constant C P R`, depending only on
the norm of the initial data, such that the following global bound holds

}ψptq}2H1 ` }ρptq}2L2 ` }ηptq}2L2 ď C, @t P R.
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Proof. The idea of the proof is to use the conservation of the energy, re-constructing such
conserved quantity from the energy norm. In fact, first of all let us recall that from the
conservation of the energy we have

ż

R

´

ω|ψx|
2
`

β
2
ρ2
` 1

2
η2
`

γq
2
|ψ|4 ` γ

2
p2η ´ αρq|ψ|2 ´ αρη

¯

dx “ Ep0q. (4.9)

Hence, essentially we have to show that we can control the last three addends with the first
three of them. Specifically, taking advantage of the conservation of both mass and energy,
we would like to find appropriate constants c ą 0, a, b P R such that

}ψptq}2H1 ` }ρptq}2L2 ` }ηptq}2L2 ď c
`

Ep0qa `Mp0qb
˘

.

First, we notice that to control the crossed term ρη, it is enough to use Young inequality
for products, from where we get

α

ż

R
ρpt, xqηpt, xqdx ď

β ` α2

4

ż

R
ρ2
pt, xqdx`

α2

2pβ ` α2q

ż

R

η2
pt, xqdx. (4.10)

Then, gathering the corresponding quadratic terms with respect to pρ, ηq appearing in the
energy, we have

ż

R

´

β
2
ρ2
pt, xq ` 1

2
η2
pt, xq ´ αρpt, xqηpt, xq

¯

dx ě
β ´ α2

4
}ρptq}2L2 `

β

2pβ ` α2q
}ηptq}2L2 .

We continue by bounding the contribution of the L4-norm of ψptq. Indeed, by using
Gagliardo-Nirenberg interpolation inequality, as well as Young inequality in the resulting
right-hand side, we obtain

ż

R
|ψpt, xq|4dx ď }ψptq}H1}ψptq}3L2 ď ε}ψxptq}

2
L2 ` εMp0q `

1

ε
Mp0q3.

Once again, due to the conservation of mass, it is enough to choose ε P p0, 1q sufficiently small
so that we can absorb ε}ψxptq}2L2 by using the first term in (4.9). Finally, it only remains to
bound

γ

2

ż

R

`

2ηpt, xq ´ αρpt, xq
˘

|ψpt, xq|2dx.

However, notice that this term can be controlled by the previous ones. In fact, we have

γ

2

ż

R

`

2ηpt, xq ´ αρpt, xq
˘

|ψpt, xq|2dx ď
β

16pβ ` α2q
}ηptq}2L2 `

β ´ α2

16
}ρptq}2L2

`

ˆ

γ2pβ ` α2q

8β
`

2α2γ2

β ´ α2

˙

}ψptq}4L4 .

Therefore, gathering all the above estimates we conclude the proof of the lemma. �

As a consequence of the previous lemma, we conclude the uniform boundedness of all the
modified functionals.
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Corollary 4.6. Let pψ, ρ, ηq P CpR, H1ˆL2ˆL2q be any solution to system (4.1) emanating
from an initial data pψ0, ρ0, η0q P H

1 ˆ L2 ˆ L2. Consider λ1ptq, λ2ptq and µptq defined as in
(4.6). Then, the following bound holds

sup
tPp0,`8q

´

ˇ

ˇJ1ptq
ˇ

ˇ`
ˇ

ˇJ2ptq
ˇ

ˇ`
ˇ

ˇI1ptq
ˇ

ˇ`
ˇ

ˇI2ptq
ˇ

ˇ

¯

ă `8.

Proof. First of all, notice that the time-uniform boundedness of I1 and I2 follows directly
from Hölder inequality as well as the previous Lemma. In the same fashion, to bound J1 we
proceed by Hölder inequality. However, since J1 is of order 1 in pρ, ηq, in this case we obtain

|J1ptq| À
1

µptq
}ρptq ` ηptq}L2}Φ}L8

›

›

›
Φ1
`

¨

λ2ptq

˘

›

›

›

L2
À
λ

1{2
2 ptq

µptq
ă C, (4.11)

where C ą 0 only depends on the initial data pψ0, ρ0, η0q.

To conclude, we notice that the same procedure also provides a time-uniform bound for
J2ptq. The proof is complete. �

Remark 4.7. Inequality (4.11) is precisely the condition that does not allow us to choose
λ1ptq growing any faster. In particular, this is the reason why we cannot choose λ1ptq “ t1

´ ,
for example.

4.3 Proof of Theorem 4.1

4.3.1 Time integrability of |ψ|2

In this section we seek to use the previously found virial identities to prove the time inte-
grability of the solution. In order to do that, we split the analysis in several steps. First,
we shall show the time integrability (in the region given in Theorem 4.1) only for |ψpt, xq|2,
which is proved in the following proposition.

Proposition 4.7. Let pψ, ρ, ηq P CpR, H1 ˆ L2 ˆ L2q be any solution to system (4.1) ema-
nating from an initial data pψ0, ρ0, η0q P H

1 ˆ L2 ˆ L2. Then, for λ1ptq, λ2ptq, µptq and υ˘
defined as in (4.6)-(4.7), the following inequality holds

ż `8

0

1

µptqλ1ptq

ż

R

ˇ

ˇψpt, x´ υ˘tq
ˇ

ˇ

2
sech4

ˆ

x

λ1ptq

˙

dxdt ă `8. (4.12)

Proof. Let us first consider the case of υ´. The case for υ` follows from the same bounds up
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to trivial modifications. Indeed, we define

F´ptq :“
d

dt
J1ptq ´

γp2
?
β ´ αq

2µptqλ2ptq

ż

ˇ

ˇψ
`

t, x´ υ´t
˘
ˇ

ˇ

2
Φ

ˆ

x

λ1ptq

˙

Φ2
ˆ

x

λ2ptq

˙

`
θµ1ptq

µ2ptq

ż

`

a

βρ` η
˘

pt, x´ υ´tqΦ

ˆ

x

λ1ptq

˙

Φ1
ˆ

x

λ2ptq

˙

`
θλ11ptq

µptqλ1ptq

ż
ˆ

x

λ1ptq

˙

`

a

βρ` η
˘

pt, x´ υ´tqΦ
1

ˆ

x

λ1ptq

˙

Φ1
ˆ

x

λ2ptq

˙

`
θλ12ptq

µptqλ2ptq

ż
ˆ

x

λ2ptq

˙

`

a

βρ` η
˘

pt, x´ υ´tqΦ

ˆ

x

λ1ptq

˙

Φ2
ˆ

x

λ2ptq

˙

“: I` II` III` IV ` V.

Then, from Lemma 4.4 we infer that
γp2
?
β ´ αq

2µptqλ1ptq

ż

ˇ

ˇψpt, x´ υ´tq
ˇ

ˇ

2
Φ1

ˆ

x

λ1ptq

˙

Φ1
ˆ

x

λ2ptq

˙

dx “ F´ptq.

Hence, the problem is reduced to prove that we can integrate F´ptq on p0,`8q. In fact, first
of all notice that, from Corollary 4.6 we infer that

ˇ

ˇ

ˇ

ˇ

ż `8

0

Iptqdt

ˇ

ˇ

ˇ

ˇ

À lim sup
tÑ`8

ˇ

ˇJ1ptq ´ J1p0q
ˇ

ˇ ă `8.

Moreover, from Lemma 4.5 as well as the explicit definitions of µptq and λ2ptq, it immediately
follows that II P L1pR`q. On the other hand, from Lemma 4.5 along with Hölder inequality,
we can bound IIIptq by

ˇ

ˇIIIptq
ˇ

ˇ À
µ1ptq}Φ1p ¨

λ2ptq
q}L2

µ2ptq
À
λ

1{2
2 µ1ptq

µ2ptq
À

1

pκ` tq logpκ` tq log log3{2
pκ` tq

P L1
pR`q.

In the same fashion, applying Lemma 4.5 and Hölder inequality, we can bound |IVptq| and
|Vptq| pointwisely by integrable function as

ˇ

ˇIVptq
ˇ

ˇ À
λ

1{2
1 ptqλ11ptq

µptqλ1ptq
À

1

pκ` tq logpκ` tq log log2
pκ` tq

P L1
pR`q,

ˇ

ˇVptq
ˇ

ˇ À
λ

1{2
2 ptqλ12ptq

µptqλ2ptq
À

1

pκ` tq logpκ` tq log log3{2
pκ` tq

P L1
pR`q.

Therefore, gathering all the above inequalities, we conclude the proof of (4.12) in the case of
υ´. Notice that the same proof (up to trivial modifications) also works for υ`. The proof is
complete. �

Remark 4.8. The proof of the previous proposition does not depend on the value of α P R,
and hence, this concludes the first inequality in Theorem 4.1.

4.3.2 Time Integrability of the full solution

In this section we seek to extend the analysis to the full solution, that is, to include the
corresponding integral terms associated to pψx, ρ, ηq. From now on we split the analysis in
two cases concerning the values of α P R.
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Case α ‰ 0

In order to take advantage of the previous analysis, we consider a different version of the
modified momentum functional adapted to this region. More specifically, we define modified
momentum functional adapted to the characteristics x´ υ˘t, that is,

rI˘ptq :“
1

µptq
Im

ż

R
ψpt, x´ υ˘tqψxpt, x´ υ˘tqΦ

ˆ

x

λ1ptq

˙

dx

´
θ

µptq

ż

R
ρpt, x´ υ˘tqηpt, x´ υ˘tqΦ

ˆ

x

λ1ptq

˙

dx.

Notice that, as a direct consequence of Lemma 4.3, we have the following identity

´
d

dt
rI˘ptq “

2ω

µλ1

ż

|ψx|
2Φ1 ´

ω

2µλ3
1

ż

|ψ|2Φ3 `
1

2µλ1

ż

η2Φ1 `
β

2µλ1

ż

ρ2Φ1

`
γq

2µλ1

ż

|ψ|4Φ1 ´
α

µλ1

ż

ρηΦ1 `
γ

µλ1

ż

`

η ´ α
2
ρ
˘

|ψ|2Φ1 ´
θµ1

µ2

ż

ρηΦ

`
µ1

µ2
Im

ż

ψψxΦ`
λ11
µλ1

Im

ż
ˆ

x

λ1

˙

ψψxΦ
1
´
θλ11
µλ1

ż
ˆ

x

λ1

˙

ρηΦ1 (4.13)

˘

?
β ˘ α

θµλ1

Im

ż

ψψxΦ
1
¯

?
β ˘ α

µλ1

ż

ρηΦ1,

where we have used the fact that, since Φ is real-valued, we have

´Im

ż

ψψxxΦ

ˆ

x

λ1

˙

“
1

λ1

Im

ż

ψψxΦ
1

ˆ

x

λ1

˙

.

With all of this at hand, we are ready to prove the time integrability of the full solution in
weighted spaces along these characteristics. The following proposition concludes the proof
the Theorem 4.1 in the case α ‰ 0.

Proposition 4.8. Let pψ, ρ, ηq P CpR, H1 ˆ L2 ˆ L2q be any solution to system (4.1) ema-
nating from an initial data pψ0, ρ0, η0q P H

1 ˆ L2 ˆ L2. For λ1ptq, µptq and υ˘ defined as in
(4.6)-(4.7), we have the following two cases:

1. If α ą 0, then the following holds
ż `8

0

1

µptqλ1ptq

ż

R

`

|ψx|
2
` |ψ|2 ` ρ2

` η2
˘

pt, x´ υ´tq sech4

ˆ

x

λ1ptq

˙

dxdt ă `8.

2. If α ă 0, then the following holds
ż `8

0

1

µptqλ1ptq

ż

R

`

|ψx|
2
` |ψ|2 ` ρ2

` η2
˘

pt, x´ υ`tq sech4

ˆ

x

λ1ptq

˙

dxdt ă `8.

Proof. We shall proceed in a similar fashion as in Proposition 4.7. However, notice that in
this case we have several quadratic terms with no definite sign. The idea is to use Proposition
4.7 to deal with the terms involving |ψ|2, and to absorb the crossed terms of the form ρη
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with the ones with ρ2 and η2. In fact, first of all notice that, thanks to Lemma 4.5 and the
explicit definitions of µ and λ1, it is not difficult to see that

1

µλ3
1

ż

|ψ|2Φ3 P L1
pR`q,

µ1

µ2

ż

ρηΦ P L1
pR`q,

µ1

µ2
Im

ż

ψψxΦ P L
1
pR`q.

Moreover, from Lemma 4.5 we also infer that we can integrate rI 1ptq on p0,`8q. On the
other hand, by Hölder inequality, the explicit definitions of µ and λ1, as well as Lemma 4.5,
we obtain

λ11
µλ1

ˇ

ˇ

ˇ

ˇ

Im

ż
ˆ

x

λ1

˙

ψψxΦ
1

ˇ

ˇ

ˇ

ˇ

À
λ11}ψ}

2
L8t H

1
x
}p¨qΦ1}L8

µλ1

P L1
pR`q, and,

λ11
µλ1

ˇ

ˇ

ˇ

ˇ

ż
ˆ

x

λ1

˙

ρηΦ1
ˇ

ˇ

ˇ

ˇ

À
λ11}ρ}L8t L2

x
}η}L8t L2

x
}p¨qΦ1}L8

µλ1

P L1
pR`q.

Now, for the term involving |ψ|4 in (4.13), we use Proposition 4.7, Lemma 4.5 as well as
Sobolev embedding, from where we get1

1

µλ1

ż

|ψ|4Φ1 À
1

µλ1

}ψ}2L8t H1
x

ż

|ψ|2Φ1 P L1
pR`q. (4.14)

Besides, from Young inequality for products, it is not difficult to see that

2ω

µλ1

ż

|ψx|
2Φ1 ˘

p
?
β ˘ αq

µλ1

Im

ż

ψψxΦ
1
ě

ω

µλ1

ż

|ψx|
2Φ1 ´

p
?
β ´ αq2

4ωµλ1

ż

|ψ|2Φ1.

Thanks to Proposition 4.7, the last term in the right-hand side above, belongs to L1pR`q.
Also, from Young inequality for products again, we additionally infer that

γ

µλ1

ż

`

η ´ α
2
ρ
˘

|ψ|2Φ1 ě ´
ε˚1
µλ1

ż

η2Φ1 ´
ε˚2
µλ1

ż

ρ2Φ1 ´
K

µλ1

ż

|ψ|4Φ1 (4.15)

where ε˚1 , ε˚2 ą 0 denote sufficiently small numbers that shall be fixed later. Here K “

Kpε˚1 , ε
˚
2q ą 0 is a large number, however, proceeding in the same fashion as in (4.14) we

infer that this term belongs to L1pR`q no matter what the value of K is.

Finally, it only remains to control the quadratic terms in ρ and η. Unfortunately, due to
the factor ¯p

?
β ˘ 2αqρη appearing in (4.13), we cannot obtain the required positivity in

both directions υ˘ for the terms involving ρ2, η2 and ρη. Thus, we split the analysis in two
cases regarding the sign of α.

Case α ą 0: We aim to prove the following claim that provide us the required positivity:
There exists two constants c1, c2 ą 0, such that

1

2µλ

ż

η2Φ1 `
β

2µλ

ż

ρ2Φ1 `

?
β ´ 2α

µλ

ż

ρηΦ1 ě
c1

µλ

ż

η2Φ1 `
c2

µλ

ż

ρ2Φ1. (4.16)

1Notice that here we are actually using Proposition 4.7 with a different definition of Φpxq, so that Φ1pxq “
sech4

pxq. By taking the integration constant equal to zero we get Φ P L8.
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In this case we shall take advantage of rI´ptq. In fact, first of all, notice that, if
?
β´ 2α “ 0,

then there is nothing to prove. Then, in the sequel we assume
?
β´2α ‰ 0. Indeed, consider

the parameter ε1 P R given by

ε1 :“
1

2

ˆ

1`
β

p
?
β ´ 2αq2

˙

ą 0.

Then, by using Young inequality for products, with parameter given by ε1, we infer

1

2µλ

ż

η2Φ1 `
β

2µλ

ż

ρ2Φ1 `

?
β ´ 2α

µλ

ż

ρηΦ1

ě
1

2µλ

`

1´ ε´1
1

˘

ż

η2Φ1 `
1

2µλ

`

β ´ p
a

β ´ 2αq2ε1

˘

ż

ρ2Φ1

Moreover, notice that, since β´α2 ą 0 and α ą 0, we infer that ε1 ą 1, and hence 1´ε´1
1 ą 0.

On the other hand, by direct computations we see that

β ´ p
a

β ´ 2αq2ε1 ą β ´
p
?
β ´ 2αq2β

p
?
β ´ 2αq2

“ 0.

Then, plugging the previous computations into (4.16), we conclude the proof of the claim.

Case α ă 0: In this case we aim to prove the following claim that provide us the required
positivity: There exists two constants c1, c2 ą 0, such that

1

2µλ

ż

η2Φ1 `
β

2µλ

ż

ρ2Φ1 ´

?
β ` 2α

µλ

ż

ρηΦ1 ě c1

ż

η2Φ1 ` c2

ż

ρ2Φ1. (4.17)

In contrast with the previous case, in this case we shall take advantage of rI`ptq. In fact, first
of all, notice that, if

?
β ` 2α “ 0, then there is nothing to prove. Thus, in the sequel we

assume
?
β ` 2α ‰ 0. Indeed, define ε2 P R as

ε2 :“
1

2

ˆ

1`
β

p
?
β ` 2αq2

˙

ą 0.

Then, by using Young inequality for products, with parameter given by ε2, we infer

1

2µλ

ż

η2Φ1 `
β

2µλ

ż

ρ2Φ1 ´

?
β ` 2α

µλ

ż

ρηΦ1

ě
1

2µλ

`

1´ ε´1
2

˘

ż

η2Φ1 `
1

2µλ

`

β ´ p
a

β ` 2αq2ε2

˘

ż

ρ2Φ1.

Moreover, by using both β ´ α2 ą 0 and α ă 0, proceeding in exactly the same fashion as
in the previous claim, we conclude that both factors in front of each of the integral on the
right-hand side of the latter inequality are strictly positive. Thus, we conclude the proof of
the claim.

Finally, it only remains to set the definition of ε˚1 and ε˚2 in (4.15). Notice that we have
to give a different definition depending on the case α ż 0. In fact, from the above analysis it
follows that it is enough to consider

ε˚1,` :“ 10´10
`

β ´ p
a

β ´ 2αq2ε1

˘

ε˚2,` :“ 10´10
p1´ ε´1

1 q,

ε˚1,´ :“ 10´10
`

β ´ p
a

β ` 2αq2ε2

˘

ε˚2,´ :“ 10´10
p1´ ε´1

2 q,
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where ε˚i,˘ stands for the case where α is positive or negative respectively. Hence, we conclude
the proof of the proposition. �

Case α “ 0

In the case when α “ 0, we can give a much simpler and shorter proof. In fact, in this case,
from Lemma 4.3 we can easily deduce the following result.

Proposition 4.9. Let pψ, ρ, ηq P CpR, H1 ˆ L2 ˆ L2q be any solution to system (4.1) ema-
nating from an initial data pψ0, ρ0, η0q P H

1 ˆ L2 ˆ L2. For λ1ptq, µptq and υ˘ defined as in
(4.6)-(4.7), the following inequality holds
ż `8

0

1

µptqλ1ptq

ż

R

´

|ψpt, xq|4 ` |ψxpt, xq|
2
` η2

pt, xq ` ρ2
pt, xq

¯

sech2

ˆ

x

λ1ptq

˙

dxdt ă `8.

Proof. In fact, by using the standard modified momentum function Iptq (instead of rIptq as
before), we proceed in the same fashion as in the previous proposition, using Lemma 4.3 and
noticing that, under our current assumptions, q “ γ ą 0, from where we infer that

3γq

4µλ1

ż

|ψ|4Φ1 `
1

2µλ1

ż

η2Φ1 `
γ

µλ1

ż

η|ψ|2Φ1 ą
γ2

100µλ1

ż

|ψ|4Φ1 `
1

100µλ1

ż

η2Φ1.

Then, the proof follows by gathering the latter inequality with (4.8) and recalling that λ´3
1 P

L1pR`q. In order to avoid over-repeated computations we omit the details. �

4.4 Decay in far field regions

In this section we seek to prove pointwise decay in far field regions by taking advantage of
some suitable virial identities, as before. The analysis is similar (in spirit) to that shown in
the previous section. However, in this case, the idea will be somewhat the opposite, in the
sense that now the important terms shall come from the derivative of the weight Φ, instead
of the derivative of the solution, as in the previous section. To do so, we consider both
the modified mass functional as well as the modified energy functional, which are given by
(respectively)

M˘ptq :“

ż

R
Φ

ˆ

˘x` ζptq

λptq

˙

|ψpt, xq|2dx,

E˘ptq :“

ż

R
Φ

ˆ

˘x` ζptq

λptq

˙

´

ω|ψx|
2
`

γq
2
|ψ|4 ` β

2
ρ2
` 1

2
η2
`

γ
2
p2η ´ αρq|ψ|2 ´ αρη

¯

dx.

Here, Φ stands for a smooth and bounded weight (not necessarily decaying at ˘8), which
shall be completely different to the one chosen in the previous section (see (4.26)-(4.27) for
the exact definition). Notice also that, in contrast with the modified mean functional, now we
only require Φ belonging to L8pRq in order forM˘ and E˘ to be well-defined and uniformly
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bounded (for solutions in the energy space). Additionally, in this case we define the scaling
λptq and the shift ζptq as

λptq :“ p1` tq2`δ, ζptq ě c1λptq, ζ 1ptq ě c2λ
1
ptq, c1, c2 ą 0, δ ą 0. (4.18)

In a similar spirit as in the previous section, the main motivation to consider these specific
definitions of λ and ζ is to obtain

1

λ
,

1

ζ
P L1

pR`q, however
λ1

λ
,
ζ 1

λ
R L1

pR`q, (4.19)

which shall allow us to neglect some bad terms (in some sense). We emphasize that, in this
case, we are considering a scaling factor λptq growing faster than linear (in contrast with the
previous sections). This changes the behavior of some important terms (with respect to the
above analysis) that we intend to take advantage of.

On the other hand, to simplify computations, we split the modified energy functional E
into the following functionals

E˘,1ptq :“

ż

R
Φ

ˆ

˘x` ζptq

λptq

˙

´

ω|ψx|
2
`

γq
2
|ψ|4

¯

dx, (4.20)

E˘,2ptq :“

ż

R
Φ

ˆ

˘x` ζptq

λptq

˙

´

β
2
ρ2
` 1

2
η2
`

γ
2
p2η ´ αρq|ψ|2 ´ αρη

¯

dx.

Before going further, let us compute the virial identities associated with our current func-
tionals, that shall give us the fundamental information for the following analysis.

Lemma 4.10. Let pψ, ρ, ηq P CpR, H1ˆL2ˆL2q be any solution to system (4.1). Then, for
all t P R, the following identity holds

d

dt
M˘ptq “ ´

λ1

λ

ż

R
Φ1

ˆ

˘x` ζ

λ

˙ˆ

˘x` ζ

λ

˙

|ψ|2dx`
ζ 1

λ

ż

R
Φ1

ˆ

˘x` ζ

λ

˙

|ψ|2dx

˘
2ω

λ
Im

ż

R
Φ1

ˆ

˘x` ζ

λ

˙

ψψxdx. (4.21)

Proof. The proof follows from direct computations. We omit this proof. �

Lemma 4.11. Let pψ, ρ, ηq P CpR, H2 ˆ H1 ˆ H1q be any solution to system (4.1). Then,
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for all t P R, the following identity holds,

d

dt
E˘ptq “

ζ 1

λ

ż

R
Φ1

ˆ

˘x` ζptq

λptq

˙

´

ω|ψx|
2
`

γq
2
|ψ|4

¯

dx

´
λ1

λ

ż

R
Φ1

ˆ

˘x` ζptq

λptq

˙ˆ

˘x` ζptq

λptq

˙

´

ω|ψx|
2
`

γq
2
|ψ|4

¯

dx

`
ζ 1

λ

ż

R
Φ1

ˆ

˘x` ζptq

λptq

˙

´

β
2
ρ2
` 1

2
η2
`

γ
2
p2η ´ αρq|ψ|2 ´ αρη

¯

dx (4.22)

´
λ1

λ

ż

R
Φ1

ˆ

˘x` ζptq

λptq

˙ˆ

˘x` ζptq

λptq

˙

´

β
2
ρ2
` 1

2
η2
`

γ
2
p2η ´ αρq|ψ|2 ´ αρη

¯

dx

˘
2ω2

λ
Im

ż

R
Φ1

ˆ

˘x` ζptq

λptq

˙

ψxψxxdx˘
2γqω

λ
Im

ż

R
Φ1

ˆ

˘x` ζptq

λptq

˙

|ψ|2ψψxdx

¯
α

θλ

ż

R
Φ1

ˆ

˘x` ζptq

λptq

˙

´

β|ρ|2 ` |η|2
¯

dx˘
β ` α2

θλ

ż

R
Φ1

ˆ

˘x` ζptq

λptq

˙

ρηdx

˘
γ pβ ` α2{2q

θλ

ż

R
Φ1

ˆ

˘x` ζptq

λptq

˙

ρ|ψ|2dx¯
3

2

γα

θλ

ż

R
Φ1

ˆ

˘x` ζptq

λptq

˙

η|ψ|2dx

¯
γ2α

θλ

ż

R
Φ1

ˆ

˘x` ζptq

λptq

˙

|ψ|4dx˘
γω

λ
Im

ż

R
Φ1

ˆ

˘x` ζptq

λptq

˙

p2η ´ αρqψψxdx.

Proof. First of all, in order to simplify the computations, we split the derivative of E˘ into
the sum of the derivatives of E˘,i, i “ 1, 2, treating separately each of these functionals and
then summing-up the corresponding results. In fact, directly differentiating E˘,1, using that
pψ, ρ, ηq solves system (4.1) and then performing several integration by parts, we obtain

d

dt
E˘,1ptq “

ζ 1

λ

ż

R
Φ1

ˆ

˘x` ζptq

λptq

˙

´

ω|ψx|
2
`

γq
2
|ψ|4

¯

dx

´
λ1

λ

ż

R
Φ1

ˆ

˘x` ζptq

λptq

˙ˆ

˘x` ζptq

λptq

˙

´

ω|ψx|
2
`

γq
2
|ψ|4

¯

dx (4.23)

˘
2ω2

λ
Im

ż

R
Φ1

ˆ

˘x` ζptq

λptq

˙

ψxψxxdx˘
2γqω

λ
Im

ż

R
Φ1

ˆ

˘x` ζptq

λptq

˙

|ψ|2ψψxdx

` 2ωγIm
ż

R
Φ

ˆ

˘x` ζptq

λptq

˙

ψxψ
`

η ´ 1
2
αρ` q|ψ|2

˘

x
dx

` 2γqωIm
ż

R
Φ

ˆ

˘x` ζptq

λptq

˙

`

|ψ|2
˘

x
ψψxdx

“: R˘,1 `R˘,2 `R˘,3 `R˘,4 `R˘,5 `R˘,6.

We now proceed with E˘,2. In fact, in a similar fashion as before, directly differentiating E˘,2,
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using that pψ, ρ, ηq solves (4.1), and then performing several integration by parts, we get

d

dt
E˘,2ptq “

ζ 1

λ

ż

R
Φ1

ˆ

˘x` ζptq

λptq

˙

´

β
2
ρ2
` 1

2
η2
`

γ
2
p2η ´ αρq|ψ|2 ´ αρη

¯

dx (4.24)

´
λ1

λ

ż

R
Φ1

ˆ

˘x` ζptq

λptq

˙ˆ

˘x` ζptq

λptq

˙

´

β
2
ρ2
` 1

2
η2
`

γ
2
p2η ´ αρq|ψ|2 ´ αρη

¯

dx

¯
α

θλ

ż

R
Φ1

ˆ

˘x` ζptq

λptq

˙

´

β|ρ|2 ` |η|2
¯

dx˘
β ` α2

θλ

ż

R
Φ1

ˆ

˘x` ζptq

λptq

˙

ρηdx

˘
γ pβ ` α2{2q

θλ

ż

R
Φ1

ˆ

˘x` ζptq

λptq

˙

ρ|ψ|2dx¯
3

2

γα

θλ

ż

R
Φ1

ˆ

˘x` ζptq

λptq

˙

η|ψ|2dx

¯
γ2α

2θλ

ż

R
Φ1

ˆ

˘x` ζptq

λptq

˙

|ψ|4dx˘
γω

λ
Im

ż

R
Φ1

ˆ

˘x` ζptq

λptq

˙

p2η ´ αρqψψxdx

` γωIm
ż

R
Φ

ˆ

˘x` ζptq

λptq

˙

p2η ´ αρqx ψψxdx.

Finally, for the sake of simplicity let us define R˘,7 as the following quantity

R˘,7 :“ γωIm
ż

R
Φ

ˆ

˘x` ζptq

λptq

˙

p2η ´ αρqx ψψxdx.

Then, it is not difficult to see that with these definitions we have the relation R˘,5 “ R˘,6 `
R˘,7. Therefore, summing up all the previous computations, and then using the above
relation, we conclude the proof of (4.22). �

4.4.1 Time integrability of the weighted L2-norm

In this subsection we restrict ourselves to the simpler case of the time integrability of the
weighted L2-norm for the Schrödinger part of the solution ψpt, xq. The integrability (and
decay) of this weighted-norm is a fundamental part of the analysis since (as we shall see) it
triggers the decay of the whole weighted energy norm. In fact, let us start by recalling the
relation

´
d

dt
M˘ptq ˘

2ω

λ
Im

ż

R
Φ1

ˆ

˘x` ζ

λ

˙

ψψxdx

“
λ1

λ

ż

R
Φ1

ˆ

˘x` ζ

λ

˙ˆ

˘x` ζ

λ

˙

|ψ|2dx´
ζ 1

λ

ż

R
Φ1

ˆ

˘x` ζ

λ

˙

|ψ|2dx.

(4.25)

Then, notice that the left-hand side of the above relation is time-integrable on R`, provided
that Φ1 P L8pRq. In fact, if Φ1 is bounded, then from Hölder inequality, Lemma 4.5 and the
fact that (4.19) holds, we have

ˇ

ˇ

ˇ

ˇ

2

λ
Im

ż

R
Φ1

ˆ

˘x` ζ

λ

˙

ψψxdx

ˇ

ˇ

ˇ

ˇ

À
1

λ
P L1

pR`q.

Motivated by the time-integrability above, as well as identity (4.25), we shall give a suitable
definition for Φ P C8pRq so that we are able to obtain a convenient sign-property in the
right-hand side of (4.25).
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To take advantage of the structure of the virial identities, from now on we consider Φ to
be any non-increasing smooth function such that it satisfies the following conditions

 

Φpsq “ 1, s ď ´1
(

,
 

Φpsq “ 0, s ě 0
(

and tΦ1 ” ´1 on r´ 9
10
,´ 1

10
su. (4.26)

Notice that, as a particular consequence of its definition, we have the following inequalities

@s P R, Φ1psq ď 0 and sΦ1psq ě 0. (4.27)

As already mentioned, we now focus in studying the right-hand side of (4.25). Notice that,
thanks to (4.26)-(4.27) we infer that, for all t ě 0, the following sign-properties are satisfied

λ1

λ

ż

R
Φ1

ˆ

˘x` ζ

λ

˙ˆ

˘x` ζ

λ

˙

|ψ|2dx ě 0 and ´
ζ 1

λ

ż

R
Φ1

ˆ

˘x` ζ

λ

˙

|ψ|2dx ě 0.

Consequently, due to the fact that the left-hand side of (4.25) is integrable in time, we
can compute the time-integral over R` and get

ż 8

0

ˆ

λ1

λ

ż

R
Φ1

ˆ

˘x` ζ

λ

˙ˆ

˘x` ζ

λ

˙

|ψ|2dx´
ζ 1

λ

ż

R
Φ1

ˆ

˘x` ζ

λ

˙

|ψ|2dx

˙

dt ă 8. (4.28)

Then, gathering this latter inequality with the sign-property above, we deduce in particular
ż 8

0

ζ 1ptq

λptq

ż

R

ˇ

ˇ

ˇ

ˇ

Φ1
ˆ

˘x` ζptq

λptq

˙ˇ

ˇ

ˇ

ˇ

|ψpt, xq|2dxdt ă 8.

Remark 4.9. Notice that, as a particular consequence of the latter inequality, recalling also
that λ´1ζ 1 R L1pR`q, we infer the existence of a sequence of times ttnunPR, satisfying tn Ñ 8,
such that

lim
nÑ`8

ż

Ωptnq

|ψptn, xq|
2dx “ 0, (4.29)

where the set Ωptq can be defined, for example, as

Ωptq :“ tx P R : 1
10
λptq ` ζptq ď |x| ď 9

10
λptq ` ζptqu. (4.30)

Moreover, notice that from the above
ż 8

0

λ1ptq

λptq

ż

Ωptq

|ψpt, xq|2dx ă `8 and
ż 8

0

ζ 1ptq

λptq

ż

Ωptq

|ψpt, xq|2dx ă `8. (4.31)

Hence, from now on, we can use properties (4.29) and (4.31) without depending on weights
Φ satisfying (4.26). In particular, in the sequel we shall use (4.29) for compactly supported
weight functions encoding the same (or strictly contained) regions as in (4.30).

4.4.2 Decay of the L2-norm

In this section we seek to prove the pointwise decay of L2-norm of the Schrödinger component
of the solution ψpt, xq restricted to the far-field regions. In fact, let us start by considering
Ψ P C80 pRq to be any non-negative function such that

supppΨq Ă
“

´3
4
,´1

4

‰

with Ψ ” 1 on r´3
5
,´2

5
s. (4.32)
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Notice that, in particular, this implies that supppΨq Ă supppΦ1q. Additionally, we assume
that Ψ satisfies the following pointwise properties

@s P R, Ψpsq À |Φ1psq| and |Ψ1
psq| À |Φ1psq|. (4.33)

Now, we re-write the previous virial identity (4.21) in terms of our new weight function Ψ
(instead of using Φ). Then, using Lemma 4.5 it is not difficult to see that

ˇ

ˇ

ˇ

ˇ

d

dt

ż

R
Ψ

ˆ

x` ζ

λ

˙

|ψ|2dx

ˇ

ˇ

ˇ

ˇ

À
1

λ
`
λ1

λ

ż

R

ˇ

ˇ

ˇ

ˇ

Ψ1

ˆ

˘x` ζ

λ

˙ˆ

˘x` ζ

λ

˙
ˇ

ˇ

ˇ

ˇ

|ψ|2dx`
ζ 1

λ

ż

R

ˇ

ˇ

ˇ

ˇ

Ψ1

ˆ

˘x` ζ

λ

˙
ˇ

ˇ

ˇ

ˇ

|ψ|2dx. (4.34)

Now, recall that, as stated in remark 4.9, there exists a sequence of time ttnunPN, satisfying
tn Ñ 8, such that (4.29) holds. As a consequence, we also have that

lim
nÑ8

ˆ
ż

R
Ψ

ˆ

x` ζ

λ

˙

|ψ|2dx

˙

ptnq “ 0.

Therefore, we can integrate both sides of (4.34) in time over the interval rt, tns, and then
take the limit tn Ñ 8, what lead us to

ż

R
Ψ

ˆ

˘x` ζ

λ

˙

|ψ|2dx À

ż 8

t

ds

λpsq
`

ż 8

t

ζ 1

λ

ż

R

ˇ

ˇ

ˇ

ˇ

Ψ1

ˆ

˘x` ζ

λ

˙ˇ

ˇ

ˇ

ˇ

|ψ|2dxds

`

ż 8

t

λ1

λ

ż

R

ˇ

ˇ

ˇ

ˇ

Ψ1

ˆ

˘x` ζ

λ

˙ˆ

˘x` ζ

λ

˙ˇ

ˇ

ˇ

ˇ

|ψ|2dxds.

Finally, by using both time-integrabilities in (4.31), we can take now the limit t Ñ 8, from
where we conclude that

lim
tÑ8

ż

R
Ψ

ˆ

˘x` ζ

λ

˙

|ψ|2dx “ 0.

Remark 4.10. Notice that the proof of the integrability (and subsequent decay) of the L2-
norm of ψ also works for other definitions of λ as well as other definitions of Φ and Ψ. For
example, in the above analysis we have only used the fact that the scaling λptq satisfies

1

λ
P L1

pR`q and
λ1

λ
R L1

pR`q.

In consequence, the proof still holds for any λ with such property. As a result, we can take for
example λptq “ ctp, for any p ą 2 and any c P R`, and then following the above computations
we obtain the desired result.

4.4.3 Time-integrability of the full solution

In this section we seek to show the time integrability of the local energy norm for the re-
maining terms. Now, in order to make computations simpler, let us break down expression
(4.22), so that we can write the cleaner formula

´
d

dt
E˘ptq `R˘ptq “ ´E˘ptq. (4.35)
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More specifically, we define the functionals E˘ and R˘ given by

E˘ :“
ζ 1

λ

ż

R
Φ1

ˆ

˘x` ζptq

λptq

˙

´

ω|ψx|
2
`

γq
2
|ψ|4

¯

dx

´
λ1

λ

ż

R
Φ1

ˆ

˘x` ζptq

λptq

˙ˆ

˘x` ζptq

λptq

˙

´

ω|ψx|
2
`

γq
2
|ψ|4

¯

dx

`
ζ 1

λ

ż

R
Φ1

ˆ

˘x` ζptq

λptq

˙

´

β
2
ρ2
` 1

2
η2
`

γ
2
p2η ´ αρq|ψ|2 ´ αρη

¯

dx

´
λ1

λ

ż

R
Φ1

ˆ

˘x` ζptq

λptq

˙ˆ

˘x` ζptq

λptq

˙

´

β
2
ρ2
` 1

2
η2
`

γ
2
p2η ´ αρq|ψ|2 ´ αρη

¯

dx,

R˘ptq :“ ˘
2ω2

λ
Im

ż

R
Φ1

ˆ

˘x` ζptq

λptq

˙

ψxψxxdx˘
2γqω

λ
Im

ż

R
Φ1

ˆ

˘x` ζptq

λptq

˙

|ψ|2ψψxdx

¯
α

θλ

ż

R
Φ1

ˆ

˘x` ζptq

λptq

˙

´

β|ρ|2 ` |η|2
¯

dx˘
β ` α2

θλ

ż

R
Φ1

ˆ

˘x` ζptq

λptq

˙

ρηdx

˘
γ pβ ` α2{2q

θλ

ż

R
Φ1

ˆ

˘x` ζptq

λptq

˙

ρ|ψ|2dx¯
3

2

γα

θλ

ż

R
Φ1

ˆ

˘x` ζptq

λptq

˙

η|ψ|2dx

¯
γ2α

θλ

ż

R
Φ1

ˆ

˘x` ζptq

λptq

˙

|ψ|4dx˘
γω

λ
Im

ż

R
Φ1

ˆ

˘x` ζptq

λptq

˙

p2η ´ αρqψψxdx

“: R˘,1 `R˘,2 ` ¨ ¨ ¨ `R˘,8.

On the other hand, notice that, since pψ, ρ, ηq is a solution to system (4.1) belonging to the
class CpR, H2 ˆ H1 ˆ H1q, then the energy associated to this solution E pψptq, ρptq, ηptqq is
finite. This means that, because the weight Φ considered in the modified functional E is
bounded, one has

ż

R`

d

dt
E˘dt ă 8.

Now, we treat the remaing term.

Let us consider Φ P C8pRq to be any non-increasing function such that (4.26) holds, and
hence, satisfying also (4.27). Now, we intend to bound term by term the right-hand side of
(4.22). In fact, first, since Φ1 is bounded, using Young inequality and Sobolev embbeding
along with Lemma 4.5, we see that

|R˘,2| ď
2γω|q|

λptq
}ψ}2L8pRq

´

}ψ}2L2pRq ` }ψx}
2
L2pRq

¯

À
1

λptq
P L1

pR`q

Also, immediately from Proposition (4.5), we obtain

|R˘,3| ď
|α|

θλptq

ż

R

ˇ

ˇ

ˇ

ˇ

Φ1
ˆ

˘x` ζptq

λptq

˙
ˇ

ˇ

ˇ

ˇ

`

β|ρ|2 ` |η|2
˘

dx À
1

λptq
P L1

pR`q.

On the other hand, for R`,4, by using Young inequality for products and Lemma 4.5 we get

|R˘,4| ď
β ` α2

2θ

1

λptq

´

}ρptq}2L2pRq ` }ηptq}
2
L2pRq

¯

À
1

λptq
P L1

pR`q.

115



We point out that all the remaining terms R˘,i, i “ 5, ..., 8, can be treated in the very same
fashion as for the previous terms. In fact, from Hölder inequality, Sobolev embedding and
then using Lemma 4.5 in the resulting right-hand side, we deduce that

8
ÿ

i“5

|R˘,i| À
1

λptq

´

}ηptq}2L2pRq ` }ρptq}
2
L2pRq ` }ψptq}

4
H1pRq

¯

À
1

λptq
P L1

pR`q.

Finally, to complete the analysis regarding the time-integrability of R˘, it only remains to
consider R˘,1. In order to do that, we first need to recall one of the main results proven in
[5] which give us the polynomial growth of the H2-norm of ψptq. In fact, from [5, Proposition
1.1] we have that

}ψptq}H2pRq À 1` |t|1
`

. (4.36)

As a consequence, recalling the explicit form of λptq in (4.18), we conclude that

1

λptq
}ψptq}H2pRq P L

1
pR`q

Therefore, by using Hölder inequality as well as Lemma 4.5 and (4.36), we infer that

|R˘,1| À
1

λptq
}ψxptq}L2pRq}ψxxptq}L2pRq P L

1
pR`q.

In conclusion, we can integrate over R` in time both sides of (4.35), from where we obtain
ż

R`

´E˘ptqdt ă 8. (4.37)

Now, let us break down this expression so that we can analyze the conflicting terms of E˘ptq
without sign. More specifically, we would like to absorbs or discard the part of the expression
that does not constitute the weighted energy norm. In fact, in similar fashion as in the proof
of Proposition 4.5, we have that

β
2
ρ2
` 1

2
η2
´ αρη ě

β ´ α2

4
|ρ|2 `

β

2pβ ` α2q
|η|2 ą 0,

where we used the fact that β ´ α2 ą 0 and β ą 0. Also, we have that

γ

2

`

2η ´ αρ
˘

|ψ|2 ď
β ´ α2

16
|ρ|2 `

β

16pβ ` α2q
|η|2

`

ˆ

γ2pβ ` α2q

8β
`

2α2γ2

β ´ α2

˙

|ψ|4.

Gathering both equations above, we get

β
2
ρ2
` 1

2
η2
´ αρη `

γ

2

`

2η ´ αρ
˘

|ψ|2 ě
3pβ ´ α2q

16
|ρ|2 `

7β

16pβ ` α2q
|η|2

´

ˆ

γ2pβ ` α2q

8β
`

2α2γ2

β ´ α2

˙

|ψ|4.

(4.38)
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Finally, to deal with the remaining uncontrolled terms (involving the L4-norm of ψ), we
make use of (4.28). Indeed, notice that by Sobolev embedding,

ż

R

„

λ1

λ
Φ1

ˆ

˘x` ζptq

λptq

˙ˆ

˘x` ζptq

λptq

˙

´
ζ 1

λ
Φ1

ˆ

˘x` ζptq

λptq

˙

|ψ|4dx

ď }ψ}2H1pRq

ż

R

„

λ1

λ
Φ1

ˆ

˘x` ζptq

λptq

˙ˆ

˘x` ζptq

λptq

˙

´
ζ 1

λ
Φ1

ˆ

˘x` ζptq

λptq

˙

|ψ|2dx.

Then, thanks to (4.28), we can conlude that
ż

R

„

λ1

λ
Φ1

ˆ

˘x` ζptq

λptq

˙ˆ

˘x` ζptq

λptq

˙

´
ζ 1

λ
Φ1

ˆ

˘x` ζptq

λptq

˙

|ψ|4dx

is integrable in time over R`. Therefore, one can write the following

ż

R

„

λ1

λ
Φ1

ˆ

˘x` ζptq

λptq

˙ˆ

˘x` ζptq

λptq

˙

´
ζ 1

λ
Φ1

ˆ

˘x` ζptq

λptq

˙

ω|ψx|
2dx

`

ż

R

„

λ1

λ
Φ1

ˆ

˘x` ζptq

λptq

˙ˆ

˘x` ζptq

λptq

˙

´
ζ 1

λ
Φ1

ˆ

˘x` ζptq

λptq

˙

3pβ´α2q

16
|ρ|2dx (4.39)

`

ż

R

„

λ1

λ
Φ1

ˆ

˘x` ζptq

λptq

˙ˆ

˘x` ζptq

λptq

˙

´
ζ 1

λ
Φ1

ˆ

˘x` ζptq

λptq

˙

7β
16pβ´α2q

|η|2dx

ď ´E˘ `K

ż

R

„

λ1

λ
Φ1

ˆ

˘x` ζptq

λptq

˙ˆ

˘x` ζptq

λptq

˙

´
ζ 1

λ
Φ1

ˆ

˘x` ζptq

λptq

˙

|ψ|4dx,

where K is the absolute value of a constant depending on β, α, γ, q. This way, we conclude
that the right-hand side of the inequality above can be integrated in time over R`. Moreover,
since

Φ1psqs ě 0 and Φ1psq ď 0 @s P R,

we also infer that
ż

R`

ζ 1

λ

ż

R

ˇ

ˇ

ˇ

ˇ

Φ1
ˆ

˘x` ζptq

λptq

˙
ˇ

ˇ

ˇ

ˇ

`

|ψx|
2
` |ρ|2 ` |η|2

˘

dxdt ă 8.

Remark 4.11. We notice that, thanks to the fact that ζ1

λ
R L1pR`q, one infers that there

exists a sequence ttnu, with ttnu Ñ 8, such that
ˆ
ż

R

ˇ

ˇ

ˇ

ˇ

Φ1
ˆ

˘x` ζptnq

λptnq

˙ˇ

ˇ

ˇ

ˇ

`

|ψx|
2
` |ρ|2 ` |η|2

˘

dx

˙

ptnq Ñ 0, as tn Ñ 8. (4.40)

4.4.4 Decay of the full solution

Finally, in this subsection we devote ourselves to prove decay of solutions in the energy space
along the curves ˘ζ. The idea is the same as for the decay of the L2-norm in Subsection
4.4.2. We proceed by taking a convenient weight Ψ such that (4.32) holds. Then, we have
that supppΨq Ă supppΦ1q and (4.33) is satisfied. Next, we consider the virial identity 4.11
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with the weight Ψ instead of Φ. Thus, taking into account the previous estimations stated
in Subsection 4.4.3 along with the pointwise properties (4.32)-(4.33), we have that

d

dt

ż

R
Ψ

ˆ

˘x` ζptq

λptq

˙

´

ω|ψx|
2
`

γq
2
|ψ|4 ` β

2
ρ2
` 1

2
η2
`

γ
2
p2η ´ αρq|ψ|2 ´ αρη

¯

dx

ď
ζ 1

λ

ż

R
Ψ1

ˆ

˘x` ζptq

λptq

˙

´

ω|ψx|
2
`

γq
2
|ψ|4

¯

dx

´
λ1

λ

ż

R
Ψ1

ˆ

˘x` ζptq

λptq

˙ˆ

˘x` ζptq

λptq

˙

´

ω|ψx|
2
`

γq
2
|ψ|4

¯

dxdt

`
ζ 1

λ

ż

R
Ψ1

ˆ

˘x` ζptq

λptq

˙

´

β
2
ρ2
` 1

2
η2
`

γ
2
p2η ´ αρq|ψ|2 ´ αρη

¯

dx

´
λ1

λ

ż

R
Ψ1

ˆ

˘x` ζptq

λptq

˙ˆ

˘x` ζptq

λptq

˙

´

β
2
ρ2
` 1

2
η2
`

γ
2
p2η ´ αρq|ψ|2 ´ αρη

¯

dx

`
C

λptq

`

1` }ψptq}H2pRq

˘

,

where we recall that λ´1 and λ´1}ψ}H2 are both time-integrable in R`. Moreover, the whole
right-hand side of the last inequality is integrable. Indeed, because Ψ satisfies (4.32)-(4.33)
then (4.39) along with Young inequality implies that

ζ 1

λ

ż

R
Ψ1

ˆ

˘x` ζptq

λptq

˙

´

ω|ψx|
2
`

γq
2
|ψ|4

¯

dx

´
λ1

λ

ż

R
Ψ1

ˆ

˘x` ζptq

λptq

˙ˆ

˘x` ζptq

λptq

˙

´

ω|ψx|
2
`

γq
2
|ψ|4

¯

dxdt

`
ζ 1

λ

ż

R
Ψ1

ˆ

˘x` ζptq

λptq

˙

´

β
2
ρ2
` 1

2
η2
`

γ
2
p2η ´ αρq|ψ|2 ´ αρη

¯

dx

´
λ1

λ

ż

R
Ψ1

ˆ

˘x` ζptq

λptq

˙ˆ

˘x` ζptq

λptq

˙

´

β
2
ρ2
` 1

2
η2
`

γ
2
p2η ´ αρq|ψ|2 ´ αρη

¯

dx

ď C

ˆ

´E˘ `K

ż

R

„

λ1

λ
Φ1

ˆ

˘x` ζptq

λptq

˙ˆ

˘x` ζptq

λptq

˙

´
ζ 1

λ
Φ1

ˆ

˘x` ζptq

λptq

˙

|ψ|4dx

˙

.

Now, recall that we have already shown in the previous section that the right-hand side of
the above inequality is time-integrable in R`. Therefore, we conclude that there exists a
time-integrable function g : RÑ R such that we can write
ˇ

ˇ

ˇ

ˇ

d

dt

ż

R
Ψ

ˆ

˘x` ζptq

λptq

˙

´

ω|ψx|
2
`

γq
2
|ψ|4 ` β

2
ρ2
` 1

2
η2
`

γ
2
p2η ´ αρq|ψ|2 ´ αρη

¯

dx

ˇ

ˇ

ˇ

ˇ

ď gptq.

Consequently, we are entitled to integrate over the time interval rt, tns and, because of (4.40),
taking tn Ñ 8, we get

ż

R
Ψ

ˆ

˘x` ζ

λ

˙

´

ω|ψx|
2
`

γq
2
|ψ|4 ` β

2
ρ2
` 1

2
η2
`

γ
2
p2η ´ αρq|ψ|2 ´ αρη

¯

dx ď

ż 8

t

gpτqdt.
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Now, notice that, by using inequality (4.38) we can re-write the expression above in terms of
the energy norm, as

ż

R
Ψ

ˆ

˘x` ζptq

λptq

˙

´

ω|ψx|
2
`

γpβ´α2q

16
ρ2
`

7β
16pβ`α2q

η2
¯

pt, xqdx

À

ż 8

t

gpτqdt`

ż

R
Ψ

ˆ

˘x` ζptq

λ

˙

|ψptq|4dx.

Finally, notice that the latter integral involving |ψpt, xq|4 converges to zero as t Ñ 8. In
fact, this is a consequence of the decay of the L2-norm (4.5) and Lemma (4.5), along with
the Gagliardo-Nirenberg inequality, that allows us to bound the L4-norm with the H1-norm
and L2-norm. Then, to conclude, we take t Ñ 8 in the latter inequality above, from where
we obtain the decay

lim
tÑ8

ż

R
Ψ

ˆ

˘x` ζptq

λptq

˙

´

|ψxpt, xq|
2
` ρ2

pt, xq ` η2
pt, xq

¯

pt, xqdx “ 0.

The proof is complete.
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Part IV

The Zakharov Water Waves problem
under variable bottom
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Chapter 5

Existence of solitary waves in the Water
Waves Zakharov system with slowly
varying bottom

Abstract. We deal with the solitary wave problem for the Zakharov water waves system with surface tension
and a non-flat bottom in one dimension. Amick-Kirchgässner [3] proved the existence of small solitary waves
in the case of a finite flat bottom. However, in practical situations, the bottom is always non-constant. In this
work, we consider a domain with a slightly varying (in space) bottom and prove the existence of a generalized
solitary wave like solution. The techniques used in the proof of the main result are based on the construction
of a multi-soliton like solution, introduced in [14].

This chapter is part of the work M. E. Martínez, Existence of solitary waves in the Water Waves
Zakharov system with slowly varying bottom, preprint 2021.
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5.1 Introduction

Consider a fluid under the influence of gravity and with constant density, contained in a
domain with rigid bottom and free surface:

Ωt “
 

px, zq P R2 such that ´ apεxqh ď z ď ηpt, xq
(

,

where h ą 0 is a fixed height, ε ą 0 is a small parameter, a : RÑ R is a horizontal description
of the bottom, and η : R2 Ñ R is the (unknown) free surface elevation. Usually, we will denote
aεpxq “ apεxq.

On the fluid, we assume that it is homogeneous, inviscid, incompressible and irrotational,
which implies that its motion follows the classical inviscid irrotational constant density Euler
equations. In particular, denoting by u P R2 the velocity of the fluid, the fact that the flow
is irrotational implies the existence of a velocity potential Φ, a scalar mapping, that inside
the fluid domain Ωt satisfies,

upt, x, zq “ pBxΦpt, x, zq, BzΦpt, x, zqq “ ∇x,zΦpt, x, zq.

Since the motion of the fluid follows the free surface Euler equations, one finds that the
velocity potential Φ satisfies the free surface Bernoulli formulation.

We assume that no particle of the fluid can cross the bottom or the surface, which leads
to boundary conditions on the bottom

BzΦpt, x,´apεxqhq “ 0, (5.1)

and (the kinematic condition) on the free surface

Btηpt, xq ` BxΦpt, x, ηpt, xqq ¨ Bxηpt, xq ´ BzΦpt, x, ηpt, xqq “ 0. (5.2)

The Zakharov water waves system arises from considering the free surface elevation η and the
trace of the potential velocity on the surface Φ|z“η fully determine the flow. Consequently,
we are interested in the action of the flow on the free surface. In this particular case, we
are dealing with the problem when the surface tension is present. Then, since the velocity
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potential Φ follows Bernoulli laws, taking into account the surface tension to eliminate the
pressure term, we get the following equation on the surface of the fluid

BtΦpt, x, ηpt, xqq `
1

2
|∇x,zΦpt, x, ηpt, xqq|

2
` gηpt, xq “ bBx

˜

Bxηpt, xq
a

1` |Bxηpt, xq|2

¸

, (5.3)

where b is the surface tension coefficient and g is the gravitational constant.

Finally, we also need to impose the water depth to be always bounded from below by a
nonnegative constant. That is, there exist hmin ą 0 such that

apεxqh` ηpt, xq ě hmin, @pt, xq P Rˆ R. (5.4)

As it is customary to do, we shall write (5.1)-(5.2)-(5.3) as a system involving unknowns
defined on the free surface only, ηpt, xq and ϕpt, xq “ Φpt, x, ηpxqq. With this in mind, we
shall consider the Dirichlet-Neumann operator, first introduced in the bibliography by Craig-
Sulem-Sulem [5, 6], defined as

Grη, as : ϕ ÞÑ
a

1` |∇η|2 BnΦ
ˇ

ˇ

z“η
,

where n is the unit upward normal vector on the boundary of the fluid domain at the point
z “ ηpxq and Φ is the solution of the elliptic equation with moving domain

$

’

&

’

%

∆x,zΦ “ 0, px, zq P Ωt,
Φ
ˇ

ˇ

z“ηpt,xq
“ ϕ,

BnΦ
ˇ

ˇ

z“´apεxqh
“ 0.

(5.5)

Note the influence of the bottom in this last equation. As mentioned before, it was stated by
Zakharov in [21] that, if one defines the trace of the velocity potential ϕ “ Φ|z“η, then η and
ϕ fully determine the flow. This ultimately allows us to write the system only in terms of the
unknowns pηpt, xq, ϕpt, xqq :“ pηpt, xq,Φpt, x, ηpt, xqqq. In consequence, the one-dimensional
water waves problem reads

$

’

’

&

’

’

%

Btη “ Grη, asϕ

Btϕ “ ´
1
2
|Bxϕ|

2
` 1

2

pGrη, asϕ` BxϕBxηq2

1` |Bxη|
2 ´ gη ` bBx

¨

˝

Bxη
b

1` |Bxη|
2

˛

‚

(5.6)

where g is the gravitational constant, b is the tension surface coefficient and the velocity
potential Φ is recovered by solving the elliptic problem (5.5). Denoting U “ pη, ϕqᵀ, we can
write (5.6) as

BtU “ FpUq (5.7)

where the functional F is defined as

FpUq “

¨

˚

˚

˝

Grη, asϕ

´1
2
|Bxϕ|

2
` 1

2

pGrη, asϕ` BxϕBxηq2

1` |Bxη|
2 ´ gη ` bBx

¨

˝

Bxη
b

1` |Bxη|
2

˛

‚

˛

‹

‹

‚

. (5.8)
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Moreover, as stated by Zakharov in [21], this system has a Hamiltonian structure in the
variable U. Indeed, let us define the Hamiltonian H as the total energy given by

Hpη, ϕq “ 1

2

ż

R

´

ϕGrη, asϕ` gη2
` 2b

´

a

1` |Bxη|2 ´ 1
¯¯

dx, (5.9)

Then, if I denotes, as usual, the identity matrix, it is possible to write (5.6) as

Bt

ˆ

η
ϕ

˙

“

ˆ

0 I
´I 0

˙ˆ

BηH
BϕH

˙

.

The Zakharov water waves problem, also commonly refered to as the Zakharov-Craig-
Sulem formulation, is an important model in the theory of water waves equations and has
gained an increasing interest over recent years. The assumptions in which the mathematical
formulation is based on makes it suitable for applications, which might motivate its popoular-
ity. Condition (5.4), along with the fact that the fluid is at rest at infinity, imply that system
(5.6) describe the nonlinear dynamics of deep water gravity waves, avoiding the coast. Some-
times, surface tension is assumed to be zero, a reasonable approach, essentially since the
surface tension in coastal oceanography is so small that it can be neglected. Nevertheless,
the interest in considering b ‰ 0 is the possibility to study capillary gravity waves, see [12]
for some applications.

In addition, from the Zakharov-Craig-Sulem formulation can be deduced a great deal
of canonical, simpler models. Indeed, among some of its assymptotics formulations are,
for instance, Korteweg- de Vries and the family of Boussinesq equations for shallow water,
or Benney-Roskes and Davey-Stewartson systems as deep-water, full-dispersion models (see
[11]).

Regarding the well-posedness for the Zakharov water waves problem, when the surface
tension can be neglected, global well-posedness is shown by Wu [19, 20] and Alazard-Burq-
Zuily [2]. In [17, 4], Schneider-Wayne and Craig presented an early approach to the local
well-posedness by relying on the fact that the KdV equation can be formally derived from
the Zakharov water-waves problem in the limit of long waves, obtaining classical solutions up
to a finite time. In the presence of surface tension, the 3-dimensional Zakharov water-waves
problem is globally well-posed for small initial data (Germain-Masmoudi-Shatah [8, 9]). In
[1], Alazard-Burq-Zuily described the Cauchy problem for the 2-dimensional case with surface
tension in the space Hs`1{2 ˆHs, s ą 5{2.

The study of solitary waves for equation (5.6) was mainly devoted to the flat-bottom case
pa ” 1q. Indeed, existence of solitary waves of the form Qcpx´ ctq “ pηcpx´ ctq, ϕcpx´ ctqq
of speed c „

?
gh was shown for suitable values of the parameters g, b and H [3]. The

statement reads as follows

Theorem 5.1 (Amick-Kirchgässner [3]). Suppose that g, b, h satisfy

gh

c2
“ 1` λ2,

b

hc2
ą

1

3
. (5.10)
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Then, there exists ε0 such that for every ε P p0, ε0q, there exists a solution of (5.6) with a “ 1
under the form

Qcpx´ ctq “ pηcpx´ ctq, ϕcpx´ ctqq

“
`

hηλph
´1
px´ ctqq, chϕλph

´1
px´ ctqq

˘

,

with
ηλpxq “ λ2Θ1pλx, λq ϕλpxq “ λΘ2pλx, λq

where Θ1 and Θ2 satisfy

Dd ą 0, @α ě 0, DCα ą 0, @px, λq P Rˆ p0, λ0q, |pB
α
xΘ1px, λqq| ď Cαe´d|x|

and

Dd ą 0, @α ě 1, DCα ą 0, @px, λq P Rˆ p0, λ0q, |pB
α
xΘ2px, λqq| ď Cαe´d|x|.

Moreover, Θ1 is even and Θ2 is odd.

Among solitary waves for the one dimensional (surface) case, there also exist multi-solitons
solutions, as proven by Ming, Rousset and Tzvetkov [14]. More precisely, they were able to
construct solutions that are time asymptotic to a sum of decoupling solitary waves, with
different speed, assuming they are never near each other. We point out that such existence
results for solitary waves and multi-solitons solutions for the problem with surface tension are
given under the assumption that the bottom of the domain is flat. It is our goal to address
the existence of soliton-like solutions for a non-flat bottom problem.

A rather characteristic property of the one-dimensional Zakharov water waves model is
the fact that the surface of the fluid is invariant by translation. As a result, usual Lyapounov
stability cannot be expected. Nevertheless, orbital stability of the solitary waves holds, as
was proven by Mielke [13]. This is not the case for the problem in two dimensions. Indeed,
Rousset and Tzvetkov showed in [16] (and improved in [14]) that solitary waves are not stable
under 2-dimensional (transverse) perturbations.

As noted in [3, 16], the profiles Θ1px, εq and Θ2px, εq have smooth expansions in ε. Then,
we are entitled to study the particular case ε “ 0, for which we get

Θ1px, 0q “ cosh´2

ˆ

x

2pβ{pHc2q ´ 1{3q1{2

˙

.

Thus, the KdV solitary wave is recovered.

5.1.1 Setting and main result

In this work, we are devoted to the study of the solitary wave, given by Amick-Kirchgassner
(AK) for the flat bottom problem, when interacting with a bottom that changes (slightly)
from a certain point in space. Since the bottom of the domain has a non-local influence on
the solution U of system (5.6), one cannot assume that the AK solitary wave exists for the
non-flat bottom problem. It is necessary, then, to prove the existence of a solution to (5.6)
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that behaves asymptotically like Qc before it encounters the changing point in the bottom
(as t Ñ ´8) (see Figure 5.1). A second part of this study would be to explore how the
description of the bottom impacts such solution as it travels towards the point of changing
for the bottom and enters the interaction regime.

This manuscript is the first of two works, and deals with the first part of the problem: the
existence of a pure solitary wave like solution, before it reaches the interaction point.

Figure 5.1: A solitary wave in nonflat bottom.

Throughout this paper, we will consider a slightly changing bottom described by the func-
tion aε “ apε¨q P C2

b pRq X C8pRq, where ε ą 0 and a is assumed to satisfy the following
conditions:

There exist K ą 0, 0 ă κ ă 1 and γ1, γ2 ą 0 such that:
1´ κ ă aprq ă 1, @r P R,

1´ aprq ď Keγ2r, @r ď 0,

lim
rÑ´8

aprq “ 1, lim
rÑ8

aprq “ 1´ κ, (5.11)

|a1prq| ă Ke´γ1|r|, @r P R,

a1 does not change sign.

From now on, we will denote by Qcpx ´ ctq “ pηcpx´ ctq, ϕcpx´ ctqq
t the solitary wave

given by Theorem 5.1. That is, Qc satisfies
$

’

’

&

’

’

%

Btηc “ Grηc, 1sϕc

Btϕc “ ´
1
2
|Bxϕc|

2
` 1

2

pGrηc, 1sϕc ` BxϕcBxηcq2

1` |Bxηc|
2 ´ gηc ` bBx

¨

˝

Bxηc
b

1` |Bxηc|
2

˛

‚

(5.12)

and Grηc, 1s “ ϕc ÞÑ
a

1` |Bxηc|2 BnΦc

ˇ

ˇ

z“ηc
where Φc is the solution to the Laplace equation

in a flat-bottom domain Ω5t :“ tpx, zq P R2 such that ´ h ď z ď ηcpt, xqu,
$

&

%

∆x,zΦc “ 0 px, zq P Ω5t
Φc

ˇ

ˇ

z“ηc
“ ϕc

BnΦ
ˇ

ˇ

z“´h
“ 0.

(5.13)
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As mentioned before, our main goal is to prove the existence of a solution to the Zakharov
water waves system (5.6) that behaves asymptotically like the solitary wave Qc as time tends
to ´8. It will be convenient to define

Rpt, xq “ Qcpx´ ct` Aq,

where A " 1 is a parameter that allows us to stay a safe distance A from the point of change
in the bottom. The precise result reads:

Theorem 5.2. Let us fix s ě 0. Suppose that the speed c ą 0 satisfy (5.10) with a parameter
λ. Then, there exists λ˚ such that for every λ P p0, λ˚q, and A ą 0 sufficiently large (depend-
ing on ε), there exists a solution U “ pη, ϕqt to (5.6) defined in the time interval p´8, 0s,
that satisfies

U´R P Cbpp´8, 0s, Hs
pRq ˆHs

pRqq,

and
lim
tÑ8

}Uptq ´Rptq}HspRq “ 0.

Remark 5.1. The hypothesis λ P p0, λ˚q is merely to ensure the existence of the solitary
wave, given by Theorem 5.1. Nevertheless, one could replace such condition by simply as-
suming that there exist smooth, bounded and exponentially decaying solitary wave solutions.

Remark 5.2. The parameter A ě 0, that presents a safe distance from the change in the
bottom, is equivalent to consider a time interval existence like p´8, T s. For the second part
of the problem, such T should define the moment where the soliton-like solution constructed
here enters the interaction regime.

Remark 5.3. A fully detailed first step into Theorem 4.1, including explicit convergence
estimates and decomposition of the soliton-like solution, can be found in Theorem 5.13.

The proof of Theorem 5.2 follows the techniques that Ming, Rousset and Tzvetkov intro-
duced in [14] to prove the existence of multisoliton-like solutions for the one-dimensional, flat
bottom problem. It consists on two main steps. Firstly, we construct an proximate solution
of the form

Uappt, xq “ Rpt, xq `
N
ÿ

j“1

ρjVjpt, xq,

where Vjpt, xq are solutions to linear problems (linearization of (5.6) about the solitary
wave) with exponentially decaying source terms. The idea is to understand how fast the
fundamental solution of the linear problems grows so that it can be controlled by the decay
of the sources (depending on A). To do so, the principal tool would be the use of spectral
properties of the linear operator, proved in [14] and stated here in Section 5.2.3.

When plugging the approximate solution into the Zakharov water waves system (5.6), a
remainder term rc appears, with a faster decay for larger N . Finally, we construct an exact
solution U “ Uap `Ur, where Ur solves

BtUr “ FpUap `Urq ´ FpUapq ´ rap.
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Proving the existence of such equation means that U satisfies

Uptq Ñ Rptq as tÑ ´8 in Hs.

The nonconstant bottom introduces several difficulties in our approach, as it presents a
nonlinear interaction with the solution U. To overcome this matter, we essentially split
the solution into two parts: one of them heavily influenced by the bottom (that we control
by staying away from the changing point) and another part, ruled by the solitary wave
Qc. The first issue in this regard would be to undestand how the the description of the
bottom affects the error produced by the solitary wave in the new regime a ‰ 1. The need
for a sufficiently fast decaying error imposes the smoothness condition and softness in the
variation of the bottom. Such assumptions also prevent from breaking the properties on the
linearized equation, as an abrupt change would, and allow as to find suitable estimations in
the construction of the approximate solution.

5.2 Preliminaries

5.2.1 Study of the Dirichlet-Neumann operator

Firstly, let us recall the definition of the Dirichlet-Neumann operator

Grη, aεs : ϕ ÞÑ
a

1` |∇η|2 BnΦ
ˇ

ˇ

z“η
,

where Φ is the solution of the Laplace equation (5.5). Note that the velocity potential Φ,
associated to a solution U “ pη, ϕqt of (5.6), is defined in the domain Ωt, whose surface is
described by η. To be able to compare velocity potentials associated with different solutions
(in particular, with Qc), it will be necessary to re-write the Laplace equation (5.5) and turn
it into an elliptic problem in a flat domain S :“ R ˆ r´1, 0s (see [11, Subsection 2.2] for
further details). Indeed, consider Σ : S Ñ Ωt a difeomorphism such that

Σpx, zq “ px, phapεxq ` ηpt, xqq z ` ηpt, xqq , px, zq P S.

Now, we can define the new unknown Φ̃ “ Φ pΣpx, zqq , solution to the following elliptic
problem defined on the strip S,

$

’

&

’

%

∇x,z ¨

´

PapΣq∇x,zΦ̃
¯

“ 0 in S,
Φ̃|z“0 “ ϕ,

BPan Φ̃|z“´1 “ 0,

(5.14)

where the matrix PapΣq is defined as

PapΣq :“

»

–

haεpxq ` ηpt, xq ´pz ` 1qBxηpt, xq ´ hza
1
εpxq

´pz ` 1qBxηpt, xq ´ hza
1
εpxq

1` |pz ` 1qBxηpt, xq ` hza
1
εpxq|

2

haεpxq ` ηpt, xq

fi

fl , (5.15)

denoted from now on as Pa “ PapΣq to simplify notation, and BPan “ n ¨ pPapΣq∇x,zq, for
n “ ´ez the upward unit normal to the boundary z “ ´1.
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When considering the notation BPan “ p0, 1qt ¨ Pa∇x,z, we get that the Dirichlet-Neumann
operator

Graε, ηsϕ “ BPan Φ̃|z“0

can be re-written in a more explicit fashion as

Graε, ηsϕ “ ´ppz ` 1qBxηc ` zha
1
εq BxΦ̃|z“0 `

1` |pz ` 1qBxη ` hza
1
ε|

2

haε ` η
BzΦ̃|z“0. (5.16)

Evaluations at z “ 0 will be justified later on in terms of the regularity required on the
involved functions.

The DN operator meets the following properties:

Proposition 5.3. Let η P H8pRq and a P C8pRq defined by conditions (5.11), with haεpxq`
ηpxq ą hmin ą 0 for all x P R, ε ą 0. Then:

(a) Grη, aεs is symmetric on L2pRq:

pGrη, aεsϕ, ψq “ pϕ,Grη, aεsψq , @ϕ, ψ P H
1
2 pRq.

(b) There exist c ą 0, C ą 0 such that,

| pGrη, aεsϕ, ψq | ď C|Bϕ|L2 |Bψ|L2 , @ϕ, ψ P H
1
2 pRq, (5.17)

pGrη, aεsϕ, ϕq ě c|Bϕ|2L2 , @ϕ P H
1
2 pRq, (5.18)

where B is the Fourier multiplier

B “
`

1´ B2
x

˘´ 1
4 Bx.

(c) The linear operator Grη, aεs : Hs`1pRq Ñ HspRq is continuous for every s P R.

We refer to [11, Section 3] for the proof of Proposition (5.3), where the results are shown
for a more general case (the bottom taking an arbitrary form).

Taking into account the shape of the solitary wave and (specifically, the shape of ϕc),
it will be useful to understand the behavoir of the Dirichlet Neumann operator acting on
smooth localized function. In particular, we shall see that it behaves as a space-derivative
for exponentially decaying functions. Indeed, we give an estimation on its derivatives:

Proposition 5.4. Assume that ψ P C8b pRq has the exponential decay

Dd ą 0, @α P N, D Cα, @x P R, |Bαxψpxq| ď Cαe´dp1`|x|2q
1
2 . (5.19)

Then, for any η P H8pRq with min
xPR
thaε ` ηu ě hmin ą 0, Grη, asψ also decays exponentially

fast, that is, for any α P N Y t0u, there exist a constant cα depending on α and 0 ă δ ă d
independent of α such that for every x P R,

|B
α
x pGrη, aεsψq pxq| ď cαe´δp1`|x|

2q
1
2 .
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Proof. We divide the proof in several steps.

Step 1. Under the assumption ψ P C8b pRq and η P H8pRq, from (5.16), we can write the
DN operator Grη, aεs acting on ψ as

Grη, aεsψ “ ´ppz ` 1qBxη ` zha
1
εq BxΦ̃|z“0 `

1` |pz ` 1qBxη ` zha
1
ε|

2

haε ` η
BzΦ̃|z“0, (5.20)

where Φ̃ solves the elliptic problem (5.14). Thus, to get the expected estimation, it shall be
sufficient to prove exponential decay for derivatives of Φ̃.

We begin the proof by making the decomposition

Φ̃px, zq “ upx, zq ` vpx, zq, (5.21)

where u is the solution of the elliptic problem
"

∆x,zu “ 0, px, zq P S,
upx, 0q “ ψpxq, BPan upx,´1q “ 0.

(5.22)

This way, we get that v solves the elliptic problem with homogeneous boundary conditions
"

∇x,z ¨ pPa∇x,zvq “ ´∇x,z ¨ pPa∇x,zuq px, zq P S,
vpx, 0q “ 0, BPan vpx,´1q “ 0.

(5.23)

By solving an ODE, one can obtain an explicit expression of the Fourier transform in x of u,

Fx puq pξ, zq “
cosh pξpz ` 1qq

coshpξq
Fxpψqpξq.

From this expression we also have that

Fx pBxuq pξ, zq “
cosh pξpz ` 1qq

coshpξq
FxpBxψqpξq.

Step 2. As in [14], we can prove exponential decay of the solution u of (5.22) by following
a Paley-Wiener type argument. First, we notice that the fact that Bxψ and all its derivatives
have the exponential decay (5.19) FxpBxψq has an holomorphic extension for ξ satisfying
|Im ξ| ă d. Also, we find that, after integrating by parts, for δ P p0, dq,

|FxpBxuq| ď
Cn

1` |ξ|n
, pξ, zq P Rˆ r´1, 0s, |Im ξ| ď ρ, @n P N

Since ξ Ñ coshpξpz`1qq
cospξq

has an holomorphic bounded (uniformly on z) extension to |Imξ| ď ρ

for any ρ P p0, π{2q, using contour deformation, one has

Bxupx, zq “

ż

R
eixξ cosh pξpz ` 1qq

coshpξq
FxpBxψqpξqdξ “

ż

Imξ“ρ
eixξ cosh pξpz ` 1qq

coshpξq
FxpBxψqpξqdξ,

for any ρ such that |ρ| ă mintd, π{2u. This implies that by taking ρ “ 2δsgnpxq, with δ
sufficiently small, we find that

|Bxu| À Cαe´2δ|x|
@px, zq P S.
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Now, the z-derivative can be estimated in a similar fashion. In fact, we have

BzFx pupx, zqq “
sinh pξpz ` 1qq

coshpξq
ξFxpψqpξq “

sinh pξpz ` 1qq

coshpξq

1

i
Fx pBxψq pξq.

Then, we argue as before and get that

|Bzu| À Cαe´2δ|x|
@px, zq P S.

Higher-order derivatives can be estimated using the same arguments, which implies the fol-
lowing

@α, |α| ě 1,
ˇ

ˇB
α
x,zu

ˇ

ˇ À Cαe´2δ|x|
@px, zq P S. (5.24)

Step 3. Then, we are left to prove exponential decay for the solution v of (5.23). To do
so, we rely on the decay properties of Pa (inherited from ψ (5.19)) and define the increasing
weight

ωpxq “ eδxxy, 0 ă δ ă d,

where we denoted by xxy “ p1` x2q
1
2 and δ is to taken sufficiently small later. We get the

following elliptic problem for ṽ “ ωv:
"

´∇x,z ¨ pPa∇x,zṽq ´ r∇x,z ¨ Pa∇x,z, ωs v “ ω∇x,z ¨ pPa∇x,zuq px, zq P S,
ṽpx, 0q “ 0, BPan ṽpx,´1q “ δhεa1pεxqṽpx,´1q.

(5.25)

For the Neumann boundary condition we used the fact that on the boundary z “ ´1,

B
Pa
n “ ha1εBx `

1` |ha1ε|
2

haε ` ηc
Bz, on z “ ´1.

Now, we want to estimate the Sobolev norms of ṽ. Using Divergence Theorem, denoting
by Γ “ tz “ ´1u Y tz “ 0u, we can compute

ż

S

Pa∇x,zṽ ¨∇x,zṽdxdz ´

ż

Γ

n ¨ pPa∇x,zṽq ṽdΓ

“

ż

S

Pa∇x,zṽ ¨∇x,zṽdxdz ´

ż

R
δHεa1pεxqṽ2

px,´1qdx

“

ż

S

pr∇x,z ¨ Pa∇x,z, ωsvq ṽdxdz `

ż

S

ω∇x,z ¨ pPa∇x,zuqṽdxdz.

We write the following
ż

S

Pa∇x,zṽ ¨∇x,zṽdxdz “

ż

S

`

r∇x,z ¨ Pa∇x,z, ωsω
´1ṽ

˘

ṽdxdz

`

ż

S

ω∇x,z ¨ pPa∇x,zuqṽdxdz `

ż

R
δHεa1pεxqṽ2

px,´1qdx

:“ I1 ` I2 ` I3.

For the left-hand side, because Pa is coercive, we have that
ż

S

Pa∇x,zṽ ¨∇x,zṽ dxdz ě c}∇x,zṽ}
2
L2pSq.
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for a constant c ą 0 that does not depend on δ. To estimate the right-hand side terms,
starting with I1, we can compute

r∇x,z ¨ Pa∇x,z, ωs “ phapεxq ` ηq rB
2
x, ωs

´ ppz ` 1qBxη ` zεha
1
pεxqq rBx, ωsBz.

Since we know that haε ` η ě hmin, the last equality implies that

|I1| ď C
`

δ2
}ṽ}L2pSq ` δ}∇x,zṽ}L2pSq

˘

}ṽ}L2pSq.

Secondly, to estimate the I2, we use (5.24), and obtain

|I2| ď Cδ
`

δ}ṽ}L2pSq ` }∇x,zṽ}L2pSq

˘

. (5.26)

Indeed, from Divergence Theorem,

I2 “ ´

ż

S

Pa∇x,zu ¨∇x,z pωṽq dxdz `

ż

Γ

n ¨ pPa∇x,zuqωṽdΓ

ď
›

›Pa∇x,zu ¨∇x,ze
δxxy

›

›

L2pSq
}ṽ}L2pSq `

›

›pPa∇x,zuq eδxxy
›

›

L2pSq
}∇x,zṽ}L2pSq,

where we used that BPan u “ 0 on the boundary z “ ´1. Now, notice that, since (5.24) holds,
we have that there exists Cδ ą 0 such that

›

›Pa∇x,zu ¨∇x,ze
δxxy

›

›

L2pSq
ď δCδ and

›

›pPa∇x,zuq eδxxy
›

›

L2pSq
ď Cδ,

so that (5.26) is implied. Then, from Young inequality, one has

|I2| ď δ2
}ṽ}2L2pSq ` δ}∇x,zṽ}

2
L2pSq ` Cδ.

In a similar fashion, sinceHεa1pεxq is (uniformly) bounded, after using Fundamental Theorem
of Calculus on the variable z, one can obtain

I3 ď Cδ

ż

R
ṽ2
px,´1qdx ď Cδ }ṽ}L2pSq }∇x,zṽ}L2pSq .

Arranging all this estimates together, we conclude that

}∇x,zṽ}
2
L2pSq ď C

´

δ2
}ṽ}2L2pSq ` δ}∇x,zṽ}L2pSq}ṽ}L2pSq ` δ}∇x,zṽ}

2
L2pSq ` Cδ.

¯

(5.27)

Now, we take advantage of the fact that the fluid has finite depth, meaning that the domain
is bounded in the z direction, which allows us to apply Poincaré inequality. Indeed, S is
bounded in the z direction, thus we are entitled to use Poincaré inequality (C independent
of ṽ):

}ṽ}L2pSq ď C}∇x,zṽ}L2pSq.

Therefore, going back to (5.27), we can conclude that if δ is small enough, then }∇x,zṽ}
2
L2pRq ď

C. In consequence, summing up we have that

}ṽ}L2pSq ď C, }∇x,zṽ}L2pSq ď C,
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for δ ą 0 sufficiently small.

Step 4. Finally, for the higher order estimates of ṽ, we use an induction argument.
Indeed, we re-write equation (5.28) as

"

´∇x,z ¨ pPa∇x,zṽq “ F px, zq P S,
ṽpx, 0q “ 0, BPan ṽpx,´1q “ δha1εpxqṽpx,´1q.

By standard elliptic regularity theory (for instance, regularity estimates in [11, Subsection
2.3] and [7, Subsection 6.3]), we know that,

}ṽ}Hs`2pSq ď C
`

}ṽ}H1pSq ` }F }HspSq

˘

.

Because of the estimate (5.24), we have that

}F }HspSq ď C
`

1` }ṽ}Hs`1pSq

˘

.

Therefore, since we already proved the H1 estimate, we can start from there and get by
induction that }ṽ}HspSq ď Cs, for every s ě 0. By Sobolev embbeding, we conclude that

@α,
ˇ

ˇB
α
x,z

`

eδxxyvpx, zq
˘
ˇ

ˇ ď Cα.

Equivalently,
@α, |Bαx,zvpx, zq| ď Cαe´δxxy. (5.28)

Plugging this and (5.24) into (5.20) finishes the proof. �

Since in this work we study, essentially, the solitary wave that arises in the flat-bottom
problem, it is natural to adapt the result to the case of the solitary wave. With this in mind,
we give the following corollary:

Corollary 5.5. Let ψ P C8b pRq with an exponential decay (5.19). Then, for η P H8pRq such
that min

xPR
t´haε ` ηu ą hmin and r P R, Grη, aεspψpx´ rqq also satisfies an exponential decay;

that is, for any α P N Y t0u there exist Cα and 0 ă δ ă d (that does not depend on r) such
that for all x P R,

|B
α
xGrη, aεs pψp¨ ´ rqq pxq| ď Cαe´δp1`|x´r|

2q
1
2 .

Remark 5.4. The result still holds when considering the case a “ 1. Indeed, in [14] it was
proven that if ψ P C8pRq satisfies (5.19), η P H8pRq such that min

xPR
t´h ` ηu ą hmin and

r P R, then @α P NY t0u, DCα and 0 ă δ ă d such that

|B
α
xGrη, 1s pψp¨ ´ rqq pxq| ď Cαe´δp1`|x´r|

2q
1
2 , @x P R.

Remark 5.5. As noticed before, to prove Proposition 5.4 is actually to demostrate that for
every α P N,

|B
α
x,zΦ̃| ď Cαe´δxxy.

Notice that the solitary wave Qc “ pηc, ϕcq
t (solution to system (5.12)) satisfies hypothesis of

the result. Then, after considering an appropriate matrix to turn the Laplace equation into
an elliptic problem in a flatten domain for the case a “ 1, one can use similar computations
to show that

|B
α
x,zΦc,1| ď Cαe´δxxy,

where Φc,1 in the strip domain associated to the flat bottom DN operator Grηc, 1s.
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5.2.2 Shape derivatives for the Dirichlet-Neumann operator

Neumann-Neumann operator and moving bottoms

In most of this work, we deal with the Zakharov system with a fix bottom (that is, depending
only on space variable) described by aε. Nevertheless, it is possible to assume that the
bottom is moving, as was done for instance in [1] or [10]. Such assumption implies a change
in the domain and, consequently, a different condition on the bottom (which would now be
a kinematic condition, like the one imposed on the surface). More precisely, if the bottom
is described by a function apt, xq, a P C2pRˆ Rq, then the domain would be defined (for the
one-dimensional surface case) as

Ωt “
 

px, zq P R2, ´apt, xqh ď z ď ηpt, xq
(

and the kinematic condition on the bottom (in terms of the velocity potential Φ) would read
a

1` h2|Bxa|2BnΦ “ ´hBta on tz “ ´hapt, xqu,

where n is the unit normal vector to the fluid domain pointing upwards. Accordingly, Φ is
now recovered as the solution to the Laplacian equation with non-homogeneous Neumann
condition at the bottom,

$

&

%

∆x,zΦ “ 0 in S,
Φ|z“η “ ϕ,
a

1` h2|Bxa|2BnΦ|z“´hapt,xq “ ´hBta.

Taking into account the definition of the Dirichlet-Neumann operator, it is useful to decom-
pose Φ into a fix bottom component, Φfb, and a moving bottom component, Φmb, as

$

&

%

∆x,zΦfb “ 0 in S,
Φfb|z“η “ ϕ,
a

1` h2|Bxa|2BnΦfb|z“´hapt,xq “ 0,

and
$

&

%

∆x,zΦmb “ 0 in S,
Φmb|z“η “ 0,
a

1`H2|Bxa|2BnΦmb|z“´hapt,xq “ ´hBta.

As a consequence, we now have that
a

1` |Bxη|2BnΦ|z“η “ Grη, asϕ` hGNN rη, asBta

where the operator GNN rη, as is defined as

GNN rη, as : Bta ÞÑ
a

1` |Bxη|2BnΦmb|z“η.

Equivalently, after using a diffeomorphism Σ : S Ñ Ωt to flatten the domain of the elliptic
problem, we can write

Grη, asϕ` GNN rη, asB “ ez ¨ P∇x,zΦ|z“0.
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Shape derivatives

Since we are interested in the DN operator in terms of the bottom and the moving surface,
let us consider Γ the set of all pη, aq P H3{2pRq2 such that the following condition is satisfied

Dh0 ą 0, such that @x P R, ´hapxq ` ηpxq ą h0.

For 0 ď s ď 3{2 and ϕ P 9Hs`1{2 (fixed), we want to study the operator

Grη, as : Γ Ă H3{2
pRq2 Ñ Hs´1{2

pRq

pη, aq ÞÑ Grη, asϕ
(5.29)

Given pζ, bq P H3{2pRq, we will denote by DpGrη, asϕq ¨ pζ, bq the Fréchet derivative of (5.29)
at pη, aq in the direction pζ, bq. We use an analogous definition for the derivative of GNN rη, as.

We present the following Proposition, proved in [11, Theorem 3.1] and [10, Theorem
3.5 and Theorem 3.6], regarding shape derivatives of the Dirichlet-Neumann and Neumann-
Neumann operator:

Proposition 5.6. Assume that 0 ď s ď 3{2 and ϕ P 9Hs`1{2.

1. For all ζ P H3{2pRq, one has

Dη pGrη, asϕq ¨ ζ `Dη

`

GNN rη, asB
˘

¨ ζ “ ´Grη, aspζZ̃q ´ Bxpṽζq,

with

Z̃ “ Z̃rη, ϕ,Bs “
Grη, asϕ` GNN rη, asB ` BxηBxϕ

1` |Bxη|2
, ṽ “ ṽrη, ϕ,Bs “ Bxϕ´ Z̃Bxη.

2. For all b P H3{2pRq, one has

Da pGrη, asϕq ¨ b`Da

`

GNN rη, asB
˘

¨ b “ ´GNN rη, asBxpbvq,

with

Z “ Zrη, as “
B ` hBxaBxϕ

1` h2|Bxa|2
, v “ vrη, ϕs “ Bxϕ´ ZhBxa.

Proposition 5.7. For η P H8pRq such that haε ` η ě hmin, ϕ, ζ1, . . . ζj P H
3{2pRq, and

s ą 1{2, we have that

|Dj
ηpGrη, aεsϕq ¨ pζ1, . . . , ζjq| ď Cs|Bϕ|Hs

j
ź

i“1

|ζi|Hs`1 .

5.2.3 Linearization around the solitary wave

In this subsection, we study the linearization of (5.6) about a solitary wave type solution

Qcpx´ ctq “ pηcpx´ ctq, ϕcpx´ ctqq
T
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to the flat-bottom problem given by [3]. The construction of the linearized problem follows
the idea of [16], with a slightly different frame-work adapted to our case, particularly by the
fact that the Dirichlet-Neumann operator depends on the description of the domain.

Since we study a solitary wave of speed c, it will be useful to change the frame from x to
x´ct, so that the properties stated in this section can be property applied in the construction
of the approximate solution (Section 5.4). In particular, we point out that, because we made
the change of frame, the soliton is now a stationary wave. We proceed with the linearization.

From Proposition 5.6, given ϕ P 9Hs`1{2, 0 ď s ď 3{2 and, the operator η ÞÑ Grη, aεsϕ
acting on H3{2pRq satisfies

Dη pGrη, aεsϕq ¨ ζ “ ´Grη, aεspζZ̃q ´ Bxpṽζq,

with
Z̃rη, ϕs “

Grη, aεsϕ` BxηBxϕ
1` |Bxη|2

, ṽrη, ϕs “ Bxϕ´ Z̃Bxη.

In addition, we have that

Dη

˜

bBx

˜

Bxη
a

1` |Bxη|2

¸¸

¨ ζ “ bBx

˜

Bxζ

p1` |Bxη2|q
3
2

¸

.

With this in mind, let us denote by

Zc “ Z̃rηc, ϕcs and vc “ ṽrηc, ϕcs.

as well as define the following operator

Pc “ bBx

˜

Bx¨

p1` |Bxηc|2q
3
2

¸

.

Therefore, the linearization of equation (5.6) about the solitary wave Qc after the change of
frame reads

Btη “ cBxη ` Grηc, aεsϕ´ Grηc, aεs pZcηq ´ Bxpvcηq
Btϕ “ cBxϕ´ vcBxϕ` ZcGrηc, aεsϕ´ ZcGrηc, aεs pZcηq ´ pg ` ZcBxvcq η ` Pcη.

Thus, we re-write the system above depending on the variable U “ pη, ϕqt in a more compact
fashion as BtU “ J�rQcsU, where

J “

ˆ

0 1
´1 0

˙

is skew-symmetric and

�rQcs “

ˆ

´Pc ` g ` ZcGrηc, aεspZc¨q ` ZcBxvc pvc ´ cqBx ´ ZcGrηc, aεs
´Bx ppvc ´ cq¨q ´ Grηc, aεspZc¨q Grηc, aεs

˙

is a symmetric operator on L2 ˆL2 (in this case, acting on Qc). To simplify this expression,
let us introduce the change of unknowns V1 “ η, V2 “ ϕ´ Zcη, so that for V “ pV1, V2q

t we
obtain the following system

BtV1 “ Grηc, aεsV2 ´ Bx ppvc ´ cqV1q

BtV2 “ PcV1 ´ pvc ´ cq BxV2 ´ pg ` pvc ´ cqBxZcqqV1.
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Furthermore, we can set the symmetric operator, defined on L2 ˆ L2, in this case evaluated
in Qc,

LrQcs “

ˆ

´Pc ` g ` pvc ´ cqBxZc pvc ´ cqBx
´Bxppvc ´ cq¨q Grηc, aεs

˙

and

Rc “

ˆ

1 0
´Zc 1

˙

so that V “ RcU and satisfies
BtV “ JLrQcsV.

In order to make notation more comfortable, we shall simply write �c and Lc, instead of
�crQcs and LcrQcs, respectively. The two operators �c and Lc are related by the property

Lc “
`

R´1
c

˘t
�cR

´1
c .

Remark 5.6 (On the notation). We use here the notation �c and Lc when referring to
the linearized operators in the frame x ´ ct, so that we can differentiate them from the
linearization in the usual frame x, Λc and Lc, to appear in Section 5.4.

Finally, we define the space X0 “ H1pRq ˆ 9H
1
2
˚ pRq, where 9H

1
2
˚ is a modified homogeneous

Sobolev space defined by

9H
1
2
˚ “

 

u P S 1pRq such that Bu P L2
pRq

(

and B “ p1´ B2
xq
´ 1

4 Bx is the Fourier multiplier defined in Proposition 5.3. On 9H
1
2
˚ we

consider the semi-norm
|u|

9H
1
2
˚

“ |Bu|L2 .

Thus, for U “ pU1, U2q
t P X0 we define

|U |X0 “ |U1|H1 ` |U2|
9H
1
2
˚

.

Remark 5.7. Notice that the quadratic form associated to Lc is well-defined in X0. Indeed,
this is a consequence of Proposition 5.3.

In the rest of this subsection, we shall devote ourselves to the study of the operator Lc
arising from the linearization of the Hamiltonian after the change of framework about the
soliton Qc. In particular, we will be interested in proving a somewhat coercivity property for
Lc to happen away from the change of bottom pa „ 1q. To do so, let us consider

L1
c :“

ˆ

´Pc ` g ` pv1
c ´ cqBxZ

1
c pv1

c ´ cqBx
´Bxppv

1
c ´ cq¨q Grηc, 1s

˙

where
Z1
c :“

Grηc, 1sϕc ` BxηcBxϕc
1` |Bxηc|2

, and v1
c “ Bxϕc ´ Z

1
c Bxηc.
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This way, the effect of the change of bottom is mainly described by Lac :“ Lc ´ L1
c , whereas

L1
c only depends on the solitary wave Qc. In the same fashion, we will also consider

R1
c “

ˆ

1 0
Z1
c 1

˙

and define �1
c such that the relation

L1
c “

`

pR1
cq
´1
˘t
�1
cpR

1
cq
´1

still holds.

The main appeal of doing this decomposition is the fact that L1
c satisfies spectral properties

in [14], as it is actually the operator associated to the linearization of the flat bottom problem
around its solitary wave Qc. We present the following coercivity result for L1

c :

Proposition 5.8 (Ming-Rousset-Tzvetkov [14], Proposition 3.6). There exists ε˚ ą 0 such
that for every ε P p0, ε˚s, we have that for Qc “ pηc, ϕcq that there exists C ą 0 such that for
every U “ pη, ϕqt P X0 satisfying

pU, JR1
cBxQcq “ pη, Bxηcq “ 0, (5.30)

pL1
cU,Uq ě C|U|2X0 . (5.31)

We refer the reader to [14, Subsection 3.2] for the proof of Proposition 5.8. In particular,
as first step to the proof, the authors in [14] state the weaker version of Proposition 5.8:

Lemma 5.9. Let U “ pη, ϕqt P X0, U R tp0, rq, r P Ru, satisfying

pU, JBxQcq “ pη, JBxηcq “ 0. (5.32)

Then, p�1
cU,Uq ą 0.

Remark 5.8. Notice that, because of the fact that ppR1
cq
´1q

t
J “ JR1

c , then Lemma 5.9 is
equivalent to prove that pLcU,Uq ą 0 for every U P X0, U R tp0, rq, r P Ru such that (5.30)
holds.

As a consequence of Proposition 5.8, one can get the following decomposition for U P X0 :

Proposition 5.10. For every U P X0 there exists a unique decomposition

U “ αJR1
cBxQc ` βR

1
cBxQc `V (5.33)

with V “ pV1, V2q
t P X0 such that

pV, JR1
cBxQcq “ pV1, Bxηcq “ 0. (5.34)

Moreover, there exists c0 ą 0 and C ą 0 such that for every U P X0 written under the form
(5.33), one has

pL1
cU,Uq ě c0|V|2X0 ´ C|α|2.
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Remark 5.9. By choosing V orthogonal to JRcBxQc and pBxηc, 0qt, it is possible to obtain a
decomposition from Proposition 5.8. On the other hand, as noted in [16], in the proposition
above, V is not orthogonal to the RcBxQc and decomposition (5.34) has better properties
than the obtained from Proposition 5.8. This is due to the fact that RcBxQc is in the kernel
of L1

c while pBxηc, 0qt is not.

We refer to [14, Proposition 3.11] for the proof of Proposition 5.10.

5.3 Error produced by the solitary wave in a non-flat bot-
tom system

In this section, the goal is to analyse the error produced by plugging the solitary wave of the
flat-bottom problem in the non-flat regime. More specifically, we shall prove that Qc solves
system (5.6) plus some residual (exponentially decaying) terms.

From now on, we will consider λ P p0, λ˚q, so that we can can always assume the existence
of the solitary wave

Qcpx´ ct` Aq “ pηcpx´ ct` Aq, ϕpx´ ct` Aqq
T ,

in this case, translated a distance A " 1 form the change of bottom apεxq ‰ 1 for every t ď 0.
As mentioned before, this solution satisfies the properties given in Theorem (5.1), meaning
that the following estimations hold

Dd ą 0, @α ě 0, DCα ą 0, @x P R, |B
α
t,xηc| ď Cαe´d|x´ct`A|.

Dd ą 0, @α ě 1, DCα ą 0, @x P R, |B
α
t,xϕc| ď Cαe´d|x´ct`A|.

(5.35)

From the definition of the Dirichlet-Neumann operator, we know that

Grηc, 1sϕc “
a

1` |Bxηc|2BnΦc,1|z“ηc ,

where Φc,1 is the solution to the elliptic equation (5.13) on a flat-bottom regime. It will be
convenient to adapt the Laplace equation (5.13) and turn it into an equation in the strip
S “ R ˆ r´1, 0s, so that both regime (with flat bottom and with slightly changing bottom)
can be comparable. With this in mind, using a change of variables, we write

Grηc, 1sϕc “
ˆ

0
1

˙

¨ P1∇x,zΦc,1|z“0,

where Φc,1 “ Φc,1px, pH ` ηqz ` ηq solves
$

&

%

∇x,z ¨ P1∇x,zΦc,1 “ 0 in S
Φc,1|z“0 “ ϕc
BP1
n Φc,1|z“´1 “ 0,

(5.36)
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and P1 is defined as

P1 :“

»

–

h` ηc ´pz ` 1qBxηc

´pz ` 1qBxηc
1` |pz ` 1qBxηc|

2

h` ηc

fi

fl .

Following the same idea and implementing the notation used in Subsection (5.2.1), we will
write

Grηc, aεs “
ˆ

0
1

˙

¨ Pa∇x,zΦc,a|z“0,

where now Φc,a is the solution to the elliptic problem with boundary condition Φc,apx, z “
0q “ ϕc and a strip domain S (5.5) associated with the non-flat bottom problem, and Pa
defined as in (5.15) after exchanging pη, ϕq for Qc.

In this context, let us set

rpaq :“ Grηc, 1sϕc ´ Grηc, aεsϕc. (5.37)

Consequently, since Qc solves (5.12), we have that
$

’

’

&

’

’

%

Btηc “ Grηc, aεsϕc ` r1paq

Btϕc “ ´
1
2
|Bxϕc|

2
` 1

2

pGrη, 1sϕc ` BxϕcBxηcq2

1` |Bxηc|
2 ´ gηc ` bBx

¨

˝

Bxηc
b

1` |Bxηc|
2

˛

‚` r2paq

(5.38)
for

r1paq “ rpaq and

r2paq “
1

2

rpaq pGrηc, 1sϕc ` Grηc, aεsϕcq ` 2rpaqBxϕcBxηc
1` |Bxηc|2

.
(5.39)

It is our goal in this section, then, to prove that the residual terms of the system above
(5.38) are, indeed, decaying (exponentially) fast.

Proposition 5.11. The remainder rpaq “ pr1paq, r2paqq
t defined in (5.37)-(5.39) has an

exponential decay in time. That is, there exist 0 ă δ0 ă mintγε, δu and Cs ą 0 such that for
every s ě 0,

|rpaq|Es ď Cse
´δ0Aeδ0ct, for all t ď 0.

Proof. First of all, we notice that, because the solution Qc of (5.12) satisfies the decay
property (5.35), then from the proof of Proposition 5.27 we know that for every α P N,
there exist Cα (depending on α) and 0 ă δ ă d (independent of α) such that the following
estimates for Φc,1 hold

|B
α
x,zΦc,1| ď Cαe´δ|x´ct`A|, @px, zq P S, (5.40)

as stated in Remark 5.5. Since the same estimate holds for Φc,a, we also have that

|B
α
x,zΦd| ď Cαe´δ|x´ct`A|, @px, zq P S. (5.41)
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We make the following decomposition for Rpaq,

r1paq “

ˆ

0
1

˙

¨ P1∇x,zΦc,1|z“0 ´

ˆ

0
1

˙

¨ Pa∇c,aΦc,a|z“0

“

ˆ

0
1

˙

¨ pP1 ´ Paq∇x,zΦc,1|z“0 `

ˆ

0
1

˙

¨ Pa∇x,z pΦc,1 ´ Φc,aq |z“0.

From the definition of both P1 and Pa, we have that the first term takes the form
ˆ

0
1

˙

¨ pP1 ´ Paq∇x,zΦc,1|z“0

“ ha1εBxΦc,1|z“0 `
2pz ` 1qzhBxηca

1
ε ` |zha

1
ε|

2

haε ` ηc
BzΦc,1|z“0.

Then, just as we did in the proof of Proposition 5.4, we rely on (5.40) to conclude the
estimation needed for the first term of Rpaq. Indeed, we present the following auxiliary
lemma:

Lemma 5.12. For c ą 0, δ ą 0, γ ą 0, ε ą 0, and δ0 P p0,mintγε, δuq, there exists C ą 0
such that for every A ě 0, t ď 0,

ż

R
e´γ|εx|e´δ|x´ct`A|dx ď Ce´δ0Aeδ0ct.

Proof Lemma 5.12. Denoting δ “ mintγε, δu ą 0, we have that
ż

R
e´δ|x|e´δ|x´ct`A|dx ď Ce´δ0Aeδ0ct. (5.42)

In fact, since t ď 0, one can divide the space R into three subsets:

x ď ct´ A, ct´ A ď x ď 0, x ě 0.

We have that
ż

xďct´A

e´δ|x|e´δ|x´ct`A|dx “ eδp´ct`Aq
ż

xďct´A

e2δxdx “
e´δp´ct`Aq

2δ
.

The case x ě 0 follows from the same arguments. Finally, for the remaining case, we note
that if ct´ A ď x ď 0, then

e´δ|x|e´δ|x´ct`A| “ eδxe´δpx´ct`Aq “ eδpct´Aq

and, therefore, (5.42) follows. �

We return to the proof of Proposition 5.11. Taking into account (5.40), as a consequence
of Lemma 5.12 we have that, for every s ě 0, there exists Cs and δ0 such that

ˇ

ˇ

ˇ

ˇ

ˆ

0
1

˙

¨ pP1 ´ Paq∇x,zΦc,1|z“0

ˇ

ˇ

ˇ

ˇ

Es
ď Cse

´δ0Aeδ0ct, t ď 0.
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Now, let us analyze the second term of r1paq. More precisely, we want to study Φd “

Φc,1 ´ Φc,a, which turns out to be the solution of the equation:
"

∇x,z ¨ Pa∇x,zΦd “ ´∇x,z ¨ Pa∇x,zΦc,1 “ ∇x,z ¨ pP1 ´ Paq∇x,zΦc,1, in S,
Φd|z“0 “ 0, BPan Φd|z“´1 “ B

Pa
n Φc,1|z“´1.

(5.43)

Taking into account the decay of the solitary wave and of the function describing the bottom,
we consider the weight

ωpt, xq “ eδ|x|eδ|x´ct`A|,

where 0 ă δ ă 1
2

mintεγ, δu is to be chosen (sufficiently small) later. Then, multiplying
(5.43) by such weight ω, we obtain the equation

"

∇x,z ¨ Pa∇x,zpωΦdq ` rω,∇x,z ¨ Pa∇x,zsΦd “ ω∇x,z ¨ pP1 ´ Paq∇x,zΦc,1, in S,
Φd|z“0 “ 0, BPan Φd|z“´1 “ B

Pa
n Φc,1|z“´1.

Now, we proceed by Divergence Theorem. Certainly, recall that

B
Pa
n “ n ¨ Pa∇x,z “ ha1εBx `

1` |ha1ε|
2

haε ` ηc
Bz on the boundary z “ ´1.

In fact, notice that when using the notation BP1
n “ n ¨ P1∇x,z, it is straightforward to see

that BP1
n “ 1

h`ηc
Bz on the boundary z “ ´1. Since BP1

n Φc,1|z“´1 “ 0, this implies that
BzΦc,1|z“´1 “ 0. In particular, it means that

B
Pa
n pωΦdq|z“´1 “ B

Pa
n pωΦc,1q|z“´1 ´ ha

1
εδωΦc,a|z“´1 ´ ωB

Pa
n pΦc,aq|z“´1

“ ha1εBxpωΦc,1q|z“´1 ´ ha
1
εδωΦc,a|z“´1

“ ha1εδωΦd|z“´1 ` ha
1
εωBxpΦc,1q|z“´1.

Then, Divergence Theorem gives us the following

´

ż

S

∇x,z ¨

´

Pa∇x,zpωΦdq

¯

ωΦddxdz “

ż

S

Pa∇x,zpωΦdq ¨∇x,z pωΦdq dxdz

´

ż

R
ha1ε

´

δωpxqΦdpt, x,´1q ` ωpxqBxΦc,1pt, x,´1q
¯

ωpxqΦdpt, x,´1qdx.

Then, since Pa is coercive, we have that there exists C0 ą 0 such that

C0

ż

S

|∇x,zpωΦdq|
2dxdz ď

ż

S

`

rω,∇x,z ¨ Pa∇x,zsΦd

˘

ωΦd dxdz

´

ż

S

ω∇x,z ¨

´

pP1 ´ Paq∇x,zΦc,1

¯

ωΦd dxdz

`

ż

R
ha1ε

´

δωpxqΦdpt, x,´1q ` ωpxqBxΦc,1pt, x,´1q
¯

ωpxqΦdpt, x,´1qdx

:“ I1 ` I2 ` I3.

(5.44)
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Following the arguments of Proposition 5.4, to estimate I1 we make use of the fact that the
depth of the fluid is finite (bounded in the z direction), to apply Poincaré inequality. Indeed,
we have that

rω,∇x,z ¨ Pa∇x,zs “ phaε ` ηcq rω, B
2
xs

´ ppz ` 1qBxηc ` zha
1
εq rω, BxsBz.

This, along with uniform upper bounds for both |a1| and |Bxηc| and the existence of hmax ą 0
such that |haε ` ηc| ď hmax uniformly on pt, xq, lead to

|I1| ď C
´

δ
2
}ωΦd}

2
L2pSq2 ` δ}ωBzΦd}L2pSq}ωΦd}L2pSq

¯

.

Thus, since S si bounded in the z direction, from Poincaré inequality, we have that

|I1| ď C
´

δ
2
` δ

¯

}∇x,z pωΦdq}
2
L2pSq2 .

Now, for I2, from the conditions that define the bottom a (5.11) and the decay of Φc,1 (5.40),
we have that there exists Cδ ą 0, such that

|I2| ď Cδ
`

δ}ωΦd}L2pSq ` }∇x,z pωΦdq }L2pSq

˘

.

Indeed, using Divergence Theorem one more time, denoting by Γ “ tz “ 0u Y tz “ ´1u and
n the outward unit normal,

I2 “

ż

S

pP1 ´ Paq∇x,zΦc,1 ¨∇x,z

`

ω2Φd

˘

dxdz´

ż

Γ

n¨ppP1 ´ Paq∇x,zΦc,1qω
2ΦddΓ :“ I2,1`I2,2.

We analyse the line integral by writing
ż

Γ

n ¨ ppP1 ´ Paq∇x,zΦc,1qω
2Φd “ ´

ż

tz“´1u

n ¨ pPa∇x,zΦc,1qω
2Φd,

where we used the fact that Φc,1 solves (5.36), which in particular means that BP1
n Φc,1|z“´1 “

BzΦc,1|z“´1 “ 0. Thus, writing BPan in a more explicit fashion, we have that
ż

Γ

n ¨
`

pP1 ´ Paq∇x,zΦc,1ω
2Φd

˘

“ ´

ż

tz“´1u

ˆ

ha1εBxΦc,1 `
1` |ha1ε|

2

haε ` ηc
BzΦc,1

˙

ω2Φd

“ ´

ż

tz“´1u

ha1εBxΦc,1ω
2Φd.

Notice that because of the definition of the weight ω, its growth can be controlled by BxΦc,1

and a1pεxq. Then, using Cauchy-Schwartz inequality, we have that there exists Cδ ą 0 such
that

ż

Γ

n ¨
`

pP1 ´ Paq∇x,zΦc,1ω
2Φd

˘

ď Cδ}ωΦdpz “ ´1q}L2pRq.

By Fundamental Theorem of Calculus on the z variable and the fact that on tz “ 0u,
Φd|z“0 “ 0, we conclude

I2,2 ď Cδ
`

}ωΦd}L2pSq ` }∇x,z pωΦdq }L2pSq

˘

.
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A similar reasoning is applied to the first term of I2. Let us write

I2,1 “

ż

S

pP1 ´ Paq∇x,zΦc,1ω ¨∇x,z pωΦdq dxdz ` δ

ż

S

pP1 ´ Paq∇x,zΦc,1 ¨ pω, 0q
t
pωΦdq dxdz.

Since

P1 ´ Pa “

«

hp1´ aεq xha1ε
zha1ε

1`|pz`1qBxηc|2

H`ηc
´

1`|pz`1qBxηc`zha1ε|
2

haε`ηc

ff

,

estimating I2,1 involves studying not only the interaction between the decaying functions
Bαx,zΦc,1 and a1pεxq with and the growing weight ω, but also the decay of 1 ´ apεxq. Indeed,
notice that

ˇ

ˇ

ˇ

ˇ

1` |pz ` 1qBxηc|
2

h` ηc
´

1` |pz ` 1qBxηc ` zha
1
ε|

2

haε ` ηc

ˇ

ˇ

ˇ

ˇ

“
pz ` 1qzhBxηca

1
ε ` |zha

1
ε|

2

haε ` ηc
`
p1` |pz ` 1qBxηc|

2qhp1´ aεq

phaε ` ηcq ph` ηcq
.

Then, taking into account (5.11) and (5.40), we obtain

|I2| ď Cδ
``

δ ` 1
˘

}ωΦd}L2pSq ` }∇x,z pωΦdq }L2pSq

˘

ď

´

δ
2
` δ

¯

}ωΦd}
2
L2pSq ` δ}∇x,z pωΦdq }

2
L2pSq ` Cδ.

where we used Young inequality for the second inequality (notice that the constant Cδ might
change from line to line).

Consequently, Poincaré inequality gives us the following

|I2| ď C
´

δ
2
` δ

¯

}∇x,z pωΦdq }
2
L2pSq ` Cδ.

Finally, for I3, we have use a similar reasoning as before and obtain

|I3| ď δ
2
}ωΦd}

2
L2pSq ` δ}∇x,z pωΦdq }

2
L2pSq ` Cδ

ď C
´

δ
2
` δ

¯

}∇x,z pωΦdq }
2
L2pSq ` Cδ.

Gathering all estimations computed above, we can conclude from (5.44) that

}∇x,zpωΦdq}
2
L2pSq ď C

´´

δ
2
` δ

¯

}∇x,z pωΦdq }
2
L2pSq ` Cδ

¯

.

Therefore, if δ is sufficiently small, we can write

}∇x,z pωΦdq}
2
L2pSq ď C.

As a consequence, after choosing δ ą 0 sufficiently small, we conclude

}ωΦd}L2pSq ď C and }∇x,zpωΦdq}L2pSq ď C.
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As in the proof of Proposition 5.4, for the higher order estimates for ωΦd, we use an
induction and argument standard elliptic regularity theory. We can deduce that

@α,
ˇ

ˇB
α
x,z pωpxqΦdpx, zqq

ˇ

ˇ ď Cα.

Equivalently,
@α, |Bαx,zΦdpx, zq| ď Cαe´δ|x|e´δ|x´ct`A|.

�

5.4 Construction of an approximate solution

In this section, our main goal is to find an approximate solution Uap of the system (5.6) that
behaves asymptotically (as t Ñ ´8) like the solitary wave of the flat-bottom problem Qc.
In other words, we focus on the construction of a solution Uap “ Qc ` V such that is an
approximate solution in the sense that

BtUap “ FpUapq ` rap,

where both rap and V decay to 0 as tÑ ´8 with exponential rate.

We will denote by ρ “ e´δ0A ą 0, so that ρ becomes smaller for larger A ą 0. In particular,
for the remainder rpaq, obtained when pluggingQc into the nonflat-bottom problem, we define
rc “ 1

ρ
rpaq and write, for all s ě 0,

|rc|Es ď Cse
δ0ct for t ď 0.

Let us define

Vpt, xq “
N
ÿ

j“1

ρjVjpt, xq,

for Vj still unknown (to be constructed) and N P N. If we make Taylor expansion of F
around the solitary wave, we have that

FpUq “ FpQc `Vq “ FpQcq `

N
ÿ

j“1

1

j!
DjFrQcspV, . . . ,Vq ` rN,δpVq (5.45)

where the first derivative of F is DF “ JΛrQcs,

J “

ˆ

0 1
´1 0

˙

is skew-symmetric, and

ΛrQcs “

ˆ

´Pc ` g ` ZcGrηc, aεspZc¨q ` ZcBxvc vcBx ´ ZcGrηc, aεs
´Bxpvc¨q ´ Grηc, aεspZc¨q Grηc, aεs

˙

,

Zc “ Z̃rηc, ϕcs “
Grηc, aεsϕc ` BxηcBxϕc

1` |Bxηc|2
,

vc “ ṽrηc, ϕcs “ Bxϕc ´ ZcBxηc,
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and Pc “ Prηc, ϕcs for P defined as

Prηc, ϕcsψ “ bBx

´

`

1` pBxηcq
2
˘´ 3

2 Bxψ
¯

.

Then, going back to the equation, using the decomposition (5.45), one gets linear problems
for every Vk. Indeed, the system for V1 is

BtV1 ´ JΛrQcsV1 “ ´rc.

For V2:

BtV2 ´ JΛrQcsV2 “
1

2
D2FrQcspV1,V1q.

And for any Vj, j P t2, . . . Nu,

BtVj ´ JΛrQcsVj “

j
ÿ

p“1

ÿ

1ďj1,...,jpďj´1
j1`...jp“j

1

p!
DpFrQcspVj1 , . . . ,Vjpq.

In this context, we present the main result of this section:

Theorem 5.13. For every N P N, there exists

Uap “ Qc `V “ Qc `

N
ÿ

j“1

ρjVjpt, xq,

where Vj P C
8pR, H8pRqq such that

|Vj|Es ď Ap2j´1q{4Cs,jpδ0qe
´jδ0c|t| @t ď 0. (5.46)

In addition, Uap is an approximate solution of (5.6) in the sense that the remainder rap
defined as

BtUap ´ FpUapq “ rap

satisfies the exponential decay

|rap|Es ď Ap2N`1q{4CN,spδ0qρ
N`1e´pN`1qδ0c|t| @t ď 0.

Remark 5.10. We point out that ρ “ e´δ0A, which means that A2N`1ρN`1 shall not grow
to infinity for a larger A nor for a larger N . In other words, the constant of the decay of the
remainder is controlled.

Going back to the linear equation satisfied by Vj, since the source of such equations have
exponential decay, we need to study the homogeneous linear equation. More precisely, we
need to study (and control) the growth of its fundamental solution. Being able to control
such growth would imply the decay of Vj and, eventually, of the remainder as well.
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5.4.1 The homogeneous linear equation

In this subsection, we devote ourselves to the study of the linear homogeneous equation

BtV “ JΛrQcsV. (5.47)

We perform the change of variables U “ RV, with

R “

ˆ

1 0
´Zc 1

˙

so that we obtain
BtU “ JLrQcsU, (5.48)

where
LrQcs “

ˆ

´Pc ` g ` wc vcBx
´Bxpvc¨q Grηc, aεs

˙

is self adjoint and wc “ wrQcs “ vcBxZc ` BtZc. From now on, for the sake of simplicity, we
will denote Lc “ LrQcs. The operators Lc and Λc should not be confused with Lc and �c,
defined in Subsection 5.2.3. The latters arise when linearizing about Qc after a change of
framework from x to x´ct, while the formers correspond to the linearization in the framework
x. We also introduce the following notation for U “ pU1, U2q

t:

|Uptq|2Xk “
ÿ

0ďα,βďk

´

ˇ

ˇB
α
t B

β
xU1pt, ¨q

ˇ

ˇ

2

H1pRq
`
ˇ

ˇB
α
t B

β
xU2pt, ¨q

ˇ

ˇ

2

9H
1{2
˚ pRq

¯

(5.49)

|Uptq|Xk
8
“ sup

α`βďk

ˇ

ˇB
α
t B

β
xUpt, ¨q

ˇ

ˇ

L8
, (5.50)

where |ψ|2
9H
1{2
˚ pRq

“ |Bψ|2L2pRq and B “ p1´ B2
xq
´1{4Bx.

As stated above, the main goal of this subsection is to understand the growth rate for the
solution V of the homogeneous linear equation or, equivalently, the growth for U, solution
of (5.48). In this regard, the main result will be the following

Theorem 5.14. For every λ P p0, λ˚q, there exists A such that for all A ě A, the solution
U of (5.48), satisfy for every k ě 0,

|Uptq|Xk `
ÿ

αďk

|B
α
t U2ptq|L2 ď A1{2

˜

|Upτq|Xk `
ÿ

αďk

|B
α
t U2pτq|L2

¸

p1´ cδ0pt´ τqq
ke´δ0ct{2,

(5.51)
for all t ď τ ď 0.

Before we begin with the proof, we need to define the following partition of unity, so that
it is possible to localize on one side the movement of the solitary waves and, on the other
partition, the non-flatness of the bottom. Consider χ0 P C

8pRq such that

χpt, xq “

"

1 x ď 0,
0 x ě 1

2
.
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Then, we define

χ̃1pt, xq “ χ

˜

x´ c
2
t` A

4
A
4

¸

, χ̃apt, xq “ 1´ χ̃1pt, xq,

χ1pt, xq “
χ̃1

pχ̃2
1 ` χ̃

2
aq

1{2
χapt, xq “

χ̃a

pχ̃2
1 ` χ̃

2
aq

1{2
.

(5.52)

That way, we obtain χ2
1 ` χ2

a “ 1. With this partition in mind, from now on we shall make
use of the notation

U1
“ χ1U and Ua

“ χaU.

Also, we have the following (very useful) properties regarding the interaction of a and Qc

with the partition:

Lemma 5.15. Functions χi, i “ 1, a defined above satisfy:

@ |α| ě 1,
ˇ

ˇB
α
t,xχipt, xq

ˇ

ˇ À
1

A|β|
, i “ 1, a.

Moreover, for any δ ą 0 we have that

ˇ

ˇe´δ|x´ct`A|χa
ˇ

ˇ ď
Cδ
A
, and

ˇ

ˇe´δ|x|χ1pt, xq
ˇ

ˇ À
1

A
, @t ď 0, A ą 1,

Proof. We notice that supppχaq “
 

pt, xq such that x´ c
2
t` A

4
ě 0

(

. Then, since t ď 0,
x´ ct` A ě x´ c

2
t` A

4
ě 0. In particular

ˇ

ˇe´δ|x´ct`A|χapt, xq
ˇ

ˇ ď
ˇ

ˇe´δpx´ct`Aq
ˇ

ˇ ď e´δA À
1

A
.

Similarly, for the second inequality, we notice that supppχ1q “
 

pt, xq such that x ď c
2
t
(

,
which means that x ď 0 in the support of χ1 and then implies that

ˇ

ˇe´δ|x|χ1pt, xq
ˇ

ˇÀ
ˇ

ˇe´δA{8
ˇ

ˇ À
1

A
.

�

Remark 5.11. In our computations, χ1 will typically be paired with a1pεxq (or 1 ´ a1pεxq)
to prove decay estimates. Notice that every time we encounter both functions, we will
automatically have that

|a1pεxqχ2| ď
Cγε
A
.

Then, making ε smaller, is similar to taking a larger (safer) distance A between the change
of bottom and the solitary wave.

Also, we shall use the following norm equivalence:
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Lemma 5.16. There exists C ą 0 such that for every A ě 1, we have that

|U|2X0 ď C

˜

ÿ

i“1,2

|Ui
|
2
X0 `

1

A
|κpDqU2|

2
L2

¸

,

and
ÿ

i“1,a

|Ui
|
2
X0 ď C

ˆ

|U|2X0
`

1

A
|κpDqU2|

2
L2

˙

,

where κ̂pξq is a smooth cut-off function with κ̂pξq “ 1 near ξ “ 0.

Proof. For the proof of this Lemma, we refer to [14, Lemma 5.6]. �

5.4.2 Lower-order estimates

We consider the following energy functionalH0pUq “ pLcU,Uq´cpAχ1U, χ1Uq´cpAχaU, χaUq,
where

A “
ˆ

0 Bx

´Bx 0

˙

.

As we agreed in previous subsection, we will denote by U1
“ χ1U and Ua

“ χaU. In the
same spirit, let us define

Z1
c :“

Grηc, 1sϕc ` BxηcBxϕc
1` |Bxηc|2

, and Za
c :“ Zc ´ Z

1
c “
Grηc, aεsϕc ´ Grηc, aεsϕc

1` |Bxηc|2
,

so that Z1
c depends only on the solitary wave Qc, whereas all the information of the bottom

(and its change) relies on Za
c . An additional property that we obtain for such decomposition

is that Z1
c inherits the decay of the solitary wave Qc. Indeed from Remark (5.5), we infer

that for all α P NY t0u, there exists 0 ă δ ă d such that

|B
α
t,xZ

1
c | À e´δ|x´ct`A|. (5.53)

In addition, following the reasoning applied to study the decay properties of rpaq in Section
5.3, we also have that there exists 0 ă δ ă mintγε, δu such that

ˇ

ˇB
α
t,xZ

a
c

ˇ

ˇ À e´δ|x|e´δ|x´ct`A|. (5.54)

In a similar fashion, we decompose vc and wc as

v1
c “ Bxϕc ´ Z

1
c Bxηc, vac “ ´Z

a
c Bxηc,

w1
c “ v1

cBxZ
1
c ` BtZ

1
c , wac “

`

v1
c ` v

a
c

˘

BxZ
a
c ` v

a
c BxZ

1
c ` BtZ

a
c .

Then, decay properties of v1
c and vac take after Z1

c and Za
c , respectively, and the same goes

for w1
c and wac . Finally, we can also perform the following decomposition of the operator Lc:

L1
c “

ˆ

´Pc ` g ` w1
c v1

cBx

´Bxpv
1
c ¨q Grηc, 1s

˙

, Lac “

ˆ

wac vac Bx
´Bxpv

a
c ¨q Grηc, aεs ´ Grηc, 1s

˙

. (5.55)
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Then, the energy functional H0pUq can now be decomposed into terms depending only on
the solitary wave and terms that will follow the decay of a1. Indeed, we write

H1pUq “ pL1
cU,Uq ` pL

a
cU,Uq ´ cpAU1,U1

q ´ cpAUa,Ua
q.

The first step to prove Theorem 5.14 is to give an estimate for the lowest-order terms,
that is, the case k “ 0. It reads

Proposition 5.17. Under the hypothesis of 5.14, we have the growth estimate:

|Uptq|2X0 ` |U2ptq|
2
L2 ď C

`

A1{2
|Upτq|2X0 ` |U2pτq|

2
L2

˘

eδ0c|t´τ |{4, @0 ď τ ď t.

We will prove Proposition 5.17 for the case τ “ 0, since it stands for the worst case
scenario (if we let time go by sufficiently long, one could even obviate taking A large).

Decay rate (or upper bound) for the energy functional:

We want to show that there exists C ą 0 such that

d

dt
H0pUq ď

C

A

`

|U|2X0
` |U2|

2
L2

˘

. (5.56)

With such goal in mind, let us compute the derivative in time of the energy functional
H0pUq:

1

2

d

dt
H0pUq “

1

2
prBt, LcsU,Uq ` pLcU, BtUq ´ c pAχ1pBtUq, χ1Uq

´ c pAχapBtUq, χaUq ´ c pApBtχ1qU, χ1Uq ´ c pApBtχaqU, χaUq
“ I1 ` I2 ` I3 ` I4 ` I5 ` I6.

(5.57)

We start with the analysis of I1 and I2 and write

I1 “
1

2

`

rBt, Lcspχ
2
1 ` χ

2
aqU,U

˘

“
1

2

`

rBt, Lcsχ
2
1U,U

˘

`
1

2

`

rBt, Lcsχ
2
aU,U

˘

“
1

2

ÿ

i“1,a

´

prrBt, Lcs, χisχiU,Uq `
`“

Bt, L
1
c

‰

χiU, χiU
˘

`
`“

Bt, L
2
c

‰

χiU, χiU
˘

¯

.

On the other hand, from (5.48), one gets that

I2 “ pLcU, BtUq “ pLcU, JLcUq “ 0.

In addition, also from (5.48), and since Lc is a self-adjoint operator, we have that

pAχ1pBtUq, χ1Uq “ pAχ1JLcU, χ1Uq “ ´ pBxpχ1LcUq, χ1Uq
“ pLcχ1U, Bxpχ1Uqq ` prχ1, LcsU, Bxpχ1Uqq

“ ´
1

2
prBx, Lcsχ1U, χ1Uq ` prχ1, LcsU, Bxpχ1Uqq .
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Now, notice that, since the operator L1
c only depends on Qc (Qc “ Qcpx´ct`Aq), to derivate

in space is actually equivalent to computing a derivative in time:

c

2

`“

Bx, L
1
c

‰

χ1U, χ1U
˘

“ ´
1

2

`“

Bt, L
1
c

‰

χ1U, χ1U
˘

.

In consequence,

I3 “ ´
1

2

`

rBt, L
1
csχ1U, χ1U

˘

`
c

2
prBx, L

a
c sχ1U, χ1Uq ´ c prχ1, LcsU, Bxpχ1Uqq .

Also, in a similar fashion as for the I3 term, we have that

I4 “ ´
1

2

`“

Bt, L
1
c

‰

χaU, χaU
˘

`
c

2
prBx, L

a
c sχaU, χaUq ´ c prχa, LcsU, BxpχaUqq .

Therefore, we obtain

I1 ` I2 ` I3 ` I4 “
1

2

ÿ

i“1,a

´

prrBt, Lcs, χisχiU,Uq ` prBt, Lac sχiU, χiUq
¯

`
c

2
prBx, L

a
c sχ1U, χ1Uq ´ c prχ1, LcsU, Bxpχ1Uqq

`
c

2
prBx, L

a
c sχaU, χaUq ´ c prχa, LcsU, BxpχaUqq .

(5.58)

Since we are invested in proving (5.56), we need to show that each term of (5.58) satisfy an
inequality such as (5.56).

Throughout this part of the proof, to simplify notation, we will write

Gc,1 :“ Grηc, 1s and Gc,a :“ Grηc, aεs.

We start by noticing that one has the following commutators:

rBt, L
a
c s “

ˆ

Btw
a
c pBtv

a
c q Bx

´Bx pBtv
a
c ¨q rBt,Gc,a ´ Gc,1s

˙

, rBx, L
a
c s “

ˆ

Bxw
a
c pBxv

a
c q Bx

´Bx pBxv
a
c ¨q rBx,Gc,a ´ Gc,1s

˙

rBt, Lcs “

ˆ

´rBt,Pcs ` Btwc pBtvcq Bx
´Bx pBtvc¨q rBt,Gc,as

˙

.

Then, to treat the terms involving the Dirichlet Neumann operators Gc,a and Gc,1, it will be
useful the following lemma:

Lemma 5.18. There exists a constant C such that the following estimations hold

prBt,Gc,a ´ Gc,1sχiU2, χiU2q ď
C

A

`

|BU2|
2
L2 ` |U2|

2
L2

˘

, (5.59)

prBx,Gc,a ´ Gc,1sχiU2, χiU2q ď
C

A

`

|BU2|
2
L2 ` |U2|

2
L2

˘

, (5.60)

prrBt,Gc,as, χisχiU2, U2q ď
C

A

`

|BU2|
2
L2 ` |U2|

2
L2

˘

, (5.61)

for i “ 1, a, where χi are defined in (5.52) and B “ p1` B2
xq
´ 1

4Bx.
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For the proof of this result, see Appendix 5.5.

Let us analyze, for instance, the term prrBt, Lcs, χisχiU,Uq. Writing in a more explicit
fashion, we have that

prrBt, Lcs, χisχiU,Uq “ prrBt,Pcs , χisχiU1, U1q ` prrBt,Gc,as , χisχiU1, U1q .

In particular, since

Pc “ bBx

˜

Bx¨

p1` |Bxηc|2q
´3{2

¸

,

and because of Lemma 5.15, we have that

|prrBt,Pcs , χisχiU1, U1q| ď
C

A
|U1|

2
H1 .

Then, thanks to Lemma 5.18, we get that

prrBt, Lcs, χisχiU,Uq ď
C

A

`

|U|2X0 ` |U2|
2
L2

˘

.

Similarly, for the terms prBt, Lac sχiU, χiUq we have that

prBt, L
a
c sχiU, χiUq “ pBtwacχiU1, χiU1q ` pBtv

a
c BxpχiU2q, χiU1q

´ pBxpBtv
a
cχiU1q, χiU2q ` prBt,Gc,a ´ Gc,1sχiU2, χiU2q .

Thus, taking into account the decay estimate for Za
c (5.54), inherited by wac and vac , along

with Lemma 5.15, we obtain

|prBt, L
a
c sχiU, χiUq| ď

C

A

`

|U|2X0 ` |U2|
2
L2

˘

,

where we used (5.59) from Lemma 5.18 for the term involving the DN operator. The same
way, using (5.60) from Lemma 5.18, we can control prBt, Lac sχiU, χiUq and write

ˇ

ˇ

`

rBx, L
2
csχiU, χiU

˘
ˇ

ˇ ď
C

A

`

|U|2X0 ` |U2|
2
L2

˘

.

The rest of the term from (5.58) are treated in a similar fashion and we conclude

I1 ` I2 ` I3 ` I4 ď
C

A

`

|U|2X0 ` |U2|
2
L2

˘

.

Finally, integrating by parts and making use of Lemma 5.15, we obtain

|I5| ` |I6| ď
C

A
p|U1|H1 ` |U2|L2q .

Indeed, for instance, for I5, we have that

pApBtχ1qU, χ1Uq “
`

Bx
`

pBtχ1qU2

˘

, χ1U1

˘

´
`

Bx
`

pBtχ1qU1

˘

, χ1U2

˘

“ ´ppBtχ1qU2, Bxpχ1U1qq `
`

Bx
`

pBtχ1qU1

˘

, χ1U2

˘

.
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Then, Lemma 5.15 implies that

pApBtχ1qU, χ1Uq ď
C

A

`

|U1|
2
H1 ` |U2|

2
L2

˘

.

Consequently, we proved that (5.56).

Lower bounds for the energy functional: By definition of the partition of unity (5.52), we
have that

pLcU,Uq “
ÿ

i“1,a

´

pLcχiU, χiUq ` prLc, χisχiU,Uq
¯

.

Thus, we can write

H0pUq “
ÿ

i“1,a

´

pLcχiU, χiUq ` prLc, χisχiU,Uq ´ cpAχiU, χiUq
¯

“ I1 ` Ia ` IR,

where, using the notation χ1U “ U1 and χaU “ Ua, along with the decomposition (5.55),
I1, I2, IR are defined as

IR :“
ÿ

i“1,a

prLc, χisχiU,Uq `
`

LacU
1,U1

˘

` pLacU
a,Ua

q ,

I1 :“
`

L1
cU

1,U1
˘

´ c
`

AU1,U1
˘

and Ia :“
`

L1
cU

1,Ua
˘

´ c pAUa,Ua
q .

We begin by estimating IR. Let us take first, for instance, IR,1 :“
`

LacU
1,U1

˘

. Notice that
the function χ1 is constructed so it follows the movement of the solitary wave Qc, while the
operator Lac inherits its decay from a1. In this case, we set t Ñ ´8, that is, we are under
the assumption that the solitary wave does not encounter the change of bottom yet. Hence,
χ1 (its support) is moving away from the regime in which the change of bottom happens.
In particular, this means that the term I1,R can actually be seen as a residual terms. More
specifically, from the definition of Lac one has

IR,1 “
`

wacU
1
1 , U

1
1

˘

`
`

vac BxU
1
2 , U

1
1

˘

´
`

Bxpv
a
cU

1
1 q, U

1
2

˘

`
`

pGc,a ´ Gc,1qU1
2 , U

1
2

˘

.

Thus, to deal with the term involving the DN operator, we present the following lemma
proved in the Appendix 5.5:

Lemma 5.19. There exists a constant C such that the following estimation holds
ˇ

ˇ

`

pGc,a ´ Gc,1qU i
2, U

i
2

˘ˇ

ˇ ď
C

A

`

|BU2|
2
L2 ` |U2|

2
L2

˘

, i “ 1, a.

Then, Lemma 5.15 and Lemma 5.19 imply that

|IR,a,1| ď
C

A

`

|U|2X0 ` |U2|
2
L2

˘

.

On the other hand, to study IR,a :“ pL1
cU

a,Ua
q, notice that the decay of Za

c (5.54) follows
the behaviour of both the changing bottom a1 and the solitary wave Qc. Moreover, such
decay is inherited by vac and wac . In particular we have that, for α P NY t0u,

ˇ

ˇB
α
t,xv

a
c

ˇ

ˇ À e´δ|x´ct`A| and
ˇ

ˇB
α
t,xw

a
c

ˇ

ˇ À e´δ|x´ct`A|.
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Hence, Lemma 5.19 also entails the estimation for IR,a,

|IR,a| ď
C

A

`

|U|2X0 ` |U2|
2
L2

˘

.

Finally, from Lemma 5.15, we have that

|prLc, χisχiU,Uq| ď
C

A

`

|U|2X0 ` |U2|
2
L2

˘

, i “ 1, a,

which ultimately leads to

|IR| ď
1

A
C
`

|U|2X0 ` |U2|
2
L2

˘

. (5.62)

Next, we deal with
`

L1
cU

1,U1
˘

. Since L1
c depends only on the solitary wave Qc “ Qcpx´

ct ` Aq, we notice again that to derivate in time Z1
c is actually computing a derivative in

space. In fact, we have that BtZ1
c “ ´cBxZ

1
c . Taking this into account and writing w1

c in a
more explicit manner, we find

L1
c“

ˆ

´Pc ` g ` w1
c v1

cBx

´Bxpv
1
c ¨q Gc,1

˙

“

ˆ

´Pc ` g ` v1
cBxZ

1
c ` BtZ

1
c v1

cBx

´Bxpv
1
c ¨q Gc,1

˙

“

ˆ

´Pc ` g ` pv1
c ´ cqBxZ

1
c v1

cBx

´Bxpv
1
c ¨q Gc,1

˙

.

Thus, going back to our computations, one can write

I1 “

´

L̃1
cU

1,U1
¯

where
L̃1
c “

ˆ

´Pc ` g ` pv1
c ´ cqBxZ

1
c pv1

c ´ cqBx
´Bxppv

1
c ´ cq¨q Gc,1

˙

.

Notice that the operator L̃1
c is actually written as L1

c from Subsection 5.2.3, with the
difference that the coefficients in L̃1

c depend on Qc “ Qcpx ´ ct ` Aq. That is, if Tx0 is the
translation operator,

Tx0Upxq “ Upx` x0q

then we have that
Tct´AL̃1

c “ L1
cTct´A

Now, since Tx0 is an isometry in L2 and X0, Proposition 5.8 and Proposition 5.10 still hold
for L̃1

c . Then, for U
1 defined as

U
1
pt, yq “

`

Tct´AU1
˘

pt, yq “ χ1pt, y ` ct´ AqUpt, y ` ct´ Aq,

we have the unique decomposition given by Proposition 5.10

U
1
pt, yq “ α1

ptqJR1
cQ

1
cpyq ` β

1
ptqR1

cQ
1
pyq `W1

pt, yq
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where we denoted by Q1
cpxq “ BxQcpxq (standing wave) and W1

P X0 such that

pW1, JR1
cQ

1
cq “ pW

1
1 , η

1
cq “ 0.

Moreover, there exists k ą 0 and C ą 0 such that for every U P X0 written under the form
(5.33), one has

´

L1
cU

1
,U

1
¯

ě k|W1
|
2
X0 ´ C|α1

|
2.

Consequently, since we have that
´

L̃1
cU

1,U1
¯

“
`

T´ct`AL1
cTct´AU1,U1

˘

“
`

L1
cTct´AU1, Tct´AU1

˘

“

´

L1
cU

1
,U

1
¯

,

we conclude the following
I1 ě k|W1

|
2
X0 ´ C|α1

|
2. (5.63)

In a similar way, for

U
a
pt, yq “ Tct´AUa

pt, yq “ χapy ` ct´ AqUpt, y ` ct´ Aq

we also have that

U
a
pt, yq “ αaptqJRcQ1

cpyq ` β
a
ptqRcQ

1
cpyq `Wa

pt, yq

where Wa
P X0 satisfies

pWa, JRcQ
1
cq “ pW

a
1 , η

1
cq “ 0.

We obtain
I2 ě k|Wa

|
2
X0 ´ C|αa|2. (5.64)

Then, gathering estimations (5.63), (5.64) and (5.62), one obtains

H0pUq ě k
`

|W1
|
2
X0
` |Wa

|
2
X0

˘

´ C
`

|α1
|
2
` |αa|2

˘

´
C̃

A

`

|U|2X0
` |U2|

2
L2

˘

(5.65)

To finish the proof, we are left to compute estimations for |U2|L2 , αi and βi, i “ 1, a.

We start with |U2|L2 . Since U solves (5.48), we can write

BtU2 “ pPc ´ wc ´ gqU1 ´ vcBxU2.

In view of Lemma 5.16, let us choose κpDq, κ P C80 pRq such that κpξq “ 1 around ξ “ 0.
Then, we have that

1

2

d

dt
|κpDqU2|

2
L2 “pκpDqBtU2, κpDqU2q

“ pκpDq pPc ´ wc ´ gqU1, κpDqU2q ´ pκpDqvcBxU2, κpDqU2q .

Given the fact that κ compactly supported and taking into account the defintion of Pc and
ac, this implies that

1

2

d

dt
|κpDqU2|

2
L2 ď C p|U1|H1 ` |BU2|L2q p|BU2|L2 ` |κpDqU2|L2q
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Thus, from Young inequality, for some ϑ ą 0 (to be chosen latter),

1

2

d

dt
|κpDqU2|

2
L2 ď C

ˆ

1

ϑ
|U|X0 ` ϑ|κpDqU2|L2

˙

(5.66)

We focus now on |αi|, i “ 1, 2. Note that if if U is any function X0 such that it can be
decomposed as (5.33)-(5.34), then α and β are determined by

α “
pU, JR1

cQ
1
cq

|JR1
cQ

1
c|

2
L2

, β “
pU, pη1c, 0qtq
pR1

cQ
1
c, pη

1
c, 0q

tq
´ α

`

JR1
cQ

1
c, pη

1
c, 0q

t
˘

(5.67)

In particular, for α1, using the decomposition of U1 and the fact that U solves, (5.48), we
find that

d

dt
α1
“

1

|JR1
cQ

1
c|

2
L2

Bt
`

χ1ptqUptq, JR
1
cQ

1
c

˘

“
1

|JR1
cQ

1
c|

´

`

Btχ1ptqUptq, JR
1
cQ

1
c

˘

`
`

χ1ptqpJLcU` cBxUqptq, JR
1
cQ

1
c

˘

¯

“
1

|JR1
cQ

1
c|

ˆ

`

Btχ1ptqUptq, JR
1
cQ

1
c

˘

`
`

χ1ptqJL
a
cUptq, JR

1
cQ

1
c

˘

¯

`

´

χ1ptqpJL
1
cU` cBxUqptq, JR

1
cQ

1
c

¯

˙

,

where we used the notation fpt, xq “ fpt, x` ct´Aq. In addition, from the definition of L̃1
c ,

´

χ1ptqpJL
1
cU` cBxUqptq, JR

1
cQ

1
c

¯

“

´

χ1ptqpJL
1
cU´ cJBxUqptq, JR

1
cQ

1
c

¯

“

´

χ1ptqJL̃
1
crQcpyqsUptq, JR

1
cQ

1
c

¯

“

´”

χ1ptq, JL̃
1
crQcpyqs

ı

Uptq, JR1
cQ

1
c

¯

´

´

χ1ptqUptq, L̃
1
crQcpyqsJ

2R1
cQ

1
c

¯

.

Note that
´

L1
c ´ cJBx

¯

J2R1
cQ

1
c “ ´L̃

1
cR

1
cQ

1
c “ ´L

c,1R1
cQ

1
c “ 0.

Thus,
´

χ1ptqpJL
1
cU` cBxUqptq, JR

1
cQ

1
c

¯

“

´”

χ1ptq, JL̃
1
crQcpyqs

ı

Uptq, JR1
cQ

1
c

¯

.

Then, thanks to Lemma 5.15, we conclude
ˇ

ˇ

ˇ

ˇ

d

dt
α1

ˇ

ˇ

ˇ

ˇ

ď
C

A
p|U|X0 ` |U2|L2q . (5.68)

Following similar arguments, we also have for αa,
ˇ

ˇ

ˇ

ˇ

d

dt
αa
ˇ

ˇ

ˇ

ˇ

ď
C

A
p|U|X0 ` |U2|L2q . (5.69)

158



At last, we propose to find estimates for βi. From (5.67), we write

βi
“ β̃i

´ αi
`

JR1
cQ

1
c, pη

1
c, 0q

t
˘

, i “ 1, a,

where

β̃i
“

´

U
i
, pη1c, 0q

t
¯

pR1
cQ

1
c, pη

1
c, 0q

tq
“

´

U
i
, pη1c, 0q

t
¯

|η1c|
2
L2

, i “ 1, a.

Then, since (5.68) and (5.69) hold,
ˇ

ˇ

ˇ

ˇ

d

dt
βi

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

d

dt
β̃i

ˇ

ˇ

ˇ

ˇ

`
C

A
p|U|X0 ` |U2|L2q , i “ 1, a.

To estimate β1, we compute

d

dt
β̃1
“
Bt
`

χ1ptqUptq, pη1c, 0qt
˘

|η1c|
2
L2

“
pBtχ1ptqUptq, pη1c, 0qtq

|η1c|
2
L2

`

`

χ1ptq
`

BtUptq ` cBxUptq
˘

, pη1c, 0q
t
˘

|η1c|
2
L2

“
pBtχ1ptqUptq, pη1c, 0qtq

|η1c|
2
L2

`

`

χ1ptqJLcUptq, pη1c, 0qt
˘

|η1c|
2
L2

` c

`

χ1ptqBxUptq, pη1c, 0qt
˘

|η1c|
2
L2

.

In particular, we have that
`

χ1ptqJLcUptq, pη1c, 0q
t
˘

“

´

χ1ptqJL1
cUptq, pη

1
c, 0q

t
¯

`
`

χ1ptqJLacUptq, pη
1
c, 0q

t
˘

“

´”

χ1ptq, JL
1

c

ı

Uptq, pη1c, 0q
t
¯

`

´

JL
1

cU
1
ptq, pη1c, 0q

t
¯

`
`

χ1ptqJLacUptq, pη
1
c, 0q

t
˘

.

Also,
c
`

χ1ptqBxUptq, pη
1
c, 0q

t
˘

“ c
´

BxU
1
ptq, pη1c, 0q

t
¯

´ c
`

Bxχ1ptqUptq, pη
1
c, 0q

t
˘

Therefore, we have that
ˇ

ˇ

ˇ

ˇ

d

dt
β̃1ptq

ˇ

ˇ

ˇ

ˇ

ď C
ˇ

ˇ

ˇ

´

JL̃1
cU

1
, pη11, 0q

t
¯
ˇ

ˇ

ˇ
`
C

A
p|U|X0 ` |U2|L2q .

To conclude, we use the decomposition of U1 and the fact that L̃1
cR

1
cQ

1
c “ 0 and find that

ˇ

ˇ

ˇ

´

JL̃1
cU

1
, pη11, 0q

t
¯
ˇ

ˇ

ˇ
ď C

`

|α1
| ` |W1

|X0

˘

.

Gathering all the estimations above, one obtains
ˇ

ˇ

ˇ

ˇ

d

dt
β̃1
ptq

ˇ

ˇ

ˇ

ˇ

ď C

ˆ

|α1
| ` |W1

|X0 `
1

A
p|U|X0 ` |U2|L2q

˙

,

which, ultimately implies that
ˇ

ˇ

ˇ

ˇ

d

dt
β1
ptq

ˇ

ˇ

ˇ

ˇ

ď C

ˆ

|α1
| ` |W1

|X0 `
1

A
p|U|X0 ` |U2|L2q

˙

. (5.70)
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Similarly, for βa,
ˇ

ˇ

ˇ

ˇ

d

dt
βaptq

ˇ

ˇ

ˇ

ˇ

ď C

ˆ

|α1
| ` |W1

|X0 `
1

A
p|U|X0 ` |U2|L2q

˙

. (5.71)

Then, putting together (5.68), (5.69), (5.70) and (5.71), we obtain

d

dt
|αi
|
2
ď C|αi

|
1

A
p|U|X0 ` |U2|L2q , i “ 1, a, (5.72)

and
d

dt
|βi
|
2
ď C|βi

|

ˆ

1

A
p|U|X0 ` |U2|L2q ` |αi

| ` |Wi
|X0

˙

, i “ 1, a. (5.73)

End of the proof of Proposition 5.17:

To make the appropriate estimations, considering (5.56), (5.72) and (5.73), it will be
convenient to define a somewhat different weighted energy

H̃0pUptqq “
1

2
A1{2H0pUptqq ` CA1{2

`

|α1
ptq|2 ` |αaptq|2

˘

`
1

2

`

|β1
ptq|2 ` |βaptq|2

˘

.

We derivate in time H̃0 and obtain

d

dt
H̃0pUptqq ď

C

A1{4

„

1

A1{4

`

|U|2X0
` |U2|

2
L2

˘

`
1

A1{4

`

|α1
ptq| ` |αaptq|

˘

p|U|X0 ` |U2|L2q

`
1

A3{4

`

|β1
ptq| ` |βaptq|

˘

p|U|X0 ` |U2|L2q

`A1{4
`

|β1
ptq| ` |βaptq|

˘ `

|α1
| ` |αa| ` |W1

|X0 ` |W
2
|X0

˘‰

Thanks to the decomposition of U i and Lemma 5.16, we have that

d

dt
H̃0pUptqq ď

C

A1{4

“

A1{2
`

|W1
|
2
X0
` |Wa

|
2
X0

˘

`
1

A1{4
|U2|

2
L2

`
`

|β1
|
2
` |βa|2

˘

` A1{2
`

|α1
|
2
` |αa|2

˘‰

.

Next, we integrate in time over the time interval r0, ts, where t ď 0, and we write

H̃0pUptqq ď H̃0pUp0qq ´
C

A1{4

ż 0

t

F0pτq `
1

A1{4
|κpDqU2pτq|L2dτ, (5.74)

where

F0ptq :“ A1{2
`

|W1
|
2
X0
` |W2

|
2
X0

˘

`
`

|β1
|
2
` |β2

|
2
˘

` A1{2
`

|α1
|
2
` |α2

|
2
˘

.

On the other hand, from (5.65) and Lemma 5.16,

H̃0pUptqq ě
1

2
A1{2k

`

|W1
|
2
X0
` |W2

|
2
X0

˘

`
1

2
A1{2C

`

|α1
ptq|2 ` |α2

ptq|2
˘

`
1

2

`

|β1
ptq|2 ` |β2

ptq|2
˘

´
1

A1{2
C̃

˜

ÿ

i“1,2

|Ui
|
2
X0
` |κpDqU2|

2
L2

¸

ě c̃F0ptq ´
1

A1{2
C̃
`

|κpDqU2|
2
L2

˘

.
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Gathering this inequality with (5.74), we deduce

F0ptq ´
1

A1{2
C̃|κpDqU2|

2
L2 ď A1{2

|Up0q|2X0 ´
C

A1{4

ż 0

t

F0pτq `
1

A1{4
p|κpDqU2pτq|L2q dτ

In addition, as a consequence of (5.66), after integrating over the time interval r0, ts, t ď 0,
we find that

|κpDqU2ptq|
2
L2 ď |U2p0q|

2
L2 ´ C

ż 0

t

1

ϑ
F0pτq ` ϑ|κpDqU2pτq|L2dτ,

where ϑ ą 0 is to be chosen appropriately later. Then, for any υ ą 0, this leads to

F0ptq `

˜

υ ´
C̃

A1{2

¸

|κpDqU2|
2
L2 ďA1{2

|Up0q|2X0 ` υ|U2p0q|
2
L2

´ Cυ

ż 0

t

1

ϑ
F0pτq ` ϑ|κpDqU2pτq|L2dτ

´
C

A1{4

ż 0

t

F0pτq `
1

A1{4
p|κpDqU2pτq|L2q dτ.

Let us choose υ and ϑ in order to satisfy the following:

υ ´ A´1{2C ě υ{2, CA´1{4
ď δ0c{4, A´1{4

ď k{2, υCϑ´1
ď δ0c{4 and ϑ2

ď υ{2,

where δ0 is the constant that arises in Proposition 5.11. For instance, one can take

υ “
δ0c

64C2
, ϑ “

?
υ

2
and A " 1,

to finally obtain

F0ptq `
υ

2
|κpDqU2|

2
L2 ď CA1{2

|Up0q|2X0 ` υ|U2p0q|
2
L2 ´

δ0c

4

ż 0

t

F0pτq `
υ

2
|κpDqU2pτq|

2
L2dτ

ď CA1{2
|Up0q|2X0 ` υ|U2p0q|

2
L2 `

δ0c

4

ż 0

t

F0pτq `
υ

2
|κpDqU2pτq|

2
L2dτ.

Then, using Gronwall inequality, we get

F0ptq `
υ

2
|κpDqU2ptq|

2
L2 ď

`

CA1{2
|Up0q|2X0 ` υ|U2p0q|

2
L2

˘

e´δ0ct{4, t ď 0.

Then, from the definition of F , the decomposition of Ui and Lemma 5.16, we know that
there exists υ and υ̃ such that

F0ptq ě υ
ÿ

i“1,a

|Ui
ptq|2X0 ě

ˆ

1´
C

A

˙

υ̃|Uptq|2X0 ´
υ

A
|κpDqU2ptq|

2
L2 .

by choosing A large enough so that υ{A ď υ{4, we find

F0ptq ě
1

2
υ̃|U|2X0

´
υ

4
|κpDqU2|

2
L2 .

Then, we can conclude that
1

2
υ̃|U|2X0

´
υ

4
|κpDqU2|

2
L2 ď

`

CA1{2
|Up0q|2X0 ` υ|U2p0q|

2
L2

˘

e´δ0ct{4, @t ď 0.

which finishes the proof of Proposition 5.17.
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5.4.3 Proof of Theorem 5.13

We proceed by induction. We begin the proof with the case k “ 1 and then rely on this
analysis to explain the higher-order cases.

First-order energy estimates: To compute the derivates of the linear system (5.48), we
shall make use of the following operator

DpBq “ Bt ` cBx

so that we can take advantage of the properties of Lac . The reason why we take such operator
is the fact that the solitary wave terms (precisely, L1

c) get cancelled by DpBq (such terms
are evaluated in the argument x´ ct). We apply this operator to both sides of the equation
(5.48) and obtain

BtDpBqU´ JLcDpBqU “ rBt, DpBqsU´ J rLc, DpBqsU. (5.75)

In a more explicit fashion, taking into account the partition of unity (5.52), we also have that

rBt, DpBqsU “
ÿ

i“1,a

cpBtχ
2
i qBxU,

as well as

J rLc, DpBqsU “ J rLc, BtsU` Jc rLc, BxsU

“ J
ÿ

i“1,a

´

χ2
i

“

L1
c , Bt

‰

U` χ2
i rL

a
c , BtsU` c

“

Lc, χ
2
i

‰

BxU

` χ2
i c
“

L1
c , Bx

‰

U` χ2
i c rL

a
c , BxsU

¯

As we pointed out before, from the decomposition (5.55), we know that L1
c depends only on

the solitary wave, and then we get

J
ÿ

i“1,a

´

χ2
i

“

L1
c , Bt

‰

U` χ2
i c
“

L1
c , Bx

‰

U
¯

“ J
ÿ

i“1,2

χ2
i

“

L1
c , Bt ` cBx

‰

U “ 0.

This implies that

J rLc, DpBqsU “ J
ÿ

i“1,a

´

χ2
i rL

a
c , BtsU` c

“

Lc, χ
2
i

‰

BxU` χ2
i c rL

a
c , BxsU

¯

:“ JSU.

Then, going back to (5.75), we obtain

BtDpBqU “ JLcDpBqU` rBt, DpBqsU´ JSU :“ JLcDpBqU` F1pUq, (5.76)

where F1pUq :“ rBt, DpBqsU´ JSU is the source term of the linear equation. In particular,
using Duhamel Formula, the fact that we consider F1 as the source means that

DpBqUptq “ Scpt, 0qpDpBqUqp0q ´

ż 0

t

Scpt, τqF1pτqdτ,

162



where Scpt, τq here is the fundamental solution of the linear equation (5.48), and, because of
Proposition 5.17, it satisfies

}Scpt, τq}X0XL2ÑX0XL2 ď A1{2Ce´δ0ct{4, @0 ď τ ď t.

Consequently, we have the following

|DpBqUptq|X0 ` |DpBqU2ptq|L2 ď CA1{2

˜

e´δ0ct{4
´

|Up0q|X1 `
ÿ

α“0,1

|B
α
t U2p0q|L2

¯

´

ż 0

t

eδ0cpτ´tq{4 p|F1pτq|X0 ` |F1pτq|L2q dτ

¸

.

(5.77)

Then, we need to estimate the source F1.

For any norm } ¨ } depending on the variable x, we shall use the notation

}xBty
kU} “

ÿ

0ďlďk

}B
l
tU}.

To have some control on the higher order space derivatives in (5.48) using time derivatives,
it will be useful the following lemma:

Lemma 5.20. Any smooth solution of (5.48) satisfies the following a priori estimates

@l ě 0, m ě 0, DCk,l, such that |BltpU1, U2q|Hm`5{2ˆHm`2 ď Cl,k|xBty
l`1
pU1, U2q|Hm`1ˆHm`1{2 .

The proof of this lemma can be found in the Appendix.

Remark 5.12 (Consequences of Lemma). Lemma (5.20) implies the following two estima-
tions:

1. For any δ ą 0 we have that

|BxU|X0 ď δ p|BtU|X0 ` |BtU2|L2q ` Cδ p|U|X0 ` |U|L2q . (5.78)

2. For any α, β such that α ` β “ k, β ě 1, and δ ą 0,

|B
α
t B

β
xU|X0 ď δ

`

|B
k
tU|X0 ` |B

k
t U2|L2

˘

` Cδ
`

|U|Xk´1 ` |xBty
kU2|L2

˘

. (5.79)

The first inequality can be deduced by taking l “ 0 and m “ 0,

|Bx pU1, U2q |H3{2ˆH1 ď |pU1, U2q|H5{2ˆH2 ď Cl,k|xBty
1
pU1, U2q|H1ˆH1{2 ,

and then using the interpolation inequality

|BxU|H1ˆH1{2 ď δ|BxU|H3{2ˆH1 ` Cδ|U|L2 . (5.80)
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for any δ ą 0. The second estimation can be deduced from Lemma 5.20 by choosing l “ α,
m “ β ´ 1

|xBty
α
pU1, U2q|Hβ`3{2ˆHβ`1 ď C|xBty

α`1
pU1, U2q|HβˆHβ´1{2 .

We iterate the last step until we get

|B
α
t B

β
xpU1, U2q|H3{2ˆH1 ď |xBty

α
pU1, U2q|Hβ`3{2ˆHβ`1 ď Ck|xBty

k
pU1, U2q|H1ˆH1{2 .

We conclude (5.79) after we use again the interpolation inequality (5.80).

Now, we proceed with the estimation of F1. From its definition, we have that

|F1pUq|X0 ď |JSU|X0 ` | rBt, DpBqsU|X0

ď |J
ÿ

i“1,a

χ2
i rL

a
c , BtsU|X0 ` |J

ÿ

i“1,a

c
“

Lc, χ
2
i

‰

BxU|X0

` |J
ÿ

i“1,a

χ2
i c rL

a
c , BxsU|X0 ` | rBt, DpBqsU|X0

First, using Lemma 5.18 and Lemma 5.15 (the same way we did for the 0-order estimates),

|F1pUq|X0 ď
C

A

`

|pBxU2, B
2
xU1q

t
|X0 ` |BxU|X0 ` |U|X0 .

˘

Next, from Lemma 5.20, we obtain

|F1pUq|X0 ď
C

A
p|BtU|X0 ` |U|X0 ` |BtU2|L2 ` |U2|L2 .q

We also deduce that

|F1pUq|L2 ď
C

A
p|BtU|X0 ` |U|X0 ` |BtU2|L2 ` |U2|L2 .q

Thus, replacing such estimation in (5.77) and using (5.78)

|DpBqUptq|X0 ` |DpBqUptq|L2 ď CA1{4e´δ0ct{4
ˆ

|Up0q|X0 ` |Up0q|L2 ` |BtUp0q|L2

˙

´
C

A3{4

ż 0

t

eδ0cpτ´tq{4
ˆ

|BtUpτq|X0 ` |Upτq|X0 ` |BtU2pτq|L2 ` |U2pτq|L2

˙

dτ.

From Proposition 5.17,

|Upτq|2X0
` |U2pτq|

2
L2 ď CA1{2

`

|Up0q|2X0 ` |U2p0q|
2
L2

˘

eδ0cτ{4 @0 ď τ ď t,

we conclude that

|BtUptq|X0 ` |BtUptq|L2 ď CA1{4
p1´ A´3{4tqe´δ0ct{4

ˆ

|Up0q|X0 ` |Up0q|L2 ` |BtU2p0q|L2

˙

´
C

A3{4

ż 0

t

eδ0cpτ´tq{4
ˆ

|BtUpτq|X0 ` |BtU2pτq|L2

˙

dτ.
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Then, using Gronwall’s inequality, we have that there exists C ą 0 such that

|BtUptq|X0 ` |BtU2ptq|L2 ď CA1{4
p1´ A´3{4tqe´δ0ct{4´CA

´3{4t

ˆ

|Up0q|X0 `
ÿ

α“0,1

|B
α
t U2p0q|L2

˙

.

The desired estimation can be deduced by taking A sufficiently large. Finally, in view of
(5.78)

|BxU |X0 ď δ p|BtU |X0 ` |BtU2|L2q ` Cδ p|U |X0 ` |U2|L2q .

and taking into account the estimation for the zero-order estimates given in Proposition
5.17, we conclude the result for the first-order case.

Higher-order energy estimates. We proceed by induction argument. Indeed, given any
k ě 0, we will assume that the estimate (5.51) holds for k ´ 1-order case. As we did for the
first order case, we start estimating |DkpBqU|X0 . We have that

BtD
k
pBqU “ JLcD

k
pBq ` FkpUq

where the source term FkpUq is given by

FkpUq “
k´1
ÿ

i“0

Di
pBq pJ rDpBq, Lcs ` rBt, DpBqsqD

k´1´i
pBqU.

In particular, using Duhamel Formula, the fact that we consider Fk as the source means that

Dk
pBqUptq “ Scpt, 0qpD

k
pBqUqp0q ´

ż 0

t

Scpt, τqFkpUqpτqdτ,

where Scpt, τq is considered again the fundamental solution of the linear equation (5.48).
Hence, because of Proposition 5.17, we write

|Dk
pBqUptq|X0 ` |Dk

pBqUptq|L2 ď CA1{4

˜

e´δ0ct{4
´

|Up0q|Xk `
ÿ

αďk

|B
α
t U2p0q|L2

¯

´

ż 0

t

eδ0cpτ´tq{4 p|FkpUqpτq|X0 ` |FkpUqpτq|L2q dτ

¸

.

(5.81)
Then, we need to estimate the source Fk.

From the definition of Fk, we have that

|FkpUq|X0

ď

k´1
ÿ

i“0

`

|Di
pBq

`

J rDpBq, LcsD
k´1´i

pBqU|X0 ` | rBt, DpBqs
˘

Dk´1´i
pBqU|X0

˘

ď

k´1
ÿ

i“0

ÿ

j“1,a

`

|χ2
jJD

i
pBq rLac , BtsD

k´1´i
pBqU|X0 ` c|JDi

pBq
“

Lc, χ
2
j

‰

Dk´1´i
pBqU|X0

˘

`

k´1
ÿ

i“0

˜

ÿ

j“1,a

c|χ2
jJD

i
pBq rLac , BxsD

k´1´i
pBqU|X0 ` |Di

pBq
“

Bt, D
k
pBq

‰

Dk´1´i
pBqU|X0

¸

.
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Making a similar analysis as the previous from the first order estimatives,

|FkpUq|X0 ` |FkpUq|L2 ď
Ck
A

ÿ

α`β“k
α‰k´1

`

|pB
α
t B

β
xU2, B

α
t B

β`1
x U1q

t
|X0 ` |B

α
t B

β
xU|X0

˘

`
C

A
|U|Xk´1 .

Next, using (5.79),

|B
α
t B

β
xU|X0 ď δ

`

|B
k
tU|X0 ` |B

k
t U2|L2

˘

` Cδ
`

|U|Xk´1 ` |xBty
kU2|L2

˘

,

|FkpUq|X0 ` |FkpUq|L2 ď
Ck
A

˜

|B
k
tU|X0 ` |U|Xk´1 `

ÿ

αďk

|B
α
t U2|L2

¸

.

Plugging such estimation into (5.81)

|Dk
pBqUptq|X0 ` |Dk

pBqUptq|L2 ď CA1{4e´δ0ct{4
´

|Up0q|Xk `
ÿ

αďk

|B
α
t U2p0q|L2

¯

´
Ck
A3{4

ż 0

t

eδ0cpτ´tq{4

˜

|B
k
tUpτq|X0 ` |Upτq|Xk´1 `

ÿ

αďk

|B
α
t U2pτq|L2

¸

dτ.

(5.82)

We claim that

|Dk
pBqUptq|X0`|Dk

pBqUptq|L2 ě |B
k
tUptq|X0`|B

k
t U2ptq|L2´C

ÿ

αďk´1

|B
α
t Uptq|L2`C|Uptq|Xk´1 .

(5.83)
Indeed, this comes from (5.79) and the fact that

|Dk
pBqUptq|X0`|Dk

pBqU2ptq|L2 ě |B
k
tUptq|X0`|B

k
t U2ptq|L2´C

ÿ

α`βďk
αďk´1

|B
α
t B

β
xUptq|X0`C|Uptq|Xk´1 .

Now, because we are using induction argument, we have that the desired estimation for the
k ´ 1 holds, that is, we have that

|Uptq|Xk´1 `
ÿ

αďk´1

|B
α
t U2ptq|L2

ď CA1{4e´δ0ct{4
´

|Up0q|Xk `
ÿ

αďk

|B
α
t U2p0q|L2

¯

´
Ck
A3{4

ż 0

t

eδ0cpτ´tq{4

˜

|B
k
tUpτq|X0 ` |Upτq|Xk´1 `

ÿ

αďk

|B
α
t U2pτq|L2

¸

dτ.

(5.84)

Going back to (5.82), (5.84) and (5.83) imply that

|B
k
tUptq|X0 ` |B

k
t U2ptq|L2

ď Ck´1A
1{4
p1´ A´3{4tqk´1e´δ0ct{4´A

´3{4Ct
´

|Up0q|Xk `
ÿ

αďk

|B
α
t U2p0q|L2

¯

´
Ck
A3{4

ż 0

t

eδ0cpτ´tq{4
`

|B
k
tUpτq|X0 ` |B

k
t U2pτq|L2

˘

dτ.

Then, thanks to Gronwall’s inequality and Lemma 5.20, by taking A large enough, we con-
clude the proof.
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5.4.4 Proof of Theorem 5.13

Now, we can go back to the construction of the approximate solution. We consider

Vpt, xq “
N
ÿ

j“1

ρjVjpt, xq,

with ρ “ e´δ0A ą 0. Here V1 solves the system

BtV1 ´ JΛrQcsV1 “ ´rc.

where, recall from Section 5.3, that for all k ě 0,

|rpaqq|Ek ď Cke
δ0ct @ t ď 0.

Notice that, since Uptq “ RVptq and R is invertible, from Theorem 5.14 we get

|SΛ
c pt, τqV|Ek ď A1{4Ckpδ0q|V|Hspkq

`

1` |t´ τ |k
˘

eδ0c|t´τ |{2, @t, τ ě 0,

where here SΛ
c is the fundamental solution of the system (5.47). With this in mind, we choose

the solution

V1pt, xq “ ´

ż t

´8

SΛ
c pt, τqrcpτqdτ.

From the estimation of the fundamental solution SΛ
c , we get that V1 is well defined and

satisfies

|V1ptq|Ek ď A1{4Ck

ż t

´8

p1` |t´ τ |qk eδ0c|t´τ |{2
k
ÿ

j“0

}B
j
t rc}Hspk´1qdτ

ď A1{4Ck

ż t

´8

p1` |t´ τ |qk eδ0c|t´τ |{2e´δ0c|τ |{2dτ

ď A1{4Ckpδ0qe
´δ0c|t| @t ď 0.

For the general case

BtVj ´DFrQcsVj “

j
ÿ

p“1

ÿ

1ďj1,...,jpďj´1
j1`...jp“j

1

p!
DpFrQcspVj1 , . . . ,Vjpq :“ rjpt, xq

we use induction argument. Suppose that for every j such that 1 ď j ď l ´ 1,

|Vj|Ek ď Ap2j´1q{4Ck,jpδ0qe
´jδ0c|t| @t ď 0.

For the source terms, we get the estimation

|rjpt, xq|Ek ď Ap2l´1q{4Ck,jpδ0qe
´jδ0c|t| @t ď 0.

Then, taking the solution

Vjpt, xq “ ´

ż t

´8

SΛ
c pt, τqrjpτqdτ,

we conclude the proof of Theorem 5.13.
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5.5 Construction of the exact solution

Now that the approximate solution of the Zakharov water waves system (5.6) is constructed,
we need to find the exact solution U “ Uap`Ur from the constructed approximate solution
Uap “ pηap, ϕapq, where Ur is a remainder to be determined. In other words, for U “ pη, ϕqt

to satisfy (5.6), Ur needs to be the solution to

BtUr “ FpUap `Urq ´ FpUapq ´ rap.

The Cauchy problem for such equation has a global solution, as we prove in the following
proposition. The precise result reads:

Proposition 5.21. Let p ě 2. For N large enough and ρ sufficiently small (A sufficiently
large) in the definition of V, there exists a solution Ur “ pηr, ϕrq

t P L8
`

p´8, 0s, Hm`4 ˆH7{2
˘

to
"

BtUr “ FpUap `Urq ´ FpUapq ´ rap,
Urp0q fixed,

(5.85)

such that h}aε}L8 ´ }ηap}L8 ´ }ηr}L8 ě hmin ą 0, and

|Ur|Xm`4ˆXm`7{2 ď Ap2N´1q{4ρN`1e´Nδ0c|t| @t ď 0. (5.86)

This proposition is proved in the Appendix 5.5

Once having proved the existence of Ur, we obtain that U “ Uap `Ur exists and it is
defined in p´8, 0s. Recall the definition Rpt, xq “ Qcpx´ ct` Aq. We are left to prove

lim
tÑ´8

|Uptq ´Rptq|Hs “ 0. (5.87)

From the definition of U,

U “ R`
N
ÿ

j“1

ρjVj `Ur.

The terms Vj and Ur satisfy a decay estimation each (deduced from (5.46) and (5.86)) for
every t ď 0:

|Vl|Hs ď Ap2l´1q{4Cs,lpδ0qe
´lδ0c|t| and |Ur|Hs ď Ap2N´1q{4ρN`1e´Nδ0c|t|.

Consequently, we conclude (5.87).
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Appendix

A.1. Proof of Lemma 5.18

Proof of (5.59) in Lemma 5.18. Case i “ 1. First, recall that for any u P C8b pRq, the Dirichlet-
Neumann operator can be defined as Gc,au “ BPan u5a

ˇ

ˇ

z“0
, where u5a satisfies

$

&

%

∇x,z ¨ Pa∇x,zu
5
a “ 0 in S,

u5a|z“0 “ u,
BPan u5a|z“´1 “ 0,

(5.88)

and BPan “ n ¨ Pa∇x,z, where n “ ´ez is the upward unit normal to the boundary in z “ ´1.
Then, one can use Divergence Theorem to get the following Green formula:

pGc,au, vq “
ż

S

Pa∇x,zu
5
a ¨∇x,zv

5
adxdz.

In particular, we have that

prBt,Gc,asu, uq “
ż

S

BtPa∇x,zu
5
a ¨∇x,zu

5
adxdz ´ 2

ż

S

Pa∇x,z

`

pBtuq
5
a ´ Btu

5
a

˘

¨∇x,zu
5
adxdz.

Similarly, for Gc,1 we have that

prBt,Gc,1su, uq “
ż

S

BtP1∇x,zu
5
1 ¨∇x,zu

5
1dxdz ´ 2

ż

S

P1∇x,z

`

pBtuq
5
1 ´ Btu

5
1

˘

¨∇x,zu
5
1dxdz,

where ue
1 is the solution to the elliptic problem associated to a flat-domain regime

$

&

%

∇x,z ¨ P1∇x,zu
5
1 “ 0 in S,

u51|z“0 “ u,
BP1
n u51|z“´1 “ Bzu

5
1|z“´1 “ 0.

(5.89)

Then we have that

prBt,Gc,a ´ Gc,1su, uq “
ż

S

BtPa∇x,zu
5
a ¨∇x,zu

5
adxdz ´ 2

ż

S

Pa∇x,z

`

pBtuq
5
a ´ Btu

5
a

˘

¨∇x,zu
5
adxdz

´

ż

S

BtP1∇x,zu
5
1 ¨∇x,zu

5
1dxdz ` 2

ż

S

P1∇x,z

`

pBtuq
5
1 ´ Btu

5
1

˘

¨∇x,zu
5
1dxdz.

Recall, from the definition of both P1 and Pa, we have that

BtP1 “

ˆ

Btηc ´pz ` 1qBtBxηc
´pz ` 1qBtBxηc B1

˙

, BtPa “

ˆ

Btηc ´pz ` 1qBtBxηc
´pz ` 1qBtBxηc Ba

˙

,

where

B1 “
2pz ` 1q2BxηcB

2
t,xηc

h` ηc
´

`

1` |pz ` 1qBxηc|
2
˘

Btηc

ph` ηcq
2 , and

Ba “
2 ppz ` 1qBxηc ` zha

1
εq pz ` 1qB2

t,xηc

Haε ` ηc
´

`

1` |pz ` 1qBxηc ` zha
1
ε|

2
˘

Btηc

phaε ` ηcq
2 .
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Then, taking into account the fact that the solitary wave ηc satisfies the exponential decay
[3]

|B
α
xηc px´ ct` Aq| ď e´dp1`|ct´x`A|2q1{2 ,

this means that we can estimate each entry of BtP1 and BtPa by using a weight ω1 defined as

ω1pt, xq “ e´δp1`|ct´x`A|
2q1{2 , (5.90)

where 0 ă δ ă mintεγ, du to be chosen sufficiently small.

On the other hand, from the definition of Pa and P1, we know that

Pa ´ P1 “

„

Hpapεxq ´ 1q ´hza1ε
´hza1ε E



,

where
E “

pz ` 1qzhBxηca
1
ε ` |zha

1
ε|

2

haε ` ηc
`
p1` |pz ` 1qBxηc|

2qhp1´ aεq

phaε ` ηcq ph` ηcq
.

This implies that we also need to take into consideration the change of bottom a1, coming
into play Pa ´ P1. Then, we define the weight

ωapt, xq “ e´δp1`|x|
2q1{2 , (5.91)

where 0 ă δ ă d is the same used in the definition of ω1.

Finally, with respect to BtpPa ´ P1q, after computing the derivative in time, we get that
the only entry of BtpPa ´ Paq that survives is BtE “ Ba ´ B1, which depends both on the
solitary wave ηc and the description of the change of bottom a1.

From now on, we shall assume that u “ χ1U2 and take advantage of the fact that, from
Lemma 5.15, there exists C ě 0 such that ωaχ1 ď

C
A
. Similarly, for the case u “ χaU2, one

only needs to take into account the weight ω1 and and use symmetric arguments. With this
in mind, we write

prBt,Gc,a ´ Gc,1su, uq

“

ż

S

Bt pPa ´ P1q∇x,zu
5
a ¨∇x,zu

5
adxdz `

ż

S

BtP1∇x,z

`

u5a ´ u
5
1

˘

¨∇x,zu
5
1dxdz

`

ż

S

BtP1∇x,zu
5
a ¨∇x,z

`

u5a ´ u
5
1

˘

dxdz ´ 2

ż

S

pPa ´ P1q∇x,z

`

pBtuq
5
a ´ Btu

5
a

˘

¨∇x,zu
5
adxdz

` 2

ż

S

P1∇x,z

`

pBtuq
5
a ´ Btu

5
a ´ pBtuq

5
1 ` Btu

5
1

˘

¨∇x,zu
5
adxdz

´ 2

ż

S

P1∇x,z

`

pBtuq
5
1 ´ Btu

5
1

˘

¨∇x,z

`

u5a ´ u
5
1

˘

dxdz.

(5.92)
In fact, from (5.92), we have that

|prBt,Gc,a ´ Gc,1su, uq| ď C}ωa∇x,zu
5
a}L2pSq

´

}∇x,zu
5
a}L2pSq `

›

›∇x,z

`

pBtuaq
5
´ Btu

5
a

˘
›

›

L2pSq

¯

` C
›

›∇x,z

`

pBtuaq
5
´ Btu

5
a ´ pBtu1q

5
` Btu

5
1

˘
›

›

L2pSq
}∇x,zu

5
a}L2pSq

` C}∇x,z

`

u5a ´ u
5
1

˘

}L2pSq

`

}∇x,zu
5
a}L2pSq ` }∇x,zu

5
1}L2pSq

›

›∇x,z

`

pBtuaq
5
´ Btu

5
a

˘
›

›

L2pSq

¯

.
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The rest of the proof, then, consists on estimating }∇x,zu
5
j}L2pSq and

›

›∇x,z

`

pBtuq
5
j ´ Btu

5
j

˘
›

›

L2 ,
for j “ 1, a, }ωa∇x,zu

5
a}L2 , }∇x,z

`

u5a ´ u
5
1

˘

}L2 and }∇x,z

`

pBtuaq
5 ´ Btu

5
a ´ pBtu1q

5 ` Btu
5
1

˘

}L2 .

1. Computing the estimation for }∇x,zu
5
j}L2pSq:

Let us denote by u:j, j “ 1, a, a function defined as

@z P r´1, 0s, u:p¨, zq “ χ pz|D|qu, (5.93)

where χ is a smooth compactly supported function such that χp0q “ 1.

Thus, to decompose u5j into u5j “ vj ` u
:, j “ 1, a, means that vj must solve

$

&

%

∇x,z ¨ Pj∇x,zvj “ ´∇x,z ¨ Pj∇x,zu
: P S,

v|z“0 “ 0,
BPan v|z“´1 “ ´B

Pa
n u:|z“´1.

In particular, thanks to Divergence Theorem and the coercivity of Pj,

}∇x,zvj}L2pSq ď C
›

›Pj∇x,zu
:
›

›

L2pSq
ď C

›

›∇x,zu
:
›

›

L2pSq
.

We write
›

›∇x,zu
:
›

›

L2pSq
ď }χpz|D|qBxu}L2pR2q

` }χ1pz|D|q|D|u}L2pR2q
.

Now, we use the following auxiliary lemma

Lemma 5.22. For all real valued, compactly supported function χ, one has

}χpz|D|qu}2L2 ď Cpχq

ˇ

ˇ

ˇ

ˇ

ˇ

1

p1` |D|2q1{4
u

ˇ

ˇ

ˇ

ˇ

ˇ

2

L2

,

where Cpχq ą 0 is a constant that only depends on the function χ.

Proof. We write

}χpz|D|qu}2L2 “

ż

R

ż 0

´1

|χ pz|ξ|q|2 |ûpξq|2dzdξ “

ż

R

ż 0

´1

Xp0q ´Xp´|ξ|q

|ξ|
|ûpξq|2dzdξ

where X is the primitive of χ2. In particular, since χ is compactly supported, X is
bounded. Thus, we conclude the proof by noticing that

ˇ

ˇ

ˇ

ˇ

Xp0q ´Xp´|ξ|q

|ξ|

ˇ

ˇ

ˇ

ˇ

ď Cpχq
1

p1` |ξ|2q1{2
.

�

Lemma 5.22 implies that
›

›∇x,zu
:
›

›

2

L2pSq
ď C |Bu|2L2pRq .
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And then, since u “ χ1U2,
›

›∇x,zu
:
›

›

2

L2pSq
“ C |Bpχ1U2q|

2
L2pRq ď |rB, χ1sU2|

2
L2 ` |χ1BU2|

2
L2 .

Now, we make use of the following commutator estimation,

|rB, f s g|L2 À |Bxf |L8 |g|L2 . (5.94)

Indeed, this can be proved by noticing

|rB, f s g|L2 ď

ˇ

ˇ

ˇ

ˇ

ˇ

Bxfg

p1´ B2
xq

1{4
`
“

p1´ B2
xq
´1{4, f

‰

Bxg

ˇ

ˇ

ˇ

ˇ

ˇ

L2

À |Bxf |L8 |g|L2 `
ˇ

ˇ

“

p1´ B2
xq
´1{4, f

‰

Bxg
ˇ

ˇ

L2 ,

and using [18, Proposition 3.6.B] to bound the second term. Thus, going back to our
computations, (5.94) implies

}∇x,zvj}
2
L2pSq ď

›

›∇x,zu
:
›

›

2

L2pSq
ď C

´

|U2|
2
L2pRq ` |BU2|

2
L2pRq

¯

, i “ 1, a.

Consequently, one has
›

›∇x,zu
5
j

›

›

2

L2pSq
ď C

´

|U2|
2
L2pRq ` |BU2|

2
L2pRq

¯

, i “ 1, a. (5.95)

2. Computing the estimation for }ω2∇u5a}L2:

We have that ωau5a solves
$

&

%

∇x,z ¨ Pa∇x,z

`

ωau
5
a

˘

“ ´rωa,∇x,z ¨ Pa∇x,zsu
5
a P S,

ωau
5
a|z“0 “ ω2u,

BPan
`

ωau
5
a

˘

|z“´1 “ ´rωa, B
Pa
n su

5
a.

(5.96)

We can decompose
ωau

5
a “ m pz, |D|q pωauq ` v, (5.97)

where
m pz, |D|q “

cosh p|D|pz ` 1qq

cosh|D|
,

is the solution to the homogeneous Laplace equation associated to (5.96) and v solves
"

∇x,z ¨ Pa∇x,zv ` rω2,∇x,z ¨ Pa∇x,zsu
5
a “ ´∇x,z ¨ Pa∇x,z pmpω2uqq in S,

v|z“0 “ 0, BPan v|z“´1 “ ´ha
1
εδv|z“´1.

(5.98)

We argue as in the proof of Proposition 5.4 and of Proposition 5.11, relying on the
possibility of using Poincaré inequality and the fact that |∇x,zω2| À δω2 to obtain

}∇x,zv}
2
L2pSq ď C̃

`

p1` δq}∇x,zpmpωauqq}L2pSq

`
`

δ2
` δ

˘

}ωau
5
a}L2pSq ` δ}∇x,zpωau

5
aq}L2pSq

˘

}∇x,zv}L2pSq.
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The decomposition (5.97) implies that
´

1´ C̃δ ´ C̃δ2
¯

}∇x,zv}
2
L2pSq

ď C̃
´

pδ2
` δq}mpωauq}L2pSq ` p1` δq }∇x,z pmpωauqq}L2pSq

¯

.

Then, for δ sufficiently small, there exists C ą 0 such that

}∇x,zv}L2pSq ď C
´

pδ2
` δq}mpωauq}L2pSq ` p1` δq }∇x,z pmpωauqq}L2pSq

¯

. (5.99)

Our goal is prove that

}ω2u
5
a}L2pSq ` }∇x,zpω2u

5
aq}L2pSq ď

C

A

`

|BU2|L2pRq ` |U2|L2pRq

˘

. (5.100)

Thus, in view of decomposition (5.98) and (5.99), it would be sufficient to show

}∇x,zmpωauq}L2pSq ` }mpωauq}L2pSq ď
C

A

`

|BU2|L2pRq ` |U2|L2pRq

˘

. (5.101)

To do so, we argue as in a)., using the commutator estimate (5.94) and Lemma 5.15 to
obtain (5.101). Consequently, we proved (5.100) which, in particular, leads to

}ωa∇x,zu
5
a}L2pSq ď

C

A
p|BU2|L2 ` |U2|L2q . (5.102)

3. Computing the estimation for
›

›∇x,z

`

pBtuq
5
j ´ Btu

5
j

˘
›

›

L2:

For each j “ 1, a (the first associated to the flat-bottom problem and the latter with a
changing bottom problem), we have that

`

pBtuq
5
j ´ Btu

5
j

˘

satisfies

"

∇x,z ¨ Pj∇x,z

`

pBtuq
5
j ´ Btu

5
j

˘

“ ∇x,z ¨ BtPj∇x,zu
5
j px, zq P S,

`

pBtuq
5
j ´ Btu

5
j

˘

|z“0 “ 0, B
Pj
n
`

pBtuq
5
j ´ Btu

5
j

˘

|z“´1 “ 0.

Then, using energy estimates, taking into account the coercivity of Pj, we write

›

›∇x,z

`

pBtuq
5
j ´ Btu

5
j

˘
›

›

2

L2pSq ď
›

›BtPj∇x,zu
5
j

›

›

2

L2pSq .

This, along with (5.95), implies that
›

›∇x,z

`

pBtuq
e
j ´ Btu

e
j

˘
›

›

L2pSq
ď C

`

|BU2|L2pRq ` |U2|L2pRq

˘

.

4. Computing the estimation for }∇x,z

`

u5a ´ u
5
1

˘

}L2:

We have that u5a ´ u51 solves the following equation,
"

∇x,z ¨ P1∇x,z

`

u5a ´ u
5
1

˘

“ ∇x,z ¨ P1∇x,zu
5
a “ ´∇x,z ¨ pPa ´ P1q∇x,zu

5
a px, zq P S,

`

u5a ´ u
5
1

˘

|z“0 “ 0, BP1
n
`

u5a ´ u
5
1

˘

|z“´1 “
1

h`ηc
Bzu

5
a|z“´1.

173



Then, multiplying by u5a ´ u51 standard energy estimates lead to
›

›∇x,z

`

u5a ´ u
5
1

˘
›

›

2

L2pSq
ď C

›

›pPa ´ P1q∇x,zu
5
a

›

›

2

L2pSq
ď C}ωa∇x,zu

5
a}

2
L2pSq,

which ultimately (in view of (5.102)) implies that
›

›∇x,z

`

u5a ´ u
5
1

˘›

›

L2pSq
ď
C

A
p|BU2|L2 ` |U2|L2q . (5.103)

5. Computing the estimation for }∇x,z

`

pBtuaq
e ´ Btu

e
a ´ pBtu1q

e ` Btu
e
1

˘

}L2 :

In order to make notation more simple, we shall consider v “ pBtuaqe ´ Btue
a´pBtu1q

e ` Btu
e
1

and fj “ BtPj∇u5j, j “ 1, a. Then, taking into account the equations that pBtuaqe ´ Btue
a

and pBtu1q
e ` Btu

e
1 solve, we get that v is the solution to the following formulation:

$

&

%

∇x,z ¨ P1∇x,zv “ ∇x,z ¨

´

fa ´ f1 ´ pPa ´ P1q∇x,z

`

pBtuq
5
a ´ Btu

5
a

˘

¯

, px, zq P S,

v|z“0 “ 0, BPan v|z“´1 “ ´ez ¨
´

fa ´ f1 ´ pPa ´ P1q∇x,z

`

pBtuq
5
a ´ Btu

5
a

˘

¯

|z“´1.

Then, energy estimates lead to

}∇x,zv}L2pSq ď C
´

›

›pPa ´ P1q∇x,z

`

pBtuq
5
a ´ Btu

5
a

˘›

›

L2pSq
`
›

›BtpPa ´ P1q∇x,zu
5
a

›

›

L2pSq

`
›

›BtP1∇x,z

`

u5a ´ u
5
1

˘
›

›

L2pSq

¯

ď C
´

›

›ω2∇x,z

`

pBtuq
5
a ´ Btu

5
a

˘
›

›

L2pSq
`
›

›ω2∇x,zu
5
a

›

›

L2pSq

`
›

›∇x,z

`

u5a ´ u
5
1

˘
›

›

L2pSq

¯

.

Subsequently, in view of (5.102) and (5.103), it would be sufficient to prove
›

›ω2∇x,z

`

pBtuq
5
a ´ Btu

5
a

˘
›

›

L2pSq
ď
C

A
p|BU2|L2 ` |U2|L2q , (5.104)

so that we can conclude the desired estimation, that is,

}∇x,zv}L2pSq ď
C

A
p|BU2|L2 ` |U2|L2q . (5.105)

Let us show that (5.104) holds. Indeed, we reason as in the proof of (5.102) and write
the following equation satisfied by va “ ωa

`

pBtuq
5
a ´ Btu

5
a

˘

,
"

∇x,z ¨ Pa∇x,zva ` rωa,∇x,z ¨ Pa∇x,zs
`

pBtuq
5
a ´ Btu

5
a

˘

“ ´ωa∇x,z ¨ BtPa∇x,zu
5
a px, zq P S,

va|z“0 “ 0, B
Pj
n va|z“´1 “ ´ha

1
εδva|z“´1.

Thus, following similar computations as in step b)., we have that,

}∇x,zva}
2
L2pSq ď C

´

pδ2
` δq }∇x,zva}

2
L2pSq ` }ωaBt∇x,zu

5
a}

2
L2pSq

¯

,

which, along with (5.102) leads to

}va}L2pSq ` }∇x,zva}L2pSq ď
C

A
p|BU2|L2 ` |U2|L2q .

and ultimately implies (5.104).
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Proof of (5.59) in Lemma 5.18. Case i “ 2. Recall that

prBt,Gc,a ´ Gc,1su, uq “
ż

S

BtPa∇x,zu
5
a ¨∇x,zu

5
adxdz ´ 2

ż

S

Pa∇x,z

`

pBtuq
5
a ´ Btu

5
a

˘

¨∇x,zu
5
adxdz

´

ż

S

BtP1∇x,zu
5
1 ¨∇x,zu

5
1dxdz ` 2

ż

S

P1∇x,z

`

pBtuq
5
1 ´ Btu

5
1

˘

¨∇x,zu
5
1dxdz.

where P1, BtP1 and BtPa can be estimated with the weight ω1 (5.90), whereas Pa ´ P1 is
estimated by ωa. On the other hand, the decay of BtpPa ´ P1q and Pa depend both on the
solitary wave ηc and the description of the change of bottom a1. Then, taking this into
account, and considering u “ χaU2, we write

|prBt,Gc,a ´ Gc,1su, uq| ď C
´

›

›ω1∇x,zu
5
a

›

›

L2pSq
`
›

›∇x,z

`

pBtuq
5
a ´ Btu

5
a

˘›

›

L2pSq

¯

›

›∇x,zu
5
a

›

›

L2pSq

` C
´

›

›ω1∇x,zu
5
1

›

›

L2pSq
`
›

›∇x,z

`

pBtuq
5
1 ´ Btu

5
1

˘
›

›

L2pSq

¯

›

›∇x,zu
5
1

›

›

L2pSq
.

From (5.95), we already have that
›

›∇x,zu
5
i

›

›

L2pSq
ď C p|BU2|L2 ` |U2|L2q , i “ 1, a.

The estimation
›

›ω1∇x,zu
5
i

›

›

L2pSq
ď C p|BU2|L2 ` |U2|L2q , i “ 1, a, (5.106)

follows from the computations in the proof of (5.102) (swapping ωa for ω1) and Lemma 5.15.
Finally, we have that

}∇x,z ppBtuq
e
i ´ Btu

e
i q}L2pSq ď

C

A

`

|BU2|L2pRq ` |U2|L2pRq

˘

, i “ 1, a

Indeed, notice that
`

pBtuq
5
j ´ Btu

5
j

˘

solves
"

∇x,z ¨ Pj∇x,z

`

pBtuq
5
j ´ Btu

5
j

˘

“ ∇x,z ¨ BtPj∇x,zu
5
j px, zq P S,

`

pBtuq
5
j ´ Btu

5
j

˘

|z“0 “ 0, B
Pj
n

`

pBtuq
5
j ´ Btu

5
j

˘

|z“´1 “ 0.

Energy estimates and the coercivity of Pj, gives us
›

›∇x,z

`

pBtuq
5
j ´ Btu

5
j

˘
›

›

2

L2pSq
ď
›

›BtPj∇x,zu
5
j

›

›

2

L2pSq
ď
›

›ω1∇x,zu
5
j

›

›

2

L2pSq
.

Then, thanks to (5.106), we conclude.

�

Proof of (5.60) in Lemma 5.18. As we did for the proof of (5.59), we write

prBx,Gc,a ´ Gc,1su, uq “
ż

S

BxPa∇x,zu
5
a ¨∇x,zu

5
adxdz ´ 2

ż

S

Pa∇x,z

`

pBxuq
5
a ´ Bxu

5
a

˘

¨∇x,zu
5
adxdz

´

ż

S

BxP1∇x,zu
5
1 ¨∇x,zu

5
1dxdz ` 2

ż

S

P1∇x,z

`

pBxuq
5
1 ´ Bxu

5
1

˘

¨∇x,zu
5
1dxdz.
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Notice that, since P1 only depends on the solitary wave Qc, we have that

cBxP1 “ ´BtP1.

In a similar way, given that most entries of Pa also depend on Qc, to derivate such terms
in time is actually to compute a derivative in space. In consequence, one can use the same
arguments as in the proof of (5.59) to obtain the desired result.

The objects that actually create a different situation are the ones that involve the changing
bottom a1pεxq. For these terms, we integrate by parts to avoid dealing with a2pεxq. Indeed,
suppose we are in the case i “ 1. After integration by parts, and considering again the weight
ωa (5.91), to conclude, one needs to find an estimation for

›

›ωa∇x,zBxu
5
a

›

›.

Let us prove that
›

›ωa∇x,zBxu
5
a

›

› ď
C

A
p|BU2|L2 ` |U2|L2q .

We have that ωaBxu5a solves the equation
"

∇x,z ¨ Pa∇x,z

`

ωaBxu
5
a

˘

“ ´rωa,∇x,z ¨ Pa∇x,zsBxu
5
a ´ ωa∇x,z ¨ BxPa∇x,zu

5
a px, zq P S,

Bxu
5
a|z“0 “ Bxu, BPan

`

ωaBxu
5
a

˘

|z“´1 “ ´rωa, BnnPasu5a.

Then, if we write
ωaBxu

5
a “ v `mpz, |D|qpωaBxuq,

we have that v solves
"

∇x,z ¨ Pa∇x,zv “ f px, zq P S,
v|z“0 “ 0, BPan v|z“´1 “ ´rωa, B

Pa
n su

5
a.

where

f “ ´rωa,∇x,z ¨ Pa∇x,zsBxu
5
a ´ ωa∇x,z ¨ BxPa∇x,zu

5
a ´∇x,z ¨ Pa∇x,z pmpωaBxuqq .

We argue as in the proof of Proposition 5.4, using energy estimates, Poincaré inequality, the
coercivity of Pa and the fact that

rωa,∇x,z ¨ Pa∇x,zs “ pHaε ` ηq rωa, B
2
xs

´ ppz ` 1qBxη ` zHa
1
εq rωa, BxsBz

to get that, for δ ą 0 sufficiently small, there exists C ą 0 such that

}v}L2pSq ď C
›

›ωaBxPa∇x,zu
5
a

›

›

L2pSq
` }Pa∇x,zmpωaBxuq}L2pSq

ď C
›

›ωa∇x,zu
5
a

›

›

L2pSq
` }∇x,zmpωaBxuq}L2pSq .

To treat }∇x,zmpωaBxuq}L2pSq, we use the argument in step a). of the proof of (5.98) and
obtain

}∇x,zmpωaBxuq}L2pSq ď
C

A
p|BU2|L2 ` |U2|L2q .

The above comes from

}∇x,zmpωaBxuq}L2pSq ď pδ ` 1q|BpωaBxuq|L2
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and 5.94, where we use integration by parts on to pass the derivative in space from u to ωa,
and so

}∇x,zpωaBxuq
:
} ď }χpz|D|qBxpωaBxuq} ` }χ

1
pz|D|q|D|ωaBxu}

�

Proof of (5.61) in Lemma 5.18. We begin the proof noticing that we can write

prrBt,Gas, χisχiU2, U2q “ Bt
``

Gaχ2
iU2

˘

, U2

˘

´
``

Gaχ2
iU2

˘

, BtU2

˘

´
`

GcBtpχ2
iU2q, U2

˘

´ Bt pχi pGaχiU2q , U2q ` pBtχi pGaχiU2q , U2q

` pχi pGaχiU2q , BtU2q ` pχiGaBtpχiU2q, U2q .

As we did before, in the proof of (5.59), if u, v P 9H1{2pRq and u5, v5 define the solution to the
elliptic equation (5.88) associated to u and v respectively, then, from Divergence Theorem,

pGau, vq “
ż

S

Pa∇x,zu
5
¨∇x,zv

5dxdz.

Therefore, in a more explicit fashion, one has

prrBt,Gas, χisu, vq “ Bt

ż

S

Pa∇x,zpχiuq
5
¨∇x,zv

5dxdz ´

ż

S

Pa∇x,zpχiuq
5
¨∇x,zpBtvq

5dxdz

´

ż

S

Pa∇x,zpBtpχiuqq
5
¨∇x,zv

5dxdz ´ Bt

ż

S

χiPa∇x,zu
5
¨∇x,zv

5dxdz

´ Bt

ż

S

∇x,zχi ¨ Pa∇x,zu
5v5dxdz `

ż

S

pBtχiqPa∇x,zu
5
¨∇x,zv

5dxdz

`

ż

S

∇x,zpBtχiq ¨ Pa∇x,zu
5v5dxdz `

ż

S

χiPa∇x,zu
5
¨∇x,zBtv

5dxdz

`

ż

S

∇x,zχi ¨ Pa∇x,zu
5
Btv

5dxdz `

ż

S

χiPa∇x,zpBtuq
5
¨∇x,zv

5dxdz

`

ż

S

∇x,zχi ¨ Pa∇x,zpBtuq
5v5dxdz.

Notice that, if we consider v: “ χpz|D|qv, with χ a smooth, compactly supported cut-off
function, so that v: “ v in the boundary z “ 0. In particular, if we write v5 “ v: ` vr, then
vr solves the equation

$

&

%

∇x,z ¨ Pa∇x,zvr “ ´∇x,z ¨ Pa∇x,zv
: in S,

vr|z“0 “ 0,
BPan u

5
a|z“´1 “ 0,

This means that, for any u P C8b ,
ż

S
Pa∇x,zu

5
¨∇x,zv

5dxdz “

ż

S
Pa∇x,zu

5
¨∇x,zv

:dxdz.

The advantage of considering such function is that we already know from the proof of (5.95)
that

›

›∇x,zv
:
›

›

L2pSq ď C|Bv|L2 . (5.107)
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In addition, we also have that Btv: “ pBtvq
:. Then, computing the derivate in time of the

integrals above , we have

prrBt,Gas, χisu, vq

“

ż

S

´

BtPa∇x,zpχiuq
5
¨∇x,zv

:
´ χiBtPa∇x,zu

5
¨∇x,zv

:
´∇x,zχi ¨ BtPa∇x,zu

5v:
¯

dxdz

`

ż

S

´

Pa∇x,z

`

Btpχiuq
5
´ pBtpχiuqq

5
˘

¨∇x,zv
:
´ χiPa∇x,z

`

Btu
5
´ pBtuq

5
˘

¨∇x,zv
:
¯

dxdz

´

ż

S

∇x,zχi ¨ Pa∇x,z

`

Btu
5
´ pBtuq

5
˘

v:dxdz

“

ż

S

´

BtPa∇x,z

`

pχiuq
5
´ χiu

5
˘

¨∇x,zv
:
` BtPa∇x,zχiu

5
¨∇x,zv

:
¯

dxdz (5.108)

´

ż

S

∇x,zχi ¨ BtPa∇x,zu
5v:dxdz

`

ż

S

Pa∇x,z

`

Btpχiuq
5
´ pBtpχiuqq

5
´ χiBtu

5
` χipBtuq

5
˘

¨∇x,zv
:dxdz

`

ż

S

Pap∇x,zχiq ¨
`

pBtu
5
´ pBtuq

5
q∇x,zv

:
´∇x,z

`

Btu
5
´ pBtuq

5
˘

v:
˘

dxdz.

From now on, we consider the case i “ 1, and assume u “ χ1U2, v “ U2. The case i “ a
can be obtained by symmetric arguments. Then, from (5.108), we have that

prrBt,Gas, χisu, vq ď C
´

›

›∇x,z

`

pχ1uq
5
´ χ1u

5
˘›

›

L2pSq
` }Bxχ1u

5
}L2pSq

¯

›

›∇x,zv
:
›

›

L2pSq

` C
›

›∇x,z

`

Btpχiuq
5
´ pBtpχiuqq

5
´ χiBtu

5
` χipBtuq

5
˘›

›

L2pSq

›

›∇x,zv
:
›

›

L2pSq

` C
`

}Bxχ1∇x,zu
5
}L2pSq ` }Bxχ1∇x,z

`

Btu
5
´ pBtuq

5
˘

}L2pSq

˘
›

›v:
›

›

L2pSq

` C}Bxχ1

`

Btu
5
´ pBtuq

5
˘

}L2pSq

›

›∇x,zv
:
›

›

L2pSq
.

Now, we begin by noticing that, from (5.107), and Poincaré inequality,
›

›v:
›

›

L2pSq
`
›

›∇x,zv
:
›

›

L2pSq
ď C p|BU2|L2 ` |U2|L2q .

Also, from Lemma 5.15 and step c). in the proof of (5.59)

}Bxχ1

`

Btu
5
´ pBtuq

5
˘

}L2pSq ` }Bxχ1∇x,z

`

Btu
5
´ pBtuq

5
˘

}L2pSq

ď
C

A

`

}Btu
5
´ pBtuq

5
}L2pSq ` }∇x,z

`

Btu
5
´ pBtuq

5
˘

}L2pSq

˘

ď
C

A
p|BU2|L2 ` |U2|L2q .

Also, using again Lemma 5.15 and step a). in the proof of (5.59),

}Bxχ1u
5
}L2pSq ` }Bxχ1∇x,zu

5
}L2pSq ď

C

A

›

›u5}L2pSq ` }∇x,zu
5
}L2pSq

˘

ď
C

A
p|BU2|L2 ` |U2|L2q .
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In consequence, we are left to prove the following estimations

›

›∇x,z

`

pχ1uq
5
´ χ1u

5
˘
›

›

L2pSq
ď
C

A
p|BU2|L2 ` |U2|L2q , (5.109)

and, finally,

›

›∇x,z

`

Btpχ1uq
5
´ pBtpχ1uqq

5
´ χ1Btu

5
` χ1pBtuq

5
˘›

›

L2pSq
ď
C

A
p|BU2|L2 ` |U2|L2q , (5.110)

so that we can conclude the desired result.

We begin by noticing that w “ pχ1uq
5 ´ χ1u

5 solves the equation
$

&

%

∇x,z ¨ Pa∇x,zw “ rχ1,∇x,z ¨ Pa∇x,zsu
5 in S,

w|z“0 “ 0,
BPan w|z“´1 “ rχ1, B

Pa
n su

5|z“´1.

Then, the usual energy estimate for this problems leads to

›

›∇x,zpχ1uq
5
´ χ1u

5
›

› ď
C

A

`

}u5}L2pSq ` }∇x,zu
5
}L2pSq

˘

ď
C

A
p|BU2|L2 ` |U2|L2q ,

where we used Lemma 5.15 for the first estimate. Next, we show (5.110). We denote now by
w “ Btpχ1uq

5 ´ pBtpχ1uqq
5 ´ χ1Btu

5 ` χ1pBtuq
5, which solves in S,

∇x,z ¨ Pa∇x,zw “´∇x,z ¨ BtPa∇x,z

`

pχ1uq
5
´ χ1u

5
˘

` rχ1,∇x,z ¨ Pa∇x,zs
`

Btu
5
´ pBtuq

5
˘

` rχ1,∇x,z ¨ Pa∇su5,

and has the boundary conditions

w|z“0 “ 0, B
Pa
n w|z“´1“ 0.

Then, we have the estimate

}∇x,zw}L2pSq ď C

ˆ

›

›∇x,z

`

pχ1uq
5
´ χ1u

5
˘
›

›

L2pSq
`

1

A

›

›Btu
5
´ pBtuq

5
›

›

H1pSq
`

1

A
}u5}H1pSq

˙

.

Ergo, in view of the estimations computed above, we obtained the desired result. �

A.2. Proof of Lemma 5.19

Proof of Lemma 5.19. Using the same notation as in the proof of Lemma 5.18, from Diver-
gence Theorem we have that, for every u, v P C8b pRq,

pGc,au, vq “
ż

S

Pa∇x,zu
5
a ¨∇x,zv

5
adxdz,

where u5a and v5a are the solutions to the elliptic problem without flat bottom (5.88) associated
to u and v respectively. Similarly, for the flat-bottom problem, one has

pGc,1u, vq “
ż

S

P1∇x,zu
5
1 ¨∇x,zv

5
1dxdz.
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In particular, we shall consider u “ χ1U2, and write

ppGc,a ´ Gc,1qu, uq “
ż

S

Pa∇x,zu
5
a ¨∇x,zu

5
adxdz ´

ż

S

P1∇x,zu
5
1 ¨∇x,zu

5
1dxdz

“

ż

S

pPa ´ P1q∇x,zu
5
a ¨∇x,zu

5
adxdz `

ż

S

P1∇x,zpu
5
a ´ u

5
1q ¨∇x,zu

5
adxdz

`

ż

S

P1∇x,zu
5
1 ¨∇x,zpu

5
a ´ u

5
1qdxdz.

Then, using the weight function ωa defined in (5.91), we have that

|ppGc,a ´ Gc,1qu, uq| ď C}ω2∇x,zu
5
a}L2pSq}∇x,zu

5
a}L2pSq

` C}∇x,zpu
5
a ´ u

5
1q}L2pSq

`

}∇x,zu
5
a}L2pSq ` }∇x,zu

5
1}L2pSq

˘

.

Consequenty, from (5.95), (5.102) and (5.103), we obtain the desired estimation.

On the other hand, if u “ χaU2, for this particular case, from the proof of (5.95) and
Lemma 5.15, we have that

}∇x,zu
5
1}L2pSq ď

C

A
p|BU2|L2 ` |U2|L2q . (5.111)

Hence, we decompose

ppGc,a ´ Gc,1qu, uq“
ż

S

Pa∇x,zu
5
a ¨∇x,zu

5
adxdz ´

ż

S

P1∇x,zu
5
1 ¨∇x,zu

5
1dxdz

“

ż

S

Pa∇x,zu
5
a ¨∇x,zpu

5
a ´ u

5
1qdxdz `

ż

S

Pa∇x,zu
5
a ¨∇x,zu

5
1dxdz

´

ż

S

P1∇x,zu
5
1 ¨∇x,zu

5
1dxdz.

This implies that

|ppGc,a ´ Gc,1qu, uq| ď C}∇x,zu
5
a}L2pSq

`

}∇x,zpu
5
a ´ u

5
1q}L2pSq ` }∇x,zu

5
1}L2pSq

˘

` }ω1∇x,zu
5
1}L2pSq}∇x,zu

5
1}L2pSq.

We conclude by using (5.95), (5.102) (with ω1 instead of ωa, which is the appropriate case
when u “ χaU2), (5.103) and (5.111). �

A.3. Proof of Lemma 5.20

This result was actually proved by in [Ming-Rousset-Tzvetkov [14] Lemma 5.8]. Even though
in [14], lemma 5.20 was intended for flat bottom, the idea is based on properties of the
DN operator that both domains (aε “ 0 and aε ‰ 0) share. Nevertheless, for the sake of
completeness, we give the proof here.

Before we start with the proof of Lemma 5.20, we present the following auxiliar Lemma:
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Lemma 5.23. The operator Grηc, 1s verifies

Grηc, aεs “ |Dx| ` G0
c px,Dxq, (5.112)

where G0
c is a bounded (pseudo-differential) operator on Hs of order 0.

We refer to [12, Theorem 3.10] for the proof of the Lemma, or [16, Lemma 3.5] for the
proof in the case d “ 3 and flat bottom.

We can re-write the linear equation (5.47) BtU “ JΛcU as
"

Grηc, aεsU2 “ BtU1BxpvcU1q

PcU1 “ BtU2 ` pwc ` gqU1 ` vcBxU2.
(5.113)

Notice that at the LHS of both equations we have elliptic operator of order 1 and 2. More
precisely,

Pc “ bBx

˜

Bx¨

p1` |Bxηc|2q
3
2

¸

.

is an elliptic operator of order 2 and Grηc, aεs, of order 1. Indeed, this is a consequence of
Lemma 5.23 and the fact that ηc is smooth. From the second equation in (5.113), using the
elliptic operator of order 2, we have that

|U1|Hm`5{2 ď Cm p|BtU2|Hm`1{2 ` |U2|Hm`3{2 ` |U1|Hmq .

Then, from the interpolation inequality

|U1|Hm ď δ|U1|Hm`5{2 ` Cδ|U1|L2 , (5.114)

we obtain
|U1|Hm`5{2 ď Cm p|BtU2|Hm`1{2 ` |U2|Hm`3{2 ` |U1|L2q .

In a similar fashion, using the first equation and the fact that th eDN operator is of order
one,

|U2|Hm`2 ď Cm p|BtU1|Hm`1 ` |U1|Hm`2 ` |U2|L2q .

Then, taking δ sufficiently small,

|U1|Hm`5{2 ` |U2|Hm`2 ď Cm p|BtU1|Hm`1 ` |BtU2|Hm`1{2 ` |U|L2q ,

which is the thesis of the lemma with l “ 0.

For the rest of the cases l ě 0, we proceed with induction argument. We derivate in time
(5.113) and obtain, for the first equation, that

Grηc, aεsBltU2 “ B
l`1
t U1 ` B

l
tBxpvcU1q ´ rB

l
t,GrηcaεssU2 :“ F1.

Then, using Proposition 5.7, we have that

|F1|
m`1
H ď Cm,l

`

|B
l`1
t U1|Hm`1 ` |xBty

lU1|Hm`2 ` |xBty
l´1U2|Hm`2

˘
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Finally, the fact that the DN operator is elliptic, we get

|BtU2|
m`2
H ď Cm,l

`

|B
l`1
t U1|Hm`1 ` |xBty

lU1|Hm`2 ` |xBty
l´1U2|Hm`2

˘

(5.115)

On the other hand, from the second equation in (5.113), derivating l-times in time, we have
that

PcBltU1 “ B
l`1
t U2 ` B

l
tppwc ` gqU1q ` B

l
tpvcBxU2q ´ rB

l
t,PcsU1 “ F2.

We obtain that

|F2|Hm`1{2 ď Cm,l
`

|B
l`1
t U2|Hm`1{2 ` |xBty

lU2|Hm`3{2 ` |xBty
lU1|Hm`5{2

˘

,

and by elliptic regularity,

|B
l
tU1|Hm`5{2 ď Cm,l

`

|B
l`1
t U2|Hm`1{2 ` |xBty

lU2|Hm`3{2 ` |xBty
lU1|Hm`5{2

˘

. (5.116)

We combine (5.115) and (5.116) and obtain

|B
l
tU|Hm`5{2ˆHm`2 ď Cm,l

`

|B
l`1
t U|Hm`1ˆHm`1{2 ` |B

l
tU|Hm`2ˆHm`3{2 ` |xBty

lU|Hm`5{2ˆHm`2

˘

.

We get the desired result after using the interpolation inequality

|BtU|Hm`2ˆHm`3{2 ď δ|BltU|Hm`5{2ˆHm`2 ` Cδ|B
l
tU|L2

and the induction hypothesis.

A.4. Proof of Proposition 5.21

We will use approximate sequence of solutions tUn
u to prove there exists a global in time

solution Ur of (5.85). Let tTnu be a strictly increasing sequence such that Tn ą 0 and
TÑ8 as n Ñ 8. Assume that Un is the solution to (5.85) in the time interval r´Tn,´T s,
for Tn, T ě (possibly close together), which is possible (at least in a smaller time interval
r´Tn,´T s, 0 ď T ď Tn) because the water-waves problem is locally well-posed.

To prove global existence, we shall make use of an a priori estimate for the solution Ur,
stated in Proposition 5.24. This proposition can be shown using the same arguments as
in [16, Theorem 7.1]. Indeed, it follows after an exhaustive study of the DN operator and
estimations regarding its derivatives, estimations that still hold in our case. We shall give a
outline of the proof after proving Proposition 5.21. It reads as follows:

Proposition 5.24. Let Un be a smooth of (5.85) on r´Tn,´T s, for Tm, T ě 0, satisfying
h}aε}L8 ´ }ηap}L8 ´ }ηr}L8 ě hmin ą 0. Then, for any m ě 2, s ě 5, and t P r´Tn,´T s, we
have the estimate

|Un
ptq|2Xm`3 ď ω

´

|rap|Xm`3
t

` |Uap|Xm`s
t

` |Un
|Xm`3

t

¯

ˆ

|rap|Xm`3
t

`

ż t

´Tn

`

|Un
pτq|2Xm`3 ` |rappτq|Xm`3

˘

dτ

˙

where ω is a continuous increasing function.
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Here, the seminorms | ¨ |Xk
t
denote the seminorm in Xk defined in a finite interval space,

in this case, defined in r´Tn,´T s.

We use Proposition 5.24 to prove that Un is well defined in the whole time interval
r´Tn, 0s. Because of the decay estimate for rap and Uap, from Proposition 5.24, we have that
for t P r´Tn,´T s,

|Un
ptq|2Xm`3 ď ω

´

C̃m,N ` Cm,Nρ` |Un
|Xm`3

t

¯

ˆ
ż t

´Tn

|Un
pτq|2Xm`3dτ ` Ap2N`1q{4CN,spδ0qρ

2pN`1qe´pN`1qδ0c|t|

˙

.

Define

T ˚ “ inftT P r0, Tns : @t P r´Tn,´T s, |Un
ptq|Xm`3 ď 1, haε ´ }ηap}L8 ´ }ηr}L8 ě hmin ą 0u

In particular, if t P r´Tn,´T ˚s, we obtain

|Un
ptq|2Xm`3

ď ω
´

C̃m,N ` Cm,Nρ
¯

ˆ
ż t

´Tn

|Un
pτq|2Xm`3dτ ` Ap2N`1q{4CN,spδ0qρ

2pN`1qe´pN`1qδ0c|t|

˙

.

We note that, using the equation above,

d

dt

ˆ

e´ωpC̃m,N`Cm,Nρqt
ż t

´Tn

|Un
pτq|2Xm`3dτ

˙

ď ω
´

C̃m,N ` Cm,Nρ
¯

e´ωpC̃m,N`Cm,NρqtAp2N`1q{4CN,spδ0qρ
2pN`1qe´pN`1qδ0c|t|.

(5.117)

Now, since ω is continuous, we can take N large enough and ρ small enough (that is, taking
A very large, because ρ “ e´δ0A) such that

´pN ` 1qδ0c ą ω
´

C̃m,N ` Cm,Nρ
¯

.

This implies that we can integrate in (5.117), and obtain
ż t

´Tn

|Un
pτq|2Xm`3dτ ď Ap2N`1q{4CN,spδ0qρ

2pN`1qe´pN`1qδ0c|t|,

which ultimately leads to the following estimation for any t P r´Tn,´T ˚s:

|Un
ptq|2Xm`3 ď Ap2N`1q{4CN,spδ0qρ

2pN`1qe´pN`1qδ0c|t|. (5.118)

Taking ρ large, so that h}aε}L8´}ηap}L8´}ηr}L8 ě hmin ą 0 and alsoAp2N`1q{4CN,spδ0qρ
2pN`1q ă

1, by the definition of ´T ˚ ď 0, which means that we can extend Un to the whole interval
r´Tn, 0s.

We are left to prove global existence of equation (5.85). We use compactness argument to
find Ur as a limit of tUn

u.
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Let χ P C80 p´1{2, 1{2q such that χpτq “ 1 for τ P p´1{4, 1{4q. We define

Ũ
n
ptq “ χ

ˆ

t

´Tn

˙

Un
ptq,

where Un is extended as zero for t ď ´Tn. Consequently, derivating in time

BtŨ
n
ptq “ ´

1

Tn
χ1
ˆ

x

´Tn

˙

Un
ptq ` χ1

ˆ

x

´Tn

˙

BtUn
ptq.

Then, for t ď 0, from (5.118) we get the following estimation for Ũ
n
and BtŨ

n
,

|Ũn
ptq|2

Hm`4ˆHm`7{2 ď Ap2N`1q{4CN,spδ0qρ
2pN`1qe´pN`1qδ0c|t| and

|BtŨ
n
ptq|Hm`3ˆHm`5{2 ď ApN`1q{4CN,spδ0qρ

2pN`1qe´pN`1qδ0c|t|.

Finally, we obtain that there exists a subsequence tŨ
nk
u and a limit

Ur P L
8
`

p´8, 0s, Hm`4
ˆHm`7{2

˘

such that
Ũ
nk
Ñ Ur in Cloc

´

p´8, 0s, Hm`3
loc ˆH

m`5{2
loc

¯

as nk Ñ 8,

and
|Urptq|

2

Hm`4ˆHm`7{2 ď Ap2N`1q{4CN,spδ0qρ
2pN`1qe´pN`1qδ0c|t| for t P p´8, 0s

We have concluded the proof of Proposition 5.21.

A.4. Proof of proposition 5.24

The idea is to derivate equation (5.85) at least three times so that a linearised equation
(linearisation around U) is obtained, and then focus on finding estimations from the already
known Uap and rap. To make explanation simpler, let us consider briefly the sistem BtU “

FpUq, for a generic solutionU. As in [10], we shall compute three derivatives of BtU “ FpUq.
We begin by derivating one time the first equation of the system (that is Btη “ Grη, aεsϕ),
we have

B
2
t η “ Grη, aεsBtϕ`DηGrη, aεsϕ ¨ Btη. (5.119)

Using the shape derivatives for the DN operator, stated in Proposition 5.6, we obtain

B
2
t η “ Grη, aεsBtϕ´ Grη, aεspZ̃rη, ϕsBtηq ´ Bxpṽrη, ϕsBtηq, (5.120)

where
Z̃rη, ϕs “

Grη, aεsϕ` BxϕBxη
1` |Bxη|2

and ṽrη, ϕs “ Bxϕ´ Z̃rη, ϕsBxη.

We note that equation (5.120) is actually the first equation of the linearised system around
U (see Subsection 5.2.3). Derivating (5.119) two more times, we obtain the following

BtB
3
t η “ Grη, aεsB3

tϕ`DηGrη, aεsϕ ¨ B
3
t η `R1rUs `Q1rUs, (5.121)
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where the nonlinear terms are defined by

Q1rUs “ 3DηGrη, aεsB2
tϕ ¨ Btη (5.122)

and
R1rUs “

ÿ

Dn
ηGrη, aεsB

γ
t ϕ ¨ pB

β1
t η, . . . , B

βn
t ηq. (5.123)

where the sum is taken on indices satisfying

1 ď n ď 3, β1 ` . . . βn ` γ “ 3, γ ď 1, 1 ď βi ă 3, @i.

Taking into account the notation Z̃, ṽ for the shape derivative of the DN operator, (5.121)
turns into

BtB
3
t η “ Grη, aεsB3

tϕ´ Grη, aεspZ̃rη, ϕsB3
t ηq ´ Bxpṽrη, ϕsB

3
t ηq `R1rUs `Q1rUs.

Just like (5.120), the first three terms of the RHS compose the first equation of the linearised
system around U, evaluated in BU. This will be more evident once we have computed the
derivative of the second equation of BtU “ FpUq. Indeed, after derivating one time, we have
that

B
2
tϕ “ ´ṽBxBtϕ` Z̃Grη, aεsBtϕ´ Z̃Grη, aεspZ̃Btηq ´

´

g ` Z̃Bxṽ
¯

Btη ` PrηsBtη

where, for simplicity, Z̃ “ Z̃rη, ϕs, ṽ “ ṽrη, ϕs, and

Prηs “ bBx

˜

Bx¨

p1` |Bxη|2q
3{2

¸

.

Replicating the idea implemented above, we derivate two more times and obtain the following

BtB
3
tϕ “´ ṽBxB

3
tϕ` Z̃Grη, aεsB3

tϕ´ Z̃Grη, aεspZ̃B3
t ηq

´

´

g ` Z̃Bxṽ
¯

B
3
t η ` PrηsB3

t η `Q2rUs `R2rUs,

for
Q2rUs “ 3βBx

`

DPrηs ¨ pBtBxη, B2
t Bxηq

˘

(5.124)

and
R2rUs “ ´rB2

t , ṽsBxBtϕ` rB
2
t , Z̃Grη, aεsBtϕs ¨ Btη

` rB
2
t , Z̃ṽsBxBtη `D

2Prηs ¨ pBxBtη, BxBtη, BxBtηq.
(5.125)

In particular, gathering both equations, we have an almost linear system

BtB
3
tU “ J

`

ΛrUsB3
tU`QrUs

˘

`RrUs,

for Q “ pQ1,Q2q
t and R “ pR1,R2q

t.

Now, let us go back to our subject of interest, system (5.85). From now on, U shall denote
U “ Uap `Ur. After derivating three times, equation (5.85) turns into

BtB
3
tUr “ J

`

ΛrUsB3
tUr `QrUs ´QrUaps

˘

` S. (5.126)
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where
S “ RrUs ´RrUaps ` J pΛrUs ´ ΛrUapsq BUap ´ Brap.

Proposition 5.24 is actually a consequence of combining two a priori estimates, one re-
garding the nonlinear terms in (5.85) and another one, regarding a more explicit description
of the behaviour of the solution to Ur. Indeed, we have the following:

Proposition 5.25. Let Ur be a smooth of (5.85) on r´T, 0s, for T ě 0, satisfying h}aε}L8´
}ηap}L8 ´ }ηr}L8 ě hmin ą 0. Then, for any m ě 2, s ě 5, and t P r´T, 0s, we have the
estimate

|Urptq|
2
Xm`3 ď ω

´

|rap|Xm`3
t

` |Uap|Xm`s
8,t

` |Ur|Xm`3
t

¯

ˆ

|rap|Xm`3
t

`

ż t

´Tn

`

|Urpτq|
2
Xm`3 ` |Spτq|Xm`3

˘

dτ

˙

where ω is a continuous increasing function.

In Proposition 5.25, the seminorm | ¨ |Xk
t
is to be understand as the Xk-seminorm defined

in the time interval r´T, 0s.

To estimate the source S, since we rap is already controlled, we need to understandRrUs´
RrUaps ` J pΛrUs ´ ΛrUapsq BUap. To this end, we have the following result:

Proposition 5.26. For m ě 2 and s ě 5 we have the estimate

|RrUs ´RrUaps ` J pΛrUs ´ ΛrUapsq B
3
tUap|Xm ď ωp|Uap|Xm`s ` |U|Xm`3

8
q|Ur|Xm`3 .

To simplify computations, from now on we shall denote Bα “ B
β
t B

γ
x , β ` γ “ |α|. Also,

throughout we shall use xBym “ pBαq|α|ďm, so that if | ¨ | is a (semi) norm, xBymu| denotes the
sum of (semi) norms of all the components of xBymu. In other word,

ÿ

|α|ďm

}B
α
¨ }H1 « }xBy

m
¨ }H1

In the following subsection, we have some apriori estimates regarding the DN operator
and the Hs spaces we are dealing with. In Subsection A.4.2 we give the proof of Proposition
5.26. Finally, in Subsection A.4.3, we focus on the proof of Proposition 5.25.

A.4.1 Useful estimations to prove Propositions 5.25 and 5.26

First, we shall give a few a priori estimates on the spacesHs used in the proofs of Propositions
5.25 and 5.26

We shall make use of the following proposition:

186



Proposition 5.27. For m ě 2, if σ “ 1{2 or σ “ 1, we have

}xBy
m
puvq}HσpRq ď C}xBymu}HσpRq}xBy

mv}HσpRq,

}xBy
m
puvq}HσpRq ď C}xBymu}W 1,8pRq}xBy

mv}HσpRq.
(5.127)

and if σ “ 0, 1{2, 1

|BxBympuvq| 9H
1{2
˚ pRq

ď C|xBymu|W 1,8 |xBy
mv| 9H

1{2
˚ pRq

,

|BxBympuvq| 9H
1{2
˚ pRq

ď C|xBymu| 9H
1{2
˚ pRq

|xBy
mv| 9H

1{2
˚ pRq

.
(5.128)

Proof of Proposition 5.27. The first estimation in (5.127) for σ “ 1 follows from the fact that
H1 is an algebra in dimension d “ 1.

Let us assume that σ “ 1{2 and consider α, β such that α ď β, α ` β “ m.

When β ď m´ 1, we have that

}B
αuBβv}H1{2pRq À }B

αuBβv}H1pRq À }B
αu}H1pRq}B

βv}H1pRq

À }xBy
mu}L2pRq}xBy

mv}L2pRq

À }xBy
mu}H1{2pRq}xBy

mv}H1{2pRq.

(5.129)

On the other hand, if β “ m and α “ 0, using Sobolev embedding inequality } ¨ }L8 ď } ¨ }H1 ,
valid in one dimension, we have that

}uxBymv}
H1{2pRq

À }u}L8pRq}xBy
mv}H1{2pRq À }u}H1pRq}xBy

mv}H1{2pRq.

Finally, since m ě 2,

}uxBymv}
H1{2pRq

À }xBy
mu}H1{2pRq}xBy

mv}H1{2pRq.

The estimation is completed by summing all the terms involving the norm }xBym ¨ }Hσ .

We prove now the second estimation in (5.127). Using Sobolev-Slobodeckij norm definition
we have that

}f}2H1{2pRq “ }f}
2
L2pRq `

ż

R

ż

R

|fpxq ´ fpyq|2

|x´ y|2
dxdy.

Then, we compute

}uv}2H1{2 À }u}
2
L8pRq}v}

2
L2pRq `

ż

R

ż

R

|vpxq ´ vpyq|2|upxq|2

|x´ y|2
dxdy

`

ż

R

ż

R

|upxq ´ upyq|2|vpyq|2

|x´ y|2
dxdy

À }u}2L8pRq}v}
2
L2pRq ` }u}

2
L8pRq}v}

2
H1{2pRq `

ż

R

ż

R

|upxq ´ upyq|2|vpyq|2

|x´ y|2
dxdy.

For the last integral, we write
ż

R

ż

R

|upxq ´ upyq|2|vpyq|2

|x´ y|2
dxdy

“

ż

R

ż

|x´y|ď1

|upxq ´ upyq|2

|x´ y|2
dx|vpyq|2dy `

ż

R

ż

|x´y|ě1

|upxq ´ upyq|2

|x´ y|2
dx|vpyq|2dy

À }u}C1pRq}v}L2pRq ` }u}L8pRq}v}L2pRq.

187



Hence, we find that

}uv}2H1{2pRq À }u}
2
L8pRq}v}

2
L2pRq ` }u}

2
L8pRq}v}

2
H1{2pRq ` }u}C1pRq}v}L2pRq.

Using Morrey’s inequality, we obtain the following

}uv}2H1{2pRq À }u}
2
W 1,8pRq}v}

2
H1{2pRq.

We conclude bu using the same idea as above (separating the derivative into α, β and making
a similar argument as in equation (5.129)). We leave the case H1, since it follows from using
similar reasoning.

Finally, let us prove the first equation (5.128). We consider α, β such that α ď β, α`β “
m.

Let us assume β ď m´ 1. We have that

|B
αuBβv|

H
1{2
˚ pRq

“ }BBαuBβv}L2pRq À }B
αu}L8pRq}BB

βv}L2pRq.

Since α ‰ 0,
|B
αuBβv|

H
1{2
˚ pRq

À }xBy
mu}W 1,8pRq|xBy

mv| 9H
1{2
˚ pRq

.

On the other hand, if β “ m and α “ 0,

|uBmv| 9H1{2
˚ pRq

À |u|L8pRq|xBy
mv| 9H

1{2
˚ pRq

À }u}W 1,8pRq|xBy
mv| 9H

1{2
˚ pRq

.

We focus on the second equation of (5.128). Take α, β such that α ď β ď m.

Assume α ď β ď m ´ 1. From the definition of B, |B ¨ |Hs ď |B
1{2
x ¨ |Hs´1{4 . This implies

the following

|BBαuBβv|L2 À |B1{2
B
αu|H3{4 |B1{2

B
αv|H3{4 À |B

1{2
x B

αu|H1{2 |B
1{2
x B

αv|H1{2 .

Notice that |B1{2
x ¨ |2

H1{2 “ | ¨ |
2
9H1{2 ` | ¨ |

2
9H1 . For γ “ 1{2 or γ “ 1, we claim the following:

|B
γ
xf |L2 À |Bf |L2 ` |BBγxf |L2 .

This inequality follows from analysing separately low and high frequencies. We conclude
(5.128) by noticing that α, β ă m.

The case α “ 0 and β “ m follows using the idea for (5.127). �

The most challenging terms to estimate will be the ones involving the DN operator, since
it is a nonlinear term that interacts non-locally with the surface η. We give the following two
results to help deal with said terms:

Proposition 5.28. Assume η0, η1 such that h}aε}L8 ´ }η0} ´ }η1} ą 0. For every m ě 2,
and σ “ ´1{2, 1, 1{2, we have the estimates:

|xBy
mGrη0 ` η1, aεsψ|HσpRq ď ω

´

|xBy
mη0|H5{2pRq ` |xBy

mη1|Xm`3
8

¯

|xBy
mBψ|Hσ`1{2pRq (5.130)
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and
|xBy

m
`

Dn
ηGrη0 ` η1, aεsψ ¨ pζ1, . . . , ζnq

˘

|HσpRq

ď ω
´

|xBy
mη0|H5{2pRq ` |xBy

mη1|Xm`3
8

¯

|xBy
mBψ|Hσ`1{2pRq

˜

l
ź

j“1

|ζj|Xm`3
8

¸˜

n
ź

j“l`1

|xBy
m`1ζj|H1

¸

.

(5.131)

Moreover,
}rB

α,Grη0 ` η1, aεssψ}H´1{2pRq

ď ω
´

|xBy
mη0|H5{2pRq ` |xBy

mη1|Xm`3
8

¯

|xBy
m´1ψ| 9H

1{2
˚ pRq

.
(5.132)

In addition, we also present the following result:

Proposition 5.29. Assume η0, η1 such that h}aε}L8 ´ }η0} ´ }η1} ą 0. For every m ě 0,
and σ P p1, 2q, we have the estimates:

}xBy
mGrη0 ` η1, aεsψ}CσpRq ď ω

`

}xBy
m`3η0}H1pRq ` }xBy

mη1}Cσ`1

˘

}xBy
mψ}Cσ`1pRq (5.133)

and

}xBy
m
`

Dn
ηGrη0 ` η1, aεsψ ¨ pζ1, . . . , ζnq

˘

}CσpRq

ď ω
`

}xBy
m`3η0}H1pRq ` }xBy

mη1}Cσ`1

˘

p}xBy
mζ1}Cσ`1 . . . }xBymζn}Cσ`1q }xBy

mψ}Cσ`1pRq.
(5.134)

Moreover, for n ą l ě 0,

}xBy
m
`

Dn
ηGrη0 ` η1, aεsψ ¨ ph1, . . . , hnq

˘

}H1pRq

ď ω
´

}xBy
m`3η0}H1pRq ` }xBy

mη1}Xm`3
8

¯

˜

l
ź

j“1

}ζj}Xm`3
8

¸˜

n
ź

j“l`1

}xBy
m`1ζj}H1

¸

}xBy
mψ}Xm`3

8 pRq.

(5.135)

The proofs of Propositions 5.28 and 5.29 are obtained by adapting the demonstrations of
results proved in [16, Proposition 7.3] and [16, Proposition 7.13]. Indeed, it is sufficient to
use the fact that

}∇φ}Hs ď Cs,d|Bψ|Hs ,

(see [11, Corollary 2.40]) where φ is the solution of the elliptic equation associated with ψ as
the border of the domain.

Notice that Propositions 5.28 and 5.29 enable estimations for the DN operator by η0, η1,
even if one of them is not particularly smooth. In our case, this will be very helpful, as we
will find that ηr might not be (a priori) as regular as ηap.

A.4.1 Proof of Proposition 5.26

We begin by estimating the first term, RrUs ´RrUaps:
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Proposition 5.30. For m ě 2 and s ě 5,

|xBy
mR1rUs ´R1rUaps|H1 ď ω

´

|Uap|Xm`s
8

` |Ur|Xm`3

¯

|Ur|Xm`3 ,

|xBy
mR2rUs ´R2rUaps| 9H

1{2
˚
ď ω

´

|Uap|Xm`s
8

` |Ur|Xm`3

¯

|Ur|Xm`3 .

Proof. We split the proof into various steps, one for each term involved.

Step 1: We prove that

|xBy
m
pR1rUs ´R1rUapsq |H1 ď ω

´

|Uap|Xm`s
8

` |Ur|Xm`3

¯

|Ur|Xm`3 . (5.136)

Recall the definition of R1,

R1rUs “
ÿ

Dn
ηGrη, aεsB

γ
t ϕ ¨ pB

β1
t η, . . . , B

βn
t ηq.

with 1 ď n ď 3, β1 ` . . . βn ` γ “ 3, γ ď 1, 1 ď βi ă 3, @i. Then, we need to estimate terms
as

xBy
m

ˆ

Dn
ηGrηap ` ηr, aεsB

γ
t pϕap ´ ϕrq ¨ pB

β1
t pηap ` ηrq, . . . , B

βn
t pηap ` ηrqq

´Dn
ηGrηap, aεsB

γ
t ϕap ¨ pB

β1
t ηap, . . . , B

βn
t ηapq

˙

.

(5.137)

Since Dn
ηGrη, aεsφ ¨ pζ1, ¨ ¨ ¨ , ζnq is lineal with respect to the variables φ and ζi, 1 ď i ď n,

then (5.137) can be simplifed into terms such as

m
´

Dn
η

`

Grηap ` ηr, aεs ´Dn
ηGrηap, aεs

˘

B
γ
t ϕap ¨ pB

β1
t ηap, . . . , B

βn
t ηapq

¯

, (5.138)

m
´

Dn
ηGrηap ` ηr, aεsB

γ
t ϕr ¨ pB

β1
t ηap, . . . , B

βl
t ηap, B

βl`1

t ηr, ¨ ¨ ¨ B
βn
t ηrq

¯

, 0 ď l ď n, (5.139)

m
´

Dn
ηGrηap ` ηr, aεsB

γ
t ϕap ¨ pB

β1
t ηap, . . . , B

βl
t ηap, B

βl`1

t ηr, ¨ ¨ ¨ B
βn
t ηrq

¯

, 0 ď l ď n´ 1, (5.140)

and βi “ βσpiq for some permutation σ of t1, ¨ ¨ ¨nu. Then, using Proposition 5.28, we obtain
the desired estimation for (5.139) and (5.140). For (5.138), we can write

Dn
η

`

Grηap ` ηr, aεs ´Dn
ηGrηap, aεs

˘

B
γ
t ϕap ¨ pB

β1
t ηap, . . . , B

βn
t ηapq

“

ż 1

0

d

ds
Dn
ηGrηap ` sηr, aεsB

γ
t ϕap ¨ pB

β1
t ηap, . . . , B

βn
t ηapqds

“

ż 1

0

Dn`1
η Grηap ` sηr, aεsBγt ϕap ¨ pB

β1
t ηap, . . . , B

βn
t ηap, ηrqds.

Using Proposition (5.29) (in particular, (5.135)), we conclude (5.136).

Step 2: We prove that

|xBy
m`2

´

Z̃rUs ´ Z̃rUaps

¯

| 9H
1{2
˚
ď ω

´

|Uap|Xm`s
8

` |Ur|Xm`3

¯

|Ur|Xm`3 , (5.141)
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and, for γ ě 2, and ψ sufficiently smooth,

|xBy
m
´

B
γZ̃rUsψ

¯

| 9H
1{2
˚
ď ω

´

|Uap|Xm`s
8

` |U|Xm`3

¯

|xBy
mψ| 9H

1{2
˚
. (5.142)

Going back to the proof of (5.141), we will denote

Z̃1rη, ϕs “
Grη, aεsϕ
1` |Bxη|2

, Z2rη, ϕs “
BxηBxϕ

1` |Bxη|2
.

We focus on Z̃1, since it involves the DN operator, which implies more analysis. We have
that

Z̃1rUs ´ Z̃2rUaps “

ˆ

1

1` |Bxη|2
´

1

1` |Bxηap|2

˙

Grηap, aεsϕap

`
1

1` |Bxη|2
pGrη, aεs ´ Grηap, aεsqϕap `

1

1` |Bxη|2
Grη, aεsϕ.

(5.143)

To treat the first term in (5.143), we use Proposition 5.27 and find
ˇ

ˇ

ˇ

ˇ

xBy
m`2

ˆˆ

1

1` |Bxη|2
´

1

1` |Bxηap|2

˙

Grηap, aεsϕap
˙ˇ

ˇ

ˇ

ˇ

9H
1{2
˚

À

ˇ

ˇ

ˇ

ˇ

xBy
m`2

ˆ

1

1` |Bxη|2
´

1

1` |Bxηap|2

˙
ˇ

ˇ

ˇ

ˇ

9H
1{2
˚

ˇ

ˇxBy
m`2

pGrηap, aεsϕapq
ˇ

ˇ

W 1,8 .

We apply Proposition 5.27 several times and obtain
›

›

›

›

xBy
m`2

ˆ

1

1` |Bxη|2
´

1

1` |Bxηap|2

˙
›

›

›

›

H1{2

À ω p}Uap}Xm`s ` }U}Xm`2q }Ur}Xm`3 . (5.144)

Also, from (5.133), we have
›

›xBy
m`2

pGrηap, aεsϕapq
›

›

W 1,8 À ω p|Uap|Xm`sq .

Now, we focus, on the second term of (5.143). We notice that if ψ is sufficiently smooth,
ˇ

ˇ

ˇ

ˇ

xBy
m`2

ˆ

1

1` |Bxη|2
ψ

˙
ˇ

ˇ

ˇ

ˇ

9H
1{2
˚

ď ω
´

|Uap|Xm`s
8

` |Ur|Xm`3

¯

|ψ| 9H
1{2
˚
. (5.145)

Indeed, we can write
ˇ

ˇ

ˇ

ˇ

xBy
m`2

ˆ

1

1` |Bxη|2
ψ

˙
ˇ

ˇ

ˇ

ˇ

9H
1{2
˚

ď

ˇ

ˇ

ˇ

ˇ

xBy
m`2

ˆˆ

1

1` |Bxη|2
`

1

1` |Bxηap|2

˙

ψ

˙
ˇ

ˇ

ˇ

ˇ

9H
1{2
˚

`

ˇ

ˇ

ˇ

ˇ

xBy
m`2

ˆ

1

1` |Bxη|2
ψ

˙ˇ

ˇ

ˇ

ˇ

9H
1{2
˚
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Then, we use Proposition 5.27 and obtain
ˇ

ˇ

ˇ

ˇ

xBy
m`2

ˆ

1

1` |Bxη|2
ψ

˙
ˇ

ˇ

ˇ

ˇ

9H
1{2
˚

ď

ˇ

ˇ

ˇ

ˇ

xBy
m`2

ˆ

1

1` |Bxη|2
`

1

1` |Bxηap|2

˙
ˇ

ˇ

ˇ

ˇ

9H
1{2
˚

ˇ

ˇxBy
m`2ψ

ˇ

ˇ

9H
1{2
˚

`

ˇ

ˇ

ˇ

ˇ

xBy
m`2

ˆ

1

1` |Bxη|2

˙
ˇ

ˇ

ˇ

ˇ

9H
1{2
˚

ˇ

ˇxBy
m`2ψ

ˇ

ˇ

9H
1{2
˚

We conclude (5.145) after applying Proposition 5.27 several times, like we did for (5.144). In
particular, estimation (5.145) (and the fact that | ¨ | 9H1{2 ď | ¨ |H1) implies

ˇ

ˇ

ˇ

ˇ

xBy
m`2

ˆ

1

1` |Bxη|2
pGrη, aεs ´ Grηap, aεsqϕap

˙
ˇ

ˇ

ˇ

ˇ

9H
1{2
˚

ď ω
´

|Uap|Xm`s
8

` |Ur|Xm`3

¯

|xBy
m`2

ppGrη, aεs ´ Grηap, aεsqϕapq |H1 .

Then, we need to understand the term pGrη, aεs ´ Grηap, aεsqϕap. Since η “ ηr ` ηapa, we
write

B
2
pGrη, aεs ´ Grηap, aεsqϕap “ B2

ˆ
ż 1

0

DηGrsηr ` ηap, aεsϕap ¨ ηrds
˙

.

In addition, we have that B2 pDηGrsηr ` ηap, aεsϕap ¨ ηrq can be express as a sum of terms
such as

ż 1

0

Dn
ηGrsηr ` ηap, aεsBβϕap ¨ pηγ1r , Bγ2h1, ¨ ¨ ¨ , B

γnhn´1qds,

n ě 1, hi P tηr, ηapu, γ ď 2, 1 ď i ď n´1. Thus, we can use equation (5.135) from Proposition
5.29, like we did in Step 1, to get

|xBy
m`2

ppGrη, aεs ´ Grηap, aεsqϕapq |H1 ď ω
´

|Uap|Xm`s
8

` |Ur|Xm`3

¯

|Ur|Xm`3 ,

which ultimately leads to
ˇ

ˇ

ˇ

ˇ

xBy
m`2

ˆ

1

1` |Bxη|2
pGrη, aεs ´ Grηap, aεsqϕap

˙
ˇ

ˇ

ˇ

ˇ

9H
1{2
˚

ď ω
´

|Uap|Xm`s
8

` |Ur|Xm`3

¯

|Ur|Xm`3 .

Finally, we deal with the third term in (5.143). To do so, we can argue as for the second
term in (5.143), but using Proposition 5.28.

We have concluded that
ˇ

ˇ

ˇ
xBy

m`2
´

Z̃1rUs ´ Z̃1rUaps

¯
ˇ

ˇ

ˇ

9H
1{2
˚

ď ω
´

|Uap|Xm`s
8

` |Ur|Xm`3

¯

|Ur|Xm`3 .

We are left to prove that
ˇ

ˇ

ˇ
xBy

m`2
´

Z̃2rUs ´ Z̃2rUaps

¯
ˇ

ˇ

ˇ

9H
1{2
˚

ď ω
´

|Uap|Xm`s
8

` |Ur|Xm`3

¯

|Ur|Xm`3 ,

which follows after using Proposition 5.27 several times. Hence, we have proven (5.141).
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To prove (5.142), since γ ě 2, we write
ˇ

ˇ

ˇ
xBy

m
´

B
γZ̃rUsψ

¯ˇ

ˇ

ˇ

9H
1{2
˚

ď

ˇ

ˇ

ˇ
xBy

m
´

B
γ
´

Z̃rUs ´ Z̃rUaps

¯

ψ
¯ˇ

ˇ

ˇ

9H
1{2
˚

`

ˇ

ˇ

ˇ
xBy

m
´

B
γZ̃rUapsψ

¯ˇ

ˇ

ˇ

9H
1{2
˚

.

For the first term, we use (5.141) along with Proposition 5.27. For the second term, we use
Proposition 5.29. We conclude the proof of estimation (5.142).

Step 3: Use (5.141) to show that

|xBy
m`2

pṽrUs ´ ṽrUapsq | 9H
1{2
˚
ď ω

´

|Uap|Xm`s
8

` |Ur|Xm`3

¯

|Ur|Xm`3 , (5.146)

and, for γ ě 2 and ψ smooth enough,

|xBy
m
pB
γ ṽrUsψq | 9H

1{2
˚
ď ω

´

|Uap|Xm`s
˚

` |Ur|Xm`3

¯

|xBy
mψ|Xm`3 . (5.147)

From the definition of ṽ, we have that

ṽrUs ´ ṽrUaps “ Bxϕr ´
´´

Z̃rUs ´ Z̃rUaps

¯

Bxηap ` Z̃rUsBxηr
¯

.

Thus, from (5.141) and (5.142), using again Proposition 5.27, we obtain (5.146). Estimation
(5.147) is a result of following a similar reasoning as for equation (5.142), with (5.146).

Step 4: We prove that

|xBy
m
`“

B
2
t , ṽrUs

‰

BtBxϕ´
“

B
2
t , ṽrUaps

‰

BtBxϕap
˘

| 9H
1{2
˚

ď ω
´

|Uap|Xm`s
8

` |Ur|Xm`3

¯

|Ur|Xm`3 ,
(5.148)

and
|xBy

m
´”

B
2
t , Z̃rUsGrη, aεs

ı

Btϕ´
”

B
2
t , Z̃rUapsGrηap, aεs

ı

Btϕap

¯

| 9H
1{2
˚

ď ω
´

|Uap|Xm`s
8

` |Ur|Xm`3

¯

|Ur|Xm`3 .
(5.149)

Estimation (5.149) involves the DN operator, a nonlinear (nonlocal) term that deals with
the surface and bottom, which means that it is much more challenging than estimation
(5.148). Therefore, we shall focus in (5.149); (5.148) follows using similar arguments.

The commutator rB2
t , Z̃rUsGrη, aεssBtϕ can be expressed as a sum of terms like the following

OrUs “ Bγ0Z̃rUsDn
ηGrη, aεsBtBβϕ ¨ pBγ1η, . . . , Bγnq ,

the parameters under the conditions β ď 1 and γi ď 2, for 0 ď i ď n. Such decomposition
work for rB2

t , Z̃rUapsGrηap, aεssBtϕap as well, substituting OrUs by OrUaps. We write

OrUs ´OrUaps “

´

B
γ0Z̃rUs ´ Bγ0Z̃rUaps

¯

Dn
ηGrηap, aεsBtBβϕap ¨ pBγ1ηap, . . . , Bγnηapq

` B
γ0Z̃rUs

`

Dn
ηGrη,aεs ´Dn

ηGrηap, aεs
˘

BtB
βϕap ¨ pB

γ1ηap, . . . , B
γnηapq

` B
γ0Z̃rUsDn

ηGrη,aεsBtBβϕap ¨ pBγ1ηap, . . . , Bγnηapq `Oř

:“ O1 `O2 `O3 `Oř, (5.150)
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where Oř is a sum of terms such as

Oř

l
“ B

γ0Z̃rUsDn
ηGrη,aεsBtBβϕap ¨

`

B
γ1ηap, . . . , B

γlηap, B
γl`1ηr, . . . , B

γl`1ηr,
˘

for γi P tγ1, . . . , γnu, for all 1 ď i ď n and l is such that l ď n´ 1.

To deal with the first term of (5.150), we use Proposition 5.27, along with the second
equation of Proposition 5.29, (5.134), and the estimation proved in Step 2, 5.141. Then,
since γ0, we have that

|xBy
mO1| 9H

1{2
˚

À
›

›xBy
mDn

ηGrηap, aεsBtBβϕap ¨ pBγ1ηap, . . . , Bγnηapq
›

›

W 1,8

ˇ

ˇ

ˇ
xBy

m`2
´

Z̃rUs ´ Z̃rUaps

¯
ˇ

ˇ

ˇ

9H
1{2
˚

ď ω
´

|Uap|Xm`s
8

` |Ur|Xm`3

¯

|Ur|Xm`3 .

For the third term in (5.150), we use (5.142), from the Step 2, and find that

|xBy
mO3| 9H

1{2
˚
ď ω

´

|Uap|Xm`s
8

` |Ur|Xm`3

¯

|xBy
m
`

Dn
ηGrη,aεsBtBβϕap ¨ pBγ1ηap, . . . , Bγnηapq

˘

| 9H
1{2
˚
.

Then, we use (5.131) from Proposition 5.28 with l “ n, and obtain

|xBy
m
`

Dn
ηGrη,aεsBtBβϕap ¨ pBγ1ηap, . . . , Bγnηapq

˘

| 9H
1{2
˚

ď ω
´

|Uap|Xm`s
8

` |Ur|Xm`3

¯

ˇ

ˇxBBym`1
BtB

βϕr
ˇ

ˇ

H1`1{2

ď ω
´

|Uap|Xm`s
8

` |Ur|Xm`3

¯

ˇ

ˇxBy
m`3ϕr

ˇ

ˇ

9H
1{2
˚

ď ω
´

|Uap|Xm`s
8

` |Ur|Xm`3

¯

|Ur|Xm`3 .

For the term O2, we reason as we did for O3. Finally, we estimate Oř

l
by using equation

(5.142) and (5.131) (as we did for O3) for the terms involving ϕr (recall that ϕ “ ϕr ` ϕap),
and (5.135) for the terms with ϕap.

Step 5: We show the estimations

|xBy
m
´”

B
2
t , Z̃rUsṽrUs

ı

BtBxη ´
”

B
2
t , Z̃rUapsṽrUaps

ı

BtBxηap

¯

| 9H
1{2
˚

ď ω
´

|Uap|Xm`s
8

` |Ur|Xm`3

¯

|Ur|Xm`3 ,
(5.151)

and

|xBy
m
´”

B
2
t , Z̃rUsDηGrη, aεsϕ

ı

¨ Btη ´
”

B
2
t , Z̃rUapsDηGrηap, aεsϕap

ı

¨ Btηap

¯

| 9H
1{2
˚

ď ω
´

|Uap|Xm`s
8

` |Ur|Xm`3

¯

|Ur|Xm`3 .
(5.152)

Again, as in Step 4, we shall only give the proof of (5.152), since (5.151) follows from
similar (less challenging) arguments. The commutator

”

B2
t , Z̃rUsDηGrη, aεsBβϕ

ı

¨ Btη con be
expanded as a sum of terms such as

B
γ0Z̃rUsDn

ηDηGrη, aεsBβϕ ¨ pBγ1 , . . . Bγn´1BtB
γηq ,
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with n ě 1, γ0 ` . . . γn´1 ` β ` γ “ 2, γ ď 1. Then, the proof of (5.152) is concluded using
the estimations in Step 4.

Step 6: We prove that
ˇ

ˇxBy
m
`

D2Prηs ¨ pBxBtη, BxBtη, BxBtηq ´D2Prηaps ¨ pBxBtηap, BxBtηap, BxBtηapq
˘ˇ

ˇ

9H
1{2
˚

ď ω
´

|Uap|Xm`s
8

` |Ur|Xm`3

¯

|Ur|Xm`3 .
(5.153)

Estimation (5.153) follows from the definition of P and Moser type estimates.

Step 7: Conclude that

|xBy
m
pR2rUs ´R12rUapsq | 9H

1{2
˚
ď ω

´

|Uap|Xm`s
8

` |Ur|Xm`3

¯

|Ur|Xm`3 . (5.154)

Recall the definition of R2:

R2rUs “ ´rB2
t , ṽsBxBtϕ` rB

2
t , Z̃Grη, aεsBtϕs ¨ Btη

` rB
2
t , Z̃ṽsBxBtη `D

2Prηs ¨ pBxBtη, BxBtη, BxBtηq.

Then, (5.154) is a consequence of Steps 4, 5 and 6.

We have completed the proof of Proposition 5.30. �

Now, we can return to the proof of Proposition 5.26, that is, the estimation for RrUs ´
RrUaps ` J pΛrUs ´ ΛrUapsq B

3
tUap. Since we already dealt with the R terms in Proposition

5.30, we are left to prove that

|xBy
m
`

J pΛrUs ´ ΛrUapsq B
3
tUap

˘

1
|H1 ď ω

´

|Uap|Xm`s
8

` |Ur|Xm`3

¯

|Ur|Xm`3 , (5.155)

and

|xBy
m
`

J
`

ΛrUs ´ ΛrUapsB
3
tUap

˘˘

2
| 9H

1{2
˚
ď ω

´

|Uap|Xm`s
8

` |Ur|Xm`3

¯

|Ur|Xm`3 . (5.156)

Recall from the definition of Λ that
`

JΛrUsB3
tUap

˘

1
“ ´BxpṽrUsB3

t ηapq ´ Grη, aεs
´

Z̃rUsB3
t ηap

¯

` Grη, aεsB3
tϕap,

and
`

JΛrUsB3
tUap

˘

2
“ ´ṽrUsBxB3

tϕ` Z̃rUsGrη, aεsB
3
tϕ´ Z̃rUsGrη, aεspZ̃rUsB3

t ηq

´

´

g ` Z̃rUsBxṽrUs
¯

B
3
t η ` PrηsB3

t η.

We observe that the terms are of the same nature as the ones we estimated above. Thus,
just like we did previous estimations, to prove (5.156), it suffices to make use of Propositions
5.28, 5.29 and Steps 2 and 3 of Proposition 5.30.
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A.4.3 Proof of Proposition 5.25

Before we begin the proof, we shall give some useful estimations regarding the subprincipal
term QrUs ´QrUaps.

Proposition 5.31. For m ě 2 and s ě 5, we have that

}xBy
m
pQ1rUs ´Q1rUapsq }H´1{2 ď ω

´

|Uap|Xm`s
8

` |Ur|Xm`3

¯

|Ur|Xm`2

and
}xBy

m
pQ2rUs ´Q2rUapsq }H´1 ď ω

´

|Uap|Xm`s
8

` |Ur|Xm`3

¯

|Ur|Xm`2 .

The proof is essentially a consequence of Propositions 5.28, 5.29 and Steps 2 and 3 of
Proposition 5.30. We shall omit it. However, see [88, Proposition 7.27] for more details.

As in [88], we shall give the energy estimates on the equation satisfied by W “ RrUsB3
tUr,

where RrUs is defined as

RrUs “
ˆ

1 0

´Z̃rUs 1

˙

.

We find that W solves the problem

BtW “ J pLrUsW´ JRJ pQrUs ´QrUapsqq `RS. (5.157)

for L defined such as LrUs “ pRrUs´1q
t
ΛrUsRrUs´1.

We present the following result, regarding the quadratic form associated to LrUs:

Proposition 5.32. We have the estimates

pLrUsW,Wq ` }W}
2
L2 ě

|W|X0

ω
`

|Uap|X7
8
` |Ur|X5

˘ ,

pLrUsW, vq ď ω
`

|Uap|X7
8
` |Ur|X5

˘

|W|X0 |V|X0 .

Moreover, for m ě 2 and s ě 5, if α ď m,
ˇ

ˇ

`“

B
α
t,x, LrUs

‰

W,V
˘ˇ

ˇ ď ω
´

|Uap|Xm`s
8

` |Ur|Xm`3

¯

|W|Xm |V|X0 .

This is, again, a consequence of of Propositions 5.28, 5.29 and Steps 2 and 3 of Proposition
5.30, along with Sobolev embedding inequalities. We shall omit it. See [88, Proposition 7.28]
for more details.

Thanks to Step 2 of Proposition 5.30, for s ě 5, we have that

|W|Xm ď ω
´

|Uap|Xm`s
8

` |Ur|Xm`3

¯

|Ur|Xm`3

and
|Ur|Xm`3 ď ω

´

|Uap|Xm`s
8

` |Ur|Xm`3

¯

p|W|Xm |Ur|X3q .
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Ultimately, this means taht it is equivalent to estimate W or B3
tUr. We thus consider the

equation solved by

BtB
αW “ J pLrUsBαW` rB

α, LrUssW´ B
αJRJ pQrUs ´QrUapsqq ` B

α
pRSq. (5.158)

We take the L2 scalar product of (5.158) with

M “ LrUsBαW` rB
α, LrUssW´ B

αJRJ pQrUs ´QrUapsq .

From the skew symmetry of J and the symmetry of LrUs, we get the identity

d

dt

ˆ

1

2
pB
αW, LrUsBαW q ` Iα

˙

“ J α, (5.159)

where
Iα “ pBαW, rBα, LrUssWq ´ pB

αW, Bα pJRrUsJ pQrUs ´QrUapsqq , q

J α
“

1

2
pB
αW, rBt, LrUssBαWq ` pB

αW , BtrB
α, LrUssWq

´ pB
αW, BtB

α
pJRrUsJ pQrUs ´QrUapsqqq ` pM, BαpRrUsSqq .

We give the following proposition, that estimates each term arising in the energy identity
(5.159).

Lemma 5.33. We have the estimates

|J α
| ď ω

´

|Uap|Xm`s
8

` |Ur|Xm`3

¯

`

|Ur|Xm`3 |S|Xm ` |Ur|
2
X3

˘

|α| ď m

and
|Iα| ď ω

´

|Uap|Xm`s
8

` |Ur|Xm`3

¯

|Ur|Xm`3 |Ur|Xm`2 |α| ď m.

Lemma follows from Propositions 5.31 and 5.32. For a proof in the case three dimensional
can be found in [16, Lemma 7.31].

We also consider the following estimate

Lemma 5.34. Let Ur be a solution of (5.85). Then, for m ě 2 and s ě 5,

d

dt
|Uptq|2X3 ď ω

´

|rap|X3 ` |Uap|Xm`s
t

` |Ur|Xm`3
t

¯

|Ur|
2
Xm`3 .

Moreover, we have the estimate

|B
l
tU|

2
L2 ď ω

´

|Uap|Xm`s
8

` |Ur|Xm`3

¯

`

|BxB
l´1
t Ur|X0 ` |Ur|

2
X2 ` |rap|2Xm

˘

4 ď l ď m` 3.

Proof. To prove the first estimation, it suffices ti multiply by pη,Bϕqt, integrate in R and
use the same kind of estimates we have been using before, such as (5.127) Proposition 5.27
and Proposition 5.29.

For the second estimation, one should apply Bl´1
t to (5.126), taking the L2-norm and using

the typical estimations used in Propositions 5.28 and 5.29. �
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Now, let as define the energy

H̃αptq “
1

2
pB
αW, LrUsBαWq ` Iα.

We also define for m ě 2, 1 ď l ď m, τ P rt, 0s, t ď 0,

H̃mpτq “
ÿ

1ďlďm

Γm´1H̃l,mpτq ` Γ|Urpτq|
2
X3 ,

for Γ large and
H̃l,m “

ÿ

1ď|α|ďl
α1‰0

H̃α ` Γ
ÿ

1ď|α|ďl
α1“0

H̃α

for α1 denoting the time derivative represented by α, that is, α “ pα1, αxq.

Lemma 5.35 ( [16, Lemma 7.35] ). For every t ď 0, there exists Γ such that for every
τ P pt, 0q, we have that

H̃mpτq ě
|Upτq|Xm`3

ω
´

|Uap|Xm`s
8,t

` |Ur|Xm`3
t

¯ .

We now can complete the proof of Proposition 5.25. From (5.159) and Lemma 5.33, we
get for t ď τ ď 0,

ˇ

ˇ

ˇ

ˇ

d

dt
H̃mpτq

ˇ

ˇ

ˇ

ˇ

ď ω
´

|rap|Xm`s
t
|Uap|Xm`s

8,t
` |Ur|Xm`3

t

¯

`

|Urpτq|
2
Xm`3 ` |Spτq|2Xm

˘

.

Consequently, we can integrate in time for rt, 0s and use Lemma 5.35, along with the fact
that

|H̃mp0q| ď ω
´

|rap|Xm`s
0
|Uap|Xm`s

8,0
` |Ur|Xm`3

0

¯

|rapp0q|2Xm`3 .
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Chapter 6

Conclusions and Perspectives

6.1 Conclusions

This work is concerned with the study of long time asymptotics for the following dispersive
models, mainly related to fluid dynamics: Schrödinger, Hartree, Zakharov, Klein-Gordon
Zakharov, Zakharov-Rubenchik/Benney-Roskes and Zakharov Water waves model.

The results obtained in the Part II of this work essentially consist of a deep analysis of
virial technics to obtain the following:

• Decay of (small) odd solutions of the Schrödinger equation,

iut ` uxx “ µV pxqu` |u|p´1u, pt, xq P Rˆ R, for 1 ă p ă 5. (6.1)

for which we were able to approach the super critical case p ă 3.
• Decay of odd solutions of the defocusing Hartree equation,

iut ` uxx “ σ
`

|x|´α ˚ |u|2
˘

u, pt, xq P Rˆ R, σ “ 1, (6.2)

using a virial method to deal with the one-dimensional case.
• Decay in compact intervals and in far field regions for Zakharov system:

iut `∆u “ nu, pt, xq P Rˆ R,
ntt ´∆n “ ∆|u|2, pt, xq P Rˆ R,

and Klein-Gordon Zakharov

utt ´∆u` c2u “ ´nu, pt, xq P Rˆ R,
ntt ´∆n “ ∆|u|2 pt, xq P Rˆ R.

In Part III of this thesis we studied Zakharov-Rubenchik/Benney Roskes:

iBtψ ` ωB
2
xψ “ γ

`

η ´ 1
2
αρ` q|ψ|2

˘

ψ, pt, xq P Rˆ R

θBtρ` Bx
`

η ´ αρ
˘

“ ´γBxp|ψ|
2
q, pt, xq P Rˆ R

θBtη ` Bx
`

βρ´ αη
˘

“ 1
2
αγBxp|ψ|

2
q, pt, xq P Rˆ R

202



where

ω ą 0, β ą 0, γ ą 0, β ´ α2
ą 0, 0 ă θ ă 1, and q :“ γ `

αpαγ ´ 1q

2pβ ´ α2q
.

We proved decay for the energy norm in far field regions. Also, being able to use the un-
derlying characteristics curves of the model, we gave decay properties in growing compact
intervals, outside the light cone and around zero.

Part IV deals with the Zakharov Water Waves model:

$

’

’

&

’

’

%

Btη “ Grη, asϕ

Btϕ “ ´
1
2
|BXϕ|

2
` 1

2

pGrη, asϕ`∇Xϕ ¨∇Xηq
2

1` |∇Xη|
2 ´ gη ` β∇X ¨

¨

˝

∇Xη
b

1` |∇Xη|
2

˛

‚

(6.3)

in a domain defined by

Ωt “
 

px, zq P R2 such that ´ h` Aε ď z ď ηpt, xq
(

.

We proved the existence of soliton-like solutions of flat-bottom nature approaching a change
in the domain.

6.2 Future Work

6.2.1 Decay for non-small odd solutions to semilinear Schrödinger
equation

We already know that for the one dimensional Schrödinger equation (6.1), there is decay in
fixed (non-growing) intervals for small, odd solutions. The oddness condition rules out of the
result soliton solutions and breathers. On the other hand, the fact that we are considering
fixed intervals, allows us to forget about not only travelling waves, but also solutions that
can be written as a sum of solitary waves with different speeds (and sufficiently away from
each other) plus radiation. This is due to the fact that, since such solitons are moving at a
speed different to zero, then for any given fixed interval, one can wait sufficiently long and,
eventually, all solitons move away from our space interval.

With this in mind, the smallness condition is not strictly necessary for ruling out non-
decaying solutions. In fact, in our previous work, such condition is only used to control terms
arising from the non-linear part of the equation. Consequently, it is expected that decay
still holds for non-small odd solutions to focusing NLS.
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6.2.2 Decay result for focusing Hartree equation

The focusing case of the Hartree equation (6.2) turns out to be more challenging, as is the
case where solitary waves exist. However, solitons for the Hartree equation are even, which
means that the oddness condition is sufficient to rule out such solutions. In consequence, it
is expected that decay for odd (and, possibly, small) solutions for the focusing
Hartree equation (6.2) (σ “ ´1) still holds.

Fractional derivatives for the better understanding of Hartree’s non-local linearity

In order to prove decay for (6.2) with σ “ ´1, we need to be able to control the non-local
part of the equation. Then, it would be useful to take into account the decay that the non-
local term presents in the definition of the weighted norm. Indeed, it should be sufficient to
define the modified momentum as

Pptq :“ Im
ż

R
ϕ
´x

λ

¯

upt, xquxpt, xqdx.

where

ϕpxq “ λ

ż x{λ

0

`

1` s2
˘´ 1

2
p1`νq

ds

for some ν ą 0 and λ ą 1. Then, a weighted norm appropriate for such virial approach would
be

}uptq}2H1
ωpRq

“

ż

R

`

1` x2
˘´ 1

2
p1`νq `

|upt, xq|2 ` |uxpt, xq|
2
˘

dx

Consequently, Hardy-Poincaré type inequalities, along with an appropriate definition of
the fractional derivative and an intensive study of fractional analysis should help solve this
problem.

6.2.3 Behavior of solitons for Zakharov Water Waves models under
changes in the bottom of the fluid

After proving the existence of solitary waves for the non-flat bottom problem (6.3) before it
encounters the changing point, a natural second step constitutes the study of the interaction
between the constructed solution pη, ϕqt and the change of the bottom, represented as a
(sufficiently small) exponentially decaying function aε.

A similar problem was introduced by Muñoz [5] for the gKdV equation, where the the
problem of existence and global behavior of solitons with a slowly varying (in space) per-
turbation was considered. In the mentioned work, virial identities were used to prove that
such slowly varying media induce on the soliton dynamics large dispersive effects at large
times. Because of the similarities between the dynamics of the Zakharov water-waves system
and the KdV equation (and between the solitons themselves), it seems fitting to rely on the
analysis given by Muñoz in [5].
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An interesting new problem to consider would be the study for the solitons dynamics
under a slowly varying bottom for the 3-dimensional system (1.17). In Chapter 5,
the construction of the approximate solution in is mainly based on properties of the operator
that arises when linearising the equation (1.17) about the solitary wave. Roughly speaking,
the linearised equation about the solitary wave reads

Bt

ˆ

η
ϕ

˙

“ JΛrQcs

ˆ

η
ϕ

˙

,

where J is a skew-symmetric matrix and ΛrQcs is a symmetric operator on L2 ˆ L2. One
of the main ingredients would be a positiveness result for ΛrQcs under the orthogonality
condition pJBxQc, Uq “ 0, for U “ pη, ϕqt. Nevertheless, such result can already be derived
from [6]. Then, it seems a natural second step to analyze the long-time behavior of solitary
waves and their interaction with a change of bottom for the 3-dimensional case.

One of my main objectives in this area is to consider the collision of two small solitary
waves moving in different directions. Using numerics, the interaction of two solitary waves
for the case without surface tension was extensively studied by Craig, Guyenne, Hammack,
Henderson and Sulem in [1]. This is a very influential paper, and establishing rigorous results
regarding the collision itself would be of great importance.
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