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EXPERIMENTAL STUDY OF THE ASTROMETRIC CRAMÉR-RAO LIMIT
ON BIDIMENSIONAL DIGITAL DETECTORS

La medición de la posición de los astros es un tema fundamental en múltiples áreas de
la astronomía, especialmente en la astrometría, cuyo desarrollo depende de la obtención de
mejores imágenes con mayor calidad utilizando una mayor cantidad de detectores y más
avanzados. En este contexto es crucial el estudio de la máxima precisión alcanzable en la
determinación de la posición utilizando un detector digital bidimensional, en particular, un
CCD o un CMOS, debido a la posible aparición de limitaciones como por ejemplo, la inter-
ferencia entre pixeles o el ruido espacial.

Con el objetivo de investigar este tema, fue diseñado e implementado un montaje ex-
perimental simple, enfocado en el estudio de la máxima precisión alcanzable de manera
experimental al medir la posición de una estrella y su posterior comparación con el límite
astrométrico de Cramér-Rao teórico, que corresponde a la máxima precisión alcanzable en
la determinación de la posición. Utilizando este montaje y análisis de datos, se estimó la
desviación estándar experimental de la posición de las estrellas por medio de múltiples tipos
de algoritmos de centrado de imágenes.

Los resultados obtenidos fueron utilizados como retroalimentación para la mejora del mon-
taje experimental, logrando obtener un set de datos que cumplía las condiciones necesarias
para el estudio. Finalmente, los datos lograron alcanzar una precisión del orden de 1

200 de
pixel, lo que corresponde a aproximadamente 0.0284µm, con una gran calidad de imagen y
fuentes puntuales bien muestreadas, asegurando el correcto comportamiento de los algorit-
mos de centrado utilizados.

Estos resultados finales fueron comparados con el límite de Cramér-Rao astrométrico,
lo que permitió la verificación experimental del comportamiento de límite de la cota de
Cramér-Rao. Además, se analizó el comportamiento de cada algoritmo de centrado de imá-
genes aplicado, junto con un mayor dominio y comprensión de los aspectos relevantes de la
configuración experimental.
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EXPERIMENTAL STUDY OF THE ASTROMETRIC CRAMÉR-RAO LIMIT
ON BIDIMENSIONAL DIGITAL DETECTORS

The measurement of the position of celestial objects is a fundamental issue for several
branches of astronomy, specially for astrometry, which development depends on the obtai-
ning of better images with higher quality using more and better detectors. For this purpose,
it is crucial to study the best location accuracy achievable with a bidimensional digital detec-
tor, for example, a CCD or a CMOS, due to the possible appearance of limitations as pixel
crosstalk or spatial noise.

In order to investigate this subject, a simple experimental setup was implemented, aimed
at the study of the higher precision achievable experimentally measuring the position of a
star, and its comparison with the theoretical Cramér-Rao astrometric limit, which corres-
ponds to the maximum achievable location accuracy. Using this setup and data analysis, the
experimental standard deviation of the position of the stars was estimated using several types
of image centering algorithms.

This results were used as feedback to improve the experimental setup, reaching a data
set that satisfied the necessary conditions for the study. Finally, the obtained data reached
accuracy values of the order of 1

200 of a pixel, which corresponds to approximately 0.0284µm,
with great image quality and well sampled point-like sources, ensuring the good behavior of
the applied location algorithms.

This final results were compared with the astrometric Cramér-Rao limit, leading to the
experimental verification of the limit behavior of the Cramér-Rao bound. Also, it was per-
formed an analysis of each image centering algorithm applied, along with the achievement of
a better understanding of the relevant aspects of the experimental setup.
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Chapter 1

Introduction

Astronomy has marveled humanity for millennia and played a crucial role in ancient great
civilizations that used it as a way to predict their fate according to the changes in the sky and
to interpret the wishes of the gods. Trough the years, astronomy has evolved to its current
state, where it has established itself as a science devoted to give an answer to the the greatest
mysteries of the cosmos.

Initially, early astronomers utilized the naked eye to make observations of the movement of
bodies in the sky, keeping records as annotations and hand-drawn diagrams. However without
the aid of other instruments all objects in the sky appear to be equidistant, which was an
obstacle to perform more precise observations. Later, in the early 1600s, the development of
instruments such as the telescope, led to a significant improvement, allowing the observation
of fainter objects and better angular resolution. Although these advances were a great en-
hance in the area, everything changed with the appearance of the photographic plate, which
made possible to keep a detailed, permanent and quantitative record of the observations and
to detect faint objects due to its ability to accumulate light over a long period of time.

With the consecutive improvements on observation technologies, every branch of astro-
nomy enhanced their observations and data, among them, astrometry, which is the science
devoted to the study and measurement of the position and motion of celestial bodies with
high accuracy. This technological revolution led to a race to obtain better images with higher
quality using more and better detectors.

Currently, bidimensional digital detectors are the most utilized instruments in astronomy
leading to a radical change in the field, through enabling the improvement of data in several
aspects, and making possible detection in different wavelengths as well as reach higher reso-
lution. Nevertheless, a full characterization of its operation it is critical in order to determine
the maximum location accuracy achievable in the measurements, being a fundamental issue
on several others researches.

In this framework, Mendez et al. [2013, 2014] [1][2] developed theoretical tools based on
statistical estimators that allow to determine the maximum precision achievable on ideal
photometrical and astrometrical conditions, using bidimensional digital detectors. Despite
the fact that previous results agree with this theoretical value for the location variance, it is
necessary to perform an experimental verification.

1



1.0.1. Objectives
The aim of this work is to experimentally verify the astrometric Cramér-Rao limit through

the comparison of the location variance obtained empirically, with the theoretical value of
the Cramér-Rao variance. The adoption of this limit, enables to calculate the theoretical
value for the maximum accuracy achievable, utilizing only a limited number of parameters
of detector and image parameters.

For this purpose, we require an experimental setup able to simulate a set of point-like
sources and then acquire several sequential images of the same trial with a bidimensional
digital detector. Later, the obtained data will be analyzed, determining the maximum achie-
vable location accuracy for each object in every used method. Finally, it will be proceed to
verify the theoretical Cramér-Rao limit experimentally.

To reach this goal it would be necessary to accomplish the specific objectives that are
listed below

Design, install and align the optics of an experimental setup that allows accurate astro-
metric measurements with a bidimensional digital detector.

Analyze the obtained experimental data, applying different reduction methods and ima-
ge centering algorithms.

Analyze the performance of the image centering algorithms used and the quality of the
obtained data to ensure the conditions required for the study.

Calculate the theoretical astrometric Cramér-Rao limit based on the data and detector-
obtained parameters. Subsequently, compare them with the experimental results.

The study of this subject is necessary for future development of innovative astrometric
applications aimed at achieving high precision measurements, extending the state of art of
this branch of astronomy.

2



Chapter 2

Literature Review

First, it is necessary to define the theoretical foundations of the work to be carried out.
For this reason, throughout this chapter we describe the operation of bidimensional digital
detectors, in addition to fundamental astrometical concepts and a number of crucial estima-
tion elements.

2.1. Bidimensional digital detectors
Initially, astronomy was developed utilizing naked eye observations and hand-drawn dia-

grams. Later, the development of photographic plates in the 19th century led to a complete
change in the field, allowing to keep permanent and quantitative records of the celestial bo-
dies. Even when this was a significant improvement, the instruments that made possible a
big leap forward were mainly the bidimensional digital detectors.

Bidimensional digital detectors are widely used in astronomy due to its essential role in
multiple applications. This photo-electronic devices detect electromagnetic radiation in the
form of individual photons hitting the detector. This process generates an electrical signal
that is subsequently digitized at the end of the exposure, generating a value proportional to
the number of incident photons. Finally, this information is stored numerically, allowing its
later computational analysis. Consequently, the measurements are quantitative and highly
accurate, which allows to perform an analysis and comparison of the results objectively ob-
tained besides the perception of the analyst.

CCD and CMOS are the two most used digital detectors. In the next section, we will
describe their principal features and differences. The operation of both instruments is based
on the photoelectric effect, which is the emission of electrons due to the incidence of photons
on certain materials. Albert Einstein developed the theoretical explanation of this effect based
on the corpuscular theory of light and the concept of quanta, proposed by Max Planck. He
was awarded the 1921 Nobel Prize in Physics for this work. Bidimensional digital detectors
make use of this principle, calculating the number of emitted electrons to determine the
amount of incident photons.

3



2.1.1. CCD
The Charge Coupled Device, usually known as CCD, is an array of microscopic, rectan-

gular, light-sensitive regions called pixels. This little regions are typically made of silicon.

Measuring the brightness distribution of a celestial object with a CCD can be understood
with an analogy. Each pixel can be likened to a little bucket that collects the rainfall at
a sector of a field. Once the rain ceased, the buckets in each row are moved horizontally
one position to the right. This process is known as Parallel transport. Hence, all buckets of
the last column reach a vertical conveyor belt called Serial output register. As each bucket
reaches the end of the conveyor belt, it is emptied into a special bucket that measures the
amount of water known as Output register. This is repeated with all the other buckets in
the conveyor. Once the Serial output register is emptied, the whole procedure is repeated
until all the buckets of the field are measured. In the CCD, instead of water and buckets, the
things measured are photons and pixels.[3]

Consequently, we can distinguish four main stages in the CCD operation which are listed
bellow

Generation of photo-electrons.

Collection of produced electrons.

Charge transfer

Readout

(a) (b) (c)

(d) (e) (f)

Amplifier

Signal Out Signal Out

Serial 
Register

Photoelectron

Figure 2.1: Charge transfer and readout scheme on a CCD
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First, the photoelectric effect cause the emission of electrons when the incident photons
coming from the source, hit the silicon array. Each pixel collects the electrons generated in
this region due to the existence of a potential well produced by voltage differences. Once
radiation exposure is finished and all the photo-electrons have been collected, the stage of
charge transfer starts. This stage was previously explained with the analogy of water and
buckets. Each row of pixels is a parallel register that moves horizontally, as shown in the
figure 2.1, one position to the right. When electrons stored on each pixel of the last column
reach the Output serial register, they move vertically towards the Output register, falling, one
by one, on the amplifier, followed by an Analog-to-Digital Converter, known as ADC, where
the readout stage begins. The ADC, converts the analog signal produced by the electrons to
a digital discrete signal, known as Data Number, measured in ADU (Analog-to-Digital Unit).
The accuracy of this conversion is limited by the number of bits in which the ADC can save
each value. If the ADC has N bits, then the dynamic range of the signal is 2N which is also
the number that defines the pixel saturation of the detector.[4] This value is also affected
by the full well capacity that corresponds to the amount of electrons than can be stored
within an individual pixel. Usually the full well capacity and the saturation level are equal,
but it is important to notice that the first quantity is determined by the electronics of each
pixel of the detector, while the saturation level it is limited by the number of bits of the ADC.

Figure 2.2: CCD linearity curve for a typical three-phase CCD as a
function of the number of generated photoelectrons.

Through the previous process, an array is generated, which is the digital image, where
each element represents the measured amount of counts per pixel, also know as Data Number.
This is the final output of the detector.
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A crucial CCD operational parameter is the gain of the detector, which is a conversion
factor from photoelectrons to a digital signal measured in ADUs. This parameter corresponds
to the amount of electrons represented in one ADU. The previous behavior is described in
the equation 2.1, where N(e−) is the number of photoelectrons, DN the Data Number and
G the gain of the detector.

N(e−) = DN ·G (2.1)

Because the detector only has one readout output, the gain is the same for all the pixels,
and it is only determined by the electronics of the ADC. This is one of the main features of
a CCD, although, it only can have small variations when it is converted to a function of the
detected photons on each pixel. This can be seen in the figure 2.2, which shows the curve of
obtained ADUs as a function of detected photons. During most of the considered range, the
curve has a linear behavior where the slope is the gain of the detector, however, near the full
well capacity of pixels, the CCD has a non-linear operation, changing the value of the slope,
therefore, changing the gain value. [5]

Figure 2.3: Photon absorption length in silicon as a function of wavelength
in nanometers.

Additionally, the number of emitted photoelectrons also depends on an efficiency factor
called Quantum efficiency, which corresponds to the ratio of photoelectrons generated and
incident photons. Quantum efficiency is an equally important factor as the gain forementio-
ned, because it gives account of the detector’s performance as a wavelength function, as it is
shown in equation 2.2, where N(e−) is the number of generated photoelectrons, N(photons)
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is the number of incident photons and QE is the Quantum efficiency. This parameter is a
function of the silicon thickness and the incident radiation wavelength.

N(e−) = QE ·N(photons) (2.2)

As figure 2.3 shows, Quantum efficiency is directly related to the photon absorption length
and the incident radiation wavelength. The curve represents the absorption length, which is
defined as the distance for which 68 % (1/e) of the incoming photons will be absorbed. Outsi-
de the range of 3.5 · 102 nm to 8 · 102 nm the majority of photons reflect off the CCD surface,
pass right through the silicon, or they get absorbed within other layer or circuitry, therefore,
Quantum efficiency is critically dependent on the silicon thickness. [5]

Figure 2.3 also shows that for blue wavelengths, Quantum efficiencies are lower overall
due to the tiny silicon thickness necessary to correctly perform photon absorption, being
a known defect of CCDs. However, even considering this, Quantum efficiency of CCDs is
considerably higher than in previous imaging devices, as is shown in figure 2.4, where it can
be seen that CCDs has higher percentage values in a broader range of wavelengths. Also,
Quantum efficiency can be improved for specific wavelengths during manufacturing process
with coatings of different materials over the silicon chip.

Figure 2.4: Typical Quantum efficiency for various detectors.

It can also be seen from figure 2.4 that thinned CCD’s perform well at short wavelengths,
corresponding to blue light. This type of CCD is also called back-side illuminated devices,
because it is mounted upside down and illuminated from behind. Due to this feature, the
incoming photons are directly absorbed by the silicon without interference from electronics,
so the absorption length behaves as shown in figure 2.3, which exhibits that the photons are
mainly absorbed over a short length of the silicon, allowing a proper operation over these
wavelengths.
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Another important parameter is the Charge Transfer Efficiency which is the percentage of
charge correctly transferred from one pixel to another. Usually, for modern CCDs, this value
is approximately 100 %, however, as the size of the pixel array increases, the charge transfer
efficiency becomes increasingly important since multiple charge transfers must be made from
one pixel to another in order to bring all the electrons to the ADC, especially in the farthest
pixels. [5]

2.1.2. CMOS
A CMOS detector is a device based on CMOS technology, which stands for Complemen-

tary Metal-Oxide Semiconductor, that is a combination of NMOS and PMOS technology1.
This is one of the main differences between CCD and CMOS, because CCDs only use one
type of the mentioned technologies. [6]

CMOSs also use the photoelectric effect as the primary basis of their operation, neverthe-
less, there are important differences with CCDs. The biggest distinction is that instead of
having just one amplifier, it has one amplifier for each pixel, hence, there is no need to transfer
charge between pixels. This technology is known as Active Pixel Sensor. Due to the existence
of independent amplifiers, the gain of the detector it is not uniform, i.e. gain it is a function
of the pixel Gij showing small variations, yet, for the vast majority of applications it can be
considered constant.

Other important feature is that, unlike CCDs, CMOSs can be manufactured with diffe-
rent materials, not only silicon, which allows to increase or decrease sensibility in specific
wavelengths.

2.1.3. CCD and CMOS comparison
As described in previous sections, both types of detectors have similar operations, ho-

wever, CCDs and CMOSs differ in particular features that can be an advantage for certain
purposes. This differences allows to select the best detector for each application.

Since every pixel has its own amplifier, characterization of CMOSs detectors is more dif-
ficult than for CCDs. At the same time, this feature makes CMOSs detectors significantly
faster due its efficiency on readout process, as is shown in figure 2.5. This also, implies that
CMOSs are not affected by charge transfer noise during the readout stage.

Another significant difference is the type of semiconductor material used to build the
detector’s chip. In the case of CMOS, it can be manufactured with another materials, not
only silicon, increasing Quantum efficiency for specific wavelengths. Finally, cooling systems

1 NMOS technology utilizes a type of semiconductor that operates using negative charges, i.e. the on and
off switching of electronics is determined by the movement of electrons. In contrast, PMOS technology
performs the same behavior but utilizing positive charges or holes.
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aimed to reduce noise due to dark current, are usually better on CCDs.[7]

CCD CMOS

Pixel

Readout Circuitry

Figure 2.5: Readout comparison between CCD and CMOS.

2.2. Astrometry
Astrometry is a branch of astronomy devoted to the measurement of the position, absolu-

te and relative, along with the motion of celestial bodies with the highest accuracy achievable.

For this purpose, electronic sensors, such as those described in the previous section, have
been used to detect radiation that cannot be seen with the naked eye. In addition, it is neces-
sary to use computerized processing of the digital images obtained, so relevant characteristics
can be identified, facilitating their study. The above-mentioned technologies, have boosted
the development of astrometry, which is constantly looking for new methods to increase the
accuracy of the measurements.

In order to fully understand this work it is necessary to review a number of relevant as-
tronomical and astrometric parameters within the scope of this research which are detailed
in the subsections below.

2.2.1. Luminous intensity and Flux density
Assuming that there is radiation crossing a surface dA, we can consider that a part of this

radiation will leave the surface within a solid angle of dω, where the angle formed between the
normal of the surface and the solid angle is θ. Also, the area element is projected, obtaining
dAn = cosθdA [8] Consequently, the amount of energy dE with frequencies between ν and
ν + dν is presented in equation 2.3.

dEν = IνcosθdAdνdωdt (2.3)
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where Iν is the specific intensity of radiation with frequency ν, in the direction of the
angle dω as is shown in figure 2.6. From now on this will be called simply intensity.

If the intensity is independent of the direction considered, dEν will be proportional to the
area element perpendicular to radiation direction. This is called cross-sectional area.

Accordingly, the total intensity I can be defined as the integral of Iν over all possible
frequencies, as shown in equation 2.4.

I =
∫ ∞

0
Iνdν (2.4)

𝑑𝐀

𝜃

𝐼𝜈

𝑑𝜔

Figure 2.6: Luminous intensity Iν of the energy crossing an area dA within
a solid angle dω in θ direction.

Usually, from an astronomy-observational point of view, the main parameter is the flux
density, denoted as Fν for a specific ν. This corresponds to the radiation power per area
unit, per unit frequency, where S is the surface where the flux is measured. Typically this is
considered as an spherical surface. Equation 2.5 shows the expression of Fν .

Fν = 1
dAdνdt

∫
S
dEν =

∫
S
Iνcosθdω (2.5)

Finally, the total density flux is obtained integrating the equation 2.5 over all possible
frequencies. The result of this operation is shown in equation 2.6.

F =
∫
S
Icosθdω (2.6)

10



2.2.2. Point Spread Function (PSF)
Stars are at such great distances that for all practical purposes they can be considered as

point sources. However, in practice, this is not always true. This is the reason because the
Point Spread Function is defined, that is to say, shows how the light from a point source
spreads over multiple pixels.

The Point Spread Function, known for its acronym PSF, can adopt numerous shapes de-
pending on the optics used and the atmospheric effects, however, is usually approximated
assuming that a point source with a wavelength of λ is observed through a perfect lens with a
circular aperture, resulting in a PSF limited by the diffraction of light that draws a diffraction
pattern known as Airy disk .

This diffraction pattern puts a theoretical limit to the maximum accuracy achievable in
object observations. For example, in the case of a telescope, an image cannot be formed as
a point source, instead it appears in the form of a small circle, due to the dispersion of the
light over the surface of the lens.[8]

Further, the PSF of the observed object can be calculated from the mathematical ex-
pression for the Airy disk, obtaining the result presented in equation 2.7, where J1(x) is the
Bessel function of first order and first kind, and x = πDsinθ/λ where θ is the angular radius
measured from the center of the aperture.[4]

I(θ) = I0

(
J1(x)
x

)2

(2.7)

Due to the shape of Bessel functions, there are zones with constructive and destructive
interference surrounding the central peak in the form of concentric rings, as can be seen in
the figure 2.7, where the solid line represents the mentioned PSF.

Figure 2.7: PSF of the Airy diffraction pattern for a circular aperture of
diameter D
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For small angles utilizing radians as units of measure, the equation 2.8 is satisfied.

θ = 1.22 λ
D

(2.8)

Although the theory corresponds to the Airy disk PSF, this results can be approximated
to a Gaussian distribution whose shape is shown in the equation 2.9, where µ represents the
center of the curve. Due to optical and atmospheric effects, it is a good approximation to
consider that the PSF behaves as a Gaussian function. In the case of astrometric measure-
ments, µ represents the position of the object to be measured. The approximation can be
made in multiple other applications.

PSF (x) = 1
σ
√

2π
exp

(
−(x− µ)2

2σ2

)
(2.9)

2.2.3. Full Width at Half Maximum (FWHM)
Full Width at Half Maximum, abbreviated as FWHM, is a measure of the dispersion of

a function. It is obtained calculating the difference of two points of the independent variable
where the dependent variable has a value equal to half the maximum value of the function,
as shown in figure 2.8.

Figure 2.8: Full Width at Half Maximum of a function.

In astrometry, usually it is calculated the FWHM of the PSF, described in the previous
subsection. As indicated, the most usual PSF is a Gaussian function, so it is extremely im-
portant to know the expression of the FWHM of a Gaussian function, shown in equation 2.10.

FWHM = 2
√

2ln2σ (2.10)
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2.2.4. Background
Background is the average signal per pixel at zones of the image where no stars are pre-

sent. This background is the contribution of numerous noise sources, such as the variance of
the readout noise, signals from unresolved sources, and light scattered by the atmosphere.
It can be determined by taking the median of the values of the pixels that do not directly
contain a star as a source of light.[9]

2.2.5. Signal-to-Noise Ratio (SNR)
The Signal to Noise Ratio, usually known for its acronym SNR, is a widely used quantity

in science and engineering, that allows to compare the signal power and the noise power,
representing the quality of the signal. It is usually measured in decibels (dB) with the ex-
pression shown in equation 2.11.

SNR = 10log10

(
Pseñal
Pruido

)
(2.11)

In astronomy, specifically in CCD detectors, the signal to noise ratio is defined as shown
in equation 2.12. This is known as the CCD equation.

SNR = N∗√
N∗ + npix(NS +ND +N2

R)
(2.12)

where N∗ is the total number of photons coming from the studied source, npix is the
amount of pixels considered in the analysis, NS is the total number of photons per pixel
contributed by the background, also called sky, ND is the total number of photons produced
by the dark current due to the temperature of the device (even if it is small, still contributes
to noise), and NR is the noise produced during the readout process. All this parameters are
measured in e−.[5]

Generally, we measure this quantities in ADU’s, so utilizing the gain G as the conversion
factor, we obtain equation 2.13, where all the parameters are measured in ADU’s.

SNR = N∗√
N∗√
G

+ npix(NS +ND +N2
R)

(2.13)

For bright stars, since
√
N∗ is the dominant term in the previous expression, equation 2.12

can be approximated as shown below in equation 2.14.
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SNR = N∗√
N∗

=
√
N∗ (2.14)

It is important to consider that equation 2.14 is only valid for bright light sources where
the noise is dominated by the source itself, however, for weak sources, it is necessary to use
the equation 2.12 with all the corresponding noise terms.

2.3. Estimation Elements
2.3.1. Astrometric Cramér-Rao Limit

Méndez et. al. [1, 2] developed the astrometric Cramér-Rao limit which corresponds to a
theoretical statistical tool that allows to calculate the minimum variance achievable for the
position of celestial objects as a function of observational and instrumental parameters.

The Cramér-Rao limit has two different expressions, as is shown below in equation 2.15,
depending on the regime of the observed object, i.e., if the flux dominates over background
or vice versa.

σ2
CR ≈


√
π

2(2ln2)
3
2
· B
GF 2

FWHM3

∆x F � B

1
8ln2 ·

1
GF
· FWHM2 F � B

(2.15)

In the equation above, F is the flux of the object, B is the background, FWHM is the
full width at half maximum of the PSF of the studied object, G is the gain of the detector
and ∆x is the size of the pixel.

This theoretical limit does not depend on the size of the array of pixels if the PSF is well
sampled.

2.4. State of art
The interest in determining the maximum precision achievable obtained in both, theore-

tical and experimental astrometric measurements, has been a very important issue in the
development of astronomy, since the reliability of the conclusions obtained from the data
depends on how well characterized are the sources of error involved, along with other proce-
dures to eliminate their effects.

The determination of the variance of the data and their effects also allows to design new
technologies and experiments that can help to increase, even more, the accuracy of measure-
ments and images in astrometry. Those improvements contribute to the development of this
field of study.
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In this framework, numerous investigations have been developed to determine and improve
the behavior of the data variance. This effort is divided in two different branches, the first
one aims to elaborate and enhance image centering algorithms utilizing multiples methods,
while the second, is devoted to designing and implementing new experiments to characterize
different devices and their achievable accuracies.

The work elaborated by the Local Cosmology group at the Turin Astrophysical Observa-
tory it is contained in the second area of research. The project consisted in an experimental
setup, shown in figure 2.9, that allowed to study how the position of celestial objects varies
through a set of sequential images of the same experiment.[10]

CCD

Finite Aperture
~ 2 mm

Target Mask

Baffling

LED
Light Source

Insulated Optical Bench

Figure 2.9: Experimental setup designed and implemented by the Local
Cosmology group at the Turin Astrophysics Observatory.

This study, with first experimental results published in 2001, is the main basis for the
project presented here.

In addition, the development of new image centering algorithms has been approached by
numerous researchers, applying various techniques as the Gaussian fit, the maximum like-
lihood method [11] and even a new method with Bayesian routine [12]. Furthermore, research
has been carried out to study the performance of algorithms dedicated to the estimation of
different measurement parameters [13]. All this researches allow to continually expand this
area of astronomy, improving the measurements and methods utilized, reaching higher accu-
racy levels.
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Chapter 3

Methods

In the previous section we presented the theoretical foundations necessary to understand
the operation of bidimensional digital detectors and the astrometric, optic and statistical
parameters. Now, it is possible to start the next chapter where we will study the methods
and procedures made through this work.

First, we will study in detail the setup, design and implementation of the experiment
performed during this work in order to take precise astrometric measurements with a bidi-
mensional digital detector. Later, we will discus the image centering algorithms operation and
coding. This algorithms were utilized for the analysis of the data. Finally, we will review the
necessary procedures to calculate the experimental and theoretical Cramér-Rao astrometric
limit.

Figure 3.1: Flow chart of the methodology
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Even if all these steps are described sequentially, where the results of one stage affected
the development of subsequent and previous activities of the methodology, several iterations
were made. This relation between the stages of the experimental setup is shown in figure 3.1.

Firstly, the experimental setup was designed and subsequently implemented, aligning the
optical components. Later, the data was collected and the images were initially processed.
Where the quality of the obtained image was poor, the experimental setup was modified
and all the previous stages were repeated. On the other side, where no image problems were
observed, the experiment proceeded to the final part of the image processing and post pro-
cessing. Finally, from the results, improvements of the experimental setup were proposed.

3.1. Design and implementation of the experimental
setup

As described earlier, the first stage of the methodology was the design and implementa-
tion of the experimental setup, aiming to obtain sequential measurements of not resolved
point-like sources utilizing a bidimensional digital detector. This allowed to capture several
realizations of the same test. Later, with the obtained data, we studied the position variance
for each point-like source, determining their maximum experimental precision achievable.

Detector

Pupil Mask 
𝝓 5mm

Insulated Optical Bench

Lens

Pinhole Array

Light Source

150 mm 85 mm

Figure 3.2: Designed and implemented experimental setup

Based on the experiment carried out by Mario Gai et al. [10] presented in figure 2.9, the
experimental setup of figure 3.2 was designed utilizing the optical components listed below.

A light source, specifically, a LED, emitting red light (625 nm) with optimized thermal
properties to maintain stable power. Corresponds to Thorlabs M625L4. Further specifi-
cations are presented in table 3.1 [14] and in figure 3.3 where the normalized intensity
of the light source is presented.
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Table 3.1: Collimated LED Specifications

Color Red
Nominal Wavelength 625 nm
Bandwidth (FWHM) 17 nm

Emitter Size 1 mm x 1 mm
Maximum Current (CW) 1000 mA

Forward Voltage 2.5 V
Electrical Power 2500 mW
Typical Lifetime ≥ 100 000 h

Operating Temperature
(Non-Condensing) 0 to 40 ºC

Storage Temperature -40 to 70 ºC
Risk Group RG2 - Moderate Risk Group

Figure 3.3: Normalized LED Intensity

A pinhole array with 9 small holes of different sizes that allows to create point light
sources that simulate the stars captured by the detector.

A pupil mask and a lens that allow to have a collimated front, which properly focused
on the focal plane of the detector.

A CMOS detector, specifically the Kiralux 2.3 Megapixel Monochrome CMOS Camera
with USB 3.0 Interface from Thorlabs. It is a 1920 x 1200 pixel array whith each squared-
shaped region of 5.86µm x 5.86µm. It has a Quantum efficiency of approximately 78 %
at the wavelength of 500 nm as shown in figure 3.4. Also with fanless passive thermal
management that reduces the effect of dark current without adding vibration or image
blur and with electronic global shutter. [15]
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Figure 3.4: Quantum efficiency of Kiralux 2.3 Megapixel Monochrome
CMOS Camera from Thorlabs

As shown, we used a 625 nm wavelength source emitting light, so the Quantum Effi-
ciency of the detector was approximately 58 %.

Further sensor and imaging specifications are shown in table 3.2 and table 3.3. [15]

Table 3.2: CMOS Sensor Specifications

Sensor Type CMOS Monochrome
Number of Active Pixels 1920 (H) x 1200 (V) (∼ 2.3 MP)

Pixel Size 5.68 µm x 5.68 µm
Optical Format 1/1.2” Format (11251 µm x 7032 µm)

Peak Quantum Efficiency 78% at 500 nm
Dynamic Range Up to 75dB

Full Well Capacity ≥ 30.000e−
Shutter Type Global

Table 3.3: Imaging Specifications

Exposure Time 0.034 to 15167 ms
in ∼ 0.020 ms Increments

ADC Resolution 12 Bits
Vertical and Horizontal

Hardware Binning 1 x 1 to 16 x 16

Region of Interest (Width x Height)
(For Binning at 1 x 1)

92 x 4 Pixels to 1920 x 1200 Pixels,
Rectangular

Read Noise <7.0 e− RMS
Overlapped Exposures Frames per Trigger = Continuous Only

19



In the star field simulator, the pinholes have been manufactured by photo-lithography and
their size is of the order of 10− 30µm, which is variable because of manufacturing tolerances
(custom process). Pinholes are transparent dots set on an opaque coating on an optical flat.
The optical system must produce unresolved images on the detector in order to preserve the
sampling of nearly diffraction limited images, i.e. photon distributions close to the PSF. Since
the pixel size is about 6µm, the optical system magnification must reduce the source size by
a factor 3-5. It is convenient to use a (nearly) collimated beam in the intermediate section
between source and camera sub-systems, in order to allow for more freedom in experiment
layout on the optical bench. Therefore, the focal lengths of collimator and camera must differ
by a comparable factor 3-5.

The practical solution implemented uses a 75mm (3 inch) diameter doublet as a collima-
tor, with a clear aperture of 50mm and a focal length of 600mm. It is placed at 600mm
from the light source in order to produce the desired collimated beam. The distance to the
camera sub-system is then mostly irrelevant, but it is set to 600mm in order to allow for easy
insertion e.g. of devices for modulation of the wavefront in future tests. The camera optics is
a doublet with focal length set to 135mm, in order to achieve the desired (de-)magnification
factor of about 1/4. The clear aperture is set to 3mm in order to generate well sampled
images on the detector.

The experimental setup was implemented at a clean dark room at the Astrophysical Ob-
servatory of Turin, in order to minimize the dust that could cause unwanted imperfections
and aberrations on the optics, as well as to reduce the contribution of other light sources
that could compromise the measurements, and also, to minimize the environmental noise,
e.g. vibrations and thermal excursion. Also, the temperature of the room was stable overall
due to the conditions and isolation of the room. As a result, this experiment allows to fulfill
the above discussed requirements, enabling to obtain clean sequential images of 9 point-like
sources of different intensities.

In order to replicate the experiment, most of the equipment a researcher would need is
comparably easily procured: an optical bench and a set of off-the-shelf components (lenses,
light source) represent large part of the optical system. The detector may be a more re-
levant element, depending on the goal of testing CCD or CMOS devices, and the need to
test parameters more or less similar to those of real science instruments. A quiet operating
environment may be convenient to reduce the noise on the measurements. The only custom
part is the pinhole array generating the simulated star field. This may require some effort in
procurement, not so much because of particularly critical requirements, but mainly because
it is necessary to convince an optical component manufacturer to produce a prototype ac-
cording to specifications, without the perspective of mass production, and possibly at a cost
accessible to research funding levels.

3.2. Measurements
Once the experimental setup was implemented we could start the data collection stage.

For this purpose, we used the ThorCam software, specifically designed by Thorlabs to control
the CMOS detector.
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This software was installed on a computer with Windows as operating system in order to
fulfill the recommended system requirements, and connected to the detector via USB.

Once the detector was connected to the computer and the software was run, a window
appeared showing the recognized camera, and its correct operation. Following, Live Window
emerged, which is the main window for the camera control which displays the images ob-
tained. This window was used to check if the optics were correctly aligned, verifying that
the image of the star field was inside the pixel array and well-focused, and to check if the
light source LED was calibrated to reach a near-saturation value of pixels, before taking the
measurements.

The next step was to access to the Camera Settings window where some settings, as the
exposure time, can be adjusted. In this case, the exposure time was fixed at 100 ms with a
rate of 1 frame per second with a total of 100 frames. The resulting efficiency is of about 10%,
limited by download constraints. The rest of the settings were left at their default values,
including the gain of the detector, set at 0dB [16].

This measurements were saved at a chosen folder in a TIFF format file, using the full size
of the image, i.e. 1920 x 1200 pixels, as shown in table 3.3.

3.3. Data processing with image centering algorithms
In order to determine the position of the studied objects, the data was analyzed using

several image centering algorithms coded with Python. This allowed to locate the centroid
of the simulated celestial objects.

A fundamental aspect of this analysis was that the image centering algorithms were used
over a small portion of the full measured image. A small cutout was made around each point-
like source, usually of a size between 7x7 pixels and 20x20 pixels, which size in each case
was determined by the dimensions of the studied object and its characteristics. This region
is known as Region of Interest.

3.3.1. Center of Gravity
The Center of Gravity algorithm consists in estimate the position of the centroid through

the calculation of the center of mass of the object utilizing equation 3.1.

C.O.G. =
∑n
i=1mi · xi∑n
i=1mi

(3.1)

where mi is the intensity value on the i-th pixel, i.e. Ii from equation 2.4, and xi is the
coordinate of the pixel. Therefore, the center of mass of each point-like source is calculated
and used as its respective position. This is calculated for each star on each sequential image
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(also called frame) and on each axis, in order to determine how the position of the center
of mass varies throughout the data set, and finally this will allow to calculate the standard
deviation of the position.

3.3.2. Gaussian Fit
This method consists in fitting a Gaussian distribution, shown in equation 3.2, to the PSF

of the point-like source on the Region of Interest for each star on each frame that matches
the images in the least square sense. From this curve it is possible to acquire the center of
the peak µ, which corresponds to the position of the point-like source, as well as study how
the position varies throughout the data set. This allows to calculate the standard deviation
of the position.

f(x) = 1
σ
√

2π
exp

(
−(x− µ)2

2σ2

)
(3.2)

In this case, we utilized the Gaussian function in two dimensions, shown in equation 3.3.

f(x, y) = A · exp
(
−
(

(x− x0)2

2σ2
x

+ (y − y0)2

2σ2
y

))
(3.3)

3.3.3. Fit utilizing an Airy function
This method corresponds to adjusting an Airy function in two dimensions, to the detected

PSF of the point-like source on the Region of Interest, just as shown in equation 3.4, for each
star in each frame. After running the algorithm, an Airy function that adjusts the data in
the best way possible is obtained. From this, the position of the center of each axis (x0, y0)
is acquired, which corresponds to the position of the point-like source. Finally, the standard
deviation for each star center on each axis is calculated.

f(r) = A ·

2J1
(

πr
R/Rz

)
πr

R/Rz

2

(3.4)

where J1 is the first order Bessel function of the first kind, r is radial distance from the
maximum of the Airy function which corresponds to r =

√
(x− x0)2 + (y − y0)2, R is the

input parameter and Rz ' 1.2197 is a convenient starting value adjusted on a data set.
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3.3.4. Maximum Likelihood
This is the last algorithm used through the analysis of this data and applies a Maximum

Likelihood approach in the simple least squares sense, i.e. without weighting by the expected
data variance. This method finds a solution that minimizes the sum of the squared differences
between the samples and the values of a chosen model. The models for this case were the
Gaussian function shown in equation 3.3 and the Airy function shown in equation 3.4.

Later, a two step approximation is used, searching for the minimum squared error on a
grid of pre-selected positions. Based on this values, the position of the point-like sources are
acquired. Finally, the standard deviation of the center of each star on each axis is calculated.

3.4. Data Post-processing
3.4.1. Barycentric Coordinates

After processing the data set with each image centering algorithm previously described,
the post-processing is ready to start.

First, the mean of the position of all the point-like sources on each axis is computed. Next,
the difference between this point and the position of each star on each frame is calculated.
With this process the coordinates are referenced to the relative center of the stars, so the
small changes or movements that change the positions of all stars at the same time are co-
rrected, cleaning the data. This allows to reach higher precision when the center of the stars
is determined, since the relative ’motion’ of each star with respect to the collective average
position is smaller than the common mode variation. This procedure is repeated on every
frame of the data set. This approach corresponds to a sort of pointing error correction.

3.5. Computation of Cramér-Rao limit
Based on the characteristics of the utilized detector and the data measured, it is possible

to know all the terms necessary to calculate the theoretical astrometric Cramér-Rao limit.
Therefore, using the equation 2.15 as required, the predicted theoretical variance for the po-
sition of each point-like source was obtained.

For this purpose it was necessary to utilize the gain of the detector in e−/ADU’s (Electrons
/ Analog-to-Digital Units). To convert this quantity from dB to e−/ADU, it was required
to know the Saturation level and the number of bits of the ADC. As discussed above, the
Saturation level and the Full Well Capacity are usually equal, therefore the latter quantity
can be used instead. For this reason, we used the Full Well Capacity and the number of bits
of the ADC, which was 30.000e− in this case, according to table 3.2, and 12 bits, according
to table 3.3, respectively.

As shown in Chapter 2, the pixel saturation value in this case was 212 = 4096 ADUs, the-

23



refore through calculating the proportion between 30.000e− and 4096 ADUs, it was possible
to know the ADUs number per 1e−. This value was the gain of the detector in e−/ADU.
Calculating, we obtained a gain of 7.324 e−/ADU, which give us the value used to calculate
the theoretical astrometric Cramér-Rao limit.

At the same time, utilizing the previously described algorithms, it was possible to calculate
the experimental variance of the position of the point-like sources. Then, a comparison of
the theoretical and experimental values obtained was made, with the caution that the model
is necessarily simple, and it may not include unknown sources of experimental disturbances.
The comparison may therefore put in evidence some of such unknown perturbations.
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Chapter 4

Results

Through the last chapters, the theoretical basis and the methodology of this work have
been presented. This chapter shows the obtained results and the processing of the measure-
ments.

The studied data set consisted of 100 frames with images of 9 point-like sources of diffe-
rent intensities, due to the different sizes of the holes in the pinhole array and illumination
geometry.. During this work we will use the term Stars to refer to the point-like sources
whose distribution on the full image of 1920 x 1200 pixels, is shown in figure 4.1 where Star
1 is the brightest and Star 9 is faintest.

Figure 4.1: Distribution and labels of the stars on the data set

The measurements were obtained utilizing the experimental setup described in the pre-
vious chapter, using the CMOS detector with an aperture reduced to its minimum value, of
approximate 1 mm, and an exposure of 100 ms with a rate of 1 frame per second (observing
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efficiency 10%). The small aperture generates a nearly aberration free image for each source
on the focal plane.

The stars were analyzed utilizing a ROI (Region of interest) of 21x21 pixels, except in the
case of the fit with an Airy function method and the Maximum Likelihood method with an
Airy function a model, were a ROI of 20x20 pixels was used. In figure 4.2 we show the images
of the individual stars as recorded on the detector utilizing a ROI of 21x21 pixels where we
can see the well sampled point-like sources.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.2: Images of the individual spots (Artificial stars) as recorded on
the detector (raw 12 bit data)
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Later, we applied natural logarithm over the ROI to evidence the diffraction rings. The
results are shown in figure 4.3. As explained in Chapter 2 the diffraction pattern appears
due to the distribution produced by the diffraction of light when a focused spot of light is
observed through a perfect lens with a circular aperture.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.3: Images of the individual spots (Artificial stars) with natural
logarithm applied to evidence the diffraction rings

The appearance of the diffraction pattern, in this case known as Airy disk, helps to con-
firm that the observed point-like sources are sufficiently well focused and representative of a
near-diffraction limited telescope.
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Finally, to end the initial analysis, table 4.1 shows the SNR and the maximum pixel value
of each star.

Table 4.1: SNR and Maximum pixel value of the stars

Star SNR Maximum
Pixel Value

1 740.5691 3873
2 688.0629 3271
3 464.2402 1502
4 433.3354 1316
5 411.3595 1148
6 335.1208 771
7 297.5270 657
8 184.4316 269
9 92.9352 96

The SNR was calculated using equation 2.13, where the first step was to define an aper-
ture on the image (not to be confused with the aperture of the optical system) over which
calculate the necessary parameters. For this purpose, the FWHM of each star was computed,
yet the mean of this quantity was used as the final FWHM. Later, assuming that the PSF
was a Gaussian distribution, the equation 2.10 was used to obtain σ the Gaussian width
parameter. Finally, the aperture was defined as an interval of 3σ from the central pixel (ma-
ximum valued pixel) which corresponds to a region of 13x13 pixels that includes 99.7 % of
the Gaussian distribution .

The total number of photons coming from the source was calculated adding all the intensi-
ties values of the pixels over the aperture, after subtracting the background. The background
was calculated as the mean over a region of the image without point-like sources, in this case
we considered the region between pixels 930 and 1200 on the Y coordinate and between 1500
and 1920 on the X coordinate. This was also the value considered for the total number of
ADUs contributed by the background ND

The total number of pixels npix is 169 due to the size of the aperture considered of 13x13
pixels. The total number of ADUs produced by the dark current was neglected due to its
small value. Finally, the readout noise was obtained utilizing the gain as a conversion factor
over the value shown in table 3.3.

With all this components, the SNR of each star was calculated and is shown in table 4.1.

This was the final step of the initial analysis of the data, then the different image centering
algorithms were applied, starting with the Center of gravity algorithm.
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4.1. Center of Gravity
The first image centering algorithm applied to the data was the Center of Gravity. This

algorithm allowed to find the position of the centroid of each star in each frame for each axis.
The results are shown in figure 4.4.
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Figure 4.4: Centroid of stars over the 100 frames

Figure 4.4a shows that the position of the centroids on the X coordinate are roughly sta-
ble, with small jumps of all the stars around frame 15, 40 and 80. Figure 4.4b shows that a
remarkable slope is present over the initial frames on the Y coordinate, and as the other axis,
exhibits small jumps of all the stars around frame 18, 36 and 80. The common mode dis-
placement of the photo-center appears to be a mechanical disturbance of the optical system
alignment, similar to a pointing error in real telescopes. Furthermore, it is notable on both
axes that the position of the centroid of the fainter stars are more scattered, while for the
brightest stars are more stable, showing an indirect proportion between SNR and scattering.

Table 4.2: Standard deviation of the stars position calculated with Center
of mass method

Star X Standard
Deviation [px]

Y Standard
Deviation [px]

X Pixel
Fraction [px−1]

Y Pixel
Fraction [px−1]

1 0.01662 0.02145 60.1685 46.6200
2 0.01810 0.02270 55.2486 44.0529
3 0.02176 0.02604 45.9559 38.4025
4 0.02025 0.02450 49.3827 40.8163
5 0.01942 0.02220 51.4933 45.0450
6 0.02202 0.02746 45.4133 36.4166
7 0.01893 0.02203 52.8262 45.3926
8 0.02303 0.03116 43.4216 32.0924
9 0.03730 0.05296 26.8097 18.8822
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Table 4.2 shows the standard deviation of the position of the centroid on each axis for all
the stars. Also, it shows the equivalent pixel fraction. This parameter corresponds to 1/σ,
where σ is the standard deviation. This variable is present as a way to improve the visuali-
zation of the data, for example, star 1 reaches a position accuracy of approximately 1

60 of the
size of a pixel in the X axis.

The standard deviation is measured in portion of a pixel, which is represented by [px],
while the pixel fraction is measured in [px−1].

Also, table 4.2 shows the same relation between SNR and scattering previously described.
Besides, it can be seen that the standard deviation of the star with bigger SNR is clearly
smaller in the X coordinate, approximately 1% of a pixel, while in the case of the Y coordi-
nate, it is around 2% of a pixel.

4.1.1. Post-processing: Barycentric Coordinates
Once the image centering algorithm is applied to the data, the post-processing stage is

ready to start.
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Figure 4.5: Centroid of stars with Barycentric coordinates over the 100
frames

Figure 4.5 shows the results of applying Barycentric coordinates over the previously found
data. It can be seen that the relation between SNR and scattering is still present i.e. higher
SNR is associated to lower scattering, but the common mode of the stars on specific frames
have been completely corrected on both axes, achieving more stability. In addition, the slope
present in figure 4.4a has been fully erased after the post-processing of the data, as shown in
figure 4.5a.
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Table 4.3 shows the standard deviation and the pixel fraction of all the stars on both axes
after the post-processing stage. It can be seen that the standard deviation decreases for all
the stars compared to the data shown on table 4.2, reaching standard deviations of approxi-
mately 0.7% of a pixel on both axes. In other words, the pixel fraction increases reaching an
accuracy of 1

134 of the size of a pixel, which corresponds to approximately 0.042µm.

Table 4.3: Standard deviation of the stars position calculated with Center
of mass method and Barycentric coordinates

Star X Standard
Deviation [px]

Y Standard
Deviation [px]

X Pixel
Fraction [px−1]

Y Pixel
Fraction [px−1]

1 0.00746 0.00754 134.0483 132.6260
2 0.00706 0.00890 141.6431 112.3596
3 0.01143 0.01132 87.4891 88.3392
4 0.00830 0.00948 120.4819 105.4852
5 0.00979 0.01198 102.1450 83.4725
6 0.01250 0.01512 80.0000 66.1376
7 0.01297 0.01626 77.1010 61.5006
8 0.01817 0.02577 55.03577 38.8048
9 0.02877 0.04418 34.7584 22.6347

4.1.2. Standard Deviation through frames
Another interesting feature to study is how the standard deviation for each star changes

as more frames are considered in the calculation. This results are shown in figure 4.6 for both
axes.
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Figure 4.6: Standard deviation through frames utilizing Center of gravity
method and Barycentric coordinates
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Figure 4.6 shows that the two stars with lower SNR need more frames to reach a more
stable value for the standard deviation, in fact, star 9 does not reach an stable value over
the whole set of 100 frames. On the other hand, the seven stars with higher SNR present a
roughly stable value after frame approximately 70 for figure 4.6a, and after frame approxi-
mately 65 for figure 4.6b.

4.1.3. Standard deviation with different apertures
Finally, the effect of the aperture radius over the standard deviation of the stars is studied.

The results are shown in figure 4.7
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Figure 4.7: Standard deviation with different apertures utilizing Center of
gravity method and Barycentric coordinates

Figure 4.7 shows that both axes have a similar behavior, where in the case of the stars
with lower SNR the standard deviation grows with a bigger slope as the aperture radius
increases, while for the stars with higher SNR, the standard deviation changes slowly as the
aperture radius grows.

Also, it can be seen that the standard deviation does not reach a stable value for any
aperture radius. Since the images are well focused, additional side pixels mainly add to the
noise, but for bright stars the central peak is dominant.

4.2. Gaussian Fit
The next image centering algorithm applied to the data was the Gaussian fit, whose results

are shown below. All the previous analysis already described for the Center of gravity method
were applied here.
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Figure 4.8: Centroid of stars over the 100 frames

As the previous algorithm, figure 4.8a shows that the position of the centroids on the X
coordinate are roughly stable, with small jumps of all the stars around frame 15, 40 and
80. Figure 4.8b shows that a remarkable slope is present over the initial frames on the Y
coordinate, and as the other axis, exhibits small jumps of all the stars around frame 18, 36
and 80, i.e. figure 4.8 shows a similar behavior to figure 4.4, but it is more stable, specially
for the stars with lower SNR. Furthermore, it is notable the same relation between SNR and
scattering.

Table 4.4: Standard deviation of the stars position calculated with
Gaussian fit

Star X Standard
Deviation [px]

Y Standard
Deviation [px]

X Pixel
Fraction [px−1]

Y Pixel
Fraction [px−1]

1 0.01739 0.02265 57.5043 44.1501
2 0.01917 0.02456 52.1648 40.7166
3 0.02232 0.02588 44.8029 38.6399
4 0.02005 0.02446 49.8753 40.8831
5 0.01988 0.02210 50.3018 45.2489
6 0.02140 0.02523 46.7290 39.6354
7 0.01822 0.02140 54.8847 46.7290
8 0.02142 0.02450 46.6853 40.8163
9 0.02606 0.02891 38.3730 34.5901

Table 4.4 shows that once again, the X axis achieves higher accuracy, which corresponds to
smaller standard deviation than the Y axis for the stars with higher SNR, of approximately
1% of a pixel for the X coordinate, while in the case of the Y coordinate, it is around 2% of
a pixel. For this method, a precision of approximately 1

58 and 1
44 of the size of a pixel for axes

X and Y respectively, is reached. The results from different algorithms are discussed below.

33



4.2.1. Post-processing: Barycentric Coordinates
Later, the post-processing stage is applied to the obtained data, the results are presented

in figure 4.9.
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Figure 4.9: Centroid of stars with Barycentric coordinates over the 100
frames

Once again, the relation between SNR and scattering is clearly present for the position of
the stars, where the ones with lower SNR present more scattering than the ones with higher
SNR. Also, the movement of all the stars together is corrected on both axes, as shown in
figure 4.9a, and even more clearly in figure 4.9b where the remarkable slope present in the
first frames is completely deleted, obtaining more stable distributions of the position of the
stars.

Table 4.5: Standard deviation of the stars position calculated with
Gaussian fit method and Barycentric coordinates

Star X Standard
Deviation [px]

Y Standard
Deviation [px]

X Pixel
Fraction [px−1]

Y Pixel
Fraction [px−1]

1 0.00597 0.00611 167.5042 163.6661
2 0.00644 0.00808 155.2795 123.7624
3 0.01166 0.00916 85.7633 109.1703
4 0.00668 0.00659 149.7006 151.7451
5 0.00745 0.00906 134.2282 110.3753
6 0.00963 0.01157 103.8422 86.4304
7 0.01064 0.00955 93.9850 104.7120
8 0.01259 0.01527 79.4281 65.4879
9 0.01876 0.02059 53.3049 48.5673
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Table 4.5 shows the standard deviation and the pixel fraction for all stars in both axes.
An overall improvement on performance with respect to the previous algorithm can be re-
marked. It can be seen that star 1, that has higher SNR, reaches a standard deviation of
approximately 0.6 % of a pixel, that corresponds to a pixel fraction of approximately 1

165 of
the size of a pixel, equivalent to 0.034µm. The standard deviation of all the stars it is signi-
ficantly lower than the previous values obtained before the post-processing, showed in table
4.4. In addition, just as shown for the Center of gravity algorithm results, after applying the
post-processing stage the accuracy values for both axes are similar in all the stars, which
contrasts with the values shown in table 4.4 where the values of the standard deviation for
the X coordinate were lower for most of the stars.

4.2.2. Standard Deviation through frames

20 40 60 80 100
Frames

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

St
an

da
rd

 D
ev

ia
tio

n 
X 

ax
is 

[p
x]

S1
S2
S3
S4
S5
S6
S7
S8
S9

(a) Standard deviation
through frames on X axis

20 40 60 80 100
Frames

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

St
an

da
rd

 D
ev

ia
tio

n 
Y 

ax
is 

[p
x]

S1
S2
S3
S4
S5
S6
S7
S8
S9

(b) Standard deviation
through frames on Y axis

Figure 4.10: Standard deviation through frames utilizing Gaussian fit
method and Barycentric coordinates

Figure 4.10 shows how the standard deviation for each star changes as the amount of
frames considered for the calculation increases. It can be seen that the stars with lower SNR
present higher standard deviations with less stability on both axes, except for the case of
star 3 that presents unusual higher standard deviation on X axis for its SNR value.

4.2.3. Standard deviation with different apertures
Finally, figure 4.11 shows the considered aperture radius versus the standard deviation

calculated. It is noticed that the standard deviation for all stars on both axes stabilizes from
an aperture radius of 5 pixels upwards.
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Figure 4.11: Standard deviation with different apertures utilizing Gaussian
fit method and Barycentric coordinates

4.3. Fit with Airy function
The next applied image centering algorithm is the fit with an Airy function. The first

results are shown in figure 4.12.
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Figure 4.12: Centroid of stars over the 100 frames

Once again, small jumps of all stars can be seen on both axes, around frame 15, 40 and 80
on the X coordinate in figure 4.12a, and around frame 18, 36 and 80 on the Y coordinate in
figure 4.12b. This last figure also shows the already known slope over the initial frames. The
behavior shown in figure 4.12 is similar to the one obtained with the Gaussian fit method,
shown in figure 4.8, and is also notable the same relation between SNR and scattering.
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Table 4.6: Standard deviation of the stars position calculated with Airy
function fit method

Star X Standard
Deviation [px]

Y Standard
Deviation [px]

X Pixel
Fraction [px−1]

Y Pixel
Fraction [px−1]

1 0.01744 0.02262 57.3394 44.2087
2 0.01915 0.02451 52.2193 40.7997
3 0.02228 0.02579 43.8596 38.7747
4 0.02002 0.02434 49.9500 41.0846
5 0.01982 0.02206 50.4541 45.3309
6 0.02130 0.02521 46.9484 39.6668
7 0.01811 0.02121 55.2181 47.1476
8 0.02118 0.02438 47.2144 41.9172
9 0.02524 0.02821 39.6197 35.4484

Table 4.6 shows the standard deviation values and the pixel fraction values for all the
stars on both axes. The results are really similar to the ones obtained with the Gaussian
fit method, shown in table 4.4, reaching smaller standard deviations on the X coordinate of
approximately 1% of a pixel for the X coordinate, while in the case of the Y coordinate, it
is around 2% of a pixel. For this method, a precision of approximately 1

57 and 1
44 of the size

of a pixel for axes X and Y respectively, is reached, which is almost identical to the precision
achieved with the Gaussian fit method.

4.3.1. Post-processing: Barycentric Coordinates
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Figure 4.13: Centroid of stars with Barycentric coordinates over the 100
frames
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Figure 4.13 shows that after the post-processing stage, both axes have a clearly more
stable behavior than in figure 4.12, maintaining the relation between SNR and scattering.

Table 4.7: Standard deviation of the stars position calculated with Airy
function fit method and Barycentric coordinates

Star X Standard
Deviation [px]

Y Standard
Deviation [px]

X Pixel
Fraction [px−1]

Y Pixel
Fraction [px−1]

1 0.00586 0.00595 170.6485 168.0672
2 0.00631 0.00797 158.4786 125.4705
3 0.01156 0.00896 86.5052 111.6071
4 0.00644 0.00628 155.2795 159.2357
5 0.00727 0.00879 137.5516 113.7656
6 0.00948 0.01132 105.4852 88.3392
7 0.01045 0.00907 95.6938 110.2534
8 0.01192 0.01497 83.8926 66.8003
9 0.01769 0.01963 56.5291 50.9424

Table 4.7 shows the standard deviation values and the pixel fraction values for all the
stars on both axes after the application of the post-processing stage. It can be seen that star
1, that has higher SNR, reaches a standard deviation of approximately 0.59 % of a pixel,
that corresponds to a pixel fraction of approximately 1

169 of the size of a pixel, equivalent
to 0.034µm. The standard deviation of all the stars is significantly lower than the previous
values obtained before the post-processing, showed in table 4.6. Furthermore, the accuracy
values for both axes are similar in all the stars, which contrasts with the values shown in
table 4.6 where the values of the standard deviation for the X coordinate were lower for most
of the stars.

The Airy function fit appears to provide a further small improvement on Gaussian cente-
ring, which shall be discussed below.

4.3.2. Standard Deviation through frames
Figure 4.14 shows how the standard deviation for each star found with this method chan-

ges as the amount of frames considered for the calculation increases. As the previous results,
the stars with lower SNR present higher standard deviations and less stability, even in the
final frames. Also, the strange behavior of star 3 for the X coordinate, shown in figure 4.10a
it is seen again in figure 4.14a with unusual higher standard deviation.
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Figure 4.14: Standard deviation through frames utilizing Airy fit method
and Barycentric coordinates

4.3.3. Standard deviation with different apertures
Finally, the standard deviation for different aperture radius is shown in figure 4.15 where

it can be seen that the standard deviation on both axes stabilizes from an aperture radius of
7 pixels upwards.

2 4 6 8 10 12
Aperture Radius [px]

4

2

0

2

4

St
an

da
rd

 D
ev

ia
tio

n 
X 

ax
is 

[p
x]

S1
S2
S3
S4
S5
S6
S7
S8
S9

(a) Standard deviation with
different apertures on X

axis

2 4 6 8 10 12
Aperture Radius [px]

4

2

0

2

4

St
an

da
rd

 D
ev

ia
tio

n 
Y 

ax
is 

[p
x]

S1
S2
S3
S4
S5
S6
S7
S8
S9

(b) Standard deviation
with different apertures on

Y axis

Figure 4.15: Standard deviation with different apertures utilizing Airy fit
method and Barycentric coordinates
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4.4. Maximum Likelihood with Gaussian function as a
model

Next, the image centering algorithm Maximum likelihood with a Gaussian function as a
model was applied to the data. The results are shown in figure 4.16.
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Figure 4.16: Centroid of stars over the 100 frames

It is shown in figure 4.16 that the position of the centroids are roughly stable on both
axes, with small jumps of all the stars around frame 15, 40 and 80 for X coordinate, as shown
in figure 4.16a, while on the Y coordinate, the small jumps around frame 18 and 80 are less
pronounced as shown in figure 4.16b. This figure also shows a slope on the first frames of the
sample. Furthermore, it is notable the same relation between SNR and scattering as in the
other methods.

Table 4.8: Standard deviation of the stars position calculated with
Maximum Likelihood method with Gaussian function as a model

Star X Standard
Deviation [px]

Y Standard
Deviation [px]

X Pixel
Fraction [px−1]

Y Pixel
Fraction [px−1]

1 0.01845 0.01561 55.2005 64.0615
2 0.02089 0.02683 47.8698 37.2717
3 0.02277 0.02915 43.9174 34.3053
4 0.02245 0.02628 44.5434 38.0518
5 0.01951 0.02383 51.2558 41.9639
6 0.02090 0.02158 47.8469 46.3392
7 0.01903 0.01791 52.5486 55.8347
8 0.01870 0.02478 53.4759 40.3551
9 0.02686 0.02708 37.2301 36.9276

40



Table 4.8 shows the standard deviation and the pixel fraction for each star. The results
show that both axes reach standard deviations of approximately 1 % of a pixel, which co-
rresponds to approximately 1

60 of the size of a pixel. Furthermore, it is remarkable that the
stars with intermediate values of SNR have small standard deviations with values similar to
the star with higher SNR. This behavior was not found in the obtained results of previous
methods.

4.4.1. Post-processing: Barycentric Coordinates
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Figure 4.17: Centroid of stars with Barycentric coordinates over the 100
frames

Figure 4.17 shows the results after the post-processing stage, where both axes have a
clearly more stable behavior than in figure 4.16. The slope present in figure 4.16b has been
completely eliminated in figure 4.17b, along with the small jumps clearly corrected, specially
in figure 4.17a. Also the relation between SNR and scattering is maintained.
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Table 4.9: Standard deviation of the stars position calculated with
Maximum Likelihood method with Gaussian function as a model and

Barycentric coordinates

Star X Standard
Deviation [px]

Y Standard
Deviation [px]

X Pixel
Fraction [px−1]

Y Pixel
Fraction [px−1]

1 0.00779 0.00964 128.3697 103.7344
2 0.00730 0.01026 136.9863 97.4659
3 0.01130 0.01188 88.4956 84.1751
4 0.00870 0.00933 114.9425 107.1811
5 0.00797 0.01023 125.4705 97.7517
6 0.00973 0.01056 102.7749 94.6970
7 0.01128 0.00966 88.6525 103.5197
8 0.01119 0.01552 89.3655 64.4330
9 0.01823 0.01922 54.8546 52.0291

Table 4.9 shows the standard deviation and pixel fraction values for each star on both axes.
It can be seen that star 2 reaches the higher standard deviation of approximately 0.73 % of a
pixel, that corresponds to a pixel fraction of approximately 1

137 of size of a pixel, equivalent to
0.041µm. In addition, it is remarkable that the stars with intermediate values of SNR, have
small standard deviations comparable with star 1, that has the highest SNR. Furthermore,
the pixel fraction values of the stars on the X coordinate are generally higher than the ones
obtained on the Y coordinate.

The algorithm appears to evidence a mix of benefits and disadvantages, which might be
further studied to ascertain e.g. the model limitations and the sensitivity to noise statistics.

4.4.2. Standard Deviation through frames
Figure 4.18 shows the change of the standard deviation for each star as the amount of

frames considered for the calculation increases. It can be seen that stars with lower SNR
present higher standard deviations and less stability, even in the final frames. Figure 4.18a
shows that generally all the stars reach a stable value for the standard deviation in the final
frames, while figure 4.18b shows that the standard deviation is still changing for some stars
even in the last frames.
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Figure 4.18: Standard deviation through frames utilizing Maximum
likelihood method with Gaussian function as a model and Barycentric

coordinates

4.4.3. Standard deviation with different apertures
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Figure 4.19: Standard deviation with different apertures utilizing
Maximum likelihood method with Gaussian function as a model and

Barycentric coordinates

Finally, the standard deviation for different aperture radius is shown in figure 4.19 where
it can be seen that the standard deviation on both axes shows an optimal value for the aper-
ture where the standard deviation is maximized, around 11 pixels.
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4.5. Maximum Likelihood with Airy function as a mo-
del

The final image centering algorithm applied to the data was the maximum likelihood but
this time with an Airy function as a model.

The obtained results were scaled utilizing a scaling factor due to an unusual behavior of
variables. This scaling factor was obtained finding the mean of the pixel fraction on both
axes for star 9, that has the lower SNR. Later, the relation between the Cramér-Rao astro-
metric limit and this value was found. The resulting value is 0.1823 and corresponds to the
mentioned scaling factor. All the found values for the post-processing with this method were
multiplied for this scaling factor, obtaining the values shown in table 4.10.

Table 4.10: Standard deviation of the stars position calculated with
Maximum Likelihood method with Airy function as a model and

Barycentric coordinates

Stars X Standard
Deviation [px]

Y Standard
Deviation [px]

X Pixel
Fraction [px−1]

Y Pixel
Fraction [px−1]

1 0.01391 0.00744 71.8776 134.3289
2 0.00827 0.00912 120.9341 109.6752
3 0.01140 0.00837 87.6715 119.4586
4 0.00681 0.00560 146.8940 178.5139
5 0.00820 0.00632 121.9315 158.1315
6 0.00694 0.00985 144.0104 101.5743
7 0.00782 0.00750 127.8840 133.2835
8 0.00815 0.01085 122.7176 92.1612
9 0.01744 0.01549 57.3186 64.5508

Table 4.10 shows the standard deviation and the pixel fraction for all stars on both axes.
It can be seen that star 1 reaches a standard deviation of approximately 0.7 % of a pixel,
that corresponds to a pixel fraction of approximately 1

128 of the size of a pixel, equivalent to
0.044µm, which is the highest for all stars. Also, just as the values shown in table 4.9, the
stars with intermediate values of SNR, present higher values for the pixel fraction, compara-
ble with the brighter star. Furthermore, the values obtained on the Y coordinate correspond,
in general, to higher accuracy than the results on the X coordinate.

Some of the peculiarities of the previous case (Maximum Likelihood method with Gaus-
sian function as a model) are confirmed.
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4.6. Marginal Graphics
Another important stage of the data analysis is the study of the shape of the PSF. For

this purpose, the marginal graphics were made, where the intensity value of all the pixels of
each column or each row of the ROI are added, then, a function is adjusted over the obtained
profile.

First, the intensity values over each column were added and graphed over the X coordina-
te, then a Gaussian function was adjusted over the obtained profile. This process was made
for all the stars and the results are shown in figure 4.20.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.20: Marginal graphics over X coordinate with Gaussian fit
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Later, the intensity values over each row were added and graphed over the Y coordinate,
then a Gaussian function was adjusted over the obtained profile. This process was made for
all the stars and the results are shown in figure 4.21.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.21: Marginal graphics over Y coordinate with Gaussian fit

Figure 4.20 and figure 4.21 show the obtained profile and the fitted Gaussian function. It
can be seen that in general the Gaussian function makes a correct fit over the profile of each
star, specially over the central pixel where the maximum intensity values are found, but fails
to include the small intensity values of the outer pixels. Nevertheless, these figures show that
the Gaussian function is a good model for the PSF of the stars with particular respect to the
central peak of the light distribution.
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Next, the same process was applied, but this time utilizing the Airy function as a model
for the profile data, as way to include the outer intensity values, that corresponded to the
observed diffraction rings.

The intensity values over each column were added and graphed over the X coordinate,
then, an Airy function was adjusted over the obtained profile. The results are shown in figure
4.22.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.22: Marginal graphics over X coordinate with Airy function fit

Finally, the intensity values over each row were added and graphed over the Y coordinate,
then an Airy function was adjusted over the obtained profile. This process was made for all
the stars and the results are shown in figure 4.23.
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(d) (e) (f)

(g) (h) (i)

Figure 4.23: Marginal graphics over Y coordinate with Airy function fit

Figure 4.22 and figure 4.23 show the obtained profile and the fitted Airy function. It can
be seen that the Airy function properly adjust the profile in the outer pixels, but fails to
adjust the maximum value over the central pixel. However, the Airy function shows that is a
good approximate model for the PSF of these stars in the peripheral region. It appears that
a more complex model may be required to achieve a better fit to our data. The issue may be
verified in future runs of the experiment.

4.7. Differences between methods using Gaussian fit as
comparison

The next step was to study the difference between the calculated position of the centroid
on each axis in each frame for one of the methods and the Gaussian fit.

48



Figure 4.24 shows the difference between the Gaussian fit method and the Center of
Gravity algorithm versus the position of the pixel on each axis. The black dots show a ±σ
from the average on each star.
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Figure 4.24: Difference between Gaussian fit and Center on gravity method

Figure 4.25 shows the difference between the Gaussian fit method and the Maximum
likelihood algorithm with a Gaussian function as model versus the position of the pixel on
each axis. The black dots show a ±σ from the average on each star.

700 800 900 1000 1100 1200 1300 1400
Pixel X axis

0.04

0.02

0.00

0.02

0.04

Di
ffe

re
nc

e 
be

tw
ee

n 
Y 

co
or

de
na

te
 w

ith
 M

L 
an

d 
GF S1

S2
S3
S4
S5
S6
S7
S8
S9

(a) Difference between
Gaussian fit and Maximum
Likelihood with Gaussian
function as a model on X

axis

100 200 300 400 500 600 700 800
Pixel Y axis

0.04

0.02

0.00

0.02

0.04

Di
ffe

re
nc

e 
be

tw
ee

n 
Y 

co
or

de
na

te
 w

ith
 M

L 
an

d 
GF S1

S2
S3
S4
S5
S6
S7
S8
S9

(b) Difference between
Gaussian fit and Maximum
Likelihood with Gaussian
function as a model on Y

axis

Figure 4.25: Difference between Gaussian fit and Maximum Likelihood
with Gaussian function as a model

49



Finally, figure 4.26 shows the difference between the Gaussian fit method and the fit with
an Airy function algorithm versus the position of the pixel on each axis. The black dots show
a ±σ from the average on each star.
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Figure 4.26: Difference between Gaussian fit and Fit with Airy function

These figures show that the star with lower SNR has the highest dispersion on both axes,
followed for star 8, the second star with lower SNR. On the other hand, the stars with higher
SNR have the smallest dispersion.

Another remarkable feature is that figure 4.24 and 4.26, in general, have considerable
smaller differences than the ones presented in figure 4.25.

4.8. Performance achieved with different methods
To summarize the performance of the applied image centering algorithms, the pixel frac-

tion values on each star for each method were graphed. The results are shown in figure 4.27.

Figure 4.27a shows the performance of the image centering algorithms in the X coordinate,
where it is possible to notice that all the algorithms, with the exception of the Maximum
Likelihood with an Airy function as a model, have a similar behavior. The Center of gravity
algorithm has the worst operation at stars with lower SNR, while in stars with higher SNR
the Maximum likelihood algorithms have the most inferior performance, where the appro-
ximate limit between the two previously described behaviors is star 3. In that point all the
image centering algorithms have the same performance, that is remarkable low in comparison
with the adjacent stars. Also, it is possible to notice that the Gaussian fit and the Airy fit
have the same behavior for all stars, but the latter is in general slightly better, nevertheless,
both algorithms have the best performance for stars with higher SNR, while for stars with
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lower SNR, that role is played by the Maximum likelihood methods.

Part of the explanation may relate to the discrepancy between either model and our data
(Sec. 4.6), and better efficiency of Maximum Likelihood methods in rejecting noise from pe-
ripheral regions.

Figure 4.27b shows the performance of the image centering algorithms in the Y coordina-
te, where all the algorithms have a similar behavior. Like figure 4.27a, the Center of gravity
method has the worst performance for lower SNR, while for higher SNR it is the Maximum
likelihood methods. Also, for higher SNR the Airy and Gaussian fit have the best operation
while for lower SNR, the Maximum Likelihood methods work better. Furthermore, on Y axis,
the different algorithms do not achieve the same values for star 3, and despite presenting a
small decay in efficiency, it is much smaller than in figure 4.27a.
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Figure 4.27: Pixel fraction of stars with different methods

4.9. Cramér-Rao Limit
Once all the image centering algorithms have been applied, the Cramér-Rao astrometric

limit was calculated utilizing equation 2.15 on the regime where the flux dominates over
background due to the characteristics of the data. For this purpose, the FWHM and the flux
were calculated as described earlier for the SNR computation, while the utilized gain value
was the one detailed on Chapter 3, of 7.324e−/ADU.

Table 4.11 shows the Cramér-Rao astrometric limit values for all stars, as well as the
Cramér-Rao standard deviation, that corresponds to the square root of the calculated limit.
Finally, it is shown the Cramér-Rao pixel fraction that is the reciprocal of the standard de-
viation, for a better visualization of the results. It is possible to notice that the SNR and the
Cramér-Rao astrometric limit have a indirect relation, i.e. for higher SNR, the Cramér-Rao
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astrometric limit has smaller values. The same occurs with the Cramér-Rao standard devia-
tion.

Table 4.11: Cramér-Rao astrometric limit

Star Cramér-Rao
Astrometric Limit [px2]

Cramér-Rao
Standard Deviation [px]

Cramér-Rao
Pixel Fraction [px−1]

1 6.7248 · 10−6 0.002593 385.6218
2 7.7571 · 10−6 0.002785 359.0461
3 1.6764 · 10−5 0.004094 244.2349
4 1.9137 · 10−5 0.004375 228.5926
5 2.1091 · 10−5 0.004593 217.7461
6 3.1053 · 10−5 0.005572 179.4532
7 3.9020 · 10−5 0.006247 160.0871
8 9.1344 · 10−5 0.009557 104.6306
9 2.6940 · 10−4 0.01641 60.9249

4.10. Performance comparison of tested algorithms against
Cramér-Rao limit

Finally, the Cramér-Rao astrometric limit was compared with the results obtained from all
the image centering algorithms applied to the data. For this purpose, the Cramér-Rao pixel
fraction was graphed with the pixel fraction values obtained utilizing the centering methods
for each star. The results are shown in figure 4.28.
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Figure 4.28: Pixel fraction of stars with different methods and Cramér-Rao
limit
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Figure 4.28 shows the same results as figure 4.27 but including the pixel fraction of the
Cramér-Rao astrometric limit. It is possible to notice that on both axes, for the star with lo-
wer SNR, the image centering algorithms, with the exception of the Center of gravity method,
have a performance close to the Cramér-Rao limit. Besides, the curve of the Cramér-Rao li-
mit separates more and more from the curves of the behavior of the algorithms as the SNR
of the considered stars increases. The discrepancy increases steadily for increasing SNR, e.g.
from star 4 to brighter cases.

In addition, figure 4.28a shows that the Cramér-Rao limit is exceeded at star 8 for the
Maximum likelihood algorithm with an Airy function as a model by a small amount. This
may be ascribed to the uncertainty on parameters, and the limited size of the statistical
sample.

After obtaining this figure that compares the achievable experimental accuracy with dif-
ferent methods and the astrometric Cramér-Rao limit, the results of this work are complete.
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Chapter 5

Discussion

After reviewing the results, it is necessary to move on to the next stage of this work,
which corresponds to the discussion of these obtained results and of various aspects of the
methodology.

5.1. Discussion about the methods
As explained in Chapter 3, the experimental process, from the design of the experiment

until the results were obtained, corresponded to an iterative procedure, where in each ite-
ration the quality of the experiment was enhanced, which led to an improvement of the
obtained results. In order to obtain the data studied in this work, it was necessary to per-
form several iterations of the optical alignment and the data collection, as shown in figure 3.1.

The first obtained data set was a functional test, i.e. a data collection with the purpose
of verify that the setup was functioning correctly, well aligned and with focused image. A
second functional test was performed with the same purpose, after moving the location of the
experimental setup to a clean dark room. A third measurement was made with the detector
rotated by 180 degrees to study the behavior of the Y coordinate in a stabilized environment.
Due to the poor sampling of the central peak in the point-like sources, a fourth data set was
obtained adjusting the optics to have defocused stars, having more pixels in the central peak,
nevertheless, the defocus was too much, providing excessively degraded images. Finally, a
fifth data set was obtained closing the aperture of the detector to the minimum size, about
1 mm, achieving dispersion corresponding to larger pixel fractions on larger images. This is
the data studied during work.

After all these tests, where the optical alignment was modified and improved, it was pos-
sible to obtain a data set that allowed to correctly study the maximum achievable accuracy
of the position of the stars. This process required a detailed characterization of the used
components, especially the bidimensional digital detector, where it was necessary to fully
understand its functioning and its operating software.

This period where the experimental setup was improved and a correct configuration was
found, required multiple tests as indicated above, which caused it to extend for approxima-
tely two months. The greatest complexity corresponded to the fact that at each stage new,
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previously unknown experimental problems were detected and had to be studied and fixed
to begin a new iteration.

This stage led to a better understanding of the relevant aspects of the experimental setup,
so a few suggestions can be made to enhance future experiments. First of all, it would be
better if the stars were located in the middle of the image produced by the detector, as a way
to minimize the aberrations provoked by the edges of the optics. Also, it would be necessary
to take more realizations of the experiments, i.e. add more frames to the measurements, as
a way to stabilize the standard deviation for all stars, even the ones with low SNR regime.
Furthermore, a pinhole array with smaller holes as a means to produce artificial stars with
lower SNR with the goal to study the other regime of the Cramér-Rao bound, where the
background dominates over flux. In addition, it would be convenient to change the light
source from the experimental setup to one that emits light at the wavelength where the bi-
dimensional digital detector achieves higher quantum efficiency. Some of the suggestions can
be implemented also on the current setup, e.g. increasing the data sample, whereas hardware
upgrades have different levels of cost and difficulty. In particular, alternative light sources
are commercially available, whereas the pinhole array is custom made and cannot be easily
replaced.

Later, the processing and post-processing stage began. This period had a big variability
in the time required for each method, since the difficulty in its implementation depended on
multiple factors. In addition, with the analysis of each method, it was necessary to perform
multiple tests to ensure its correct implementation, together with subsequent analyzes that
would allow a more exhaustive understanding of the obtained data. The main challenge of
this stage was the detailed coding and the analysis of the utilized algorithms, where the use
of Python and its tools, specially applied for the development of astronomical analyzes, were
required. The produced code is robust and may be used for analysis of new data sets, as well
as basis for further development. It may be noted that it is a specialized product, not suited
to general purpose, and as such it is not planned to be delivered to the public.

Finally, the extensive study of the obtained results required a detailed knowledge of all the
involved factors, both the experimental measurements and the coding of the image centering
algorithms, to obtain the conclusions of this work.

5.2. Discussion about the results
From figure 4.2 it can be seen that indeed the point-like sources, called stars for simplicity

during this work, were well sampled and focused. Also, from figure 4.3 it can be seen the
appearance of the diffraction pattern due to the the dispersion of the light through the optical
setup, which also confirms that the point-like sources were well focused.

Table 4.1 shows the values for the SNR and the maximum pixel value for each star. From
this and its calculation it can be seen that all the star were in the regime where the flux
dominates over background. This dominance is very strong for all the stars even for the ones
with lower SNR. However, the distribution of intensity over about one decade allows simul-
taneous measurement over a significant range.
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Another important analysis performed during this work was the examination of the mar-
ginal graphics, which allows to approximately study the shape of the PSF. This point was a
key factor for the correct study of the maximum achievable accuracy on the determination
of the position of the artificial stars, due to the dependence that the diverse image centering
algorithms have on this feature. Figures 4.20 and 4.21 show that a Gaussian function is a
good approximate model for the PSF shape of the artificial stars, but fails to include the
intensity values of the outer pixels, which can provoke slight movements of the position of
the centroid. On the other hand, figures 4.22 and 4.23 show that an Airy function also works
as a model for the shape of the PSF of the artificial stars. In this case, the intensity values of
the outer pixels are included but the center values are poorly fitted. This also can cause the
appearance of some errors in the determination of the position of the centroid in each frame.
Nevertheless, these figures verify that both functions, Gaussian and Airy, work as a good
model approximation for the shape of the PSF. This confirms that the application of the
fitting method with both functions, or the Maximum Likelihood method with both functions
as a model, are relevant analysis. Besides, this also suggests that future work may be devoted
to the development of better PSF models, providing adequate fitting over the whole range.
This may further improve on the location error, specifically on both random and systematic
components.

Figures 4.24, 4.25 and 4.26 show that there is not an unexpected difference among the
results obtained from different methods. This appears to be an indication of adequate un-
derstanding of the experimental setup, and of robustness of the data analysis methodology
and results.

Figure 4.28 requires the most extensive analysis, because corresponds to the main objec-
tive of this work, the comparison between the theoretical Cramér-Rao astrometric limit and
the achievable precision of the determination of position on experimental data. In this figure
it is possible to see the performance of all the different image centering algorithms applied to
the obtained data and the pixel fraction of the Cramér-Rao astrometric limit. On both axes,
the Maximum likelihood methods have a better performance for stars with lower SNR, while
for stars with higher SNR, the Gaussian and Airy fit play this role. On the other hand, again
on both axes, the Center of gravity algorithm has the worst performance for stars with lower
SNR, while for stars with higher SNR, this occurs for the Maximum likelihood methods. Also
it is possible to see that the curve of the Cramér-Rao limit separates more and more from the
curves of the behavior of the algorithms as the SNR of the considered stars increases. Among
the potential causes of this peculiarity, we must take into account the usage of barycentric
coordinates: the differential technique is efficient in removing common mode disturbances,
but it has the drawback of ’dumping’ additional noise on the residuals, which is particularly
evident on the brightest sources. Moreover, as described above, the image profile model is not
yet optimal, which may impact more heavily the high SNR cases in which better performance
is expected.

From the previous observations we have a lot of elements that require further analysis.
First, the Center of gravity method it is the simpler algorithm utilized during this study, so
as expected, our results show that it has in general a poor performance, specially for lower
SNR, where other methods reach optimal behavior.
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The Gaussian fit and Airy fit methods present a very similar performance on both axes
for all stars. The discrepancies between the results of these methods are very small and can
fall into the uncertainty associated with the performance analysis. These results also confirm
that both functions are suitable models for the shape of the PSF, due to the high accuracy
achievable, specially for the high SNR regime.

Finally, the Maximum likelihood method utilizing both functions, Gaussian and Airy as
a model, have a great performance, close to the Cramér-Rao astrometric limit for low SNR
regime, being superior to all the other methods, while for high SNR regime, present a poor
performance. In spite of the results from Espinoza et al. [2018] [17], which showed that the
Maximum likelihood method achieves optimal performance across a wide range of conditions,
this study found that this is only true for low SNR regime, while for high SNR regime, the
results are poor and far from optimality. This behavior was earlier registered, so our results
are in good agreement with previous findings. [18]

The performance of the utilized algorithms is significantly poorer than the Cramér–Rao
bound for the high SNR regime. On the other hand, for low SNR regime, like star 9, the
algorithms evidence near optimal performance approaching to the Cramér–Rao bound. This
is in line with the results found by Lobos et al. [2015] and Bouquillon et al. [2017] [19, 18],
and its verification it is a really important feature of this work. This big discrepancy bet-
ween the performance of the algorithms and the Cramér-Rao astrometric bound, specially
for high SNR regime, needs to be interpreted with caution, and could have several possible
explanations, yet two are the most satisfactory. First, these differences can be justified by
the lack of development of the applied algorithms and the absence of optimization in their
performance for high SNR regime. Another possible explanation it is that the Cramér-Rao
astrometric bound is an ideal quantity calculated considering a gaussian PSF and other ideal
assumptions, so different conditions can alter its performance. Also, the electro-optical res-
ponse of the pixel array, and its variation over the detector, is described as mostly ideal.
In other words, the Cramér-Rao limit has been derived in an exceedingly simplified model
of the experimental system, thus providing overly optimistic results. This error sources add
uncertainty that could move down the Cramér-Rao bound curve, approaching it to the per-
formance of the applied methods. This two possible explanations require further studies that
are suggested as future work.

Another relevant discussion is the behavior of star 3 on the X coordinate, that presents
a remarkable low performance in comparison with the stars with similar SNR regime. The
reason for this rather contradictory result is not completely clear but it can be attributed to
the position of star 3 on the X coordinate of the image produced by the detector (Fig. 4.1).
This star is located further to the right in the image, followed by star 9. This unexpected
results can be explained by possible optical aberrations on the outer regions of the image
produced, for example, by the edges of the lens or other optical components. Although, this
cannot be confirmed by the results obtained for star 9, because it has a low SNR regime,
completely different from the case of star 3. Despite the limitations of this star, it can be
treated as an isolated situation, so the obtained results can be neglected for rest of the data
analysis.
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Next, it is necessary to mention the performance of the Maximum likelihood with an Airy
function as a model where it was necessary to include a scaling factor to mitigate unrealistic
results. Despite the limitations of this method, and consequently its poor results, our findings
suggest that the introduction of the scaling factor partially fixes the unexpected observations.

Finally, there is evidence to suggest that we experimentally verified the limit behavior of
the Cramér-Rao astrometric bound, since the performance of all the applied methods was
sub-optimal, and none of them surpasses the theoretical value for the standard deviation of
the position of the stars by significant amounts.
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Chapter 6

Conclusion

During this work, we have devised a methodology that managed to design and implement
an experimental setup that allowed accurate astrometric measurements with a bidimensio-
nal digital detector. The obtained data was analyzed applying different image centering
algorithms which made possible the analysis of its performances and the calculation of the
astrometric Cramér-Rao limit.

Despite the limitation of one of the studied methods, in general, we obtained accurate
data that allowed us to corroborate previous researches, like the results obtained by Lobos
et al. [2015] [19] and also, provide further evidence of the performance of different image
centering algorithms.

Our research has made considerable progress in the study of the maximum achievable
accuracy for the determination of the position of a star and its relation with Cramér-Rao
astrometric bound. In conclusion, our work achieves the main objective consisting in the ve-
rification of the limit behavior of the Cramér-Rao bound for the maximum reachable location
precision, and also led to a better understanding of the relevant aspects of the experimental
setup. The candidate’s activity mainly focused on data reduction and analysis, but signifi-
cant contributions were provided on experimental setup operation and iterative optimization.

These observations have several implications for research into the characterization of bi-
dimensional digital detectors and the achievement of higher accuracy on astrometric measu-
rements. Also, our techniques could be applied to the design of astrometric space missions
and satellites to further improve the observations. Furthermore, this was applied to the AS-
TRA project, a bilateral cooperation between China and Italy with the goal of consolidating
astrometric measurement concepts and technologies.[20]

Further work needs to be performed to establish whether the relevant discrepancy bet-
ween the Cramér-Rao limit and the performance of the applied image centering algorithms
is due to the ideal conditions utilized to derive the Cramér-Rao theoretical bound (model
limitations) or if it is due to the poor performance of the applied centering algorithms (imple-
mentation issues). Furthermore, future tests should apply the recommended improvements
for the experimental setup, some of which are in progress, in order to achieve higher precision
with better astrometric measurements. As shown, this work establishes itself as a precedent
for future research.
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