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TYPE MODELS

This thesis is devoted to the study of the asymptotic dynamics in several fluid models of
key interest. These are on the one hand related to the classical Schrédinger equation and
on the other hand can be derived from the Zakharov Water Waves model, in the Craig-
Sulem-Zakharov formulation. Precisely, the models to be considered here are the following:
the Nonlinear Schrodinger equation (NLS), the Hartree equation, the Zakharov and Klein-
Gordon-Zakharov systems, the Zakharov-Rubenchik /Benney-Roskes system, and finally, the
Zakharov Water Waves problem. All these models are analyzed in one dimension, which is
interesting because of the lack of suitable dispersive estimates in the nonlinear setting.

Additionally, in terms of key questions, this thesis is divided in three main parts: a
first part where local virial estimates will provide spatial decay on compact sets, a second
part where time-expanding virial estimates permit to prove extensive decay properties for
completely untreated physical systems, and finally, a constructive part related to the existence
of nonlinear solitary waves in variable bottom water waves.

First of all, Chapter [2]is devoted to the study of the Nonlinear Schrédinger equation (with
and without potential), and the Hartree equation. We consider the decay property as a form
of nonlinear scattering in one dimension. We use virial identities to prove decay in compact
intervals in space for both equations under oddness (and sometimes smallness) condition on
the initial data.

Zakharov and Klein-Gordon-Zakharov systems are considered in Chapter [3] where we
prove two types of decay: one in compact intervals around the origin, and another one
for the energy norm in compact intervals along curves outside the light cone. No oddness
conditions are imposed for the second result.

Chapter [4] analyses decay properties of the Zakharov-Rubenchik /Benney-Roskes system
using different virial techniques. This time, we want to show strong local decay in extensive
regions of space, which is somehow unknown in the previous models. Taking advantage of
the underlying characteristic curves for the equation under work, a new virial method is
introduced to prove a decay result in growing compact intervals around these curves. We
also prove decay of the energy norm along curves outside the light cone.

The main part of this thesis is Chapter [5] which is concerned with the solitary wave
problem for the Zakharov water waves equation under variable domain. Indeed, we assume
a slightly changing, nonflat bottom. Adapting and extending the techniques introduced by
Martel, and recently by Ming, Rousset and Tzvetkov, we prove the existence of a soliton-like
solution for the nonflat bottom problem before it encounters the strong interaction regime.
The collision problem remains the main open question to be considered in the future.

Finally, Chapter [6] is devoted to the conclusion of this work, as well as new ideas and
forthcoming projects. Some of them have been remained elusive for us during these years,
but we plan to attack them in the near future.
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Esta tesis esta dedicada al estudio de la dinamica asintética en varios modelos de fluidos
de interés clave. Estos estan por un lado relacionados con la ecuacion clasica de Schrodinger
y por otro lado pueden derivarse del modelo de Zakharov Water Waves, en la formulacion
de Craig-Sulem-Zakharov. Precisamente, los modelos a considerar aqui son los siguientes: la
ecuacion no lineal de Schrodinger (NLS) y Hartree, los sistemas de Zakharov y Klein-Gordon-
Zakharov, el sistema de Zakharov-Rubenchik/Benney-Roskes, y finalmente, el problema de
Water Waves de Zakharov. Todos estos modelos se analizan en una dimensién, muy intere-
sante debido a la falta de estimaciones nolineales dispersivas adecuadas.

Ademas, en términos de preguntas clave, esta tesis se divide en tres partes principales:
una primera parte donde las estimaciones viriales locales proporcionardn decaimiento en
conjuntos de espacio compactos, una segunda donde las estimaciones viriales que se expanden
en el tiempo permiten demostrar propiedades de dispersion para sistemas fisicos que no han
sido tratados, y finalmente, una parte constructiva relacionada con la existencia de ondas
solitarias no lineales en Water Waves de fondo variables.

En primer lugar, el Capitulo [2| esta dedicado al estudio de las ecuaciones NLS (con y sin
potencial) y Hartree. Consideramos la propiedad de decaimiento como una forma de disper-
sion no lineal. Usamos identidades viriales para probar dispersion en intervalos compactos
en espacio en condiciones de imparidad (y a veces, pequefiez) para el dato inicial.

Los sistemas de Zakharov y Klein-Gordon-Zakharov se consideran en el Capitulo [3| donde
probamos dos tipos de decaimiento: uno en intervalos compactos alrededor del origen y otro
para la norma de energia en intervalos compactos a lo largo de curvas fuera del cono de luz.
No se imponen condiciones de imparidad para el segundo resultado.

El Capitulo {4 analiza las propiedades de decaimiento del sistema Zakharov-Rubenchik /
Benney-Roskes utilizando diferentes técnicas viriales. Esta vez, queremos mostrar un fuerte
decaimiento local en extensas regiones del espacio, desconocidas para los modelos anteriores.
Aprovechando las curvas caracteristicas subyacentes para la ecuacion en estudio, se introduce
un nuevo método virial para probar un resultado de dispersion en intervalos compactos
crecientes alrededor de estas curvas. También demostramos la dispersion de la norma de
eneria a lo largo de las curvas fuera del cono de luz.

La parte principal de esta tesis es el Capitulo[] que trata el problema de onda solitaria para
la ecuacion ondas de agua de Zakharov, bajo un dominio variable. Asumimos un fondo no
plano ligeramente cambiante. Adaptando y ampliando las técnicas introducidas por Martel,
y por Ming, Rousset y Tzvetkov, probamos la existencia de una soluciéon tipo soliton para
el problema de fondo no plano antes de que encuentre el régimen de interaccion fuerte. El
problema de las colisiones sigue siendo la principal pregunta abierta a considerar en el futuro.

Finalmente, el Capitulo [6] esté dedicado a la conclusion de este trabajo, asi como a nuevas
ideas y proyectos futuros, algunos esquivos durante estos anos.
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1.1 Preliminaries

Physics, as every science, became an important source of questions and, eventually, (although,
not always) of answers. As a consequence, the joint growth of both physics and mathematics,
the last one being the main tool to model the observable world, became more complex and
more synergetic. Such evolution of mathematical methods for application to problems in
physics is commonly referred to as mathematical physics. The study of Partial Differential
Equations is, perhaps, one of the theories most closely associated with this concept.



In physics, dispersion relations constitute the characterization of the plane wave motion in
a medium. They represent an important part of mathematical physics and cover various types
of classical and quantum scattering phenomena, describing the behaviour and interaction
between solutions to partial differential equations. Hence, the study of dispersive equations
becomes essential to understand physical events. In this context, the Schrodinger equation
is probably one of the most relevant equations of the area. Not only it constitutes the basis
for quantum mechanics, it is also a good dispersive model, as it is usually simpler in terms
of techniques than others in the area, such as the wave equation or the Korteweg-de Vries
equation.

In fluid dynamics, dispersion of water waves usually means that waves of different wave-
lengths travel at different phase speeds, that is, frequency dispersion. In fluids with a free
surface, water waves are travelling waves dealing with surface tension and gravity forces,
that coerce its elevation into the resting state. Such interaction between restoring forces and
surface elevation shape what is considered a dispersive medium, and different mediums imply
specific mathematical models. For instance, if the water depth is large compared to the wave
length of the water waves (deep water), envelope solitons described by Schrodinger equa-
tion may occur. Another deep water model for the description of gravitational waves is the
Zakharov-Rubenchik /Benney-Roskes system. In this context, an important model that has
exhibited an increasing interest in the bibliography over the last years is the Zakharov/Craig-
Sulem formulation. It arises when considering a non-vanishing shoreline and assuming that
the flow is at rest at infinity, which essentially means to be away from the coast. We will
give a more detailed derivation of the Zakharov/Craig-Sulem model in Chapter

Other examples of dispersive fluid models that we will consider in this work are the
Zakharov systems, which describe long-wavelength small-amplitude Langmuir oscillations in
a ionized plasma, and Zakharov-Rubenchik/Benney-Roskes, mainly treated in Chapter .

This thesis was made with important collaborations and research visits. Part of this work
was done while I was visiting Université Paris-Saclay (Paris) and Universidad de Granada
FisyMat (Granada). I would like to acknowledge professors Juan Soler and Frédéric Rousset
for their great support and their help making these travels possible.

Before moving to the description of the models considered in this thesis, we shortly recall
some important notions for this work. We concentrate ourselves in the concept of dispersion
and decay.

1.1.1 Notion of dispersion and decay

Dispersion occurs when pure plane waves of different wavelengths have different propagation
velocities, so that a wave packet of mixed wavelengths tends to spread out in space; they
scatter. A linear PDE is said to be dispersive if plane wave type solutions present such
dispersion.

For instance, let us consider the linear Schrédinger equation

iu, + Au=0, (t,2)eR xR (1.1)



Then, wave plane solutions of amplitude A of the form u(t,r) = Ae!**=%" satisfy that the
frequency w is given by the square of the wave-number k, namely w(k) = |k[>. Moreover,
using Fourier transform we obtain an explicit convolution representation from which we also
have the dispersive inequality:

—d/2

()] o @ay Sa [t1777[w(0)] 21 @e). (1.2)

Such decay estimate holds for any solution whose initial data u(0) belongs to L*(R9).

Now, the non-linear case is another matter in terms of what to expect from solutions and
their asymptotic behaviour. The main issue in this regard is the existence of non-decaying
solutions such as solitons, that is, travelling non-dissipative waves that maintain their shape
while they propagate at a constant velocity. Moreover, the interest produced by the di-
chotomy between the existence of dispersion and solitary waves for non-linear models even-
tually hinted what is called the "soliton resolution conjecture". This conjecture essentially
means that solutions with generic initial data should eventually resolve into a finite number
of solitons, moving at different speeds, plus a radiative term which goes to zero. Hence,
we can no longer count on decaying solutions without any further condition. The balance
between non-linearity and dispersion enables the existence of solitary waves and enriches the
study of large-time behaviour of solutions.

In this thesis, when dealing with non-linear dispersive models, we will say that a form
of scattering or dispersion is present if a solution decays to zero in some sense as time
tends to co. In particular, we refer to scattering to a free solution when a global solution
behaves asymptotically like solutions to the linear equation. More precisely, for the nonlinear
Schédinger equation (NLS):

Definition 1.1. A global solution u of NLS equation is said to scatter in the space X to a
free solution as t — +o0o if there exists uy € X such that

im0z = u(t,)x = 0

t

where e*? is the semi-group associated to the Scrédinger equation.

The smaller the dimension, the less probable that scattering occur, and modifications are
needed. This thesis is concerned with decay properties for the following one dimensional
Schrodinger type models: NLS and Hartree equations, Zakharov, Klein-Gordon Zakharov
(KG Zakharov), and Zakharov-Rubenchik /Benney Roskes systems (ZR/BR). When proving
decay results, the main goal is to avoid encounters with solitary waves, multi-solitions and
other non-decaying solutions. To do so, we shall make use of appropriate virial identities,
constructed essentially to ensure soliton-free regimes. In addition, in Section [5], we shall study
the existence for soliton-type solutions to the Zakharov Water Waves system (ZWW). We
will construct a solution to the ZWW that behaves asymptotically (as time tends to —oo)
like a travelling wave. To that end, we shall also study the already known solitary waves for
ZWW (in this case, in the flat-bottom regime).

4



1.2 Introducing Schrodinger Models

Schrodinger equation was first introduced by Erwin Schrodinger in 1925, as he decided to
find a proper 3-dimensional wave equation for the electron. It is the fundamental law of
non-relativistic quantum mechanics, a physical theory that deals with those phenomena that
occur at microscopic scales of the order of Planck’s constant. From a mathematical point of
view, the Schrodinger equation is a delicate problem, and it has a jumble of properties of
parabolic and hyperbolic equations.

Schrodinger’s nonlinear equation has received great attention in mathematics over the
past 50 years, in part because of its many applications, such as in nonlinear optics or in deep
water models. Variants and generalizations appeared over the years, extending its study and
giving rise to new models.

We are concerned with the following models: NLS and Hartree equations, Zakharov, Klein-
Gordon Zakharov, and Zakharov-Rubenchik /Benney Roskes systems. As mentioned before,
we are interested in their scattering properties and long-time behaviour, which ultimately
imply the need to understand their non-decaying solutions, as well. Throughout this section,
we shall introduce the precise models, along with some basic properties, and a summarized
study on their non-decaying solutions.

1.2.1 Nonlinear Schrodinger equation

In Chapter 2] we will consider the non-linear Schrédinger equation (INLS)
iy + tgr = pV (@)u+ f (Juf)u, (z)eR xR, (1.3)

where the potential V' : R — R is a Schwartz even function and f : R — R is a function such
that for 1 < p < 5,

and satisfies that f o s? is locally Lipschitz continuous.

In the particular case,

f(s)=0s2, 1<p<5b

the semilinear Schrédinger equation is recovered. We will say the equation is focusing
when o = 1. Otherwise (¢ = —1), we will be in the defocusing case. For p = 3, the model is
integrable.

The equation (|1.3]) is Hamiltonian, and it is characterized by having at least the following

5



conservation laws, defined as Mass, Energy and Momentum, respectively:

M(u(t)) = f [u(t)Pde = M(u(0)), (L4)

E(u(t)) := L (Vu(t)*dz — alﬁ]u(zﬁ)\p“dx = E(u(0)), (1.5)

P(u(t)) = Tm L W), (H)de = P(u(0)). (1.6)

It is well-known that this one-dimensional semilinear Schodinger equation is globally well-
posed for initial data in H*(R) when 1 < p < 5, and blow up may occur if p > 5, as was
proved by Glassey, [25], Merle-Raphaél [43] and other subsequent works.

Solitons, multi-solitons and breathers: For a better understanding of decay and scattering
for NLS (|1.3)), we need to study non-decaying solutions and how to rule them out from our
results. Equation ((1.3) presents solitons or solitary waves of the form

u(t,r) = e"Q.(z)

where Q. > 0 is a stationary solution to the ODE Q" + |Q.|"VQ —cQ. = 0, Q. € H'. Early
on, Zakharov and Shabat proved that this solution is even in space and small in H' provided
¢ > 1, (see [81]). Moreover, because of the many symmetries that the equation presents, for
any v, ro,v € R,

u(t,z) = Qo — zo — Ut)ei((l/2)v:c—(1/4)v2t+ct+7)

is also a solution. Such solutions are stable, as stated, for instance, by Cazenave-Lions [§]
and Weinstein [74].

In addition, there are also multi-solitons solutions that are not even, which means that even
though parity conditions are a good way to rule out solitary waves, they are not completely
effective. Indeed, Martel, Merle and Tsai [35] proved the existence (and H' stability) of
solutions that decompose like the sum of solitary waves with non-zero speed plus radiation
(later improved by Vihn [52]), and these solutions could very well be odd.

Finally, equation (1.3|) can present breathers, that is periodic in time solutions but with
non-trivial period. Such is the case for the (scattering) critical one-dimensional NLS (p = 3),
that possesses explicit breather solutions, such as the Satsuma-Yajima breather [66],

4+/2¢' (cosh(3x) + 3% cosh(x))
cosh(4x) + 4 cosh(2x) + 3 cosh(8¢)’

BSY (t, l’) =
or the Peregrine breather [63],

Bp(t.z) = o <1 41+ 2it) ) ‘

1+ 4¢2 + 222

Both breathers satisfy that are even and arbitrarily small.
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1.2.2 Hartree equation

The Hartree equation is a non-local model that can be written in one dimension of space as
iy + gy = 0 (||« [u]*) u, (t,z) e RxR. (1.7)

where 0 < a < 1 and o = +1 determines the focusing (¢ = —1) or defocusing (¢ = 1) nature
of the model.

This equation was first derived by Douglas Hartree in 1927, as he sets himself the goal to
first calculate the solutions to Schrédinger’s equation for individual electrons. The solution
to the original Schrédinger equation is a wave function which describes all of the electrons.
He assumed that the nucleus together with the electrons formed a spherically symmetric
field and found an equation for each electron. Then, the wavefunction of a system could
be computed as a combination of wavefunctions of individual particles, solving Hartree’s
equations for each electron.

The Hartree equation (1.7)) is locally well-posed, extended to global well posedness for
small initial data. In addition, this equation conserves the Mass, Momentum and Energy,
defined (respectively) below:

M (u(t)) := L lu(t)|*dz = My,
E(u(t)) := %L \Vu(t)|*dz + %JR (|x|_“ % ]u|2) lu|*dz = Ey,

P(u(t)) := Im L u(t)u,(t)de = By,

Non-decaying solutions for Hartree: Regarding the existence of solitary waves, the situa-
tion is fairly similar to NLS. Focusing Hartree equation (1.7) (¢ = 1) admits solitary waves
solutions (or solitons) of the form

u(t,z) = “'Q.(x) e H

where the ground state ), : R — R is an H'-solution of the Choquard equation AQ +
(# * |Q|2> @ — cQ = 0, c € R. These solutions are, up to translation and inversion of the
sign, positive and radially symmetric functions, see, for instance, the works of Cingolani-
Secchi-Squassina [I1] and Ruiz [64] for the proofs of such properties, or VanSchaftingen for
a beautiful review of the Choquard equation [46]. Moreover, solitary waves for the focusing
Hartree equation are stable, as was proven by Cazenave and Lions in [8]. It is not expected
for the defocusing Hartree equation (0 = —1) to present soliton-like solutions.

1.2.3 Zakharov and Klein-Gordon Zakharov system

In Chapter [3] we will deal with the Cauchy problem for the one dimensional Zakharov system

iu, + Au = nu, (t,x) e R x R,
a?ny — An = Alul?, (t,z) e R x R, (1.8)
(u,n) (t =0) = (ug,no), ne(t =0) =ny,
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where u(t,z) :R xR - C, n(t,z) : R x R — R and a > 0.

Chapter (3] also studies the Cauchy problem for Klein-Gordon Zakharov system in one
dimension

c2uy — Au + *u = —nu, (t,z) e R x R,
a*ny — An = Alul? (t,z) e R x R, (1.9)
(u,n) (t = 0) = (uo, o), (w,me) (t =0) = (us,m),

where u(t,z) :R xR >R, n(t,z) :RxR—->R, a>0, ¢>0.

Plasma is one of the most abundant form of ordinary matter in the universe, second
only to dark matter and dark energy, greatly studied in astrophysics, and can be artificially
generated by heating a neutral gas or subjecting it to a strong electromagnetic field. The
Zakharov systems, first derived by Zakharov in 1921 [79], model long-wavelength small-
amplitude Langmuir waves (rapid oscillations of the electron density in conducting media)
in a ionized plasma. They describe nonlinear interactions between high-frequency, electro-
magnetic waves and low-frequency, acoustic type waves. Here, the unknowns represent the
mean mode of the ionic fluctuations of density in the plasma n and the changing amplitude of
electric field u, which varies slowly compared to the unperturbed plasma frequency. Constants
a and c are the ion sound speed and the plasma frequency, respectively.

Zakharov systems can be derived from the two-fluid Euler—-Maxwell system by considering
a plasma as two interpenetrating fluids, an electron fluid and an ion fluid. See the work of
Sulem-Sulem [71] and of Texier [72], where the authors expose a very detailed derivation of
the model.

An appealing aspect of these equations are the limiting cases. From the Klein-Gordon-
Zakharov system (1.9)) in the high frequency case (¢ » 1), one could recover Zakharov (|1.8))
as a limiting equation. Indeed, if one considers @ = ety in (1.9), then it follows that

¢ 2y — it — AU = —n,

a *ny — An = Alal.
Thus, formally, taking ¢ — oo, the Zakharov system ([1.8)) is obtained.

Another interesting limiting case accurs in the subsonic regime (« < ¢), in which density
perturbations are changing slowly. This would imply that taking @ — oo, the Langmuir
waves follow the cubic semilinear Schrodinger equation. Both subsonic and high frequency
limits were extensively studied in the work of Masmoudi and Nakanishi [36]-[39].

~ System (L.§) in one dimension is globally well-posed for initial data in H'(R) x L*(R) x
H~'(R), where

w € H* if there exists v : RY — RY such that w = V- v and |w|

e = [vlgress.

Some works in this regard are Sulem-Sulem [70] for local well-posedness in d = 1,2, 3, ex-
tended to global well posedness by Ozawa-Tsutsumi [60], Colliander [13] and Pecher [62].
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For KGZ (1.9), well-posedness results hold in the energy space H! x L2 x L2 x HL. See,
for instance, Ozawa-Tsutaya-Tsutsumi [57]-[58|, Otha-Todorova [56], Masmoudi-Nakanishi in
[39]-[40].

The Zakharov system ([L.8)) preserves the mass [u(t)|r2®) = [u(0)]2(r) and both systems
preserve the energy:

e Energy associated to Zakharov (|1.8]
Hy(t) = JR Vu(t, 2)? + %(|n(t, D)2 + $|D_1nt(t,w)]2> + nt o) |ult, 2)2de,
e Energy associated to KGZ ({1.9)
Hieot) - fR lut, 2)P + |Vult, 2)|]? + C—l2\ut(t,x)|2 + %|n(t,x)|2
+ %\w—lnt(t,x)}? +n(t, 2)|ult, 2)|2dz = Hye(0),

where D = v/—A. We point out that the energy for both systems could very well be negative.
Nevertheless, an interesting property of the one-dimensional Zakharov systems and
is the fact that, even though not conserved, it is possible to find uniform bounds for the energy
norm of global solutions. Indeed, using Gagliardo-Nirenberg inequality:

lulzs < o] z2]ulze
one can prove the existence of constants depending on initial such that:

e For a global solution of Zakharov system ([1.8)):
.[R (Juz(t, ) + |ut, 2)]* + | D't 2) ] + |n(t, z)|*) dz < K, (1.10)
e For a global solution of KGZ system ((1.9)):
Lm(t,m? Flun(t ) + Jult, 2) + [t 2)2 + | D ng(t, 2) Pdr < Kge. (111)

A more detailed proof of both bounds can be found in Chapter [3, Lemmas and
0. 1Ol

Non-decaying solution for Zakharov sistem: Solitary waves for the Zakharov system are
solutions of the form

u(t,x) = e Wiz @ty (z —ct), n(t,z) = ny(z — ct), (1.12)

where u, . and n,, . are even functions (the explicit formula can be found in Chapter |3|) and
¢, w are real numbers satisfying 4w + ¢ = 0 and 1— ¢* > 0. Under such conditions, the
travelling wave turns out to be orbitally stable, as proven by Wu in [77]. Moreover, for
solitons (u,n) described by 7 it is easy to see that u,n are both even in space, which
inspires parity conditions for our results.



In addition to soliton-like solutions, there also exist solutions that blow up both in finite
and infinite time. Merle [41l [42] adapts the Glassey technics [25] and uses virial identies to
prove that negative energy solutions blow up. Indeed, he considered the perturbed virial
quantity:

a2 /1 oo [P 1
— (- — (z-D! —dH, — (d—2 2———d—1j D™ 'n, .
i (5 [t s [ 5 o) @=2) [ [9uf - @=1) [ 1D

Consequently, for solutions to (1.8)) in dimension d = 2,3 and such that H, < 0, blow-up is
obtained.

Non-decaying solutions for KGZ: Similarly to the Zakharov equation, travelling waves for
the KGZ system (1.9)) can be constructed as solutions described by

u(t,r) = e Wel2 @Dy, (z — ct),

n(t,r) = ng(r — ct),

with even functions wu,c, 1., described more precisely in Chapter [3 Then, solitary waves
exist when the real constants w and ¢ satisfy 1 — ¢* — w? > 0. Moreover, Chen [I0] proved
they are orbitally stable.

1.2.4 Zakharov-Rubenchik /Benney-Roskes system

Chapter 4] deals with the decay properties for solutions of the initial value problem (IVP)
associated with the Zakharov-Rubenchik/Benney-Roskes (ZR/BR) system in one space di-
mension

i04) + wdiy = y(n—s0p + ql]?)y, (tz)eRxR
00ip + 0 (n — ap) = —70.([0[*),  (t,z)eRxR (1.13)
00m + 0. (Bp — an) = 3a70.([0*),  (t,z) eR xR '
(¢>P> 77) (t = O,l’) = (¢0>P07770) )
where
2 afary = 1)
w>0, >0 v>0, f—-a">0, 0<f<1, and qg:=7+ ——F,
2(8 — o?)

are all real parameters.

Model corresponds to the one-dimensional case of the most general system de-
rived by Zakharov and Rubenchik [80] to describe the interaction of spectrally narrow high-
frequency wave packets of small amplitude with low-frequency acoustic type oscillations. The
unknown (¢, x), p(t,x) and n(t,x) stand for:

e {: R xR — C, the amplitude of the carrying (high frequency) waves,

e p.1:R xR — R, low-frequency oscillations.

This system was also independently found by Benney and Roskes [5] in the context of
gravity waves. System ((1.13)) has also been derived in several other physical situations, such
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as for example, in the study of Alfvén waves (transverse oscillations of the magnetic fields)
in the Magneto-Hydrodynamics equations (see for instance [9, [61]).

A characteristic that makes this model so rich is the many limiting cases it contains. For
instance, in the supersonic limit, the classical (scalar) Zakharov system is recovered. In
the subsonic limit it is possible to obtain (formally) the Davey-Stewartson, a generalization
in dimensions d = 2,3 of Schrédinger equations, but the rigorous proof remains still open.
In the one dimensional case, we can also consider the adiabiatic limit, that is, to take  — 0
in (1.13), from where we can formally see that p(t,z) and n(t,z) satisfy now the following
relations

2
o 2 -« / 2,12
p=—s5—701%" n= _7 (G
2F-an)” g—ar T
Then, we infer that the complex amplitude 1 solves the cubic nonlinear Schrédinger equation
. oo’ 9
0 P = ——r~ :
ltw—l_wxw 3(ﬂ_&2>‘¢‘¢

A rigorous justification of such limit was introduced by Oliveira in [54].

On the other hand, the ZR/BR system (1.13]) is Hamiltonian and preserves the Mass,
Energy and Momentum:

M A0) pl0):0(0)) = [ 06t Pde = Mo, o),
B((0)p0),1(0) = || (wlial + 101"+ 36° + 3 + 320 - ap)l0f = apn)do

= E(%;Poﬂo),
P(6(t), p(t). n(t)) = Im f ST, — 6 f plt, 2)(t,)dz = P(o, po, 7o)

Similar to the Zakharov systems, introduced in the previous subsection, even though the
energy could very well be negative, one can use it along with the mass to find a uniform
bound on the energy norm. Indeed, thanks to Gagliardo-Nirenberg inequality, one finds that

[e@ln + lp@)IZ: + In®)]z: < C,  Vte R
The precise statement (and proof) can be found in Chapter 4, Lemma .

System is globally well-posed for the one-dimensional case in the energy space
H'( R) x L*(R) x L?*(R). The first approach in this regard is found in [53], where Oliveira
proved local and global well-posedness in the space H?(R) x H'(R) x H'(R), later improved
by Linares and Matheus [33] to well-posedness for initial data in the energy space H'(R) x
L*(R) x L*(R).

Existence of solitary waves:

Regarding the existence of solitary waves, in the case f—a? > 0, v > 0 and § < 1, Oliveira
has proved in [53] the existence and the orbital stability of solitary waves of the form

(v, p,m)(t, ) := (ei’\tem/%R(x — ct),a(c)|R(z — ct)|?, b(c)|R(z — ct)[?), (1.14)
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where A € R, ¢ = 0 and R(-) is an positive, even and exponentially decaying complex-valued
function, while a(c) and b(c) are given by the following formulas

U TR R TC R
' B —(ch+a)® ’ B (b + )
under the conditions
a c?
a(c) — 56(0) +q¢<0 and P A < 0. (1.15)

In particular, we point out that condition ([1.15)) implies the existence of standing solitary
waves only for o # 0. In other words, for the specific case a = 0, it is not necessary to avoid
standing waves in decay results, since they are not expected to happen.

1.2.5 The virial method

Virial, a word derived from the latin vis meaning "force" or "energy", was first used in the
context of physics by Clausius in the so called Virial Theorem. The original statement of
Clausius’ theorem reads: "The mean vis viva of the system is equal to its virial", which, in
other words, means that the average kinetic energy is equal to % the average potential energy.

In mathematics, virial identities are related to conservation laws. The idea is to study the
properties of a conserved quantity, perturbed with an appropriate weight. In dispersive equa-
tions, the virial method was introduced by Glassey [25] in 1977, as he presented a blow-up
result for the focusing NLS equation. Although the result holds for a more general nonlin-
earity, let us explain the idea with the semilinear Schrédinger equation. Taking advantage of
the conserved momentum , Glassey considered a weight |x| = r and computed,

1 1
4 Imf ruu,dz | = |d PHL 1) o J |Vul*dz — d G Ey,
dt Rd 2 Rd 2

where Ej stands for the conserved energy, defined in (L.5]), and d is the space dimension.
The | - ||z norm is bounded by below by Im §, ru,dz, which turns out to be increasing
assuming Fy < O0and p > 1+ %. Therefore, as a consequence, solutions with initial data such
that Ey < 0 blow up. Needless to say, the monotonicity of the modified momentum plays a
crucial role in the proof.

Since then, virial methods have been generalized to meet different needs and adapt to
various equations. They are used not only to prove blow-up, but also stability or inestability
results, and even scattering, almost every time taking advantage of monotonic quantities.
In a few words, the idea is the following: if you intend on proving blow-up, you want the
norm to be larger than something increasing, whereas if what you need is decay, than you
would look for the norm to be smaller than something decreasing. In this thesis, we use virial
methods to prove decay properties for the Scrodinger models previously mentioned.

We proceed to give an idea of the method. To that end, let us consider again our typical
example, the NLS equation. For an appropriate (bounded) weight w € C'* and making use
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of the conserved momentum, we prove that

—i (Imf wuﬂmdx> = 0.
dt R

Then, integrating in time, we can deduce decay properties for the H'-norm localized in the
support of the weight, under certain conditions on the solution (mainly, small initial data for
the focusing case). More precisely,

| I <c.
0

Consequently, the results depend on the conserved quantity considered and on the weight
used, since it defines the region in which the decay property holds. In Subsection [1.4] we
present the main theorems proved in this thesis.

1.3 Zakharov Water Waves

1.3.1 Derivation of the model

Zakharov water waves arises as a free surface model for an irrotational and incompressible
fluid under the influence of gravity. Such fluid is considered in a domain with rigid bottom:

Q; = {(,2) € R?* such that — ha.(z) < z < n(t,z)},

where h > 0, a. : R — R (to be properly defined later) and 7 : [0,20) x R*> — R is the
(unknown) free surface elevation.

Z A AIR

e—— e —

0 . )

—

Q¢
\ /_\\
. \/ ,IER -
h —ha,

Figure 1.1: Description of the domain.

The following assumptions are made on the fluid and on the flow:
(H1) The fluid is homogeneous and inviscid.
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(H2) The fluid is incompressible.

(H3) The flow is irrotational.

(H4) The surface and the bottom can be parametrized as graphs above the still water level.
(H5) The fluid particles do not cross the bottom.

(H6) The fluid particles do not cross the surface.

(H7) There is surface tension.

(H8) The fluid is at rest at infinity.

(H9) The water depth is always bounded from below by a nonnegative constant.

We denote u the velocity of the fluid. By (H3), there exists a scalar function ® such
that inside the fluid domain €,

u=(3,9,0,0) = V,.® in Q.

Assumptions (H1) — (H2) imply that the velocity of the fluid u follows the the free surface
Fuler equation, which, interms of the velocity potential ®, turn into the free surface Bernoulli
equations:

1 1
(?tqD + §‘V$,Zq)|2 + gz = — P— Patm) in Qt-

=(

p
Ap,® =0 (V-u=0) in Q.

where P(t,z, z) is the pressure at time ¢ at the point (x, z) and P, is the constant atmo-

spheric pressure. If 0, is the upwards normal derivative, the fact that the fluid does not cross
the bottom nor the surface ((H5) — (H6)) imply the following boundary conditions

on® =0, on {z = —ha.}.

(1.16)
o+ /1 + [0zn]? 0n® =0 on {z =n(t,z)}.

z AIR n
- 0t x)
Qy
n
——
. ]’L _ha,g rzeR

Figure 1.2: The unitary normal vector pointing upwards.

Finally, since we are considering surface tension, over the surface we obtain the condition:

Vn

1
;(P — Pyym) = =BV - (\/T—VUP> on {z =n(t,x)},
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where [ is the surface tension coefficient.

As noted by Zakharov, if ® denotes the velocity potential, then 7 along with the trace of
the velocity potential at the surface ¢ = ®|,_, fully determines the flow. Later, Craig, Sulem
and Sulem [I6] introduced a new formulation invoking the Dirichlet-Neumann operator

Gln,al : o = 1+ [Vn? én®| _ .
Taking into account the pressure over the surface, the system that models the fluid reads

om = Gn,alp

5 —gn+ B0, | ————
1+ [0xm)| NERERL

where ¢ is the gravitational constant and [ is the tension surface coefficient. The velocity
potential can be recovered as the solution to the elliptic equation

Oup = —3 |0z + 1

Ax.® =0 (t, X, 2) € [0,00) x O
o_ =0 (1.18)
anq)‘Z*fH+a =0

System ([1.17)) has a Hamiltonian structure [78] in the variable (7, ¢). Indeed, we can re-write

(LT7) as
AN 0 I\ (JH
“Ne)  \—-1 0)\o,H

where the Hamiltonian H is the total energy given by

H(n,p) = %Lz ©Gn, ale + gn* + 23 <«/1 + |Vn|2 — 1) dzdz. (1.19)

Regarding the well-posedness for the Zakharov water waves problem in the presence of
surface tension, the 3-dimensional Zakharov water-waves problem is globally well-posed for
small initial data under rather restrictive smothness conditions, as studied by Germain,
Masmoudi and Shatah [19, 20]. For the 2-dimensional problem, local well-posedness for the
Cauchy problem in the space H**1/2 x H* s > 5/2 is proved by Alazard, Burq and Zuily [I].

Existence and long-time behavior of solitary waves:

The study of solitary waves for equation ([1.17) was mainly devoted to the flat-bottom
case (a. = 1). Indeed, existence of solitary waves [3] of speed ¢ ~ 4/gh was shown when the
parameters g, 8 and h satisfy the condition

he T X

for € > 0 sufficiently small. These travelling waves are solutions (). of the form
Qul — ct) = (n(x — ) ol — b)) = (hnn(h™(z — ct), chipa (™) (& — b))
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travelling at speed ¢

2y

_h z R

Figure 1.3: AK Solitary wave.

with
m(z) = N201(\z, \)  oa(z) = AO(Az, \)
These profiles ©; and O, satisfy an exponential decay. As noted in [3] [65], the profiles

O1(z,\) and Oy(x, ) have smooth expansions in A\. Then, we are entitled to study the
particular case A = 0, for which we get

61(2.0) = oo™ (35772 7

Thus, the KdV solitary wave is recovered.

A rather characteristic property of the one-dimensional Zakharov water waves model is
the fact that the surface of the fluid is invariant by translation. As a result, usual Lyapounov
stability cannot be expected. Nevertheless, orbital stability of the solitary waves holds, as
was proven by Mielke [44]. On the other hand, when considering the 2-dimensional case, the
situation changes, and solitons turn out to be unstable under transverse perturbations [65].
There also exist multi-solitons solutions, that is solutions that are time asymptotic to a sum
of decoupling solitary waves, as constructed by Ming, Rousset and Tzvetkov in [45].

1.4 Main results

The results proved in this thesis are part of the following articles:

1. M. E. Martinez, Decay of small odd solutions for long range Schrodinger and Hartree
equations in one dimension, published in Nonlinearity, 2020. (Chapter .

2. M. E. Martinez, On the decay problem for the Zakharov and Klein—Gordon—Zakharov
systems in one dimension, published in |Journal of Evolutions Equations, 2021. (Chap-
ter [3)).

3. M. E. Martinez and J. M. Palacios, On long-time behavior of solutions of the Zakharov-

Rubenchik/Benney-Roskes system , accepted in Nonlinearity, available in arXiv, 2021.
(Chapter [4]).
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 https://iopscience.iop.org/article/10.1088/1361-6544/ab591c
 https://doi.org/10.1007/s00028-021-00701-6
https://arxiv.org/abs/2102.06926

4. M. E. Martinez, Fxistence of solitary waves in the Water Waves Zakharov system with
slowly varying bottom, preprint 2021. (Chapter [5)).

Now we briefly describe these results.

1.4.1 Asymptotic dynamics of small solutions for NLS and Hartree
equations

Local decay results for NLS:

A great deal of literature proves that for the subcritical (in the sense of GWP and scat-
tering) semilinear NLS equation (3 < p < 5), scattering to a free solution exists (see, for
instance, Ginibre and Velo [24], Tsutsumi [73] and Nakanishi-Ozawa [50], to name a few).
Nevertheless, Strauss [69] and Barab [4] showed that one cannot expect the same scattering
for the critical (p = 3) and super critical case (p < 3). Instead, modified scattering is believed
to occur.

The first results on modified scattering for d dimensional NLS under small initial con-
ditions, were introduced by Ozawa [55] and by Ginibre and Ozawa [22]. Moreover, it was
shown that solutions u of such equations present the decay

lu()le < (1 + )72, (1.20)

when the initial data is sufficiently small in weighted Sobolev spaces (see also Hayashi-
Naumkin [I8], and Kato-Pusateri [30], for instance).

Modified scattering also holds for the NLS case with potential V', although it seems nec-
essary to assume spectral conditions on the functional —%A + V, see [17, 511, 21].

In this thesis, we focus on the decay problem for the super-critical case (p < 3), with
and without potential (although the result is for a more general nonlinearity, including the
critical p = 1 and subcritical 3 < p < 5 cases). We present the first result, that deals with
decay for the Schrédinger equation (|1.3]) without potential in compact intervals:

Theorem 1.2 (Theorem (21]), Chapter [2). Suppose u(t) € H'(R) is a global odd solution of
the equation (1.3)) for 1 <p <5 and pu = 0 such that, for some € > 0 small,

Jut =0)|lmE) <e. (1.21)

Then,
Jim (Ju(t) |z + () |u=cn) = 0. (1.22)

for any bounded interval I < R. Moreover, if the equation is defocusing, the smallness

condition (1.21]) is not needed.

Similarly, the following theorem deals with the decay in compact intervals for NLS with
potential:
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Theorem 1.3 (Theorem Chapter [2). Assume V # 0 even as in (L.3). Under the
assumptions of Theorem [2.1], suppose additionally that V' satisfies

L§(|V(x)| + |V'(x)|) cosh(2z)dx < +o0. (1.23)

Then there exists pg > 0 such that for all pu € (0, o), (1.22) holds for any bounded interval
I cR.

The proofs of Theorems [2.1] and combine the use of a virial identity, derived from
the conserved momentum, and spectral characteristics of the Schrédinger operator. Indeed,
spectral properties are used to justify the monotonicity of for the adapted momentum, as
commented in Subsection [I.2.5 To do so, the oddnes condition comes into play to rule out
solitary waves and breathers. On the other hand, the fact that we are considering fixed
intervals, allows us to forget about not only travelling waves, but also solutions that can
be written as a sum of solitary waves with different speeds (and sufficiently away from each
other) plus radiation. This is due to the fact that, since such solitons are moving at a
speed different to zero, then for any given fixed interval, one can wait sufficiently long and,
eventually, all solitons move away from our space interval.

Local decay for Hartree:

Similar to the critical and super-critical NLS equation (1 < p < 3), scattering to a free
solution does not exist for Hartree equation, as was stated recently by Murphy and Nakanishi
[49].

Nevertheless, modified scattering holds for Hartree equation for dimension d > 2 and the
solution presents the expected dispersive estimation ((1.20)). The first result in this regard
shows decay for Hartree equation with Coulomb potential

g(u) = o (|27 «[ul*) u, d>2,

and small initial condition [55] 22]. See also [I§] or [30] . We point out that,as general as the
results mentioned above are, they do deal with the decay problem for the one-dimensional
case.

It is our goal to prove decay properties for the Hartree equation (both focusing and
defocusing) in the one-dimensional case. When the dimension is larger than two (d > 2),
there seems to be an extensive study of the long-time behavior of solutions. Nevertheless, it
has come to our attention that the case d = 1 is still fairly open. A first step in that direction
is the following result:

Theorem 1.4 (Theorem , Chapter . Defocusing Hartree equation). Suppose that u €
HY(R) is a global odd solution of equation (2.1)) with [2.5) and o = 1. Then

T (Ju(®)] 2y + [u(®) o) = 0. (1.24)
for any bounded interval I < R.
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The arguments that we used in Chapter 2| are based on the previous work of [31] and [32],
where the decay problem for the Klein-Gordon equation is considered. Because of the the
dynamics of the Schrédinger model, in the virial method some uncontrollable H? terms arise,
which prevents us from proving decay in the energy norm.

1.4.2 Zakharov systems

Decay for Zakharov system:

It is known that for dimension d = 2,3, there exist solutions to the Zakharov equation
that decay to zero in the energy space H' x L? x H~'. Indeed, Ozawa and Tsutsumi [60],
Ginibre and Velo [23], and Shimomura [68], proved existence and uniqueness of asymptotically
free solutions of . Scattering theory for Zakharov system as we know it is presented by
Guo and Nakanishi [27], where they prove that all (energy) small, radially symmetric solutions
for the Zakharov system in d = 3 scatter. By using generalized Strichartz estimates for the
Schrodinger equation, Guo, Lee, Nakanishi and Wang in [26] were able to improve [27] by
showing scattering of small solutions without the radial assumption.

In Chapter [3, we will be interested in the decay problem for the one dimensional Zakharov
system. We study the decay in very specific regions: compact intervals around curves that
exist outside the light cone. We present the first result, dealing with decay in compact
intervals:

Theorem 1.5 (Theorem[3.1). Assume E; < 0. Let (u,n,v) € C (R*, HY(R) x L*(R) x L*(R))
be a solution of (3.4) such that u is odd and satisfies, for some € > 0 small,

sup |u(t)|m ) < €.
=0

Then, for every compact interval I < R,

tim Ju(t) o + a2t + [m(0)] 22ty + 1D me(8) 2y = O (1.25)

The proof of Theorem [3.1]is based on the Schrodinger case, and follows the idea of Theorem
2.1} In the same spirit, we construct a virial identity from the conserved momentum for the
Zakharov system.

Our second result deals with decay in far field regions along curves.

Theorem 1.6 (Theorem [3.2] Chapter [3)). Assume (u,n) is a global solution of (L.8). Then,
for any pair of constants ¢y, co, the following holds:

1. If (u,n,v) € C(RT, H'(R) x L*(R) x L*(R)), then, for any u € C*(R) satisfying
p(t) = tlog(t)'*°, 6 > 0, and setting Q,(t) == {x € R : cu(t) < |z| < cou(t)}, the
following limit holds
thjg ||U(t)HL2(QH(t)) = 0. (1.26)
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2. If (u,n, D7'n;) € C (R, H*(R) x L*(R) x L*(R)) and there exists f(t) € C1(R) a non-
decreasing function such that
[u(@®)| @) < f(2), (1.27)

then, for any u e C1(R) satisfying pu(t) = tlog(t)**0f(t), § > 0,

T () @0 + 700 | 2@ + | D™ (1) L2 09) = 0 (1.28)

The proof of Theorem [3.2] follows an argument introduced by Muifioz, Ponce and Saut
in [48], where they deal with the long time behaviour of intermediate long wave equation.
Hypothesis it is not due to the method, but on the model itself. It works mainly
controlling H?-terms that appear in the dynamics of the H'-norm of u. However, it allows
us to obtain decay of the | - ||g1-norm, which was not present in results established in [4§]
nor in Theorem 2.1] for NLS.

An intuitive sketch of the region where the decay is described can be seen in Figure [I.4]

Figure 1.4: Sketch of €,

Decay for Zakharov and KGZ.

Following the idea in [27], Guo, Nakanishi and Wang [28] proved scattering in the energy
space for radially symmetric solutions with small energy for the system in three dimen-
sions, as well. In [29], they continue the study of global dynamics of radial solutions in three
dimensions and find a dichotomy between scattering and blow-up. More specifically, relying
on virial identities, they show that if the initial data is radially symmetric and its energy is
below the energy of the ground state then the solution to can either (for both i = 1,2):
scatter or blow up in finite time.

As we did for (|1.8)), we prove decay of solutions to (1.9) in two different ways: over compact
intervals of time and over far field regions along curves. Our result for compact intervals is
the following:

Theorem 1.7 (Theorem [3.4] Chapter [3). Let
(w,ue,n, D" 'ny) € C (RT, H'(R) x L*(R) x L*(R) x L*(R))
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be a solution of (1.9) such that u is odd and satisfies
sup |u(t)| gy <e  and  sup |u(t)| 2w < C (1.29)

=0 =0

for some C' > 0 and £ > 0 small. Then, for every compact interval I < R,

i () ey + [ue(®)] 20y + [0 |22y + 1D na(®)] 2y = 0. (1.30)

The last theorem is devoted to the decay of the solutions to in regions along curves
outside the light cone:
Theorem 1.8 (Theorem , Chapter . Let
(u, ug, D'y, v) € C (RT, H'(R) x L*(R) x L*(R) x L*(R))
be a global solution to such that
sup |u(t)|m@ < e (1.31)

=

for some 0 < ¢ < 1. Then, for any pair of constants ci,ca, and p € CHR) satisfying
w(t) = tlog(t)t*0, 6 > 0, and setting and setting Q,(t) == {x e R: cypu(t) < |z| < cou(t)}, th
efollowing limit holds,

Tim [[u(®) 10,0 + [we(®) 220,00 + ()| L2@u00) + 1D (B[ L2(0u00) = 0- (1.32)

Notice that for the KGZ system, no hypothesis regarding a controlled growth of the H?-
norm was needed.

1.4.3 Zakharov-Rubenchik /Benney-Roskes

In Chapter {4 we deal with the decay problem for the Zakharov-Rubenchik/Benney-Roskes
(ZR/BR) system ([1.13]). The main idea that inspired the first result is the fact that one can
recover transport equations from the acoustic type functions 7, p. Indeed notice that we can
make the change of variables

mo=~Bo+n, pa=—/Bp+n.
Then, if (¢, 7, p) a solution to (1.13]), we get that p; and us solve the transport equations

«
Opr + (VB = @)apn = (‘\/B + 5) o (|9,
@
Oz — (VB + @)t = (\/B + 5) u([9F).
Take, for instance, u;. Thus, formally, integrating by parts

jt (e + (VB = a)t)de =y <\f+ )J (W), z + (/B — a)t)dz = 0.

Although this quantity might not be well-defined for solutions in the energy space, this
"conservation law" inspired the following result:
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Theorem 1.9 (Theorem, Chapter. Letvy := +071 (\/Bioz) fized. Consider (¢, p,n) €
C(R,H' x L* x L?) to be any solution to system (4.1) emanating from an initial data
(Yo, po, o) € H* x L? x L?. Then, for any c € Ry, the following inequality holds

+00 1 )
Y(t, z)|*dedt < +0o0,
L s () L+(t) | |

where Q4 (t) ;== {r e R: —cA(t) <z —vit < cA(t)}, k := 101 and
A1) := t¥3loglog ™3 (k + 1) and . (t) == tlog(k + t)loglog(k + t).
Furthermore, we have the following scenarios:

1. If +a < 0, then, the following inequality holds

+o0
L ﬂ*l(t) L © (|¢x(t7ﬂf)|2 + [0t z) > + p(t, ) + n2(t,x))dxdt < 4.

In particular, we have that

lim inf (Wz(t, o)]? + [0t 2)|* + p*(t, z) + nQ(t,x))dx = 0.

t——+00 Qi(t)

2. If a =0, then, the following inequality holds

0 o (t>

where A and p, defined as above and Qo(t) = {r € R : cA(t) < |z| < CA(t)}. In
particular, the following is satisfied

J+oo 1 J <|¢x(t,x)|2 + ot @) + 2t z) + p2(t,x))da:dt < 4o,
Qo(t)

limint [ ([a(t, 00 + 106 2)[* 4 7P(t,2) + 2(t,3))do = .
Qo(t)

t—+00

Remark 1.1. In the previous statement, the condition +a < 0 must be understood accord-
ing to the sets Q4. In other words, if +«a < 0, then both results for {2, hold, while if —a < 0,
then both results for 2_ hold. Notice that if a < 0, the result for {2_ is not necessarily true.

This result follows the idea from the decay results in compact intervals for NLS, Hartree
and Zakharov systems, but differs in the sense that it does not involve spectral properties.
In addition, we point out the lack of parity conditions, caused by the fact that parity is not
conserved by the flow. Also, we were able to approach compacts sets centered at the origin
because from (|1.15)) we already know that standing waves do not occur if o = 0

Our second main result states that, in the so-called far-field region, solutions (in the energy
space) must decay to zero.

Theorem 1.10 (Theoreom [4.2] Chapter[d). Let (¢, p,n) € C(R, H' x L? x L?) be any solution
to system (A.1]) emanating from an initial data (1o, po,mo) € H* x L* x L*. Then, for any
pair of constants cy,co > 0 the following properties holds:
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1. Consider any non-negative function ¢ € C*(R) satisfying that, there exists & > 0 such
that, for allt > 0 it holds

C(t) z tlog(k + )"0 and  ('(t) = log(k + t)°+1.
Then, setting Q¢(t) == {r e R: 1((t) < |z] < 2((t)}, the following limit holds

Tim [ ()| 2 (@ (1) = O- (1.33)

2. Assume additionally that (1, p,n) € C(R, H* x H' x H') is a solution emanating from
an initial data (o, po,no) € H? x H* x H'. Then, for any non-negative ( € C*(R)
satisfying that, there exists 6 > 0 such that, for allt > 0,

() 2 2% and (1) 2t
the following decay for the local energy norm holds

lim (@) @cwy + 1o |z2@ew) + 1) 2@cwy)) = 0-

The condition [I.33] is expected to happen at least for smooth initial data. Indeed, a
polinomial bound for the growth of the H*-norm of ¢ was stated in [33]. More specifically,
they proved that, for smooth initial data, solutions to system satisfies the following
property:

Hs(R) <1+ ‘t’(silﬁ.

[

1.4.4 The solitary wave for Zakharov water waves

Chapther [f]is devoted to the study of the solitary wave for the water waves Zakharov system
(1.17). Specifically, we analyse the behavior of the solitary wave solution of the flat-bottom
problem (that is, when a. = 0), given by Amick and Kirchgéssner (AK) [3] when the bottom
actually presents a (slight) change at some point. We consider a a slightly changing bottom
described by a. = a(e:) € C(R), where ¢ > 0 and a is assumed to satisfy the following
conditions:

There exist K >0, 0 < k <1 and 7,72 > 0 such that:
l-rk<a(r)<l1l, VreR,
1—a(r) < Ke™, ¥r <0,

lim a(r) =1, 7}1_)11& a(r) =1—k, (1.34)

r——00
/' (r)| < Ke "l vreR,

a’ does not change sign.

However simple the sketch of the approach might be (Figure [1.5)), in reality the situation
is fairly different. The description of the bottom has a (nonlinear) non-local interaction
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—h zeR
Figure 1.5: A solitary wave in nonflat bottom.

with the flow (see the boundary condition on the elliptic equation (1.16])). Consequently,
one cannot assume the existence of the AK solitary wave. Instead, our goal is to prove the
existence of a solution

(77) R (77) (r+A—ct) as t— —oo. (1.35)

¥ c

where A € R is a large (safe) distance away from the changing point A » 1, and Q. = (nc, goc)
is a solitary wave of the flat-bottom problem (the Amick-Kirchgéssner solitaary wave). It
will be convenient to define

R(t,z) = Q.(z — ct + A).

The precise result reads:

Theorem 1.11 (Theorem , Chapter . Let us fir s = 0. Suppose that the speed ¢ > 0
satisfy with a parameter X\. Then, there exists \* such that for every A € (0, \*), and
A > 0 sufficiently large (depending on €), there exists a solution U = (n, @) to defined
in the time interval (—0,0], that satisfies

U-— ReCy((—,0], H*(R) x H*(R)),

and
lim | Ut) — R(1)

The proof of Theorem [5.2]is based on the argumnts used by Ming, Rousset and Tzvetkov
to prove multisolitons-like solutions for the Zakharov water waves problem with flat bottom
[45]. The most important step for such goal is the construction of an approximate solution
U,,, approximate in the sense that 6,U,, = F(U,,) + ra, — F(U,,) exponentially fast. To
that end, we construct:

N
Uap(t7x> = R(t7x) + Z ijj<t7x)7

where V(¢,z) (to be defined) are solutions to linear problems (linearization of (1.17) about
the solitary wave) with exponentially decaying source terms. The decay of both the error
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r,, produced by the approximate solution and the solutions V; of the linearized problem are
described in the following theorem:

Theorem 1.12 (Theorem [5.13] Chapter [5)). For every N € N, there exists
N .
Up=Q.+V=0Q.+ ) pV,tx)
j=1

where V; € C*(R, H*(R)) such that
| Vj|gs < APDAC, (8)e 2% vt < 0. (1.36)

In addition, U,, is an approxzimate solution of (5.6) in the sense that the remainder T
defined as
0t Unp — F(Uyp) = 14p

satisfies the exponential decay

s < A(2N+1)/4ON78(6O)pN+1e—(N+1)5oc|t| Vi < 0.

| Tap

This result provides, as far as we understand, the first construction of a solitary wave like
solution in the case of non flat bottom. Now the collision problem becomes key to understand,
since the bottom strongly interacts with this solitary wave after some large positive time.
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Chapter 2

Decay of small odd solutions for long
range Schrodinger and Hartree equations
in one dimension

Abstract. We consider the long time asymptotics of (not necessarily small) odd solutions to the nonlinear
Schrédinger equation with semi-linear and nonlocal Hartree nonlinearities, in one dimension of space. We
assume data in the energy space H'(R) only, and we prove decay to zero in compact regions of space as time
tends to infinity. We give three different results where decay holds: semilinear NLS, NLS with a suitable
potential, and defocusing Hartree. The proof is based on the use of suitable virial identities, in the spirit
of nonlinear Klein-Gordon models [30], and covers scattering sub, critical and supercritical (long range)

nonlinearities. No spectral assumptions on the NLS with potential are needed.

This chapter has been published as: M. E. Martinez, Decay of small odd solutions for long range
Schradinger and Hartree equations in one dimension, Nonlinearity, 2020.

Contents
2.1 Introduction| ... ..... ... .. 0 o o oo ool 34
2.2 Schrodinger equation without potentiall . . . . . .. ... ... .. 40
[2.2.1 A wvirtal identity|. . . . . . . ... 40
[2.2.2  Analysis of a bilinear form|. . . . . . . ... ... 42
[2.2.3  Estimates of the terms on (2.20)| . . . ... . ... ... ... ... 43
[2.2.4  End of proot of Theorem [2.1). . . . . . . ... ... ... ... ... 47
2.3 NLS with potentiall . . ... ... ... ... ... ... ... 48
[2.3.1 Virial Identity|. . . . . . . . . ... 49
[2.3.2  Analysis of a modified bilinear form| . . .. ... .. ... ... .. 49
[2.3.3  Estimates of the terms on (3.25)| . . . . ... ... ... ... .. 52
234 Proofmaimmresultl. . . . ... ... ... ... ... 53
2.4 The Hartree Equation. Proof of Theorem|2.4 . ... ... .. .. 53
[2.4.1  Virial Identity|. . . . . . . . . .. 54



 https://iopscience.iop.org/article/10.1088/1361-6544/ab591c

2.1 Introduction

In this section of chapter [[]] our goal is to study the long time behavoir of small odd global
solutions of the one-dimensional nonlinear Schrodinger (NLS) and Hartree equations

g + Uy = g(u), (t,z) e R xR (2.1)

In the Schrédinger case (see Ginibre-Velo [22], Cazenave-Weissler [§] and Cazenave [6]), we
shall assume that the nonlinearity takes the form

g(u) = uV(@)u+ f (uf*) u, (2.2)

where the potential V' : R — R is a Schwartz even function and f : R — R is a function such
that for 1 < p < 5 (L? subcritical case),

f(s)] < 57, (2.3)

and that satisfies that f o s? is locally Lipschitz continuous. In this context, we denote
F(s) = §; f(v)dv, for all s >0, and

mngﬁvwm%m+;&mmmm.

In the Hartree case, we have

ow) = o (W luP)u, Gl =5 [ (W 1af) [P, (2.4)
R
where 0 = £1 and the potential W is given by
1
W(z) = —, with 0<a<l. (2.5)

]
The equation ({2.1]) is Hamiltonian, and it is characterized by having at least the following
conservation laws:

e Mass:

M(u(t)) := JR [u(t)[*da = M (u(0)), (2.6)

e Energy: .
E(u(t)) := 5 fR (Vu(t)|*dz + G(u(t)) = E(u(0)), (2.7)

e Momentum:

HW»:MLMW&M:PMW. (2.8)
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The NLS equation (2.1)-(2.2) with nonlinearity f(s) = +s" is commonly known as the
semilinear Schrédinger equation [6]. In particular, if f(s) = —s"T, we say that the equation

is focusing, while the defocusing case takes place when f(s) = s"7. It is well-known that
this one-dimensional semilinear Schodinger equation is globally well-posed for initial data in
H'(R) when 1 < p < 5, and blow up may occur if p > 5, see e.g. [23,35] and subsequent
works.

On the other hand, the Hartree equation (2.1) with is also locally well-posed in
H'(R), and globally well-posed for small data, see [6, Corollary 6.1.5] for instance. This
comes from the fact that the potential W in ([2.5) is an even function that satisfies the
following properties:

o WeL'(R)+ L*(R),
e The function (W = |u|?)|u|? is integrable. For the case (2.5)), one has the estimate

| (e s ) e <o
R

(we prove this using the Hardy-Littlewood-Sobolev inequality [32, Theorem 4.3, p. 106]
with p = r = 5%).
This means that we are in the case of [0, Example 3.2.11] and [6, Corollary 4.3.3], which
implies the local well-posedness of the Hartree equation.

In this paper we are interested in the asymptotic behavoir of small solutions to , both
in the NLS case (with and without potential), and in the nonlocal Hartree case, at least
in the defocusing case. The literature on this subject is huge; we present now a (far from
complete) account of the most relevant results.

It is known that for subcritical (in the sense of GWP and scattering) semilinear NLS
equation (f(s) = is%, 3 < p < 5), scattering to a free solution exists (see, for instance,
Ginibre and Velo [22], Tsutsumi [54] and Nakanishi-Ozawa [40]). Nevertheless, in Strauss
[51] and Barab [3] it was proven that one cannot expect the same scattering for the critical
(p = 3) and super critical case (p < 3), and modified scattering is believed to occur. This
was generalized recently by Murphy and Nakanishi [38] for the semilinear NLS equation with

potential and Hartree-type nonlinearities as (2.5)).

Precisely, modified scattering for d dimensional critical NLS equation with nonlinearities

2
glw) =oluf™tu, p=1+=, d=1,23
and the Hartree equation with Coulomb potential
g(u) = o (Jz] ™" = [ul)u, d>2,

and small initial condition, was first proved by Ozawa [43] and by Ginibre and Ozawa [21].
Moreover, it was shown that solutions u of such equations present the decay

lu()le < (1 + )42, (2.9)
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when the initial data is sufficiently small in weighted Sobolev spaces (see also Hayashi-
Naumkin [I6], and Kato-Pusateri [27|, for instance). Through a thorough analysis of the
solution profile, a simplified proof of scattering in the critical defocusing NLS and Hartree
equations has been exhibited in [27].

Similar recent results hold for the NLS case with a potential, as was shown by Cuccagna,
Visciglia and Georgiev [14] for p > 3, and Naumkin [4I] and Germain-Pusateri-Rousset [20]
for the critical case p = 3 (see also [19]). Nakanishi [39] considered 3D NLS with a potential
having a single negative eigenvalue, and proved asymptotics for large time. Indeed, assuming
that the potential V' is such that —%A +V does not have negative eigenvalues nor resonances
at zero, they were able to prove the decay for solutions of subcritical (p > 3) and
critical (p = 3) NLS equation in one dimension. However different the methods to prove this
decay are from each other, it is not clear to us if they still hold by assuming less restrictive
spectral conditions.

Finally, following idea introduced in [29], about considering odd data only, Delort [17]
proved modified scattering for small (smaller than a parameter €) odd solutions u to (2.9
with data in H%'n HY, N large, and showed (among other things) the precise decomposition
for large time

u(t,z) = \%AE (%) exp l—ig—j +ie*logt ’AE (%) ﬂ +r(t,x),

where the continuous function A, is bounded in L*(R) n L*(R), 0 € (0, ;) and
It e = Ot 40, | A(a)ta) 21e = O(et 1),
and

Ir(t, )iz = O™ 1%), | Adla)ta) ™|z = O(et™57%),

Notice that all positive decay/scattering results above mentioned cannot deal with the
one dimensional NLS (for p < 3) and Hartree equations. This is in part explained by the
lack of precise nonlinear estimates in the case of long range nonlinearities.

Our main goal in this paper is to extend in some sense the recently mentioned results
[41, 20], 27, [17] and show decay of small solutions to the above equations, regardless the
(supercritical with respect to scattering) power of the nonlinearity. In particular, we consider
nonlinearities NLS with 1 < p < 5 and Hartree long range supercritical in one dimension.

Our first result covers the NLS case without potential (1 < p < 5).

Theorem 2.1. Suppose u(t) € H'(R) is a global odd solution of the equation (2.1)-(2.2) and
=0 such that, for some € > 0 small,

lu(t = 0) | mry < €. (2.10)
Then,
im (Ju(®)z2) + Ju(®) =) ) = 0, (2.11)
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for any bounded interval I < R. Moreover, if the equation is defocusing, the smallness

condition (2.10) is not needed.

Remark 2.1. NLS ([2.1)) preserves the oddness of the initial data along the flow.

Remark 2.2. As far as we could understand, Theorem is the first decay result for small
data NLS in the long range supercritical nonlinearities 1 < p < 3. Although we do not give a
precise description of a possible limiting profile as in the previous literature, our results show
dispersion after all.

Remark 2.3. Theorem is sharp. Indeed, it is not true for u(t) € H* even. A simple
counterexample in this case is the non decaying soliton itself:

u(t, r) = Q.(x)e, 0<c«l, (2.12)

and Q. > 0 solving Q" —cQ.+ QP = 0, Q. € H'. Note that this solution is even in space and
small in H' provided ¢ « 1. Also, the Satsuma-Yajima breather solution (see [46] and [
eqn. (1.16)]) is an arbitrarily small non decaying even solution to NLS (2.2) in the integrable
[57) case p = 3.

Remark 2.4. For an interval [ = [(t) growing in time, Theorem is also sharp. Indeed,
see the works [33] 42] for the construction of odd solutions composed of two solitary waves
with non zero speeds for finite time. These asymptotic 2-soliton solutions can be arbitrarily
small in the energy space, but they separate each other as time evolves, leaving any compact
region in space for sufficiently large time. In this sense, these solutions do not contradict

Theorem 2.1

Remark 2.5. From the identity

% afut,a)dr = —2Tm L W), (H)de = —2P(u(t)),

valid if zu(t = 0) € L?, we can see that nontrivial, non decaying periodic-in-time solutions
(i.e. breathers) of NLS may exist only if their momentum vanishes. See [37] for more details
on these properties of breather solutions.

Remark 2.6. Sometimes, instead of assuming odd data, the additional assumption ||zu(t =
0)||z2 « 1 is considered. This condition works with even data, and rules out the existence of
small solitary waves as in ([2.12)), since solitary waves with small H!'-norm satisfy |zQ.[z2: » 1.

Remark 2.7. Note that does not contain the H! norm of the solution. This is a
standard open issue in the field, see e.g. [I7] for similar results. In our case, the lack of
control on the decay of this semi-norm is due to the emergence of uncontrolled H? terms in
the dynamics of the energy norm.

Remark 2.8. In the defocusing case, we expect better results. For instance, we can prove

that liminf, o [ue ()] 22121061 1y = 0, but a better decay property is out of reach for
the moment.
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The proof of Theorem is based on the introduction of a virial identity adapted to the
NLS dynamics. Following the ideas presented in [30, 29|, which considered the nonlinear
Klein-Gordon case, we use here a functional adapted to the momentum . Once this
virial identity is established, decay is proved in a standard form.

Compared with the available results for Klein-Gordon [30], where H' decay is proven,
the main novelty here is that we avoid the lack of H' decay in time for NLS (Remark
by proving time decay in Ly instead; also, we consider the cases of NLS with a nontrivial
potential and with Hartree nonlinearities (see below), both of important physical interest,
and not treated in [30)].

Using inverse scattering techniques, Deift and Zhou [15] described the asymptotic behavior
of solutions of the defocusing, nearly integrable quintic perturbation of cubic NLS

iy + Upe = |ul*u + €elul*u, €>0. (2.13)

Using the techniques of this paper, we are able to give a partially complementary result to
the one stated in [15]:

Corollary 2.2. Let e # 0, and let u € C(R; HY(R)) be a global small odd solution of (2.13)).
Then (2.11)) is satisfied.

The proof of this result immediately follows from Theorem [2.1]

Our second result deals with NLS (2.1)) with nonzero potential in (2.2)). In this case, we
also provide time decay results in the case pV small and spatially decaying fast enough,
complementing [14] [17], 41}, 20].

Theorem 2.3 (NLS with potential). Assume V # 0 even as in (2.2]). Under the assumptions
of Theorem [2.1], suppose additionally that V satisfies

JR (V)] + [V'()]) cosh(2z)dz < +o0. (2.14)

Then there exists pg > 0 such that for all p € (0, o), (2.11) holds for any bounded interval
I cR.

Remark 2.9. Note that Theorem does not require that the operator —02 & uV satisfies
specific spectral properties as in [14, 41], 20]; only the decay hypothesis (2.14)) is needed. In
particular, no non resonance condition is needed for having . This fact reveals that the
non resonance condition is essentially linked to the evenness of the involved data.

Remark 2.10. We can ask for V' decaying slower than in (2.14), but proofs are probably
more complicated; we hope to consider this problem elsewhere.

Finally, we deal with the Hartree case.
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Theorem 2.4 (Defocusing Hartree equation). Suppose that u € H'(R) is a global odd solu-
tion of equation (2.1)) with (2.5) and o = 1. Then

tim ()] 21y + u(t) o) = 0. (2.15)

for any bounded interval I < R.

Remark 2.11. Theorem proves the non-existence of odd standing waves solutions for
the equation ([2.1)) with defocusing Hartree type non-linearities.

Remark 2.12. Theorem does not include the focusing case, which is an open problem of
independent interest. In that sense, the scattering problem for the d > 2 generalized Hartree
equation was recently treated in Arora-Roudenko [2].

Remark 2.13. Focusing Hartree equation (2.1 with (2.5) (0 = —1) admits solitary waves
solutions (or solitons)

u(t, ) = e“'Q.(x) e H
where Q. : R — R is an H!'-solution of the Choquard equation

1

]

AQ+( *|Q\p>Q—)\Q:O, ceR. (2.16)

These solutions are, up to translation and inversion of the sign, positive and radially symmet-
ric functions |9 36]. Moreover, solitary waves for the focusing Hartree equation are stable,
as was proven by Cazenave and Lions in [7]. See also Ruiz [45] for more details on solitary
waves for Hartree.

Remark 2.14 (NLS around solitary waves). Solitary waves in mass subcritical NLS exist
and they are stable. The first results on stability were provided by Cazenave and Lions in [7],
where orbital stability of solitary waves for the NLS equation (2.1)-(2.2) without potential
was proven (see also [56, 25]). Stability of several NLS solitons well-decoupled was proved
in [34], and in [26] for the integrable case. The asymptotic stability for the same equation
was studied by Buslaev and Perelman in [4] in the supercritical regime; this result was later
generalized by Cuccagna in [10] 11 [I3] for dimensions d > 3, and under special spectral
conditions on the linearized operator around the solitary wave. The one dimensional case,
under similar spectral assumptions and even data perturbations of the standing wave, was
studied by Buslaev and Sulem [5]. For the NLS equation with potential ([2.1)-(2.2)), results
for asymptotic stability of ground states (also, under spectral conditions) were provided by
Soffer and Weinstein in [49] 50], see also [48] 18,52, 53], and [44] for the case of multi-solitons
in general dimensions. We believe that some of the ideas in this paper can be generalized
to the case of asymptotic stability for solitary waves, but with harder proofs. See e.g. the
recent paper by Cuccagna and Maeda [12], and the NLKG paper by Kowalczyk, Martel and
Murtioz [31].
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Notation

To simplify the notation we will denote u; = Re u, uy = Im u. Let a(z) = 0 be a weight.
We also denote by

[u(t) s ) = fRau)\u(t,x)Fdx,

(2.17)
()71 gy = JROé(fv) (lua(t, 2) [ + Ju(t, z)[?) da,

the weighted L2-norm and H!'-norm with weight a.

Organization of this paper

This paper is written as follows. In Section [2.2)we prove Theorem [2.1], NLS without potential.
Section is devoted to the proof of Theorem [2.3] namely NLS with potential. Finally,
Section deals with the Hartree case (Theorem [2.4)).

2.2 Schrodinger equation without potential

In this Section we prove Theorem 2.1} Consider the equation (2.1) with ([2.2) and V' = 0.
That is,
iy + tgr = f (Ju]?) u, uwe H' odd. (2.18)

As claimed in the introduction, the proof here follows the ideas in [30], with some minor
differences.

2.2.1 A virial identity

We shall introduce a standard virial identity adapted to (2.18)). Let ¢ € C*(R) be bounded
and to be chosen later, u(t) € H!(R) a solution of equation (2.18)) and define

I(u(t)) := ImJ o(z)u(t, ), (t, x)dz. (2.19)
R
Then we have the following:

Lemma 2.5. Forue C(R; HY(R)) one has I(u(t)) well-defined and bounded in time. More-
over, we have the virial identity

d |
~CI(t) = QJRgozumFdx -3 Lgpmz|u|2dx _ JR oo [F (1) = f(luP)u]dz.  (2.20)
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Proof. Let u(t) € H'(R) such that it satisfies equation (2.18)). Then, we integrate by parts

d
—I(u(t)) = Imf YUt dr + Imf OUpdx
dt R R

= ImJ OUudr — ImJ (pu), wdz.
R R

Then,
d L : —
—I(u(t)) = —ImJ ip (iuy) upde — Imf i(pu), iude

= —Ref piuudr — ReJ (pu), iudz.
R R

Computing the derivative on the second term above
d — —

El(u(t)) = —QReJ piugu,dr — Rej Yuiude

" R (2.21)

= —2Rej (i)t de — ReJ o, (1uy) udz.
R R

Thus, using (2.18)), we get

d

S I(u(t)) = 2Re J

YU dr + Rej Popllgzudr
dt R

R
- 2Ref of (Jul?) vu,dz — Ref eof (Jul?) vudz.
R R

We notice that 2Re (u,u) = 2Re (ut,) = (|ul?),, then

d
ity = j o (lusP) do + Re j Tz
dt R ’ R

~ [ or (uP) () d = | gt () Pz

Recall the definition of F(s) = §; f(v)dv, which implies that (F(s)), = f(s)s,. Furthermore,

d
—I(u(t)) = J © (\ux]2)xdx + Ref Py U T
R R

dt
— [ o P ) o= | gt (10F) P

Integrating by parts, we obtain

d 2 — 2 2 2
) = =2 [ eufuPde ~Re [ pomude + [ oo [F(uP) = 7 (0F) o] do

~ =2 il = 5 [ pur () o+ [ o [P () = 5 () ]

We integrate by parts again on the second term to obtain

d 1
&[<u(t)) =—2 J;R 9096|u33|2dx + 5 JR Spaca:ac|u|2dx + fR Pz [F (’u|2) - f (|u|2) |u|2] dz.
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2.2.2 Analysis of a bilinear form

With the identity (2.20]) in mind, we define the bilinear form

1
B(w) = 2JR prwidx - 5 L Spscwzwzdx, w = uj, i= 1, 2. (222)

Here, u = uy + iug, with uy, us real-valued.

Let A € (1,00). As we explained before, our intention is to prove some estimation of B
using the weighted H!-norm 1ntr0duced in (2.17). To obtain this, we will consider p(z) =
Atanh (£) on the virial identity (2.20)) and define the auxiliar function a(z) = /¢, (z). Now,
we estimate each term of the blhnear form B:

r

f (aw)?dz = | o (w,)”dx + 2[ acww,dr + J (ap)? widz
R Jr R R
r
= | ¢, (w,)*dz + J aoy (w?) dz + f (ap)? widz
Jr R R
f‘

= | ¢, (wg;)2 dz — J aagwide,
R

JR

using integration by parts in the last equality. Thus

L 0r (w,)? dz = f (ow)? dz +f Yoz (qw)? da. (2.23)

R &

Furthermore, noticing that ¢, = (), = 2 (@, + o2), we get
amﬁ 2

f PrzpW?da = ( ) (cqw)” dz. (2.24)

R
Hence, from (2.23)) and ([2.24]),

2
B(w) =2 JR (aw)? dz — JR (% - Oé;x) (ow)? da.
Since a(z) = sech (%), then
1
ag(z) = Y sech <§> tanh <£>

A
() = ;2 <sech (i) tanh <§> — sech? <§))

which implies that

B(w) = 2JR( w)? dx — % sech? <§) (aw)® dz.

In order to prove Theorem we need to prove that the bilineal part of (2.20)) is coercive in
some way. To be more precise, we would like the following

B(w) = JR(ozw)i dz. (2.25)
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We introduce the auxiliar function v = avw. Then we can set
1
B(v) =2 fR v2dz — v JR sech? (;) vidz

B(v) = B(w).
This way, coercivity of the operator B implies (2.25)). We recall now

so that

Proposition 2.6 (See [30]). Let ve H'(R) be odd, A > 0. Then

B(v) = §J v2dz. (2.26)
2 Jr

Sketch of proof. We write

Notice that

has only one negative eigenvalue corresponding to an even eigenfunction. This comes from
the fact that (see [24, Exercise 12]) the index of the operator

is equal to the largest integer N such that

1 1
N < 5\/ 8")/1/(12h72 +1— 5

Since v is odd,

2
JR vidr — v Rsech2 (%) v?dr = 0, (2.27)

and then holds. |
2.2.3 Estimates of the terms on ([2.20)

Lemma 2.7. Let ue H'(R) be odd. Then for some C > 0, u = uy + iug,

lulfiy (e < O (B(ur) + B(uz)). (2.28)

Proof. We take A = 100. First, notice that from (2.27)), we have

2
J (aw)? = —— | sech? (i) (aw)? da.
T 100
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Using Proposition this implies that

B(w) = ;JR (aw), dz 2 J

R
Thus,
f sech(z)uidr < B(w), i=1,2.
R

On the other hand,

-
= f otwidr + f ’ay, (w2)x dr + | o*?w?daz.
R JR

f (aw)? dz = J otwidr — J (’ay) w’dz + J o?aiwidr
R R R R

= J atwidr — J (20702 + @’y ) wda.

Then, from the definition of «,

2 2 4 T 2
de = h dr — h™ [ — dz.
fR (aw), dz = fRsec (x)widx JRsec (100) wdz

In other words,

f sech(z)widr < f (aw)? dz + J
R R

sech? (i) w?dz.
R

100
Then, from (2.29)), we have that

J sech(z)widr < J (aw)? dz.
R R

Hence, using Proposition [2.6
f sech(z)ui2dr < B(w;), i=1,2.
R

Finally, from (2.30)) and ([2.32), we get
lu()| 1 @) < B(wi) + Blua).

Lemma 2.8. There exists € > 0 such that:
If u is an odd solution of satisfying , then
d
- SI(0) = Clu(t) iy

where C > 0.

44

af TN 29 < 2
sech <100> u dr 2 fR sech(z)w*dz.

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)



Proof. Recall from (2.20) and the analysis of the previous section that

-0 =2 [ e = 5 [ puneluPs = [ g [F (uP) = fulul)ds

= Blw) + Bluw) = | o[ () = £(uf?) o] do

Consequently, in order to complete the proof, we need to control the remaining terms of
(2.20)), since the terms involving the bilinear form B have already been estimated by Lemma
27

Note that
F (Jul?) = f(ul)uf?| < |uf*.

Since u is odd,

o]

JR sech? <§> lulPtdr = 2J0 sech? <§> lu[Ptdx

= QJOO sech~ =Y (£> sech?*! <£) |u|Pt?
. A A
0
~ f eP=D/A gechP T (E) lu[Pttdz.
0 A

With a slight abuse of notation, set v(t,z) := sech (%) u(t, ). Note that v(¢,0) = 0 and
vanishes at infinity V¢ € R. Then, integrating by parts,

0 A oe)
J e(p—l)x/)\|v|p+1dx _ : J e(p—l)r/)\ (|U’p+1) dx
p—1Jo ‘

0
Alp+1 “
= _LRGJ e(p_l)”/A\v\p_lz‘wxdx.
p—1 0

Hence,

0 a0
f /A |y 1 — _Mp_Jrll)Re J oD/ |y <e<p71>x/2A,U’%> da
0 p— 0

0
< H Hg?oo lR)/2 f e(p_1)$/2A|fU|p%16Umdx
0

o0
~n|@””f<ﬁ*W”m%Ww%Mx
0

0¢]
L e e
0
By Young’s inequality,

Q0 o0 0
R e g T I

0 3 ) x
= |u|LO°(R)J |vg|*d +JO sech” ™! (X) sech? ™ (X) lu|Ptda

Q0
- Hu||72;(R) J v, [*dz + f sech? <f) u[PHdz,
0 0 A
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which actually means that

0¢]
[ s (£) 1 <l [, P
R A

By Sobolev’s embedding,

T B o0
[ s () 1t < gt [ o), P

Now, it is a fact that for every 0 < ¢ < 1, there exists d(e) such that [|u(0)|g @) < 6(¢)
implies that Sup |ul g wy < € (see [6, Corollary 6.1.4] or the conservation of energy and mass

. . ThlS way, from Proposition [2.6] we get
J sech? (%) lu[Ptdz < &P~ (B(uy) + Bluy)).
R
So, choosing ¢ sufficiently small, (2.33)) is proved. |

Remark 2.15 (Defocusing case). Note that in the semilinear defocusing case f(|ul?) =
JulP~t,

F (JuP) — f(Jul)uf? = (]ﬁ - 1) .

Since p > 1, %|u|p+1 — 1 < 0 which means that the remaining term on (2.20) involving the
nonlinearity is positive:

= [ e [P (1) = £ ] o > 0
and then Lemma is enough to conclude Lemma
With this estimation, we can now prove the key to get Theorem [2.1]
Proposition 2.9. There exists a constant C' > 0 such that

Q0
fo Ju(t)| %yt < CE. (2.34)

Proof. Let 7 > 0. We integrate (12.33) over [0, 7|

JO ()]s @ydt < C (I(w(0)) — I(u(1))) < CI(u(0))
From Holder inequality and (2.10) we get that
I(w(0)) < [[u(0)] L2 |42 (0) ] 2 @)

j Ju(t) 2y oyt < C=2
0

Now, taking 7 — o0, we conclude the proof. ]

2

N
™

This last fact implies that

46



2.2.4 End of proof of Theorem 2.1

Now Theorem [2.1] is ready to be proved:

Step 1: The L* norm tends to zero: Let ¢ € C*(R) be bounded. Then we compute

1
4 (—f <p|u(t)|2dx) = Ref puudr = —ReJRRigpﬂ (iug) dz
dt \ 2 R R

= Imf ot (iug) dz.
R
Hence, using equation (2.18)) and integrating by parts
d 1 2 — 2 —
— = | plu@®)|*dx | = —Im | puuzdr+Im | of(|u*|)uude
= Imf PUzudr + Imf Y uudr + Imf of (Ju?))|ul*dx
R R R

= Imf o|ug|*de + Imf YU dr + Imf of (Ju?|)|u)*dz.
R R R

Since the integrals on the first and third term are real, we get the following identity

% (%Lgp’u(tﬂz) _ ImJchxﬂuxdx. (2:35)
(3 [ dutorar)

We take ¢(z) = sech(z) and get

' ; - % (JR sech(z)|u(t, x)|2dx) ‘

)1 e
< J sech(x)|u(t, r)|*dz + f sech(x)|ug(t, z)|*dz = ||u(t)H12qé(R).
R R

Thus

< f (pul [t ()|

< f pulla(t) Pdz + f ullus (8)Pde.
R R

From (2.34), there exists a sequence t, € R, t,, — oo such that |Ju(t,)|3. ®) — 0. Consider
t € R, integrate over [t,t,], and take t,, — co. Then

0
o) B = | o)y
t
In consequence
Jim ()2 m) = 0. (2:36)

Step 2: The L* norm tends to zero: We state the following:
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Claim 2.10. For every interval I there exists Z(t) € I such that, as t tends to infinity,

lu(t, Z(t))]* — 0.

Proof. Let I € R be an interval. By contradiction, Suppose that there exists 5 > 0 such
that Vn > 0, 4t,, > n
(u(tn, z)|* > e Vrel.

Integrating over I, we get

f u(ty, 2)2dz > |1,
I

which contradicts (2.36]). [

Let x € I. By Fundamental Theorem of calculus and Hélder’s inequality

o)~ 3@ = [ (uP),do<2 [ Jululds

E(t) (t)
< 2Hu(t)HL2(I)Hum(t)HLQ(I)'

Then we get
Jult, @) 2 < Jult, 56) + 2o fua Dl Vo el (2.37)

Now, since ([2.10]) holds for € > 0 as small as needed,

sup |u(t)| m @) < 0.
teR

Also, this smallness condition is not needed if the nonlinearity is defocusing. Hence, taking
t — oo in ({3.38]), from Claim [2.10{ and (2.36)), we get that

lu(t,z)]* -0, Vrel.

Which implies (2.11]). The proof of Theorem is complete.

2.3 NLS with potential

This section is devoted to the proof of Theorem [2.3] We consider now the NLS equation with
a nontrivial potential V:

iy + gy = pV(@)u+ f (Juf)u, (tz)eR xR (2.38)
As done in the previous section, we introduce a virial identity that will be used to estimate

the H!-norm of a solution of equation (2.38)). However, because of the potential term V', new
estimates must be proved in order to get Theorem [2.3]
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2.3.1 Virial Identity

Suppose again ¢ € C*(R) bounded and recall from Subsection the definition

Imf u(t, x)u,(t, z)dx.

Following the proof of Lemma [2.5 we have now

Lemma 2.11. Let u(t) € H'(R) be a bounded in time solution of equation (2.38). Then
d 1
10 =2 | pudualds = | pnluPde — | ViluPds
R R R

df (2.39)
- f oo [F (1u) — f(u)uf] de

Sketch of proof. From the proof of Lemma (equation (12.21))) we know that

d
S Iu(t) = ~2Re f

o(iug)u,de — Rej @, (iug) udz.
R

R

We use (2.38)) to obtain

d

Lru(t)) = 2Re j it + Re j oty — 2Re f oV, da
dt N R R

- ,uReJ o Vuudr — 2ReJ of (Jul?) vu,dz — Ref eof (Jul?) vudz.
R R R

From the last equation, we are only interested in the terms involving the potential V', since
the rest of them were analyzed in the proof of Lemma [2.5] Then we compute

2Ref Vuu,dr + ReJ o, Vuudr = f oV (|u|2)x dz + f 0. V|u|*dx
R R R R

—J oV |u|*dz.
R

Combining this with Lemma , we conclude ([2.39)). |

2.3.2 Analysis of a modified bilinear form

In the following analysis, we will see more clearly the difference between the cases with and
without potential. In this occasion, we define a new bilinear form (u = u; + iug, u; € R)

1
B(w) =2 J;g prwidx - 5 L (pmcxwzdw - MJI‘RSO‘/;;wzd:U, w = Ui, i= 1, 2.

Consider A € (1,90), p(z) = Atanh (£) and a(z) = 1/¢.(z). Since a* = ¢,, we can write

J oVywidr = f Vgg£ (aw)® dz. (2.40)
R R Pz
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Thus, from (2.23)), (2.40) and ([2.24])),

B =2 [ (uar- [ (%-2) @ u [ VL s

R 042 « R Pz
Then, from computations of subsection we have that

1
B(w) =2 fu@ (aw)i dx — ¥ i sech? <§> (Ozw)2 de —p JR V;c% (aw)2 dz.

We set

1
B(v) = QJ v?dz — — | sech? <£> v?dz — uf Vxﬁvzdx,
R A? R A R T

where v = aw. Then

B(v) = B(w).

Now we prove a modified version of Proposition [2.6

Proposition 2.12. Let v e H'(R) be odd. Then, for A > 0 sufficiently small,

1

B(v) = —f v2dr. (2.41)
2 Jr

Proof. We introduce

1
L(v) = vacdx % Rsech2 (;) vidz

and

K(v) = J v2dz + ,uf Vov?da,
R R
where V) = —V;@—i. Then,
B(v) = L(v) + K(v).
Arguing as in the proof of Proposition [2.6, we write

1 1 2
L(v) = 3 JR vidz + 5 <JR v2dz — ¥ Rsech2 <§) v2dx) :
Since v is odd,

2 T
v2dr — — | sech? <—) vidr > 0,
J]R 2% Jr A

because the index N of such an operator is the integer that satisfies N < %\/17 -1l <2

2
Hence, we get that

L(v) = lf v2dz. (2.42)
2 Jr

Then, in order to get the (2.41)) it will be sufficient to demonstrate that C(v) = 0.

To prove the positiveness of K, we make use of the following result by Simon [47, Theorem
2.5| (see also [28] for improved results):
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Lemma 2.13. Let Vi be a non-identically zero potential that obeys

J% (11 2%) [Vy(a)|de < o,

Then
d2
Vi
de + HVo

has a unique negative eigenvalue for all positive p sufficiently small if and only if
J V(x)dz < 0. (2.43)
R

Moreover, since Vy is even, such an eigenvalue is associated to an even eigenfunction.

Remark 2.16. We remark that in the case SR Vo > 0 there is no negative eigenvalue —% +
1V, p > 0 sufficiently small.

Notice that, from the definition of ¢ and ([2.14]), we have

fR Vodx = — JR Vmédx = —)\fRVIsinh <§) cosh (;) dz

We integrate by parts and get
2
f Vodz = J cosh (_x) Vdzx.
R R A

Since A > 1, (2.14)) tells us that V{ integrates in space. Besides, since V is a Schwartz

function,
J (1+2%)
R

Then, Lemma [2.13] implies that there exists uo > 0 such that

v.X

x

2
dz < f (1 + 2?) [V,] cosh (%) dz < .
R

d2
“az T

has a unique negative eigenvalue for all ;4 < pg and A > 1. Since the corresponding eigen-
function is even, we have K(v) = 0 for v odd. |

The conclusion that we obtain from Proposition [2.41]is that for i = 1,2,

1

B(w) = 3 JR (au;)? da.

This property of the bilinear form B will allow us to get an estimation of the operator
L I(u(t)) that will lead us to conclude the proof of Theorem
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2.3.3 Estimates of the terms on (3.25)

Lemma 2.14. Let u be an odd solution of . Then,
lul @) < C (B(w) + B(ug)). (2.44)

for some C' > 0.

Proof. Direct from Lemma [2.7 |

Lemma 2.15. There exists € > 0 such that for every odd solution u of satisfying

u®m <= VieR, (2.45)
then q
= [ w(®) = Clu®) - (2.46)
where C' > 0.

Proof. The virial identity we have is

1
—il(t) = 2] g0$|uz|2dx — —f gpmzlu|2dx — ,uf 4,0V$|u]2dx
dt R 2 Jr R

- j oo [F ([u) — f(luP)luP] da

= Bluw) + Blu) = | o [F () = F(QuP)luf] az

As we already have an estimation for B(u) + B(uz) given by Lemma we need to check
that the remaining terms can be controled. Replicating the proof of Lemma [2.8] we get that

[ oLy = suP ] do < [ soct (5) fup

1 . x
< lulfng L ’(sech (X) ul)x

(7 z
* el L (seen (3) ).
Thus, Proposition implies that

[ LRl = £ 5 ol (Bl + B

Now, since |ul/z1(ry is small enough, we conclude. (In the defocusing case, this condition is
not needed.) [

2

dx

2
dzx.

We can modify the proof of Proposition [2.34] using Lemma [2.15] instead of Lemma [2.§] to
obtain the following:

Proposition 2.16. There exists a constant C' > 0 such that

o0
J ) 2yt < O (2.47)

0
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2.3.4 Proof main result

Step 1: The L? norm tends to zero:

Let ¢ € C*(R). Since Im {; V|u[*dz = 0, computing as in Subsection we have

d (1
( J olu(t)] > = ImJ Y uud (2.48)
dt R
This identity implies that

jt <1 f olu(?) de)

Taking p(x) = sech(x) we obtain

_ ‘% ( JR sech(w)|u(t)|2)

< J sech(x)|u(t, r)|*dz + f sech(x)|ug(t, z)|*dz = ||u(t)H12qé(R)
R R

JW%W %m+fwxw ).

'|wp

From (2.47), there exists a sequence #, € R, ¢, — o0 such that |[u(t,)|72 — 0. Consider
t € R, integrate over [t,,t], and take t,, — co. Then

o0
u@ﬁwmsf|wma®&-
t

Passing to the limit
Tim fu(t, )| Lz @ = 0. (2.49)

Step 2: The L* norm tends to zero:

One uses the same arguments as in Subsection [2.2.41 We skip the proof.

2.4 The Hartree Equation. Proof of Theorem

Our goal in this section is to extend Theorem to the Hartree equation,
iy + gy = o (|| [ul*)u, (t,z)eRxR (2.50)
where 0 = £1 and 0 < a < 1. We start out with a virial identity.
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2.4.1 Virial Identity
As before (see (2.19)), let us consider ¢ € C*(R) bounded and let
Imf u(t, z)u,(t, z)dx, (2.51)

then we state the following result.

Lemma 2.17. Let ue H'(R) be a solution of , then

1
— ImJ(u(t)) = QJ Ou| U |Pdr — —f Ouaa|u?dz + aaf @ ( x+2 x ]u|2> lu|*dz.  (2.52)
R 2 Jr R \|zl*

Proof. Recall (2.21) from the proof of Lemma [3.25]

d
—J(u(t)) = —2Ref o(iug)udr — Ref ot (iug)d.
dt . X
We use (2.50) to get
G00) = 2Re [ e+ Re [ e
d . i

- JQRGJ @ (|2~ * Ju]?) utt,dr — aReJ ¢o (|27 * [u]?) vudz
R R

= J ¢ (|ugl?), dz + Ref Ol d
R

R
—aLwﬂﬂ”*Wﬂﬂm%;u—akwﬂurﬂhﬁﬂm%m

We integrate by parts once on the last term and twice on the second term to obtain

Prptdr + UJ ©» (|$|_“ # |u|2)x |u|?da
R

—J(u(t)) = -2 J; gpx|ux|2dx—ReJR

=2 [ aluPde = 3 [ pun (uP), de b o | o (el o), [P
R R R

r

1
— _Z,J | U] *dz + §J e |2 dz + Uf ¥ (|x|_“ * |u|2)$ lu|?dz.
R R R

Computing the derivative on the last term,

d 2 1 2 z 2 2
dtJ( u(t)) = 2L¢m|ux| dx + Engpmx|u| dm—oaJ;ggp (|x|a+2 x |ul )x lul“dex.

Let us analyze the RHS of (2.52). Notice that if ¢ is a non-decreasing weight function,
the integral on the last term in ([2.52) is positive:

J J |a+2\ u(y)|?|u(z)|*dydz = 0. (2.53)
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Indeed, we compute (all the computations below are justified by choosing suitably compactly
supported functions, and taking the standard limit procedure)

a x
[ttt ) ks =~ | (- ,m W) ufde

- f f =)o) dyds.

We have that

r—y

|| e st PluteFayde = | [ (o) = o) e ulo) (o) Pdyda
yl |z —yl

# ] | o) W| uly) Plu) Py
After a change of variables on the second integral, we get

T —y

[ [ e puwpas = [ [ o) i i

- j ) Flu(o) Py

Then, we obtain that

() Plu() Pdyda = (1)) s [u(y) [P (@) Pdyde.
AR )] o e

If  is non-decreasing, then (p(z) — ¢(y)) (x —y) = 0. Moreover,

r—y
f j (0(2) — 9(1)) ———YJu(y) PJuz)Pdydz > 0
R JR |95 - y!
This implies that

| |, eter =ttt Plute)asas > 0

as claimed.

2.4.2 Proof of Theorem 2.4

Assume o = 1 in (2.50) and let u = u; + iug € H*(R) be an odd solution of this equation.
As done in Section [2.2] we define the bilinear form

1
e I R

This means that we can re-write the virial identity (2.51]) as

—%J( (1)) = B(uy) + B(ug) — O'JR(,O (|~ = ]u|2)$ lu|?dz. (2.54)
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Now, as usual, take A > 1, ¢ = Atanh (f) and a = /p;. From and and

reasoning as before, we have that

1
B(w) = 2JR (aui)i dz — v RsechQ (§> (aui)2 de, i=1,2.

Thus, Proposition [2.6] implies that

B(ul) =

[\CRGV]

2 .
J (aw;),dz, fori=1,2.
R
Moreover, if we consider

|w(t)| a1y = J sech(z)u?(t, z)dx +J sech(x)u?(t, r)dwr,
R R

then, from Proposition we obtain
lulty @) < Blw) + Bus).
Since

f]R JR <IO(I)|:E;?J|u(y>|2|u(x)|2dyd% > 0,

T — y|a+2

it follows that 4
—EJ(U@)) > [l % gy -

Replicating the proof of Proposition [2.9) we use the last inequality to obtain

Q0
[ 1oy e < 022
0

Step 1: The L* norm tends to zero: Let ¢ € C*(R) bounded. Then we compute
d /1
T <§ JR qb|u(t)|2dx) = Re JR puude
= —Ref iou (iug) de
R
= Imf ot (i) de.
R
Hence, using equation (2.50) with o = 1 and integrating by parts
d /1 9 _ _ 20N —
— (= | olu@®)Pdz ) = —Im | ¢uugdz +Im | ¢ (Jo[~* « [u?) vadz

= ImJ O ude + ImJ ¢ (|2 = |ul?) |u|*dz
R R

(2.55)

(2.56)

(2.57)

= ImJ P|ug|*dz + Imf ¢ uudr + ImJ ¢ (|27 # |ul?) Jul*dz.
R R R
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Since the only integral that can have an imaginary part is the second one, we have that

% (% JR ¢|u(t)|2> ~ Im JR $uTityda (2.58)

Thus
d /1
5 (5 ] eorpac)| < [ loudmoiiu e
< o) 2d ol lug (1) ?de.
< | a0 Pas + | onllua(0Pda
We take ¢(x) = sech(z) and get

_ ‘% (JR sech(af)IU(f)’Q)

< f sech(z)|u(t, z)|*dz + f sech(w)|u,(t, z)|*dz = ||u(t)qué(R).
R R

Su)lRs

From (2.57), there exists a sequence t, € R, t, — oo such that |u(t,)]?- & — 0. Consider
t € R, integrate over [t,t,], and take t,, — co. Then

o0
nmmgwsfuwwgww.
t

In consequence
Tim fu(t)] 2@ = 0. (2.59)

The rest of the proof is exactly the same as in the proofs of Theorems [2.1] and [2.3]
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Chapter 3

On the decay problem for the Zakharov
and Klein-Gordon Zakharov systems in
one dimension

Abstract. We are interested in the long time asymptotic behaviour of solutions to the scalar Zakharov

system
iug + Au = nu,

g — An = Alul?
and the Klein-Gordon Zakharov system

U — Au +u = —nu,
ng — An = Alul?

in one dimension of space. For these two systems, we give two results proving decay of solutions for initial
data in the energy space. The first result deals with decay over compact intervals assuming smallness and
parity conditions (u odd). The second result proves decay in far field regions along curves for solutions whose
growth can be dominated by an increasing C! function. No smallness condition is needed to prove this last
result for the Zakharov system. We argue relying on the use of suitable virial identities appropiate for the
equations and follow the technics of [20, 23] and [32].

This chapter has been published as M. E. Martinez, On the decay problem for the Zakharov and
Klein—-Gordon—Zakharov systems in one dimension, |Journal of Evolutions Equations|, 2021.
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3.1 Introduction
In this work, we are concerned with the one dimensional Zakharov system
iuy + Au = nu, (t,z) e R x R, (3.1)
a’ng — An = Alul?>,  (t,z) e R xR, '
with initial data
u(t = O,ZE) = u0<l’), n(t = 0,1‘) = ng(l'), nt(t = O,%) = nl(x)
where u(t,z) :RxR - C, n(t,z) :RxR - R and o > 0.
We are also interested in the Klein-Gordon Zakharov system in one dimension
cuy — Au+ Pu=—nu, (t,x)eR xR, (3.2)
a?ny — An = Alul? (t,7) e R x R, ’

with initial data
u(t = O,l’) = u0<l‘), ut(t = O,l’) = ul(x>
t

n(t=0,z) =no(z), n(t=0,2)=n(x).
where u(t,z) :Rx R—> R, n(t,z) :RxR—>R, a>0, ¢> 0.

The Zakharov systems are simplified models for the description of long-wavelength small-
amplitude Langmuir oscillations in a ionized plasma [49]. Langmuir waves are rapid oscilla-
tions of the electron density; electrons and ions oscillate out of phase. Zakharov equations
model the nonlinear interactions between the mean mode of the ionic fluctuations of density
in the plasma n and the changing amplitude of electric field u, which varies slowly compared
to the unperturbed plasma frequency. The constant « is the ion sound speed and c is the

plasma frequency.

In the subsonic limit (o« — o0), in which density perturbations are changing slowly, the
term ny of the wave equation in (3.1)) is negligible. This would imply that the Langmuir

waves follow the cubic NLS equation
i + Au + |ul*u = 0.
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If one considers @ = " in (3.2)), then it follows that

¢ 20y — 210 — AU = —nd,

a *ny — An = Alal?.

Thus, formally, in the high-frequency limit (that is, taking ¢ — o) of the Klein-Gordon-
Zakharov (3.2)), the Zakharov system is recovered.

These high-frequency and subsonic limits were extensively studied in [1} [38] 46] and [26]-
[29]. See, also, [45], 42, [4] for more details on the physical derivation.

The Zakharov system (3.1)) preserves the mass |u(t)|z2r) = |u(0)||r2r) and the energy
1 1
Hs(t) i= | [Vutta)+ 5 (Inta) P+ 51D It o)) + nlt, o)ut, ) da.
R

where D = 4/—A. The Klein-Gordon-Zakharov system (3.2)) preserves the following energy,

as well: ) .
Hico(t) = | Pt o) +[Vu(t. o) + ot o) + 5 nft, o)
R

1
+3llaD[ Mt @)+t 2)lu(t, o) Pde = Hyo(0).

 The system (3.1)) in one dimension is globally well-posed for initial data in H 1(R)x L*(R) x
H~'(R), where

w € H* if there exists v : R? — R such that w = V - v and |w|

HS = ||U|H5+1.

The first approach in this regard was presented by Sulem and Sulem in [44], where they
stated local well-posedness of ({3.1]) for dimensions d = 1,2,3 and initial data

(o, 0, 11) € H™(RY) x H™H(RY) x (Hm*Z A Ifrl) RY), m>3.
Using the Brezis-Gallouét inequality
Jullze € 1+l (In(1 + [Au]2)), (3.3)

valid if u € H*(R?), Added and Added in [I] improved [44] to global well-posedness for small
initial data in the 2-dimensional case. The local well posedness result (d = 1,2,3) was
refined by Ozawa and Tsutsumi [39], for data (ug, ng,n1) € H*> x H' x L?, and by Colliander
I7] for (ug,n9,n1) € H' x L? x H~'. In fact, in [7], using a priori estimates on the H'-norm
of u, Colliander shows global well-posedness for small data in the one-dimensional case.
Finally, on [40], Pecher proves that the Zakharov system is globally well posed for rough
data (ug,no,n1) € H* x L2 x H"', 1> s> 9/10 for dimension d = 1 without any smallness
condition. More results on local and global well-posedness for other dimensions and more
general nonlinearities are stated in |5l 8, [10, 31], and on the torus in [3].

Regarding well-posedness for system (3.2)), the first result was presented in [36], where
the authors followed a method based on the theory of normal forms to prove that (3.2) in
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dimensions d = 1,2,3 with ¢ = a = 1, admits a unique global solutions for small initial
data with rather restrictive regularity conditions. Also, they give a completeness result for
the 3-dimensional case, as they show the existence of global solutions that tend to behave
asymptotically (when ¢ — o) as the free solutions.

Using Sobolev invariant spaces, Tsutaya [47], improved the regularity conditions of the
global existence result in [36] for dimension d = 3. The low-frequency case (0 < a < 1) in
three dimensions was addressed in [37], where the authors rely on the different propagation
speed (normalized ¢ = 1 in the Klein Gordon equation, while assumed 0 < o < 1 in the wave
equation) to prove local and then global well-posedness for small initial data in the energy
space:

(Uo,ul,no,TLl) € Hl X L2 X L2 X H_l.

Following the idea stated in [37], Otha and Todorova [35] extended the well-posedness result
for all @ > 0 and d < 3. The high-frequency, subsonic case in dimension d = 3 was later
treated by Masmoudi and Nakanishi in [30]-[31], where they presented local well-posedness
in the energy space under the assumption o < c.

In this paper, we are interested in the decay of solutions to systems ({3.1)) and (3.2)).

It is known that for dimension d = 2, 3, there exist solutions to that decay to zero in
the energy space H' x L? x H~'. Indeed, Ozawa and Tsutsumi [39], Ginibre and Velo [11],
and Shimomura [43], proved existence and uniqueness of asymptotically free solutions of
by solving the system with final data given at ¢ — o0, instead of the initial value problem;
that is, for u, and n, free solutions of the Schrodinger and wave equations respectively,

u(t) = we (Ol + [Vn(t) = Ve lzz + [m(t) — dmy (B)] 2 — 0, as t — o,

Completeness results were also obtained for the 3-dimensional Klein-Gordon-Zakharov (i3.2]).
In fact, Ozawa, Tsutaya and Tsutsumi [36] proved the existence of global solutions that
behave asymptotically as free solutions in space

D 107 ) = us @) mses + Y5 10/ (n(t) = e (0)|gsrs —> 0 as ¢ — co.

j=0,1 j=0,1

In [I3], Guo and Nakanishi prove that radially symmetric solutions for the Zakharov
system in d = 3 with small energy do scatter. By using generalized Strichartz estimates for
the Schrodinger equation, Guo, Lee, Nakanishi and Wang in [I2] were able to improve [I3]
by showing scattering of small solutions without the radial assumption.

Following the idea in [13], Guo, Nakanishi and Wang [14] proved scattering in the energy
space for radially symmetric solutions with small energy for the system in three dimen-
sions, as well. In [15], they continue the study of global dynamics of radial solutions in three
dimensions and find a dichotomy between scattering and blow-up. More specifically, relying
on virial identities, they show that if the initial data is radially symmetric and its energy is
below the energy of the ground state then the solution to (3.2)) can either (for both i = 1,2):

e scatter when Ji(ug) = 0, or
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e blow up in finite time when J;(uy) < 0,

where J; are scaling derivative of the static Klein-Gordon energy:

3
Jo(v) = J|u|2 + |Vul|? = Jul*dz  and Jy(v) = f|Vu|2 — Z|u|4dx.

The behavior of radially symmetric solutions of was also studied in [24]. Using virial
identities, Merle in [24] showed blow up at either finite or infinity time for radially symmetric
solutions to that satisfy Es < 0 for d = 2,3. In [25], Merle improved the results in [24]
by presenting lower estimates on the blow-up of the Zakharov system in the 2-dimensional
case.

Notice that all positive decay /scattering results above mentioned do not deal with the
case d = 1.

From now on, we consider the one-dimensional case. In the following subsections, we
introduced a reduction of order for the Zakharov and Klein-Gordon-Zakharov systems and
present the main results of this work.

3.1.1 Main results for Zakharov system

In order to simplify the computations, from now on we consider system (3.1) with a = 1,
although the analysis still works for o # 1. With the purpose of reducing (3.1 into a first
order system, we introduce the real function v such that:
iUy + Uy = Nu,
Ny + Uy = O, (34)
vy + (n + \u|2)ﬁt =0,
and
u(t =0,2) = up(x), n(t =0,2) = no(x), v(t =0,z) = vy.

Such supposition is possible because we study the Zakharov system in the Hamiltonian
case, meaning that we assume that there exists vy € L*(R) such that —V-vy = n,(0); property
that is preserved by the flow. This way, to consider (u,n,n;) € H'(R) x L*(R) x H*(R)
solution of is equivalent to study (u,n,v) € H*(R) x L?(R) x L*(R) solution to (3.4)).

The system (3.4)) preserves:

e Mass:

M,(t) := L lu(t, r)|*dz = M(0), (3.5)

e Energy:
E(t) := L |y (t, z)* + %(n(t,x)|2 + |v(t,x)|2> + n(t, z)|u(t, z)|*dz = E4(0), (3.6)
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e Momentum:

Py(t) := ImLu(t,x)ﬂx(t,x)dx - fR v(t,x)n(t, x) dz = P,(0). (3.7)

In the present work, we show decay for solutions of in one dimension in two different
ways. On one hand, we prove decay on any compact interval for solutions to under
parity assumptions (u odd). On the other hand, we are able to show decay, without any
oddness condition but with sufficient regularity (|u(t)|n2 € L®), in regions along curves
outside the “light cone”.

Theorem 3.1. Assume E, < . Let (u,n,v) € C(RT, H'(R) x L*(R) x L*(R)) be a solution
of (3.4) such that u is odd and satisfies, for some ¢ > 0 small,

sup |u(t)|mr) < €. (3.8)

=

Then, for every compact interval I < R,
tim u(t) ey + [®)] 2ty + (@) |2y + [o®)] 2y = 0. (3.9)

Remark 3.1. Asking for u to be odd implies necessarily for n to be even. This property is
preserved by the flow.

Remark 3.2. The fact that u is odd allows to rule out solitary waves. The first result
regarding solitary waves was stated by Wu in [48|, where he proves existence and orbital
stability of solutions

u(t, r) = e Welt@=ty  (x — ct), (3.10)
and
n(t,z) = ny(z — ct), (3.11)
for
A 2)(1 — 2 4 2
uwc(x):\/(w—l—c)( c>sech w——i—cx ,
' 2 2
2 /4 2
Nye(r) = | 2w+ Y geen? (YT, . q= E,
’ 2 2 2
satisfying

o+ >0 and 1—¢* > 0.

Angulo and Banquet [2] studied existence of periodic travelling wave forms such as ({3.10)-
(3.11)), in this case for u,, . and n, . being periodic functions, and prove their orbital stability
as well. See also 9], [34] 17, 18, 50] for other results on solitary waves for generalized Zakharov
systems.

Remark 3.3. We do not prove decay in the energy space H' x L? x H~(R). This is because

uncontrolled H?-terms emerge when considering semi-norm H' for the solution u of the
Schrodinger equation. We show L* decay instead.
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Remark 3.4. The result also holds for a generalized Zakharov system when adding a po-
tential term |u|Pu in the Schrodinger equation. See [23] for the details on how to treat the
new non-linear term.

Remark 3.5. In [41] 22], the authors study the asymptotic behaviour of the Zakharov-
Rubenchik system. They prove that solutions blow up if the energy is negative and give
instability results for the solitary wave in the case d = 3. Such system is of special interest
since in the supersonic limit it has been proven that it converges to .

The proof of Theorem [3.1] is based on the use of suitable virial identities. The argument
follows from [20, 21], where the authors deal with the Klein Gordon case. The idea is to
argue as in [23], where a functional adapted to the momentum for the nonlinear Schodinger
equation was considered. Unfortunately, the identity used for the NLS equation, which allows
us to conclude, it is not appropriate in this case. Instead, as in [24], 25], we need to work
with a virial identity that comes from the quantity

P(t) := Imf u(t, x)u,(t, r)dx —J u(t, z)n(t,x) dz.
R R
Such virial has an uncontrolled term that we manage by adding the condition ((3.8]).

Our second result deals with decay in far field regions along curves.

Theorem 3.2. Assume E; < o0 and Mg < o0. Let (u,n,v) satisfy (3.4]).

1. If (u,n,v) € C(RT, HY(R) x L*(R) x L%*(R)), then, for any u € C*(R) satisfying
pl(t) z tlog(t)!*?, 6 >0,
T (8] 2ty = 0. (3.12)

2. If (u,n,v) € C(RY,H*R) x L*(R) x L*(R)) and there exists f(t) € CY(R) a non-
decreasing function such that
lu(@)lm2r) < f(1), (3.13)

then, for any u e CY(R) satisfying u(t) = tlog(t)'*2f(t), 6 > 0,

T Ju(E) [ 2 (g~ + 10O 222~ + 10O 2221~y = 0. (3.14)

A direct consequence of the proof of Theorem [3.2 is the following result for the NLS
equation:

Corollary 3.3. Let u(t) € H'(R) be a solution of the non-linear Schridinger equation

iy + Upe £ [ufPu =0,
where 1 < p < 5, with initial data u(t = 0,x) = ug satisfying |u(t = 0)||mr) < 0. Then,
Lim fu(®)l 2 el~ney = 0.
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The proof of Theorem follows an argument recently introduced by Munoz, Ponce and
Saut in [32], where they deal with the long time behaviour of intermediate long wave equation.
This method proves to be independent of the integrability of the equation and does not need
size restriction. However, when dealing with the Zakharov system, because of the presence of
uncontrolled H?-terms in the dynamics of the H'-norm of u, we need the additional condition
(3-13). Note that such condition allows as to obtain decay of the | - | g1-norm, which was not
present in results established in [32].

3.1.2 Main results for Klein-Gordon-Zakharov system

We will consider system (3.2) with & = ¢ = 1, although the computations still hold for
different values of o,c € R. As we did for the Zakharov system ({3.1)), we reduce by
introducing a real function v satisfying —V - v = n, for all ¢ > 0. That is, we get a new first
order system,

Ut — Uge + U = —NU,

ng + v, =0, (3.15)
v + (n + |u\2)x =0,

and
u(t =0,2) = ug(x), w(t=0,z)=u(x)

n(t = O,l‘) = no(x)a U<t = O,.%') = UO(x)'
The system (3.15]) preserves:

e Energy:

Era) = | it o) + s, 2) + ) (5,10

1
+ 5 (It @) + ot 2)2) + (e, @) u(t, 2)*dz = Bxl(0),
e Momentum:

Pra(t) == J

ult )t e — % f o(t, 2)n(t,z) dz = Pra(0). (3.17)

R

As we did for (3.4]), we prove decay of solutions to (3.15)) in two different ways: over
compact intervals of time and over far field regions along curves. Our result for compact
intervals is the following:

Theorem 3.4. Assume Exg < 0. Let (u,us,n,v) € C(RY, H'(R) x L*(R) x L*(R) x L*(R))
be a solution of (3.4) such that u is odd and satisfies

Sug) lu(®)|m@r) <€ and sup |u(t)|2r) < C (3.18)

t= t=0

for some C' > 0 and € > 0 small. Then, for every compact interval I < R,
T Jlu(®) [y + w2y + 00| 20y + 0] 20y = 0. (3.19)
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Remark 3.6. The oddness condition rules out solitary waves. Indeed, solitary waves of
(3.15)) exist and they are orbitally stable. They were first introduced by Chen in [6], where
he stated that solitons of the form

u(t, r) = e Whelt@=ty,  (x — ct),

n(t,z) = ny(z — ct),

with
JI— 2 — o2
U o(7) = A/2(1 — ¢ — w?) sech (#x) :
(1—-c*—w?) o (V1= —w? we
Moelt) = =2 g sed (T ) =T

exists when the real constants w and ¢ satisfy 1 —c? —w? > 0. There also exist solitary waves

(U, (Ut) .05 o, Vi) Of (3.13)) of the form
1—c?—uw? i<z . 0
Uy o(T) = A/2(1 — ¢ — w?) sech <1_;Czwx> e = (), = <1w + c£> Uy (),

(1—c*—w?) 1—c?—uw?
n%C(:E) = —21_—02 SeCh2 1_—621' s

Vpe(z) = 2¢
with 1 — 2¢? — 2w? < 0 and are orbitally stable [6].

Remark 3.7. The result holds when considering cubic nonlinear KGZ system, that is, when
adding an additional term |u|*u in the Klein Gordon equation. We do not address this case
in the proof, but it follows naturally from the analysis of the non-linear term in [20)].

The proof of this results follows more closely the idea in [20]. Indeed, we construct a virial
identity that comes from the momentum:

Pyg = Lut(t, )y (t, x)de — % Lv(t, x)n(t, r)dx.

But, since there are uncontrolled terms involving v and u; in the identity from the potential,
we need to consider u; uniformly bounded. Notice that we obtain now decay in the whole
energy norm (that is, even for the H'-norm).

The last theorem is devoted to the decay of the solutions to (3.15)) in regions along curves
outside the light cone:

Theorem 3.5. Assume Exg < 0. If (u,us,n,v) € C(RY, H'(R) x L*(R) x L*(R) x L*(R))

is a solution to (3.15)) such that
sup |u(t)|m@r) <€ (3.20)

t=0

for some 0 < £ < 1, then, for any p € CY(R) satisfying u(t) = tlog(t)'*°, § > 0,

T () e~y + (O] 220t~ + 12O 2221~ pe) + 0O 2ai~pey =0 (3:21)
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Notation

We introduce

u(t) s = me\u(t,x)r?dx,
u(t) s ) = Lw(w) (st D)2 + [ult,2)P) da.

as the weighted L?-norm and H'-norm.

(3.22)

This paper is organized as follows. In Section we prove Theorem [3.1} the virial ar-
gument is given in Subsection [3.2.1] Section is devoted to the proof of Theorem [3.2]
Sections [3.4) and [3.5] contain the KGZ system results, Theorems [3.4] and respectively.

3.2 Decay on compact intervals for Zakharov

This section is devoted to the proof of Theorem [3.1] Before we begin with the virial analysis,
we give the following result, which states boundness of the energy norm for every solution to

(3.4) with finite energy, It will be useful also in Section .

Lemma 3.6. Let (u,n,v) € C(RT, H'(R) x L*(R) x L*(R)) be a solution of (3.4) such that
Es < w0 and My < . Then, there exists Ky > 0 (K, depending only on the initial data)
such that
(Juz(t, ) + [ut, 2)]* + [v(t, 2) [ + |n(t,2)|?) dz < K,. (3.23)
R

Proof. We have that

1 1
J |ug|® + 3 (Jo]? + |nf?) dz = f |ug|® + 2 (Jo]? + |nf?) + 2n|ul*dz — QJ n|u*dz
R

R

f|u$|2 (1o + [nf?) + 2nlu] dx+2j Inuldz.

Using Young inequality for products, for e > 0 we get

|+ |v|2 ) da

(3.24)
f g |* + ]v|2 +|nf?) + 2nful?dz + = f In|*dz + ef u|*d.

Now, Gagliardo-Nirenberg inequality [19, 33], implies that

OGN C'G’N

Ll’ul4<iﬂj < Conllue 2@ ulzag) < =5~ luelier + == lulizm),

where

3
S

Y
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and @ is the solution to Q"+ Q*—@Q = 0. Then, going back to ([3.24) and taking, for instance,
€ = 2, we obtain

3
J Val + (o + ) de < 2E,(0) + %MS(O):”

Which means that there exists a constant K depending on M(0) and E,(0) such that (3.23])
holds. n

3.2.1 Virial argument

Step 1: Virial identity.
We now introduce suitable virial identities that allow us to work out our argument. Let
¢ € C*(R) be a bounded real function. Define

= ImJ u(t, z)u,(t, r)dx —J o(x)v(t, z)n(t, x)dz.

R

Then, we have the following:

Lemma 3.7 (Virial identity). Let (u,n,v) be a solution to (3.4). Then,

—%H()»=;L¢@Mwamwdx—§L %>wuxﬂdx+L¢<>mummmxw

1 1
+—j¢mmmu@mm+—j¢%@wWMa
2 Jr 2 Jr

(3.25)

Proof. We compute
—Imf x)ug(t, x)u,(t, v)dr + Imf u(t, ), (t, x)dz

fR o(z)v(t, z)n(t, x)dzx —f e(x)v(t, x)n(t, x)dz.

R

Integrating by parts,
= 2Imj x)uy(t, )y (t, z)de — ImJ Yu(t, )u,(t, x)dx

- L o(x)v(t, x)n(t, z)dx — f e(x)v(t, x)n(t, x)dx

R

= —2Re JR o(x)iug(t, )u, (t, z)de — ReJR ¢ (z)u(t, )i (t, z)dz

_ L @(I)Ut(ty x)n(t, J;)dx — f cpv(t, J})nt(t, J})dl’.

R
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Now, since (u,n,v) is a solution of the system ({3.4]),

%I(t) =L¢(x) (|“”(t’$)|2)xdfﬁ—f

) e(x)n(t, ) (Jult, a:)|2)$ dz + RGJ O (x)u(t, )y (t, z)dz

R
- | P@lutt o) Potta)de + | o) (o) + (e, ), nfer)da
R R
1
+ QJ () (|v(t,x)|2)xdx.
R
We integrate by parts once more and get

-2 Y@t de =3 | @) (u(t.0)R), do - | (e olutt,a)?

Lgp x)|n(t, r)|*dz + ;Lgp(x) (|n(t,x)|2)$da: — %ch'(ﬁﬂv(t,xﬂ?dx
f ) Jug(t, z)|* dz + ;Lgp’”(asﬂu(t,x)zdx— Lgp’(m)n(t,xﬂu(t,x)\Q
-3 | #@ntta)fis = | Fapeopds

Then, the identity follows. [

Step 2: FEstimations of the terms on the virial.
In order to find a more compact expression of (3.25)), we define the bilinear form

1
B(u) = 2] ¢ |ug|” dz — —J ¢" |u*dz. (3.26)
R 2 Jr

Then identity (3.25) turns into

d 1 1
— —I(u(t)) = B(u) + J ©'nlul® + —J ¢'|n|*dz + —J ¢'|v|*da. (3.27)

Following the argument in [23], for A > 0, let us take ¢ (z) = Atanh (%) and w(z) = 1/¢'(2).
Notice that if u = uj + iug, where u;, uy are real functions, then B(u) = B(uy) + B(ug). We
take n = w;, i = 1,2, and find estimations for B(n). From now on, we are going to assume u
odd, which 1mphes that n is also odd. Note that, by integration by parts,

| eniae= [ ¢ [ w(), dos | @) da

= f @' (n.)" da — f ww'ndz,
R R

[ mrar= [ @ [ < @nar (3.25)

It follows that
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On the other hand, we can re-write ¢” = (w?)" = 2 (ww” + (w')?), and obtain

L O"ndx = 2L (w—” + (w/)z) (wn)® d. (3.29)

w w?

Thus, from (3.28) and (j3.29),

Since w(x) = sech (%), then

X

B(n) = 2L (wn)? da — % ] sech? <X> (wn)? d.

Now, introducing a new variable ( = wn, we set
B(¢) =2 f Cdr — | secn? (f) Cdz
R A2 Jr A

so that
B(¢) = B(n).

At this point, we would like to prove that the bilinear B is coercive, which would imply

B(n) = B(C) 2 |Gl2m) = I (wn), [72r)

That way, we could have an estimation for the bilinear part on (3.27)), B(u), using the
weighted norm || - | 1.

Lemma 3.8 (See [23]). Let ¢ € H'(R) be odd. Then,

MO>SLQM-

We refer to [23, Proposition 2.2| for the details of the proof.

Finally, to conclude the analysis of the linear term B(u), we need to bound this term by
lullrgy-

Lemma 3.9 (See [23]). Let u € HY(R) be odd, u = uy + iuy. Then there exists a positive
constant ¢y < 1 such that
B(u) = collullz gy (3.30)

We omit the proof, see [23, Lemma 2.3].

Step 3: Conclusion of the argument.
The key ingredient of the virial argument is the subsequent proposition:

74



Proposition 3.10. Let (u,n,v) be a solution of (3.4) such that u is odd and satisfies (3.8)),
for e > 0 sufficiently small. Then, there exists C' > 0 such that

*© 1 1
L Ju(®)F gy + 5“”(””%3@) + §||”(t)||2LgU(R)dt <C. (3.31)

In particular,

@ 1 1
| ez m + 3Ol + 5l wdt < C. (332)

Proof. From (3.27)) and (3.30), we have that

d

1
— El(t) > co||u(t)H12qolJ(R) + §f ¢ (v +n®)dz + J ©'nluldz. (3.33)
R R

Now, following the idea of the proof of Lemma [3.6] by Young inequality, for some ¢ > 0 we
get

1
J ¢'|n|juPdr < —J ©'nidr + EJ ¢ |ul*dz. (3.34)
R 2¢ Jr 2 Jr

At this point, we need to absorb the negative terms using the weighted-norm ([3.22)). Since u

is odd,
JR sech? <§> lu|*dz = 2 JOOO sech? (%) lu|*da
=2 JOOO sech™? <§> sech? (;) |u|*

* x
~ J e***sech (—) u|*d.
0 A

With a slight abuse of notation, set ((¢,z) := sech (%) u(t, ). Note that {(¢,0) = 0 and
vanishes at infinity V¢ € R. Then, integrating by parts,

0 )\ o¢]
| e gttan = =5 [ (i), s

0 0

o0
- —2AReJ ¢ PECda.
0

Hence,

[ e icttar = —2ame [~ elelec, (e cl) o
0

0

o0
< Ju) s Re j A([CCoda
0

o0
< Julzem f ¢ G, de
0
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By Young’s inequality,

0 o0 00

| e eras < fulvegm | - I6aPde + fulmm [ etz
0 0 JO

(~C0

* T T
~ ||U|Lw(R)J G *de + |ulpew) | sech™ (—) sech? <—> lu|*da
0 Jo A A

(o0

®© x
= ulz=g) f GolPda + ey | sech? () fulda.
0 JO

By Sobolev’s embedding and (3.8) with 0 < e < 1, this actually means that

0

2 (T 49, < 2
Lsech ()\) |ul dxwgf | (wu), |“dz.

0

From Lemma [3.§ and Lemma [3.9] we obtain

f sech? <£> lu|*dz < coeful?.
R A “
Then, going back to (3.33)), taking ¢ = 2 and ¢ sufficiently small, one gets
d 2 2 2
—g! R 1eOlar + In®lzzw) + 1@z r):
Now, we integrate in time over [0, 7] for 7 > 0,
L [w(®) |7 + IR 2wy + [0 Ry dE < [1(7)] + [1(0)].
Thanks to Lemma [3.6] one obtains that

1) < [u®) i) + In(O12w) + [0 [2@) < K, VE=0.

Finally, taking 7 — o0, we conclude.

3.2.2 Proof of Theorem [3.1

Now, we proceed to conclude the proof of Theorem [3.1]

Let ¢ € C*(R). Using equation ([3.4]), we can compute

d
—J ¢ ([u]® + v]* + |n|*) do = — ZImJ O utdt — ZJ ov (Jul* + n) da — ZJ onude.
dt Jr R R ‘ R

By integration by parts, one obtains
d
—J ¢ (|[u]” + [v]* + |n|?*) dz = —QImJ 'ut,dt + ZJ d'on dx — QJ ov (Ju?) dz.
dt Jr R R R N
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This implies that

%J ¢ (Ju? + |v]* + |n|?) do = —2Imf d'utdx + QJ d'vn dx — 4ReJ dvutidz. (3.35)
R R R R

From Holder inequality and (3.8)), taking ¢(x) = sech(x), we can conclude that

d 1 1
3 (1O + 5100z + 1o

< ZJ sech(z) ([u]® + |u|* + [v]* + |n]?) dz + 25f sech(z) (|vf* + [ug]?) dz
R R

1 1
S @l r + 5 1Ol5s w + 510@ 22w
By (3.32)) we have that there exists a sequence {t,} < R, t,, — oo such that
2 1 2 1 2
luta)lzam) + Slota)lzam + () 2z @) — 0.
We integrate (3.36]) over [¢,¢,], for some ¢ € R and take ¢, — 0.
2 1 2 1 2
lu(t) 72 Ry + §\|U(t)HL2w(R) + §Hn(t)\|Lg,(R)
. 2 1 2 1 2
S | luG)me + 56w + 5l06)Izs wds:
t
Finally, taking t — o0, in view of (3.32)), we obtain
lim [u(®)[Z5 ) + 0023,y + In(E)]Zz R = 0.

To show decay of the L*-norm, we use the following claim, proven in [23]:

(3.36)

(3.37)

Claim 3.11. For every interval I there exists (t) € I such that, as t tends to infinity,

lu(t, #(t))]* — 0.

Now, if x € I, by Fundamental Theorem of calculus and Holder’s inequality
ulta) P~ e 3P = [ (), dor<2 | Jullulds
i(t) i(t)
< 2fu(®) |2 e @) 22)-
Then,
lu(t, 2)|* < Ju(t, 2(0)[* + 2|ul) |2 |we (@) 22y, Ve I

Using Lemma |3.6, we get
sup |u(t)| g gy < 0.
teR

Hence, taking ¢t — oo in (3.38)), from Claim 3.11} and (3.37]), we get that

lu(t,z)]* -0, Vrel.

7

(3.38)



3.3 Decay in regions along curves for Zakharov

From now on, let us assume \, u € C*(R) are functions depending on time. For ¢ € C*(R) n

L*(R), define
KO- ( j(‘;)(“) u(t,2)Pd,

and

ORI (%@‘)@) (]ux(t,x)|2 4 Sl + Sl 2)? + (e, 2)u(t, 2) + \u(t,:c)|2) dz.

As we did in the previous section, we obtain a virial identity from which we are going to
construct the argument.

Lemma 3.12. Let (u,n,v) € H' x L? x L? a solution to (3.4). Then,

1.

ey :ﬁm [# (52 )ttt + 580 [ o (“ ) ute.o)faa
i h? (50 ) (55 ) e

(3.39)
2.
ol e
2 x4 u(t) [ _ _
+ m]m JR © —/\( ) Uplyy + NUUL + Uy, (ta x)dx
,u’zt) , T+ ,u(tt) 2 2 2 2 2

e Lw <W) (2fuae? + 20fu® + Juf? + o + [nf?) (1, 2}

_ 2)‘//\((2 L(p’ (x j\_(/;)(t)) (m ;(/:)(ﬂ) <2|ugg\2 + 2nful?® + [u* + [v]® + |n2<) (t, f)dx
3.40

Proof. The proof follows from (3.35]). |

Let us consider ¢ € C?(R) a decreasing bounded funtion such that ¢(s) = 1 for s < —1
and ¢(s) = 0 for s > 0. Thus, we get that supp(y’) < [—1,0] and

O'(s) <0, ¢(s)s=0 VseR.

Now, we want to take A such that A\~! integrates finite in time over an interval such as [T, 0],
T > 0. With this idea in mind, define, for § > 0 and ¢ = 2, A(s) = tlog" ™ (¢) and pu(t) = A(t).
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In fact, we are considering © = A but in the following we will see that is possible to take
p(t) = A(t) and the computations would still work. Then, for ¢ > 2 we have

N(t) _p) 1 146
At) At Tt tlog(t)

So now, whereas A~!(#) is integrable in [2, o], /\T/ is not.

3.3.1 First part of the proof of Theorem

In this Subsection, we prove (3.12). The idea is to take adventage of the non-integrability of
A (and of &, as well) by using the virial identity from K(t). Let us rearrange the terms in

(3-39):

i (50 (5057 e (5657 e
- _%K(t) + ﬁIngp < )\:) > u(t, x)u.(t, z)dz
(3.41)

Notice that, because of our election of ¢, each term on the LHS is positive. Now, our aim
is to control the RHS so that we get integrability on that part of the equation. Indeed,
computing the integral of the RHS over [2, 0], from Lemma we have that

[ [ ( ;(5)@)) a7 o)us (. a)dodr < [ S e ()

<JOO L
< ——d7r < .
2 )\(T)

Thus, we integrate equation (3.41]) in time and obtain:

LOO %(:—_))J; [SO, <:z: ﬂ)t(/;gT)) (ﬂf :(%;Sﬂ) _ (%‘;gﬂﬂ u(r, z)[*dedr < 0. (3.42)

This implies the existence of a sequence {t,} < R, ¢, — o0, such that

L lgp’ (x :(?75;”)) (x ;(ﬁfgﬁn)) — (%ﬁgt"))] |u(tn, z)[*dz — 0. (3.43)

Now, take ¢ € C3(R) such that ¢(s) € [0, 1] for all s € R, supp(¢) = [—3/4, —1, 4], satisfying

¢(s) < |¢'(s)] and [¢/(s)] < |¢/(s)] for all s € R.
Then, if we consider ¢ instead ¢ in (3.39)), we obtain

i o (55 oo

<5 a0 b (a0 ) ¢ (i) ()| menras
< o ()t




Integrating over [t,t,] and taking ¢, — o0, one gets from ([3.43|) that

e (55" meorar] < [ s [ (5607

Thus, because (3.42)) holds, we can take ¢ — o0 and conclude that

[ (50 o
z+p) 1

Finally, the region of the convergence comes from the fact that —i—i < 3@ i

lu(T, z)|*dzdr.

lim <0
t—00

is equivalent
to x ~ u(t).

3.3.2 Second part of the proof of Theorem |3.2

This section deals with the proof of (3.14). The idea of the proof is the same as before, but
since our aim is to show decay of the solution (u,n,v), we need to consider the virial identity

(3.40). As before, we re-write the terms in (3.40) and get
N(t t t
( ) f 90/ (l"F,U( )) (37 +H( )) (2|ux|2 + 2n|u|2 + |u|2 + |U|2 + |n|2>(t,x)dx
R

2X(t) A(t) A(t)
B 5)\((?) L v (m ;(/:)(t)) (2|ux\2 + 2nful® + Jul® + o] + |n\2>(t,x)d$

= _%J(t) + ﬁlm L ¢’ (%’?) <2ﬂzum + ﬂux) (t,r)dx
+ ﬁ L ¢ (m : (g(t)) (ZIm i, + (n + [uf?) 'U) (t, )da.

Just as before, we need to take A such that A~! integrates finite in time over an interval
[T,0], T > 0. Then, for § > 0 and ¢ > 2, we define \(s) = tlog"*°(t) f(t) and pu(t) = (t)
(although the computations will still work for p(t) = A(¢)). Then, for t > 2 we have

Notice that, if |u(t)|p2r) < C for all t = 0 for some C' > 0, then we take f(t) = C and
get that A\(¢)™1 = t10g1+§(t)f(t) St Furthermore, in the case |u(t)|p2r) increasing

infinitely, there would exist T > 0 and C' > 0 such that ﬁ < Cfort = T. Then, either way,
we get that there exists T' > 2

~

1
A ——— fort>T
®) tlog ™ (t)

Thus, we get that A1 integrates finite over [T, o0), while Ayl does not.
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We estimate each term on the RHS of (3.40)) after integrating in time. From Lemma
we have that

*f(r)
< L’ WdT < 0.

The same way, we get

Also, from Lemma and Sobolev embeddings,

Q0

© 9 2
< Ju() e L WLW(T,@«)\? + g (, 7)[2dadt < JT ot <

JTOO ﬁ JR ¢ (%) n(r, 2)o(r, z)dzdt 5 JTOO ﬁ JR In(r,2)]* + |v(r, z)Pdzdt <

and

LOO ﬁ L S (%) u(r, @) 2o(r, o)dadt < Jult)]ee f: ﬁ L u(r, 2) 2+ [o(r, 2)[2dadt < oo.

Consequently, integrating (3.44]) over [T, o], one obtains

LOO ;;(TT)) L " (m :(’;;T)) (”” ;’;g”) (2fsa? + 20fuf? + [ + [of? + [n]?) (7, )
M) L " (LW)) (2fual? + 2fuf? + fu? + [of? + nf?) (7, ) dr <

2X(7) A(T)
Furthermore (3.45)
fTOO 5)/\((77__)) . ¢’ (%)‘ <2|uac|2 + ul® + [v]® + |n|2>(7', x)dxdt < o0. (3.46)

Indeed, from (3.45) and Young inequality for products,

» > J ETJ <x+(’;§ﬂ) (x;t(/;gT)><2|ux|2+2n|u|2+|u|2+|v|2+|n|2>(7,x)d:p

2)\(7)) LSO <9€ +(/i§T)) <2|ux‘2 + 2n|u‘2 + |u|2 + ‘0‘2 + ]n\2>(7, x)d:v q

>L 2 (<TT)) L@ < +<ﬁ§T)) (I :{;;T)) (2Huaf? + uf? + fof? + %\nl2—2lul4> (7, )dz
- 5)/\((72) Lgp ( +(ﬁ57)) (2|ux\2 + [ul* + [v]* + %WQ - 2‘“’4) (7, z)dz dt.
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By Sobolev embedding and (3.42)), we have that
Q0 /
M(T)J(,(Wru(ﬂ) ($+M(7)> ,<I+M(7)>) 4
— - —_— u(r, x)|*dadt
J, 5 L (587) (5) -2 (587 e
0 /
u(f)f < ,(xw(ﬂ) <x+u(7)) ,<x+u(7))> 2
< © - | ——— u(T, z)|*dedt < 0.
J, 5 L (507) (5 N )
Then, (3.46) holds. Thus, there exists a sequence {t,}, t,, — o0 satisfying
(T + p(tn) 2 2 2 2
—_— tn,z)dz — 0. 4
[l (5D (o bl 1o+ ) ) — 0 (3.47)
Furthermore, using Sobolev embedding and Lemma we have from (3.47) that

L d (%/:n()tn)) n(tn, ©)|u(ty, z)|*dx
< L "

()| e«

DN () 2 e 2

We argue as before and consider ¢ € C3(R) such that ¢(s) € [0,1] for all s € R, supp(¢) =
[—3/4,—1,4],

o (et

A(tn) )‘ [u(tn, z)]*dz — 0.

Then,
— 0. (3.48)

¢(s) < [¢'(s)] and |¢/(s)| < [¢'(s)] for all 5 €R.

%qu (“3 1(/;)(”) <|ux|2 + %|u|2 + %|n|2 + %W ; n|u|2) (t,2)dx
@ (x : (’: )(t)) ‘ (Exum + nﬂux> (t, )
& (9"’ :(“;t)) ’ (mx + (n+ ul?) v) (t,2)

5 (g;+u >“ (2l + 2fuf* + Ju? + fof? + Inf?) (t,) | dz

dzx

dx

~+

)

2)\(t)L
/

< L re) f

A(t)  2A(1) Jr

Integrate over [t,t,], t = T and take t,, — c0. Thanks to (3.48]), we obtain

oo (55 2) (o 3+ 5+ S+ i) 230

< fo ﬁdt + fo 5),\((:)) L ¢ (%) ’ ‘ 2|u95|2 + [n)? + Jul* + |[uf* + |v] )(T a:)‘ dzdt

Now, as in subsection taking ¢ — oo, we obtain

t 1 1 1
oo (55 ™2) (hufe o G+ G Gl s bl ) ¢, )0
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x+ p(t
¢ < )“ lttaf? + 24nf? + ul* + [uf? + [v]2) (¢, 2)| dz

lim
t—00

<0




Note that by Holder inequality and Lemma [3.6]

1

[Lo (555 ) e < e ( [ o (582 ) ateoPar)

< ([ o (ZEPOY e, )20 d
(L ( At)

Thanks to (3.12)), we conclude the proof.

3.4 Decay on compact intervals for Klein-Gordon-Zakharov

Before we present the proof of Theorems [3.4] and [3.5], we give an estimation of the energy
norm of a solution for (3.15]), that will be useful in the following.

Lemma 3.13. Let (u,us,n,v) € C(RT, HY(R) x L*(R) x L?(R) x L*(R)) be a solution of
(13.4) such that Exg < oo and it satisfies (3.18)) for some C' > 0 and € > 0 not necessarily
small. Then, there exists Kigg > 0 such that

f lu(t, 2)* + |ue(t, 2))* + |ut, ) > + |n(t,2)|* + |v(t, ) Pdz < Kge.
R

Proof. We write
1
3 | 1 4l af? o+ o+ oo
R
1 1
< J |us* + §]ux|2 + Juf? + §\n|2 + [v]* + 2n|u)*dx — QJ nlu|*dz.
R R

The first integral in the RHS can be bounded by the energy. Thus, we need to control the
remaining term. By Young inequality and Gagliardo-Nirenberg inequality [19, B3], for e > 0
we have that

1 1
ZJ nu’dr < —f n?dx + EJ utdr < —J n?dx + ECG’N”ua:”LQ(R)HUH%Q(R)’
R R R € JrR

€
where

Caon =

|3

and @ is the solution to Q" + Q* — @ = 0. Then, taking € = 2, we get

1 3 1 3 3
QJ nu’dr < —f n*dz + 2£]uz]Lz(R)\uiz(R) < —J n*dx + ij udr + £UIGL2(R).
- 2 ) 3 2 Ja 3 e 3

Finally, this means that

73

1 3
5 L ‘Ut‘Q + |ux|2 + ‘u’Q + |n’2 + |’U|2dl’ < 2E0 + ?H’U/”%Q(R)
Thanks to (3.18]), we conclude. [ |
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3.4.1 Virial argument

During this section, we are going to consider (u,n,v) a solution such that w is odd and
satisfies (3.18)), for some C' > 0 and € small. As in Section let ¢ € C*(R) a bounded real
function and define

I(t)y=2 JR o(x)ug(t, x)u(t, z)de — L e(x)v(t, z)n(t, x)dx + J ' (x)u(t, z)u(t, x)de.

R
We get the following virial identity:

Lemma 3.14 (Virial Identity). Let (u,us,n,v) be a solution to (3.15). Then,

d 1 1 1
— —I(t) = ZJ Yuidr — —J "utdr + = f ©'n*dr + —J Yv?dr + f Qu*ndzr.  (3.49)
dt . 2 2 2 s .

Proof. Using equation (3.15]), we compute

d
—I(t) QJ U rupdr + 2J PUL Uz dr — ZJ puzudr — 2f onugzudr + f © (n + u2) ndzx
de R R R R R *

+ f VU dT + 2 f Ougupdr + J O U dr — J Puudr — f Yuundx
R R R R R

1
:J gp(uf)zdx + f gp(ui)xdx — J go(uQ)xdx — J gon(uQ)xd:c + —f <p(n2)xd:c
R R R R 2 Jr
1
+ f ¢ (v*) ndz+ = | @(v?),dz+ J Quldr + f P ut g dr — f Yurdr — f ©'u*ndu.
R v 2 Jr R R R R

We integrate by parts
J 'ndx — J 'vidr —f O"uu,dx —f Y'u’ndx
R R R R

d
"2 12 1 ’ 2 12
J dr — = Jgpndx——Jgpvdx—qundx.
R R 2 Jr R

—I(t)=-2 "wrdx —
31 L lu;
=—2 f Yuidr +
R
Notice that now we have a very similiar virial identity to the one obtained in Subsection
B:2.1] In fact, the RHS is the same. Then, we are entitled to use the estimations for the
bilinear part of (3.25). Indeed, we can write

d 1 1
——1I(t) = B(u) + —J ©'nidr + —J ©'vidx + J ¢'u*ndu,

where B is defined in (3.26)). Just as before, for A > 0, consider ¢(x) = Atanh(z/)\) and

w(z) = 4/¢'(x). Finally, using the arguments in Subsection and by estimation (3.30)),
we have that

d 1 1
= —I(t) 2 [u() 3@ + —j p'n’dr + —J pvide + f ¢'u*ndz, (3.50)
dt HORISNA 2 ) .

where | - | g1 (r) is the weighted-norm introduced in (3.22)).
In order to conclude the argument, we present the following proposition:
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Proposition 3.15. Let (u,n,v) be a solution of (3.15). Then, there exists C' > 0 such that

o0
| I ®llzzm + @ + Oz + Ol 2mde < €.
0

Proof. Thanks to (3.50) and (3.18), the proof follow as in Proposition [3.10} [

3.4.2 Conclusion of the proof

Let ¢ be a C*(R) function to be defined later. Then, since (u,n,v) is a solution to equation

(3-15),
53 | 0@ QP+ + af? + o + o) (8.2}
f O(z)ug(t, ) Uy, (t, )da —J o(z)n(t, v)uy(t, x)u(t, z)dx
J A1) ug (t, x)ug (t, x)dx —f o(x)n(t, r)v.(t, v)dx —f o(x)v(t,z) (n+ |ul?)_(t,z)dz.
After integration by parts, one gets
G5 | 0 (Ul + o+ o+ nf? + o) (1 )
qu uttxuxtxdqub n(t, x)u(t, z)u (txderfqb ,x)n(t, z)dx
+ QJ o(z u(t, x)u,(t, x)dx.

(3.51)
Thus, if we take ¢(x) = sech(z), we have that

d1
de2

< Ju®) |z w + lu®)izw) + 10O @) + InO]L2g)

f sech() ([uf? + Juel® + [ual? + [nf? + [v?) (¢, 2)dz

Proposition implies the existence of a sequence {t,} < R, ¢, — o0, such that
lulta) [ Fary + lue(ta) 72 Ry + o) 72 @) + [I0(t) [Z2w) — 0.
Then, we integrate over [¢,t,], take t,, — oo and obtain
lu®)|F my + lue®)Z2w) + [0 O72w) + 100072,

o0
S J lu(™) 2y gy + It (D22 gy + (P22 ) + [T [ Z2R) AT
t

Thanks to Proposition the RHS of the last equation is finite. Consequently, we can
take t — oo and conclude the proof.
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3.5 Decay in regions along curves for Klein-Gordon-Zakharov

To construct the virial identity, consider ¢ € C*(R) a bounded real function and A, u € C*(R)
functions depending on time. We define

_ 1 x + p(t) 2 2 o Ly 1 2
J(t)—2ng0< A(t) ><|ux\ Hluf? + o+ Sl + Sl + nlul?) (1, 2)da

Lemma 3.16. Let (u,n,v) be a solution to (3.15)). Then,

S0 = Afl 7l < KéL)(t)) (%" 5 - ““) o

# [ () (bl ol o 4 Gl 4 Gl + ) )
X

(\)

0 L@/ (I ;:)(ﬂ) (x %L)(t)) (\uxlz + Jul® + fu* + %W + %W + n\uP) (t,2)da.

We skip the proof of Lemma [3.16| since it follows from (3.51))

3.5.1 Proof Theorem [3.5

As we did in Section |3.3, we consider ¢ € C*(R) a decreasing function satisfying ¢(s) = 1 for
s<—1and p(s) =0 for s = 0. It follows that supp(¢’) = [—1,0) and

¢'(s) <0, ¢(s)s=0 VseR.

Also, for 6 > 0, we take \(t) = tlog"™(t) and pu(t) = A(t). Just as before, we are going to
take adventage of the fact that A~! is integrable in time over the time interval [T, c0), for
some 1" > 2, while AXI is not.

We re-arrange the virial identity (3.16|) as:

X(t) f " <x+u(t)> (x+u(t)) (]uzF ul? o+ Jugf? + %W + %W +n\u!2) (t, )dx

2)\(t A(t) A(t)
L (5 (e ot oo

=S + ﬁ L % <x u :)(t)) (%m + solul? - utuz) (t,2)de.

We have that, by Gagliardo-Nirenberg inequality and Lemma [3.13]

L@’ (%@‘;”) Gm + %v|u|2 - utuz> (t, 2)da

< lo@Zery + I L) + ez @) + @) L) + [ut)]2g) < K,

(3.52)
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where K > O is a constant depending on the energy and the L?-norm of u. Thus, we integrate
equation (3 in time over [2,00) and get that

30 () oot r o

't 1 1
to) f = Iu [ug)? + [ul? + [ue* + = |v]* + = |n* + nlul® | (¢, 2)dzdt < oo,
2/\ (1) Jr > 2

Note that by Sobolev embeddings and ([3.20)),

(x J; plt ) nljul?) (t,)dz = — JR ¢ <%¢)@>> (é!n(t, z)|* + Zlu(f7f€)!4) dz

>—L¢<£%%Q>(§mmmﬁ+%mmwﬁdm

(3.53)
Then, we argue as in Subsection and obtain that there exists a sequence of time {t,},
t, — o0, such that,

L ()

As in Section we consider ¢ € CJ(R) such that ¢(s) € [0,1] for all s € R, supp(¢) =
[—3/4,—1,4],

1 1
(|u$|2 4wl + |u® + §|v|2 + §|n|2 + n|u|2) (tp,z)dz — 0.  (3.54)

¢(s) < |¢'(s)| and [¢/(s)] < |¢(s)| for all s € R.
Following the computations for ¢, one gets,

d x + p(t) 2 2 o L L 2
dth( LD (st f? + e+ 3ol + Sl + nf?) 621

i e (552 g e

(
) t)) L ’ (x :éj )H (Ial + Buf? o uaf? + S+ Sl + nful?) (1 2)

Integrate over [t,t,], t = T and take ¢, — co. Thanks to (3.54]), we obtain

J¢<x+M”>O%E+mﬁ+m#+1mF+EWP+MMﬂ@ﬁﬁx
R Alt)

<[ st [ B S oo

AT
Now, taking ¢ — o0, we obtain

1 1
L¢<$L§”)O%F+mﬁ+w#+§mﬁ+§WF+mmﬁﬁwﬂw

Consequently, taking into account (3.53)), one gets

) T+ p(t 1 1 1
i [ & (58 ) (ool gl gl + 310 ) t.a)d

t 1 1
<ggL¢<x;§))(%F+mF+mf+§mﬁ+§wﬁ+mmﬁ@@mxza
Then, (3.21)) follows.

dx

dzx.

lim
t—00

<0
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Chapter 4

On long-time behavior of solutions of the
Zakharov-Rubenchik /Benney-Roskes
system

Abstract. We study decay properties for solutions to the initial value problem associated with the one-
dimensional Zakharov-Rubenchik/Benney-Roskes system. We prove time-integrability in growing compact
intervals of size t", r < 2/3, centered on some characteristic curves coming from the underlying transport
equations associated with the ZR/BR system. Additionally, we prove decay to zero of the local energy-norm
in so-called far-field regions. Our results are independent of the size of the initial data and do not require
any parity condition.

This work is contained in M. E. Martinez and J. M. Palacios, On long-time behavior of solutions of
the Zakharov-Rubenchik/Benney-Roskes system, accepted in Nonlinearity, available in jarXiv, 2021.
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4.1 Introduction and main results

4.1.1 The model

In this work we seek to show decay properties for solutions of the initial value problem
(IVP) associated with the Zakharov-Rubenchik /Benney-Roskes (ZR/BR) system in one space
dimension

10 + w3 = y(n — 3ap + qlv*) ¥

00ip + 0u(n — ap) = —v0:(J0]?),

00 + 0, (ﬁp —an) = 3070%([¥P),

$(0,2) = o(x), p(0,2) = polx), 1(0,2) = no(x).
Here (¢, z) denotes a complex-valued function, while p(¢,z) and n(t, ) are both real-valued

functions, and ¢,z € R. All Greek letters (w,«, 3,7,0) denote real parameters, and in the
sequel we shall always assume that

(4.1)

alay —1)
2(8 —a?)

Model corresponds to the one-dimensional case of the most general system derived by
Zakharov and Rubenchik [19] to describe the interaction of spectrally narrow high-frequency
wave packets of small amplitude with low-frequency acoustic type oscillations. This system
was also independently found by Benney and Roskes [I] in the context of gravity waves, and
in the 3-dimensional case has the following form

10,9 + 100,00 = — 2 0% — LA 1 + (q|y)? + Bp + ad.n),
Oip + polAn + ad,[|? =0, (4.2)

om+<p+BlYP =0,

where Ay = 02 + 0;. In this context, ¥(t, z) stands for the amplitude of the carrying (high
frequency) waves with wave number k, frequency w = w(k) and v, = w'(k) stands for its
group velocity. On the other hand, p(t,x) and 7(¢, z) correspond to the density fluctuation
and the hydrodynamic potential respectively.

w>0, >0, v>0, f—-a*>0, 0<f<1, and qg:=7+

System has also been derived in several other physical situations, such as for ex-
ample, in the study of Alfvén waves (transverse oscillations of the magnetic fields) in the
Magneto-Hydrodynamics equations (see for instance [2, 17]). Moreover, system (4.2)) con-
tains various important models as limiting cases, such as the classical (scalar) Zakharov
system and the Davey-Stewartson systems. We refer to [3] for a rigorous justification of the
Zakharov limit (supersonic limit) of the ZR/BR system. However, the rigorous proof of the
Davey-Stewartson limit from system (4.2]) remains still open.
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In the one dimensional case the situation is a little better understood. In fact, in this case
we can also consider the adiabiatic limit, that is, to take # — 0 in (4.1]), from where we can
formally see that p(t,x) and 7(t, x) satisfy now the following relations

—a?/2
p=—ﬁl¢2, 77——7 7o a/ ).

Then, we infer that the complex amplitude 1 solves the cubic nonlinear Schrédinger equation

10 + wiiy = — |9 [*.

Yo
36— o)
A rigorous justification of such limit (for well-prepared initial data) was proved by Oliveira

in [16]. Therefore, we can certainly see that the ZR/BR system is thus richer than those
models.

On the other hand, the ZR/BR system (4.1) and (4.2)) posses a Hamiltonian structure
[19], and hence, it follows (at least formally) that the energy of system (4.1]) is conserved
along the trajectory, which in the one-dimensional case can be written as

E(¢(t), p(t),n(t)) := L (wldfac\2 + 2|t + 207 + 40 + 320 — ap)[vf* - apn)d
= E(%aﬂo,ﬁo)-

Moreover, the ZR/BR system (4.1]) also conserves (formally) the mass and the momentum
of the solution, which are given by the following relations (respectively)

M(w(t)7p<t>a U(t)) = J|w(t,l’)‘2d$ = M(%,Po, 770)7 and,
P(6(t), p(t), n(t)) = I J T, — 0 j p(t, )t )dz = P(bo, po. 1),

Additionally, related to these conservation laws, the ZR/BR system ({4.1]) is invariant under
space-time translations, as well as invariant under phase rotations.

Regarding the existence of solitary waves, in the case S —a? > 0, v > 0 and 6 < 1, Oliveira
has proved in [I5] the existence and the orbital stability of solitary waves of the form

(¥, p,n)(t, z) := (ei’\tei“/QwR(x —ct),a(c)|R(z — ct)|, b(c)|R(z — ct)[?), (4.3)

where A € R, ¢ > 0 and R(-) is an positive, even and exponentially decaying complex-valued
function, while a(c) and b(c) are given by the following formulas

(B =5(ch + o))
B — (cf + )?

~v(ch + %04)
B —(ch + a)?

a(c) := , b(c) i =—

In particular, the analysis carried out by Oliveira shows that a necessary condition for these
solitary waves to exists is that the following two inequalities must be satisfied
2

alc) — %b(@ +q<0 and :— A <0 (4.4)

w
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On the other hand, recently in [7] Luong et al. studied the existence of the so-called bright
and dark solitons for system (4.1). They proved their existence under some conditions on
the coefficients of the equations (similar to the one in ) Then, they used these solitons
to construct line-solitons for the higher dimensional case. However, none of these solitons
belongs to the energy space since they do not decay at +oo (see [7] for further details).

Finally, concerning the well-posedness for system ({4.1)), Oliveira [I5] proved local and
global well-posedness for the one-dimensional case in H(R) x H'(R) x H'(R). Later, Linares
and Matheus [5] extended the result given by Oliveira showing local (and then global) well-
posedness for inital data in the energy space H'(R) x L?(R) x L?(R). Additionally, a polinomial
bound for the growth of the H*-norm of ¢ was stated in [5]. More specifically, they proved
that, for smooth initial data, solutions to system satisfies the following property:

[l < 1+ (79"
In fact, Linares and Matheus used this property to show that system is globally well-
posed in H*(R) x H*2(R) x H*2(R) for all k > 0. Moreover, regarding the higher
dimensional cases, Ponce and Saut [I8| have proved that is locally well posed in
H(RY) x H~3(RY) x Hs+3(RY), for s > d/2, where the space-dimension d = 2,3. Lastly,
we mention that Luong et al. have recently proved the well-posedness (under some extra
conditions) of system in the background of a line-soliton [7].

4.1.2 Main results

In the remainder of this work we focus in decay properties for general solutions of in
the energy space. Our first main result states that there exists two specific characteristic
curves such that, along them, there is an additional time-integrability property on growing
compact sets.

Theorem 4.1. Let vy := 071 (/B + ) fized. Consider (¢, p,n) € C(R,H' x L? x L?) to
be any solution to system (4.1)) emanating from an initial data (o, po,mo) € H' x L* x L?.
Then, for any c € Ry, the following inequality holds

+00 1 )
Y(t, z)|*dedt < +0o0,
Jo 1 (t) JQ+(t) | |

where Q4(t) ;== {r e R: —cA\(t) <o —vit < cA(t)}, k := 101 and
A1) := t¥3loglog ™3 (k + 1) and . (t) == tlog(k + t)loglog(k + t).
Furthermore, we have the following scenarios:

1. If £a < 0, then, the following inequality holds

L fu 1(t) L “ (Iu(t, ) + [0(t, )2 + p2(t, ) + 7 (t, x))dadt < +oo.
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In particular, we have that

lim ian (]@/Jm(t, z)? + [t 2)|* + p*(t, z) + ng(t,x))dx =0.
Q4 (t)

t——+00

2. If a =0, then, the following inequality holds
+00 1
[ | (el + el + e + (e dade < o,
o Hx(t) Jagm

where A and p, defined as above and Qo(t) = {x € R : cA(t) < |z| < CA(t)}. In
particular, the following is satisfied

fimint [ (Ja(t,0) + 06 2)[* 4 7P(0,2) + 2(0,))do = .
Qo(t)

t—+00

Remark 4.1. In the previous statement, the condition +a < 0 must be understood accord-
ing to the sets Q4. In other words, if +a < 0, then both results for {2, hold, while if —a < 0,
then both results for 2_ hold. Notice that if a < 0, the result for {2_ is not necessarily true.

Remark 4.2. It is important to notice that, as soon as a # 0 we cannot deduce any time-
integrability nor decay property on compacts sets centered at the origin. Of course, this is a
consequence of (and consistent with) the existence of the standing-wave solution presented in
. On the other hand, when a = 0, condition does not allow standing-wave solutions
to exists, more specifically, the first inequality in is not satisfied when ¢ = o = 0, and
hence item 2 is not contradictory with the existence of such family of solutions.

Our second main result states that, in the so-called far-field region, solutions (in the energy
space) must decay to zero.

Theorem 4.2. Let (¢, p,n) € C(R, H' x L* x L?) be any solution to system (4.1]) emanating
from an initial data (1o, po,mo) € H' x L? x L?. Then, for any pair of constants cy,cy > 0
the following properties holds:

1. Consider any non-negative function ¢ € C*(R) satisfying that, there exists § > 0 such
that, for allt > 0 it holds

C(t) z tlog(k + )'°  and  {'(t) = log(k + t)°Ft.
Then, setting Q¢(t) := {x € R: c1((t) < |x] < 2((t)}, the following limit holds
lim 19| z2@ ) = 0. (4.5)

2. Assume additionally that (¢, p,n) € C(R, H?> x H' x H') is a solution emanating from
an initial data (o, po,no) € H?> x H' x H. Then, for any non-negative ¢ € C*(R)
satisfying that, there exists 6 > 0 such that, for allt > 0,

Ct) 2 7 and  ('(t) 2 ',
the following decay for the local energy norm holds

tlirg (|W(t)”H1(Qc(t)) + Hp(t)HLQ(Qc(t)) + ||77(t)HL2(Q<(t))) =0.
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Remark 4.3. Note that none of the above theorems require any smallness assumption in
terms of the initial data |[¢)o] g1 « 1. Moreover, they do not require any parity assumption
either (as their counterparts founded in [I1}, 12]), nor any extra decay hypotheses in terms
of weighted Sobolev norms, such as |29,z « 1 for example.

Remark 4.4. One important difference between the results above and those in [111, 12] is
that, in both of those works, the equations under study preserve the oddness of the initial
data (for the Schrédinger component 1), while system does not. Hence, the analysis
presented there assuming parity conditions on the initial data cannot be applied to system

().

Remark 4.5. To the best of our knowledge, these are the first results dealing with global
properties of system (4.1)) in the one dimensional case.

Finally, it is worth mentioning that the techniques involved in the proof of Theorems |4.1
and have already been used before in some other contexts. We refer to [11] for the use of
some of these ideas in context of the one-dimensional Schrodinger equation, and to [12] for
scalar Zakharov system (as well as the Klein-Gordon Zakharov system). On the other hand,
for other type of systems that have served us for motivations we refer to [4, [6, 14]. However,
as previously described, system has some important differences with respect to the
above cases (see Remark , what does not allow us to apply the same ideas. In particular,
the presence of some transport equations in breaks the symmetry properties used in
previous works to study Schrodinger-type equations/systems with these specific techniques.
Finally, it is important to mention that most of these ideas come from classical works, such
as [, 9, 10] 13].

4.2 Preliminary lemmas

4.2.1 Virial identities

In this section we seek to establish the key virial identities required in our analysis. In order
to do that we consider the following weight function

®(z) := tanh(x), and hence @ = sech®(z).
Additionally, we consider time-dependent scaling functions A;(t), A2(¢) and u(t) given by

M(t) == (k+ )P loglog™?3(k + 1),
Xo(t) = (k + 1) loglog!3(k + 1), (4.6)
u(t) := (k + )2 log(k + t) loglog”?(k + 1),
where k := 10'. The role of u(t) and A;(t) is to provide some extra time-decay so that we

can somehow neglect bad terms (with no sign) that prevent us to conclude the properties
claimed in the above theorems. Additionally, one can think of A;(t) as the rate of growth of
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the set Q4 (t) and Qy(¢) defined in Theorem The key idea for considering exactly these
definitions for u(t) and A;i(t) is that

1 Ai(t) “/<t)e ) U B
O monG 2w < L R, while ey ¢ LR).

In the sequel we shall exploit these two properties. Moreover, for the sake of simplicity we
introduce the following useful notation

=0t (\/B —a) and vy =61 (\/B +a). (4.7)

Then, with all of the above notations, we define the modified mean functionals J;(¢) and
Jo(t), adapted to the curves x — v4t, which are given by

Tit) = f(\fp( o) < n(t,a m))cp(%@) ®'<A2(>>dx
To(t) = MJR (\/Bp(t,x —uit) =tz — wﬁ))cb (Alx(t)) o' </\2( >> du.

The reason why we evaluate solutions on these translated points z — v4t is to be able to
take advantage of the characteristics of the underlying transport equations associated to
. Moreover, another key quantity that shall play a fundamental role in our proof is the
modified momentum functional Z(t), which is given by

(1) = ﬁlm Lw,x)@(t,m)cb ( Ine )) dz — u?t) L ot 2)n(t, )P ( ne )) dz.

For the sake of simplicity and the clarity of computations, we split the previous functional
into two parts, namely,

I(t) = ﬁlm fR¢(t,x)@(t,x)¢ ( Ajt)) dz,
Ty(t) = % Lp(t,:p)n(t,x) <A1( )> dz.

We anticipate that, thanks to the explicit form of ® and the conservation of the momentum
and the energy, if (¢, p,n) is a solution to system belonging to the class C(R, H' x L? x
L?), then, all the modified functionals above J;(t), Jo(t) and Z(t) are well defined for all
times ¢t € R (see Lemma [4.6| for further details).

The following three lemmas give us the first basic virial identities satisfied by the modified
functionals J(t), Jo(t) and Z(t) above.

Lemma 4.3. Let (¢, p,n) € C(R,H' x L* x L?) be any solution to system (4.1). Then, for
all t € R, the following identity holds

d 2w w 1 15}
——T(t . 2(1)/ o 2(1)/// J 2(1)/ 2(1)/
() - f\w\ s | 1P+ o [ e 2 [

JII/JI4 ’——f pn® +—J Sp W!Q‘P’——Jpn@ (4.8)
A B2 )
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Proof. The proof is somehow straightforward and follows from direct computations; we shall
only proceed formally. Notice that the following reasoning can be made rigorously by stan-
dards approximation and density arguments.

Directly differentiating the definition of the functional Z;, using system (4.1)) and perform-
ing several integration by parts we obtain

d 1 [ — 1 — N r\ —., W —
EL( ) = plm Y1), @ + —Imf¢¢txq) - /\IImJ (/\—1) V), @' — EImJWw@

)\/ - / o
=2t [ o - o [me = St [ (£) vt - L [vie

[S—

[ S—

1
= 2Re [ (b =2 (1= 30 + auf)0) 7 - Lt [ wid
+ ﬁReJ <wE —y(n—$p+qlv*)V >¢<I>’ X J (%) P1h, @'

= [ a2 [ (0= g0+ 0P oo - %Imfw%b

12
g a 2 w 231 M >‘,1 J(x) . /
+ 2| (e — 2p) [0)?® + J " — “Lim | [ — R
v 2 2.5
_ 1 b
e (n—%p+alvl) |

2w / // —_ Y o
- f 6,20 — Elmjwm +2 f (02 — ) [0®
w 2 xM 7q 4 x5/ )‘,1 x - /
o — 9 P — 2 [ () vo. o
" 20N} J|¢| 201 J|¢| pA mf (M) Vs

Now we compute the time-derivative of the second functional Z,. In fact, by direct differen-
tiation again, using system (4.1)) and performing several integration by parts we get

d 0 0 N, x o/
—Ty, = — P+ — d— L= ) pmd - L P
dt ™ ufpm +ujp77t ;le()\l)pn 12 Jpn
1 257 ; X Y 2 7 ors 0N T !
= "+ — | pon® + — | n|P[FP N Y e’ — ~ | e
20\ 1 f pAL ) \ M
8 9#’
S Lt A Sl AR S ol WO e WO
1 28/ Q J / J J 2 /
= P — o + VPO + -
o | 7 2y pr’+ o IR

u
2
B 2q 20 f 20/ 9X
_Z o — . 27
T 207 7@ 2 I " ®

Hence, gathering both previous identities we conclude the desired result.

Lemma 4.4. Let (v, p,n) € C(R, H' x L? x L?) be any solution to system (4.1)). Then, for
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all t € R, the following identities hold:

o 0= [t () ()
—m s ()

T s e ()

- ?);: \ ()75) f <>\1xt ) (Vop+n) @tz —vt)e <>\1:Et)) v ()\23275))
o ) Gat) V3w —ene (550 (555)

G Lo ) i
i s ele (55 ) ¢ ()

—fﬁiéfJ o vw@(;@) ’(QZ)

: f?/(?ﬂf(ﬁ)(” e (555 ) o Aitg

(5o
o ) (i) 00t (55 ) (5

Proof. Similarly to the previous lemma, we proceed by a direct computation. For the sake
of simplicity, throughout this proof we will denote by ®;, ® and @/ the functions given by

Oi(x) = @(ﬁ(t)), Pf(x) == (5 G ) and ®/(z) := @”(Aift)), with i = 1,2. Also, we shall only

write p, n, ®; and P,, ommiting their arguments.

Indeed, taking the time derivative of the functional, using system (4.1) and performing
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some integration by parts we obtain
J61, 0 0
—jl() *//: J i1 D) + \ff DD, — \f’“‘ fp@ o)+ Jmcb o,

M o2 )\1 )\1

ON] L A BON, J( ) p O J( ) )
L)) D, D, D, D,
M)q j <)\1> T HA2 A2 P HA2 A2 7

_ O‘\FJ D0, — \F a1 Y, — V\F ([0b[2), 01 ), + anzcb o,
o 0u/ o0y
+ % fpmcblcb’z - \/§2M fpd)l(ID’Q _F fpxcpl@; - Iu—/; fn(I)ﬁI)g
BON;
+ @ J(|¢|2>x®1q)'2 + m - fnx®1®é \/i\ f <)\ ) o P,
1 1
O\ v/ BOX. T O\,
@/ @l _ 2 f (_) @ @l/ J( > @ @/l
M/\1f<)\1>n b2 HA2 Ao M/\2 A2 T
0y’ s
- @flwﬁ@&@; + 10 f o, @y YO0 | ot - 2 fncblcbg
pAL u It
/
1 1
N f&X O\,
Pl — J( ) O, P — J( > O, P,
M)\1J<)\1>n b2 HA2 Ao P HA2 A2 7

Thus, by gathering terms we conclude the proof of the lemma. The proof of the second
formula follows the same arguments. Hence, we omit it. ]

Remark 4.6. We emphasize that none of these Virial Lemmas require the explicit definition
of ® nor the one for the scaling functions \; and p that we gave at the beginning of this section.
In fact, in Section 4.4 we shall exploit for completely different definitions of ®, A and p
(as soon as all quantities are well-defined). However, unless stated otherwise, throughout the
proof of Theorem we shall always assume that we are referring to the functions defined
at the beginning of this section.

4.2.2 Uniform boundedness of the energy norm

The following lemma is a direct consequence of the conservation laws and give us the time-
uniform boundedness of the H' x L? x L?-norm.

Lemma 4.5. Let (1, p,n) € C(R, H x L* x L?) be a global solution emanating from an initial

data (Yo, po,mo) € H' x L? x L?. Then, there exists a constant C' € R, depending only on
the norm of the initial data, such that the following global bound holds

[ + eIz + In®)7 < C. VEeR.
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Proof. The idea of the proof is to use the conservation of the energy, re-constructing such
conserved quantity from the energy norm. In fact, first of all let us recall that from the
conservation of the energy we have

| (ol + 86+ 4 + 101"+ 32— an)loF? — apn)do = BQ). (49

Hence, essentially we have to show that we can control the last three addends with the first
three of them. Specifically, taking advantage of the conservation of both mass and energy,
we would like to find appropriate constants ¢ > 0, a, b € R such that

[z + e + [n®)]72 < ¢ (E(0)* + M(0)").

First, we notice that to control the crossed term pn, it is enough to use Young inequality
for products, from where we get

2
af p(t,x)n(t, x)dr < g —I;Loz f P (t, x)dx +
R R

2

m L (¢, z)de. (4.10)

Then, gathering the corresponding quadratic terms with respect to (p,n) appearing in the
energy, we have

[ (8.0 + 1.2 - apttomtea)) s = 25 e+

s 5
m“ﬁ(ﬂ”m

We continue by bounding the contribution of the L*norm of ¢(t). Indeed, by using
Gagliardo-Nirenberg interpolation inequality, as well as Young inequality in the resulting
right-hand side, we obtain

| 1t < Ol 6O < o0l +=M(0) + MO

Once again, due to the conservation of mass, it is enough to choose € € (0, 1) sufficiently small
so that we can absorb e[, (t)||3, by using the first term in (4.9). Finally, it only remains to
bound

7 fR (277(15, x) — Ozp(t7 x)) |¢(t, x)\de,

2
However, notice that this term can be controlled by the previous ones. In fact, we have
y 2 B 2 6 —a’ 2
- 2n(t — t t dr < ———|n(t t
3 | Catt.n) = apte)wte. o) e < s InOl + S0l

V(B+a?) | 2%
# (U ) ol

Therefore, gathering all the above estimates we conclude the proof of the lemma. ]

As a consequence of the previous lemma, we conclude the uniform boundedness of all the
modified functionals.
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Corollary 4.6. Let (¢, p,n) € C(R, H' x L* x L?) be any solution to system (£.1) emanating
from an initial data (g, po,no) € H' x L? x L. Consider \i(t), Xao(t) and u(t) defined as in
(4.6). Then, the following bound holds

sup_ (I7®] + 20| + L0 + [0)]) < +oo.

te(0,+00

Proof. First of all, notice that the time-uniform boundedness of Z; and Z, follows directly
from Holder inequality as well as the previous Lemma. In the same fashion, to bound [J; we
proceed by Holder inequality. However, since 7; is of order 1 in (p, ), in this case we obtain

1 o
] % o) + nO)le [ [ ()

_ A0

L 1) < C, (4.11)

where C' > 0 only depends on the initial data (¢, po,10)-

To conclude, we notice that the same procedure also provides a time-uniform bound for
Jo(t). The proof is complete. m

Remark 4.7. Inequality (4.11) is precisely the condition that does not allow us to choose
A1 (t) growing any faster. In particular, this is the reason why we cannot choose \;(t) = !,
for example.

4.3 Proof of Theorem 4.1

4.3.1 Time integrability of ||

In this section we seek to use the previously found virial identities to prove the time inte-
grability of the solution. In order to do that, we split the analysis in several steps. First,
we shall show the time integrability (in the region given in Theorem only for |(t, z)|?,
which is proved in the following proposition.

Proposition 4.7. Let (¥, p,n) € C(R, H' x L* x L?) be any solution to system (4.1)) ema-
nating from an initial data (Yo, po,no) € H' x L* x L?. Then, for \i(t), Xao(t), u(t) and vy

defined as in (4.6))-(4.7)), the following inequality holds

xz

foﬂo m fR [(t, @ = vst)[ sech’ (Al(t)) dzdt < +o0. (4.12)

Proof. Let us first consider the case of v_. The case for v, follows from the same bounds up
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to trivial modifications. Indeed, we define

Fo(t) = %Jl(ﬂ— Lo ERGIN0) W (tr =) @(Ait))@”<A;t>)

ON, (1) f (
+
p()A2(t) J \ Aa(t)
= I14+1II+1I+1IV+V.
Then, from Lemma [1.4 we infer that

2(M f!i/)tx—vt|<1>'< (t)><1>’()\2())dx—]:(t).

Hence, the problem is reduced to prove that we can integrate F_(t) on (0, +00). In fact, first
of all notice that, from Corollary [4.6] we infer that

f T lar

0

t——+0o0

Moreover, from Lemma {4.5/ as well as the explicit definitions of u(t) and Ay(%), it immediately
follows that IT € L'(R;). On the other hand, from Lemma along with Holder inequality,
we can bound ITI(¢) by
KO Gl e |

P2 (t) TopA(t) T (k+t)log(k + t) loglog®?(k + t)
In the same fashion, applying Lemma and Holder inequality, we can bound |IV(¢)| and
|V(t)| pointwisely by integrable function as

II(t)| < e L'(Ry).

A2 ON () 1 1
OIS p(t)Aq(t) < (k +t)log(k + t)loglog?(k + t) LRy,
1/2 /3 v/
V()] < 22 D0 ! e I'(R,).

m(t)A2(t) 7~ (k +t)log(k + t) loglog®?(k + t)

Therefore, gathering all the above inequalities, we conclude the proof of (4.12)) in the case of
v_. Notice that the same proof (up to trivial modifications) also works for v,. The proof is
complete. [ ]

Remark 4.8. The proof of the previous proposition does not depend on the value of a € R,
and hence, this concludes the first inequality in Theorem [.1]

4.3.2 Time Integrability of the full solution

In this section we seek to extend the analysis to the full solution, that is, to include the
corresponding integral terms associated to (., p,n). From now on we split the analysis in
two cases concerning the values of a € R.
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Case o # 0

In order to take advantage of the previous analysis, we consider a different version of the
modified momentum functional adapted to this region. More specifically, we define modified
momentum functional adapted to the characteristics x — v4t, that is,

T LG f Dt @ — vat)hu(t, T — vst)D (%@) da
-5 Lp(t z —vat)y(t,x — vit)® (Al( )) dz.

Notice that, as a direct consequence of Lemma [4.3] we have the following identity
d~ 2w w 1 15}
__I - 2@/ . 2@/// J 2@/ 2@/
S AOE fww NM b | [
8 /
4 P _ _ g @/ J @
+3 Al lel Jpn t f 5p)|Yf? R L
)\ — 0)\’
[ [ ()5 O [ ()
Uiy )\1 ) Vve® o)\ ) (4.13)

—|— _
" f‘“lmfwm’ s VBta
G/L)\l ,U)\l

where we have used the fact that, since ® is real-valued, we have

i [07,0 () = 5o [v0 ().

With all of this at hand, we are ready to prove the time integrability of the full solution in
weighted spaces along these characteristics. The following proposition concludes the proof
the Theorem in the case o # 0.

Proposition 4.8. Let (¢, p,n) € C(R, H' x L* x L?) be any solution to system (4.1) ema-
nating from an initial data (Yo, po,no) € H* x L? x L*. For A\(t), p(t) and vy defined as in

(4.6)-(4.7), we have the following two cases:

1. If a > 0, then the following holds

i 1 2 2, 2, .2 4 ( x >
_ M +p° + t,x —v_t)sech dxdt < +o0.
| s |, el 0 42 ) (1o = o tyse (575
2. If a <0, then the following holds
S e b () ded
_ |7+ + p° + t,r —uv,.t)sec xdt < 400.
Jy e ot ) vty (55

Proof. We shall proceed in a similar fashion as in Proposition [£.7] However, notice that in
this case we have several quadratic terms with no definite sign. The idea is to use Proposition
to deal with the terms involving |¢|?, and to absorb the crossed terms of the form pn
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with the ones with p? and n?. In fact, first of all notice that, thanks to Lemma [4.5] and the
explicit definitions of p and Aq, it is not difficult to see that

1 / / _
o f Y?®" e L'(R.), % f p® e L'(R,), %Imfzwxcb € L'(R,).
1

Moreover, from Lemma we also infer that we can integrate Z'(¢) on (0, +c0). On the
other hand, by Holder inequality, the explicit definitions of u and A;, as well as Lemma [4.5]
we obtain

/

X021 ()

1 Imf (ﬁ) 0P| < LY(Ry), and,
o ™ P my (R+)
N, J ( x ) J o Mlpleecz Inleec | e
il d'| < t o t e L' (Ry).
o " om e (Ry)

Now, for the term involving [¢[* in (4.13), we use Proposition , Lemma as well as

Sobolev embedding, from where we getf'|

1 1
Wit < Wl [ 5P € LR, (419

Besides, from Young inequality for products, it is not difficult to see that

2w 25/ (\/Bia) &/ w 2%/ (\/B—Oz)Q 2F/
EJW@«\ P J—FTIHIJW%@ >EJ’%| o _%—MMJM .

Thanks to Proposition , the last term in the right-hand side above, belongs to L'(R,).
Also, from Young inequality for products again, we additionally infer that

v a 2/ 51‘[2/5;J2/K‘[4/

— —g o > —— o — — o — — o 4.15
where €7,¢5 > 0 denote sufficiently small numbers that shall be fixed later. Here K =
K(g¥,e5) > 0 is a large number, however, proceeding in the same fashion as in (4.14) we
infer that this term belongs to L'(R,) no matter what the value of K is.

Finally, it only remains to control the quadratic terms in p and 7. Unfortunately, due to
the factor F(v/B + 2a)pn appearing in (4.13)), we cannot obtain the required positivity in
both directions v for the terms involving p?, n* and pn. Thus, we split the analysis in two
cases regarding the sign of «.

Case a > 0: We aim to prove the following claim that provide us the required positivity:
There exists two constants ¢, co > 0, such that

1 ) I&; VB =2« J 1 J Co f
| P+ | 2+ Y| @ = L | 2+ 2 | P2 4.16
N AR on e A K (4.16)

!Notice that here we are actually using Propositionwith a different definition of ®(x), so that ®'(x) =
sech4(x). By taking the integration constant equal to zero we get ® € L™,
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In this case we shall take advantage of 7 (t). In fact, first of all, notice that, if /3 —2a = 0,
then there is nothing to prove. Then, in the sequel we assume /3 — 2« # 0. Indeed, consider
the parameter €; € R given by

LY (O T

Then, by using Young inequality for products, with parameter given by £, we infer

1 2 B VB —2a f
- @I s 2@/ A @/
2UA\ T 2U\ e LA P

1 1
> (=) j P+ (8- (/B - 20)%)) J Y

20U\

Moreover, notice that, since 5—a? > 0 and o > 0, we infer that e, > 1, and hence 1—¢;! > 0.
On the other hand, by direct computations we see that

(VB 20’8 _
(VB - 20)?

Then, plugging the previous computations into (4.16]), we conclude the proof of the claim.

B—(B—2a)% >p—

Case a < 0: In this case we aim to prove the following claim that provide us the required
positivity: There exists two constants ¢y, co > 0, such that

1 2 g VB + 2a J f
_—  + | 2 - YT o > 29" + 2y’ 4.17
) n 20N p B PN ci|n C2 | P ( )

In contrast with the previous case, in this case we shall take advantage of ir (t). In fact, first
of all, notice that, if /8 + 2a = 0, then there is nothing to prove. Thus, in the sequel we
assume +/83 + 2a # 0. Indeed, define e, € R as

BT

Then, by using Young inequality for products, with parameter given by 5, we infer

1 2 s VB + 2a f
- (P, 4+ = 2(1)/ vy - @/
2\ g 20U\ P LA P

1 ) 1 /
= Zu—)\(l—egl)Jn?@ +M_A(ﬁ_<\/g+2a)2€2)fp2®'

Moreover, by using both  — a? > 0 and a < 0, proceeding in exactly the same fashion as
in the previous claim, we conclude that both factors in front of each of the integral on the
right-hand side of the latter inequality are strictly positive. Thus, we conclude the proof of
the claim.

Finally, it only remains to set the definition of €} and €} in (4.15)). Notice that we have
to give a different definition depending on the case a = 0. In fact, from the above analysis it
follows that it is enough to consider

ef =107 — (/B —2a)%1) e, =107 —et),
el _=107(8— (/B +2a)%) &b _=1071(1—et),
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where €], stands for the case where « is positive or negative respectively. Hence, we conclude
the proof of the proposition. |

Case o =0

In the case when @ = 0, we can give a much simpler and shorter proof. In fact, in this case,
from Lemma [4.3| we can easily deduce the following result.

Proposition 4.9. Let (v, p,n) € C(R, H' x L* x L?) be any solution to system (4.1)) ema-
nating from an initial data (Yo, po,mo) € H* x L? x L*. For M\(t), u(t) and vy defined as in

(14.6)-(4.7)), the following inequality holds

foo D L (W’(t’ o)[f+ [t ) + () + p2(t,x)> sech? (

OO ) dzdt < +00.

Aw(t)

Proof. In fact, by using the standard modified momentum function Z(t) (instead of Z(t) as
before), we proceed in the same fashion as in the previous proposition, using Lemma and
noticing that, under our current assumptions, ¢ = v > 0, from where we infer that

3’7@ J 4g/ 24/ v J 24/ 7 J A 1 J 24/
—l— — O+ — o > o + o'
Then, the proof follows by gathering the latter inequality with (4.8)) and recalling that A\;® €
L'(R,). In order to avoid over-repeated computations we omit the details. |

4.4 Decay in far field regions

In this section we seek to prove pointwise decay in far field regions by taking advantage of
some suitable virial identities, as before. The analysis is similar (in spirit) to that shown in
the previous section. However, in this case, the idea will be somewhat the opposite, in the
sense that now the important terms shall come from the derivative of the weight ®, instead
of the derivative of the solution, as in the previous section. To do so, we consider both
the modified mass functional as well as the modified energy functional, which are given by

(respectively)
M. (1) -—J@(w> (t, 2)2da
+ T R )\(t) ) )

£x(0):= [ @ (F0) (ol 4 101+ 802 4 307 + 320 - an)loP - apn)

Here, ® stands for a smooth and bounded weight (not necessarily decaying at +o0), which
shall be completely different to the one chosen in the previous section (see — for
the exact definition). Notice also that, in contrast with the modified mean functional, now we
only require ® belonging to L*(R) in order for M4 and &4 to be well-defined and uniformly
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bounded (for solutions in the energy space). Additionally, in this case we define the scaling
A(t) and the shift ((t) as

Mt) = (L+ )20 () = aXt), @) =cN(t), c,e>0,0>0. (4.18)

In a similar spirit as in the previous section, the main motivation to consider these specific
definitions of A and ( is to obtain

/ g/

LR h —
€ L'(Ry), however DY

¢ L'(Ry), (4.19)

>
T

which shall allow us to neglect some bad terms (in some sense). We emphasize that, in this
case, we are considering a scaling factor \(¢) growing faster than linear (in contrast with the
previous sections). This changes the behavior of some important terms (with respect to the
above analysis) that we intend to take advantage of.

On the other hand, to simplify computations, we split the modified energy functional £
into the following functionals

Eoa(t) = ch (ﬂ%g(t)) (el + 1) da, (4.20)
Eip(t) = L‘P (ﬂ%t)g(t)) (%/12 + 317+ 3(2n — ap)|Yf? — Oé/m)dfc-

Before going further, let us compute the virial identities associated with our current func-
tionals, that shall give us the fundamental information for the following analysis.

Lemma 4.10. Let (¢, p,n) € C(R, H' x L? x L?) be any solution to system (4.1)). Then, for
all t € R, the following identity holds

d - X +7+ ¢ ¢ [ (tr+C
EMi@)——A v (2 )( )\¢\de+ o (F550) whas

o ()

Proof. The proof follows from direct computations. We omit this proof. |
Lemma 4.11. Let (¢, p,n) € C(R, H> x H' x H') be any solution to system (4.1)). Then,
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for all t € R, the following identity holds,

60 = 5§ [ o (F5rs) (vl + i) o
3 Lo (™) (B (el + 1101t)ao
i %’[e ¥ (ﬂ%tg(t)) (§p + 50" + 320 — ap)[Yf* — Oép77>dx (4.22)
- % J; » (ix;(tg(t)) ix;(t)c(t)) (50% + 407 + 320 - ap)lwf? - ap,7> du
¢

)
¥ % JR g (ﬂ%t)q)) (BW + |77|2>d3(: B ;;‘2 JR g (ﬂ%t)q)) pndz
-

o HO P ] o (250 pupacs 330 [ o (550 upopas

. ﬁL@’ <ix;(— g(ﬂ) |t de + _Imf % <Jm+(—t)<()> (21 — ap) Yip.da.

Proof. First of all, in order to simplify the computations, we split the derivative of £, into
the sum of the derivatives of £, ;, i = 1,2, treating separately each of these functionals and
then summing-up the corresponding results. In fact, directly differentiating £, ;, using that
(1, p,n) solves system and then performing several integration by parts, we obtain

d _ Cl / to + C(t) 2 Yq
&giJ(t) = XL‘I) (W) (WWas‘ + 7’¢’4>d$

3L (F50) (F5) (el + 301 ao (4.23)
£ 2 |o (ﬂ%g(”) Dutaade & 2 m [ @ <ﬂ+§t)> 7, da
+ 2wyIm L o (%ﬁ) U0 (n— sap+ qlf) da

+ 2yl | @ (ﬂ%tf(“) (h6P), ol

=: Ri,l + Ri72 + Rig + Ri,4 + Ri,S + Riﬁ'

We now proceed with €4 5. In fact, in a similar fashion as before, directly differentiating £+ o,
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using that (v, p,n) solves (4.1]), and then performing several integration by parts, we get
d C/ +r + C
eee0 =5 [ (5 (o + %772 + 320 - ap)luf — apn)da (1.21)
N —I-x —|—
-3 ( ( ) 307+ 50 + 320 — ap)[P? —-apn)dx
R

)
oo (*“C )(6|pl2+|n| Yo+ 22 | (—iﬁ(;(t)%ndx
N (5+a2/2)J®, (im+§( ))p|¢|2dx+ 3ya @’(ix+<(t))n|¢|2dx

- O\ A(t) 20\ Jq A(t)
T 7 « / ma C(t) 4 YW / T+ C(t) Ny

* 50 <I> (T) [ dx + TImLCD (T) (2n — ap) Y, dx
+ ywlm L ) <i:€+t§(t)> (2n — ap), Pi.dz.

Finally, for the sake of simplicity let us define R, ; as the following quantity

Ryq7:= fwamL ) (ﬂ%g(t)) (2n—ap), Yipyda.

Then, it is not difficult to see that with these definitions we have the relation Ry 5 = Ry ¢ +

Ry 7. Therefore, summing up all the previous computations, and then using the above
relation, we conclude the proof of (4.22)). |

4.4.1 Time integrability of the weighted L?-norm

In this subsection we restrict ourselves to the simpler case of the time integrability of the
weighted L?-norm for the Schrodinger part of the solution (¢, z). The integrability (and
decay) of this weighted-norm is a fundamental part of the analysis since (as we shall see) it
triggers the decay of the whole weighted energy norm. In fact, let us start by recalling the
relation

—iMﬂwi%miﬁ«:“{>wa

N, (fx+C\ [(£z+¢ 9 S E=ES 2
Af( 3 )( )W'd J‘P( 3 )de.

Then, notice that the left-hand side of the above relation is time-integrable on R, , provided
that ® € L*(R). In fact, if &' is bounded, then from Hoélder inequality, Lemma and the
fact that (4.19)) holds, we have

2 ,(tx+C
'xlmff ( )Wx

Motivated by the time-integrability above, as well as identity (4.25)), we shall give a suitable
definition for & € C*(R) so that we are able to obtain a convenient sign-property in the
right-hand side of (4.25]).

(4.25)

e L'(R.).

>/I>—‘
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To take advantage of the structure of the virial identities, from now on we consider ® to
be any non-increasing smooth function such that it satisfies the following conditions

{®(s) =1, s< -1}, {®(s)=0, s=0} and {®' =-1lon[—F, —]} (4.26)

107~ 10
Notice that, as a particular consequence of its definition, we have the following inequalities
VseR, ®'(s)<0 and sP'(s)=0. (4.27)

As already mentioned, we now focus in studying the right-hand side of (4.25)). Notice that,
thanks to (4.26)-(4.27) we infer that, for all ¢ > 0, the following sign-properties are satisfied

N , [ tr+C +x + ¢ ¢’ ,tr+C
AR@( . >< )Mﬂm >0 and —AJ¢< )md

Consequently, due to the fact that the left-hand side of (4.25]) is integrable in time, we
can compute the time-integral over R, and get

N[ g (e (g ¢ g (22+C
L(AL¢<,X)( )w% J¢<—7—)M%Q&<w.u%)

Then, gathering this latter inequality with the sign-property above, we deduce in particular

J ¢t (+x+§

A
Remark 4.9. Notice that, as a particular consequence of the latter inequality, recalling also
that A\™1¢" ¢ L'(R,), we infer the existence of a sequence of times {t, }ncr, satisfying ¢, — o0,
such that

)'Wzt:v\dxdt<oo

lim [0 (tn, 7)|*dx = 0, (4.29)

n— 400 Q(tn)

where the set Q(t) can be defined, for example, as

Qt) :={zeR: A1) +¢(t) < |z] < ZA{) + ()} (4.30)

Moreover, notice that from the above

JRiY 2 ” (1) :
L MQJQGW@Jde<+m>am1‘L Mﬂjgowuwndx<+m. (4.31)

Hence, from now on, we can use properties (4.29)) and (4.31)) without depending on weights
& satisfying (4.26)). In particular, in the sequel we shall use (4.29)) for compactly supported
weight functions encoding the same (or strictly contained) regions as in (4.30)).

4.4.2 Decay of the L>-norm

In this section we seek to prove the pointwise decay of L2-norm of the Schrédinger component
of the solution (¢, x) restricted to the far-field regions. In fact, let us start by considering
U e C°(R) to be any non-negative function such that

supp(¥) © [-2,—4] with ¥ =1on[-2 —Z] (4.32)

47 4
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Notice that, in particular, this implies that supp(V¥) < supp(®’). Additionally, we assume
that U satisfies the following pointwise properties

VseR, U(s) <|P'(s)] and [W'(s)] <|P'(s)]. (4.33)

Now, we re-write the previous virial identity (4.21]) in terms of our new weight function ¥
(instead of using ®). Then, using Lemma it is not difficult to see that

d T+
o (55 e
L2 \p/<ﬂ;<> (+x+§)’w’ dx+€lf 4 (*“C)W de.  (4.34)
R

<<+~
A A )k

Now, recall that, as stated in remark -, there exists a sequence of time {t,},en, satisfying

t, — oo, such that (4.29)) holds. As a consequence, we also have that

o ([ (45 o) -0

Therefore, we can integrate both sides of (4.34) in time over the interval [¢,¢,], and then
take the limit ¢,, — oo, what lead us to

o (574 o fo

°O£

<+$ - C)‘ [v|?dzds

(+x—i—§) (+x+<>‘\w\2dxds

Finally, by using both time—integrabilities in 4.317 we can take now the limit ¢ — oo, from

where we conclude that N
lim | w ( T C) l[2dz =

t—00 R

)\/

Remark 4.10. Notice that the proof of the integrability (and subsequent decay) of the L2-
norm of 1 also works for other definitions of A\ as well as other definitions of ® and V. For
example, in the above analysis we have only used the fact that the scaling A(¢) satisfies

leLl(R ) and i/¢L1(R )
A - A A

In consequence, the proof still holds for any A with such property. As a result, we can take for
example A(t) = ct?, for any p > 2 and any ¢ € R, and then following the above computations
we obtain the desired result.

4.4.3 Time-integrability of the full solution

In this section we seek to show the time integrability of the local energy norm for the re-
maining terms. Now, in order to make computations simpler, let us break down expression
(4.22), so that we can write the cleaner formula

d
— SEu(t) + Ra(t) = —€.(0). (4.35)
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More specifically, we define the functionals €4 and R4 given by

/ = ¢ 2, 19
€= 5 [ (F550) (vl + 20l ao

() (58 o e
- %’L o' (—ﬂ;(tf(t)) (§p2 + 51 + 3(2n — ap)f* — apn) da
— )\X,J; o’ (ix;(_tg(t)> <ix;(_t§(t>> <§p2 s+ 220 — ap) [yl —04P77>d$

/ A A(t)

Ro(t) = iQT“’QImL o (ﬂ%f()) G tmdz + 2% J o <M> [y e
AL () e 5 o ()
+
o (*

v (B + a?/2) +¢(t) 3va [, (tx+C(0) 2
ok (D) > plofde s 593 1.2 (Tt)) nlyde
) % L " <ﬂ+t§<t)> e %Im JR v <i+t§(t>) (27 — ap) Pyuda

= R +R+2 + - Ri,&

On the other hand, notice that, since (¢, p,n) is a solution to system belonging to the
class C'(R, H* x H' x H'), then the energy associated to this solution E (¢(t), p(t),n(t)) is
finite. This means that, because the weight ® considered in the modified functional & is
bounded, one has

f iSidt < 0.
r, dt

Now, we treat the remaing term.

Let us consider ® € C*(R) to be any non-increasing function such that holds, and
hence, satisfying also . Now, we intend to bound term by term the right-hand side of
. In fact, first, since @ is bounded, using Young inequality and Sobolev embbeding
along with Lemma 4.5, we see that

2ywlq| 1
[Real < S 1ln (Wl + aliam ) < 5 € LR

Also, immediately from Proposition (4.5]), we obtain

o

g—
ROTON

o (Z )| GloP ) e 5 g e R0

On the other hand, for R, 4, by using Young inequality for products and Lemma [£.5] we get

1
Real < 22201 5@ POl + )l < 57 € 'R
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We point out that all the remaining terms R4 ;, 1 =5, ..., 8, can be treated in the very same
fashion as for the previous terms. In fact, from Holder inequality, Sobolev embedding and
then using Lemma [4.5] in the resulting right-hand side, we deduce that

1
Z Rel = 575 (0 B+ 10O + [0 lnce)) < 555 = L' R

t)

Finally, to complete the analysis regarding the time-integrability of R, it only remains to
consider R+ ;. In order to do that, we first need to recall one of the main results proven in
[5] which give us the polynomial growth of the H2-norm of (¢). In fact, from [5, Proposition
1.1] we have that

[ 2y < 1+ 18" (4.36)

As a consequence, recalling the explicit form of A(¢) in (4.18]), we conclude that

ﬁw(tnm) e I'(R.)

Therefore, by using Hoélder inequality as well as Lemma and (4.36)), we infer that

Rl S 75 19 (O 2 [Vea(t) | 2R) € LT (R4).

1
A(t)
In conclusion, we can integrate over R, in time both sides of (4.35)), from where we obtain

f — €, (t)dt < . (4.37)

Now, let us break down this expression so that we can analyze the conflicting terms of & (¢)
without sign. More specifically, we would like to absorbs or discard the part of the expression
that does not constitute the weighted energy norm. In fact, in similar fashion as in the proof
of Proposition [£.5], we have that

Bp* +in* —apn = — o lo|* + ) > >0,
S T4 2(B + a?)
where we used the fact that 3 — a? > 0 and 3 > 0. Also, we have that
i 2 B — o 2 6 2
(21— < +——
2 2 2
v (B + 20
86 p—
Gathering both equations above, we get
8.2, 1.2 Yoy — 2>3(5—04) 2 7 2
20"+ 300 —apn+ 5 (20— ap)[Y° > T 6(6+a2)|n|
2

(4.38)
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Finally, to deal with the remaining uncontrolled terms (involving the L*-norm of 1), we
make use of (4.28). Indeed, notice that by Sobolev embedding,

L R,q)/ (m;(;‘(t)) (ix;(tf(t)) - %D’ (ﬁ%t)g(t)ﬂ ] dz
i o () (22) S (5
Then, thanks to (£:28), we can conlude that
([R50 (58-S o

is integrable in time over R, . Therefore, one can write the following

[\ x4+ (1) [z + (1) ¢ +x + ((t)

_@/ _ _q)/ R N 2d
JR B < A©) N0 \ X\ t) Wiy de

[ tx+((t)\ [tz +

(P,

+R[ ( 2D )( e

[ [ q),<ix+§(t)) +x+

R A(t) At )

N i:c+§t)> <+ ¢ )) ¢ (ira:+§(t))]
—C+ K | [+ el [ du,
[ 5 (5 o ) U )Y

where K is the absolute value of a constant depending on 3, a,~,q. This way, we conclude

that the right-hand side of the inequality above can be integrated in time over R,. Moreover,
since

(&

)\/
By
)\l
by

[

|y — |y
—~
~~
~—

P'(s)s =0 and P'(s) <0 VseR,

we also infer that

g/

<+x+C)NGmP+mP+mﬂdmh<w-

R+

Remark 4.11. We notice that, thanks to the fact that %/ ¢ L'(R,), one infers that there
exists a sequence {t,}, with {t,} — oo, such that

(J o <ix+§(tn)

Altn)
4.4.4 Decay of the full solution

)‘ ([a]® + o> + |n?) dx) (tn) — 0, as t, — . (4.40)

Finally, in this subsection we devote ourselves to prove decay of solutions in the energy space
along the curves +¢. The idea is the same as for the decay of the L?-norm in Subsection
4.4.2| We proceed by taking a convenient weight W such that holds. Then, we have
that supp(¥) < supp(®’) and is satisfied. Next, we consider the virial identity
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with the weight U instead of ®. Thus, taking into account the previous estimations stated
in Subsection along with the pointwise properties (4.32)-(4.33)), we have that

d
L0 (E5rS) (il 101+ 4+ 307 + 20— aploP - apn)do

< %L\If (%ﬁ”) (el + ") az

_i’ ( (+a:+§ (+$+< )<w|@bm|2+§|w|4>dxdt
/\.)R
O (HHC ) § + 50+ (Qn*ap)WIZ*apn)dx
A JR
)\/
_XJL (ﬂ:Jr< )( JE )<p+277+ 1(2n — p)lwl2—am7)dw

C
A(t) (L+ ) m2w) »

where we recall that A™! and A7!(|¢| = are both time-integrable in R,. Moreover, the whole
right-hand side of the last inequality is integrable. Indeed, because ¥ satisfies (4.32))-(4.33])
then (4.39) along with Young inequality implies that

>
55—
S
A/~
I+
A +
N J\
/N

EEECOY (wfuf? + ) ar

)\/

“XR< ?§)<H+C)W%“%WWWt

+CXL ( +()C ) 500+ 30+ 3 (20 — p)I@DI?—O‘p”)dgj

A/

o R < —|<—§ ) (—i—x—i—( )(§p2+%n2+%(2n_@p)‘w‘2_ap77>dx

ol (5 (55 S (5] )

Now, recall that we have already shown in the previous section that the right-hand side of
the above inequality is time-integrable in R,. Therefore, we conclude that there exists a
time-integrable function ¢ : R — R such that we can write

%L@@%%®>Mwﬁ%w4 307+ 4+ 20— an)lvf? — apn)de] < g(0).

Consequently, we are entitled to integrate over the time interval [¢,¢,] and, because of (4.40)),
taking t,, — o0, we get

qu (ix; C) (el + 211" + 802+ 30* + 320 — ap)|Yl? — apn) de L g(r)d.
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Now, notice that, by using inequality (4.38)) we can re-write the expression above in terms of
the energy norm, as

+x +((t 2
JR v (—()) (WW&‘Q + 7(/816 )P2 + 16(/;fa2)772> (t,xz)dz

0
< [Comars [ v (FE ) o

| 4

Finally, notice that the latter integral involving |¢(¢,z)|* converges to zero as t — 0. In
fact, this is a consequence of the decay of the L?-norm and Lemma , along with
the Gagliardo-Nirenberg inequality, that allows us to bound the L*-norm with the H'-norm
and L2%-norm. Then, to conclude, we take t — co in the latter inequality above, from where
we obtain the decay

fim | (ﬂ%t)c(t)) (y%(t, 2)[2 + p2(t ) + (L, a:)) (t,2)dz = 0.

The proof is complete.
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Part 1V

The Zakharov Water Waves problem
under variable bottom
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Chapter 5

Existence of solitary waves in the Water
Waves Zakharov system with slowly
varying bottom

Abstract. We deal with the solitary wave problem for the Zakharov water waves system with surface tension
and a non-flat bottom in one dimension. Amick-Kirchgéssner [3] proved the existence of small solitary waves
in the case of a finite flat bottom. However, in practical situations, the bottom is always non-constant. In this
work, we consider a domain with a slightly varying (in space) bottom and prove the existence of a generalized
solitary wave like solution. The techniques used in the proof of the main result are based on the construction

of a multi-soliton like solution, introduced in [I4].

This chapter is part of the work M. E. Martinez, Ezistence of solitary waves in the Water Waves
Zakharov system with slowly varying bottom, preprint 2021.
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5.1 Introduction

Consider a fluid under the influence of gravity and with constant density, contained in a
domain with rigid bottom and free surface:

Q, = {(,2) € R* such that — a(ex)h < z < n(t,z)},

where h > 0 is a fixed height, ¢ > 0 is a small parameter, a : R — R is a horizontal description
of the bottom, and 7 : R* — R is the (unknown) free surface elevation. Usually, we will denote
a.(z) = a(ex).

zZ A AIR

e —

) T %)

Q¢
\ /_\_\
. S — ¢eR
h —ha,

On the fluid, we assume that it is homogeneous, inviscid, incompressible and irrotational,
which implies that its motion follows the classical inviscid irrotational constant density Euler
equations. In particular, denoting by u € R? the velocity of the fluid, the fact that the flow
is irrotational implies the existence of a velocity potential @, a scalar mapping, that inside
the fluid domain §2; satisfies,

u(t,x, z) = (0, P(t, z, 2),0,0(t,x, 2)) = V., 0(t, , 2).

Since the motion of the fluid follows the free surface Fuler equations, one finds that the
velocity potential ® satisfies the free surface Bernoulli formulation.

We assume that no particle of the fluid can cross the bottom or the surface, which leads
to boundary conditions on the bottom

0,9(t, z,—a(ex)h) =0, (5.1)
and (the kinematic condition) on the free surface
om(t, ) + 0, ®(t, z,n(t, x)) - Oun(t, v) — 0. (L, 2, n(t,z)) = 0. (5.2)

The Zakharov water waves system arises from considering the free surface elevation n and the
trace of the potential velocity on the surface ®|,_, fully determine the flow. Consequently,
we are interested in the action of the flow on the free surface. In this particular case, we
are dealing with the problem when the surface tension is present. Then, since the velocity
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potential ® follows Bernoulli laws, taking into account the surface tension to eliminate the
pressure term, we get the following equation on the surface of the fluid

1 2 _ 39377(1571‘)
5tq)(t71'777(t7 .T})) + §|vz,zq)(t>x777<t7x>)’ + gT](t,SC) - baﬂﬂ (\/1 n |§z77(t7x)|2> ’ (53)

where b is the surface tension coefficient and g is the gravitational constant.

Finally, we also need to impose the water depth to be always bounded from below by a
nonnegative constant. That is, there exist Ay, > 0 such that

a(ex)h + n(t,x) = hpm, VY(t,z) e R xR. (5.4)

As it is customary to do, we shall write —— as a system involving unknowns
defined on the free surface only, n(¢,x) and ¢(t,z) = ®(t,z,n(x)). With this in mind, we
shall consider the Dirichlet-Neumann operator, first introduced in the bibliography by Craig-
Sulem-Sulem [B], [6], defined as

Gln,al : o — 1+ V> 0.2 _ .

where n is the unit upward normal vector on the boundary of the fluid domain at the point
z = n(x) and P is the solution of the elliptic equation with moving domain

A:c7zq) = 07 (ZE,Z) € Qta

q)|z:n<t,x> - (5.5)
anq)‘z:—a(ex)h =0.
Note the influence of the bottom in this last equation. As mentioned before, it was stated by
Zakharov in [21] that, if one defines the trace of the velocity potential ¢ = ®|,_,, then n and
© fully determine the flow. This ultimately allows us to write the system only in terms of the
unknowns (n(t,x), ¢(t,x)) := (n(t,z), ®(t,z,n(t,z))). In consequence, the one-dimensional
water waves problem reads

om = G[n,aly

L (G[n, ale + dupdun)®

Or 5.6
up =~ lowel® + FHTE L (5:6)

A/ 1+ |0en]”

where ¢ is the gravitational constant, b is the tension surface coefficient and the velocity
potential @ is recovered by solving the elliptic problem (5.5)). Denoting U = (n, ¢)T, we can

write (5.6) as

— gn + b0,

o, U = F(U) (5.7)
where the functional F is defined as
G[n, alp
U) = G[n, al + 0,00,m) 0, . 5.8
F(U) _%|&M|z+%( [, ale + 0updan) g+ bl U (5.8)

1+ |0,/

A/ 1+ |0:n)”
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Moreover, as stated by Zakharov in [21], this system has a Hamiltonian structure in the
variable U. Indeed, let us define the Hamiltonian H as the total energy given by

H(n, ) = %L (@Q[n, ale + gn® + 2b (v1 + [0am]? — 1)) du, (5.9)

Then, if I denotes, as usual, the identity matrix, it is possible to write (.6]) as
o (M) 0 I\ /[(dH
“Ne) \=T 0)\o,H/)"

The Zakharov water waves problem, also commonly refered to as the Zakharov-Craig-
Sulem formulation, is an important model in the theory of water waves equations and has
gained an increasing interest over recent years. The assumptions in which the mathematical
formulation is based on makes it suitable for applications, which might motivate its popoular-
ity. Condition , along with the fact that the fluid is at rest at infinity, imply that system
describe the nonlinear dynamics of deep water gravity waves, avoiding the coast. Some-
times, surface tension is assumed to be zero, a reasonable approach, essentially since the
surface tension in coastal oceanography is so small that it can be neglected. Nevertheless,
the interest in considering b # 0 is the possibility to study capillary gravity waves, see [12]
for some applications.

In addition, from the Zakharov-Craig-Sulem formulation can be deduced a great deal
of canonical, simpler models. Indeed, among some of its assymptotics formulations are,
for instance, Korteweg- de Vries and the family of Boussinesq equations for shallow water,
or Benney-Roskes and Davey-Stewartson systems as deep-water, full-dispersion models (see

[110).

Regarding the well-posedness for the Zakharov water waves problem, when the surface
tension can be neglected, global well-posedness is shown by Wu [19] 20] and Alazard-Burg-
Zuily [2]. In [I7, [4], Schneider-Wayne and Craig presented an early approach to the local
well-posedness by relying on the fact that the KdV equation can be formally derived from
the Zakharov water-waves problem in the limit of long waves, obtaining classical solutions up
to a finite time. In the presence of surface tension, the 3-dimensional Zakharov water-waves
problem is globally well-posed for small initial data (Germain-Masmoudi-Shatah [§, 9]). In
[1], Alazard-Burg-Zuily described the Cauchy problem for the 2-dimensional case with surface
tension in the space H*™Y/2 x H* s> 5/2.

The study of solitary waves for equation (5.6)) was mainly devoted to the flat-bottom case
(a =1). Indeed, existence of solitary waves of the form Q_(z — ct) = (n.(x — ct), p.(z — ct))
of speed ¢ ~ +/gh was shown for suitable values of the parameters g,b and H [3]. The
statement reads as follows

Theorem 5.1 (Amick-Kirchgéssner [3]). Suppose that g,b, h satisfy

gh

Z ol 2, (5.10)

W =

b >
hc?
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Then, there exists ey such that for every e € (0, €y), there exists a solution of with a = 1
under the form
Q.(z — ct) = (n(x — ct), pe(x — ct))
= (hn,\(h_l(x —ct)), chox(h ™ (z — ct))) ,
with
m(z) = X201 (A\z, \)  oa(z) = A0y (\x, )

where ©1 and O4 satisfy

3d >0, Ya=0, 3C,>0, Y(z,\)eRx(0,X), [(0%O1(z,\))| < Che
and

3d >0, Ya=1, 3C,>0, Y(z,A)eRx(0,X), [(6%Os(z,\)| < Cpe
Moreover, ©1 is even and ©, is odd.

Among solitary waves for the one dimensional (surface) case, there also exist multi-solitons
solutions, as proven by Ming, Rousset and Tzvetkov [14]. More precisely, they were able to
construct solutions that are time asymptotic to a sum of decoupling solitary waves, with
different speed, assuming they are never near each other. We point out that such existence
results for solitary waves and multi-solitons solutions for the problem with surface tension are
given under the assumption that the bottom of the domain is flat. It is our goal to address
the existence of soliton-like solutions for a non-flat bottom problem.

A rather characteristic property of the one-dimensional Zakharov water waves model is
the fact that the surface of the fluid is invariant by translation. As a result, usual Lyapounov
stability cannot be expected. Nevertheless, orbital stability of the solitary waves holds, as
was proven by Mielke [I3]. This is not the case for the problem in two dimensions. Indeed,
Rousset and Tzvetkov showed in [16] (and improved in [14]) that solitary waves are not stable
under 2-dimensional (transverse) perturbations.

As noted in [3] [16], the profiles ©1(z, e) and Os(z, £) have smooth expansions in . Then,
we are entitled to study the particular case € = 0, for which we get

61(0:0) = cosh™ (g7 )

Thus, the KdV solitary wave is recovered.

5.1.1 Setting and main result

In this work, we are devoted to the study of the solitary wave, given by Amick-Kirchgassner
(AK) for the flat bottom problem, when interacting with a bottom that changes (slightly)
from a certain point in space. Since the bottom of the domain has a non-local influence on
the solution U of system (5.6), one cannot assume that the AK solitary wave exists for the
non-flat bottom problem. It is necessary, then, to prove the existence of a solution to
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that behaves asymptotically like Q. before it encounters the changing point in the bottom
(as t — —oo) (see Figure . A second part of this study would be to explore how the
description of the bottom impacts such solution as it travels towards the point of changing
for the bottom and enters the interaction regime.

This manuscript is the first of two works, and deals with the first part of the problem: the
existence of a pure solitary wave like solution, before it reaches the interaction point.

Z 8

ﬂx\\\—/////"““" """""""""""""""""""""

—ha,

—h xeR
Figure 5.1: A solitary wave in nonflat bottom.

Throughout this paper, we will consider a slightly changing bottom described by the func-
tion a. = a(e) € C(R) n C*(R), where ¢ > 0 and a is assumed to satisfy the following
conditions:

There exist K >0, 0 < x <1 and 71,7, > 0 such that:
l-rk<a(r)<l, VreR,
1 —a(r) < Ke™", ¥Yr<0,

lim a(r) =1, lima(r) =1 — &, (5.11)
7—00

r——00
/' (r)| < Ke Il vreR,

a’ does not change sign.

From now on, we will denote by Q,(z — ct) = (n.(x — ct), p.(x — ct))" the solitary wave
given by Theorem [5.I] That is, Q, satisfies

at7/]c = g[nca 1]90c

(G[1e, 1]pe + Onpefante)”

d e+ b0, OaMe (5.12)
1+ [0

A/1+ |§gmc|2

L 5 : : :
and G[ne, 1] = ¢c — /1 + [0un| ﬁnfbc‘zzm where @, is the solution to the Laplace equation
in a flat-bottom domain 2’ := {(=, z) € R? such that — h < z < n.(t, 1)},

O pe = _% |aﬂc§00’2 + %

Ay, 0. =0 (2,2) € Q
(I)C‘Zzﬂc = Pe (513)

on®[___, =0.
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As mentioned before, our main goal is to prove the existence of a solution to the Zakharov
water waves system (5.6)) that behaves asymptotically like the solitary wave Q, as time tends
to —oo. It will be convenient to define

R(t,z) = Q.(z —ct + A),

where A » 1 is a parameter that allows us to stay a safe distance A from the point of change
in the bottom. The precise result reads:

Theorem 5.2. Let us fix s = 0. Suppose that the speed ¢ > 0 satisfy with a parameter
A. Then, there exists \* such that for every A € (0, \*), and A > 0 sufficiently large (depend-
ing on €), there exists a solution U = (n,¢)" to defined in the time interval (—o0,0],
that satisfies

U— ReCy((—x,0], H*(R) x H*(R)),

and

lim [U(t) — R(1)|

Remark 5.1. The hypothesis A € (0, \*) is merely to ensure the existence of the solitary
wave, given by Theorem [5.1] Nevertheless, one could replace such condition by simply as-
suming that there exist smooth, bounded and exponentially decaying solitary wave solutions.

Remark 5.2. The parameter A > 0, that presents a safe distance from the change in the
bottom, is equivalent to consider a time interval existence like (—oo, T']. For the second part
of the problem, such T" should define the moment where the soliton-like solution constructed
here enters the interaction regime.

Remark 5.3. A fully detailed first step into Theorem including explicit convergence
estimates and decomposition of the soliton-like solution, can be found in Theorem [5.13|

The proof of Theorem follows the techniques that Ming, Rousset and Tzvetkov intro-
duced in [I4] to prove the existence of multisoliton-like solutions for the one-dimensional, flat
bottom problem. It consists on two main steps. Firstly, we construct an proximate solution
of the form

N
U, (t,z) = R(t,x) + > pV,(t, @),

where V;(t,z) are solutions to linear problems (linearization of about the solitary
wave) with exponentially decaying source terms. The idea is to understand how fast the
fundamental solution of the linear problems grows so that it can be controlled by the decay
of the sources (depending on A). To do so, the principal tool would be the use of spectral
properties of the linear operator, proved in [14] and stated here in Section m

When plugging the approximate solution into the Zakharov water waves system ([5.6)), a
remainder term r, appears, with a faster decay for larger N. Finally, we construct an exact
solution U = U, + U,, where U, solves

U, = F(U,, + U,) — F(Uyy) — Tap.
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Proving the existence of such equation means that U satisfies
U(t) > R(t) ast — —c0 in H”.

The nonconstant bottom introduces several difficulties in our approach, as it presents a
nonlinear interaction with the solution U. To overcome this matter, we essentially split
the solution into two parts: one of them heavily influenced by the bottom (that we control
by staying away from the changing point) and another part, ruled by the solitary wave
Q.. The first issue in this regard would be to undestand how the the description of the
bottom affects the error produced by the solitary wave in the new regime a # 1. The need
for a sufficiently fast decaying error imposes the smoothness condition and softness in the
variation of the bottom. Such assumptions also prevent from breaking the properties on the
linearized equation, as an abrupt change would, and allow as to find suitable estimations in
the construction of the approximate solution.

5.2 Preliminaries

5.2.1 Study of the Dirichlet-Neumann operator

Firstly, let us recall the definition of the Dirichlet-Neumann operator

Gln,ac] - 9 = /1 +[Vn? a2 _,.

where @ is the solution of the Laplace equation . Note that the velocity potential @,
associated to a solution U = (n, )" of 7 is defined in the domain €);, whose surface is
described by 7. To be able to compare velocity potentials associated with different solutions
(in particular, with Q,), it will be necessary to re-write the Laplace equation and turn
it into an elliptic problem in a flat domain S := R x [—1,0] (see [11, Subsection 2.2| for
further details). Indeed, consider ¥ : S — ), a difeomorphism such that

Y(x,z) = (z, (ha(ex) + n(t,x)) z + n(t,z)), (x,z)e€S.

Now, we can define the new unknown ® = & (X(z,2)), solution to the following elliptic
problem defined on the strip S,

Voo (Pa(Z)vx,z@ 0 i,

q~)|Z:~0 =,
65“<I>|Z:_1 = O,

(5.14)

where the matrix P,(3) is defined as
hac(x) +n(t, )
—(z 4+ 1)0un(t, z) — hzal(z)

—(z+ 1)0un(t, z) — hzal(z)
1+ |(z + 1)0,n(t,x) + hza'(z)]* |, (5.15)
ha.(x) + n(t, )

P,(%) =

denoted from now on as P, = P,(X) to simplify notation, and dl» = n - (P,(X)V,.), for
n = —e, the upward unit normal to the boundary z = —1.
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When considering the notation 05 = (0,1)! - P,V, ., we get that the Dirichlet-Neumann
operator )
Glac, nlp = 0y ®|.=
can be re-written in a more explicit fashion as
1+ (2 4+ 1)0,n + hzd.|?
ha. +n

Glac, n]p = — ((z + 1)0n. + zhal) 0,P|.—o + 0,P.—o. (5.16)

Evaluations at z = 0 will be justified later on in terms of the regularity required on the
involved functions.

The DN operator meets the following properties:

Proposition 5.3. Letne H*(R) and a € C*(R) defined by conditions (5.11)), with ha.(x)+
() > hpin > 0 for allx € R, e > 0. Then:

(a) Gn,a.] is symmetric on L*(R):
(Gln.aclp.w) = (9. Gln.a:]0) . V.t H(R).

(b) There exist ¢ > 0, C' > 0 such that,
|(Gln, acle, ) | < C|B| 12| B2, Ve, e H3(R), (5.17)
(G, a)e,¢) = c|Bpl2., Voe H3(R), (5.18)

where B is the Fourier multiplier

B = (1-02) "0,

(¢c) The linear operator G[n,a.] : HY(R) — H*(R) is continuous for every s € R.

We refer to [11, Section 3| for the proof of Proposition ([5.3]), where the results are shown
for a more general case (the bottom taking an arbitrary form).

Taking into account the shape of the solitary wave and (specifically, the shape of ¢.),
it will be useful to understand the behavoir of the Dirichlet Neumann operator acting on
smooth localized function. In particular, we shall see that it behaves as a space-derivative
for exponentially decaying functions. Indeed, we give an estimation on its derivatives:

Proposition 5.4. Assume that ¢ € Ci°(R) has the exponential decay

oL
3d > 0,Ya e N,3 C,,Vz € R, |0%)(x)| < Cpe” 40+ (5.19)

Then, for any n € H*(R) with miFrel{haE + 1} = hpin > 0, G[n,alY also decays exponentially
xe

fast, that is, for any o € N U {0}, there exist a constant ¢, depending on o and 0 < § < d
independent of a such that for every x € R,

6% (G, a]db) (x)] < cae P OHEDE,
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Proof. We divide the proof in several steps.

Step 1. Under the assumption ¢ € C;°(R) and n € H*(R), from (5.16)), we can write the
DN operator G[n, a.| acting on ¢ as
1+ |(z + 1), + zha!|?

g[T/a a'a]quj = = ((2 + l)awn + Zhalg) axci)|z=0 + h(lg + n az(i)|z=07 (520>

where ® solves the elliptic problem (5.14). Thus, to get the expected estimation, it shall be
sufficient to prove exponential decay for derivatives of ®.

We begin the proof by making the decomposition

O(z,2) = u(z, z) + v(z, 2), (5.21)
where u is the solution of the elliptic problem

{ A, u=0, (z,2) €S,

u(z,0) = (x), obeu(z,—1) = 0. (5.22)

This way, we get that v solves the elliptic problem with homogeneous boundary conditions

Vs (PaVyv) ==V, (PV,,u) (z,2)€S, (5.23)
v(z,0) =0, olev(x,—1) = 0. '
By solving an ODE, one can obtain an explicit expression of the Fourier transform in x of u,

cosh ({(z + 1))
cosh(§)

From this expression we also have that

cosh ({(z + 1))
cosh(&)

Fr (Qu) (§,2) = Fo(0:0)(8).

Step 2. Asin [14], we can prove exponential decay of the solution u of by following
a Paley-Wiener type argument. First, we notice that the fact that 0,1 and all its derivatives
have the exponential decay F.(0,1) has an holomorphic extension for ¢ satisfying
IIm &| < d. Also, we find that, after integrating by parts, for § € (0,d),
Cy

|f$(a$u)| < W7 (57 Z) €R x [*170]7 |Im €| < P VneN

Cosh(f((z-)i-l))
cos(§
for any p € (0,7/2), using contour deformation, one has

wlr. 2) — eix§COSh(§(Z+1)) _ eixgcosh(f(z%—l))
e L R

for any p such that |p| < min{d,7/2}. This implies that by taking p = 2dsgn(z), with ¢
sufficiently small, we find that

Since § — has an holomorphic bounded (uniformly on z) extension to |[Im&| < p

Fa(0x)(£)dE,

0u| S Coe™ 2l Y(z,2) € S.
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Now, the z-derivative can be estimated in a similar fashion. In fact, we have

sinh ({(z + 1)) sinh (£(z +1))1

0, F: (u(z, 2)) =

Then, we argue as before and get that
0.u] S Cue™®l Y(z, 2) e S.

Higher-order derivatives can be estimated using the same arguments, which implies the fol-
lowing
Va,laf =1, [02,u] < Coe™ 2l Yz, 2) e S. (5.24)

Step 3. Then, we are left to prove exponential decay for the solution v of . To do
so, we rely on the decay properties of P, (inherited from ) and define the increasing
weight
w(z) =P, 0<6<d,

1

2

where we denoted by (z) = ( and ¢ is to taken sufficiently small later. We get the

1 og2
following elliptic problem for v =

1+z
V= WUv:

Vi (PuV,0) = [Vas - PV w|v=wV,, (PV,.u) (x,z)€bf, (5.25)
o(z,0) =0, OJkav(x,—1) = dhed (ex)v(z,—1). '
For the Neumann boundary condition we used the fact that on the boundary z = —1,
1 h /12
ok = hald, + 1+ |ha." ., on z=-1
ha. + n.

Now, we want to estimate the Sobolev norms of v. Using Divergence Theorem, denoting
by I' = {z = —1} u {z = 0}, we can compute

L PNV, .0V, vdzdz — Ln - (P,V,.0)0dl'
= L P,V,.0 -V, 0dzdz — L dHead (ex)v*(x, —1)dx
= L ([Va: - PaVy ., w]v) 0dadz + JS WVys - (P,V, u)ddadz.
We write the following

f PN, .0V, 0dzdz = J ([sz . Pavmjz,w]w_lﬁ) vdxdz
S s

+ J WV, - (PaVy u)odzdz + f §Hed (ex)v*(x, —1)dz
s R

= [1+.[2+I3.

For the left-hand side, because P, is coercive, we have that

f Pavzv,zﬁ : vz,z@ dzdz > CHV%ZT)H%Q(S)
S
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for a constant ¢ > 0 that does not depend on 4. To estimate the right-hand side terms,
starting with I;, we can compute

(V. PVeero] = (ha(en) + 1) [,
— ((z + 1)0,n + zehd' (ex)) [0, w]0..

Since we know that ha. + 1 = A, the last equality implies that

11| < C (6%]0] 128y + 0| Va0l 2¢s)) 0] 22¢s)-

Secondly, to estimate the I, we use ([5.24]), and obtain
L] < C5 (6]0]2(5) + [ Va0l r2s)) - (5.26)
Indeed, from Divergence Theorem,
I, = — L PV, u-V,, (w0)dzdz + f n- (P,V, u)wodl
r
< IR Vi g [l + [P0 9 g Vi,

where we used that 0/2u = 0 on the boundary z = —1. Now, notice that, since ([5.24)) holds,
we have that there exists Cs > 0 such that

Mz &z
HPanu Vg€ ¢ >HL2(5) < 0Cs and H(Pavx,zu) e >HL2(S) < Cs,
so that ([5.26)) is implied. Then, from Young inequality, one has
L] < 52\\77\@2(3) + 5Hvx,z77H%2(3) + Cs.

In a similar fashion, since Hea'(ex) is (uniformly) bounded, after using Fundamental Theorem
of Calculus on the variable z, one can obtain

I < CdLﬁQ(x, 1)dz < C8 [ 2(5) | Vel s -
Arranging all this estimates together, we conclude that
Vo0 l3s) < C (1613xs) + 0IVesblis) 19l iags) + 01 Vasilings) + C.) - (5:27)
Now, we take advantage of the fact that the fluid has finite depth, meaning that the domain
is bounded in the z direction, which allows us to apply Poincaré inequality. Indeed, S is

bounded in the z direction, thus we are entitled to use Poincaré inequality (C' independent
of 0):

9] L2(s) < C| Va0 22(5)-

Therefore, going back to (5.27)), we can conclude that if § is small enough, then |V, ,0]7, R) <
C. In consequence, summing up we have that

H6HL2(5) <C, Hsz@HLQ(S) <C,
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for 6 > 0 sufficiently small.

Step 4. Finally, for the higher order estimates of v, we use an induction argument.
Indeed, we re-write equation (5.28)) as
—Viz - (PV,0)=F (x,2)€S,
o(z,0) =0, OJkv(z,—1) = dhal(z)v(x, —1).
By standard elliptic regularity theory (for instance, regularity estimates in [I1, Subsection
2.3| and [7,, Subsection 6.3]), we know that,

Hs+2(5) <C (”’f)HHl(S) + HFHHS(S)) .
Because of the estimate ([5.24)), we have that
|Fllegs) < € (1+ 9]

2]

He(s)) -
Therefore, since we already proved the H' estimate, we can start from there and get by
induction that |0 gs(s) < Cs, for every s > 0. By Sobolev embbeding, we conclude that

Va, |05, (e* v (x, 2))| < Ca.

Equivalently,
Va, |05 v(z,2)| < Coe %@, (5.28)
Plugging this and ([5.24)) into (5.20)) finishes the proof. |

Since in this work we study, essentially, the solitary wave that arises in the flat-bottom
problem, it is natural to adapt the result to the case of the solitary wave. With this in mind,
we give the following corollary:

Corollary 5.5. Let ¢ € C;°(R) with an exponential decay (5.19)). Then, for n e H*(R) such
that miFrel{—has + 1} > hpin and r € R, G[n, a.|(¢¥(x — r)) also satisfies an exponential decay;
xe

that is, for any a € N U {0} there exist Co, and 0 < § < d (that does not depend on r) such
that for all x € R,

109G, a] ((- — ) ()] < Coe~ 80 Fla=rE,

Remark 5.4. The result still holds when considering the case a = 1. Indeed, in [14] it was
proven that if v € C*(R) satisfies (5.19), n € H*(R) such that miél{—h + 1} > hpin and
xe

r € R, then Yo e N U {0}, 3C, and 0 < § < d such that
1
109G, 1] (U (- =) (2)] < Coe D vz e R,

Remark 5.5. As noticed before, to prove Proposition is actually to demostrate that for
every a € N,
|02, @] < Coe™ ™.
Notice that the solitary wave Q. = (7., ©.)" (solution to system ([5.12))) satisfies hypothesis of
the result. Then, after considering an appropriate matrix to turn the Laplace equation into
an elliptic problem in a flatten domain for the case a = 1, one can use similar computations
to show that
102, 001| < Coe™™,

where ®.; in the strip domain associated to the flat bottom DN operator G[7,, 1].
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5.2.2 Shape derivatives for the Dirichlet-Neumann operator
Neumann-Neumann operator and moving bottoms

In most of this work, we deal with the Zakharov system with a fix bottom (that is, depending
only on space variable) described by a.. Nevertheless, it is possible to assume that the
bottom is moving, as was done for instance in [I] or [10]. Such assumption implies a change
in the domain and, consequently, a different condition on the bottom (which would now be
a kinematic condition, like the one imposed on the surface). More precisely, if the bottom
is described by a function a(t,z), @ € C*(R x R), then the domain would be defined (for the
one-dimensional surface case) as

Q = {(z,2) eR*, —a(t,x)h <z<n(t z)}

and the kinematic condition on the bottom (in terms of the velocity potential ®) would read

1+ h?|0al?0,P = —hdia  on {z = —ha(t,x)},

where n is the unit normal vector to the fluid domain pointing upwards. Accordingly, ® is
now recovered as the solution to the Laplacian equation with non-homogeneous Neumann
condition at the bottom,

A, 6=0 inS,
q)|Z:77 = 907

A/ 1 + h2|axa|26n®|zz_ha(t,x) = —hata

Taking into account the definition of the Dirichlet-Neumann operator, it is useful to decom-
pose ® into a fix bottom component, ® s, and a moving bottom component, ®,,,, as

A:z:,z(I)fb =0 in '57
(I)fb|z:77 =¥,
1+ h2‘5x5|28nq)fb’z:—ha(t,x) = 07
and
Ax,z(I)mb =0 in S?
(bmb‘z:n = 07

A/ 1 + H2|aza|28n<bmb|’z:,ha(t’z) — —hé’ta
As a consequence, we now have that

V1+ |8xn|28nq>|Z=n = G[n,alp + thN[Uﬁ]ﬁt@

where the operator GNV[n, a] is defined as

gNN[Tha] : ata =V 1+ |§xn|2an®mb|z=n-

Equivalently, after using a diffeomorphism ¥ : S — €, to flatten the domain of the elliptic
problem, we can write

G[n.ale + G"N[n,a)B = e, - PV, .®|.—.
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Shape derivatives

Since we are interested in the DN operator in terms of the bottom and the moving surface,
let us consider T the set of all (1,a) € H*?(R)? such that the following condition is satisfied

Jho > 0, such that Yz € R, —ha(z) + n(z) > he.
For 0 < s < 3/2 and ¢ € H**%/2 (fixed), we want to study the operator
Gln.a]:T < H*R)? > H*(R)
(n,a) = G[n, alp

Given (¢,b) € H3?(R), we will denote by D(G[n, a]p) - (¢,b) the Fréchet derivative of (5.29))
at (1, a) in the direction (¢, b). We use an analogous definition for the derivative of GNV[n, a.

(5.29)

We present the following Proposition, proved in [I1, Theorem 3.1] and [10, Theorem
3.5 and Theorem 3.6|, regarding shape derivatives of the Dirichlet-Neumann and Neumann-
Neumann operator:

Proposition 5.6. Assume that 0 < s < 3/2 and p € H*+1/2.
1. For all ¢ € H¥?(R), one has
Dy (Gln, ale) - ¢ + Dy (6" [0, a] B) - ¢ = —G[n,a]((Z) — 0.(¥¢),
with

Gln,ale + G"N[n,a]lB + 0,10,
L+ |0xn|?

2. For all be H*?*(R), one has
Da (g[na (l](p) b+ Da (gNN[,r]’ CL]B) b= _gNN[,r]’ a]az(by)a
with

B + ho,ad,p

v= 9[777 90] = ax@ - Zhaza

Proposition 5.7. For n € H®(R) such that ha. + 1 = humin, ¢,C1,...¢ € HY?(R), and
s > 1/2, we have that

1D3(Gn. acle) - (G-, G <

H G

Hs+1l.

5.2.3 Linearization around the solitary wave

In this subsection, we study the linearization of (5.6 about a solitary wave type solution
Q.(r — ct) = (n.(x — ct), polz — ct))”
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to the flat-bottom problem given by [3]. The construction of the linearized problem follows
the idea of [16], with a slightly different frame-work adapted to our case, particularly by the
fact that the Dirichlet-Neumann operator depends on the description of the domain.

Since we study a solitary wave of speed ¢, it will be useful to change the frame from x to
x—ct, so that the properties stated in this section can be property applied in the construction
of the approximate solution (Section . In particular, we point out that, because we made
the change of frame, the soliton is now a stationary wave. We proceed with the linearization.

From Proposition , given p € H**'/2 0 < s < 3/2 and, the operator 1 — G[n, ac]e
acting on H*?(R) satisfies

Dy (G[n, acle) - ¢ = =G, a:](CZ) — 8.(¢),

with Q[ ] P
~ y Ue + T x
Zln, o] = 2 Cffmzm;? ‘

In addition, we have that

D, (bo, [ ——ZL ) ) ¢c=po, | — 25 ).
( <V1+I5m\2>>< ((1+\5x772|)2>

With this in mind, let us denote by

. O[n, @] = Oup — Zoum.

7. = Z[nc, @] and v, = 0[Ne, @]

as well as define the following operator

P— b, [ — ).
(1+ [2ame]?)

Therefore, the linearization of equation (5.6) about the solitary wave Q, after the change of
frame reads

8t77 = c&mn + Q[nc, Clg](P - g[nc; as] (Zc ) - a’f(vcn)
Orp = cOpp — Ve0up + ZeG[Me, aclo — ZeG[Ne, ac] (Zen) — (g + ZeOwve) 1 + Peny.

Thus, we re-write the system above depending on the variable U = (1, ¢)! in a more compact
fashion as 0,U = J [Q_]U, where
0 1
7= (% o)
is skew-symmetric and

(=Pt g+ Z.G[ne,a:|(Ze) + ZeOyve (Ve — €)0p — ZG[Ne, ae]
Q] = ( 0w (v — ©)) - Gler ac)(Z.) Glne. ] )

is a symmetric operator on L? x L? (in this case, acting on Q). To simplify this expression,
let us introduce the change of unknowns Vi = n, Vo = ¢ — Z.n, so that for V = (V;, 5) we
obtain the following system

Vi = G[ne, ac]Va — 0 ((ve — ¢)V4)
at‘/2 = 7D{:‘/l - (Uc - C) a.t‘/Q - (g + (UC - C)aiﬂzc)) ‘/1
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Furthermore, we can set the symmetric operator, defined on L? x L?, in this case evaluated

in Q,,
(=Pt gt (e — )duZe (ve— )
Ha.)= ( o) Gl )

10
= ()

o,V = JL[Q.]V.

and

so that V = R_U and satisfies

In order to make notation more comfortable, we shall simply write . and L., instead of
Q.] and L.[Q,], respectively. The two operators . and L. are related by the property

Remark 5.6 (On the notation). We use here the notation . and L. when referring to
the linearized operators in the frame x — ct, so that we can differentiate them from the
linearization in the usual frame z, A. and L., to appear in Section [5.4]

L1 L1
Finally, we define the space X° = H!(R) x HZ (R), where H? is a modified homogeneous
Sobolev space defined by

H*% = {u e §'(R) such that Bu e L*(R)}

1 -1
and B = (1—0%) 70, is the Fourier multiplier defined in Proposition . On H; we
consider the semi-norm

|u]H*% = |Bule.

Thus, for U = (U, Us)" € X° we define

|U|Xo = |U1’H1 =+ |U2‘H*%
Remark 5.7. Notice that the quadratic form associated to L. is well-defined in X°. Indeed,
this is a consequence of Proposition [5.3]

In the rest of this subsection, we shall devote ourselves to the study of the operator L.
arising from the linearization of the Hamiltonian after the change of framework about the
soliton Q.. In particular, we will be interested in proving a somewhat coercivity property for
L. to happen away from the change of bottom (a ~ 1). To do so, let us consider

1 (“Pet gt (ve =)oz (ve—c)a
be = ( —0a((ve — €)) Glne, 1] )

where
Zl - g[nca 1]800 + awncax(;pc
¢’ 1+ |0xne)?

, and vi = 0pPe — ché’xnc.
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This way, the effect of the change of bottom is mainly described by L% := L. — L!, whereas

c)

L! only depends on the solitary wave Q.. In the same fashion, we will also consider
1 0
1 _
m= (7 1)

Ll — ((Rl)—l)t 1(R1)_1

& C

and define ! such that the relation

still holds.

The main appeal of doing this decomposition is the fact that L! satisfies spectral properties
in [T4], as it is actually the operator associated to the linearization of the flat bottom problem
around its solitary wave Q.. We present the following coercivity result for L}:

Proposition 5.8 (Ming-Rousset-Tzvetkov [14], Proposition 3.6). There ezists €* > 0 such
that for every € € (0,e*], we have that for Q.= (., p.) that there exists C' > 0 such that for
every U= (n, )" € X° satisfying

(U’ JR}:aa: Qc) = (777 a:cnc) =0, (530)

(LIU, U) = C|U50. (5.31)

We refer the reader to [I4, Subsection 3.2| for the proof of Proposition 5.8 In particular,
as first step to the proof, the authors in [14] state the weaker version of Proposition

Lemma 5.9. Let U= (n,¢)' € X°, U¢ {(0,r), r e R}, satisfying
(Ua Ja:t: Qc) = (777 Jaxnc) = 0. (532)
Then, ( 'U,U) > 0.

Remark 5.8. Notice that, because of the fact that ((R')~")".J = JR!, then Lemma is
equivalent to prove that (L, U, U) > 0 for every U e X° U ¢ {(0,7), r € R} such that ([5.30)
holds.

As a consequence of Proposition , one can get the following decomposition for U € X° :

Proposition 5.10. For every Ue X° there exists a unique decomposition
U=aJR'0,Q,+ BR.0.Q.+V (5.33)
with V = (V,V5)t € X° such that
(V. JR0,Qc) = (Vi,0u1c) = 0. (5.34)

Moreover, there exists co > 0 and C > 0 such that for every Ue X° written under the form

(5.33), one has
(L0, 1) > | VI — Clal?.
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Remark 5.9. By choosing V orthogonal to JR.0,Q. and (0,7, 0)", it is possible to obtain a
decomposition from Proposition . On the other hand, as noted in [16], in the proposition
above, V is not orthogonal to the R.0,Q, and decomposition has better properties
than the obtained from Proposition [5.§ This is due to the fact that R.0,Q, is in the kernel
of L} while (0,7.,0)" is not.

We refer to [I4, Proposition 3.11] for the proof of Proposition [5.10]

5.3 Error produced by the solitary wave in a non-flat bot-
tom system

In this section, the goal is to analyse the error produced by plugging the solitary wave of the
flat-bottom problem in the non-flat regime. More specifically, we shall prove that Q, solves
system ((5.6) plus some residual (exponentially decaying) terms.

From now on, we will consider A € (0, \*), so that we can can always assume the existence
of the solitary wave

Q.z—ct+ A) =z —ct+ A),p(x — ct + A))T,

in this case, translated a distance A » 1 form the change of bottom a(ex) # 1 for every ¢ < 0.
As mentioned before, this solution satisfies the properties given in Theorem (5.1, meaning
that the following estimations hold

3d>0, VYa

0, 3C,>0, VxeR, |07n]< Coe oAl (5.35)
3d>0, Vax=1 < ‘

>
>1, 3C, >0, VzeR, [0,¢]< Coedlrmettal

From the definition of the Dirichlet-Neumann operator, we know that

g[nca 1]300 =V 1+ |axnc|2anq)c,1’z:nc;

where @, is the solution to the elliptic equation on a flat-bottom regime. It will be
convenient to adapt the Laplace equation (5.13) and turn it into an equation in the strip
S =R x [—1,0], so that both regime (with flat bottom and with slightly changing bottom)
can be comparable. With this in mind, using a change of variables, we write

0
g[ﬁc, 1]900 = <1> : Plvx,zq)c,1|z=0a

where ®.; = ®.1(z, (H + 1)z + 1) solves

Vm,z . Plvwcbgl =0 in S

(I)c,l‘z:o = Q¢ (536)
arlflq)c,1|z:—1 = 07

141



and P; is defined as

h + n. —(z+ 1)0um.
= 1 1)0,n.|?

Following the same idea and implementing the notation used in Subsection (5.2.1)), we will
write

0
g[T/c, aa] = (1> ’ Pavx,zq)c,a|z:07

where now @, , is the solution to the elliptic problem with boundary condition ®.,(x,z =
0) = ¢, and a strip domain S (5.5 associated with the non-flat bottom problem, and P,
defined as in ((5.15]) after exchanging (7, ¢) for Q..

In this context, let us set
r(a) := G[ne, e — Gne, aclpe (5.37)

Consequently, since Q, solves ((5.12)), we have that

Oine = GNe, ac)pe + 11(a)
(G, 1]pe + Orpeane)’

)
OxMc

a16(100 = _% ’axﬁpc‘z + % 2 — g7c + bax —F— |t TQ(&)
1+ |5xnc| /1 + |axnc|2
(5.38)
for
ri(a) =r(a) and
17(a) (G[ne Hee + Glne, aclee) + 2r(a)0upedane (5.39)

ra(a) = T+ o

It is our goal in this section, then, to prove that the residual terms of the system above
(5.38) are, indeed, decaying (exponentially) fast.

Proposition 5.11. The remainder r(a) = (ri(a),r2(a))" defined in (5.37)-(.39) has an
exponential decay in time. That is, there exist 0 < 6y < min{vye, 6} and Cs > 0 such that for
every s = 0,

g < Cye 4% for qll t < 0.

|r(a)

Proof. First of all, we notice that, because the solution Q, of satisfies the decay
property , then from the proof of Proposition we know that for every a € N,
there exist C, (depending on «) and 0 < 6 < d (independent of «) such that the following
estimates for ®.; hold

102 ®c1| < Coe A Y(2,2) € S, (5.40)
as stated in Remark @ Since the same estimate holds for ®.,, we also have that
|8§"Z<I>d| < O e dle—at+al V(z,2) € S. (5.41)
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We make the following decomposition for R(a),
0 0
1 (CL) = 1 : Plvr,zq)ql‘z:o - 1 : Pavc,aq)c,a|z:0

0 0
= (1> . (Pl - Pa) Vm,z®c,l|z:0 + <1> . Pavx,z (q)c,l — CIDCﬂ) |Z:0-

From the definition of both P, and P,, we have that the first term takes the form

0
(1) : (Pl - Pa) vx,zq)ql‘z:l)

2(z + 1)zhdn.al. + |zha’|?
ha. + n.
Then, just as we did in the proof of Proposition , we rely on (5.40) to conclude the

estimation needed for the first term of R(a). Indeed, we present the following auxiliary
lemma:

= ha’E&CCI)CJ |Z:0 +

azq)c,l |z=0'

Lemma 5.12. Forc> 0,0 >0,y >0, e >0, and & € (0, min{ve, §}), there exists C > 0
such that for every A >0, t <0,

f e—'y\sx|e—6|x—ct+A|d:L, < Ce—JOAeéoct.
R

Proof Lemma[5.13, Denoting § = min{ve,§} > 0, we have that
f e—g|$|e—3\a§—ct+z4\dx < Ce_derdoct. (542>
R

In fact, since t < 0, one can divide the space R into three subsets:
r<ct—A cd—A<xr<0, x=0.

We have that
= CF T ¥ €
J e 6|x|e olx ct+A|d$ _ 85( ct+A)f eQ&xdx _ _
r<ct—A r<ct—A 20

The case x > 0 follows from the same arguments. Finally, for the remaining case, we note
that if ¢t — A < x <0, then

676\x|ef§|mfct+A| _ eémefé(mfctJrA) eé(cth)

and, therefore, ((5.42)) follows. |

We return to the proof of Proposition m Taking into account ([5.40)), as a consequence
of Lemma [5.12| we have that, for every s > 0, there exists C and dy such that

Es
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Now, let us analyze the second term of ri(a). More precisely, we want to study &4 =
®.1 — .4, which turns out to be the solution of the equation:

{ vm,z : Pavm,zq)d = _vr,z ' Pavr,zq)c,l = vw,z : (Pl - Pa) vm,zq)c,la m S7 (543)

q)d’z=0 = 07 aIlljaq)d|z=—1 = a11-13‘1(1)<:,1|z=—1-

Taking into account the decay of the solitary wave and of the function describing the bottom,
we consider the weight
CLJ(t, ZE) _ eg|ac|eg\ar:—ct-i-A\7

where 0 < § < s min{ev, 0} is to be chosen (sufficiently small) later. Then, multiplying

(5.43) by such weight w, we obtain the equation

v:r,z : Pavx,z(wq)d) + [w, vx,z : Pavx,z]q)d = wvx,z : (Pl - Pa) vx,zq)c,la in Su
(I)d|z:0 = 07 aﬁ,aq)d|z:—1 = afaq)c,ﬂz:—l-

Now, we proceed by Divergence Theorem. Certainly, recall that

1+ |hd' |?
|a5|a

ofs =n.P,V,. = hald, +
ha: + ne

. on the boundary z = —1.

In fact, notice that when using the notation 651 =n- PV, it is straightforward to see
that o' = #ﬂc&z on the boundary z = —1. Since 00*®.4].— 1 = 0, this implies that
0.P.1].——1 = 0. In particular, it means that

(’)rlfa (W(I)d)|z:fl = afa (W(I)c,l)’z:fl - haégwq)c,a‘z:fl - w(’}fa ((Pc,a)’z:fl
= hal0p(wPey)|.e1 — haldwPe,|.— 1
= haldw®q|.— 1 + ha.wd,(Pe1)|.— 1.

Then, Divergence Theorem gives us the following

—f Voo (PGVLZ(w(I)d))w(I)dd:cdz - f PV, (w®y) - Vi (wq) dudz
S S

- J ha!. (Sw(x)@d(t, x,—1) + w(x)0, P (1, x, —1))w(x)<1>d(t, x,—1)dz.
R
Then, since P, is coercive, we have that there exists Cy > 0 such that
C’of \VI,Z(de)lgdxdz < J ([w, Vs Pan,Z]CIDd)cuCDd dxdz
S S

— | wVa. (P = P) V.0, ), dad
Lw o (B R Vot Juty e (5.44)

+f ha;(sw(a;)@d(t,x,—m +w(x)axq>c,1(t,x,—1))w(x)<1>d(t,x,—1)dx
R
= Il + ]2 + ]3.
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Following the arguments of Proposition to estimate I; we make use of the fact that the
depth of the fluid is finite (bounded in the z direction), to apply Poincaré inequality. Indeed,

we have that
[W, V.. P.V,.] = (ha: + 1) [w, 7]

o ((Z + 1)695770 + Zhala) [wv ax]az

This, along with uniform upper bounds for both |a’| and |0,7.| and the existence of hq, > 0

such that |ha. + n.| < hypae uniformly on (¢, z), lead to
1] < C (8 |w®q 3 sye + 1w Pal 2 |wal r2(s) ) -
Thus, since S si bounded in the z direction, from Poincaré inequality, we have that
1] < C (3 +8) |V (@)

Now, for I, from the conditions that define the bottom a (5.11]) and the decay of ®.; ((5.40)),
we have that there exists Cs > 0, such that

|I5| < C5 (0|w®d|z2(s) + | Va,e (wPa) [r2(s)) -

Indeed, using Divergence Theorem one more time, denoting by I' = {z = 0} U {z = —1} and
n the outward unit normal,

Iy = f (Pl - Pa) Vr,zq)c,l'vr,z (W2q)d) dxdz—f n‘<<P1 - Pa) vm,zq)cJ) WQ(I)ddF = 1271 +_[272.
S r
We analyse the line integral by writing
J n- ((Pl - Pa) vx,zq)c,l) w2¢)d = _f n- (Pan,Z(I)cvl) wQQ)d,
r

{z=—1}

where we used the fact that ®.; solves (5.36]), which in particular means that o' ®. |- =
0.®.1|,=—1 = 0. Thus, writing dJ* in a more explicit fashion, we have that

1+ |ha’|?

0,D, 2p
has + 1. ’1) v

f n- (P~ Po) Vs ®oro’®y) = — J (ha;achc,l +
T {z=—1}

— J ha;&$®cjlw2¢d.
(z=—1)

Notice that because of the definition of the weight w, its growth can be controlled by 0,®. 1
and a'(ex). Then, using Cauchy-Schwartz inequality, we have that there exists C; > 0 such
that

f n- (P~ Po) Vs ®o1o?®y) < Colwba(z = —1)|2(m).
T

By Fundamental Theorem of Calculus on the z variable and the fact that on {z = 0},
®q4|,—0 = 0, we conclude

]272 < CS (HW(I)dHLQ(S) + Hvx,z (W(I)d) HL2(S)) :
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A similar reasoning is applied to the first term of I5. Let us write

Iy = f (P —P,) V. Piw -V, (wdq) dzdz + gf (P, — P,)V,.P.1 - (w,0) (why) dzdz.
S S

Since
h(1 — a.) zhal.
P - P, = hd! 14|(z41)0umel?  1+[(2+1)0ene+2hal]? | 5
> H+775 has"l"r]c

estimating [»; involves studying not only the interaction between the decaying functions
dy . ®c1 and a'(ex) with and the growing weight w, but also the decay of 1 — a(ex). Indeed,
notice that

L+ (z+1D)dn* 14|z +1)0une + zhal|?

’ h + Te a ha. + Ne

(z + 1)zhd,neal + |zha|? N (1+ (2 + 1)0ume)?) (1 — a.)
hae + 1. (hac +ne) (h+ne)

Then, taking into account (5.11)) and ([5.40)), we obtain

|]2| < Cg ((8 + 1) ||w<I>dHL2(5) + ||VW (wd)d) ||L2(S))
—92 — —
< (7 +3) lw®alas) + 31V (w®a) [32(5) + C.

where we used Young inequality for the second inequality (notice that the constant C5 might
change from line to line).

Consequently, Poincaré inequality gives us the following

_2 —
L <C (5 + 5) [V,x (w®a) [2(s) + C-

Finally, for I3, we have use a similar reasoning as before and obtain

_2 —
I3 < 0" |wPal72(s) + 0 Vaz (wPa) 725 + C5
<C (52 + 5) |V, (wa) [32s) + -

Gathering all estimations computed above, we can conclude from that
Ve (@) 2a(5) < € (57 +8) IVae (@) [32(s) + C5)
Therefore, if § is sufficiently small, we can write
Vsz (a) s < C.

As a consequence, after choosing § > 0 sufficiently small, we conclude

||w(I>dHL2(5) < C and Hvzyz<wq)d)”]:2(5) < C.
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As in the proof of Proposition [5.4] for the higher order estimates for w®q, we use an
induction and argument standard elliptic regularity theory. We can deduce that

Va, 02, (w(z)®a(z, 2))| < C.

Equivalently, o
Va, |02,04(z, 2)] < CpeHlem0leettal]

5.4 Construction of an approximate solution

In this section, our main goal is to find an approximate solution Uy, of the system that
behaves asymptotically (as ¢ — —oo) like the solitary wave of the flat-bottom problem Q...
In other words, we focus on the construction of a solution U,, = Q, + V such that is an
approximate solution in the sense that

@gUap = ‘/T-.(Uap) + rap7
where both r,, and V decay to 0 as ¢ — —o0 with exponential rate.

We will denote by p = e%4 > 0, so that p becomes smaller for larger A > 0. In particular,

for the remainder r(a), obtained when plugging Q.. into the nonflat-bottom problem, we define

r. = r(a) and write, for all s > 0,

B, S Cye®  for t < 0.

T,
Let us define N
V(t,z) = > P V(t,x),

j=1
for V; still unknown (to be constructed) and N € N. If we make Taylor expansion of F
around the solitary wave, we have that

FU)=F(Q.+V) =F(Q) + ), D' FIQIV,....V) + rys(V) (5.45)

where the first derivative of F is DF = JA[Q.],
0 1
7= (% o)
is skew-symmetric, and

AlQ.] = (_PC + 9+ Z:G[Nes ac)(Zer) + ZeOpve ve0x — ZG [N, ae])
o —0z(ve') = G[ne, acl(Ze) G[ne, ac] 7

5 g[nm aa]Qpc + 0Ne0r e
fem Amed = T

Ve = 17[7767 QOC] = aaxgpc - ana?nca

Y
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and P, = P[n., ¢.] for P defined as

P[nm %W = baz ((1 + (amnc)Q)_% axqu)) .

Then, going back to the equation, using the decomposition (5.45)), one gets linear problems
for every V. Indeed, the system for Vy is

@Vl - JA[QC]Vl = —TI..

For V,:
1
0 Vy — JA[Q.]V, = §D2J-"[Qc] (V1, V).

And for any V;, j€{2,... N},
J
1
OV, — JA[QV; = )] Y =DPFQI(Vy, ... V).

p=1 1<j1,mip<j—
Ji+..gp=J

In this context, we present the main result of this section:

Theorem 5.13. For every N € N, there exists

N
Upp = Q.+ V=Q.+ ) 0 Vit ),
=1
where V; € C*(R, H*(R)) such that

| Vilge < ABTVAC ;(50)e % vt < 0. (5.46)

In addition, U,y is an approximate solution of (5.6)) in the sense that the remainder T4,
defined as

O Uy — F(Uyp) = Tap

satisfies the exponential decay

o < A(2N+1)/40Ny8(6O)pN+1e—(N+1)6oc|t\ Vi < 0.

| Tap

Remark 5.10. We point out that p = e=%4, which means that A?N+1pN+1 ghall not grow
to infinity for a larger A nor for a larger N. In other words, the constant of the decay of the
remainder is controlled.

Going back to the linear equation satisfied by V, since the source of such equations have
exponential decay, we need to study the homogeneous linear equation. More precisely, we
need to study (and control) the growth of its fundamental solution. Being able to control
such growth would imply the decay of V; and, eventually, of the remainder as well.

148



5.4.1 The homogeneous linear equation

In this subsection, we devote ourselves to the study of the linear homogeneous equation
o,V = JA[Q.]V. (5.47)

We perform the change of variables U = RV, with

so that we obtain
oU = JL[Q.]U, (5.48)

P4+ gF+w. U0y )
L =
[QC] ( _ax (Uc') g[nca a'a]
is self adjoint and w. = w[Q,] = V.0, Z. + 0;Z.. From now on, for the sake of simplicity, we
will denote L. = L[Q,.]. The operators L. and A. should not be confused with L. and .,
defined in Subsection [5.2.3l The latters arise when linearizing about (). after a change of

framework from x to x —ct, while the formers correspond to the linearization in the framework
z. We also introduce the following notation for U = (Uy, Up)":

where

U= ) (|agaﬁU1 Yo + 00820 ,.)ﬁﬁ%)) (5.49)

0<a,B<k

U(t)|xx = i%pklﬁo‘@BU (5.50)

‘LOC?

where |1/}|2 1/2 |B¢| and B = (1 — (93:)—1/4ax'

As stated above, the main goal of this subsection is to understand the growth rate for the
solution V of the homogeneous linear equation or, equivalently, the growth for U, solution
of ((5.48)). In this regard, the main result will be the following

Theorem 5.14. For every A € (0, \*), there exists A such that for all A > A, the solution
U of (5.48)), satisfy for every k =0,

U xx+ 2, 107 Ua(B)lz2 < A2 (' U(r)| e + ) |ataU2(T)|L2) (1 — cdo(t — 7))re%t/2,

a<k a<k
(5.51)
forallt <7 <0.

Before we begin with the proof, we need to define the following partition of unity, so that
it is possible to localize on one side the movement of the solitary waves and, on the other
partition, the non-flatness of the bottom. Consider y, € C*(R) such that

1 =<0,
= 5-
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Then, we define

. r—St+ 4 . .
Xl(ta .1') =X (2T4>7 Xa(tax) =1- Xl(tw%')a
v X (5.52)
X1 Xa
xi(t, 1) = ————=  xolt, ) = ————.
G +x2)" (V2 +x2)"*

That way, we obtain x7 + x> = 1. With this partition in mind, from now on we shall make
use of the notation

U' = \7U and U® = y,U.

Also, we have the following (very useful) properties regarding the interaction of a and Q,
with the partition:

Lemma 5.15. Functions xi, i = 1, a defined above satisfy:

o .
v |Oé| = 1 at,in(t7$)| S m, 1= 1,&.

Moreover, for any 6 > 0 we have that

< Cs

‘_ 1
a\A7

—0|lz—ct+A| and ‘€_6|IIX1(ta x)‘ < 27 Vit < O,A > 1,

le
Proof. We notice that supp(yx,) = {(t,x) such that » — 5t + % > O}. Then, since t < 0,
x—ct+A>x—§t+%>0. In particular

1

|e—6|ac—ct+A|Xa(t7x>’ < ‘e—é(z—ct+A)| < e—EA < Z

Similarly, for the second inequality, we notice that supp(xi) = {(t,x) such that x < gt},
which means that z < 0 in the support of y; and then implies that

|e—§\x|X1<t’x)} < ‘e—zSA/8| <

il

Remark 5.11. In our computations, y; will typically be paired with a’(ex) (or 1 — d/(ex))
to prove decay estimates. Notice that every time we encounter both functions, we will
automatically have that

Cie

i

Then, making e smaller, is similar to taking a larger (safer) distance A between the change
of bottom and the solitary wave.

ja'(ex) x| <

Also, we shall use the following norm equivalence:

150



Lemma 5.16. There exists C > 0 such that for every A > 1, we have that
: 1
ot <0 ( 3 100 + {01 ).
i=1,2

and

) 1
3 |URo < ¢ (108, + FIKDI0E),

i=1,a

where k(&) is a smooth cut-off function with £(§) =1 near £ = 0.

Proof. For the proof of this Lemma, we refer to [14, Lemma 5.6]. [

5.4.2 Lower-order estimates

We consider the following energy functional Ho(U) = (L. U, U)—c(Ax1U, x1U)—c(Ax. U, x.U),

where 2
0 O
A= (_ | O) .
As we agreed in previous subsection, we will denote by U' = ;U and U” = y,U. In the
same spirit, let us define

g[na az—:](pc - g[nm as]%
1+ |0:me|?

C71 (& 3$ C7IL' C
Z, = du 1]—(i\;r( |Z( L and 70 =7, Z) =
1'77C

Y

so that Z! depends only on the solitary wave Q., whereas all the information of the bottom
(and its change) relies on Z%. An additional property that we obtain for such decomposition
is that Z! inherits the decay of the solitary wave Q,. Indeed from Remark (5.5)), we infer
that for all @« € N U {0}, there exists 0 < 0 < d such that

07,2} < e Okt Al (5.53)

In addition, following the reasoning applied to study the decay properties of r(a) in Section
m, we also have that there exists 0 < § < min{~e,d} such that

In a similar fashion, we decompose v, and w, as

1 _ n 1 a __ a
UV, = 0pPe — L. 0uNey, Vo = —ZL0:N,,

C

we =00, ZY + 2}, wt = (v)+ ) L ZE + vl L + 0,78

Then, decay properties of v} and v take after Z! and Z¢, respectively, and the same goes

for w! and w?. Finally, we can also perform the following decomposition of the operator L..:

Ll _ (_PC + g + wi ,Ugax ) La _ ( wg Ugaw
= 1 , = _5

BN A N g[nc,as]—g[nc,l]) (5.55)

151



Then, the energy functional H(U) can now be decomposed into terms depending only on
the solitary wave and terms that will follow the decay of a’. Indeed, we write

H,(U) = (L1U,U) + (L*U, U) — ¢(AU', U — (AU, U").

The first step to prove Theorem is to give an estimate for the lowest-order terms,
that is, the case k = 0. It reads

Proposition 5.17. Under the hypothesis of we have the growth estimate:
U)o + [T < C (AP T() oo + [Ta(r)f3) -7, w0 <7 <t

We will prove Proposition for the case 7 = 0, since it stands for the worst case
scenario (if we let time go by sufficiently long, one could even obviate taking A large).

Decay rate (or upper bound) for the energy functional:

We want to show that there exists C' > 0 such that

d C
3 oU) < 5 (IU1%, + |Uol72) - (5.56)

With such goal in mind, let us compute the derivative in time of the energy functional

Ho(U)Z

__HO(U) = % ([ata LC]U7 U) + (LcUa atU) —C (AX1(atU)7 XlU)

—c(Axa(0,U), xaU) — ¢ (A(0:x1) U, x1U) — ¢ (A(0rxa) U, x.U) (5.57)
L+t L+ I+ I+ I

We start with the analysis of I; and I, and write
1 1 1
I =5 (126 L]0 +x2) 0, U) = 5 ([0 LxiU, U) + 5 ([0 Lexi U, U)

0 3 (110 L 6 U, U) + ([ L] 6U ) + ([0 £2] U, x0U) ).

i=1l,a

On the other hand, from (5.48)), one gets that
I, = (L.U,3,U) = (LU, JL.U) = 0.
In addition, also from ([5.48)), and since L. is a self-adjoint operator, we have that

(Ax1(0:.U), x1U) = (Ax1JL:U, x1U) = — (0.(x1L.U), x:1U)
= (LCX1Ua aﬂc(XlUD + ([Xla LC]U7 ax(XlU))

= 4 (12, LIaU, 0U) + (v, LJU, &, V).
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Now, notice that, since the operator L! only depends on Q, (Q,. = Q.(x—ct+ A)), to derivate
in space is actually equivalent to computing a derivative in time:

1
(I:a:m Li] X1U7X1U) = _5 (I:(?h Li] X1U7X1U) .

N O

In consequence,

1 c
[3 = _5 ([atv L}:]XlUv X1U> + 5 ([awa Lg] X1U7 XIU) —C ([le LC]Ua ax(XlU)) :
Also, in a similar fashion as for the I3 term, we have that

1 c
Iy = ) (I:atv Li] XaU, XaU> + B ([02, L] XaU, XaU) — ¢ ([Xa, Le] U, 02(xaU)) -

Therefore, we obtain

1
htltls+li=5 > <([[5u Le], xa] iU, U) + ([, Le] XanXiU)>

,a

_
Il
i

[0, L] x1U, xaU) — ¢ ([x1, Le] U, 0.(x1 U)) (5.58)

[0z; Le] XaU, xaU) = ¢ ([Xas Le]U, 02(xaU)) -

l\DIOl\DIO

Since we are invested in proving ([5.56]), we need to show that each term of (5.58) satisfy an
inequality such as ([5.56]).

Throughout this part of the proof, to simplify notation, we will write

Ge1:=G[ne, 1] and  G., = G[ne, ac].

We start by noticing that one has the following commutators:

a1 opw? (Cpv?) Oy a1 O (0,0%) O
[at’ LC] a <_aa: (87?7]2') [ata gc,a - gc,l]) ’ [ax’ LC] a <_8$ (aﬂfvg> [aﬁw gc,a - gc,l])

—[04, P.] + Opwe  (Opv.) O
(61, Le] :< 0, (Ore) [at,gc,a])'

Then, to treat the terms involving the Dirichlet Neumann operators G., and G., it will be
useful the following lemma:

Lemma 5.18. There exists a constant C' such that the following estimations hold

([0, Ge.o — GealxiUs, xiUs) < 1 (|‘3U2\L2 + \U2|L2) ; (5.59)
C 2 2
([axa gca gc 1]X1U27X1U2) = Z (’%U2|L2 + |U2‘L2) 3 (560)
C
([[8tagca] Xl] X1U27 U2 Z (|%U2|%2 + |U2‘%2) ) (561>

fori=1, a, where x; are defined in (5.52)) and B = (1 + 8%)_%636.
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For the proof of this result, see Appendix [5.5

Let us analyze, for instance, the term ([[0, L.], xi] xiU, U). Writing in a more explicit
fashion, we have that

([[:, Le], xi] xaU, U) = ([[0r, Pe] s xi] xaUs, Ur) + ([[%, Geal 5 Xi] xaU1, Un) -

In particular, since

P, = b, O = |
(1 + [mel?) ™

and because of Lemma [5.15] we have that

C
[([[0, Pe] » xal xaUr, Un)] < Z‘Uﬂ%p.

Then, thanks to Lemma [5.18] we get that

C
(l[0w, Le], xi] U, U) < = ([UJx0 + [Uaf72)
Similarly, for the terms ([;, L%]x;U, xiU) we have that

([0, Le]xiU, xiU) = (Gwex;Us, xiUr) + (00805 (xiU2), xiUn)
— (02 (0exiU1), xiUz2) + ([0r, Gea — Gen | xiUs,s xiUs) -

Thus, taking into account the decay estimate for Z¢ (5.54)), inherited by w? and v?, along
with Lemma [5.15] we obtain

“ C
|([at7Lc]XiU7XiU)| < Z (|U|,2XO + |U2|%2) )

where we used ([5.59) from Lemma for the term involving the DN operator. The same
way, using (5.60]) from Lemma [5.18| we can control ([d;, L]x;U, xiU) and write

C
(102 U, aU) | < 7 (U + [Uaf3).
The rest of the term from (5.58)) are treated in a similar fashion and we conclude
c 2 2
L+ 1, + Ig + I, < Z (‘U|X0 + ‘U2|L2) .
Finally, integrating by parts and making use of Lemma [5.15 we obtain
C
5| + I < — (1Uilmn + |Uz]z2) -

Indeed, for instance, for I5, we have that

(A(0x1)U, xaU) = (0:((2ex1)U2), x1U1) — (0= ((Gex1)U1), x1Us)
— ((0ex1) U2, 2 (xaU1)) + (0 ((Gex1)Un ), xaUz) -
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Then, Lemma [5.15] implies that

] Q

(A(0x1)U, x1U) < = (|h]7n + |Ua]72) -

Consequently, we proved that (5.56)).

Lower bounds for the energy functional: By definition of the partition of unity (5.52)), we
have that

(LU, U) = 3 (LU, xaU) + ([Le, iU, U) ).

i=1,a

Thus, we can write

Ho(U) = Z <(LcXiU> xiU) + ([Le; xi]xiU, U) — c(Ax; U, XiU)> =L+ 1, + Ip,

i=1l,a

where, using the notation x; U = U' and x,U = U*, along with the decomposition ([5.55)),
I, Iy, Ir are defined as

In:= 3} ([Le,xaU,U) + (LEUNUY) + (L2U, UY),

i=1l,a

L := (LU, UY) — ¢ (AU U') and I, == (L;U', U%) — (AU, UY).

We begin by estimating Ir. Let us take first, for instance, Ir; := (LgUl, Ul). Notice that
the function y; is constructed so it follows the movement of the solitary wave Q_, while the
operator L? inherits its decay from a’. In this case, we set t — —oo, that is, we are under
the assumption that the solitary wave does not encounter the change of bottom yet. Hence,
X1 (its support) is moving away from the regime in which the change of bottom happens.
In particular, this means that the term I; g can actually be seen as a residual terms. More
specifically, from the definition of L% one has

IR,l = (wZU11>U11) + (U(clawUQIa Ull) - (895(1}?(]11)7(]21) + ((QC,a - gal)UleUQl) :

Thus, to deal with the term involving the DN operator, we present the following lemma
proved in the Appendix [5.5}

Lemma 5.19. There exists a constant C' such that the following estimation holds

‘((gc,a - gc,l)Uéﬂ Ué)

C .
S (IBUa|Z: + |Uaf72), 1=1,a.

Then, Lemma and Lemma [5.19] imply that

C
Traal < < (I0B0 + [022)

On the other hand, to study Ig, := (LIU* U?), notice that the decay of Z¢ (5.54]) follows
the behaviour of both the changing bottom a’ and the solitary wave Q.. Moreover, such
decay is inherited by v* and w?. In particular we have that, for « € N u {0},

‘a?xvg‘ < e—5|z—ct+A| and ‘a?xwtcz‘ < e—d\:v—ct-‘rA\'
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Hence, Lemma also entails the estimation for /g,

C
’]R,a| < Z (|U|§(o + |U2|%2) .

Finally, from Lemma [5.15] we have that

¢ :
[([Le: xilxiU, U)| < 2 ([Uf%0 + [Uafi2) 1= 1,a,

which ultimately leads to

1
| < ZC (U0 + [Ualz2) (5.62)

Next, we deal with (L!U", U"). Since L! depends only on the solitary wave Q, = Q(z —
ct + A), we notice again that to derivate in time Z! is actually computing a derivative in
space. In fact, we have that ¢,Z! = —c0,Z}. Taking this into account and writing w! in a
more explicit manner, we find

Il (*Pc +9+w, Uiaz>
¢ —ax(vi') gc,l

(=Pt g+l Z + O Z vio,
B ( —0z(v}) Qc,l)
(=Pt g+ (vE—c)o, 2 vio,

a ( —0z(ve) gc,l) '

Thus, going back to our computations, one can write
I = (E;Ul,Ul)

where
ji_("Petag+ (v} — )0, Zr (v} — )0,
< —02((v} = ¢)) Gen '

Notice that the operator L! is actually written as L! from Subsection , with the
difference that the coefficients in Z?}z depend on Q. = Q.(z — ¢t + A). That is, if T, is the
translation operator,

T:oU(z) = U(z + x0)

then we have that 3
Tet-aLll = LT 4

Now, since Ty, is an isometry in L? and X, Proposition and Proposition still hold
for L!. Then, for U' defined as

U'(t,y) = (Ta_aUY) (t,y) = xa(t,y + ct — AYU(t,y + ct — A),

we have the unique decomposition given by Proposition
—1
U (t,y) = o' (1) TR QL(y) + B () R.Q'(y) + W' (t,y)

156



where we denoted by Q.(z) = 0,Q.(z) (standing wave) and W' € X such that
(W JR.Q) = (WY, nl) = 0.

Moreover, there exists & > 0 and C' > 0 such that for every U € X° written under the form
(5.33)), one has

(L;ﬁl,ﬁ) > kW' %0 — Cla! 2.
Consequently, since we have that
(L0 UY) = (TasallTa aUL UY) = (LT, 4U T aUY) = (LT, T),
we conclude the following
I = k|W'%0 — Clat?. (5.63)
In a similar way, for
U'(t,y) = Tu_aUt,y) = xaly + ct — AU(t,y + ct — A)

we also have that

U'(t,y) = a*(t)JR.QL(y) + B* () RQL(y) + W(t,y)
where W% € X0 satisfies
(W JR.Q,) = (Wi, n.) = 0.

We obtain
I = K|W*[5%0 — Cla®|. (5.64)

Then, gathering estimations ([5.63)), (5.64) and ((5.62)), one obtains

| Qe

Ho(U) = k (WK, + [W[%,) = C (|o'[* + ) — = (U, + [Uafi2) (5.65)

To finish the proof, we are left to compute estimations for |Us|;2, o' and 8, i = 1, a.

We start with |Us|p2. Since U solves (5.48)), we can write
at[]Z = (Pc — W, — g) Ul - U06IU2-

In view of Lemma |5.16| let us choose k(D), k € C§°(R) such that () = 1 around £ = 0.
Then, we have that

1d

T /{(D)U2|%2 = (k(D)0Us, k(D)Us)

= (#(D) (Pe = we = g) Uy, K(D)Us) — (k(D)ve0xUs, K(D)Us) .

Given the fact that x compactly supported and taking into account the defintion of P, and
a., this implies that

1d

55 K/(D)U2|%2 < C(’U1|H1 + ‘EBU2|L2) <|%U2‘L2 + ‘K(D)UQ|L2>
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Thus, from Young inequality, for some ¥ > 0 (to be chosen latter),

1d 1
2dt|l€( >U2|%2 < C <5|U‘XO + 79|H(D)U2|L2) (566)

We focus now on ||, i = 1,2. Note that if if U is any function X° such that it can be
decomposed as (5.33)-(5.34)), then a and [ are determined by

_ (U, JRIQ) (U, (1., 0)")

TRQE " T R, (.00

—a (JRIQL, (1.,0)") (5.67)

In particular, for oy, using the decomposition of U' and the fact that U solves, (5.48)), we
find that
d | 1
a® T IRQ
dt | JRIQ.I7
1 TT —
— m( (ox1 (1)U (1), JRIQL) + (X1 (t)(JL.U + ¢, U)(t), JR.QL.) )

:—|JR11Q,|<<@X1<> 0. IRQ) + (00T, TR )

o ((HU0(t), TR Q))

+ (ROUTTO + @00, IR ).
where we used the notation f(t,z) = f(t,z + ct — A). In addition, from the definition of L,

( \(O)(JITU + 3, 0)(t), JR;Q’C)

( Y, (O(JIIU — ¢Ja, U)(t),JRiQQ)
(1 HJLLQ.()]T(), JRQ,)
(|x 0. JLHQW) | U0, JR.Q.) - (RO U, LQ.()]*RIQ.)

I

Note that
(LT - cr0.) °RIQ. = ~[LR.Q, = ~L*'R!Q, = 0.
Thus,
(LI + 2 0) 1), JRIQL) = ([x(0), TLQL)] | T(r), TRIQL)

Then, thanks to Lemma . we conclude

Following similar arguments, we also have for o,

yU|Xo + | Us|z2). (5.68)

< |U]Xo + | Us|z2). (5.69)
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At last, we propose to find estimates for 5'. From (5.67)), we write
ﬁi = Bi (JRlQm (77070) ) , 1=1a,

where <_. ) < | >
L (@) (Toor)
v (Rcha (2, 0)") N |77é|iz , 1=1a.

Then, since ((5.68]) and (5.69) hold,
d ..
—A3' <
dtﬁ

d~| C .
&/Bl +Z(’U|XO+|U2|L2), 1= 1,CL.

To estimate 3!, we compute

iﬂfl _ ét (Yl(t)ﬁ(t% (névO)t)
dt A -
_ (@x:()U(), (7, 0)") N (x1(t) (2 U(t) + 0, U(1)) , (., 0)")
AR AR
_ (@xa()U(t), (n,0)") N (X, (t)JLU(2), (1, 0)") +C(Y1(t)ax_U(t)»(77270)t)
A L7 L7 ’

In particular, we have that

(x1(t)JLU(2), (1,0

) = (\®JLIOW), (1.0 ) + (a®)ILEU (), (7:.0))
([a®. 72| T, (. 0)") + (VLU @), (1, 0))
+ (u®JLEU W), (1,0))

Also,
¢ (% (020(0), (1, 0)) = e (2,0 (1), 0,0)") — e (27 (1YT W), (o, 0)")

Therefore, we have that

d - C
ey + 5 (Ulxy +|Uz]12) -

<C ‘ (ngﬁl, (1, O)t>

To conclude, we use the decomposition of U and the fact that L!R1Q’. = 0 and find that
(/2T 0| < €
Gathering all the estimations above, one obtains

d -
70] < ¢ (1o + Wil + 5 (UL, + [021))

(Ja'] + W' x0) .

which, ultimately implies that

70] <€ (14 Wil + 5 (UL, + 1021)) (5.70)
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Similarly, for 5%,

d 1
W <C (|a1| + [W!xo + 7 (Ulx, + |U2|L2)) . (5.71)
Then, putting together (5.68), (5.69)), (5.70) and (5.71]), we obtain
d o1 .
Zlo* <0l 7 (Ulx + a]i2), 1= 1, (5.72)
and 4
G181 < €181 (5 (Ul + el + o+ (W ) 1= Lo (573)

End of the proof of Proposition [5.17

To make the appropriate estimations, considering (5.56), (5.72)) and (5.73), it will be
convenient to define a somewhat different weighted energy

Ho(U(1) = 5 AV Ho(U(1)) + CA (Jo (0 +a"()) + 5 (18" + [5°(0)?).
We derivate in time 7:[0 and obtain
d C 1 1
EHO( (1) < m {m (IU[%, +102l2) + 7 (" ()] + " (®)]) (Ulx, + [Ualr2)
A3/4 (18 @[+ 18*®)) ([U]x, + |Uslr2)
AV O]+ 187 ®)]) (Ja'| + o] + [Wx, + [W?|x, )]

Thanks to the decomposition of U and Lemma , we have that

d - C .
T Ho(U() <7577 [AY2 (W%, + [W)%,) + A1/4‘U2|L2

+ (18" +18°7) + A2 (Jo' 2 + o ?) ]
Next, we integrate in time over the time interval [0, ¢], where ¢ < 0, and we write

Ao(U(0) < Fa(U(O) = 57 [ Folr) + Jrals(D)a(Dldr, 670

where
Fift) = AV (W[, + [W2E,) + (187 + [27) + AV2 (ol 2 + [a?]?).
On the other hand, from (5.65)) and Lemma

+ AVC (0l (O + a2

~ 1
Ho(U(1) > 5A1/2k (W, + W2,) +

N———

(18" @ +[5*®)F) A1/2 (Z U'%, + |K(D)Uali

i=1,2

l\DIr—t

. -
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Gathering this inequality with (5.74]), we deduce

1~ c o 1
Fo(t) — WCP'Q(D)UQ‘%Z < A1/2|U(0)|§(0 — A1/4 J F()( ) A1/4 (|/€<D)U2(T)|L2)d7'

In addition, as a consequence of (5.66)), after integrating over the time interval [0,¢], ¢ < 0,
we find that

KDY < [00)ff2 = C | 5 Falr) + 6(D)Us(7) o,

where 9 > 0 is to be chosen appropriately later. Then, for any v > 0, this leads to

C
Fo(t) + <u — W) |k(D)Us |22 <AY2U(0)%0 + v|U(0)[2,
0 1
—OUJ 5 ( )+19|Ii( ) 2<T>’L2d7'
t

- 7 | B+ i (R(D) (o)) o

Let us choose v and ¢ in order to satisfy the following:
v—AT2C = 0/2, CAYH < Soefd, ATVASEK/2, vCYTE < Gpe/d and 92 < wv/2,

where dg is the constant that arises in Proposition [5.11] For instance, one can take

500 \/17
:—6402’ 192—2 and A>»1,
to finally obtain
v 9 12 Soc [ v 9

Fo(t) + §’H(D)U2|L2 < CA2[U(0) 50 + v|U2(0)[7 — e Fo(r) + §\R(D)U2(T)\L2d7

t
< CAUO) oo + 0|00 + %% [ Fo(r) + 5 Is(D)Ua () aclr

t

Then, using Gronwall inequality, we get

v
Fo(t) + §|“(D)U2(t)|%2 < (CAYAU(0) [0 + v|Us(0)[72) e, £ <0,

Then, from the definition of F', the decomposition of U and Lemma , we know that
there exists © and © such that

_ . C\ . v
t) = Ui_zla U ()50 = (1 - Z) B|U(t)|30 — Z|/<;(D)U2(t)|2Lz.
by choosing A large enough so that 7/A < v/4, we find

1._ v
Fo(t) = §U|U|§<O - Z|“(D)U2|%2-

Then, we can conclude that

v

]'~ —00C
5qu|§(0 — Z|/<;(D)U2\%2 < (CAY2[U(0) 50 + v]|Us(0)[32) e 4 vt < 0.

which finishes the proof of Proposition
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5.4.3 Proof of Theorem [5.13

We proceed by induction. We begin the proof with the case £k = 1 and then rely on this
analysis to explain the higher-order cases.

First-order energy estimates: To compute the derivates of the linear system ([5.48)), we
shall make use of the following operator

D) = &, + cd,

so that we can take advantage of the properties of L?. The reason why we take such operator
is the fact that the solitary wave terms (precisely, L!) get cancelled by D(?) (such terms
are evaluated in the argument x — ct). We apply this operator to both sides of the equation
(5.48) and obtain

0,D(0)U — JL.D(0)U = [0, D(0)] U — J [Le., D()] U. (5.75)

In a more explicit fashion, taking into account the partition of unity (5.52)), we also have that

[0, DI =}, c(2nx)0:U,

i=1,a
as well as
J[Le, D(0)|U = J[Le, 0] U + Je[Le, 0,] U
—7 Y] (xl L] U+ 2[L8 0] U + ¢[Lo, x?] &, U

i=1,a

X3 [LE 2] U + xie[LE, 2] U)

As we pointed out before, from the decomposition ([5.55)), we know that L! depends only on
the solitary wave, and then we get

7y (Xl Lo U+ v [L}:,al,]U):szf[L;,aﬁcam]U_

i=l,a i=1,2

This implies that

J[Le, D()] U = JZ(Xl 0] U + c[Lex2] 8,U + x2c [Lg,ax]U>::JSU.

i=1l,a
Then, going back to (5.75)), we obtain
oD(0)U = JL.D(0)U + [0, D(0)]U — JSU := JL.D(0)U + F;(U), (5.76)

where F(U) := [0, D(0)] U — JSU is the source term of the linear equation. In particular,
using Duhamel Formula, the fact that we consider Fj as the source means that

D(2)U(t) = 5.t 0)(D(2)U)(0) — f S.(t, ) Fy (7)dr,
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where S.(t,7) here is the fundamental solution of the linear equation ([5.48)), and, because of
Proposition [5.17] it satisfies

HSC(t?T)HXOmLQ—»XOmL? < A1/206_6°Ct/4, VO<T<t.

Consequently, we have the following

DU xo + DUz < CAY (e_aoct/“(iU(onXl + 3 (a0

a=0,1

(5.77)

t

0
—f 66OC(T_t)/4 (|F1(T)|XO + |F1(T)|L2>d7'> .

Then, we need to estimate the source F}.

For any norm | - || depending on the variable x, we shall use the notation
[Kekul =} leul.
o<i<k

To have some control on the higher order space derivatives in ([5.48|) using time derivatives,
it will be useful the following lemma:

Lemma 5.20. Any smooth solution of (5.48) satisfies the following a priori estimates

VI=0, m=0, 3Cy,, such that |0 Uy, Us)|gmeszygmez < CLpll00 ™ (U, Us)| gpmsty prmease.

The proof of this lemma can be found in the Appendix.

Remark 5.12 (Consequences of Lemma). Lemma ([5.20) implies the following two estima-
tions:

1. For any 6 > 0 we have that

|833U|X0 < 5 (|atU|X0 + \5tU2|L2) + C(S (|U|X0 + |U|L2) . (578)

2. For any o, f such that a + 8=k, 8> 1, and 6 > 0,

10705Ux0 < 6 (|0 U x0 + |0fUs|r2) + Cs (|U|xr-1 + [{0)* Vs 12) - (5.79)

The first inequality can be deduced by taking [ = 0 and m = 0,

102 (U1, U2) | gorz s < |(Ur, Ua)| sz < Crgl00)" (Ur, Ua) |1 s

and then using the interpolation inequality
10: Ul s e < 6|0 Ul sy + Cs|U| 2. (5.80)
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for any 6 > 0. The second estimation can be deduced from Lemma by choosing | = «,
m=p3—-1
[0 (Un, Us)| ooy o < COD (U, Us)| s w gro-vse.

We iterate the last step until we get
10807 (U, Ua) sz < KO (Ur, Us) s wpser < Crl(00)* (Ur, Ua) a1 -

We conclude (5.79) after we use again the interpolation inequality (/5.80)).

Now, we proceed with the estimation of F;. From its definition, we have that

|F(U)|x0 < [JSU|x0 + r [0, D(0)] Ul xo
<|J Y XTILE 8] Ulxo + |7 ). e[Le, 7] 0:U|xo

i=1l,a i=1l,a

+1J Z Xic 0z] Ulxo + [ [, D(0)] Ul xo0

i=l,a
First, using Lemma and Lemma (the same way we did for the 0-order estimates),

C
A
Next, from Lemma [5.20] we obtain

C
[F1(U)[x0 < - (10U]xo + [Ulxo + |00zl 12 + [Uslr2.)

|F1(U)|xo < = (|(0,U2, 02U1)" | x0 + |0, U] xo0 + [U|x0.)

We also deduce that

C
F(U) < 5

Thus, replacing such estimation in (5.77)) and using ((5.78)

0 U|xo0 + |U|x0 + |0Us| 2 + |Us|2.)

ID@)U()|x0 + | D@UD)] 12 < CA”%‘W(W(ONXO FU(0)]2 + |atU<0>|L2)

_C
A3/ |,

Oe‘SOC(T_“/‘*(I@fU(T)Ixo +U(7)|x0 + [AUa(7)[ 2 + IUz(T)IL2>d7.
From Proposition [5.17},
U, +10(7)[72 < CAY2 (JU(0) %0 + [U2(0)72) €™ VO <7 <t,
we conclude that
0,U(#)|xo0 + [0, U(#)] 2 < CAYA(1 - A3/4t)e500t/4(yU(0)\Xo +[U(0)[12 + |atU2(0)|L2)

C 0
_ A3/4 J 6500(7 t) /4<|(3t (T)|X0 + ’(’}tUQ(T)‘[g)dT_
t
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Then, using Gronwall’s inequality, we have that there exists C' > 0 such that

10,U(8)|xo0 + |0:Us(t)| 12 < CAVA(1 — A=3/4¢)edoct/4-CA™ 1 <|U(0)|Xo + ) |an2(0)|L2).

a=0,1

The desired estimation can be deduced by taking A sufficiently large. Finally, in view of
(5.78)
10:U|x0 < 0 (|0:U|x0 + |0:Us|12) + Cs (U] x0 + |Us|2) -

and taking into account the estimation for the zero-order estimates given in Proposition
[5.17, we conclude the result for the first-order case.

Higher-order energy estimates. We proceed by induction argument. Indeed, given any

k = 0, we will assume that the estimate (5.51]) holds for k£ — 1-order case. As we did for the
first order case, we start estimating |D*(0)U|xo. We have that

0,D*(0)U = JL.D*(0) + Fy,(U)

where the source term Fi(U) is given by
k-1
Fi(U) = Y D'() (J [D(9), Lc] + [0, D(9)]) D7 (9)U.
i=0

In particular, using Duhamel Formula, the fact that we consider F} as the source means that

D*()U(#) = Se(t,0)(D*(2)U)(0) — J Se(t, ) F(U)(7)dr,

t

where S.(t,7) is considered again the fundamental solution of the linear equation ([5.48)).
Hence, because of Proposition [5.17, we write

|D*(@)U(t)|xo0 + [D*(0)U(t)| 2 < CAM <e—500t/4<|U(0)|Xk + > |an2(0)|L2>

a<k

- J ST/ (| F(U) (1) o + | FL(U) (7)]52) dr

(5.81)
Then, we need to estimate the source Fj,.
From the definition of F}, we have that
| Fr(U)|xo
k=1 . .
< Z (|D'(0) (J [D(0), L] D*'7(0) Ul xo0 + | [0, D()]) D*'7(0)U| x0)
i=0
k—1 . . . .
<Y (EJDNO)[LE, 8] DF 1 (0)Ulxo + ¢ JD'(0) [Le, x2] DF 17 (0) Ul xo)
i=0 j=l,a
k—1 . . . .
+ 3] ( > eXGID@) [Le, 0,] D7 (0)Ulxo + | DY(@) [0, D*(0)] D’“‘l‘l(a)U\X()) :
i=0 \j=la
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Making a similar analysis as the previous from the first order estimatives,

C C
|Fp(U)|x0 + |FR(U)|g2 < 7’“ D (16p08U, 07071 U x0 + 10505 U | x0) + ZyU|X,H.

a+p=k
a#k—1

Next, using ((5.79)),
10705 U|x0 < 0 (|0fU|x0 + |07 Us|z2) + Cs (|U] xe-1 + [(00)* Vs 12)

C
|Fk(U)|X0 + |Fk(U)|L2 < Zk (‘anb(o + |U|Xk71 + Z |a?U2|L2> .
a<k

Plugging such estimation into (/5.81))

|Dk(6)U(t>‘XO + ’Dk(a)U(t)’[ﬁ < CA1/4e—5oct/4<|U(O)’Xk + Z |6?U2(0)|L2>

a<k

c. (° (5.82)
_ WJ Qdoc(T—1)/4 (yafu(r)b(o + [U(7)|xr—1 + Z IG?U2(7)|L2> dr.
t

a<k

We claim that
|Dk(6)U(t)|Xo + \Dk((?)U(t)]Lz > |&fU(t)|Xo + lanQ(t)]Lz —C Z 107U ()| 12 + ClU (L) | xr-1.

a<sk-1
(5.83)
Indeed, this comes from ((5.79) and the fact that

[DH@)U ()| xo+[DH(OUs(t)] 12 > [0FU ()| xo+[0fUs(t)] 2 =C D] 177U ()] x0+CU (1) xnr

a+p<k
a<k—1

Now, because we are using induction argument, we have that the desired estimation for the
k — 1 holds, that is, we have that

U)|xe1 + . [07Ta(t)| 2

a<k—1

< CAV A ([U(0)] i + Y 37U3(0) 12

a<k

(5.84)

Cr (° _ .
_ A31;4 odoc(r—t)/4 (yan(T)\Xo + |U(7)| xr—1 + E: |0 U2(7)|L2> dr.
t

a<k

Going back to (5.82)), (5.84) and (5.83)) imply that
07Ut xo0 + 107 Ua(t)| 12
< Cr AVA(1 — A—3/4t)k—1e—600f/4—A“°’/“@(\U(0)|Xk + ] |6§”U2(0)\L2>

a<k
C. (°

- eI (168U (1) xo + [0F Us(7)|2) dr-.
t

Then, thanks to Gronwall’s inequality and Lemma [5.20] by taking A large enough, we con-
clude the proof.
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5.4.4 Proof of Theorem [5.13
Now, we can go back to the construction of the approximate solution. We consider

V(t,z) = 2 PVt ),

with p = e~%4

> (. Here V; solves the system
oV, — JA[Q.]V, = —r..
where, recall from Section [5.3] that for all & > 0,
r(a))|g, < Cre™® Vit<O0.
Notice that, since U(t) = RV (t) and R is invertible, from Theorem we get
1St )V e < AVICL(80) |V

where here S? is the fundamental solution of the system (5.47). With this in mind, we choose
the solution

o (L4 [t —7[F) e®dt=7I2 0w 7 > 0,

Vit z) = — LO SME, 7)ro(r)dr.

From the estimation of the fundamental solution S», we get that V; is well defined and
satisfies

t k

VilOlo < AVC, [ (Lt ol et 2 Y i,

e} j:(]

Hs(k—l)dT

t
< AVig, J (L + [t — r|)* efoclt=Tl/2edoclrl/2 7
—0o0

< AYAC,(8p)e % vt < 0.

For the general case

J
1
ON;=DFQIV;=), ) —DFQIVi.....V;) =1j(ta)
p=1 1<.Z'17~--’jp<j‘*
Jit..Jp=J
we use induction argument. Suppose that for every j such that 1 < j <1 -1,
|V3|Ek < A(2j71)/4c'k’j(50)67j600|t‘ vVt < 0.
For the source terms, we get the estimation

Ivj(t, 2)| g < APTVAC j(8)e 7%0e vt < 0.

Then, taking the solution

¢
V,(t,z) = —f SA(t, ), (r)dr,
—Q0
we conclude the proof of Theorem [5.13

167



5.5 Construction of the exact solution

Now that the approximate solution of the Zakharov water waves system (5.6)) is constructed,
we need to find the exact solution U = U,, + U, from the constructed approximate solution
Uy = (Map, Pap), where U, is a remainder to be determined. In other words, for U = (), ¢)*
to satisfy , U, needs to be the solution to

U, = F(Uy, + U,) — F(U,y,) — 1.

The Cauchy problem for such equation has a global solution, as we prove in the following
proposition. The precise result reads:

Proposition 5.21. Let p = 2. For N large enough and p sufficiently small (A sufficiently
large) in the definition of V, there exists a solution U, = (n,, )" € L* ((—0, 0], H™ ™ x H"/?)
to

U, = F(Uy + U,) — F(Uyp) — Tap, (5.85)
U,.(0) fixed, :
such that hlac||re = |Nap| e — [0 o0 = Pmin > 0, and
|U7»|Xm+4><Xm+7/2 < A(2N_1)/4pN+1e_N506|t| vt < 0. (586)

This proposition is proved in the Appendix

Once having proved the existence of U,, we obtain that U = U,, + U, exists and it is
defined in (—o0,0]. Recall the definition R(¢,z) = Q.(x — ct + A). We are left to prove

lim |U(t) — R(t)| g = 0. (5.87)

t——00
From the definition of U,

N
U=R+) pV,;+U,

7j=1

The terms V; and U, satisfy a decay estimation each (deduced from (5.46) and (5.86)) for
every t < 0:

’Vl e < A(2l—1)/4csl(éo)e—léoc\ﬂ and ’Ur e < A(2N_1)/4PN+1Q_N506|H.

Consequently, we conclude ([5.87)).
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Appendix
A.1. Proof of Lemma [5.18

Proof of (5.59) in Lemmal[5.18, Case i = 1. First, recall that for any u € C;°(R), the Dirichlet-

Neumann operator can be defined as G, ,u = 6fau2|zzo, where v/, satisfies
Voo PVy.u’ =0 in S,
W = u, (5.88)
allfauHZ:*l =0,

and 0f* = n- P,V ., where n = —e, is the upward unit normal to the boundary in z = —1.

Then, one can use Divergence Theorem to get the following Green formula:
(Geau,v) = f PN, -V, v dadz.
S
In particular, we have that

([0, Gepalu, u) = f

0P,V ), - Vol dadz — 2f PV, ((0u)) — o)) - Vo uldzdz.
S

S

Similarly, for G.; we have that
([0, Ger]u,u) = J O PV, - Vo u)dzdz — ZJ PV, ((&u)bl - @;u?) -V, dzdz,
S S

where uf is the solution to the elliptic problem associated to a flat-domain regime

Veo PVt =0 in S,
w],—o = u, (5.89)

851u'}|z=_1 = ﬁzu“z:_l = 0.

Then we have that

([64, Ge — G luty u) = J

0P,V ), - Vol dadz — 2 J PV, (o)) — o) -V, ubdzdz
S

S

— f atPlkuﬁ . V%zugdxdz + QJ PV, ((@u)g — @u?) . ngugdxdz.
S s

Recall, from the definition of both P, and P,, we have that

a P = a75770 _(Z + 1)atax770 & P = at7/]c _(Z + 1)615&96770
to1 —(z + 1)010ue B, » tha —(z+ 1)010ume B, ’
where
20z + 1)20,m:0%. 1. (14 |(z + 1)0un.]?) dum.
g, = 2t D 0ndione  (1+](2 )ZI)m7 nd
h + Ne (h + 7’]C)
~ 2((2 + 1)0une + zhal) (2 +1)07 ne (1+[(z+ 1) + zha’gf) OMe
‘o Ha. + 1. (ha. + 1) '
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Then, taking into account the fact that the solitary wave 7, satisfies the exponential decay
13]
|02ne (3 — ct + A)| < e A0z e AR
this means that we can estimate each entry of 0, P, and d; P, by using a weight w; defined as
Wl(t,l’) _ e—(s(l-‘rlct—m-i-AlQ)l/Q, (590)

where 0 < 0 < min{ev,d} to be chosen sufficiently small.

On the other hand, from the definition of P, and P;, we know that

~ |H(a(ex) —1) —hza.
Fa=hi = [ —hzal E |’
where
z+ 1)zhogneal + |zhal > (1 + |(z 4+ 1)0une*) h(1 — a.)

+ .

ha. + 1. (hae +n.) (h +n.)
This implies that we also need to take into consideration the change of bottom a’, coming
into play P, — P;. Then, we define the weight

w(t, z) = e 00+ (5.91)

where 0 < 0 < d is the same used in the definition of w;.

g !

Finally, with respect to ¢,(P, — P;), after computing the derivative in time, we get that
the only entry of ¢;(P, — P,) that survives is ¢;F = B, — By, which depends both on the
solitary wave 7, and the description of the change of bottom a’.

From now on, we shall assume that u = x,U, and take advantage of the fact that, from
Lemma there exists C' = 0 such that w,y; < %. Similarly, for the case u = x,Us, one
only needs to take into account the weight w; and and use symmetric arguments. With this
in mind, we write

([at, gc,a - gql]“; U)
= J oy (P, — Py) Vmﬂzuz : Vx,zudedz + J 0PIV, (uz — u?) . VLZugdxdz
s s

+ J 0PV ) - Vo, (u) — u)) dodz — QJ (P, — P1) V.. ((0)) — o) -V, ouldwdz
S S

+ QJ Plvx,z((ﬁtu)z — dpu), — (Qu)] + 8{1&) -V, dadz
S

— 2f PV, ((@u)z — (3tub1) A Vi (ul; — ubl)dxdz.
S

(5.92)
In fact, from (5.92)), we have that

([0 Gea = Gea ), 0)] < ClwaVe st lra(s) (IVaetthlnzis) + [ Vi (Goa)” = 41) | s )
+ O |Vao ((Crta)” — Oty — (0r)” + 003) | o g | Vst | 22¢)
+ O Vaz (up —ui) | 2(s) (| Vazulzgs) + [ Vazuil 2s)
IV - ((Grt) = 20) 1))
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The rest of the proof, then, consists on estimating ||V“ug |25y and HV“ ((é’tu)g — 6tug) HLQ,
fOI' ] = 1, a, |‘wavx7ZUZ||L2, HVI,Z (Ub Uli) ||L2 and ||Vx7z((atua)b — atuz — (@ul)b + é’tuz) HL2.

1. Computing the estimation for |V, .u’ | 2(s):
Let us denote by u}, 7 = 1,a, a function defined as
¥z e [-1,0], u'(,2) = x(z[D])u, (5.93)
where x is a smooth compactly supported function such that x(0) = 1.

Thus, to decompose ug into u? = v + u', j = 1, a, means that v; must solve

Vx,z : ]Djv:(:,zvj = _vx,z : ]Djva:,zuT € 87
v|z:0 = 07
(95‘“0|Z:_1 = —afauT|Z:_1.

In particular, thanks to Divergence Theorem and the coercivity of P;,

IV 205 12(5) < C|| PV zu < C| Vo] g -

" zas)
We write

HVCC,ZUT”LQ(S) < ”X(Z’D‘)aquLQ(RQ) + HX/<Z’DD’D|UHL2(R2) ’
Now, we use the following auxiliary lemma

Lemma 5.22. For all real valued, compactly supported function x, one has

2
1

z|Du 22 <C _—
(APl < OO0 |

9

L2

where C'(x) > 0 is a constant that only depends on the function x.

Proof. We write

— X(=l€D)
€]

where X is the primitive of y2. In particular, since Y is compactly supported, X is
bounded. Thus, we conclude the proof by noticing that

‘X(O)—X(—!ﬂ)
€]

CelDhulls = [ [ e ClehRlapazag = [ [ 20 ) Pazde

ot
(1+[¢)"

‘ <)

Lemma [5.22) implies that

HV%ZUTH;(S) <C |%u|iz(R) :
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And then, since u = x1Us,
2 2 2 2
|Vt o) = C1BOUR) 2Ry < 1B, x1] Valfz + X1 BUs -
Now, we make use of the following commutator estimation,

1B, /1912 < 10af =gl L2 (5.94)

Indeed, this can be proved by noticing

0xfg 2\—1/4
— a7 [(1_690) / 7f] axg
(1 - 8%)1/4 L2

S |a$f‘L°C |g|L2 + |[(1 - ai)_1/47 f] arg‘LQ )

and using [I8, Proposition 3.6.B| to bound the second term. Thus, going back to our
computations, ((5.94) implies

‘[%>f]g‘L2 <

2 2 2 2 .
Consequently, one has

b2 2 2 .
Vet < C <|U2|L2(R) + |%U2|L2(R)> L i=1,a (5.95)

. Computing the estimation for |w,Vu’ | 2:

We have that w,u’, solves

Vie PaVas (wot) = —[we, Vo - PV, 0, €8,
walt)|.—o = wat, (5.96)
(’/)5‘1 (wauz) |Z:71 = —[wa7 afa]uz

We can decompose
watt = m (2, |D|) (wau) + v, (5.97)

where
cosh (|D|(z + 1))

cosh|D| ’
is the solution to the homogeneous Laplace equation associated to (5.96)) and v solves

m (z,|D]) =

{ Veo PoVev+ [wy, Ve, PV, |t = V.. P.V,.(m(wu)) inS, (5.98)

V,c0 =0, OFw|,—_y = —haldv|,—_;.
We argue as in the proof of Proposition [5.4] and of Proposition [5.11} relying on the

possibility of using Poincaré¢ inequality and the fact that |V, ,ws| < dws to obtain

[Va 207205y < C((1+ 6)[Vaz(m(wa)) z2s)
+ ((52 + 5) HWCLUZHLZ(S) + 6HVI,Z(WGUZ)HL2(S)) Hvr,zU”LQ(S)'
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The decomposition ([5.97)) implies that
(1 — 0(5 - 052> ||v$7ZUH%2(S)
< C (0% + ) m(waw) |r2gs) + (1+0) [ Vs (mlwat) |, ) -
Then, for  sufficiently small, there exists C' > 0 such that
V. 20lis) < C (6% + ) lmlwat)pags) + (14 6) Ve (mlwat)] 2 ) - (599)

Our goal is prove that
b b < ¢ %
lwatta[2(s) + [ Ve (wrtta) | r2s) < (IBU2| 2y + V| 2y - (5.100)
Thus, in view of decomposition ([5.98) and ([5.99)), it would be sufficient to show
C
\|Vm7zm(wau)HLz(5) + Hm(wau)HLz(S) < Z (|%U2‘L2(R) + ‘U2|L2(R)) . (5101)

To do so, we argue as in a)., using the commutator estimate (5.94) and Lemma to
obtain (5.101f). Consequently, we proved ([5.100)) which, in particular, leads to

C
Hwavr,zuZHLQ(S) < Z (‘%U2|L2 + |U2‘L2) . (5102)

. Computing the estimation for HV“ ((O’tu)? — é’tuz) HL2:

For each j = 1, a (the first associated to the flat-bottom problem and the latter with a
changing bottom problem), we have that ((é’tu)? - 6tug-) satisfies

{ Vi PiVa. ((0)} — o) = V.- 0,PVy.ub  (2,2) € S,
((Gsu) — 0 lozo = 0, 0’ ((Gs)) — 8u%) o=y = O

Then, using energy estimates, taking into account the coercivity of P;, we write

I; Al
L2(S jlrz(s)

This, along with (5.95)), implies that

HVLZ ((@u)j - 8tu§) < C (’%UQ|L2(R) + |U2‘L2(R)) .

HL2(S)

. Computing the estimation for |V, (u} — u}) | 2:
We have that v’ — u} solves the following equation,

{ Vs PV, (W, —u}) =V, PVt ==V, (P,— P)V,.u, (z,2)€S,

(UZ - ug) 20 =0, arlfl (UZ - ug) —— ﬁazumz:—l'
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Then, multiplying by u’ — u} standard energy estimates lead to
b K b2 b2
va (ua - “1) HL2(5) <C H(Pa o Pl)vw“a”m(S) S C”wavxvzua”L?(Sw
which ultimately (in view of (5.102))) implies that

C
[Vae (g = 1) | sy < — (1B 12 + |Ua]2) (5.103)

. Computing the estimation for |V, . ((du,)® — dug — (Gpur)® + 0pus) | r2 =

In order to make notation more simple, we shall consider v = (Opu,)® — Opul —(Opur )¢ + Opus
and f; = 6,5PjVug, j = 1,a. Then, taking into account the equations that (d;u,)® — dus
and (Jyu1)® + dyu§ solve, we get that v is the solution to the following formulation:

v:c,z . Plva:,zv = vx,z : <.fa - fl - (Pa - Pl)vxz ((atu)b - atub) )a (ZE,Z) € Sa
V.m0 =0, Opev|.ey = —e. - (fa —fi—(Pa—P)V, ((@U) - atUZ) ) lo=—1.

Then, energy estimates lead to
Vet pags) < € ([(Pa = POVee (@uu)s — 00)
0P (1 = 0) )
< C ([a Vs (@) = 20tt) | gy + 00Vt s,

b b
+ | Ve (ug = uy) ”LQ(S)) :
Subsequently, in view of ([5.102)) and ([5.103|), it would be sufficient to prove

|25y 10:(Pa = PVt o,

C
|waV o ((Bru)), — yul )Hm <7 (]BUs| ;2 + |Us);2) (5.104)

so that we can conclude the desired estimation, that is,

C
HVI,ZUHLZ(S) < 1 (1B + [Ua]2) - (5.105)

Let us show that (5.104)) holds. Indeed, we reason as in the proof of ([5.102)) and write
the following equation satisfied by v, = w, ((du)), — dsl)),

vx,z : Pavx,zva + [wm Vm,z : Pavx,z] ((atu)(bl - 6tu';) = _wavx,z : atpavx,zuz (-1'7 Z) € Sa
Ua|z=0 = 07 afjva|z:—1 = _halg(sva|z=—1-

Thus, following similar computations as in step b)., we have that,
2 2 b
”vw,zvaHH(s) <C ((52 +9) va,zva”p(s) + Hwaatvx,zuaH%Q(s)) )
which, along with (5.102]) leads to

C’
[vallz2(s) + | Vazvalz2s) < 7 (1BUz]2 + |Uslr2) -
and ultimately implies ((5.104]).
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Proof of (5.59) in Lemmal[5.18 Case i = 2. Recall that
([0t Gea — Gen|u,u) = f ﬁtPan,zuZ . Vm,zudedz — QJ P, V.. ((&u)z — &tu(bl) . VgC,zudedz
s s
— f @tPle,Zug . Vx,zubldxdz + QJ PV, ((&tu)bl — étug) . Vx,zugdl'dz.
S s

where Py, 0;P; and 0;P, can be estimated with the weight w; , whereas P, — P is
estimated by w,. On the other hand, the decay of ¢;(P, — P;) and P, depend both on the
solitary wave 7. and the description of the change of bottom a’. Then, taking this into
account, and considering u = Uy, we write

([04: Geo — Genlu, u)| < C (Hlex,zuZHH(S) + va (((%u)z - at“ba)HL2(S)> HV%ZUZHLQ(S)
+C (”wlv%zugHL%S) + [V, ((at“)li - &gu?) HL2(S)> vaung(S) :
From (5.95), we already have that

Va0

£2(S) <0(|%U2|L2+|U2|L2)7 1= 1,CL.

The estimation

levx,zuli7

L2(S) <0(|%U2|L2 + |U2|L2), 1= 1,0,, (5106)
follows from the computations in the proof of (5.102)) (swapping w, for w;) and Lemma m
Finally, we have that

|Vaz ((Qu) = 0u) sy < 5 (1BUali2w) + [Ualizwm)) . i=1a

= Q

Indeed, notice that (((%u)g - 6tug) solves

{ Veo PV, ((atu)g — ﬁtu?-)Pf Ves- (%Pjvx,zu; (x,2) €8,
((@u)g - ﬁtuz) |Z:() = 0, ﬁnj ((@gu)g — ﬁtu?) |Z:_1 = 0.

Energy estimates and the coercivity of P;, gives us

2
) < lev%zqum(S)‘

I 1,
L2(S illrz(s

Then, thanks to (5.106]), we conclude.

Proof of (5.60)) in Lemma[5.18 As we did for the proof of (5.59), we write

([aza gc,a - gc,l]u7 U) = J

0u PV p ot - Vb dadz — 2 J PV, ((0.u)) — 0pu)) - Vo uldedz
S

S
— f 0u PV ) - Vb dadz + 2 f PV, ((0u)) — 0,4)) -V, uydadz.
S S
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Notice that, since P, only depends on the solitary wave ()., we have that
c@acPl = —(9,5P1.

In a similar way, given that most entries of P, also depend on ()., to derivate such terms
in time is actually to compute a derivative in space. In consequence, one can use the same
arguments as in the proof of (5.59)) to obtain the desired result.

The objects that actually create a different situation are the ones that involve the changing
bottom a'(ex). For these terms, we integrate by parts to avoid dealing with a”(ex). Indeed,
suppose we are in the case i = 1. After integration by parts, and considering again the weight
Wy , to conclude, one needs to find an estimation for Hwavx,zﬁmuZH.

Let us prove that
C
|wa Ve 00| < = (B2 + [Ua]12).

We have that w,0,u’, solves the equation

Va:,z : Pava:,z (waaqu) = _[waa Va:,z : Pava:,z]axu(bz - wavz,z : azpavx,zuz (I, Z) € 87
O |.c0 = O, O (wptt)) |om1 = —[wa, dunfe]ul,.

Then, if we write
Walptl? = v + m(2, | D|)(waOpu),

we have that v solves

{ Vi PV, v=f (z,2)€S8,

V20 =0, 0f*v|.eq = —[wa, 55“]“2-
where
f = _[wav v:p,z ' Pav:p,z]axuz - wavz,z : azpavx,zuz - v:v,z ' Pavx,z (m<wa(}zu)) .

We argue as in the proof of Proposition [5.4] using energy estimates, Poincaré inequality, the
coercivity of P, and the fact that

[Waa vaz,z : Pavx,z] = (Ha'a + 77) [waa 832:]
—((z+1)0un + zHa) [Wa, 00

to get that, for 0 > 0 sufficiently small, there exists C' > 0 such that

[v]l 25y < C a0z PV 2w )t | PaV o zm(waOptt) | 125

ol zas
g O HwavmzzuZHLQ(S) + HVx,zm(waazu)HLQ(S) .

To treat |V :m(walstt)] 12y, We use the argument in step a). of the proof of (5.98) and
obtain

C
Hvz,zm(waawu)um(s) < 1 (|%U2|L2 + ’U2|L2) .
The above comes from

va,zm(waaxu>HL2(s) < (6 4+ 1)[B(walou)|r2
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and [5.94] where we use integration by parts on to pass the derivative in space from u to w,,
and so

[V (walott) | < Ix (2] DI) s (wadsu) | + X (2] DI)| Dlwals]

Proof of (5.61)) in Lemmal[5.18 We begin the proof noticing that we can write

(0, Gals xil xaUz, Ua) = 0, ((GaxiUs) s Us) — ((GaxiUz) , 0:Uz) — (G0 (xiUs), Us)
— 0r (xi (Gaxal2) , Ua) + (0rxi (GaxiU2) , Uz)
+ (Xi (GaxiU2) , 0:Us) + (xiGa0t(xiUa), Us) .

As we did before, in the proof of (5.59), if u,v € HY2(R) and «’, v define the solution to the
elliptic equation ([5.88)) associated to u and v respectively, then, from Divergence Theorem,

(Gau,v) = L Pakub : vabdxdz.
Therefore, in a more explicit fashion, one has
([[2 Gu], xi] 1.0) = & L PV, () - V,t'dadz — L PV (i)’ - Vs o(00)dadz
- L P.V..(0/(xiu)) - V, 0" dzdz — &, L XiPoVo ) -V, v dedz

— 8tf VasXi- Pavw’zubvbdxdz + J (ﬁtxi)Paszzub . V%zvbdxdz
S s

.
+ J Vo (0ixi) - Pan7zubv"dxdz + f XiPaVWub : Vwatvbda:dz
s s

+ J VasXi- Pan,Zubﬁtvbdxdz + J XiPan((?tu)b . Vmizvbdxdz
S s

.
+J VX Pavx,z(étu)bvbdxdz.
S

Notice that, if we consider v! = x(2|D|)v, with y a smooth, compactly supported cut-off
function, so that v' = v in the boundary z = 0. In particular, if we write v” = vf + v,, then
v, solves the equation

v:c,z . Pavx,zvr = _V:Qz . PQVWUT n S,
UT’ZZO = 07

Pe _
an UZ|Z:*1 - 07

This means that, for any v e C;°,
f PNV, .’ -V, v’drdz = f PV, -V, vidrdz.
S S
The advantage of considering such function is that we already know from the proof of (5.95)
that
[V220] f2s) < CIB0] 2. (5.107)
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In addition, we also have that d,v' = (0v)". Then, computing the derivate in time of the
integrals above , we have

([[ah ga]7 Xl] u, U)
= J (atpavx,z<Xiu)b ’ vx,zUT - Xiatpav:c,zub ’ vx,sz - Vz,in ' atPavx,zuva)dxdz
S

+ J (Pavm,z (at(Xiu)b - (at<X1u))b) : vm,zUT - XiPavm,z (atub - (atu)b) : vm,zUT)dde
S

- j vx,in : Pavz,z (6’tub — (@u)b) ?JTd[L'dZ
S

= f (@Pavx,z ((Xiu)" — Xiu") Vo' 4+ 0PV, i - VLZUT)d:CdZ (5.108)
s
.
— | Vaizxi- 8tPaV$,zuvadxdz
JS
(
+ | PV, (é‘t()ﬁu)b — (8(xsu))’ — x:00” + Xi(&tu)b) - V,.videdz
Js
.
+ | Pu(Vazxi)- (((3tub — (atu)")vx,zw — Vi (atub — ((3tu)b) UT) dzdz.
Js

From now on, we consider the case i = 1, and assume u = y1Us, v = Uy. The case i = a
can be obtained by symmetric arguments. Then, from (5.108)), we have that

([ Gal, xi] uw,v) < C (HV;E,Z ((Xlu)b - Xlub) HL2(S) + HaleubHLQ(S)) “vx»ZUTHLQ(S)
+C HVH (5w:(><iu)b - (@t(Xiu))b - Xiatub + Xi(atu)b) HLz(S) Hvz,zUTHLQ(S)
+ C ([02X1 Ve’ | £2(5) + [02X1 Vi z (Os” = (041)") | 22(5)) HUTHLz(S)
+ Cdxx1 (@tub - (atu)b) Iz2(s) Hvz,zUTHLQ(S) -
Now, we begin by noticing that, from , and Poincaré inequality,

[07] 25y + Vv < C(IBUs|12 + |Us|r2) .

z2s)
Also, from Lemma and step c¢). in the proof of
10eX1 ((7tub - @U)b) lz2(s) + |02x1Va,e (atub - ((9tu)b) | z2(5)
< % (H&tu" - (atu)bHLQ(S) + Hvx,z (@tub - @U)b) HL?(S))
< S (BUss +|Ual12).
Also, using again Lemma and step a). in the proof of ,
l0ex10” | z2(s) + 02 X1 Vi, 12(s) < % [ lz2(s) + [Vt 12s))

C
< 1 (|%U2|L2 + |U2|L2).
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In consequence, we are left to prove the following estimations

C
[Ve: (i)’ — Xlub)HLz(S) <7 (|BUs|z2 + |Us|12) , (5.109)

and, finally,

C
va (5,:()(114)b — (é’t(xlu))b — 10 + Xl(étu)b) HL2 Z (|BUs|2 + |Us|z2), (5.110)
so that we can conclude the desired result.

We begin by noticing that w = (y1u)” — 11’ solves the equation

Vx,z : Pavx,zw = [Xl, vx,z . Pan,Z]ub n S,
w‘z:O = 07
Orewl.—1 = [x1, 0f | ].— 1.

Then, the usual energy estimate for this problems leads to

C

va,z(Xlu)b - XlubH < n (HUbHLQ + |V, zubHL2 S)) (|%U2|L2 + |Us|12),

where we used Lemma for the first estimate. Next, we show ([5.110)). We denote now by
w = 0(x1u)’ — (0,(xaw))’ — x10:u” + x1(Gu)’, which solves in S,

Vac,z : Pavac,zw = - Vac,z : at-Pavac,z ((Xlu)b - Xlub) + [Xl; vx,z ' Pavx,z] (atub - (atu>b)
+ [X17 vx,z . Pav]ub

and has the boundary conditions
’UJ|Z:0 = O, (95G'LU|Z:,1= 0.

Then, we have the estimate

1 1
|V 0] o) < C (HVW (Caw)’ — Xlub)Hp(S) + 5 |6 — (du) HHI(S ZHub”Hl(S)) .

Ergo, in view of the estimations computed above, we obtained the desired result. [ |

A.2. Proof of Lemma [5.19

Proof of Lemma[5.19 Using the same notation as in the proof of Lemma [5.18] from Diver-
gence Theorem we have that, for every u,v e C;°(R),

(gcﬂu? U) = f Pavm,zuz ' vzyzUZdZEdZ,
S

where v’ and v’ are the solutions to the elliptic problem without flat bottom ([5.88)) associated
to u and v respectively. Similarly, for the flat-bottom problem, one has

(Geau,v) = J PV, zU1 vabldxdz.
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In particular, we shall consider u = x1Us, and write

((Gea — Gea ), u) = J PN, - Vb dedz — f PV, ) - V.1l dxdz
S

S

= -Pa_Pl V“ub~0mubdxdz+ Plcm ub—ub -C,mubdxdz
2 7a 2 a » a 1 2 a
S

Then, using the weight

’((gc,a - gc,1>u7

s
+ f PV, - Vo (u) — uf)dzdz.
S
function w, defined in (5.91)), we have that

u)| < ClwoVa ul |25 Va,- g r2s)
+ CHV%Z(UZ - Ug)HB(S) (HV:E,ZUZHLQ(S) + Hvx,zu?HN(S)) .

Consequenty, from ([5.95)), (5.102)) and (5.103]), we obtain the desired estimation.

On the other hand,

if u = x,Us, for this particular case, from the proof of (5.95) and

Lemma we have that

Hence, we decompose

((Gea — Ge1)u, u)=

This implies that

’((gc,a - gc,l)ua

We conclude by using

HVI zu1HL2 (|€BU2|L2 + |U2|L2) . (5111)

D>IQ

f Pavmuba : undedz — J Plkubl : Vx,zubldxdz
S S

— J PVt - Vi (u) — u})dodz + J P,V - V) dedz
S S

fPlvx zU1 V%Zublda:dz.
S

u)| < C|Vazullizs) (| Va,:(u = u3)z2s) + [ Voot | 22(s))
+ levr,zublHB(S)Hvx,zublnL?(S)‘

5.95)), (5.102)) (with w; instead of w,, which is the appropriate case

when u = x,Us), (5.103

and ((5.111)). [

A.3. Proof of Lemma [5.20]

This result was actually

proved by in [Ming-Rousset-Tzvetkov [14] Lemma 5.8]. Even though

in [14], lemma was intended for flat bottom, the idea is based on properties of the

DN operator that both

domains (a. = 0 and a. # 0) share. Nevertheless, for the sake of

completeness, we give the proof here.

Before we start with

the proof of Lemma [5.20, we present the following auxiliar Lemma:
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Lemma 5.23. The operator G[n., 1] verifies
Gle, ac] = |Do| + Go(, Do), (5.112)
where G° is a bounded (pseudo-differential) operator on H* of order 0.

We refer to |12, Theorem 3.10] for the proof of the Lemma, or [I6, Lemma 3.5| for the
proof in the case d = 3 and flat bottom.

We can re-write the linear equation (5.47) 0,U = JA U as

(5.113)

g[nca as]UZ = a75[]1613(1)0[]1)
PcUl = atUQ + (wc + g)U1 + 'Uc(?xUQ.

Notice that at the LHS of both equations we have elliptic operator of order 1 and 2. More

precisely,
P. = bo, Lg .
(1 + [0umel?)?

is an elliptic operator of order 2 and G[n., a.], of order 1. Indeed, this is a consequence of
Lemma and the fact that 7, is smooth. From the second equation in ((5.113]), using the
elliptic operator of order 2, we have that

’U]_|Hm+5/2 < Cm (|atU2|Hm+1/2 + |U2‘Hm+3/2 + ‘U]_’Hm) .
Then, from the interpolation inequality
[Ut|gm < 6|UL|gmssrz + Cs|Ut| e, (5.114)

we obtain
|U1|Hm+5/2 <C, (|atU2|Hm+1/2 + |U2|Hm+3/2 + |U1|L2).

In a similar fashion, using the first equation and the fact that th eDN operator is of order
one,
|U2|H'm+2 <C, (|atU1|H'm+1 + |U1|Hm+2 + |U2|L2) .

Then, taking J sufficiently small,
’U]_‘Hm+5/2 + |U2‘Hm+2 <C, (‘atUlyHm+1 + ’atUngm+1/2 + ’U‘Lz) ,
which is the thesis of the lemma with [ = 0.

For the rest of the cases [ = 0, we proceed with induction argument. We derivate in time
(5.113]) and obtain, for the first equation, that

G[ne, a)0Uy = 07U, + 010, (v Uy) — [0L, G[neac]|Us := Fi.
Then, using Proposition [5.7, we have that
P |3 < Crg (107 U [ gmss + [0 Un | ms2 + (00! Us | grme2)
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Finally, the fact that the DN operator is elliptic, we get
10:Us |1+ < Cry (107 Us [grmsr + [0) Ut | grmeva + [(0e)' ™ Us|grme+2) (5.115)

On the other hand, from the second equation in (5.113)), derivating [-times in time, we have
that
POy = Uy + 0L((we + g)Un) + 04(v.0,Us) — [0}, PJUs = F.

We obtain that
’FQ‘Hm+1/2 < Cm,l (|ai+1U2|Hm+1/2 + |<at>lU2’Hm+3/2 + ’<5t>lU1‘Hm+5/2) ,
and by elliptic regularity,

|aiU1|Hm+5/2 < CmJ (]8§+1U2|Hm+1/2 + |<at>lU2|Hm+3/2 + |<at>lU1|Hm+5/2) . (5.116)

We combine (5.115)) and (5.116) and obtain

‘ﬁiU’Hers/szmm < Om,l (’ai—i_lU

Hm+1yx gm+1/2 + |aiU Hm+2yx Fm+3/2 + |<at>lU’Hm+5/2><Hm+2) .

We get the desired result after using the interpolation inequality
|0:U | rme2 s prmevs2. < 5|0£U‘Hm+5/2me+2 + C§|a£U|L2

and the induction hypothesis.

A.4. Proof of Proposition [5.21

We will use approximate sequence of solutions {U"} to prove there exists a global in time
solution U, of . Let {T,} be a strictly increasing sequence such that 7,, > 0 and
T ,00 as n — o0. Assume that U" is the solution to in the time interval =T, =T,
for T,,,T > (possibly close together), which is possible (at least in a smaller time interval
[-T,.,—T], 0 < T <T,) because the water-waves problem is locally well-posed.

To prove global existence, we shall make use of an a priori estimate for the solution U,,
stated in Proposition [5.24 This proposition can be shown using the same arguments as
in [16, Theorem 7.1|. Indeed, it follows after an exhaustive study of the DN operator and
estimations regarding its derivatives, estimations that still hold in our case. We shall give a
outline of the proof after proving Proposition [5.21] It reads as follows:

Proposition 5.24. Let U" be a smooth of (5.85)) on [-T,,—T], for T,,,T = 0, satisfying
hlac|Le — 1Maplze — |Melle = hmin > 0. Then, for any m =2, s =5, and t € [-T,, =T, we
have the estimate

U () mes < 0 (I7ap

X;n+3 + |Uap|Xtrn+S + |U’VL

Xgn+3)
t

(Imwlxpss + [ (00 Bes +rip(r)lss) )
,Tn

where w is a continuous increasing function.
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Here, the seminorms | - | x# denote the seminorm in X * defined in a finite interval space,
in this case, defined in [-T,,, —T].

We use Proposition to prove that U" is well defined in the whole time interval
[T, 0]. Because of the decay estimate for r,, and U,,, from Proposition we have that
for t € [-T,, —T1,

U (O3 < (cm 3+ Conep + [07 s
< U™ (1) |Zmgadr + ACYTVAC, (8, >p2(N+1)e(N+1)60c|t> '
Define
T* =inf{T € [0,T,] : Vt € [=T,,, =T, |U"(t)|xm+s <1, haec — |Naplle — 17|22 = Pomin > 0}
In particular, if ¢ € [—T,,, —T*], we obtain
U™ (t)[Fmrs

t
<w (cm,N + cm,Np) (J U™ (1) Zmssdr + A<2N+1>/4CN,S(50)p2<N+1>e<N+1>5ocltl) .
—T,
We note that, using the equation above,
d . t
o (e_”(c’"*NJrCm’N”)tJ |U"(7’)]§(m+3d7)
t -7, (5.117)
<w (ém,N " Cm,Np) e—w(ém,zv+Cm,Np>tA(2N+1)/4CN78(§O)p2(N+1)ef(N+l)éoc|t|'

Now, since w is continuous, we can take N large enough and p small enough (that is, taking
A very large, because p = e~%4) such that

—(N + 1)dpc > w (é’mN + C’mpr> )

This implies that we can integrate in ((5.117]), and obtain
t
n(_\|2 < A@N+1)/4 2(N+1) ,—(N+1)doclt]
(U™ ()| xmesdT < A Cn,s(do)p e ;
Ty

which ultimately leads to the following estimation for any ¢ € [—T,,, —=T*]:
‘Un(t)|§(m+3 < A(2N+1)/4CN78(6o)p2(N+1)ef(N+1)6oc\t|' (5118)

Taking p large, so that k| a.| 1 —|7apl 2 — |7 L = hmin > 0 and also ACNFVACY (5)p? N+ <
1, by the definition of —T™ < 0, which means that we can extend U" to the whole interval
[-T,,0].

We are left to prove global existence of equation ([5.85]). We use compactness argument to
find U, as a limit of {U"}.
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Let x € C°(—1/2,1/2) such that x(7) = 1 for 7 € (—1/4,1/4). We define

00 - (=) U

where U" is extended as zero for t < —7T,,. Consequently, derivating in time

0,0"(t) = —Tinxf (_9;) U (1) + x' (_xT) 2, U (1).

Then, for ¢ < 0, from (5.118)) we get the following estimation for U and ¢,U",

|[jn(t) 2 < A(2N+1)/4CN7S(50)p2(N+1)e_(N+1)6DC‘t| and

FmaxHMTT/2

|(3tﬁn<t)|Hm+3me+5/2 < A(N+1)/4CN7S<6O)p2(N+1)ef(N+1)5gc\t|.

Finally, we obtain that there exists a subsequence {ﬁnk} and a limit

U'r‘ c L® ((—OO, 0]’ Hm+4 % Hm+7/2)

such that .
U">U, in Cp ((—OO,O],H{ZCJFB’ X H$c+5/2) as  ny — o0,
and
|U,«(f) 2m+4me+7/2 < A(2N+1)/4CN’S(50)p2(N+1)e—(N+1)6oc|t\ for t e (—OO, 0]

We have concluded the proof of Proposition [5.21

A.4. Proof of proposition [5.24

The idea is to derivate equation at least three times so that a linearised equation
(linearisation around U) is obtained, and then focus on finding estimations from the already
known U,, and r,,. To make explanation simpler, let us consider briefly the sistem 0,U =
F(U), for a generic solution U. Asin [10], we shall compute three derivatives of 6,U = F(U).
We begin by derivating one time the first equation of the system (that is din = G[n, a-|p),
we have

oin = Gln,a)owp + DyGln, acle - om. (5.119)
Using the shape derivatives for the DN operator, stated in Proposition [5.6] we obtain
oin = Gln, az1owe — Gln, a:)(Z[n, elom) — ox(an, ©lom), (5.120)

where a | D00
5 N, Qe |P + 007
Z fr—

We note that equation (5.120]) is actually the first equation of the linearised system around
U (see Subsection [5.2.3]). Derivating (5.119)) two more times, we obtain the following

and 0, ] = Oup — Z[1, 9]0un.

0:03n = G[n, a:)0}e + D,G[n, ale - 0in + Ri[U] + Q:[U], (5.121)
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where the nonlinear terms are defined by
Q:[U] = 3D,G[n, a:)07¢ - 0 (5.122)

and
Ri[U) = 3 D2Gln, aldle - (3 n, ... o). (5.123)
where the sum is taken on indices satisfying

1<n<3, Bl—i-...ﬁn-‘v-’}/:?), ’7<1, 1<BI<3,V1

Taking into account the notation Z, o for the shape derivative of the DN operator, (5.121))
turns into

0080 = Gn, a:10} — G[n, ac)(Z[n, )éin) — 0.(5[n, ¥]din) + Ra[U] + Q:[U].

Just like (5.120)), the first three terms of the RHS compose the first equation of the linearised
system around U, evaluated in dU. This will be more evident once we have computed the
derivative of the second equation of ;U = F(U). Indeed, after derivating one time, we have
that

0k = — 00,010 + ZG[n, a.)0vp — ZG[n, a|(Zom) — (g + Zﬁzﬁ) o + Pn)om

where, for simplicity, Z = Z[n, ¢], & = 9[n, ¢], and

.-
Pln] =b0, | ————= | .
7 <<1 T \axnzf/?)

Replicating the idea implemented above, we derivate two more times and obtain the following

01000 = — 00,000 + ZG[n, a )0} — ZG[n, a|(Zdkn)
~ (9+ Z2,0) &n + Plnldin + Q[U] + Ra[U],
for
Qu[U] = 380, (DP[] - (840um, 626,m)) (5.124)

and -
RQ[U] = _[at2> 6]65661590 + [at27 ZG[H? a&]aﬁp] : aﬂ?

+ [(3?, Z@]axatn + D2,P[77] ’ ((7m(7t77, (7z(7t77, (%(71577)

In particular, gathering both equations, we have an almost linear system

(5.125)

00U = J (A[U]G;U + Q[U]) + R[U],

for Q = (Ql, Qg)t and R = (R17R2)t.

Now, let us go back to our subject of interest, system (5.85)). From now on, U shall denote
U = U,, + U,. After derivating three times, equation (5.85| turns into

0,.0%U, = J (A[U]2*U, + Q[U] — Q[U,,]) +S. (5.126)
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where

S = R[U] — R[U,,] + J (A[U] = A[Uy,]) 0U,, — Ora.

Proposition is actually a consequence of combining two a priori estimates, one re-
garding the nonlinear terms in ([5.85)) and another one, regarding a more explicit description
of the behaviour of the solution to U,. Indeed, we have the following:

Proposition 5.25. Let U, be a smooth of (5.85)) on [—T,0], for T > 0, satisfying h|ac| > —
Mapllze = |7Le = Bmin > 0. Then, for any m = 2, s = 5, and t € [=T,0], we have the
estimate

U (1) mss < (|Tapl s + [ Unplxgs + 1 Urlips)

t
(|rap|xtm+s + [ (0 4156

Xm+3> dT)

where w is a continuous increasing function.

In Proposition , the seminorm | - | x* is to be understand as the X k_seminorm defined
in the time interval [—T',0].

To estimate the source S, since we ry, is already controlled, we need to understand R{U]—
R[Ug] + J (A[U] = A[U,,]) dU,,. To this end, we have the following result:

Proposition 5.26. For m > 2 and s = 5 we have the estimate

[R[U] = R[Usp] + J (A[U] = A[Uy]) &/ Usp

XxXm < W(| Uap|Xm+s + ’U’IXQ+3)| UT‘|Xm+3'

To simplify computations, from now on we shall denote 0* = o/ o1, B+ v = |a|. Also,
throughout we shall use ()" = (0%)|a|<m, s0 that if | -| is a (semi) norm, (¢)™u| denotes the
sum of (semi) norms of all the components of (J)™u. In other word,

S8 ~ 1™ -

lal<m

In the following subsection, we have some apriori estimates regarding the DN operator
and the H® spaces we are dealing with. In Subsection A.4.2 we give the proof of Proposition
[5.26] Finally, in Subsection A.4.3, we focus on the proof of Proposition [5.25

A.4.1 Useful estimations to prove Propositions and

First, we shall give a few a priori estimates on the spaces H*® used in the proofs of Propositions

[(£.25] and [5.26]

We shall make use of the following proposition:
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Proposition 5.27. Form = 2, if o = 1/2 or o = 1, we have

1K™ (wo) e ry < ClCO™ w1t r) [<0)™ 0| 117 )

. a - (5.127)
[<0)™ (wv) | o my < CIK) ™ ullwroem) K™ 0l o (R).-

and if o =0,1/2,1
[BL™ (wo)| 112y < CRO™ ulwro[(0)™0] 12 g

" m (5.128)
|%<(3> (u )‘ 1/2 <C|<(3> U|H1/2 )|<&> U|Hi/2(R)

Proof of Proposition |5.27. The first estimation in ([5.127)) for o = 1 follows from the fact that
H! is an algebra in dimension d = 1.

Let us assume that ¢ = 1/2 and consider «, 5 such that o < 8, a + f = m.

When g < m — 1, we have that
R PR s PGS G A R PRI
< [0 ul 2wy <) vl L2 (r) (5.129)
< K™ ] vy [<O)™ vl 12 gy -

On the other hand, if # = m and o = 0, using Sobolev embedding inequality |- |z < |- | g1,
valid in one dimension, we have that

[u)™ 0|z gy S Tl L=® K™ vl 2y < [t ) [KO)™ ll g1/ ry -
Finally, since m > 2,
[uC™ 0l 12y S K™l ey [<O)™ 0 2Ry

The estimation is completed by summing all the terms involving the norm [[{)™ - | go.

We prove now the second estimation in (5.127)). Using Sobolev-Slobodeckij norm definition

we have that ) — £ )|2
r)—J\Yy
gy = 113 + | | =T daay.
R JR |95 y|

Then, we compute

v 2u T 2
uuvumNuuummuvuw o+ j [ e - ) vl >y'|2' @F jray

2
[ [ e b,
I:v—yl
) — u(y) Plofy)
S Wl elolag + el + [ [ MO0 a0y,

For the last integral we write

JJ juz ’x_y\Plv( )Idedy

|u(z) — u(y)|” 2 J f u(z) — u(y)P? 2
= —dx v(y)|"dy + ———————dz|v(y)|"dy
LL—y|<1 |z —yl? ) RIa—yiz1 |2 =yl v

S HUH@(R)HUHLQ(R) + HUHLOO(R)”UHH(R)
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Hence, we find that
lwvlegy S lulie@lvlzg) + [l lvlEeg + lulo®lvlee-
Using Morrey’s inequality, we obtain the following
lwvlFegy < lulirom 0152 g)-

We conclude bu using the same idea as above (separating the derivative into «, 5 and making
a similar argument as in equation (5.129))). We leave the case H', since it follows from using
similar reasoning.

Finally, let us prove the first equation (5.128)). We consider «, 8 such that a < 3, a+ =
m.

Let us assume < m — 1. We have that
|8°‘ué’ﬂv|Hi/z(R) = H%@O‘ué’ﬁvHLz(R) < ||§°‘uHLoo(R) H%(aB'UHLQ(R)

Since a # 0,
|6°‘u661}|Hi/2(R) S ||<8>mu||W1oo(R)|<8>mv|Hi/2(R)

On the other hand, if 3 = m and a = 0,

T o PR [ o e Ty

We focus on the second equation of (5.128[). Take «, § such that o < g < m.

Assume o < f < m — 1. From the definition of B, |B - |gs < |&‘i«/2 + | gs—1/4. This implies

the following

’%8QU66U|L2 S ]281/2é‘o‘u|H3/4 ‘%1/26(11)’[_[3/4 $ ]6;/26‘)%]}11/2 |8;/26%IH1/2.
Notice that |0y - sie =1 % + 1%, For v =1/2 or v = 1, we claim the following;

02 f 2 < B2 + B S22

This inequality follows from analysing separately low and high frequencies. We conclude

(5.128]) by noticing that a, 5 < m.
The case a = 0 and 8 = m follows using the idea for ([5.127]). [

The most challenging terms to estimate will be the ones involving the DN operator, since
it is a nonlinear term that interacts non-locally with the surface n. We give the following two
results to help deal with said terms:

Proposition 5.28. Assume ng,m such that h|az| e — |no| — |ml|l > 0. For every m = 2,
and o = —1/2,1,1/2, we have the estimates:

™G o + i, ac |t por) < w (’<6>m770|H5/2(R) + ‘<a>m771‘xgg+3) K™ BY| gosr2ry  (5.130)
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and

’<a>m (D;LG[UO + M, ajé‘]w ’ (Ch SO gn)) |H°(R)
Sw <‘<a>m770‘H5/2(R) + ’<a>m77ﬂxgg+3) K" BY|gorir2(r)

l (5.131)
<H|Cj|x;¢g+3) (H |<5>m+1Cj|H1> :
J=1 j=l+1
Moreover,
1[0, Glno + m, ac]]v] g-12m)
. - - (5.132)
< w (KO mlsgy + 1K™ mxzes ) K™ 0] oy
In addition, we also present the following result:

Proposition 5.29. Assume 19, m such that hlla:|pe — |nol| — |m| > 0. For every m = 0,

and o € (1,2), we have the estimates:

[<>™ G0 + ms acl | oy < w (IKO™ ol arry + 1K™ mllgorr) K™ Y corimy  (5.133)
and

H<a>m (D:]LG[UO + 11, ae]w ’ (Cla SR 7<n)) HC’U(R)
< w (K™ ol iy + KO i lear) (KO Cullgosr - IO Calleor) K™ Pllcoi -

(5.134)
Moreover, forn > 1> 0,
[Koy™ (DRG0 + mvaslr - (hay ..y b)) | gy
<o (K™ nalmwy + K™
(5.135)

l n
(H !ijgg+3> ( I 1 <(7>m“Cj\Hl> K™ ]l xp+3 gy
j=1

j=l+1

The proofs of Propositions and are obtained by adapting the demonstrations of
results proved in [16, Proposition 7.3] and [16, Proposition 7.13|. Indeed, it is sufficient to
use the fact that

va Hs S Cs,d|€B¢

(see [11, Corollary 2.40]) where ¢ is the solution of the elliptic equation associated with 1) as
the border of the domain.

Hs$,

Notice that Propositions [5.2§ and [5.29] enable estimations for the DN operator by ng, 1,
even if one of them is not particularly smooth. In our case, this will be very helpful, as we
will find that 7, might not be (a priori) as regular as 7,,.

A.4.1 Proof of Proposition [5.26

We begin by estimating the first term, R[U] — R[U,,]:
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Proposition 5.30. For m > 2 and s = 5,

@R[V = Ra[Upllin < @ (|Usplscgres + | Urlsonss ) [Tl

€O Ra[ U] = Ral Uspl a2 < 0 (1 Usplgvs + | Ul ) | Urlcmso,

Proof. We split the proof into various steps, one for each term involved.

Step 1: We prove that
€™ (Ra[U] = Ra[Uq)) [ < @ ([Uaples + [Uplmss ) [Up s (5.136)
Recall the definition of R,

Rl[U] = ZDZQ[%CLE]@?W ’ (atﬁln7 SR atﬁnn>

with1l<n<3, i+...0,+7=3, 7v<1, 1 <p; <3,Vi. Then, we need to estimate terms
as

" <D:ilg[77ap + Ny )0} (Pap — 1) - (atﬂl (Map + 1) -+ 67?”(77@ + 1))
(5.137)

— D} G[Nap; =10/ Pap - ((?flnap, e ﬁf"nap))

Since DI'G[n,a:¢ - (C1,- -+, () is lineal with respect to the variables ¢ and ¢, 1 < i < n,
then ([5.137)) can be simplifed into terms such as

" (DZ (G[Nap + 1, ac] — DG [Map, a2]) 07 ap + (67 Naps - - ﬁf“nap)) : (5.138)

" (D:ilg["?ap + N, CLE](??QDT ) (atglnalh SRR atﬁlnapy atBHlnﬁ e 01?n?77")> ; 0< [ < n, (5139>

" (D:ilg[nap + Ny ] 0 Pap - (fflﬁap, cee atﬁlnapa 55”1% T atﬁnn?’)) , 0<i<n—1, (5140

and B, = Bo(i) for some permutation o of {1,---n}. Then, using Proposition , we obtain
the desired estimation for (5.139) and (}5.140)). For (5.138]), we can write

DZ (g[nap + Ny ] — ng[napv aE]) a15790ap : (aflnapa Sy 55"77@)

1

d . s 8

- f &Dng[nap + sny, aa]az;ysaap ’ (atﬁ Napy - -+ 623 nap)dS
0

1
=f DG [Nap + 1, 010) Pap + (07 Naps - - -+ 01 Ny My )ds.
0

Using Proposition (5.29)) (in particular, (5.135))), we conclude ((5.136]).

Step 2: We prove that
€02 (Z[U] = Z[Uap] ) |22 <@ (IUaplprs + [Urliomss ) [Urliomss, (5.141)
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and, for v > 2, and ¢ sufficiently smooth,

Y™ (mZ[U]w) e < w (|Uap|X$+s + ]U\Xm+3) Koy e (5.142)

Going back to the proof of ([5.141)), we will denote

- Gln, acle 0210z
Z = ZLhoelr - %Y
1[777 ] 1 + ‘aan’ 2[ ) ] 1 + ’8967”2

We focus on Z;, since it involves the DN operator, which implies more analysis. We have
that

- - 1 1
A e e e L

1 1
+ 11 \5177!2 (9[77, G/E] - g[nap, Clg]) Pap T+ Wg[ﬁ, aE]gp.

(5.143)

To treat the first term in ([5.143)), we use Proposition and find

1 1
A\ m+2 o
@ ((1+|axn|2 1+|amnap|2)g[”“p’“5]%p)
1 1
am+2 o
@ (1 TP 1x \axnapP)

We apply Proposition [5.27] several times and obtain

1 1
0 m+2 .
o (o~ o)
Also, from (5.133)), we have

[<)™ 2 (Gaps a1 Pap) | 10 < w ([Ugp|xmes) -

iy

<

‘<a>m+2 (g[nam (Ig]@ap) ‘Wl,oo .

il

ﬁ w (HU(IPHX”“LS + HU||Xm+2) ||U7«HXm+3. (5144)
H1/2

Now, we focus, on the second term of (5.143)). We notice that if ¢ is sufficiently smooth,

m+2 1
o ()

Indeed, we can write

m+2 1
‘@ (1 + I&WIM)

<w (\Ua,,yw + |UTme+3) ] e (5.145)
Hi/Q *

1 1
< a m+2 +
12 ‘< ’ ((1 +[0m* 1+ ’aﬂ]apP) 7/1)

o ()
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Then, we use Proposition and obtain

1 1 1
m-+2 < m+2
@ <1+mmww>gy‘\k@ (e * v mr)
1
m—+2
+W> Q+@W)

We conclude ([5.145)) after applying Proposition several times, like we did for ([5.144)). In
particular, estimation (5.145)) (and the fact that |- |z.2 < |- |g1) implies

020 g

il

O™

iy

1

m (g[ﬁ, CLE] - g[napa a&]) (;Dap)

'<a>m+2 <
Y
< w ([Uaplxgre + [Urlxonis ) K02 (10, 02] = Gliaps 02]) p) |

Then, we need to understand the term (G[n, a.] — G[Nap, ac]) @ap- Since n = 1 + Napa, We
write

1
% (G[n, az) — GMap a:]) ap = 07 (f Dy,Gsnr + Nap, Qe Pap - mds> :

0

In addition, we have that 0% (D,G[sn, + Nap, @c|0ap - Mr) can be express as a sum of terms
such as

1
JO D:Lig[snr + Nap; as]aﬁ(pap ) (77?17 av2h17 e 7a’ynhn*1)d5>

n=1 hi€{n,Napt, v <2,1<i<n—1. Thus, we can use equation (5.135|) from Proposition
.29 like we did in Step 1, to get

€™ (G, a:] = Glitaps 1)) ap) i < @ ([Uaplies + [Uylsomss ) [Un o,

which ultimately leads to

1

- < Ua
e (e

‘<§>m+2 ( (GIn, ac] — G[Nap, ac)) gpap> xm+s |Ur|Xm+3) U, | xxm+s.

il

Finally, we deal with the third term in (5.143)). To do so, we can argue as for the second
term in ([5.143)), but using Proposition [5.28|

We have concluded that

@2 (Z1[U] = Z1[Uy) )

<w (\UQP|X$+S + |U,,|Xm+s) U, |xomss.

my?
We are left to prove that

(@2 (Z[U] - Z[Uy) )

Hi/Q Sw <‘UGP|X§Q+S + |Ur|Xm+3> |U7-|Xm+37

which follows after using Proposition several times. Hence, we have proven ([5.141)).
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To prove | , since v = 2, we write
@ (M[Uw) s <@ (77 (2101 = 2104]) 0) 1 + @ (721010

For the first term, we use (b.141)) along with Proposition m For the second term, we use
Proposition [5.29, We conclude the proof of estimation ([5.142]).

21/2 7
Hy

Step 3: Use to show that
0™+ (51U~ 5[Ung) g < 0 ([Uaplzes + [0, lmss ) [U, s, (5.146)
and, for v > 2 and 1 smooth enough,
O™ (@ 3[UN) | e < (Uaplygss + [Uplsomss ) K lxmsa. (5.147)
From the definition of ©, we have that
5[U] = 5[Us) = Gapr = ((21U0] = Z[Usy)) Gutiay + Z[U0)0n, )

Thus, from (5.141)) and ([5.142), using again Proposition [5.27, we obtain (5.146]). Estimation
(5.147)) is a result of following a similar reasoning as for equation ((5.142)), with (5.146)).

Step 4: We prove that
[KH™ ([61527 o[U ]] 00z p — [ath 6[Uap]] ataxﬁpap) ‘H;/Q
@ (1Uaplpes + [Urliomss ) [Urliomss,

(5.148)

and

@ (|22 2101G[n. 0.1 | v — | 2. 21U )G g 021 | ) |

(5.149)
w (|Uap|ng+s + |U7»|Xm+3> |U7~|Xm+3.

Estimation ({5.149) involves the DN operator, a nonlinear (nonlocal) term that deals with
the surface and bottom, which means that it is much more challenging than estimation
(5.148)). Therefore, we shall focus in m ) follows using similar arguments.

The commutator [07, Z[U]G[n, a.]]dyp can be expressed as a sum of terms like the following
O[U] = " Z[U|D;Gn, aclad®p - (0, ...,

the parameters under the conditions f < 1 and 7; < 2, for 0 < i < n. Such decomposition

work for [02, Z[UaplG[Maps a]]0rap as well, substituting O[U] by O[U,,]. We write

O[U] - O[UGP] = (a’YOZ[U] - aVOZ[Uap]) Dgg[nam as]ataﬁcpap : (a%napu cee 7(97n77ap>

+ 0" Z[U] (D1G[n,ac] — DG Naps ac]) 6:0° Gap - (0 aps - -, 07" 1)
+ 0 Z[U]D;G[1,a:10:0° 0ap - (07 Nap, - - -, ") + O
= 01+ 0, + 03 + O, (5.150)
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where Oy is a sum of terms such as
Oy, = 0" Z[U]D}G[1,a:]0:0° 0ap - (0 Napys - ., 0y, D041, .. 041,
for 7, € {7,..., 7}, for all 1 <i<n and!issuch that I <n—1.

To deal with the first term of (5.150]), we use Proposition m along with the second
equation of Proposition m, (5.134), and the estimation proved in Step 2, [5.141] Then,

since 7y, we have that
[K0)™ O1l gara
< 10" DGy 01000 Gap - (s, ) |y |42 (Z1U] = Z[Uap) )

il
< w ([Uapliges + [Uylomss ) Uyl xemeo.

For the third term in , we use , from the Step 2, and find that

@Ol e < w0 ([Uplygpos + [Urliomia) KO (D3G100162" 0 (g 07 ug)) L

Then, we use from Proposition with [ = n, and obtain

[0y (DRG1n.a:10:0"ap - (07 Naps - - 0" 11ap) ) |

< w ([Uaplxgrs + [Urlxomis ) (B 10,0%,|
< w (|Uaplxgss + U lxmsn ) (O™ 00 0

< w ([Uaplpes + [Urlxmss ) [Uy e

H1+1/2

For the term O,, we reason as we did for O3. Finally, we estimate Oy, by using equation

(5.142) and (5.131)) (as we did for Os) for the terms involving ¢, (recall that ¢ = ¢, + ¥4p),
and (5.135)) for the terms with ¢,,.

Step 5: We show the estimations

@ (|22, 21U1e[V) | dum — 02, 21010 Uny]| 022 ) |

(5.151)
<w (|Uaplxges + [Urlxnis ) [U,

Xm+3,
and
@ (|e2. 2101D,GIn. a.le | - ém — | 8. Z10 ) DGl adpun | - ity ) Ly

(5.152)
Sw (|Uap

xmts + ‘Ur|X'm+3> |UT|Xm+3.

Again, as in Step 4, we shall only give the proof of (5.152)), since ([5.151)) follows from
similar (less challenging) arguments. The commutator [6,52 , Z[U]D,G[n,a.]d’ gp] - 0gn con be

expanded as a sum of terms such as

WOZ[U]D:;DUQ[?], a:]0%p - (07, ... 0"16,0"n),
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withn > 1, v+ ...7%-1+ 08 +7=2,v < 1. Then, the proof of (5.152)) is concluded using
the estimations in Step 4.

Step 6: We prove that
|<a>m (DZ,P[U] ’ (@:aﬂ?a axatna 5x5t77) - sz[nap] : (azatnapa aacatnapa azatnap)) ‘Hi/Q

(5.153)
< w <‘Uap’X;’g+s + |U7"Xm+3) ’Ur‘Xm-Hs.

Estimation ([5.153)) follows from the definition of P and Moser type estimates.

Step 7: Conclude that

(&)™ (Ra[U] = Ry2[Uyy]) | 12 < (yUap|ng+s + \UT|Xm+3> U, |xmss. (5.154)

Recall the definition of R:

R2[U] = —[(93, {]]aﬂﬂat(p + [61527 ZG[% ae]atgo] : @77
+ (07, Z0]0,0m + D*P[n] - (020, 820, 0:0m).

Then, (5.154)) is a consequence of Steps 4, 5 and 6.

We have completed the proof of Proposition [5.30} [

Now, we can return to the proof of Proposition [5.26| that is, the estimation for R[U]| —
R[U,,] + J (A[U] — A[U,,]) 08U,,. Since we already dealt with the R terms in Proposition
[5.30] we are left to prove that

€)™ ( (A[U] = A[Uyp]) 9§ Usp), i1 < 0 ([Uaplgss + [Unlicnss ) [Uplicmsn,  (5.155)
and
€™ (J (A[U] = A[UapliUap)), e < @ (IW0aplgres + Uy lomss ) Uy e (5.156)
Recall from the definition of A that
(JA[U) ), = ~0u(0[U1G ) — Gln. ] (Z[U)GE ) + G, 021 pup,
and

(JA[U]G/U,,), = —0[U]0,0}¢ + Z[U]Gn, a:]é}e — Z[U]G[n, a.)(Z[U]é}n)
— (9+ Z[U),2[V1) & + Plaléin.

We observe that the terms are of the same nature as the ones we estimated above. Thus,
just like we did previous estimations, to prove ([5.156)), it suffices to make use of Propositions

and Steps 2 and 3 of Proposition |5.30]
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A.4.3 Proof of Proposition

Before we begin the proof, we shall give some useful estimations regarding the subprincipal

term QU] — Q[U,,].
Proposition 5.31. For m > 2 and s = 5, we have that

&Y™ (Qu[U) = @l Uup]) g2 < & (|Uaplicgs + | Uplsomss ) | Urliomss
and

162" (Qa[U) = QulUup) 111 < w (|Unpl s + | Urlicnss ) | Url e

The proof is essentially a consequence of Propositions [5.28] and Steps 2 and 3 of
Proposition [5.30, We shall omit it. However, see [88, Proposition 7.27] for more details.

As in [88], we shall give the energy estimates on the equation satisfied by W = R[U]03U,,

where R[U] is defined as
1 0
A= (g v):

We find that W solves the problem
oW = J(L[UIW — JRJ (Q[U] — Q[U,,])) + RS. (5.157)
for L defined such as L[U] = (R[U]™1)" A[U]R[U].
We present the following result, regarding the quadratic form associated to L[U]:

Proposition 5.32. We have the estimates

| Wixo
W (|Usplxg, + 1 Urlxs)”

(LIUIW, v) < (|Usls, + | Urlxe)| Wl Vo,

Moreover, form =2 and s = 5, if a <m

([o0,, LLU1] W, V)|<w<|Uap|ng+s+|Ur|Xm+3>|mxm|V|Xo.

(L[OIW, W) + | W[]> >

This is, again, a consequence of of Propositions and Steps 2 and 3 of Proposition
5.30 along with Sobolev embedding inequalities. We shall omit it. See [88, Proposition 7.28§]
for more details.

Thanks to Step 2 of Proposition [5.30], for s > 5, we have that
|W|Xm < W <|Uap|X$+5 + |U7»|Xm+3> |UT|Xm+3

and
[Urlxnss < w ([Uaplypes + [Urlionss ) (Wxm|Urlys)
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Ultimately, this means taht it is equivalent to estimate W or d?U,. We thus consider the
equation solved by

,0°W = J (L[U]0°W + [0%, L|[U]]|W — 0“JRJ (Q[U] — Q[U,,])) + 0*(RS).  (5.158)
We take the L? scalar product of with
M = L[U]0°W + [0%, L[U]|W — ¢*JRJ (Q[U] — Q[U,,]) .
From the skew symmetry of J and the symmetry of L[U], we get the identity

% G ("W, L[U]6*W) +za> _ e, (5.159)

where

I% = ("W, [0%, L[U]]W) — ("W, * (JR[U]J (Q[U] - Q[U4))) ;)

g0 = % (0°W, [&y, L[U|6°W) + (6°W, 3,[2%, L[U]|W)
— ((90‘W, 0.0 (JR[U]J (Q[U] — Q[Uap]))) + (./\/l, 80‘(R[U]S)) .

We give the following proposition, that estimates each term arising in the energy identity

E159).

Lemma 5.33. We have the estimates
7 <@ (| Unplxge + 1Tl ) ([Tplxmss| Slom + U)ol <m

and
221 < @ (1Unplxgre + [ Uplxmss ) | Uy lxess| Uplmiz o] < m,

Lemma follows from Propositions and [5.32] For a proof in the case three dimensional
can be found in |16, Lemma 7.31].

We also consider the following estimate

Lemma 5.34. Let U, be a solution of (5.85)). Then, for m = 2 and s =5,

U)o <@ (Irapls + | Taplgees + [ Trlipes ) [ U Boms

o
dt
Moreover, we have the estimate

3082 < w (|Unplxges + Ul ) (1007 Uplo + Uy + mupllen)  4<U<m+3,

Proof. To prove the first estimation, it suffices ti multiply by (1, B¢)!, integrate in R and
use the same kind of estimates we have been using before, such as (5.127]) Proposition m

and Proposition [5.29]

For the second estimation, one should apply d:* to (5.126)), taking the L?-norm and using
the typical estimations used in Propositions and [5.29| [ |
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Now, let as define the energy

Ho(t) = = (0°W, L[U]0°W) + I°.

N —

We also define for m > 2,1 <1< m,7 € [t,0],t <0,

ﬁm(T) = 2 Fm_h":[l,m('r) + F’UT(T)&?’?

1<i<m
for I' large and
Him= D, HatT D, Ha
1<]al<l 1<l
o' #0 a’=0

for o denoting the time derivative represented by «, that is, @ = (¢/, a®).
Lemma 5.35 ( |16, Lemma 7.35| ). For every t < 0, there exists I' such that for every
T € (t,0), we have that

| U(T) | xmes

w <| Uap|X(')rg4t»s + ‘ UT|XZVL+3)

Hon(T) =

We now can complete the proof of Proposition |5.25, From (5.159) and Lemma we

get for t <7 <0,

d -~
E/Hm(T)

Consequently, we can integrate in time for [¢,0] and use Lemma [5.35, along with the fact

Uaplxpss + sl ) (07 mes +1S() )

Sw (’rap’X{"“

that
Uaplxge + Ur s ) [7ap(0) s

[Hon(O)] < @ (rapl s
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Chapter 6

Conclusions and Perspectives

6.1 Conclusions

This work is concerned with the study of long time asymptotics for the following dispersive
models, mainly related to fluid dynamics: Schrédinger, Hartree, Zakharov, Klein-Gordon
Zakharov, Zakharov-Rubenchik/Benney-Roskes and Zakharov Water waves model.

The results obtained in the Part [II] of this work essentially consist of a deep analysis of
virial technics to obtain the following:

e Decay of (small) odd solutions of the Schrédinger equation,
iy + Upe = pV (2)u + [ufPtu, (t,2)eR xR, for1<p<5. (6.1)

for which we were able to approach the super critical case p < 3.
e Decay of odd solutions of the defocusing Hartree equation,

iy + gy = 0 (|2« [u]*)u, (t,z)eRxR, o=1, (6.2)
using a virial method to deal with the one-dimensional case.
e Decay in compact intervals and in far field regions for Zakharov system:

iu, + Au = nu, (t,z) e R xR,
ng —An = Alul?,  (t,7) e R xR,

and Klein-Gordon Zakharov

Uy — Au + cu = —nu, (t,z) e R x R,
ng — An = Alul? (t,z) e R x R.

In Part [I11] of this thesis we studied Zakharov-Rubenchik/Benney Roskes:

100 + wdi = y(n — 500 + qlv’)¥, (tz) eR xR
00 + 0. (n — ap) = —70:(|v), (t,z) eR xR
00m + 0. (Bp — an) = Savd.(|¢¥?), (t,z) eRxR
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where

2 o «
w>0, >0, v>0, f—a">0, 0<6<1, and q.—7+m.

We proved decay for the energy norm in far field regions. Also, being able to use the un-
derlying characteristics curves of the model, we gave decay properties in growing compact
intervals, outside the light cone and around zero.

Part [Vl deals with the Zakharov Water Waves model:

om = G[n,aly

G[n,alp + Vxp - Vxn)*
oo = 1 Joxpf? + 1G0T Voo Vi)

AV
1+ [Vxn| 1+ |Vxn]?

in a domain defined by
Q; = {(z,2) e R® such that —h+ A. <z <n(t,z)}.

We proved the existence of soliton-like solutions of flat-bottom nature approaching a change
in the domain.

6.2 Future Work

6.2.1 Decay for non-small odd solutions to semilinear Schrodinger
equation

We already know that for the one dimensional Schrédinger equation (6.1]), there is decay in
fixed (non-growing) intervals for small, odd solutions. The oddness condition rules out of the
result soliton solutions and breathers. On the other hand, the fact that we are considering
fixed intervals, allows us to forget about not only travelling waves, but also solutions that
can be written as a sum of solitary waves with different speeds (and sufficiently away from
each other) plus radiation. This is due to the fact that, since such solitons are moving at a
speed different to zero, then for any given fixed interval, one can wait sufficiently long and,
eventually, all solitons move away from our space interval.

With this in mind, the smallness condition is not strictly necessary for ruling out non-
decaying solutions. In fact, in our previous work, such condition is only used to control terms
arising from the non-linear part of the equation. Consequently, it is expected that decay
still holds for non-small odd solutions to focusing NLS.
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6.2.2 Decay result for focusing Hartree equation

The focusing case of the Hartree equation turns out to be more challenging, as is the
case where solitary waves exist. However, solitons for the Hartree equation are even, which
means that the oddness condition is sufficient to rule out such solutions. In consequence, it
is expected that decay for odd (and, possibly, small) solutions for the focusing
Hartree equation (o0 = —1) still holds.

Fractional derivatives for the better understanding of Hartree’s non-local linearity

In order to prove decay for with ¢ = —1, we need to be able to control the non-local
part of the equation. Then, it would be useful to take into account the decay that the non-
local term presents in the definition of the weighted norm. Indeed, it should be sufficient to
define the modified momentum as

P(t) = ImL@ <§> u(t, x)u,(t, z)d.

where

2/ —1(1+v)
o(x) = AJ (1+s%) 2 ds
0

for some v > 0 and A > 1. Then, a weighted norm appropriate for such virial approach would
be

—L+v
ol = [ (1420 (utta)? + st 2)) do

Consequently, Hardy-Poincaré type inequalities, along with an appropriate definition of
the fractional derivative and an intensive study of fractional analysis should help solve this
problem.

6.2.3 Behavior of solitons for Zakharov Water Waves models under
changes in the bottom of the fluid

After proving the existence of solitary waves for the non-flat bottom problem before it
encounters the changing point, a natural second step constitutes the study of the interaction
between the constructed solution (7, )" and the change of the bottom, represented as a
(sufficiently small) exponentially decaying function a..

A similar problem was introduced by Mutioz [5] for the gKdV equation, where the the
problem of existence and global behavior of solitons with a slowly varying (in space) per-
turbation was considered. In the mentioned work, virial identities were used to prove that
such slowly varying media induce on the soliton dynamics large dispersive effects at large
times. Because of the similarities between the dynamics of the Zakharov water-waves system
and the KdV equation (and between the solitons themselves), it seems fitting to rely on the
analysis given by Munoz in [5].
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An interesting new problem to consider would be the study for the solitons dynamics
under a slowly varying bottom for the 3-dimensional system . In Chapter ,
the construction of the approximate solution in is mainly based on properties of the operator
that arises when linearising the equation about the solitary wave. Roughly speaking,
the linearised equation about the solitary wave reads

Ot (Z) = JAQ.] (Z) :

where J is a skew-symmetric matrix and A[Q.] is a symmetric operator on L? x L%, One
of the main ingredients would be a positiveness result for A[Q.] under the orthogonality
condition (J0,Q.,U) = 0, for U = (n,p)". Nevertheless, such result can already be derived
from [6]. Then, it seems a natural second step to analyze the long-time behavior of solitary
waves and their interaction with a change of bottom for the 3-dimensional case.

One of my main objectives in this area is to consider the collision of two small solitary
waves moving in different directions. Using numerics, the interaction of two solitary waves
for the case without surface tension was extensively studied by Craig, Guyenne, Hammack,
Henderson and Sulem in [I]. This is a very influential paper, and establishing rigorous results
regarding the collision itself would be of great importance.
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