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CONCEPTUAL STRUCTURAL DESIGN OF SHEAR WALL BUILDINGS
LAYOUT BASED ON ARTIFICIAL NEURAL NETWORKS

In the structural design of shear wall buildings, the initial process requires the interac-
tion between the architecture and engineering teams to define the appropriate distribution
of walls, a stage typically carried out through a trial-and-error procedure, without any con-
sideration of previous similar projects. For the engineering analysis, first, the wall thickness
and length definition, their location, and in some cases, the presence of new wall sections,
are required to fulfill not only architectural requirements but also engineering needs such as
building deformation limits, base shear, among others. For this reason, the present work
develops a structural design platform based on artificial neural networks (ANN) to design
the shear wall layout for reinforced concrete wall buildings.

In the first place, the study includes surveying the architectural and engineering plans
for a total of 165 buildings constructed in Chile; the generated database has the geometric
and topological definition of the walls and slabs. As a second stage, an ANN model was
trained for the regression of the wall segments’ thickness and length, making use of a feature
vector that models the variation between the architectural and engineering plans for a set
of conditions such as the thickness, connectivity (vertical and horizontal), area, wall density,
the distance between elements, wall angles, foundation soil type, among other engineering
parameters, archiving remarkable results regarding the coefficient of determination (R2) of
0.995 and 0.994 for the predicted wall thickness and length, respectively. However, a regres-
sive model of this nature does not incorporate spatial detail or contextual information of each
wall’s perimeter; also, the prediction of other parameters such as the wall translation has a
poor performance. For this reason, as a third stage, a framework based on convolutional
neural network (CNN) models was proposed to generate the final engineering floor plan by
combining two independent floor plan predictions, considering the architectural data as in-
put. The first plan prediction is assembled using two regressive models that predict the wall
engineering values of the thickness, length, wall translation on both axes from the architec-
tural plan, and the floor bounding box width and aspect ratio. The second is assembled using
a model that generates a likely image for each wall’s engineering floor plan. Finally, both are
combined to lead the final engineering floor plan, which allows predicting the wall segments
design parameters and proposes new structural elements not present in architecture, making
the methodology an excellent candidate to accelerate the building layout’s early conceptual
design.
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DISEÑO ESTRUCTURAL CONCEPTUAL DE LA CONFIGURACIÓN DE
MUROS DE CORTE EN EDIFICIOS BASADO EN REDES NEURONALES

ARTIFICIALES
En el diseño estructural de edificios de muros de corte, el proceso inicial requiere la inter-

acción entre los equipos de arquitectura e ingeniería para definir la configuración adecuada
de los muros, una etapa que suele llevarse a cabo mediante un procedimiento de prueba y
error, sin tener en cuenta proyectos similares anteriores. Para el análisis de ingeniería, en
primer lugar, se requiere la definición del espesor y la longitud de los muros, su ubicación,
y en algunos casos la presencia de nuevas secciones de muros para cumplir no sólo con los
requisitos arquitectónicos, sino también con las necesidades de ingeniería, como los límites
de deformación, el corte basal, entre otros. Por esta razón, el presente trabajo desarrolla
un framework basado en redes neuronales artificiales (ANN) para diseñar la configuración
estructural en planta de muros en edificios de hormigón armado.

El estudio incluye, como primera etapa, el levantamiento de los planos de arquitectura e
ingeniería de un total de 165 edificios construidos en Chile; la base de datos generada cuenta
con la definición geométrica y topológica de los muros y losas. Como segunda etapa, se
entrenó un modelo ANN para la regresión de los espesores y longitudes de los segmentos de
muros, haciendo uso de un vector de características que modela la variación entre los planos
de arquitectura e ingeniería para un conjunto de condiciones como el espesor, la conectivi-
dad (vertical y horizontal), el área, la densidad de muros, la distancia entre elementos, los
ángulos, el tipo de suelo de fundación, entre otros parámetros de ingeniería, logrando no-
tables resultados en cuanto al coeficiente de determinación (R2) de 0.995 y 0.994 para la
predicción del espesor y largo. Sin embargo, un modelo regresivo de esta naturaleza no in-
corpora el detalle espacial ni la información contextual del perímetro de cada muro; además,
la predicción de otros parámetros como la traslación del muro no presenta un adecuado de-
sempeño. Por ello, como tercera etapa, se propuso un framework basado en modelos de redes
neuronales convolucionales (CNN) para generar el plano final de ingeniería combinando dos
predicciones de plano independientes, considerando los datos arquitectónicos como input. El
primer plano de planta se realiza mediante dos modelos regresivos que predicen los valores
de ingeniería del grosor, la longitud, la traslación de los muros en ambos ejes a partir de la
planta arquitectónica, y la anchura y relación de aspecto del cuadro delimitador del piso. La
segunda predicción se realiza mediante un modelo que genera una imagen probable del plano
de ingeniería para cada muro. Finalmente, ambas se combinan para obtener el plano final
de la planta de ingeniería, lo que permite predecir los parámetros de diseño de los segmen-
tos de muro y proponer nuevos elementos estructurales no presentes en arquitectura, lo que
convierte a la metodología en un excelente candidato para acelerar el diseño conceptual de
la configuración inicial de los muros de un edificio.
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Chapter 1

Introduction

1.1. Motivation
The wall layout selection in reinforced concrete shear wall systems, commonly used to

sustain earthquake actions given their significant lateral stiffness and strength, is an ex-
tensive interaction process between the architectural and structural engineering groups. In
some countries (e.g., United States), the structural configuration usually consists of a few
rectangular walls [1], while in places such as Chile, Japan, or Europe, it is common to find
wall systems with a non-uniform distribution composed of several smaller cross-section ele-
ments. In Chile, the residential buildings’ configuration is characterized by many walls with
complex cross-sections [2–4] (Figure 1.1), usually established due to architectural reasons.
Thus, the interaction between architecture and structural engineering teams is first focused
on wall thickness and length definition, their location, and in some cases, the presence of
new walls to fulfill not only architectural requirements but also engineering needs such as
building deformation limits, base shear, among others.

Figure 1.1: Example of a typical Chilean building wall layout.

A vast amount of data is generated from this traditional design process, usually, as ar-
chitectural and engineering floor plans, which effectively convey the geometric and semantic
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information of the structure [5]. This massive amount of data, coupled with the increasing
development of technology, computing power, and artificial intelligence (AI), raises the ques-
tion of whether it is possible to use it to speed up the design process, automatically obtaining
the shear wall layout of the building, whose calculation resulted from learning the knowledge,
experience, and regulations embedded in hundreds of previous floor plans. In other words: Is
it possible to capture the DNA of structural systems based on existing designs, for example,
the typical Chilean construction?

In order to answer this question, the present work proposes the study and development of
an AI framework that allows to automatically calculate the length, thickness, displacement,
and the proposal of new structural elements from the architectural floor plan information,
with the ultimate goal of accelerating the design process of the wall’s layout. The thesis hy-
pothesizes that an algorithm of this nature allows achieving an adequate structural pre-design.

Within engineering, the principle of AI aims to learn from an input and output set of
data to simulate the relationship, even if the interdependence is unknown or the physical
phenomenon is difficult to interpret [6]. Machine learning (ML) is an area of study within
AI that allows a computer to learn without being specifically programmed [7]; ML algo-
rithms can be classified into two main categories: unsupervised learning (UL) and supervised
learning algorithms (SL) [8, 9]. UL algorithms learn by identifying the relationships in the
dataset features, such as separating the data into clusters with a certain similarity degree
or applying dimensionality reduction techniques. On the other hand, SL algorithms require
the separation of the data in training and validation datasets. Through the training dataset,
SL develops an algorithm that uses pre-specified features (input) to predict labels (output);
the validation dataset is later used to evaluate the model’s effectiveness. Artificial neural
networks (ANN) are among the most common SL algorithms, consisting of three or more
interconnected neuron layers, typically referred to as the input layer, the hidden layer, and
the output layer. Neurons receive the linearly weighted neuron output from the previous
layer, apply a non-linear activation function, and subsequently feed the neurons connected
in the following layer. The connections’ weights are updated in the network training process
to minimize the prediction error [10].

Convolutional neural networks (CNN) are another standard SL algorithm in the field of
machine learning, widely applied in computer vision [11] due to their intrinsic relationship
with the two-dimensional tensor processing, such as the pixel matrix of an image. CNNs have
a topology composed of convolutional layers, non-linear processing units, and sampling layers.
The convolutional layers apply a convolution operator on the input through a kernel matrix
(also known as filters), transforming the data so that certain features become more dominant
in the output; for example, a 3x3 kernel can sharpen an image by assigning a higher value to
the center pixel. The kernel matrices, commonly used in image processing, can be manually
defined to perform different tasks such as edge detection, blurring, or contrast change; how-
ever, those trained in a CNN model allow the extraction of more abstract non-trivial features.
The convolutional layers’ output is later assigned to a non-linear processing unit (activation
function), which helps in the abstraction capacity while learning and provides non-linearity
in the feature space, generating different activation patterns for different responses, facilitat-
ing the learning of semantic differences between the data. The activation function output is
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usually followed by a sampling layer (subsampling or oversampling), summarizing the results
and keeping the input invariant to geometric distortions. Within computer vision, CNNs
have had a significant boom in detection, segmentation, classification, generation, and image
recovery tasks [12].

The use of ML algorithms in structural engineering covers a wide variety of topics [13],
such as structural health monitoring [14–17], structural design [18], element strength design
[19], seismic engineering [20], building construction and life cycle [21, 22], among other areas.
On the other hand, the usage of images and CNN models in civil engineering is common
in fields such as the monitoring of displacement, strain, stress, and vibration of structures,
dynamic characteristics identification, and cracks inspection and characterization [14, 23–
25]. However, there is no application of ML-based algorithms in the wall layout design of
buildings powered by a prior database. Zang and Muller [26] present a numerical procedure
based on topology optimization through an evolutionary algorithm, in which architectural
and structural considerations are taken into account for the objective function. Tafraout et
al. [27] perform the structural design of RC wall-slab buildings through a genetic algorithm
model that considers the wall’s length, floor area, and torsion. Lou et al. [28] optimize the
shear wall layout through a meta-heuristic algorithm and support vector machine (SVM) for
minimizing the structural weight, constrained on the story drift and period ratio. Similarly,
Talatahari and Rabiei [29] use a meta-heuristic algorithm for optimizing the shear wall lay-
out, considering the structural costs, flexural, torsion, shear, and drift constraints into the
objective function. However, these solutions do not track previously accepted solutions in
the design, and in most cases, the objective function relies on complex hand-crafted metrics,
which are hard to generalize for different structural conditions or realities.

Since ML models allow characterizing the complex relationship between the input and out-
put, this thesis chooses neural networks to obtain the shear wall’s layout pre-design, which
learns the complex interaction between architectural and engineering plan information from a
curated training dataset. As a first approach, a regressive ANN model was developed, named
Sequential model, to predict the thickness and length of the rectangles that constitute a wall
in the engineering plans (output) based on an architectural 30-feature input vector, archiv-
ing remarkable R2-value results1. For this purpose, a new database was built considering
165 existing reinforced concrete residential Chilean buildings, which led to calculating the
geometric and topological features of the wall segments, called the Regression Engineering
Neural Estimator (RENE). Each project in the novel database considers three floor levels
(basement, first floor, and typical floor) for the first version of the architectural plan and the
latest version of the structural engineering plan.

Although the ANN model obtained an adequate representation of each wall’s thickness and
length, it cannot create new structural elements in the engineering plan. Also, the prediction
of other variables than the rectangle geometry has poor performance because the proposed
30-feature vector (RENE), which accounts for each rectangle’s geometric and topological
properties, lacks an intrinsic spatial component of the surrounding walls. The proposition of
new structural elements is an essential task within engineering design; in certain situations,
the original architectural layout does not satisfy the structural requirements, or the incorpo-
1 Coefficient of determination, a measure to evaluate the linear fit of the predicted value.
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ration of new walls can improve the building’s response or performance.

For the reasons mentioned above, a CNN-based framework was proposed to generate the
final engineering floor plan by combining two independent plan predictions, which consider
the architectural data as input, such as the numerical 30-feature vector (RENE), and the
surrounding walls’ image for each rectangle. The first plan prediction is assembled using two
regressive models for the prediction of different design parameters of the wall rectangles, such
as the thickness, the length, the translation on both main axes between the architectural and
engineering plans, the floor offset between the geometric center and center of mass on both
main axes, and finally the change of the width and aspect ratio of the engineering floor’s
bounding box. The CNN regressive models show a performance improvement compared to
the Sequential model that does not consider the images as input. The second plan prediction
is assembled using a model that generates the most likely engineering image given an archi-
tectural input for each rectangle (images and numerical features) to propose the existence of
new walls, based on the analysis of similar cases found in the training process. In this con-
tribution, the images processed by the convolutional layers allow the extraction of a greater
quantity of low, medium, and high-level features (level of abstraction) [30] of the geometric
and topological building wall distribution properties. Finally, both independent predictions
can be combined to generate the engineering plan in the early process of the building wall
layout’s conceptual design. In that case, the structural design time is reduced by generat-
ing suggestions in the geometry, the position of each existing wall, and the appearance of
new structural elements, propositions learned in the model training process using a database
composed of hundreds of past validated projects.

The contribution of this thesis comprises a novel database of 165 Chilean projects, a feature
calculation methodology for modeling the wall objects (RENE), an association mechanism for
creating input/output pairs between the architectural and engineering plans, and finally, a
framework for the structural design of shear wall buildings based on artificial neural networks
(ANN, CNN). The thesis also contributes two published papers (2021) on the Engineering
Structures Journal (Q1), “Structural design of reinforced concrete buildings based on deep
neural networks” [31] and “Use of convolutional networks in the conceptual structural design
of shear wall buildings layout” [32].

1.2. Problem statement
Given the rise of artificial intelligence, the development of technology, and the large amount

of data that is generated in the traditional structural design process, the problem posed in
the thesis is whether it is possible to develop a methodology that allows obtaining the con-
ceptual design of the Chilean residential building’s wall layout in an automated fashion, thus
accelerating the structural pre-design process.

Since artificial neural network algorithms have had a great boom in the last decade, and
allow modeling the regression of complex interactions between input and output domains
through the training process, is that an ANN/CNN framework is proposed to predict the
engineering parameters of the wall’s segments length, thickness, displacement, and new struc-
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tural elements, considering as input the information from an architectural floor plan; that is,
the algorithms are trained to encode the DNA of the Chilean building design.

1.3. Research questions
From the proposed problem, the following questions arose:

• How is it possible to capture the structural information from a Chilean shear wall layout
building so that a regressive algorithm can process it?

• How can the regressive input-output pair be assembled, which relates the architectural
and engineering information from the floor plans?

• Which are the wall’s engineering parameters that can be predicted from a regressive
model?

• What is the network architecture of an ANN that allows obtaining an adequate result
when predicting the wall’s engineering parameters, considering time and computing
resources constraints?

• Is it possible to capture more spatial detail using a CNN model, and how can the
framework be configured to improve the engineering floor plan prediction?

1.4. Hypothesis
An ANN algorithm can achieve an adequate structural pre-design of the shear wall layout

for Chilean residential buildings. Also, CNNs allow for improved predictions by obtaining a
greater number of high and low-level features from the architectural floor plans.

1.5. Objectives
1.5.1. Main objectives

The main thesis objective is the development of a structural wall layout design framework
driven by an artificial neural network model, which allows to predict the engineering design
parameters and generate the final structural plan from architectural input data.

1.5.2. Specific objectives
• Construction of a building database that considers the geometric and topological proper-

ties regarding each floor plan, used for the machine learning models train and evaluation
processes.

• Feature engineering, a process that aims to describe each wall segment’s geometric and
topological properties through a numerical vector, which the machine learning models
later use to train and test the results.
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• Evaluation, characterization, and regression of wall segments through conventional arti-
ficial intelligence ANN/CNN models. This process considers the research of the model’s
architecture, properties, and the data flow needed for archiving the best results in a
finite amount of time and resources, aiming to predict the engineering design parameter
with high accuracy.

• Assembling the engineering floor plan from the predicted wall segments parameters,
including evaluating and implementing the algorithms, constraints, and heuristics to
improve metrics such as the intersection over union (IoU).

• Results analysis and comparison between the predicted and real structural floor plan
for all database projects.

1.6. Thesis structure
The thesis structure is composed of six chapters, whose description is shown below:

1. Introduction
This chapter illustrates the thesis motivation, including a revision of the concepts, liter-
ature, and the overall summary of the work. The thesis research question, hypothesis,
objectives, and scope are also described.

2. Database construction
This chapter describes the development and details of the reinforced concrete residential
Chilean buildings database.

3. Feature engineering
The third chapter illustrates the design and calculation of the 30 features (RENE) used
by the developed ML models and frameworks, including the data augmentation and the
association mechanism for assembling the train, validation, and testing databases.

4. ANN-based model
The fourth chapter describes the first proposed ANN model for predicting the thickness
and length of each wall segment, considering the model formulation and the results in
terms of R2, correlation charts, and confusion matrices.

5. CNN-based framework
The fifth chapter describes the CNN framework that generates the final engineering floor
plan by combining two independent plan predictions, where each prediction, operation,
and final assembly process is described. The results in terms of R2, the correlation
charts, histograms, confusion matrices, and intersection over union metrics are detailed.

6. Conclusions
The last chapter summarizes the conclusions from the proposed database, features, and
frameworks.
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Chapter 2

Database construction

Database creation is a critical process while developing artificial intelligence-based models
since they are used for both training and evaluation. Furthermore, the information contained
in the data must account for features and properties of the domain under study, allowing the
algorithms to learn and predict the fine-grained relationships embedded. Thus, this chapter
covers the description and construction of the database, composed of 165 Chilean reinforced
concrete residential buildings, which are discretized to store walls and slabs with a high level
of detail.

2.1. Database description
The database comprises 165 projects of reinforced concrete residential buildings con-

structed in Chile, stored as digital plans for the basement, first floor, and typical floor,
considering the first architectural version and the latest structural engineering plan version.
The buildings are located in 17 cities throughout the country, as illustrated in Figure 2.1,
organized by seismic zone and soil type [33]; however, 65% of them are located in the capital
(Figure 2.1b), Santiago, followed by the northern coastal cities of Iquique and Antofagasta,
with an 11.8% and 11.2% respectively (Figure 2.1a). The distribution of the project’s cities
location and soil type is detailed in Figure 2.2.

(a) Location in Chile by seismic zone (b) Location in Santiago by soil type

Figure 2.1: Location of the projects, by seismic zone and soil type [33].
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For each project, the polygon of the contour of the walls and slabs is obtained from the
digital plans as an array of planar coordinates, in addition to the principal results of the
design and structural analysis, such as fundamental periods in two main directions, seismic
mass, foundation soil type, among other 51 parameters.

Iquique

11.8%Quilpué
2.5%

Antofagasta
11.2%

Santiago
65.2%

Valparaíso
1.9%

Other (12)

7.5%

Project city location

(a) Project’s city location

Soil type D

8.5%
Soil type C

12.1%

Soil type A  8.5%

Soil type B
70.9%

Project seismic zone

(b) Project’s soil type

Figure 2.2: Distribution of project’s location and soil type.

The projects were designed between 2004 and 2018 (Figure 2.3a) by 52 different archi-
tecture offices and calculated by the same structural engineering office. The buildings have
between 5 to 35 floors, with an average floor height of 2.5 meters (m), and a maximum of 5
underground parking lots (basements), which yields a total height that ranges between 10 m
and 88 m (Figure 2.3b). The average slabs’ thickness is 16 centimeters (cm), and the average
wall density corresponds to 3.1% in both directions (Figures 2.4a and 2.4b), typical values
within Chilean residential buildings [34]. The fundamental periods on the x and y-axis cor-
respond to 0.63 seconds (s) and 0.78 s, respectively (Figures 2.5a and 2.5b), where the x-axis
corresponds to the larger side of each structure (Figure 1.1). It is important to note that
the projects do not share any particular specifications; buildings with more than five floors
were randomly selected. Finally, all material grades (concrete and steel) were practically the
same, such that the material strength was not considered in the database.
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(b) Building height

Figure 2.3: Project’s building characteristics.
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(a) Wall density on x-axis
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(b) Wall density on y-axis

Figure 2.4: Project’s wall density.
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Figure 2.5: Building’s fundamental period.

2.2. Data acquisition process
Given that the typical wall layout of residential buildings in Chile presents complex wall

cross-sections [2–4] (Figure 1.1), the data analysis using complex polygons and images with-
out contextualization or labeling is complicated and not extensible. Thus, in this work, it
was decided to create the database considering a wall (complex-cross section) as a series of
rectangles or wall segments connected by unique points on each floor, with an individual
coordinate system per project. In this way, it is possible to assemble the structure’s com-
plete geometry, calculate properties at wall and floor levels, identify projections, or detect
the elements’ intersection between floors.

For the database construction, a web application was programmed, illustrated in Figure
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2.6, which facilitates the manipulation of the plan images2 and provides tools for the creation
of projects, such as the importation of the wall and slab polygon coordinates from a text
file, 2D and 3D visualization of the structure, and the edition of the building objects like
walls, slabs, and floors using vector drawing tools. The application was made using PHP,
HTML, and Javascript languages3. The database structure comprised a total of 9 different
SQL tables and 161 fields.

a

c
b

e

d

Figure 2.6: Implemented software (MLSTRUCTDB) – Main components:
(a) Application menu to access the different modules, (b) Vector drawing
interface being able to create the structural elements in a simple way using
only an image of the plan, (c) Example of a wall discretization based on
rectangles and points, (d) 3D viewer of each structure, and finally (e)
Object structure of each project.

A project comprises a collection of floor plans in both architecture and engineering devel-
opment. Each floor has an image, a scale in pixel-meter factor, an offset that indicates the
displacement in planar coordinates relative to the lower floor, the height of the floor, and fi-
nally, its vertical position. A floor contains slabs and walls as objects; the slab in this context
was stored as the complete polygon obtained from the digital drawing, without considering
openings, and its thickness; the wall is a collection of points (Point) and rectangles (Rect).
A point consists of each vertex’s planar coordinates based on the floor coordinate system.
A rectangle is an element that represents the discretization of the wall, uniquely defined by
connecting two points with a certain thickness and insertion point (local direction). This
model makes it possible to determine the structure’s geometry with a high level of detail.
In order to simplify the problem, the beams were not incorporated in the database, neither
2 Saved as a PNG file with 9,000 pixels on the longest side for transparency support.
3 The programmed web application comprises 76,000 lines of code, and the Python software (later discussed)

yields 48,000 lines of code.
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were included the reinforcing bars, and it was assumed that the walls’ height is equal to the
height between floors. Figure 2.7 illustrates a simplified schematic of the object system; all
objects have a unique identifier used for linking and assembling the logical hierarchy.

Project

Floor

Slab Wall

Point Rect

Figure 2.7: Organization of the structural discretization objects.

The walls’ construction process consisted of four stages, represented in Figure 2.8: First,
the architectural and engineering plans were collected, correcting the digital drawing layers
(Figure 2.8a); then, the walls’ contour polygon (Figure 2.8b) was created and saved into a text
file per floor [35]. From these data, each polygon was processed, discretizing the complex
cross-section figure into a series of rectangles connected by points (Figure 2.8c), applying
various algorithms in the process, such as convex hull [36], vertex projection, outlier removal
with statistical methods, and planar graph analysis for identifying the connections. For each
wall, the implemented algorithm costs O(n3), where n is the number of vertices; despite the
high cost, n is ten on average, thus, the process takes less than a tenth of a second for an
entire floor. For automation purposes, it was considered that each corner of the wall must
be orthogonal with a tolerance of 10°, that there cannot be intersections between edges, and
that the thickness of each wall must be limited to a maximum of 0.5 m. Any other case
is considered rejected and created manually with the web application editor using the plan
image as a guide. Finally, the polygon is imported from the text file, processed, and located
in the plan’s correct position (Figure 2.8d).

(a) Original plan in dig-
ital format

(b) Polygon of the wall
contour

(c) Wall discretization
in rectangles and points

(d) Modeling of the
wall (a rectangle is high-
lighted)

Figure 2.8: Example of the walls’ discretization process.
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A database of 4000 previously verified polygons was used to validate the correct execution
of the algorithm; for each polygon, the topology was verified using a custom visualization
interface, illustrated in Figure 2.9. Due to the data’s significant variability, a visual inspection
was necessary for all projects’ walls after processing, detecting a rejection percentage of less
than 15%, which were manually corrected. Usually, the discretization error was associated
with the architectural plan, as the layers were not well defined, the polygons were invalid, or
in some cases, the thickness or angles between walls were too large.

(a) The software included tools for loading, visualizing, and testing the wall’s discretization. A floor example
is shown composed of 19 walls, 42 rectangles, and 61 points

(b) Example of a discretized wall (c) The wall distribution contains objects with different
angles, orientations, shapes, and thickness

Figure 2.9: Visualization of the geometry and topology for several wall
examples using the web application.

Slabs were processed similarly, differing only in the discretization, where the element was
saved as the complete perimeter polygon obtained from the digital drawings. Openings inside
the slab area, such as the elevator shaft, were not considered; outliers were also removed, and
in some cases, a manual correction had to be made. However, the relatively simple shape of
the elements leads to fewer errors in the whole process.
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Finally, the floors were adjusted to fit the vertical continuity of the wall objects. For such
purpose, an offset was calculated, that is, a displacement on the x and y-axis of each floor that
maximizes the area intersection between elements. The offset was obtained by performing
an iterative grid search ranging from 3 m to 10−8 m, requiring a visual inspection to ensure
the offset was adequate. On average, each project took about 6 hours to be entirely created,
imported, and corrected using the web application (Figure 2.6). The correction took most of
the time because the invalid discretized walls must be manually drawn over the plan images,
considering exact dimension and position. Figure 2.10 illustrates the 3D visualization of a
selection of ten structures, representing various configurations in shape and the number of
floors. Finally, Table 2.1 details the number of total elements included in the database at
different levels, such as the project, floors, wall points, wall rectangles, and vertices, used to
compute the feature vector (Chapter 3).

Figure 2.10: 3D visualization of a random project selection.
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Table 2.1: Number of total elements in the database.

Object Total
Projects 165
Floors 954
Slabs 954
Walls 28,527
Wall points 99,078
Wall rectangles 70,871
Vertices 287,088

2.3. Construction of the images for each rectangle
The surrounding walls’ image was built for each rectangle, both for architecture and en-

gineering plans, to incorporate greater geometric and topological features into the developed
models. The Python libraries Matplotlib and OpenCV [37] were used for image generation.
Each image has two classes of pixels: the background (white pixel) and the walls (black
pixel), where 5.4% of pixels correspond to walls. The proposed image size is 64x64 pixels
(px), where the source rectangle is centered and covers a region of 10x10 m, leading to a 5
m margin between the center of a rectangle and the perimeter of the image, a representative
distance within Chilean structuring [34], resulting in a factor of 0.156 m/px (meter/pixel).
In this way, walls with a thickness less than 7.5 cm disappear in the image, and the 20 cm
thickness walls, typical within the structures present in the database, cover a total of 2 px.
Figure 2.11 illustrates a 64x64 px image example from a source rectangle (highlighted in red)
with a cropped region of 10x10 m.

10 m
10

 m

64 px

64
 p

x

Source rectangle

Image crop

Figure 2.11: Image crop generation surrounding a rectangle in a plan
(architecture).
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The size of the cropped region is related to the type of structure under analysis. If a
limit of 10 cm per pixel is considered, a region up to 6.4x6.4 m (64x64 px image) can be
selected without compromising the wall rectangle’s definition. Figure 2.12 shows an example
of images from two rectangles with different m/px factors. It is possible to observe that the
32x32 px images (Figures 2.12a and 2.12d) suffer from significant information loss associated
with the walls of small thickness. In the case of 64x64 px images (Figures 2.12b and 2.12e),
they are similar to the 128x128 px ones (Figures 2.12c and 2.12f) in terms of shape, with
small differences in the elements’ thickness, despite being an image four times smaller in size.

A loss of detail or context is observed as the crop region becomes smaller than 10x10
m, as illustrated in Figure 2.13. On the other hand, the size of the image is related to the
convolutional layer’s parameter number and the model’s memory usage, such that the larger
the image, the better m/px factor can be achieved, at the cost of higher computing time and
resources while performing data processing, training, and evaluation. For these reasons, an
image size of 64x64 px was chosen in the development of all models.

(a) Ex. 1 – 32x32 px (0.312
m/px)

(b) Ex. 1 – 64x64 px (0.156
m/px)

(c) Ex. 1 – 128x128 px (0.078
m/px)

(d) Ex. 2 – 32x32 px (0.312
m/px)

(e) Ex. 2 – 64x64 px (0.156 m/px) (f) Ex. 2 – 128x128 px (0.078
m/px)

Figure 2.12: Resolution effect for two examples of images with sizes of 32,
64 and 128 px (pixels) with a 10x10 m region.
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(a) 10x10 m margin (0.156 m/px) (b) 7.5x7.5 m margin (0.117
m/px)

(c) 5x5 m margin (0.078 m/px)

Figure 2.13: Effect of the plan crop margin for a 64x64 px size image.
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Chapter 3

Feature engineering

The design and calculation of features provide the necessary information to machine learning
algorithms for train and evaluate the models, allowing them to learn the complex relation-
ships present in the data and predict new ones.

In this chapter, first, the numerical features used as input and output of the models are
detailed, which describe the discretized rectangular building objects in the geometric and
topological domains. Next, the features were augmented and associated to construct the
training pairs. This process is known as feature engineering and contributes the foundation
for the ANN algorithms development, later explained in this work.

3.1. Design and calculation of features
Since the regression’s central objective is at the rectangle level (wall segments), the fea-

ture calculation must account for geometric properties, such as the thickness, length, angle,
area, and inertia. Topological properties that indicate the relationship of the element with
the building’s objects (Figure 2.7) are also considered, such as the distance between walls
and the rectangle’s projection on the lower or upper floors. Finally, properties other than
geometry or topology, for example, the soil type and the seismic zone, are included. For the
calculation, a Python API was programmed, which downloads a project from the database,
assembles the building object hierarchy, and performs the algorithms. The implemented fea-
tures, named the Regression Engineering Neural Estimator (RENE) are detailed in Table
3.1; the ones estimated in two orthogonal directions or relative to the upper or lower floor
levels are represented with two values, yielding a total of 30 features.

From the geometric features, RectThickness belongs to the thickness of each rectangle,
obtained directly from the database. RectLength calculates the length of the rectangle as the
most significant distance of the convex hull [36] from the vertices of the contained points.
RectAngle is the angle respect to the minor axis of the floor (y), normalized between 0 and π.
RectFloorMassCenterDistance is the distance between the center of mass (MC) of the floor
and the center of mass of the rectangle; for the center of mass, the rectangles’ average area (Ai)
on each main axis (xi, yi) was considered (MCx = ∑

Ai ·xi/
∑

Ai and MCy = ∑
Ai ·yi/

∑
Ai).

RectWallMassCenterDistance is the distance between the center of mass of the wall containing
each rectangle and the center of mass of the floor. SlabThickness is the thickness of the floor’s
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slab to which each rectangle belongs. FloorMassCenterDistance is the distance between the
geometric center and the center of mass of each floor. FloorAreaNormalized is the sum of
the areas on each main axis of all walls belonging to the floor, normalized by the slab’s area.
FloorBoundWidth is the length of the floor’s minimum bounding box. FloorAspectRatio is
the aspect ratio of the length and width of the floor bounding box. FloorHeight is the height
of the floor that contains the rectangle (total height of stories at either the basement, the first
floor, or the typical floor levels). Finally, FloorInertiaNormalized is the sum of the decoupled
moment of inertia INx and INy calculated according to Eqs. 3.1 and 3.2, as:

INx =
∑(

Ix + Iy

2 + Ix − Iy

2 · cos(2α)
)

· 1
Ipx

(3.1)

INy =
∑(

Ix + Iy

2 − Ix − Iy

2 · cos(2α)
)

· 1
Ipy

(3.2)

Where Ix = Lt3

12 , Iy = L3t
12 , Ipx = BH3

12 , Ipy = B3H
12 , B and H are the length and width of

the bounding box; L, t, and α are the length, the thickness, and the angle of the rectangle.

Table 3.1: Description of the 30-feature input vector (RENE).

Feature Type Description No. (1)
RectThickness Geometry Rectangle thickness 1
RectLength Geometry Rectangle length 1
RectAngle Geometry Rectangle angle (0–π) (2) 1
RectFloorMassCenterDis-
tance Geometry Relative distance between MC of

floor and rectangle (2) 2

RectWallMassCenterDis-
tance Geometry Relative distance between MC of

wall and floor (2) 2

SlabThickness Geometry Slab thickness 1

FloorMassCenterDistance Geometry Distance between MC and GC of
each floor (2) 2

FloorAreaNormalized Geometry Sum of area in each principal axis
divided by slab area (2) 2

FloorBoundWidth Geometry Floor bounding box width (2) 1

FloorInertiaNormalized Geometry Sum of uncoupled inertia of all
walls normalized by floor inertia (2) 2

FloorAspectRatio Geometry Floor aspect ratio (2) 1
FloorHeight Geometry Floor height 1

RectTriangulationArea Topology Triangulation slab area of each
rectangle 1

RectProjectionIntersection Topology Rectangle’s area projection in lower
and upper floors (%) 2

RectThicknessProjection Topology Rectangle’s thickness variation in
lower and upper floors (%) 2

RectAxisDisplacement Topology Distance between connected
rectangle axis (2) 2

RectRelativeDistance Topology Normalized nearest distance to each
rectangle in a different wall (2) 2

PointConnectivity Topology Point connectivity (2) 2
ProjectData Other Building seismic zone and soil type 2
(1) Number of values per feature Total: 30
(2) Value modified with data augmentation
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Figure 3.1 illustrates a scheme of nine geometric features from a rectangle (hatched).
The center of mass (MC) and geometric center (GC) of the rectangle, wall, and floor, is
represented with a cross symbol.

Figure 6
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Figure 3.1: Scheme of a subset of nine geometric features from a given
rectangle (hatched).

Regarding the topological properties, RectTriangulationArea corresponds to the sum of
the triangle areas resulting from Delaunay’s restricted triangulation [38, 39] that shares an
edge with the rectangle, equivalent to a measure of the tributary area of the slab in such wall.
RectProjectionIntersection is the percentage of the intersection of the rectangle area with the
upper and lower floor rectangles, where 100% indicates that a rectangle has complete con-
tinuity and 0% indicates that the rectangle disappears; this parameter was calculated using
the Shapely geometric manipulation library [40]. RectThicknessProjection is the thickness
projection of each rectangle, to indicate the variation with respect to the lower and upper
floor levels. RectAxisDisplacement is the distance between the strong axes of the rectangles
connected by the two points on the same main axis. RectRelativeDistance corresponds to the
distance of the closest rectangle in a different wall on the same and different axis. Finally,
PointConnectivity indicates the number of connections that the two points of the rectangle
have, ordered according to their position on the Cartesian axes. Additionally, the project’s
main characteristics are also included as a feature (ProjectData), such as seismic zone and
soil type according to the Chilean seismic code [41].

Figure 3.2 illustrates a scheme of seven topologic features from a given rectangle (hatched);
RectAxisDisplacement-1 is not visible (zero value) as there is no other rectangle connecting
the element in Point 1 (bottom left) on the same axis. The red squared hatch in Figure
3.2 represents a rectangle on an upper or lower floor that intersects the element. The blue
triangular hatch represents the slab Delaunay triangulation area with the rectangle as an
edge; also, an adjacent wall with an L-shaped cross-section (gray rectangles) is included.
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Figure 7
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Figure 3.2: Scheme of a subset of seven topologic features.

It is important to note that if a building to be analyzed is different from the current
work is always possible to withdraw or propose new features; for example, in buildings with
different shapes, materials, design codes, locations, or more floor configurations. In this work,
the three-floor configuration, such as the basement, first, and typical floor, is considered in
RectProjectionIntersection feature.

3.2. Data augmentation
The projects’ features were calculated considering variations in the building floors’ angle

and scale, simulating different structuring possibilities, leading to an augmented database,
which helps the model training process, reducing overfitting [42]. Being sx and sy the scale
factors of each project, and θ the rotation angle in the plan, eight different combinations were
constructed, detailed in Table 3.2. In the case of the scale factors, it is only considered to
mirror or not the wall configuration on each axis (−1 or 1), and the rotation angle considers
four possible values (-90°, 0°, 90°, or 180°).

Table 3.2: Combinations used in data augmentation.

Combination θ (°) sx sy Dataset
1 0 1 −1 A, B, C
2 90 1 −1 B, C
3 −90 1 −1 B, C
4 180 1 −1 B, C
5 0 1 1 C
6 0 −1 −1 C
7 90 −1 −1 C
8 −90 −1 −1 C
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Thus, three different feature datasets were created, where dataset A is the original case
without alteration, containing a total of 36,916 rectangles; dataset B considers four com-
binations, with 147,651 rectangles, and finally dataset C consists of all eight combinations
described in Table 3.2, with 295,302 rectangles. It was experimentally evidenced that the
best results are obtained with dataset C. The angular and scale transformations introduced
by the augmentation mechanism modify 63% of the features, marked in Table 3.1 as note
(2). Figure 3.3 shows the correlation matrix where the features’ linear independence is ver-
ified, with a mean correlation for all features of 0.043 ± 0.22, indicating little correlation
for most cases. The highest correlation occurs in the thickness projection between floors
with a 0.9 value (RectThicknessProjection vs. RectProjectionIntersection), followed by the
correlation between wall areas on the x and y-axis with a 0.8 value (FloorAreaNormalized-
x vs. FloorAreaNormalized-y), and the aspect ratio of the bounding box with the width
(FloorAspectRatio vs. FloorBoundWidth), with a correlation of 0.7. Despite these single
pairs of high correlation values, those features are used as they improve the model response.
Figure 3.4 illustrates the histogram of all 30-feature values (RENE) of dataset C for archi-
tectural plans; some features take discrete values, such as the angle or the soil type.
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Figure 3.3: Correlation matrix of 30 rectangle features (RENE) in archi-
tecture with data augmentation (dataset C).
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Figure 3.4: Histogram of 30 rectangle features (RENE) in architecture
with data augmentation (dataset C).

3.3. Feature association
Each wall must be associated between the architectural and engineering plans to cre-

ate the regression’s model input/output vector, that is, given a rectangle in architecture
rA, a rectangle rB must be found in the engineering plans that better represents the pair
(rA, rB). This problem was solved by calculating a heuristic score Sc (Eq. 3.3) assigning
the engineering rectangles with a value above the mean plus a standard deviation for a
given architectural element; in this way, a single rA can be associated with several rect-
angles rB that share a similar score. Sc considers the weighted sum of six different fac-

tors, such as the distance between the geometric centers dG = χ

(
d(rAG,rBG)

D

)
, the smallest
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distance between the polygons dP =

χ(dPAB) dPAB < 0.75D

Sc(rA, rB) → 0 dPAB ≥ 0.75D
, the orthogonal dis-

tance between the strong axes of the rectangles dA = χ

(
d⊥(rAP ,rBP )

0.5D

)
, the angular difference

dθ =

χ
(

∆θ
30°

)
∆θ < 45°

Sc(rA, rB) → 0 ∆θ ≥ 45°
, the difference of the length dL = χ

(
|rAL−rBL|

rAL

)
, and

finally the percentage of the polygons’ areas intersection dI = ∩(ArearA
,ArearB

)
ArearA

, such that:

Sc(rA, rB) = 0.1dG + 0.3dP + 0.1dA + 0.25dθ + 0.2dL + 0.05dI (3.3)

Where D = 0.1
√

B2 + H2 corresponds to 10% of the diagonal distance with a mean of
5.3 ± 1.51 m, B and H correspond to the width and height of the floor’s bounding box.
χ(x) = 1 − |tanh x| is the proposed nonlinear normalization function, which gives greater
importance to values around 0 and almost zero-value outside the range (−3, 3), as illustrated
in Figure 3.5. rAG and rBG belongs to the geometric centers of rectangles rA and rB (similar
notation for other cases). d(x, y) is the Euclidean distance between two polygons on the
Cartesian plane. dPAB = min(d(rAP , rBP )), where rAP and rBP are the polygons of the
rectangles composed of four vertices. d⊥(rAP , rBP ) is the orthogonal distance between the
main axes of the polygons. ∆θ = |θrA

− θrB
| corresponds to the angular difference, where

θrA
and θrB

are the angles of the rectangles with respect to the minor axis of the building
plan. rAL and rBL are the lengths of the rectangles. Finally, ArearA

and ArearB
are the

representation of the rectangle’s polygon area. Since the heuristic mechanism compares each
rectangle with all the rectangles on its floor (n), the algorithm cost is O(n2), where n is 74
on average.
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Figure 3.5: Normalization function χ(x) proposed in the calculation of
the association score Sc.

The score Sc(rA, rB) can take any value between 0 and 1; however, after reviewing the
function’s behavior, a minimum tolerable value of 0.45 was established. The association is
not performed for values below this limit; that is, the rectangles in architecture that do not
have an engineering-related rectangle were associated with an element of zero thickness and
length, indicating that such architectural elements should disappear in the engineering plans.
The original idea was to consider only the closest rectangle (dP ), but this approximation does
not provide satisfactory results. From Eq. 3.3, the highest weights belong to the distance
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between polygons dP , the angular difference dθ, and the length difference dL, representing
75% of the final score. If only those parameters are chosen for the association, the score
results differ by 8.1 ± 4.1%; however, the pairing quality decreases. Table 3.3 summarizes
the total association pairs in the architectural and engineering datasets; for each case, 11%
of the architectural plans’ rectangles disappear in the engineering plans (no association).

Table 3.3: The number of associations for each dataset.

Dataset N° rectangles N° no association
A 36,916 3,956
B 147,651 15,798
C 295,302 31,643

Figure 3.6 illustrates the association results for two different building floors. The elements
that disappeared can be identified, illustrated with a light color, both in architecture (blue)
and engineering (red) plans. Figures 3.6a and 3.6b corresponds to a basement level, 3.6c to
a first-floor level, and Figure 3.6d to a typical floor type.

(a) Basement (b) Basement

(c) First-floor level (d) Typical floor level

Figure 3.6: Association examples between architecture (blue) and engi-
neering (red) plans.
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Chapter 4

ANN-based model

Artificial neural networks (ANN) are among the most common machine learning algorithms,
consisting of three or more interconnected neuron layers of which its connection weights are
updated through the training phase to minimize the prediction error. The algorithm learns
the complex interactions between the input and output domains through this process, creat-
ing a hyperdimensional mapping later used to predict new values.

This chapter summarizes the proposed network architecture based on ANN and the model
results while predicting the thickness and length of the wall segments. In the whole process,
the aim is to maximize the coefficient of determination (R2), which contrasts the difference
between the output and target. This value is improved through the model training, where it
learns the information embedded in thousands of geometric and topological rectangle features,
encoding the DNA of the Chilean residential building design.

4.1. ANN model formulation
A model based on artificial neural networks (ANN) was proposed, named Sequential

model, assembled by an input layer of 30 features detailed in section 3.1 (RENE), six fully
connected (FC) hidden layers with 1024 neurons each, and an output layer with the values to
predict the thickness (RectThickness) and length (RectLength) of the wall rectangles. ANN
has been used because of the simplicity of assembling complex model architectures by joining
different pieces (layers, number of neurons, and regularization) and the tools there exist to
manipulate them reliably.

The input and output data were normalized in the range 0–1 using Min-Max scaling
transformation. The model’s regularization was carried out with three batch normalization
layers (BN) [11] inserted at the network’s beginning. The dropout regularizing layer [43]
was not applied as it worsens performance for ratios of 0.2 to 0.5. The Keras library in
Python [44] with TensorFlow-GPU as a backend was used for the implementation. The layer
activation function corresponds to ReLU [45], the loss function is set as the Mean Square
Error MSE = 1

N

∑N
i=1 (yi − ŷi)2, and the optimizer was Adam with a learning rate (LR) α

of 10−3, β1 = 0.9, β2 = 0.999, and ε = 10−7 [46]. Uniform Glorot [47] was used as the weight
initializer; no regularization was applied in the kernel’s hidden layers. The model, illustrated
in Figure 4.1, has a total of 5,290,106 parameters, where 4156 of them are not trainable.
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Figure 4.1: Scheme of the deep neural network Sequential model architec-
ture for the wall thickness and length regression.

Since the number of neurons, hidden and regulation layers modify the model’s predictabil-
ity capacity, different combinations were manually tested to heuristically find the best con-
figuration in terms of the model’s coefficient of determination. No optimization algorithms
were used to determine these hyper-parameters that maximize the model response [48] due
to the dataset’s large size. In terms of the ANN algorithm cost, it increases exponentially
with the number of layers and neurons. Figure 4.2 illustrates the cost for several combina-
tions of layers and neurons in terms of the training time per epoch (Figure 4.2a) and model
number of parameters (Figure 4.2b), using a batch size of 64; in both situations, the larger
the architecture, more extensive is the time it takes to train and the memory needed.
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Figure 4.2: Artificial neural network costs considering the Sequential ar-
chitecture but with different combinations of layers and number of neurons.
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The model’s training was carried out with mini-batches of size 64 and a maximum of 100
epochs. After the end of each epoch, the batch data was randomly reordered to reduce the
variance. Early stopping regularization was used to avoid overfitting, with a tolerance of 40
epochs. Also, to accelerate the convergence, Keras ReduceLROnPlateau monitor was used
for reducing the learning rate of the model optimizer if the loss metric does not improve in
a margin of 15 epochs, with a decrease factor of 10−1 and a minimum delta of 10−4 for the
monitored value. The dataset partition in training and testing was 70% and 30% in random
order, respectively; on the other hand, from the training dataset, 20% of the data was used
for validation, and 80% to train the model.

4.2. Model results
The Sequential model results were analyzed in terms of the coefficient of determination

(R2) and the confusion matrix for both network output variables (thickness and length), using
only the non-augmented test partition. Without the model’s application, the R2-value for the
thickness and length of datasets A, B, and C is 0.833 and 0.962, obtained from comparing the
architectural and engineering rectangle’s features for each associated pair (section 3.3). Note
that the datasets have an identical value as they use the same test partition for comparison
purposes, only differing in the training group because of the augmented data; thus, 100%,
25% (1/4), and 12.5% (1/8) of the testing data were used in datasets A, B, and C, respectively.

Figure 4.3 illustrates the correlation of dataset C test partition without the model appli-
cation; it is worth noticing that the thickness (Figure 4.3a) presents a considerable dispersion
for values greater than 20 cm, a range that represents 34% of the data, characterized by its
discrete nature since typically the values are rounded to the centimeter. Also, near 11% of
the rectangles in the engineering vector have a zero-value thickness, due that these objects
could not pair with any architectural one during the association process (section 3.3). The
length (Figure 4.3b) has a better correlation, with greater dispersion in the case of walls
smaller than 5 m, a region that concentrates 83% of the data. The red trend lines in Figure
4.3 also indicate that the wall length in architecture is a reasonable estimate for the length
in engineering; however, a worse correlation is observed for the thickness output.

The mean and standard deviation of the ratio between the real engineering and archi-
tectural values are also shown in Figure 4.3 as “Real Engineering

Architecture .” It is worth mentioning that
the length ratio deviation is high because the extreme values of the distribution are larger,
mainly due to outliers of the heuristic association mechanism. 10.9% of the length ratio is
equal to zero, same as the percentage of not-associated rectangles in engineering, 16.9% is
under 0.5–ratio, and 9.0% is over 1.5–ratio; by contrast, 10.9% of the thickness ratio is equal
to zero, 11.1% is under 0.5–ratio, and 3.4% is over 1.5–ratio. The histogram for the thickness
and length real engineering values in the test partition, considering the same limits as the
correlation graphs, is represented in Figure 4.4.
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(a) Thickness (b) Length

Figure 4.3: Correlation between architectural and engineering features
without applying the Sequential model in the test partition of dataset C.

0 2 4 6 8 10
Length (m)

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

Pe
rc
en

ta
ge

(a) Thickness

0.0 0.1 0.2 0.3 0.4 0.5
Thickness (m)

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

Pe
rc
en

ta
ge

(b) Length

Figure 4.4: Histogram of the engineering features from test partition of
dataset C.

The variation of the model training loss function, illustrated in Figure 4.5a, indicates rapid
convergence in the first three epochs, achieving a plateau after 90 epochs. From the validation
(Figure 4.5b), the generalization capacity with dataset A is lower than the case with data-
augmentation datasets B and C, which translates into a lower R2-value for both predicted
variables. Datasets B and C show better behavior in terms of loss decrease as the model
trains and validates. By contrast, dataset C presents the best behavior in both training and
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validation due to the more significant data variation. Keras ReduceLROnPlateau callback
allowed to accelerate the model’s convergence, evidenced in the abrupt loss fall after epochs
20 and 60. It was not necessary to stop the training due to overfitting problems (early
stopping regularization). When using other losses such as MAE = 1

N

∑N
i=1 |yi − ŷi| (Mean

Absolute Error) or MAPE = 100%
N

∑N
i=1

∣∣∣yi−ŷi

yi

∣∣∣ (Mean Absolute Percentage Error), the model
took much longer to converge, so they were not used.
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Figure 4.5: Training model loss curves (MSE) for different datasets.

Table 4.1 details the main results in terms of R2-value for each dataset test partition after
running the model, and the time the models took for training4. Dataset C obtained the
best R2-value results of 0.995 and 0.994 when predicting the wall rectangle’s thickness and
length, respectively; however, if the methodology is run ten times using different train-test
partitions, the mean R2-value for thickness and length is 0.99 ± 0.003 and 0.989 ± 0.006,
indicating that the model is almost insensitive to the train-test partition selection given
the large size of the dataset. For comparison purposes, Table 4.2 shows the R2 regression
model results trained with a total of 26 features for the input vector (architecture) after
removing the previously discussed high-correlation features RectThicknessProjection-bottom,
RectThicknessProjection-top, FloorAreaNormalized-y, and FloorAspectRatio (section 3.2). In
this scenario, the model performance worsens (between 1% and 6%) on each test dataset;
then, the 30-feature input vector (RENE) is maintained for all analyses.

Table 4.1: Main results of the regression model for each dataset (test
partition) for the complete 30-feature input vector (RENE).

Dataset Train size (with
augmentation)

Test size (without
augmentation)

R2
thickness

R2
length

Train
time

A 25,841 11,075 0.708 0.902 4 min
B 118,133 11,075 0.965 0.964 20 min
C 206,711 11,075 0.995 0.994 45 min

4 For the thesis development, an Intel® Core™ i7-9750H (12M Cache, 4.5 GHz, 6 cores) CPU, 16GB DDR4-
2666 RAM, and NVIDIA® GeForce RTX™ 2070 8GB GDDR6 GPU was used.
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Table 4.2: Regression model results for each dataset considering the re-
duced 26-feature vector as input.

Dataset R2 thickness R2 length
A 0.676 0.888
B 0.906 0.941
C 0.986 0.989

Figures 4.6, 4.7, and 4.8 represent the correlation of the engineering values predicted
by the model ŷpredicted = F(xtest) with the real engineering values ytest, where xtest corre-
sponds to the value of the architectural features and F(x) to the model. A better fit of the
data is evidenced compared to the case without the model application, as shown in Figure
4.3; on the other hand, incorporating more data in the training partition, such as dataset
C, allows a better thickness regression in the range in which the wall disappears (0 m–0.1 m).

Not only the R2-value is used to measure accuracy, but also the mean and standard
deviation of the ratio between the predicted and real values, shown in Figures 15–17 as
“Pred. Engineering

Real Engineering ;” the standard deviation of the ratio presents a significant reduction with
data-augmentation, especially for wall thickness (0.223 to 0.089, for datasets A and C, re-
spectively), exhibiting an improvement of the model with the increased trained data. For
display reasons, in Figures 4.6–4.8, the thickness limit is set to a range between 0 cm–50
cm, and the length between 0 m–10 m, regions that concentrate 99% and 98% of the data,
respectively.

(a) Thickness (b) Length

Figure 4.6: Regression model correlation in test partition of dataset A.
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(a) Thickness (b) Length

Figure 4.7: Regression model correlation in test partition of dataset B.

(a) Thickness (b) Length

Figure 4.8: Regression model correlation in test partition of dataset C.

If an output discretization for the length and thickness is made, it is possible to construct
a confusion matrix that contrasts both predicted and real classes; understanding the class
as the range of which each value belongs. Figures 4.9, 4.10, and 4.11 detail the confusion
matrices for the three datasets model results; each value indicates the percentage of predicted
accuracy, and, for each column, the sum is equal to 100% of the data in the respective real
class. A diagonal trend of the data is evident in datasets B and C associated with the high
R2-value; by contrast, in dataset A, there is a marked dispersion for thickness values greater
than 25 cm, a region that contains 19% of the data, and an incorrect classification of zero
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thickness, a phenomenon present when a wall disappears in the engineering plans.

The results indicate that the regression model and the selected features provide an accurate
tool for predicting the wall length and thickness based on the initial architectural plans,
especially when data augmentation is considered.
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Figure 4.9: Confusion matrix for dataset A test partition.
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Figure 4.10: Confusion matrix for dataset B test partition.
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Figure 4.11: Confusion matrix for dataset C test partition.
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Chapter 5

CNN-based framework

Given that convolutional neural networks allow the calculation of new low and high-level
features, they are used to predict new parameters and build a framework that leads to the
final engineering plan. To achieve this aim, the rectangle’ images of the wall contour feed the
convolutional layers, contributing with geometric and topological context not considered by
the manual feature calculation; these images have both the requirements and the experience
of the engineering design, collected from thousands of different configurations, characterizing
the Chilean building.

This chapter explores different applications of CNNs for predicting the displacement pa-
rameters and change in plan geometry per rectangle, the generation of engineering images
given the architectural input, and its assembly to obtain the final engineering floor plan.

5.1. Proposed framework based on CNN models
As the regressive Sequential ANN model (Chapter 4) does not predict new structural

elements or wall rectangle’s engineering properties other than the thickness and length, a
framework based on convolutional neural network (CNN) models is proposed. This CNN
framework generates the final engineering floor plan by combining two independent plan
predictions, both of which consider the architectural data as input, such as the numerical
30-feature input vector (RENE, described in section 3.1) and the 64x64 px wall rectangle im-
ages (described in section 2.3). In this contribution, the generated plan contains all learned
structural considerations made by the engineering office, such as the seismic code, shear wall
ratios, layout, and geometry. Architectural decisions are also incorporated in the prediction
because the models are trained using the latest engineering floor plan, which each architec-
ture company has previously validated. Thus, the procedure captures the DNA of Chilean
shear wall residential building design; but it can be applied to other structural systems or
realities based on a different project database (numerical features and images).

Figure 5.1 illustrates a general scheme of the proposed framework; two regressive convolu-
tional network models (CNN-A and CNN-B) are used in parallel to predict each rectangle’s
design parameters in the engineering floor plan from the architectural input (Figure 5.1a),
such as the 30-feature vector (RENE) and the 64x64 px images. The CNN-A regressive model
(Figure 5.1b) predicts each rectangle’s thickness and length. The CNN-B regressive model
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(Figure 5.1c) predicts the floor’s bounding box geometry change (width and aspect ratio)
and the translation of the rectangles between the architectural and engineering floor plans
on both main axes. Then, CNN-A and CNN-B outputs are used to assemble the first plan
prediction only considering the regressed rectangle’s properties, called the Regressive Plan
(AR), procedure shown in Figure 5.1d as a red rhombus. Note that these models predict the
rectangle’s engineering properties later used to generate the plan, i.e., the regressive CNNs
do not predict images; also, the architectural wall’s rectangles topology is not explicitly con-
sidered, i.e., the relationship between the rectangles is not retained. On the other hand, the
second independent plan prediction is performed at image level using a modified version of
the U-Net segmentation model [49]. The modified version proposed is denoted as UNET-XY;
this model generates the most likely image of the engineering floor plan from the architectural
input (30-feature vector and 64x64 px images), illustrated in Figure 5.1e in grayscale, where
less probable walls have a light gray color. All generated images are concatenated in the
proper position to assemble the second plan prediction, which in this case is called the Likely
Image Plan (AI), shown as a blue rhombus in Figure 5.1f. Ultimately, the Regressive Plan
(AR) and Likely Image Plan (AI) are combined to lead the Final Engineering Plan (AP ),
shown as a ⊕ symbol in Figure 5.1g, resulting in the framework output (Figure 5.1h). Next,
the independent plan predictions, assemble, and their combination is described.

CNN Framework

g)

f)

d)
Reg. Model 

CNN-A
(sec. 5.1.1)

Reg. Model
CNN-B

(sec. 5.1.1) CNN Image
Generation

UNET-XY
(sec. 5.1.3)

𝐴𝐴𝑅𝑅 assemble
(sec. 5.1.2)

𝐴𝐴𝐼𝐼 assemble
(sec. 5.1.4)

𝐴𝐴𝑃𝑃 assemble
(sec. 5.1.5)

e)c)

Output: Engineering Plan
h)

b)

Input: Architectural Plan
a)

+

Figure 5.1: Proposed framework based on CNN models to generate the final engineer-
ing floor plan by combining two independent floor plan predictions – (a) Architectural
input data, (b) CNN-A regressive model, (c) CNN-B regressive model, (d) First plan
prediction (AR) assembled using CNN-A and CNN-B models, (e) CNN image gener-
ation UNET-XY, (f) Second plan prediction (AI) assembled using UNET-XY output
images, (g) Final engineering floor plan assemble by combining the independently pre-
dicted plans, and finally (h) The framework output.

5.1.1. Regressive CNN models for engineering parameters predic-
tion (CNN-A and CNN-B)

The CNN-A and CNN-B models are defined to predict different engineering parameters
for each rectangle. The former seeks to predict the thickness (RectThickness) and length
(RectLength); by contrast, the latter predicts the translation of each rectangle concerning
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the architectural position (RectPosDx, RectPosDy), the floor bounding box width (Floor-
Width), the floor aspect ratio (FloorAspectRatio), and the floor offset between the geomet-
ric center (GC) and center of mass (MC) on both main axes (FloorMassCenterDistance-x,
FloorMassCenterDistance-y). Some of these features can be observed in Figure 3.1.

Unlike the Sequential model in Chapter 4, CNN-A and CNN-B models present a better
performance in terms of the coefficient of determination (R2) given the incorporation of
new features extracted from the images by the convolutional layers. The calculation of the
rectangle translation on both axes was carried out considering the relative difference between
the position in the architecture and engineering plans concerning the floor mass center:

RectPosDx = rMCDxE · wE − rMCDxA · wA (5.1)

RectPosDy = rMCDyE · hE − rMCDyA · hA (5.2)

Where rMCDx and rMCDy correspond to the RectFloorMassCenterDistance feature
(distance between the floor and the rectangle mass centers) on the x and y-axis; wA =
F loorW idthA

2 and wE = F loorW idthE

2 correspond to the widths of the floor bounding box in ar-
chitecture (A) and engineering (E) plans, finally hA = wA

F loorAspectRatioA
and wE = F loorW idthE

2
correspond to the bounding box’s height in architecture (A) and engineering (E) plans, re-
spectively. It is worth mentioning that the translation was limited to a maximum of 3 m to
achieve lower dispersion than the heuristic association mechanism outliers between architec-
ture and engineering wall’s rectangles; this limit yields an improved response of the regressive
models as the translation range decreases, making smaller values more relevant. Translation
values over that limit, typically due to association between rectangles with significant differ-
ences in size or position, were set to zero. The translation features (RectPosDx, RectPosDy)
are described in the histograms of Figure 5.2, wherein the proposed region (−3, 3) m concen-
trates 85.8% of the data.
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Figure 5.2: Translation of the rectangle’s center of mass between archi-
tecture and engineering plan without normalization.
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CNN-B model also considers the rectangle thickness and length as output since such
incorporation improves the performance in terms of the R2-value; however, these output
variables are discarded at prediction time as the CNN-A model output is used instead. In
both regressive CNN models, the proposed architecture is the same, composed of two different
inputs: the 30-feature vector (RENE) normalized between 0 and 1 (Table 3.1) and the 64x64
px image associated with each rectangle (section 2.3). The input image is processed by four
convolutional blocks of 64, 32, 32, and 8 filters, with a 3x3 kernel size and 1x1 stride size.
A Batch Normalization (BN) layer [11] is applied at the output of each block; subsequently,
a dimension reduction is applied with an Average Pooling layer with a pool of size 2x2.
The convolutional blocks end in a 1x32 tensor (Flatten), which is concatenated with the
30-feature input vector (RENE) to feed a fully connected network (FC) with six layers with
1024 neurons each, normalized after the first and second layers by a BN layer, to predict
two parameters in model CNN-A and eight parameters in model CNN-B; outputs described
in Table 5.1. Python Keras library [44] with TensorFlow-GPU as a backend was used for
the implementation. The activation function corresponds in all cases to ReLU [45], except
in the output layer, which does not consider a non-linear processing unit. The loss function
corresponds to the mean square error, MSE(yi, ŷi) = 1

N

∑N
i=1 (yi − ŷi)2, and the optimizer

corresponds to Adam with a learning rate α of 10−3, β1 = 0.9, β2 = 0.999, and ε = 10−7,
same values recommended by [44, 46]. Glorot Uniform [47] was used as the weight initializer
for all layers, and no regularization was applied in the layer’s kernel. A weight factor equal
to 1.0 was used for each output in both models to calculate the losses. Figure 5.3 illustrates
a schematic of the implemented CNN-A model; the CNN-B model architecture is identical
except for the number of output parameters, which is eight in this case.

Table 5.1: Details of the CNN regressive models.

Model Output variables N° parameters
CNN-A RectThickness, RectLength 5,354,086
CNN-B RectThickness, RectLength, 5,358,186

RectPosDx, RectPosDy,
FloorWidth, FloorAspectRatio,
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Figure 5.3: CNN-A regressive model architecture.
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Because the model performance is affected by the number of neurons and the layer type
used, several combinations were tried in a heuristic fashion to find the best results in terms of
R2. Like the Sequential algorithm, the CNN model cost, both in computation time and the
number of parameters, grow exponentially according to the number of convolutional layers,
the number of neurons in the FC network, and the kernel size. Due to the large volume of
the datasets, it was not possible to use an optimization algorithm to determine the hyper-
parameters that maximize the performance [48]. In both models (CNN-A, CNN-B), the
training was carried out with mini-batches of size 128 in a maximum of 150 epochs; after the
end of each epoch, the data was randomly reordered to reduce the variance. For avoiding
overfitting, an early stopping regularization with a tolerance of 40 epochs was used. Also, to
accelerate the convergence, the Keras monitor ReduceLROnPlateau was considered, which re-
duces the optimizer learning rate if the loss metric does not improve by a margin of 15 epochs,
with a reduction factor of 10−1 and a minimum delta of 10−4 for the evaluated value. The
partition of the dataset (C, described in section 3.2) in training and testing was 70% and 30%
in random order, using the same for CNN-A and CNN-B models; from the training dataset,
20% was used for validation, and the remaining 80% for training.

5.1.2. Assemble of the engineering regressive plan (AR)
The engineering Regressive Plan (AR, represented as a red rhombus in Figure 5.1d) is

assembled by employing the previous regressive CNN models. Each rectangle’s engineering
size (thickness and length) is obtained from the CNN-A output, while the engineering rect-
angle’s position (px, py) is calculated by adding the outputs from the CNN-B model to the
architectural position, such that:

px =
(
rMCDx + fMCDx

)
· w + RectPosDx (5.3)

py =
(
rMCDy + fMCDy

)
· h + RectPosDy (5.4)

Where rMCDx and rMCDy correspond to the architectural input feature RectFloor-
MassCenterDistance (distance between the floor and rectangle mass centers) on x and y-
axis. fMCDx and fMCDy correspond to the CNN-B engineering output feature Floor-
MassCenterDistance (distance between the geometric and mass center of each floor) on the
x and y-axis. RectPosDx and RectPosDy correspond to the relative translation between
the architectural and engineering plans predicted by CNN-B. Finally, w = F loorW idth

2 and
h = w

F loorAspectRatio
correspond to the width and height of the floor bounding box, respec-

tively, being FloorWidth and FloorAspectRatio CNN-B outputs.

Figure 5.4 illustrates an example of the engineering Regressive Plan (AR) assemble using
CNN-A and CNN-B models, comparing the architectural input plan (Figure 5.4a) and the
predicted plan (Figure 5.4b), considering changes in the thickness, length, and position of the
elements. The black rectangles in Figure 5.4b stand for the predicted ones (AR) while the
red rectangles illustrate the real solution; in this case, there are minor differences regarding
translation, length, and connectivity, but as discussed in the Results section, if the position or
length is not changed, the error between the proposed and real engineering solution increases.
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Figure 5.4: Comparison between an architectural plan, the engineering
Regressive Plan (AR) composed of the rectangles predicted by the CNN-A
and CNN-B models, and the real engineering plan (AY ).
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As CNN-A and CNN-B are pure regressive models, they do not allow the proposition
of new rectangles because only existing architectural elements are processed to compute
the changes to be made (geometry, position) for creating the Regressive Plan (AR). Thus,
the convolutional neural network model UNET-XY, described in the following subsection,
is proposed to generate the most likely engineering image floor crop for each rectangle,
fed by the 30-feature vector data (RENE) and the architectural image crop (section 2.3),
allowing the proposal of new objects not present in the input architectural data, making
suggestions about the element’s connection, and reinforcing the regressed rectangles in AR

plan.

5.1.3. UNET-XY model for the engineering floor plan prediction
In this section, another prediction of the engineering floor plan is presented but employing

a model based on the U-Net fully convolutional image segmentation network [49] to generate
the most likely image of the engineering floor plan given the architectural input. The standard
image segmentation U-Net model is employed to accomplish predictions for the 4096 pixels
of the 64x64 px engineering output image by performing a binary classification task for each
pixel; class-0 corresponds to the background, class-1 to the wall rectangles. The classification
aims to guess each pixel’s proper class in the engineering image from the architectural input,
based on the data the model has been trained. The U-Net model’s architecture consists of two
main sections: encoder (contraction) and decoder (expansion); the encoder section is used to
capture the context in the image comprised by several convolutional and max-pooling layers;
on the other hand, the decoder section is comprised by many feature channels used to enable
precise localization through the transposed convolutions, propagating context information
to higher resolution layers. The decoder also combines the feature and spatial information
through a sequence of up-convolutions and concatenations with high-resolution features from
the encoder, improving localization and reconstructing the output image. Therefore, the
expansive path is symmetric to the contracting part and yields an u-shaped architecture [49].

Additional to the standard U-Net model, named UNET in the implementation, two vari-
ations were explored. The first corresponds to the prediction of the numerical 30-feature
vector (RENE) plus the structure’s fundamental period on both axes obtained from the en-
gineering office’s structural main results, adding up to 32 output labels to improve the model
back-propagation training performance phase. These outputs are calculated by a connected
Fully Convolutional (FC) network from the last convolutional layer of the UNET subnet.
This model is called UNET-Y and presents a better performance in terms of the average
binary accuracy per pixel (frequency in which the predictions coincide with the binary la-
bels) compared with UNET model. The second variation studied is built on UNET-Y, and
consists of combining the architectural image with the 30-feature input vector (RENE) in a
ratio of 3:1. Thus, an intermediate image is generated to be used later as input in UNET-Y.
This model is called UNET-XY, presenting a better result in terms of binary accuracy than
the standard UNET and UNET-Y, as shown in the results section. The mentioned models
and the details of each configuration are illustrated in Figure 5.5.
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Figure 5.5: UNET-XY model architecture.
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UNET-XY is fed by the 30-feature vector (RENE) and the 64x64 px image from each ar-
chitectural rectangle. The image is processed by three convolutional blocks of 64x64, 32x32,
and 32x16 kernel size, normalized by BN layers, ending in a dimension reduction leading to a
1x1024 size tensor (Flatten). This tensor is concatenated with a 4-layer FC subnet fed with
the numerical input vector, regularized by a BN layer and a dropout layer with a ratio of 0.2
[43]. This concatenation is subsequently connected to two FC layers of 2048 and 4096 neurons,
followed by a convolutional layer of 48 filters. This 48-filter layer is later added to a 16-filter
convolutional layer from the first 64x64 convolutional block to generate the intermediate im-
age, where the ratio 48:16 or 3:1 is evidenced. The intermediate image is then processed by
the 4-level UNET-Y subnet, with sizes of 64, 128, 256, and 512 filters with a dropout regu-
larization (ratio of 0.5) in the deepest contractive level. All convolutional layers used have a
kernel size of 3x3 and a stride of size 1x1. The ReLU activator was used in all hidden layer
outputs, except for the image output where a sigmoidal activation function is used instead;
OUT-Y output (32 engineering labels) does not consider a non-linear processing unit. The
pooling layers correspond to Average Pooling with a size of 2x2. The loss function for the im-
age corresponds to binary cross-entropy CE(yi, ŷi) = − 1

N

∑N
i=1 yi · log ŷi +(1−yi) · log(1 − ŷi),

and MSE for vector Y, with a weight factor of 5 to 1, respectively. The optimizer corre-
sponds to Adam with a learning rate α of 10−3, β1 = 0.9, β2 = 0.999, and ε = 10−7, same
values recommended by [44, 46]. The weight initializer in all convolutional layers is He Nor-
mal [50], while Uniform Glorot is employed in FC layers. In the U-Net layers, L2 was used
as a kernel regularizer with a factor of 10−4. The training was carried out with mini-batches
of size 100 in a maximum of 15 epochs. Keras metric ReduceLROnPlateau was used to ac-
celerate convergence, with two-epoch patience and a reduction factor of 10−1. The training
and validation partition is the same used in the CNN models. UNET-XY comprises a total
of 23,833,256 parameters, where 2688 of them are not trainable.

For the sake of comparison and to explore the application of a model architecture based on
conditional generative adversarial networks (cGANs), the Pix2Pix model [51] is also imple-
mented, illustrated in Figure 5.6. Pix2Pix model allows the generation of the engineering plan
conditioned to the architectural input (30-feature vector and 64x64 px images) through the
U-Net generator network and a discriminator network composed of 5 convolutional blocks.
These blocks consist of 32, 64, 128, 256, and 256 filters processed by regularizing BN layers,
using the LeakyReLU activation with an α value of 0.2. An adversarial loss is used for the
discriminator and composite loss for the combined model in a 100:1 ratio for the generator
and discriminator, respectively. The optimizer corresponds to Adam with a learning rate α
of 2 · 10−4, β1 = 0.5, β2 = 0.999, and ε = 10−7, same values recommended by [44, 51]. The
training was carried out with a maximum of 100 epochs and a batch size of 1. However,
the implemented Pix2Pix model results are, on average, 80% lower relative to UNET-XY in
terms of the binary accuracy metric during the entire training and validation history, which
is later detailed in the results section.
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Figure 5.6: Pix2Pix image generation model architecture.

5.1.4. Assemble of the engineering likely image plan (AI)
In this section, the UNET-XY model output images are used to assemble the engineering

Likely Image Plan (AI , represented as a blue rhombus in Figure 5.1f). For this purpose, each
image predicted by the UNET-XY model is placed in the appropriate position on the engi-
neering plan (px, py) employing the Eqs. 5.3 and 5.4. Note that the predicted images could
be overlapped in this case, requiring the set of a rule to estimate the final pixel value; this
rule could be, for example, the pixel average across the overlapped images or more complex
metrics described in the following paragraphs. In this study, the engineering plan is consid-
ered as a matrix with the same 0.156 m/px factor used to create the images; that is, a 10x10
m region is represented in 64x64 px. The goal then is to identify the matrix that contains the
most representative pixel values employing the images generated by the UNET-XY model.
The incorporation of the Likely Image Plan (AI) in the assembling of the Final Engineering
Plan (AP ) adds much more information about the wall layout, allowing to predict the pres-
ence of new rectangles, reinforcing the existing ones proposed by the regressive models, and
offering notions regarding the connection between them.

The assemble process of the AI matrix consisted of four stages, represented in Figure
5.7. First, the matrix ϕ was created, which identifies the amount of overlapped engineering
images (floor plan crops described in section 2.3) predicted by UNET-XY on each pixel of
the floor plan, considering that the image of each k-rectangle (denoted as Ik) is located
at the mass center (px

k, py
k) of the respective rectangle (Figure 5.7a). The second stage

corresponds to the sum of the binary class value for each pixel of all N images calculated as
g = ∑N

k=1
∑64

i=1
∑64

j=1 Ik[i, j][a,b], wherein Ik[i, j] corresponds to the pixel [i, j] of the k-image,
added at the position [a = px

k − i + 32, b = py
k − j + 32] of the matrix g (Figure 5.7b).

Subsequently, in the third stage, the average ĝ[i, j] = g[i,j]
max(ϕ[i,j],1) is calculated as the division

between the sum g and the number of images ϕ present in the pixel Ik[i, j] (Figure 5.7c).
Finally, in the last stage, the matrix AI [i, j] = f(ĝ[i,j])

max AI
is obtained as the application of a non-

linear output function f(x) on each pixel of the ĝ matrix. Here, the AI matrix is normalized
between 0 and 1 (Figure 5.7d) when it is divided by its maximum value. It should be noted
that the matrices ϕ, g, ĝ, and AI have the same border limits as those defined by the floor
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plan predicted by the CNN regressive models (Figure 5.4).

k-rectangle image engineering
(plan crop) predicted by UNET-XY

size: 10x10 m
(64x64 px)

(a) Number of the intersection of the images in the
plan, matrix ϕ
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(d) Application of non-linear output function and
normalization for matrix AI

Figure 5.7: Assemble procedure of the Likely Image Plan (AI).

The output function f allows controlling the contrast of the matrix ĝ (Figure 5.7d), giving
more or less importance to regions of low or high-class likeness given by the images. In
particular, nine different functions were tested: flinear(x) = x, fsigmoid(x) = 1

1+e−10·(x−0.5) ,
fsigmoidh(x) = 2

1+e−10·x − 1, ftanh(x) = tanh(10·(x−0.5))+1
2 , fcos(x) = cos((x+1)·π)

2 , fsquare(x) = x2,
fquad(x) = x4, fisquare(x) = −(1 − x)2 +1, and fiquad(x) = −(1 − x)4 +1. Figure 5.8 illustrate
the plots of these functions between the class range 0–1. The fsigmoid, ftanh, fsquare, and
fquad functions are conservative since they strongly penalize the region of ĝ that presents
values lower than 0.5. On the other hand, fsigmoidh, fisquare, and fiquad allow obtaining more
information in the same regions (ĝ < 0.5) since the penalization is weaker than the previous
functions. As discussed in the results section, the best CNN framework results are achieved
using the fsigmoidh function.
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Figure 5.8: Output f(x) functions plot used for the normalization of the
ĝ matrix.

5.1.5. Combining the regressive plan (AR) and the likely image
plan (AI) to assemble the final engineering plan (AP )

Finally, the matrix representing the Regressive Plan (AR) and the matrix representing the
Likely Image Plan (AI) are combined, leading to the Final Engineering Plan (AP ), where
AP = AR ⊕ AI , illustrated in Figure 5.1g. In this study, the sum operator ⊕ is defined
as (X ⊕ Y )[i, j] = min(X[i, j] + Y [i, j], 1) for each [i, j] position within matrices, such that
the possible presence of a wall is captured from combining (adding) AR and AI . Figure 5.9
illustrates an example of the final engineering plan assemble, where the combination of AR

and AI matrices is presented in Figure 5.9a, subsequently compared with the real solution in
Figure 5.9b.

Next, the subsection 5.1.6 describes a proposed framework for obtaining the wall rectangles
from the Regressive Plan (AR) and Likely Image Plan (AI). Finally, section 5.2 describes
the results of the whole CNN framework for both regressive models (CNN-A and CNN-B),
the likely image generation model (UNET-XY), and the combination of the predicted floor
plans AR and AI for assembling the Final Engineering Plan (AP ).
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Figure 5.9: Final Engineering Plan assemble (AP ) by combining the pre-
diction of the Regressive Plan (AR) and the Likely Image Plan (AI).
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5.1.6. Wall rectangles proposition from the predicted engineering
image plans

The developed CNN framework’s final process aims to obtain the wall rectangles from
the predicted engineering image plans as geometrical objects with defined length, thickness,
angle, and position. The wall’s rectangle information is more manageable if using a numer-
ical data structure rather than an image domain, which are highly discretized in the sums
of pixels, the position cannot be directly obtained, and the overall shape of each rectangle
can be merged with another object(s), as shown in Figures 5.7 and 5.9. The rectangle data
obtained from the images can be used in structural modeling, analysis, and optimization
algorithms such as genetic algorithms5 (GA) to find the best subset of walls that improve
the building performance [26, 27, 53].

Figure 5.10 illustrates the proposed framework, later explained in the following subsec-
tions, for obtaining the rectangles from the image plans (Figure 5.10a), considering as input
both Regressive Plan (AR, section 5.1.2) and Likely Image Plan (AI , section 5.1.4). First, the
images are discretized in a collection of fixed-size square regions of 4x4 meters, named patches
(Figure 5.10b); this discretization procedure simplifies the comparison between the images,
leading to fewer errors in the geometrical shapes recognition. For each patch, the area of the
structural elements were obtained in the AR and AI plans by the sum of each pixel multiplied
by the inverse of the meter/pixel (m/px) factor (Figure 5.10c); the comparison between the
patches lead to three different scenarios (Figure 5.10d). First, if Area(AR) > Area(AI) the
generative UNET-XY model output, which leads to the assembly of the AI plan (section
5.1.5), does not include new structural elements in the same region compared to the regres-
sive data, that is considered to be reliable; similarly, if Area(AR) ∼ Area(AI) the regressed
rectangle data and the likely plans contain the same amount of structural wall’s area, thus,
no additional elements should be added. By contrast, if Area(AR) < Area(AI) the UNET-
XY model predicts additional wall’s segments that must be accounted for; in that case, a
rectangle(s) is proposed from the difference between AI − AR (Figure 5.10e) that maximizes
the intersection in the area clusters (Figure 5.10f). For such purpose, an optimization task is
performed (Figure 5.10g) that considers geometrical restrictions such as the maximum thick-
ness, length, angle, translation, and context restrictions from the probability measure that
each pixel has (section 5.1.4), avoiding to propose rectangles that consider null probability
area. Finally, for all patches that satisfy a positive area difference, the optimization task for
finding rectangles is performed (Figure 5.10h), finishing the process.

The following subsections detail the patch discretization of a given floor, the comparison
between the regressed and image areas, and the rectangle proposition over each new area by
finding the maximum for an optimization problem.

5 A genetic algorithm (GA) is a metaheuristic inspired by the process of natural selection that belongs to
the larger class of evolutionary algorithms (EA). Genetic algorithms are commonly used to generate high-
quality solutions to optimization and search problems by relying on biologically inspired operators such as
mutation, crossover, and selection [52].
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Rectangle	proposition	from	plan	images

Input:	Engineering	Plan	Images	—
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Figure 5.10: Proposed framework for obtaining rectangles from the plan
images – (a) Image input data, (b) Image discretization into 4x4 m patches,
(c) Area computation for each patch, (d) Area difference between patches
to find potential new rectangle areas, (e) Patch selection from the area
difference, (f) Clustering for rectangle region proposition, (g) Optimization
for finding rectangles on each cluster, and finally (h) The output where all
possible rectangles have been identified from the input images.
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5.1.6.1. Image floor plan discretization (patches)

As previously discussed, the rectangles are proposed considering a subregion of the plan;
this approach improves the optimization algorithm for finding rectangles, as it takes less time
and resources as the search space is dramatically reduced. Similarly, a subregion with the
same coordinates between image plans makes it possible to compare the structural elements
between the Regressive Plan image (AR) and the Likely Plan image (AI).

Next, each floor plan image was discretized in a square grid of N = 4 m, each 4x4 m region
called in this work as a patch. This patch size can vary depending on the engineer design
decisions and the data it has to capture; in this case, it was obtained by a manual inspection
of the dataset’s wall distribution, and 4 meters is sufficient to capture the surroundings of the
assembled plan while keeping a small search space for the developed algorithms. A reduced
search space improves the response of the optimization algorithms and avoids the presence
of complex objects as they are cut in several regions. The patches were stored in a 64x64 px
image (matrix) to achieve a resolution similar or better than the one used for creating the
wall rectangle’s images (section 2.3); thus, the m/px factor (meter per pixel) equals 0.0625.
A minimum threshold δ = 0.5, obtained through a trial and error procedure, was also ap-
plied to the likely’s image probability output; this limit removes noise and wall segments
with a low confidence value. δ can be manually configured depending on the design princi-
ples of the engineering office; high-value thresholds are more conservative than the low ones,
filtering the wall segments not predicted by the likely plan image with a high probability class.

Figure 5.11 illustrates the patch creation example; Figure 5.11a shows a likely floor plan
image with no minimum threshold. On the other hand, Figure 5.11b details the same plan
but considering the δ = 0.5 limit and the enumerated patches, reaching a total of 80; in
this case, the probability threshold removes the image noise, the rectangles outside the floor
perimeter, and other invalid structural elements, mostly considered as false positives from
the UNET-XY model’s output.
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(a) Floor likely engineering image plan (AI) without
any probability thresholds
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(b) Patches of the region, enumerated from 0 (top-
left corner) to 79 (bottom-right), considering a δ =
0.5 probability threshold limit

Figure 5.11: Example of patch discretization from a basement floor type.
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5.1.6.2. Area computation for each patch

From each patch, the structural element’s area of the Regressive Plan (AR) and the Likely
Image Plan (AI) is computed, obtained by the sum of all pixel values, later multiplied by
the inverse of the pixel per meter factor of the images, in this case being 0.0625 m/px. The
area comparison allows for decision-taking about searching for new rectangles in the likely
image plan; only if Area(AI) > Area(AR) then one or more rectangles will be searched in
the difference AI − AR. For avoiding numerical issues and ignoring similar areas between
plans, a minimum difference ε = 0.09 m2 was considered; that is, if the difference between
the image AI and regressed rectangle’s area AR is lower than the area of an ε = 30 × 30 cm
wall’s rectangle (which is the minimum column section in ACI 318-19 [54]), then the patch
is discarded. Figure 5.12 details an example of the area computation for both input plans;
Figure 5.12a shows each AI area patch and Figure 5.12b for each AR patch. Figure 5.13
illustrates the example of AI − AR for each patch considering the ε minimum area threshold.
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(a) Area patch for AI image plan
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(b) Area patch for AR image plan

Figure 5.12: Example of area computation for each patch.
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Figure 5.13: Example of the difference between AI and AR area patches.
considering the minimum ε = 0.09 m2 area threshold.

50



5.1.6.3. Patch selection for finding potential rectangle areas

The following process of the rectangle proposition framework is selecting the patches where
the area difference AI − AR exceeds the minimum threshold ε (Figure 5.13). Figure 5.14 de-
tails three examples for the patch AI , AR, and the difference AI − AR. It can be observed
that the resulting area difference yields a complex geometry with irregular objects; also, the
pixel class probability distribution (being class-0 the background, and class-1 the wall rect-
angles) is not uniform. Therefore, the number of rectangles to be proposed in the resulting
area difference and their initial position to start the optimization mechanism for fine-tuning
each proposition’s geometry must be known. For achieving such a goal, a clustering method,
described in the following subsection, was performed in the area difference for identifying
the individual regions to propose a single rectangle that maximizes the intersection with the
probability distribution (the likeness of each class).
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Figure 5.14: Example of three different patch selection where AI −AR > ε.
For each figure, the left stands for the regressive plan AR, the center for the
AI likely image, and the right for the difference AI − AR between both
images.
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5.1.6.4. Area difference clustering for finding rectangle regions

With a focus on finding the total number of regions for proposing a rectangle that bet-
ter fits the area distribution of the difference AI − AR, a clustering method was performed.
Clustering is the task of grouping an object set, in this case, the probability area of the
wall class likeness, in such a way that objects in the same group (called a cluster) are more
similar (in some way) than to those in other groups (clusters). In this sense, clustering the
area difference leads to obtaining the independent wall regions for estimating a new rectangle.
Several clustering algorithms were studied, such as K-Means, Affinity Propagation [55], Mean
Shift [56], Spectral Clustering [57], Agglomerative Clustering, OPTICS [58], and Birch [59].
However, those algorithms do not achieve good results due to noise and numerical problems
related to the data distribution; also, not only the position of each pixel in the patch matrix
must be considered, but also the class likeness value.

For the reasons mentioned above, the density-based clustering algorithm DBSCAN [60]
lead to the best results; in this case, the density was considered as the class likeness proba-
bility resulting from AI − AR, values which range from 0 (background) to 1 (wall). For the
implementation, SciPy [61] and Sklearn [62] Python libraries were used6, leading to an algo-
rithm complexity of O(n2) where n is the number of points; however, with spatial indexing
(kd-tree or r-tree), the complexity is O(n log n). Figure 5.15 illustrates the clustering output
of three examples shown in Figure 5.14; it can be noticed that the clusters are separated (in
different colors), ranging from points, lines, L-shaped, and C-shaped polygons, to complex
geometries. Also, subfigures (b) and (c) show the cases where a rectangle is split into two
different regions (vertical one in X = 10−13 px, Y = 10−64 px in Figure 5.14b, and vertical
in X = 10 − 13 px, Y = 0 − 48 px in Figure 5.14c). In these cases, the clustering and the
continuation of splitted rectangles are preserved between patches.
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Figure 5.15: Clustering results of each AI −AR area difference; illustrated
in different colors.

6 For implementing the DBSCAN in the Python Sklearn library, the eps parameter, which accounts for the
maximum distance between two samples for one to be considered as in the neighborhood of the other, was
set to eps = 1.0 for achieving the best results. This value was obtained through a trial and error procedure,
considering the shape and results of the cluster output for different input scenarios.
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5.1.6.5. Optimization algorithm for finding a rectangle on each cluster

The framework’s final process consists of proposing a rectangle over each cluster that
better maximizes the class probability likeness area and minimizes the intersection with the
background class. In this sense, a rectangle is generated by a function R(L, t, θ, cx, cy), where
L stands for the length (m), t for the thickness (m), θ for the angle (degrees), cx for the x-axis
center position (px), and cy for the y-axis center position (px). For numerical purposes, the
R function creates a matrix with the same 0.0625 m/px factor of the patches, 64x64 px, and
4x4 m length, constructed using OpenCV [37] and Shapely [40] Python libraries; the matrix
contains only two numbers, 0 for modeling the background, and 1 for defining the rectangle
object. Figure 5.16 illustrates an example of 6 different matrix outputs from the R function,
ranging from horizontal, diagonal, and vertical objects with rectangular or square shapes.
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(c) R(2.5, 0.2, 90°, 20, 32)
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(d) R(2, 0.3, 0°, 32, 32)
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Figure 5.16: Example of six matrix outputs from the R(L, t, θ, cx, cy)
rectangle generator function.

The optimization task for finding the best value of L, t, θ, cx, and cy for each cluster Ci

that approximates a rectangle R(L, t, θ, cx, cy) is performed by maximizing Eq. 5.5. This
objective function considers the sum of each [j, k] pixel of the 64x64 matrices resulting from
the intersection of the rectangle R (a matrix, same as the examples shown in Figure 5.16)
and the cluster Ci, penalized by the intersection of the rectangle and the complement of the
cluster 1 − Ci (the external region), considering a λ factor of 0.5.

max −
64∑

j=1

64∑
k=1

((
R ⊗ Ci

)
[j,k]

− λ ·
(
R ⊗ (1 − Ci)

)
[j,k]

)
(5.5)
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The penalizing λ factor was obtained by a trial-and-error procedure which took into ac-
count the cluster’s output for several examples. However, that value can be fine-tuned by
finding the best value which maximizes the intersection between the clusters and rectangles
in the whole database. The ⊗ operator corresponds to the matrix element-wise multiplica-
tion, which describes the intersection of both matrices.

COBYLA (Constrained optimization by linear approximation) [63] algorithm was used to
optimize Eq. 5.5. This method finds the solution that maximizes the objective function by
performing a linear approximation considering an upper and lower bounds for each variable,
whose described in Table 5.2, where N = 4 m stands for the width/height of each patch. If
the bounds are not correctly fitted to the data distribution, the optimization mechanism does
not improve as it tends to converge in local maxima; for that reason, mins&max were set for
each variable. On the other hand, if the objective value defined by Eq. 5.5 is negative, or the
resulting rectangle is lower than an object of 0.2 × 0.2 meters, the proposition is discarded.

Table 5.2: Description and bounds for the rectangle generation variables.

Variable Description Min. Bound Max. Bound
L Length (m) 0.2 N

t Thickness (m) 0.2 0.5
θ Angle (degrees) −90 90
cx X-axis center (px) −N

4
N
4

cy Y-axis center (px) −N
4

N
4

For the initial guess, the L value starts as 75% of the maximum between the cluster’s
bounding box width and height, the thickness t starts at 20 cm, the rectangle’s angle θ was
set from the linear fit slope of the cluster’s points, and for the center (px, py) a grid search
was performed with a 15% offset of N margin for searching the best point that maximizes
the area intersection, considering the cluster’s center as a first approach. The computing
time taken for each patch was 35 seconds on average; thus, a complete floor composed of 150
patches would need half an hour to complete if done in a single thread execution. However,
the framework can be implemented in parallel, as the rectangle proposition is an independent
problem that does not consider the surrounding rectangles in the algorithm’s execution. For
this reason, the framework was implemented considering 12 concurrent threads, which let
solve a complete floor in under 5 minutes.

Figure 5.17 shows the results of nine-patches rectangle propositions, which contain up to
30 clusters. The center of each cluster is illustrated with a gray cross; similarly, the rectangle
proposals are shown as a black box, where its center is marked with a black cross. Case (a)
illustrates three clusters, the bottom left in X = 60 px, Y = 65 px captures a square cluster,
a typical shape in the database, present in the example cases (d) and (f). The dark-sea-green
cluster in case (a), with an L-shape, is captured in a rectangle near its center in X = 50 px,
Y = 15 px, splitting the source cluster into two groups which can be later processed in a
second iteration of the algorithm. L-shaped clusters are also common within the database; for
example, case (i) illustrates an L-shaped cluster (in purple), where its rectangle proposition
only considers a dense portion in X = 3 px and Y = 12 px. The light-blue cluster in case
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(a), with a straight-line shape, is approximated by a long rectangular shape, with center
X = 35 px and Y = 5 px, where its extreme ends are not captured while performing the
optimization mechanism. These long-shaped clusters are also common within the database
patches results; for example, cases (b) to (h) show several examples of rectangles that fit a
linear cluster. Finally, case (e) shows an example of a non-trivial cluster, illustrated in blue
color; a rectangle with center X = 50 px and Y = 15 px is proposed, but as the target cluster
yields a complex shape, there are many areas not covered. Generally, the complex clusters
must be processed with several rectangles; thus, after subtracting the proposals, the whole
framework must be applied again for covering the cluster leftovers.

0 10 20 30 40 50 60
x (px)

0

10

20

30

40

50

60

70

y 
(p
x)

N° 1
Max: 51

N° 2
Max: 23

N° 3
Max: 3

(a)

20 40
x (px)

0

10

20

30

40

50

60

y 
(p
x)

N° 1
Max: 106

N° 2
Max: 110

(b)

0 10 20 30 40 50 60
x (px)

10

20

30

40

50

60

y 
(p
x)

N° 1

Max: 85

N° 2

Max: 27

N° 3

Max: 88

(c)

0 10 20 30 40 50 60
x (px)

0

10

20

30

40

50

60

y 
(p
x)

N° 1

Max: 4

N° 2

Max: 10N° 3

Max: 0N° 4

Max: 7

(d)

0 10 20 30 40 50 60
x (px)

0

10

20

30

40

50

60

70

y 
(p
x)

N° 1
Max: 46

N° 2
Max: 139

(e)

−10 0 10 20 30 40 50 60
x (px)

0

10

20

30

40

50

y 
(p
x)

N° 1

Max: 11

N° 2

Max: 5

N° 4

Max: 82

(f)

0 10 20 30 40 50 60
x (px)

0

10

20

30

40

50

60

y 
(p
x)

N° 1
Max: 21

N° 2
Max: 9N° 3

Max: 0

N° 4
Max: 78

(g)

0 10 20 30 40 50 60
x (px)

10

20

30

40

50

60

70

y 
(p
x)

N° 1

Max: 67

N° 2

Max: 2
N° 3

Max: 11N° 4

Max: 1

N° 5

Max: 89

N° 6

Max: 4
N° 7

Max: 1

(h)

0 5 10 15 20
x (px)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

y 
(p
x)

N° 2

Max: 31

(i)

Figure 5.17: Rectangle output from a selection of nine patches, featuring
a total of 30 clusters.
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It is important to note that the rectangle proposition framework can be applied several
times until area convergence; thus, all clusters are considered. In this case, the new rectangles
proposed from the optimization mechanism are incorporated into the AR plan, repeating the
process. Typically, an entire floor does not need more than one pass to fulfill the area
difference for each patch, with a maximum found of three passes. Figure 5.18 shows the
rectangles’ example for two different floors, a first-floor level (Figure 5.18a), which needed
one pass, and a basement-type level (Figure 5.18c), completed with two passes; Figures
5.18b and 5.18d compare the real engineering solution for both cases. In case (a), six new
propositions are evident, marked with circles. In case (c), five propositions are marked, where
the optimization model identified new rectangles present in the image plan. Finally, the new
rectangles (in pink) can be later merged and filtered to avoid intersections with the actual
solution (black), dramatically reducing the number of proposals. The filtering can be solved
through a score that considers the presence of other’s proposals, the distance or intersection
with regressed rectangles, among others.
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Figure 5.18: Floor’s rectangle output proposition for all patches (in pink),
compared to the regressive rectangle data from AR output (in black). The
right images show the real engineering solution for case (a) and (c).
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5.2. CNN framework results
5.2.1. Regressive CNN-A and CNN-B models

The CNN-A and CNN-B model results were analyzed in terms of the coefficient of deter-
mination (R2) and the confusion matrix, which contrasts the predicted and real class in bins
that group ranges of values for each variable (e.g., the thickness). Dataset C (section 3.2)
was used to obtain and analyze the results. Table 5.3 details the R2-value for each param-
eter before applying the model between architecture and engineering values in the testing
dataset without augmented data; it should be noted that RectPosDx and RectPosDy are
not determined since these parameters only exist in engineering. It is also worth mentioning
that the floor’s geometric properties’ parameters present a high initial correlation.

Table 5.3: R2-value for each dataset C parameter, without the application
of the model.

Parameter R2 Test dataset
RectThickness 0.826
RectLength 0.959
RectPosDx –
RectPosDy –
FloorWidth 1.000
FloorAspectRatio 0.999
FloorMassCenterDistance-x 0.985
FloorMassCenterDistance-y 0.987

Figure 5.19 illustrates the loss variation in both models’ training process, showing a rapid
convergence for the first three epochs. The effect of Keras ReduceLROnPlateau callback is
reflected in the rapid loss decrease in the training curve at 72 and 98 epochs for model CNN-
A and at 78 and 100 epochs for model CNN-B, with training times of 111 and 94 minutes,
respectively7. Due to overfitting problems, the early stopping regularizer ended the training
in 139 epochs for model A and 125 epochs for B. When using other loss functions such as
MAE(yi, ŷi) = 1

N

∑N
i=1 |yi − ŷi| (Mean Absolute Error), or MAPE(yi, ŷi) = 100%

N

∑N
i=1

∣∣∣yi−ŷi

yi

∣∣∣
(Mean Absolute Percentage Error), the models took much longer to converge, so they were
not used.

Table 5.4 details the R2-value in the test dataset without augmented data, comparing
the result with ANN-based Sequential model, which considers the exact output parameters,
with an architecture composed of 6 hidden layers of 1024 neurons, two layers of BN, Adam
optimizer, ReLU activator, and MSE loss. A better result in the CNN-B model is observed
due to the convolutional layers’ image features. The CNN-A model obtained similar results
to the Sequential model, so its use does not improve the methodology.

7 Same as the development of ANN, an Intel® Core™ i7-9750H (12M Cache, 4.5 GHz, 6 cores) CPU, 16GB
DDR4-2666 RAM, and NVIDIA® GeForce RTX™ 2070 8GB GDDR6 GPU was used.
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Figure 5.19: Loss curves (MSE) of the regressive CNN models.

Table 5.4: R2-value of the regression for models CNN-A and CNN-B in
the test dataset C.

Model Parameter R2 Sequential Model R2 CNN Model
CNN-A RectThickness 0.995 0.994

RectLength 0.994 0.995
CNN-B RectThickness 0.922 0.941

RectLength 0.938 0.968
RectPosDx 0.789 0.875
RectPosDy 0.781 0.830
FloorWidth 1.000 1.000
FloorAspectRatio 1.000 1.000
FloorMassCenterDistance-x 1.000 1.000
FloorMassCenterDistance-y 1.000 1.000

Figures 5.20 and 5.22 present the correlation results of the values predicted by the model
ŷpredicted = F(xtest) against the real values in engineering (ytest), where xtest corresponds to
the value of the architectural features, and F(x) to the model used. There is a good cor-
relation associated with the geometric properties of thickness and length and the floor plan
geometry prediction. The R2-value is used to measure accuracy and the mean and standard
deviation of the ratio between the predicted value over the real value, shown in Figures 5.20
and 5.22 as “Pred. Engineering

Real Engineering .” Regarding the translation prediction, there is a quasi-linear
response (Figures 5.22a and 5.22b), with a linear representation close to y = 0.6x; an impor-
tant translation prediction is evidenced in rectangles that should not move, showing data in
a cross-shaped trend on the axes (ytest, 0) and (0, ypredicted).
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Figures 5.21 and 5.23 show the correlation matrices for each of the outputs of models
CNN-A and CNN-B; each value indicates the percentage of predicted accuracy, where the
sum of each column is equivalent to 100% of the data in the respective real class; a good
correlation is observed in all the predicted parameters. The ranges used in each correlation
graph and confusion matrices represent 98 ± 1.43% of the data.

(a) Thickness (b) Length

Figure 5.20: Correlation results of the CNN-A model.
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Figure 5.21: CNN-A model confusion matrices.
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(a) RectPosDx (b) RectPosDy

(c) Floor plan width (d) Floor plan aspect ratio

(e) Normalized distance between MC and GC,
x-axis (FloorMassCenterDistance-x)

(f) Normalized distance between MC and GC,
y-axis (FloorMassCenterDistance-y)

Figure 5.22: Correlation results of the CNN-B model.
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(e) Normalized distance between MC and GC, x-
axis (FloorMassCenterDistance-x)
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(f) Normalized distance between MC and GC, y-
axis (FloorMassCenterDistance-y)

Figure 5.23: CNN-B model confusion matrices.
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5.2.2. Likely image plan generation
Figure 5.24 shows the variation of the UNET, UNET-Y, UNET-XY, and Pix2Pix models’

binary accuracy metric during the training process (Figure 5.24a) and testing (Figure 5.24b).
The best values are achieved with the UNET-XY model in the least number of epochs,
followed by UNET-Y, UNET, and finally, the Pix2Pix model, wherein the latter presents a
high accuracy oscillation in testing. Table 5.5 presents the training time, the total number of
epochs, and the mean accuracy plus the standard deviation for the training and test datasets
in the final epoch (Figure 5.24). Although UNET-XY achieves similar results as UNET-Y
for the test case, the training process is faster, takes fewer epochs to converge, and has a
better distribution. It is worth noticing that without model application, an accuracy close
to 95% is achieved, similar to the percentage of pixels that do not represent walls, being the
dominant image class.
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Figure 5.24: Binary accuracy curves of the engineering image for the
different predictive models UNET, UNET-Y, UNET-XY, and Pix2Pix.

Table 5.5: Main training results of the likely engineering image models.

Model Train
epochs

Train time
(min)

Train avg.
accuracy

Test avg.
accuracy

No model – – 0.956 ± 0.042 0.956 ± 0.043
UNET-XY 15 154 0.980 ± 0.022 0.966 ± 0.024
UNET-Y 20 165 0.972 ± 0.026 0.966 ± 0.029
U-Net 52 496 0.973 ± 0.026 0.965 ± 0.028
Pix2Pix 100 1,060 0.977 ± 0.029 0.958 ± 0.030

The histogram in Figure 5.25 illustrates the binary accuracy in the training and test
datasets. It is observed many cases with a value close to 1.0, mainly associated with images
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that are identical in architecture and engineering, or cases with few or no rectangles; this,
added to the significant asymmetry in the distribution of the pixel classes, makes the training
of the model more complicated, since it tends to generate the same image without applying
any transformation. In this sense, UNET-XY transforms the input image forcing the model
to learn while improving the training performance. However, it does not significantly im-
prove the generalization capacity (evaluation with new data) but slightly increases the binary
accuracy standard deviation, and takes less time to train, as shown in Table 5.5. Thus, for
deployment purposes or further development, the UNET-XY model is recommended.
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Figure 5.25: Histogram accuracy of the predicted images in the train and
test dataset.

Figure 5.26 shows a selection of 8 images predicted by the UNET-XY model in the test
dataset. Cases (a) and (b) correspond to those examples wherein the image of both ar-
chitecture and engineering are very similar in the general floor plan geometry, presenting
differences only in the element thickness or slight translations. These cases produce a high
binary accuracy value above 0.99, corresponding to 27% of the data; in case (b), it is observed
that the model predicts a larger thickness in the origin (central) rectangle, which corresponds
to the proper rectangle used in engineering. On the other hand, in case (c), the horizontal
wall below the origin rectangle is predicted, in addition to maintaining some features of the
original architectural image (left vertical rectangle). Case (d) maintains the origin rectangle
while eliminating some architectural elements such as the upper horizontal wall. Case (e)
predicts a translation of the two upper rectangles of the hallway. In case (f), the model can
predict the elevator shaft wall, keeping most of the elements defined in architecture present in
the engineering floor plan. In case (g), although the architectural and engineering images are
very different, the model can predict the two horizontal walls and the vertical one, eliminat-
ing several elements. Finally, (h) correspond to a case where the image between architecture
and engineering presents a considerable variation, so the image’s prediction model has a
poor performance, achieving an accuracy lower than 0.9, representing 5% of the test dataset;
these cases occur for two main reasons, one associated with the fact that the floor plan of the

63



first architecture version and the latest engineering version presents a significant variation,
or because of a wrong association between the architecture and engineering rectangles given
the heuristic formulation used in the creation of these pairs (section 2.3), which induces the
model to learn a conceptually wrong transformation of the image.

Architecture Engineering Predicted

(a) Model: 0.999, No model: 1.000

Architecture Engineering Predicted

(b) Model: 0.993, No model: 0.992

Architecture Engineering Predicted

(c) Model: 0.972, No model: 0.881

Architecture Engineering Predicted

(d) Model: 0.970, No model: 0.927

Architecture Engineering Predicted

(e) Model: 0.965, No model: 0.939

Architecture Engineering Predicted

(f) Model: 0.953, No model: 0.891

Architecture Engineering Predicted

(g) Model: 0.942, No model: 0.853

Architecture Engineering Predicted

(h) Model: 0.901, No model: 0.846

Figure 5.26: Selection of 8 examples of the likely image generation in
engineering using the UNET-XY model in the test dataset, along the binary
accuracy metric with and without the model’s application.
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5.2.3. Assemble of the predicted final engineering plan (AP )
For the study of the CNN regression model results (Regressive Plan matrix AR), and the

UNET-XY image generation results (Likely Image Plan matrix AI) in the assembling of the
Final Engineering Plan (matrix AP ), the metric IoU (Intersection over Union), commonly
applied in object detection problems, was used. IoU corresponds to the quotient between
the intersection of the real engineering floor plan’s rectangles (called matrix AY ) and the
predicted floor plan AP , divided by the sum of the actual and predicted solutions. In this
framework, the predicted solution can be AP = AR (using only the regressive results through
CNN-A and CNN-B models, described in section 5.1.2), AP = AI (using only the images gen-
erated by UNET-XY, described in section 5.1.4), or AP = AR ⊕ AI (the combination of both
models, described in section 5.1.5). The value of IoU varies between 0 (null intersection) and
1 (perfect intersection). Given that the problem was treated in a matrix form, IoU was calcu-
lated as AY ⊕AP

AY ⊗AP
, where the operator ⊗ corresponds to the matrix element-wise multiplication.

For evaluating the IoU metric, the mean and the standard deviation were calculated us-
ing the 165 database projects, composed of 477-floor plans in architecture (basement, first
floor, and typical floor). The complete results are presented in Table 5.6, wherein the value
obtained in the case without applying any model and the combinations between CNN mod-
els (CNN-A, CNN-B) and UNET-XY models (likely image generation) are described. For
evaluation purposes, the output function fsigmoidh was used. It is possible to observe that
applying only CNN-A or CNN-B model does not decrease the error, nor does it increase
the average value of IoU; however, when using both models in combination, this contributes
to reducing the variance, which is consistent with the improvement of the R2-value for the
thickness, the length, the rectangle’s translation, and the floor plan’s geometric properties.
On the other hand, the application of the image allows increasing the average IoU in all cases.

For the study of the effect of the output function in the generation of the image given by
the UNET-XY model, the average IoU was calculated considering the nine output functions
proposed (section 5.1.4), without considering the rectangles of the prediction (Matrix AR);
thus, flinear = 0.19 ± 0.092, fsigmoid = 0.144 ± 0.097, fsigmoidh = 0.234 ± 0.097, ftanh = 0.123 ±
0.101, fcos = 0.167±0.096, fsquare = 0.141±0.087, fquad = 0.087±0.071, fisquare = 0.21±0.097,
and fiquad = 0.227 ± 0.098. The best result was obtained with fsigmoidh.

Table 5.6: Value of the IoU metric for different combinations of the re-
gressive CNN and UNET-XY models for assembling the final engineering
floor plan.

Regressive model
Use of likely image generation

No Yes
None 0.471 ± 0.282 0.596 ± 0.255
CNN-A 0.463 ± 0.273 0.597 ± 0.253
CNN-B 0.313 ± 0.240 0.486 ± 0.245
CNN-A + CNN-B 0.424 ± 0.185 0.627 ± 0.174
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Figures 5.27 through 5.30 show different results of the floor plan prediction with different
IoU levels; Figure 5.27 presents a superior case, with an IoU = 0.787 (77th percentile), where
the high intersection between the predicted and real solution is visualized. In this case, the
model can predict new elements such as horizontal rectangles at X = (−15, −5) and Y = 5,
the reinforcement of the connections between elements, and the presence of horizontal walls
at X = (−6, 6), Y = −6.5 suggested by UNET-XY. Figure 5.28 represents an above-average
case, the elimination of the diagonal walls in the perimeter of the stairway box between
X = (−4, 4) and Y = (2, 6) stands out, and the correct prediction of the vertical walls in
X = −10, Y = (−10, −5) and X = 10, Y = (−10, −5). The images also allow modeling the
upper walls between X = (−2.5, 0) and Y = (7, 11), which are not present in the architec-
ture floor plan. In Figure 5.29, there is a case below the average, with an IoU = 0.6 (38th
percentile), which highlights the remarkable similarity of the walls of the central hallway,
in X = (−2, 18) and Y = (0, 3), in addition to a correct prediction of the walls under the
stairway box, at X = (−10, −5) and Y = (−3, 0). Finally, Figure 5.30 shows an example
within the lower spectrum of the distribution, IoU = 0.413 (11th percentile), representing
those buildings that present a significant variation between the architectural and engineering
floor plan. For example, the following situations reduce the accuracy: (a) the difference in
the direction of the perimeter walls; (b) the diaphragm area at the level of the stair is similar,
but with a different location, which produces an error in the prediction; (c) the incorporation
of images generates a large number of walls within the hallway region that does not corre-
spond to the real floor plan, like the horizontal walls at Y = −8 m that are maintained from
architecture without being eliminated by UNET-XY.

In general, the results indicate that most cases present an excellent correlation associated
with high values of IoU, which provides not only an accurate prediction of the walls geometry,
but also the probable location and dimensions of new walls that are not anticipated in the
architectural plans.
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Figure 5.27: Example of plan prediction, IoU = 0.787, percentile 77th.
IoU without model = 0.631.
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Figure 5.28: Example of plan prediction, IoU = 0.699, percentile 58th.
IoU without model = 0.388.
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Figure 5.29: Example of plan prediction, IoU = 0.6, percentile 38th. IoU
without model = 0.446.
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Figure 5.30: Example of plan prediction, IoU = 0.413, percentile 11th.
IoU without model = 0.038.
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Chapter 6

Conclusions

Structural design is a task that requires high interaction between the architecture and
engineering teams when defining each of the walls distributed within the floor plans of a
building. This process inherently generates a large amount of data, which can be used to
predict the variation of wall dimension and location when comparing the first architecture
and the final engineering plans, aside from predicting new walls due to engineering require-
ments.

Given the recent development of artificial intelligence (AI) and computational capacity,
a machine learning (ML) algorithm, based on artificial neural networks (ANN), was used to
develop a methodology for the conceptual design of the wall layout of Chilean residential
buildings. Neural networks in this sense allow modeling complex interaction scenarios be-
tween an input and output domains, in this case, the hyperdimensional mapping between
the architectural and engineering plan information, allowing to encode the knowledge, expe-
rience, and know-how of the engineering design process embedded in the floor plans from an
adequately processed database.

As a first approach of developing a ML-based structural wall layout design, a database of
165 Chilean residential projects of reinforced concrete shear wall buildings was created, con-
sidering a rectangular wall discretization. For each rectangle, a total of 30 numerical features
were calculated (RENE), accounting for geometric and topological properties. These features
fed a regressive ANN model to predict the engineering values of thickness and length from the
architectural input, archiving remarkable results in terms of the coefficient of determination
(R2) of 0.995 and 0.994 for the thickness and length, respectively. The model performance
shows that the rectangular discretization and the computed features adequately represent
each wall’s geometric and semantic information; moreover, the association mechanism be-
tween architectural and structural objects, although based on a complex heuristic formula,
allows a correct assignment of the pairs. However, a regressive model of this nature does
not incorporate spatial detail or contextual information of each wall perimeter, and also, the
prediction of other parameters such as the wall translation has a poor performance.

As convolutional neural networks (CNN) allow for obtaining more contextual and non-
trivial features is that a CNN framework was proposed to generate the final engineering floor
plan. For such purpose, two independent plan predictions were combined, which consider the
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architectural data as input, such as the numerical 30-feature input vector (RENE) and the
surrounding walls’ image for each rectangle. The proposed image size is 64x64 pixels (px),
where the source rectangle is centered and covers a 10x10 meters (m) region of its respective
floor plan. The first plan prediction is assembled using two regressive CNN models, CNN-A
and CNN-B, fed by the 30-feature vector (RENE) and the 64x64 px images. CNN-A model
allows the prediction of the rectangles’ thickness and length, with an R2-value of 0.994 and
0.995, respectively. CNN-B model predicts the element’s translation between the architec-
tural and engineering floor plan with an R2-value of 0.875 and 0.83 for the x and y-axis.
CNN-B also predicts the geometric properties of the bounding box of the engineering floor
plan with an R2-value equal to 1.0 for the width, aspect ratio, and the offset between the
geometric center and the mass center on both main axes. The second plan prediction is
assembled using a model (UNET-XY) that generates a likely engineering floor plan image for
each rectangle given the same architectural input mentioned above; UNET-XY reached an
average binary accuracy metric of 0.966 in the test dataset. In this context, it is observed that
the incorporation of the images for each rectangle improves the performance of the model
prediction by adding a new spatial dimension to the input, allowing the calculation of new
low, medium, and high-level features due to the model’s convolutional layers that account for
more properties at geometric and topological levels. Such more complex properties cannot
be captured with only the original 30-feature vector (RENE).

Both independently predicted plans (from CNNs & UNET-XY) are combined to lead the
final engineering floor plan, with a mean result in terms of the intersection over union (IoU) of
0.627 ± 0.174. This generated plan allows predicting the wall’s rectangles design parameters
and proposes new structural elements not present in architecture, making the methodology
an excellent candidate to accelerate the building wall layout’s early conceptual design.

Despite the results obtained by the methodologies, artificial intelligence-based models have
great potential for improvement because more data can be incorporated into the dataset, al-
lowing better distribution and larger edge cases, or new algorithms can be studied on the
fly. Moreover, the proposed framework not only allows studying Chilean buildings, since the
models are data-type agnostic; that is, they do not discriminate different types of structures.
Also, to incorporate other styles or realities, it is enough to study the feature calculation
mechanism and the element assignment process to be predicted. This means that new re-
search into these applications has great potential for industry development, decreasing the
design time and suggesting new solutions to the engineering team.

Further work could consider dimension estimation for the new structural elements and
their impact on design considerations such as building displacement demand, building dy-
namic characteristics, and force distribution. The heuristic association between architectural
and engineering objects also has significant room for improvement, as more geometric and
topological constraints can be applied; for such task, a regressive or classification model can
be trained for finding the closest wall considering the restrictions discussed in this work, such
as the distance or angle similarity. The feature calculation to describe the wall’s rectangles
can also be improved, for example, incorporating more context and spatial relationships;
other structural elements can also be considered as these objects also influence the wall’s
design, for example, beams or slab shafts. Finally, different ML algorithms can be studied
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to obtain a more refined representation of the image prediction between an architectural and
engineering domain, especially in the cases where there is a considerable semantic difference
between the floor plans.
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