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PCR3BP PROBLEM: TRANSFER ORBIT EVALUATION FROM LEO
ORBIT TO LUNAR ORBIT OF A SIX UNITS CUBESAT SATELLITE

La Luna ha sido objeto de admiración y asombro para los seres humanos desde tiempos
antiguos. Casi está en la naturaleza humana observar e incluso tener el deseo de alcanzar la
Luna. En tiempos modernos, aterrizar en la Luna significaba la conquista del espacio en el
contexto de la Carrera Espacial. El programa Apollo lo consiguió con sus misiones, pero desde
entonces la presencia de humanos ha sido practicamente nula.Por otro lado, el crecimiento de
los satélites de estándar Cubesat en los últimos años ha sido exponencial, haciendo que los
Cubesats jueguen un rol central en la industria espacial. Aún más, las misiones de Cubesats
a la Luna han empezado a ser desarrolladas. Hoy surge un nuevo interés en ir a la Luna y
poner a la primera mujer en suelo lunar, esto es propuesto por el programa Artemis, el cual
tiene por meta iniciar una nueva era de humanos en la Luna. Con todo esto, pareciera ser
que los satélites Cubesat pueden ser un componente clave en el desarrollo de las actividades
en la Luna, convirtiéndose en un área de investigación interesante. Un primer paso en esta
dirección podría ser la evaluación de una órbita de transferencia desde la Tierra a la Luna,
desde una órbita LEO a una órbita lunar. Para ello, este trabajo presenta y resuelve las
ecuaciones de un Cubesat de seis unidades en el marco del Problema de los Tres Cuerpos
Restringido Plano y Circular (PCR3BP). Se encuentra que para las condiciones propuestas
en este trabajo, se necesitará alrededor de medio kilogramo de combustible para transferir
un Cubesat con masa inicial de ocho kilogramos desde una órbita LEO a una órbita lunar.
También, dependiendo de la frecuencia de operación del propulsor, el satélite tomará entre
cuatro a 16 meses en viajar desde una órbita LEO a una órbita lunar. Este trabajo muestra
que es posible transferir un satélite Cubesat desde una órbita LEO a una órbita lunar con
las restricciones caractéristicas de un Cubesat. Un siguiente paso en esta investigación sería
replicar este estudio pero en tres dimensiones, trabajando en el contexto del Problema de
Tres Cuerpos Restringido y Circular (CR3BP).

i



PCR3BP PROBLEM: TRANSFER ORBIT EVALUATION FROM LEO
ORBIT TO LUNAR ORBIT OF A SIX UNITS CUBESAT SATELLITE

Abstract

The Moon has been an object of admiration and has astonished human beings since ancient
times. It is part of human nature to watch and desire to reach the Moon. In modern times,
landing on the Moon has meant the conquest of space in the context of the Space Race. The
Apollo program accomplished this with its missions, but since then the presence of humans
on the Moon has been practically null. On the other hand, the growth of the Cubesat satellite
standard in the last years has been exponential, making the cubesats playing a central role
in the space industry. Even more, cubesats missions to the Moon has began to be developed.
Today, there is a new interest to go to the Moon and put the first woman in lunar soil, this
is proposed by the Artemis program, which has for goal to initiate a new era of humans on
the Moon. With all of this, it seems that the cubesats satellites may be a key component in
the development of the activities on the Moon, becoming an interesting area of research. One
first step in this direction could be the evaluation of a transfer orbit from Earth to the Moon,
from a LEO orbit to a lunar orbit. To do this, this work presents and solves the equations
of motion of a Cubesat satellite of six units in the framework of the Planar Circular and
Restricted 3 Body Problem (PCR3BP). It is found that for the conditions proposed in this
work, it will take around half of a kilogram of fuel to transfer a Cubesat of initial mass of
eight kilograms from LEO orbit to a lunar orbit. Also, depending on the operation frequency
of the thruster, the satellite will take between four to sixteen months to transfer from LEO
to lunar orbit. This work shows that it is possible to transfer a Cubesat satellite from a LEO
orbit to a lunar orbit with the characteristic constraints of a Cubesat. A next step of this
research would be to replicate this study but in three dimensions, working on the context of
the Circular and Restricted Three Body Problem (CR3BP).
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Chapter 1

Introduction

1.1. Motivation
The Moon has always been an object of admiration and astonishing for the human being,

that is why it has been observed and studied in detailed[1]. In modern times landing on
the Moon implied the conquest of space by the so called Space Race. The Apollo mission
accomplished this by putting the first man on the Moon[2, 3].

Three decades ago the idea of a Moon base was a program[4] and today it has been sta-
ted the principles of a Moon base[5] and even the term of Moon Village, as Heinicke and
Foing says in their work, it is now considered[6]:

“... ESA has proposed the concept of the Moon Village, with the goal of a sustainable
human presence and activity on the lunar surface.”

Nowadays, NASA is developing the Artemis program to come back to the Moon and put
the first woman on Lunar soil[7, 8, 9, 10, 11].

1.1.1. The Standard Cubesat and Its Exponential Growth

In 1999 Bob Twiggs and Jordi Puig-Suari developed the standard Cubesat as a way to
put small satellites in orbit[12]. By 2009, the total number of Cubesat projects reached
approximately the one hundred[13], and in 2013 only there was 80 Cubesat projects[14]. In
the almost 20 years after the Cubesat development, Swartwout has published several works
showing the exponential growth in the use of this technology. In the introduction of his work
of 2011, Swartwout stated[15]:

“...as in all previous years, we still confess that we have little-to-no idea what cubesats
mean for the long-term future of space missions: are they just a phase, another launch
option, or a fundamental change in the way that space missions are pursued? our opinions
have indeed shifted: in 2004, we leaned towards short-term phase; today, we have more
confidence that cubesats are a long-term trend with revolutionary implications for some
sectors of space industry...”

Approximately seven years later, Swartwout said in the conclusion of his work of 2018 the
next[16]:

1



“... it was extremely rewarding to review the earlier papers we have published on this
topic, and compare the concerns of five and ten years ago to the situation today. We
can happily report that we were wrong about all of most dire predictions, and even our
optimistic predictions were not optimistic enough. Ten years ago, a launch rate of 8-10
university-class missions per year was thought to be too good to be sustainable, whereas
now 8 missions is the average quarterly output.”.

By 2019 it was expected that the number of Cubesat launches reached the one thousand
in 2021[17]. All this seems to indicate that the use of the Cubesat technology will follow
growing in the near future.

1.1.2. Cubesat-Moon Projects

Even there is not record of a mission to the Moon using a cubesat, there is currently
several mission proposal of these kind, mainly in the frame of the Artemis mission and the
Esa SysNova competition. In the case of the Artemis, there are thirteen cubesat missions
selected to go on the launcher SLS to the Moon by 2024, among them the next three ca-
ses: Mission to Earth–Moon Lagrange point by a 6u cubesat: EQUULEUS, the EQUULEUS
Cubesat of six units is under development by JAXA and Tokyo University and it will fly to
the Earth-Moon second Lagrange point[18]; The Lunar IceCube Mission, which is a cubesat
of six units that it will prospect for water on the Moon and which is under development by
NASA Goddard Space Flight Center And Purdue University[19]; The Lunar Polar Hydrogen
Mapper CubeSat Mission, which it will map the hydrogen distribution on the South pole of
the Moon[20].

An example of the four Cubesats related to the Esa SysNova: The LUMIO mission, a twelve
units cubesats which will monitor and process meteoroids impacts[21]. Private efforts are ma-
de in this topic also, as it is the case of Busek company, which is developing its LunarCube,
a cubesat of six units intended to missions beyond LEO orbit[22]; it is worth noting that the
Lunar IceCube is a LunarCube.

(a) Suchai 1, a satellite of standard Cubesat of one unit
(1U) or 1.33 kg of mass.

(b) Artemis program from NASA seeks co-
ming back to the Moon.

Figure 1.1: Suchai 1. Artemis program.

2



Our laboratory has successfully launched a Cubesat of one unit in the frame of the Suchai
Project of Spel laboratory of the Universidad de Chile[23, 24].

1.1.3. The Planar and Circular Restricted Three Body Problem

Considering all of this, to understand at least some aspects of the behaviour of a cubesat
satellite in orbit around the Moon seems an interesting topic to study. That is why this
thesis evaluate the transfer orbit of a Cubesat of 6 units (8 kg in mass) from a LEO orbit
to a lunar orbit. To do this, a special case of The Three Body Problem is solved, the Planar
and Circular Restricted Three Body Problem (PCR3BP).

The PCR3BP is the three body problem but one of the bodies has a negligible mass (the
satellite), which is called secondary, compared with the other two bodies (The Earth and the
Moon), which are called primaries. The PCR3BP is determined by only one factor called µ
which in the case of the Earth-Moon System is approximately equal to 0.012. In this work,
the equations of motion in the context of the PCR3BP of the satellite are solved numerically
by the Runge-Kutta method of fourth order.

1.2. Hypothesis
The hypothesis proposed by this work is the following: It is possible for a satellite of

standard Cubesat of six units (6U) makes a transfer orbit from a LEO orbit to a lunar
orbit in the context of the Planar and Circular Resctricted Three Body Problem (PCR3BP).
We consider the use of a thruster under development by Spel laboratory in collaboration
with the Laboratorio de Plasmas y Fusión Nuclear of Comisión Chilena de Energía Nuclear
(Cchen), the nano Pulsed Plasma Thruster (nPPT). The nPPT has theoretical values of
specific impulse approximately of 10000 seconds and a thrust force of the order of 0.1 µN,
in contrast with commercial PPT thruster with specific impulse of approximately 5000-6000
seconds and thrust force of the order of 1 µN. The next general objective is established to
prove this hypothesis.

1.3. General Objective
The general objective of this thesis is to find at least one transfer orbit from a LEO orbit

to a lunar orbit by numerically solving the equations of the PCR3BP. This computation
considers the restrictions associated to a Cubesat satellite of six units (6U) or 8 kg its
equivalent in mass and the the use of the nPPT thruster for propulsion.

1.4. Specific Objectives
To accomplish the General Objective the following specific objectives are proposed:
Solve the equations of motion of the satellite in the context of the Planar and Circular
Restricted Three Body Problem (PCR3BP).

Estimate the fuel mass needed by the satellite to orbit all the path from a LEO orbit
until a lunar orbit.
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Estimate the total time of flight for every orbit computed.

Estimate the total energy consumed along the orbit.

1.5. Thesis Structure
This thesis has the following structure:

Chapter 2, Theoretical Framework, introduces the PCR3BP problem and its equations
of motion. Presents the Jacobi constant C and it also describes three perturbations on
the satellite dynamics: the effect of oblate Earth (J2 factor), atmospheric drag and Sun
gravity.

Chapter 3, Electrical Propulsion: The Nano Pulsed Plasma Thruster, describes the pro-
pulsion model proposed in this work. The thrust force is a mean value over a time
interval which depends on the operation frequency of the thruster and always aims in
the movement direction v̂.

Chapter 4, Results, displays the results obtained in this work. It is obtained regular orbits
for the case of LEO, GEO and lunar orbits without thrust as it might be expected. A
comparison among perturbations is presented. It is presented transfer orbits from LEO
to lunar orbits, landing orbits and stationary orbits. Transfer orbits from GEO orbit are
presented. Transfer orbits from LEO orbit to a lunar orbit with a 10 % reduction in the
ejected mass ∆m and the velocity of the ejected mass c are presented.

Chapter 5 presents the conclusions of this thesis. It was possible for a satellite of standard
Cubesat of six units to transfer from a LEO orbit to a lunar orbit, using the nanoPPT
proposed here, in the context of the PCR3BP. The mass of fuel needed to make this
transition orbit was around one half of a kilogram and the time of flight depended
on the operation frequency of the thruster, being 4, 8 and 16 periods (with 1 period
approximately equal to 27.3 days) the time it took for the satellite to reach an altitude
of 160k km approximately, with operation frequencies of 20, 10 and 5 Hz, respectively.
After that, the satellite took between 1 and 2 periods to transit from an orbit around
Earth to an orbit around the Moon. For the case of initial GEO orbit, the transfer orbit
required one third of the propeller mass of the LEO case (160 gr approximately) and one
quarter of the time to reach an altitude of 160k km (1, 2 and 4 periods for 20, 10 and
5 Hz of operation frequency of the thruster, respectively). Orbits with a 10 % reduction
on ∆m and c are presented. Orbits with a 10 % reduction only on ∆m increased the
time to reach an altitude of 160k km and the total energy used in around a 10 %.
For the case in a 10 % reduction on c, the time of flight to the 160k km of altitude, the
propeller mass and the total energy increased in a 10 % approximately. For the case both
parameters were decreased in a 10 %, the time to reach 160k km of altitude increased in
22.5 %, the propeller mass increased in a 10 % and the total energy increased in a 20 %
approximately. This chapter also proposes a future work which considers that the next
step it is to replicate the results obtained in this work but working in three dimensions,
or on the so called Circular Restricted 3 Body Problem (CR3BP).
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Chapter 2

Theoretical Framework

In this chapter the theoretical framework is presented. The equations of motion of the
satellite in PCR3BP are introduced. The frames of reference are explained with its respective
transformation from the non inertial frame to the inertial one (inertial frame is centered at
the barycenter, or center of mass, of the Earth-Moon system and the non inertial rotating
frame which is also centered at the barycenter of the Earth-Moon system but it rotates such
that the Earth and the Moon appear fixed in it). The Jacobi constant C is introduce with
the forbidden zones for the satellite, or the so called Hill’s regions. Also, three perturbations
are introduce, in this case, the perturbations considered are the atmospheric drag, the oblate
Earth (J2 factor) and Sun gravity.

2.1. Equations of Motion
To describe the motion of the satellite under the gravity effects of the primaries, the Earth

and the Moon, the equations of motion of the Planar Circular Restricted 3 Body Problem
(PCR3BP) can be used1.

ẍ = 2ẏ + ∂Ω
∂x

ÿ = −2ẋ+ ∂Ω
∂y

(2.1)

Where (x, y) are the coordinates of the satellite and Ω is an effective potential given by
equation (2.2).

Ω = x2 + y2

2 + 1− µ
r1

+ µ

r2

r1 =
√

(x+ µ)2 + y2

r2 =
√

(x+ µ− 1)2 + y2

(2.2)

All units are normalized by the factors D, n, andM ; the mean distance between the primaries,
the mean motion of the primaries around the center of mass and the total mass of both

1 For a Newtonian, Hamiltonian and Lagrangian formulation, please consult chapter 2.12 of Curtis[25],
chapter 5 of Valtonen[26] and chapter 12 of Rajeev[27], respectively.
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primaries, respectively. The terms r1 and r2 are the distances from the Earth and from the
Moon to the satellite, respectively (see figure 2.1).
The PCR3BP is determined by the dimensionless factor µ, which in the case of the Earth-
Moon system is approximately 0.012. The µ factor represents both, the distance of the center
of the Earth to the center of mass, also called barycenter, and the dimensionless mass of the
Moon. For a derivation of the µ factor and a derivation of equations of motion, the reader
may refer to the the appendix B and C, respectively.

Earth

Sat

Moon

Figure 2.1: PCR3BP scheme. The frame of reference rotates such that both
Earth and the Moon are fixed. This image is not at scale.

Equations (2.1) can be written explicitly as below

ẍ = 2ẏ + x− (1− µ)(x+ µ)
r3

1
− µ(x+ µ− 1)

r3
2

ÿ = −2ẋ+ y − (1− µ)y
r3

1
− µy

r3
2

(2.3)

2.1.1. Frames of Reference

The equations (2.1) are written in a frame of reference where the primaries are fixed.
To transform the coordinates from this rotating frame of reference to an inertial frame of
reference, we use equations (2.4)[26].

ξ = x cos t− y sin t
η = x sin t+ y cos t

(2.4)

The initial position is taken of the form (x, y) = (x0, 0), and the initial velocity is of the
form (ẋ, ẏ) = (0, ẏ0). This shape for the initial condition is used in periodic orbits [28, 29].
It can be considered that a satellite follows a periodic orbit in LEO regime. In this case, the
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initial normalized velocity of the satellite can be computed as below.

v0 = 1
nD

√
GMe

Re +H0
(2.5)

The factor nD normalizes the initial velocity. The velocity of expression (2.5) needs to
be transformed to the rotating frame of PCR3BP. Defining the initial position x0 and initial
velocity ẏ0 as:

x0 = Re +H0

D
− µ

ẏ0 = v0 − µ− x0

(2.6)

The relations (2.6) can be used to compute orbits in PCR3BP knowing the initial condi-
tions in a LEO orbit. For a derivation of initial conditions and more details on the frames of
reference mentioned here, the reader may refer to the the appendix D.

2.1.2. Jacobi Constant C
The Jacobi constant can be derived from the equations of motion. This constant is given

by equation (2.7).

C = 2Ω− v2 (2.7)

This constant defines the Hill’s regions. These regions are forbidden zones for the satellite
movement [30]. Some examples of Hill’s regions for the case of µ ≈ 0.012 (Earth-Moon
system) can be seen at figure (4.14). In the appendix E the reader may see a derivation of
the Jacobi constant C.

2.1.3. Euler-Lagrange Points

In every PCR3BP there are five points where the forces cancel out each other and any
satellite put in any of these five points will remain there at rest. Even though these points are
widely known as Lagrange points, Euler found the three collinear points, usually represented
as L1, L2, L3 and Lagrange found later the two lateral L4, L5. The coordinates of the L points
can be calculated by equations 2.8 and visulized at figure 2.2:
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L1 = 1−
(
µ

3

) 1
3

L2 = 1 +
(
µ

3

) 1
3

L3 = −
(

1 + 5µ
12

)
L4 =

[
1
2 − µ,

√
3

2

]

L5 =
[

1
2 − µ,−

√
3

2

]
(2.8)
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Figure 2.2: Euler-Lagrange points or L points represented by red crosses.
The Earth is approximately at the center. The Moon is approximately at
x = 1. At the L points the gravitational forces from the primaries cancel
out.

For a derivation of the L-points, the reader may refer to Valtonen, chapter 5[26]. Valtonen
gives the expressions for L4 and L5, but not for L1, L2 nor L3. Nevertheless, it gives the
expressions that must be solved to obtain the results of equations (2.8). The value of the
collinear L-points are extracted from the MIT lecture on Dynamics number 18 byWidnall[30].
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2.2. Perturbations
There are forces on the satellite that can be considered as perturbations such as the

accelerations due to the non perfect spherical shape of the Earth (J2 factor), atmospheric
drag and Sun gravity. In this section these accelerations are described.

2.2.1. Atmospheric Drag

In Curtis chapter 12.4 “Atmospheric Drag”[25], it is proposed a model for the perturbing
acceleration due to atmospheric drag as shown below.

aD = −1
2
cDA

m
ρvv (2.9)

Where cD is the drag coefficient, A is the area of the satellite normal to the movement
direction, m is the mass of the satellite, ρ is the atmospheric density and v is the velocity
vector with its modulus v.

The atmospheric density can be described by equation (2.10)[31].

ρ = ρ0e
−h−h0

H (2.10)

Where ρ0 is the atmospheric density at some given height h0 and H is the scale factor,
which depends on the altitude. The value of these three last parameters are extracted from
Rocket and Space Technology Web Page[31].

By other side, Murray proposes a model drag for the case of the restricted three body
problem[32]. Murray drag force per unit mass has the next form:

Fi = kvg (x, y, ẋ, ẏ)
v = (ẋ− y, ẏ + x)

(2.11)

The model proposed by Murray is not detailed because it does not give a value for the
constant k nor the scalar function g, but, comparing the model drag proposed by Murray
with the expression for the drag given by equation (2.9), it is seemed reasonable to make the
next assumptions:

k = −cDA2m
g (x, y, ẋ, ẏ) = ρv

(2.12)

Please note that the function ρ is a function of the position because h = r1−re, where r1 is
the same as in equation (2.2) and it is a function of x and y. The factor re is the normalized
Earth radius re = Re/D. Because the shape of the velocity by Murray given in equation
(2.11), the function v will depend on the components of position and velocity as below

h = r1 − re

v =
√

(ẋ− y)2 + (ẏ + x)2 (2.13)

In general, the drag coefficient cD is an elaborated function of temperature and the angle
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between the normal to the surface of the satellite and the direction of movement and it is
computed in the theoretical framework of Free Molecular Flow[33]. The work by Kato[34]
proposes a model for cD which has a normal component and a tangential component, respect
to the surface of attack of the satellite. Because in this thesis work it is assumed that the sate-
llite moves always in an orthogonal way to the displacement direction, the angle between the
normal to the surface and the movement direction is zero, so it is the tangential component of
the drag coefficient by Kato. The normal component can be considered as the cD, says Kato,
and can be approximated to 2.2. Also the work of Oltrogge[35] proposes the value of 2.2 as a
first approximation for drag coefficient. Hence in this work it will be considered that cD = 2.2.

It is also necessary to consider some aspects of the orientation of the satellite to choose
an appropriate value for the area of attack A. For a satellite of standard Cubesats of six
units, it is intuitive that its orbit will no be along its larger axis. This can be seen noting that
the larger axis of the satellite will be aligned with the local vertical, the line from the center
of the Earth to center of gravity of the satellite[36]. To find if the satellite align its shorter
or mid axis along the orbit, it is necessary to develop a more complicated analysis. This is
done using “Gravity-gradient stabilization”, and it is left at the appendix F. In this case, it is
concluded that the satellite will orbit along its mid axis, with the larger axis aligned with the
local vertical and the shorter axis aligned with the normal axis of the orbit, or the direction
of displacement. In consequence, A = 3 · 10 cm·10 cm. Please note that this area A must be
normalized by D2.

2.2.2. Oblate Earth: J2 factor

Because Earth is not a perfect sphere, its gravity potential can be corrected to obtain a
better approximation. Equation (2.14) shows the change in the gravity potential of Earth for
the PCR3BP case.

Ue = −1− µ
r1
→ Ue = −1− µ

r1
+ Φ

(
r1, φ = π

2

)
(2.14)

The correction to the gravity potential can be written as a power series on r1 as displayed
in equation (2.15).

Φ (r1, φ) = 1− µ
r1

∞∑
k=2

Jk

(
re
r1

)k
Pk (cosφ) (2.15)

Where φ is the polar angle, measured from z-axis to the radial. For PCR3BP φ = π
2 .

The change in acceleration due to Earth potential gravity is shown in equation (2.16). This
expansion is considered until J2 because is the major contribution to the perturbation (the
first factors of order superior to J2 are approximately three orders of magnitude smaller).
For more details, the reader is referred to the appendix G.

−(1− µ)(x+ µ)
r3

1
→ −(1− µ)(x+ µ)

r3
1

[
1 + 3

2J2

(
re
r1

)2
]

−(1− µ) y
r3

1
→ −(1− µ) y

r3
1

[
1 + 3

2J2

(
re
r1

)2
] (2.16)
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2.2.3. Sun Gravity

To take into account the effect of the Sun’s gravity, the Bicircular Model (BCM) can be
used. Figure 2.3 shows an schematic of the BCM proposed by Koon et al.[37].

Sun

Earth

Moon

Figure 2.3: Bicircular Model (BCM). The Earth describes a circular orbit
around the Sun and the Moon describes also a circular orbit but around the
Earth. This image is not at scale.

To the equations of motion of equation (2.1) are added the next terms in the right side of
the equations

−µS
r3
S

(x− xS)− µS
a3
S

xS

−µS
r3
S

(y − yS)− µS
a3
S

yS
(2.17)

Where µS is the normalized mass of the Sun, xS and yS are the coordinates of the position
of the Sun and aS is the distance from the Sun to the barycenter of the Earth-Moon system.
The value of these parameter are given in equations (2.18).

µS = 328900.54
aS = 388.81114
ωS = 0.925195985520347

(2.18)

The coordinates of the Sun can be computed using equations (2.19). The initial angular
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position of the Sun will be considered zero θ0 = 0. This last will be true if t = 0; if a
computation is made such that t > 0 then the value of θ0 = 0 must be computed using
equation of θS in equations (2.19) using the appropriate value of the variable time t.

xS = aS cos (θS)
yS = aS sin (θS)
θS = −ωSt+ θ0

(2.19)

Earth

Sat

Moon

Sun

Figure 2.4: The BCM in the PCR3BP reference. The Sun rotates around the
barycenter of the Earth-Moon system in a clockwise sense (with a negative
angular velocity). This image is not at scale.
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Chapter 3

Electrical Propulsion: The Nano
Pulsed Plasma Thruster

In this chapter the general concepts of electrical propulsion are presented. A simple th-
ruster model is proposed. The nanoPPT is introduced.

3.1. Space propulsion
To make a satellite change its orbit from a LEO orbit to a lunar orbit, it is necessary to

use some propulsion mechanism[38, 39] to exert a force on the satellite and change its state,
to use a thrust.

The thrust is the force that acts on the satellite and change its velocity, allowing the
satellite to accelerate and consequently change its orbit. The thrust is given by equation 3.1.

F = ṁc (3.1)

Where ṁ is the rate of change of the mass of the satellite over time and c is the velocity
of the mass ejected from the satellite. As it can be seen from equation (3.1) the thrust force
is obtained by leaving mass behind the satellite. Ideally, a tiny mass is ejected at a high
speed from the satellite in the opposite direction of movement of the satellite. This thrust is
delivered by a thruster.

To measure the efficiency of a thruster, the specific impulse (Isp) can be computed as
shown in equation (3.2).

Isp = c

g0
(3.2)

Where g0 is the gravity acceleration at sea level.
Also, it can be defined the variation on velocity or the so called velocity budget given by

equation (3.3).

∆v = c ln
(
m0

m

)
(3.3)

Where m0 is the total initial mass of the satellite and m the final mass of the satellite
after the thruster has used all its fuel or the also called propeller. If the propeller mass is
defined as mp then m0 = mp + m. In general, it can be assumed that mp � m and because
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ln(1 + x) ≈ x when x � 1 then the factor of the natural logarithm in equation 3.3 can be
written as

ln
(
m0

m

)
= ln

(
mp +m

m

)
= ln

(
1 + mp

m

)
≈ mp

m
(3.4)

Then, equation (3.3) can be written as shown below

∆v = mp

m
c (3.5)

3.1.1. Thruster: Categories and Examples

Propulsion systems can be classified in two general categories: chemical and electric. Che-
mical propulsion is characterized for its huge thrust and its low specific impulse. The electric
propulsion is just the opposite, low thrust and high specific impulse[40, 41]. Electric propul-
sion has three categories: electrothermal, electrostatic and electromagnetic. Electrothermal
thruster heat up some gas or liquid which expand through a nozzle and produce thrust; an
example of this technology is the Resistojet[40, 41]. Electrostatic thruster accelerate particles
using a high voltage electric field. These particles leave the satellite and produce thrust; an
example of this technology is the Electro-Spray[42, 43]. Electromagnetic thruster uses elec-
tric and magnetic fields to accelerate particles that leave the satellite and produce thrust.
An example of this technology is the Pulsed Plasma Thruster (PPT)[44, 45].

3.2. Plasma Focus and its Miniaturization
A technology to produce plasma is the Plasma Focus (PF)[46]. Figure 3.1 shows an sche-

matic of a PF; note the resemblance with figure 3.2 of the schematic of a PPT. It is of interest
of this work the Plasma Focus technology because it has been proposed as a pulsed plasma
thruster[47, 48, 49, 50, 51, 52].

At Comisión Chilena de Energía Nuclear (Cchen) the research group Laboratorio de Plas-
ma y Fusión Nuclear has developed the smallest PF device ever made, the Plasma Nanofo-
cus[53].
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Figure 3.1: Plasma Focus PF schematic. The numbers indicate the evolution
of the plasma dynamics. Extracted from Soto, 2005[46].

Because the miniaturization achieved in the Nanofocus device and the work that proposed
the use of PF as a PPT, it is seems plausible to evaluate the Nanofocus as a PPT; this will
be called nanoPPT (nPPT).

3.2.1. The Nano Pulsed Plasma Thruster nPPT

The electrical propulsion systems [39, 38, 54, 55] and their different types of thrusters
[56, 57, 40, 58] are well studied. This work focus on the Pulsed Plasma Thruster (PPT)[44,
45, 59], particularly in one type of PPT proposed by us which we call nanoPPT(nPPT). The
nPPT is a proposal of electrical thruster from the Pulsed Plasma Focus(PPF)

3.3. Pulsed Plasma Thruster PPT
The interest of this work is the PPT, this is detailed in this section. Pulsed plasma thruster

(PPT) is a space propulsion technology developed since around the 60’s[44]. It consists in
applying a high voltage in a vacuum to a block of teflon (PTFE). This teflon is eroded or
ablated and turned into plasma. When the current flows through the plasma, a magnetic field
is induced and a Lorentz force J×B is applied on the plasma, accelerating it and making it
to leave the PPT as a plasma sheet, consequently producing a thrust. Figure 3.2 shows an
schematic of a PPT of cylindrical geometry1.

1 Although parallel plates PPT could be considered as the standard PPT, the attention of this this work will
be on the concentric cylindrical plates PPT, because the similarity of the geometry of the plasma focus.
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Figure 3.2: Pulsed Plasma Thruster PPT schematic. The plasma sheet is
accelerated by a Lorentz force, leaving the satellite and exerting a thrust
on it. Extracted from Krejci et al., 2013[60]. The hatched pattern has been
added to the original image.

3.4. The Thruster Model
To consider a thruster force in the equations (2.3), a mean thrust is proposed to be used

as the propulsion force.
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Figure 3.3: Mean thrust. The period of one shot is τ = 1/f . The mean
thrust is equal to ∆mfc.
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F̄ = 1
τ

∫ τ

0
Fdt (3.6)

If F = ṁc, ṁ = −dm
dt

and 1
τ

= f , then the mean force over one period of the thrust force
τ will be

F̄ = −f
∫ ts

0
ṁcdt+ f

∫ τ

ts
0dt

= −fc
∫ ts

0

dm

dt
dt

= −fc
∫ m(ts)

m(0)
dm

= −fc (m(ts)−m(0))

Notice that |m(ts)−m(0)| is equal to the ejected mass in one shot ∆m. Also, observe that
(m(ts)−m(0)) < 0, because the total mass decreases in every ejection or shot. Consequently
m(ts)−m(0) = −fc (−∆m). Thus, the mean thrust is equal to:

F̄ = ∆mfc (3.7)

This method proposes the direction of the thrust force is the movement direction, this is
v̂ = v

v
, then the mean force is:

F̄ = ∆mfcv
v

(3.8)

In general, it will be necessary to use more than one thruster on the satellite at the same
time. If NTh is the number of thrusters used on the satellite at the same time, then the mean
thrust force will be:

F̄ = NTh∆mfcv
v

(3.9)

The number of thrusters

Using more than one thruster avoids any internal torque around the center of mass of the
satellite by the thrust force, as long as the thrusters work in a symmetrical fashion and at
the same time. Considering this, the minimum value for NTh is four, then NTh = 4. Figure
3.4 shows a plasma gun of the nPPT and an schematic of it; figure 3.4 also displays an
schematic of an array of guns. The electrodes or guns are made of copper while the dielectric,
which is used as propeller, is made of Teflon (PTFE). The number of thruster needed in the
satellite can be estimated accordingly to the propeller mass. Observe that the Teflon area
of one thruster is A = π (0.852 − 0.252) mm2 = 0.66π mm2. If the length of one gun is 100
mm and considering that the density of the Teflon is ρ = 2.2 mg/mm2, then the mass per
gun is equal to mg = 2.2 · 0.66π · 100 mg ≈ 456.16 mg. In this work it has been found that
the satellite will need around half of a kilogram of propeller to orbit from LEO to a lunar
orbit. Considering this, if the propeller mass is 0.55 kg, the number of guns needed will be
550000/456.16 ≈ 1205. If the array of guns has an square shape, then the number of guns
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per arrow will be Na ≈
√

1205 ≈ 34.7 < 35. Then, the number of thrusters per arrow could
be chosen as Na = 35. If there are 35 guns and each of them occupies an square of length
side of 2.8 mm, then the total length of an arrow of these guns will occupy 98 mm, which is
2 mm shorter than the length of a face of one unit Cubesat.

The ablated mass

To compute a value for the thrust, it is necessary to have a value for the ablated mass
from the thruster ∆m. In general, the ablated mass depends on the energy at the capacitor.
If we consider the capacitor of the nPPT as C = 3.3 nF, the energy at the capacitor can be
computed as E0 = 1

2CV
2. Considering a voltage range of [0.5− 5.0] kV, then the energy will

range [0.41− 41.25] mJ approximately.

To estimate the ablated mass from a PPT, we can use Zeng’s work[61]. In figure 3.5 the
ablated mass from the nanofocus using Zeng’s method is plotted. The energy E0 is stored
at the capacitor of the Nanofocus. Zeng proposes that the energy used to ablate the PTFE
is between 3% and 4% of E0. More details of Zeng’s method can be found at the appendix H.

Wagner proposes the next equation to estimate the ablated mass from a PPT[62]2: ∆m =
1.32 · 10−6A0.65

p E0.35
0 kg; where Ap is the ablated area in square meters and E0 is the energy

in the capacitor in Joules. The figure 3.6 shows the ablated mass from the Nanofocus using
Wagner’s equation. Considering both estimations, if the voltage used is V = 5 kV, then
∆m = 10−10 kg, approximately. This value for ∆m is used in the simulations of this work.

To produce ∆m it is necessary to use a high voltage in the thruster. This high voltage
needs to be high enough to produce a breakdown voltage but can not be too high so the
satellite will not be able to produce it. In general, a breakdown voltage in vacuum is in the
order of kilovolts and a value of 5 kV seems a reasonable low value in this range for a gap of
0.6 mm which is the case of the Nanofocus[64, 65]3.

Range of operation frequencies of the thruster

Respect to the operation frequency of the thruster, Keidar[69] describes its PPT thruster
called µCAT that can operate with pulse frequencies between 1 and 50 Hz4. It is also expected
that the Nanofocus can operate in this range of frequencies[53].

Range of the thrust force magnitude

Considering all the values for every parameter for the thrust force, this will deliver a force
of 40 µN for an operation frequency of 1 Hz. In this work the maximum operation frequency
is considered as 20 Hz and the frequency to stop around the Moon is considered 25 Hz as a
maximum; these two conditions give values for the thrust of 800 µN and 1 mN, respectively.

2 Wagner’s equation has an experimental base from Igarashi’s work[63]
3 High voltage in vacuum is an area of intense research and a detailed description of it goes beyond the scope
of this work. The interested reader in this topic is referred to specialized literature[66, 67, 68].

4 Part of Keidar’s work can be found on his book on plasma engineering [59].
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(a) Gun electrode upper view. (b) Gun electrode.

(c) Gun electrode schematic. (d) Array of guns or thrusters.

Figure 3.4: Gun used as a thruster and array of guns of thruster. The thrus-
ter occupies an square of 2.8 mm of size. One face of one unit of the cubesat
could be covered by these guns, with a maximum of 1225 guns in a 35X35
square shape array.
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Figure 3.5: Ablated mass from the Nanofocus using Zeng’s model. At 5 kV
the ablated mass is approximately 1 · 10−10 kg.
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Figure 3.6: Ablated mass from the Nanofocus using Wagner’s equation. At
5 kV the ablated mass is approximately 0.9 · 10−10 kg.
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Chapter 4

Results

In this section the results of the implementation of the equations of PCR3BP subject to
three perturbations and a thrust force are presented. Orbits with no thrust are presented
with the expected results. The perturbations are compared to each other; it is found that
the perturbation due to J2 is dominant over the drag and Sun gravity accelerations along
almost the whole orbit. Drag acceleration is considered null over 1000 km of height and the
J2 perturbation it is practically zero when the satellite orbits the Moon, where Sun gravity
acceleration dominates. Transfer orbits are presented for the cases of operation frequency
of the thruster f is 5, 10 and 20 Hz in the ascending part of the orbit with the thruster
always aiming to the direction of movement (v̂ direction in the rotating frame of reference).
In general, the frequency to stop the satellite fS and make it to orbit the Moon needs to be
high (from 15 to 25 Hz). Landing and stationary orbits are presented. Transfer orbits from a
geostationary orbit are presented too. Transfer orbits are presented where the ejected mass
is reduced in a 10%, the velocity of the ejected mass is reduced in a 10% and both cases at
the same time. The time of flight, fuel and total energy used for the satellite in these orbits
are presented at the end of every section.

4.1. Circular Orbits
In this section results about circular orbits are presented. These orbits do not have thrust.

Consider some initial altitude for the satellite as H0, initial velocity is georeferenced and can
be computed using equation (2.5). Then, the initial condition is obtained using equation (2.6).

Figure 4.1 shows LEO orbits in rotating frame for fractions of the period and a whole period.
As it may be expected, the orbits around Earth are circular. Please note this result is saying
that the satellite makes a circle centered at Earth, but the zero of the axes is not at the
center of the Earth, in other words, the satellite is not making a circle around the origin of
the axes, but at the center of Earth (see figure 2.1).
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Figure 4.1: LEO orbit in rotating frame. The orbit remains circular over all
the time, as it is expected for a LEO orbit.

The results of figure 4.1 can be plotted in the inertial frame of reference using the trans-
formation given by equation (2.4). Figure 4.2 shows the LEO orbit in the inertial frame of
reference. The blue orbit represents the orbit of the center of the Earth around the bary-
center. The black orbit represents the satellite orbit “following” the center of the Earth. We
plot a fraction of the total satellite orbit, if it were plotted completely, it would not visible
Earth’s orbit.
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Figure 4.2: LEO orbit in the inertial frame of reference. The blue orbit
represents the center of the Earth around the barycenter. The satellite orbit
“follows” the center of the Earth. For simplicity, a fraction of the satellite
orbit is plotted in each case.

A similar result can be obtained for the case of a geostationary orbit (GEO). Figure 4.3
shows a GEO orbit in rotating frame. As it may be expected, this orbit is a circular one
centered on Earth. The orbit remains circular along full simulation.
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Figure 4.3: GEO orbit in rotating frame. The orbit remains circular centered
at Earth as it may be expected.

Figure 4.4 shows the GEO orbit in the inertial frame of reference. This orbit is for one
period of the system (27 days approximately). The blue circle is the orbit of the center of
the Earth around the barycenter in a total period. The black strip shape is the the full orbit
of the satellite along a whole period. This is the shape of the orbit “following” the center of
the Earth.
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Figure 4.4: GEO orbit in the inertial frame of reference. The blue circle is the
center of the Earth orbiting the barycenter. The black strip is the satellite
orbit making circles around and “following” the center of the Earth.

HEO orbits can be obtained as shown in Figure 4.5; the initial altitude of the satellite is
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represented as a percentage of D, the mean distance between Earth and Moon centers. As
it can be seen, orbits remain circular until around one half the distance between the Earth
and the Moon (distance D ≈ 380k km), where orbits become to loose their regular circular
shape at lower altitudes. The satellite will remain orbiting around Earth until 80% of D
approximately, or equivalently until 300k km. Beyond that, the satellite will escape of Earth
attraction. In this case the satellite will orbit in the exterior of the Earth-Moon system, as
shown in last picture in figure 4.5. Figure 4.6 shows the same orbits as figure 4.5 in the
inertial frame of reference.
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Figure 4.5: HEO orbits in rotating frame. The percentages of D indicates
the initial altitude of the satellite. All orbits are plot for t = 1 T. The cases
77 %D and 80 %D are plot also for t = 3T. The last case for 81 %D, the
satellite escapes from the interior of the Earth-Moon system.
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Figure 4.6: HEO orbits in inertial frame, the percentage of D is the initial
altitude of the satellite. All orbits are plot for t = 1 T, except the cases
77 %D and 80 %D, where they are plotted also for t = 3 T. The last case
for 81 %D the satellite escapes from the interior of the Eart-Moon system.

To obtain the result in figure 4.7, initial conditions proposed by Ugai are used[29]. It
is interesting to note that the same result is obtained with the methodology proposed
here as the methodology proposed by Ugai, using its initial condition (x0, y0, ẋ0, ẏ0) =
(0.152125, 0, 0, 3.16077). One interesting point of this orbit is that has a close point near
to the Earth and a far one, beyond the orbit of the Moon. This scenario would allow to make
observations from outside the Earth-Moon systems, in the far point or apogee, and download
data at the closest point, when it is near Earth (around 50k km of height) in the perigee of
the orbit.
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Figure 4.7: Orbit proposed by Ugai[29]. This methodology replicates results
of Ugai’s work using its initial conditions.

Similar results as figure 4.5 can be obtained for the lunar case, as shown in figure 4.8. Note
the orbits are also circular as the case of Earth. Thus will be until the height is approximately
20k km. When the height is 16 % of D,the satellite will not longer remain orbiting the Moon
and it will go inside the system Earth-Moon, as shown in the last image in figure 4.8.
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Figure 4.8: Lunar orbits in rotating frame of reference. These orbits remain
almost circular until height is around 20k km. When height is 16 % of D,
the satellite will not longer orbit around the Moon and it will move inside
the sysmtem Earth-Moon.
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Figure 4.9: Lunar orbits in inertial frame of reference. The blue circle at
the center is the orbit of the center of the Earth. The big grey circle is the
orbit of the center of the Moon around the barycenter. The ripples in the
satellite orbit are because it is “following“ the center of the Moon.

4.2. Comparison Among Perturbations
Figure 4.10 shows the accelerations due to the: atmospheric drag, J2 factor and the Sun

gravity; in function of the time and in function of the height, with T the period of the Moon
around the center of mass (also the period of the Earth around the center of mass) and being
approximately equal to 27.3 days, and k = 1000. These plots corresponds to the case of
f1 = 20 Hz, t1 = 4 T, f2 = 8 Hz and t2 = 4 T. The meaning of these frequencies f and times
t is explained in the next section. The plots are sketched until time t = 0.25 T with initial
time t0 = 0 or equivalently, with initial altitude H0 = 0.5k km until the height is H ≈ 1.2k
km. In this range, the acceleration on the satellite due to the J2 factor is dominant, with an
acceleration ∼ 10 mm/s2, over the the acceleration due to the atmospheric drag ∼ 0.1µm/s2

and the Sun gravity acceleration oscillating between 0.1 µm/s2 and 0.9 µm/s2. At the end of
this range, at 1.2k km of height, the acceleration due to the atmospheric drag is approxima-
tely zero.

Figure 4.11 shows accelerations due to the J2 factor and the Sun gravity. In this case the
initial time is t0 = 0.25 T, until t = 1 T. Equivalently in height H0 = 1.2k km until height
H = 4.2k km. In this second range, the acceleration due to factor J2, with values from 8
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mm/s2 to 2 mm/s2, is still dominant over the acceleration due to the Sun gravity, this last
one with maximum value around 1 µm/s2.

Figure 4.12 shows a third range of accelerations due to J2 factor and Sun gravity. In this
case, the initial time is t0 = 1 T until t = 4 T and, equivalently, initial altitude H0 = 4.2k
km until H = 166.2k km. In this range, the acceleration due to the J2 factor dominates
but drops almost to zero while the acceleration due to the Sun gravity increases to around
10µm/s2, being the dominant perturbation in the heights over 100k km.

Figure 4.13 shows a fourth range with the accelerations due to factor J2 and Sun gravity.
In this range the initial time is t0 = 4 T until t = 8 T, equivalently, H0 = 166.2k km until
H = 423.7k km (satellite orbiting the Moon). The acceleration due to Sun gravity is around
10 µm/s2 and dominates over the acceleration due to the J2 factor which is approximately
zero.
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Figure 4.10: Perturbations between initial altitude H0 = 500 km and final
height H = 1.2k km. The initial time and final time are t0 = 0 and t = 0.25
T, respectively. At this range of heights the J2 factor acceleration dominates
over the drag and Sun gravity accelerations. At approximately 1000 km of
height the drag acceleration is zero.

30



0 5 10 15 20
Time [day]

2000

3000

4000

5000

6000

7000

8000

Ac
ce

le
ra

tio
n 

by
 J2

 [
m

/s
2 ]

J2 Acceleration

(a)

1500 2000 2500 3000 3500 4000
Height [km]

2000

3000

4000

5000

6000

7000

8000

J2
 A

cc
el

er
at

io
n 

[
m

/s
2 ]

J2 Acceleration

(b)

0 5 10 15 20
Time [days]

0.2

0.4

0.6

0.8

1.0

1.2

Su
n 

Ac
ce

le
ra

tio
n 

[
m

/s
2 ]

Sun Acceleration

(c)

1500 2000 2500 3000 3500 4000
Height [km]

0.2

0.4

0.6

0.8

1.0

1.2

Su
n 

Ac
ce

le
ra

tio
n 

[
m

/s
2 ]

Sun Acceleration

(d)

Figure 4.11: Perturbations between H0 = 1.2k km and H = 4.2k km. The
acceleration due to the J2 factor is still dominant over Sun gravity accele-
ration.
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Figure 4.12: Perturbations between H0 = 4.2k km and H = 166.2k km. The
acceleration due to J2 factor drops to almost zero at heights over 100k km.
The acceleration due to Sun Gravity is around 10 µm/s2 at a height of 166k
km.
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Figure 4.13: Perturbations between H0 = 166.2k km and H = 423.7k km.
The acceleration due to factor J2 is approximately zero. At this height the
sun gravity acceleration dominates over the acceleration by J2.

4.3. Transfer Orbits
To find a transfer orbit, the Jacobi constant is helpful to determine a possible orbit so

the satellite goes from a LEO orbit to a lunar orbit. Figure 4.14 shows the Hill’s regions for
different values of the Jacobi Constant C, which are forbidden zones for the satellite to be
and in consequence to orbit through. For C = 3.2 can be defined 3 possibles zones for the
satellite to orbit: around Earth, around the Moon and around the Earth-Moon system. If C
decreases to C = 3.188, the Hill’s zone “opens” around the point L1, and the zone around the
Earth and around the Moon connects to each other. For C = 3.173 the Hill’s region “opens”
again, but this time around the point L2, so the inside zone connects to the outside zone.
For C = 3.013 the Hill’s region has a “C” shape and opens around point L3 as C decreases.
For smaller C the Hill’s region vanishes around points L4 and L5, as “island” of forbidden
zones. For a LEO orbit C ≈ 55.
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(a) C = 2.989 (b) C = 3.000 (c) C = 3.013

(d) C = 3.100 (e) C = 3.173 (f) C = 3.174

(g) C = 3.188 (h) C = 3.189 (i) C = 3.200

Figure 4.14: Hill’s regions. The shaded area are forbidden zones for the
satellite to be and consequently, forbidden zones to orbit through. As the
value of the constant Jacobi C decreases, the forbidden zones start to vanish
around Euler-Lagrange points. For a satellite in the Earth-Moon system in
LEO orbit C ≈ 55, and for C < 2.989 there are not forbidden zones.

In order to the satellite escapes from Earth and transit to the Moon, the value of the
Jacobi constant C has to decrease and for this propulsion can be used. It can be choose a
value of C small enough so the satellite can transit to the Moon from Earth, as C < 3.2
but high enough so the satellite transits to the Moon and not escapes by the L3 point, as
C > 3. The value of C = 3.015 is low enough to let the satellite transit to the zone around
the Moon and it is high enough to not let the it escape by the point L3. These conditions
are not enough to ensure the satellite orbits the Moon. While the satellite approaches to the
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Moon, once has escaped from Earth, the value of C has to increase so the Hill’s zone “closes”
when the satellite is near to the Moon. A value of C = 3.189 is high enough to close the Hill’s
zone so the satellite can be bounded to the Moon gravity. The propulsion will be defined by
the frequency of shoots of the thruster f .

To gain some insight of the change of the orbit as the satellite ascends see Figure 4.15.
These “ascending” orbits are obtained for a time lapse of t = 4 T. The orbit reaches a higher
final altitude as the frequency of the thruster increases, as can be expected.

(a) f = 2 Hz (b) f = 4 Hz (c) f = 6 Hz

(d) f = 8 Hz (e) f = 10 Hz (f) f = 12 Hz

(g) f = 14 Hz (h) f = 16Hz (i) f = 18 Hz

Figure 4.15: Ascending orbits in rotating frame of reference for t = 4 T.
As can be expected, the higher the operation frequency of the thruster, the
higher the final altitude reached by the satellite.

Figure 4.16 shows the high reached in every case of figure 4.15. Also shows the total mass
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propelled and the total energy used along the ascending orbit.
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Figure 4.16: Final altitude reached for the satellite in orbits of figure 4.15

For the ascending part of the orbit it will be considered three cases for the operation
frequency f of the thruster, f equal to 5, 10 and 20 Hz. Figure 4.17 shows these three cases.
These three orbits reach approximately the same altitude of 160k km, but the times of flight
are different, being 16, 8 and 4 periods of time T, for 5, 10 and 20 Hz of operation frequency
of the thruster, respectively.

(a) Ascending orbit for f = 5 Hz
and t = 16 T.

(b) Ascending orbit for f = 10
Hz and t = 8 T.

(c) Ascending orbit for f = 20
Hz and t = 4 T.

Figure 4.17: Ascending orbits for 5, 10 and 20 Hz of operation frequency of
the thruster, each case takes 16, 8 and 4 periods of time T, respectively, to
reach an altitude of 160k km approximately.

From these 3 cases of operation frequency, it is possible to obtain orbits to the Moon. An
orbit from Earth to the Moon can be thought as a three stages process. First, the satellite
ascends from a LEO orbit to a HEO orbit, using a frequency f1 of thruster operation and
a time t1. Second, the satellite transits from a HEO orbit through a path where goes to the
Moon and reaches a lunar orbit. This can be done using a frequency f2 of thruster operation
along a time t2. Finally, the satellite needs to be decelerated to orbit the Moon, using a
frequency fS of thruster operation. This last frequency fS usually needs to be the highest of
the operation frequencies of the thruster to obtain a lunar orbit. The frequency f2 will be
chosen such that is less, equal or slightly higher than the frequency f1.
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(a) f2 = 1 Hz. (b) f2 = 2 Hz. (c) f2 = 3 Hz.

(d) f2 = 4 Hz. (e) f2 = 5 Hz. (f) f2 = 6 Hz.

Figure 4.18: Transfer orbits sweeping on f2 for f1 = 5 Hz and t1 = 16 T.
Frequency f2 is swept from 1 to 6 Hz. Frequency f2 = 6 Hz seems a suitable
choice for a transfer orbit to the Moon in this range of values for f2.

For the case of f1 = 5 Hz and t1 = 16 T, figure 4.18 shows transfer orbits sweeping on f2,
from 1 to 6 Hz with t2 = 1 T. It can be seen that for frequencies 1, 2, 3 and 4 Hz the final
point of the orbit does not come close to the Moon. By the other hand, frequencies f2 = 5
Hz and f2 = 6 Hz could be appropriate choices to try a transfer orbit to the Moon, because
the final point of the orbit come close to the Moon for f = 5, and the for the case of f = 6
Hz at the final point of the orbit, the satellite seems to go to the Moon.
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Figure 4.19 shows transfer orbits for the case f1 = 5 Hz, t1 = 16 T, f2 = 6 Hz, t2 = 4 T,
with fS 20 and 25 Hz. At the left, the images from the rotating frame. At the center, zoom
in centered at the Moon, it can be seen as the satellite orbits around the Moon. At the right,
the whole orbit of the satellite in the non rotating frame of reference (NRF).

(a) fS = 20 Hz.
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(b) Zoom in centered at the
Moon for fS = 20 Hz.

(c) Non rotating frame for fS =
20 Hz.

(d) fS = 25 Hz.
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Figure 4.19: Transfer orbits for f1 = 5 Hz, t1 = 16 T, f2 = 6 Hz, t2 = 4 T,
with fS = 20 Hz and fS = 25 Hz.

38



This approach can be repeated for the case of f1 = 10 Hz and t1 = 8 T. Figure 4.20 shows
transfer orbits sweeping on f2, from 2 to 10 Hz. This suggest that f2 = 5 Hz and over could
be appropriate frequencies to try a transfer orbit to the Moon.

(a) f2 = 2 Hz. (b) f2 = 3 Hz. (c) f2 = 4 Hz.

(d) f2 = 5 Hz. (e) f2 = 6 Hz. (f) f2 = 7 Hz.

(g) f2 = 8 Hz. (h) f2 = 9 Hz. (i) f2 = 10 Hz.

Figure 4.20: Transfer orbits sweeping on f2 for f1 = 10 Hz and t1 = 8 T.
Frequency f2 is swept from 2 to 10 Hz. Frequency f2 = 5 Hz and over seems
suitable choices for a transfer orbit to the Moon in this range of values for
f2.
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Figure 4.21 shows transfer orbits for f1 = 10 Hz, t1 = 8 T, f2 = 6 Hz, t2 = 4 T, with
fS = 11 Hz, fS = 12 Hz and fS = 13 Hz.

(a) fS = 11 Hz.
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(b) Zoom in centered at the
Moon for fS = 11 Hz.

(c) Non rotating frame for fS =
11 Hz.

(d) fS = 12 Hz.
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(e) Zoom in centered at the
Moon for fS = 12 Hz.

(f) Non rotating frame for fS =
12 Hz.

(g) fS = 13 Hz.
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Figure 4.21: Transfer orbits for f1 = 10 Hz, t1 = 8 T, f2 = 6 Hz, t2 = 4 T,
with fS = 11 Hz, fS = 12 Hz and fS = 13 Hz.
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Figure 4.22 shows transfer orbits for f1 = 10 Hz t1 = 8 T, f2 = 7 Hz, t2 = 4 T and fS = 20
Hz and fS = 25 Hz.

(a) fS = 20 Hz.
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(b) Zoom in centered at the
Moon for fS = 20 Hz.

(c) Non rotating frame for fS =
20 Hz.

(d) fS = 25 Hz.
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Figure 4.22: Transfer orbits for f1 = 10 Hz, t1 = 8 T, f2 = 7 Hz, t2 = 4 T,
with fS = 20 Hz and fS = 25 Hz.
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Figure 4.23 shows transfer orbits for f1 = 20 and t1 = 4 T, sweeping on f2, from 4 to 15
Hz. This suggest that f2 = 6 Hz and over, until f ≈ 10 Hz could be appropriate frequencies
to try an orbit to the Moon.

(a) f2 = 4 Hz. (b) f2 = 5 Hz. (c) f2 = 6 Hz.

(d) f2 = 7 Hz. (e) f2 = 8 Hz. (f) f2 = 9 Hz.

(g) f2 = 10 Hz. (h) f2 = 12 Hz. (i) f2 = 15 Hz.

Figure 4.23: Transfer orbits sweeping on f2 for f1 = 20 Hz and t1 = 4 T.
Frequency f2 is swept from 4 to 15 Hz. Frequency f2 = 6 Hz seems a suitable
choice for a transfer orbit to the Moon in this range of values for f2.
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Figure 4.24 shows transfer orbits for f1 = 20 Hz, t1 = 4 T, f2 = 6 Hz, t2 = 4 T and
fS = 15 Hz and fS = 25 Hz.

(a) fS = 15 Hz.
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(b) Zoom in centered at the
Moon for fS = 15 Hz.

(c) Non rotating frame for fS =
15 Hz.

(d) fS = 25 Hz.
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Figure 4.24: Transfer orbits for f1 = 20 Hz, t1 = 4 T, f2 = 6 Hz, t2 = 4 T
and fS = 15 Hz and fS = 25 Hz.
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Figure 4.25 shows transfer orbits for f1 = 20 Hz, t1 = 4 T, f2 = 7 Hz, t2 = 4 T and
fS = 20 Hz and fS = 25 Hz.

(a) fS = 20 Hz.
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(b) Zoom in centered at the
Moon for fS = 20 Hz.

(c) Non rotating frame for fS =
20 Hz.

(d) fS = 25 Hz.
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Figure 4.25: Transfer orbits for f1 = 20 Hz, t1 = 4 T, f2 = 7 Hz, t2 = 4 T
and fS = 20 Hz and fS = 25 Hz.
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Figure 4.26 shows transfer orbits for f1 = 20 Hz, t1 = 4 T, f2 = 8 Hz, t2 = 4 T and
fS = 20 Hz and fS = 25 Hz.

(a) fS = 20 Hz.
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(b) Zoom in centered at the
Moon for fS = 20 Hz.

(c) Non rotating frame for fS =
20 Hz.

(d) fS = 25 Hz.
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Figure 4.26: Transfer orbits for f1 = 20 Hz, t1 = 4 T, f2 = 8 Hz, t2 = 4 T
and fS = 20 Hz and fS = 25 Hz.
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Table 4.1 displays the values for transfer orbits presented in section 4.3. The mean value
of the propeller mass is mp = 0.516 kg and the mean total energy used for the whole orbit is
Ep = 59.155 kWh = 212.959 MJ. Two results are highlighted at table 4.1. These two orbits
seems to display a more regular behaviour than the rest of the orbits, this regularity could
be useful to find the satellite in the sky from the Moon.

Table 4.1: Values of the propeller, time and energy used for every transfer
orbit from LEO to lunar.

f1[Hz] t1[T] f2[Hz] t2[T] fS[Hz] Hlmin[km] mp[kg] Ep[kWh] Ep[MJ]
5 16 6 4 20 359 0.512 58.620 211.030
5 16 6 4 25 1075 0.508 57.750 207.900
10 8 6 4 11 1752 0.523 60.667 218.401
10 8 6 4 12 1897 0.531 60.803 218.891
10 8 6 4 13 1950 0.527 60.419 217.508
20 4 6 4 15 790 0.512 58.672 211.219
20 4 6 4 25 2475 0.506 57.962 208.663
20 4 7 4 20 16915 0.513 58.774 211.586
20 4 7 4 25 1092 0.512 58.707 211.345
20 4 8 4 20 6667 0.518 59.337 213.613
20 4 8 4 25 1720 0.515 58.996 212.356

4.4. Stationary Orbits
Some orbits shows a stationary behaviour, i.e. the satellite orbits around the center of

mass in a circular orbit with an angular velocity equal to n, then the satellite appears fixed
in the rotating frame. This is consequence of the forces on the satellite are equal to zero. The
propulsion and the gravity forces cancel out to each other. This stationary orbit will remain
as long as the thruster is operating.
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Figure 4.27 shows transfer orbits for f1 = 5 Hz, t1 = 16 T, f2 = 7 Hz, t2 = 2 T, with
fS = 15 Hz and fS = 25 Hz. When the satellite reaches an altitude of 350k km, it stays at
that point.

(a) Stationary orbit for fS = 15
Hz.

0 10 20 30 40 50
Time [day]

175

200

225

250

275

300

325

350

He
ig

ht
 [k

 k
m

]

Height v/s Time

(b) Height reached for fS = 15
Hz.

(c) Non rotating frame for fS =
15 Hz.

(d) Stationary orbit for fS = 25
Hz.
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Figure 4.27: Stationary orbits for f1 = 5 Hz, t1 = 16 T, f2 = 7 Hz, t2 = 2
T, with fS = 15 Hz and fS = 25 Hz.

In the non rotating frame (inertial frame), as can be expected, the orbit is circular at its
final part with angular velocity equal to n, so the satellite appears stationary in the rotating
frame (non inertial frame) as the Earth and the Moon do. The next results present the same
behaviour.
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Figure 4.28 shows transfer orbits for f1 = 10 Hz, t1 = 8 T. With f2 = 6 Hz, t2 = 2 T and
fS = 20 Hz and fS = 25 Hz. When the satellite reaches an altitude of 350k km, it stays at
that point.

(a) Stationary orbit for fS = 20
Hz.
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(d) Stationary orbit for fS = 25
Hz.
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Figure 4.28: Stationary orbits for f1 = 10 Hz, t1 = 8 T. In the second part
f2 = 6 Hz, t2 = 2 T, with fS = 20 Hz and fS = 25 Hz.
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Figure 4.29 shows transfer orbits for f1 = 20 Hz and t1 = 4 T. First result f2 = 8 Hz,
t2 = 2 T and fS = 18 Hz; in this case the altitude reached is around 450k km. Second result
f2 = 9 Hz, t2 = 2 T and fS = 25 Hz, reaching an altitude of 350k km and staying at that
point.

(a) Stationary orbit for fS = 18
Hz.
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(b) Height reached for fS = 18
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(c) Non rotating frame for fS =
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(d) Stationary orbit for fS = 25
Hz.

0 10 20 30 40 50
Time [day]

175

200

225

250

275

300

325

350

He
ig

ht
 [k

 k
m

]

Height v/s Time

(e) Height reached for fS = 25
Hz.

(f) Non rotating frame for fS =
25 Hz.

Figure 4.29: Stationary orbits for f1 = 20 Hz and t1 = 4 T. In the first result
f2 = 8 Hz, t2 = 2 T and fS = 18 Hz, reaching an altitude of approximately
450k km. In the second result f2 = 9 Hz, t2 = 2 T and fS = 25 Hz, reaching
an altitude of approximately 350k km. In both cases, the satellite stays at
the final point it reaches.
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Figure 4.30 shows transfer orbits for f1 = 20 Hz, t1 = 4 T. With f2 = 20 Hz, t2 = 4 T,
fS = 20 Hz and fS = 25 Hz. When the satellite reaches an altitude of 350k km, it stays at
that point.
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(d) Stationary orbit for fS = 25
Hz.
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Figure 4.30: Stationary orbits for f1 = 20 Hz, t1 = 4 T, f2 = 20 Hz, t2 = 4
T, with fS = 20 Hz and fS = 25 Hz. When the satellite reaches an altitude
of 350k km, it stays at that point.

Table 4.2 displays the values for stationary orbits presented in section 4.4. Two results are
highlighted in table 4.2. One has almost 50k km of distance to the Moon surface, which is
the shortest distance among the stationary orbits here presented; this result could be useful
to make surface Moon observation. The other result has a distance of around 160k km, which
is the highest among the stationary orbits presented here; this orbit could have the potential
to make observations to outside the Earth-Moon System.
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Table 4.2: Values of the propeller, time and energy used for every stationary
orbit.

f1[Hz] t1[T] f2[Hz] t2[T] fS[Hz] Hlmin[km] mp[kg] Ep[kWh] Ep[MJ]
5 16 7 2 15 125055 0.524 60.035 216.126
5 16 7 2 25 125011 0.524 60.035 216.126
10 8 6 4 20 122767 0.538 69.817 251.341
10 8 6 4 25 125533 0.538 69.817 251.341
20 4 8 2 18 49809 0.535 61.273 220.583
20 4 9 2 25 161679 0.535 61.346 220.846
20 4 20 4 20 108391 0.696 79.727 287.017
20 4 20 4 25 108391 0.696 79.727 287.017

4.5. Landing Orbits
This method can produce orbits that reach the surface of Moon. These orbits could become

useful if they are considered as possible paths to land a satellite on the Moon.
Figure 4.31 shows a landing orbit for f1 = 5 Hz, t1 = 16 T, f2 = 5 Hz, t2 = 1.013 T, with

fS = 25 Hz.

(a) Landing orbit for f2 = 5 Hz
and t2 = 1.013 T, fS = 25 Hz.
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(b) Zoom in of landing orbit for
f2 = 5 Hz and t2 = 1.013 T,
fS = 25 Hz.

(c) Non rotating frame of lan-
ding orbit for f2 = 5 Hz and
t2 = 1.013 T, fS = 25 Hz.

Figure 4.31: Landing orbit for f1 = 5 Hz, t1 = 16 T, f2 = 5 Hz, t2 = 1.013
T, with fS = 25 Hz.
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Figure 4.32 shows a landing orbit for f1 = 10 Hz, t1 = 8 T, with f2 = 6 Hz, t2 = 1.684 T,
fS = 15 Hz and f2 = 8 Hz, t2 = 2.261 T, fS = 12 Hz.

(a) Landing orbit for f2 = 6 Hz
and t2 = 1.684 T, fS = 15 Hz.
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(b) Landing orbit for f2 = 6 Hz
and t2 = 1.684 T, fS = 15 Hz.

(c) Non rotating frame of lan-
ding orbit for f2 = 6 Hz and
t2 = 1.684 T, fS = 15 Hz.

(d) Landing orbit for f2 = 6 Hz
and t2 = 2.261 T, fS = 12 Hz.
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(e) Landing orbit for f2 = 6Hz
and t2 = 2.261T, fS = 12 Hz.

(f) Non rotating frame of lan-
ding orbit for f2 = 6 Hz and
t2 = 2.261 T, fS = 12 Hz.

Figure 4.32: Landing orbits for f1 = 10 Hz, t1 = 8 T. Then, f2 = 6 Hz,
t2 = 1.684 T, with fS = 15 Hz and f2 = 8 Hz, t2 = 2.261 T, with fS = 12
Hz.
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Figure 4.33 shows landing orbits for f1 = 20 Hz and t1 = 4 T. In the second part f2 = 6
Hz, with t2 = 3.730 T and fS = 10 Hz, and t2 = 1.433 T and fS = 20 Hz.

(a) Landing orbit for f2 = 6 Hz
and t2 = 3.730 T, fS = 10 Hz.
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(b) Landing orbit for f2 = 6 Hz
and t2 = 3.730 T, fS = 10 Hz.

(c) Non rotating frame of lan-
ding orbit for f2 = 6 Hz and
t2 = 3.730 T, fS = 10 Hz.

(d) Landing orbit for f2 = 6 Hz
and t2 = 1.433 T, fS = 20 Hz.
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(e) Landing orbit for f2 = 6 Hz
and t2 = 1.433 T, fS = 20 Hz.

(f) Non rotating frame of lan-
ding orbit for f2 = 6 Hz and
t2 = 1.433 T, fS = 20 Hz.

Figure 4.33: Landing orbits for f1 = 20 Hz and t1 = 4 T. Then, f2 = 6 Hz,
with t2 = 1.433 T and fS = 20 Hz, and t2 = 3.730 T and fS = 10 Hz.

Figure 4.34 shows landing orbits for f1 = 20 Hz and t1 = 4 T. In the second part f2 = 7
Hz, with t2 = 1.886 T and fS = 15 Hz, and f2 = 9 Hz, t2 = 1.867 T and fS = 10 Hz.
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(a) Landing orbit for f2 = 7 Hz
and t2 = 1.886 T, fS = 15 Hz.
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(b) Landing orbit for f2 = 7 Hz
and t2 = 1.886 T, fS = 10 Hz.

(c) Non rotating frame of lan-
ding orbit for f2 = 7 Hz and
t2 = 1.886 T, fS = 15 Hz.

(d) Landing orbit for f2 = 6 Hz
and t2 = 1.867 T, fS = 10 Hz.
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(e) Landing orbit for f2 = 6 Hz
and t2 = 1.867 T, fS = 10 Hz.

(f) Non rotating frame of lan-
ding orbit for f2 = 6 Hz and
t2 = 1.867 T, fS = 10 Hz.

Figure 4.34: Landing orbits for f1 = 20 Hz and t1 = 4 T. Then, f2 = 7 Hz,
with t2 = 1.886 T and fS = 15 Hz, and f2 = 9 Hz, t2 = 1.867 T and fS = 10
Hz.

Table 4.3 displays the values for landing orbits presented in section 4.5. Two orbits are
highlighted at table 4.3. These two orbits has the characteristic that the satellite orbits around
the Moon before landing, this could be useful at the time of landing to give more time of
maneuvering before landing.

Table 4.3: Values of the propeller, time and energy used for every landing
orbit.

f1[Hz] t1[T] f2[Hz] t2[T] fS[Hz] Hlmin[km] mp[kg] Ep[kWh] Ep[MJ]
5 16 5 1.013 25 – 0.504 57.750 207.900
10 8 6 1.684 15 – 0.527 60.383 217.379
10 8 8 2.261 12 – 0.531 60.796 218.866
20 4 6 3.730 10 – 0.519 59.525 214.290
20 4 6 1.433 20 – 0.509 58.300 209.880
20 4 7 1.886 15 – 0.517 59.288 213.437
20 4 9 1.867 10 – 0.523 59.884 215.582
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4.6. Geostationary Initial Orbit
The satellite can be considered initially at a geostationary orbit, this is an initial altitude

of 36k km approximately.
Figure 4.35 shows transfer orbits with initial altitude of 36k km for f1 = 5 Hz and t1 = 4

T. In the second part f2 = 5 Hz, t2 = 5 T and fS = 20 Hz and and fS = 25 Hz.

(a) Transfer orbit for f2 = 5 Hz
and t2 = 5 T, fS = 20 Hz.
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(b) Zoom in at the Moon to
transfer orbit for f2 = 5 Hz and
t2 = 5 T, fS = 20 Hz.

(c) Transfer orbit in non rotating
frame for f2 = 5 Hz and t2 = 5
T, fS = 20 Hz.

(d) Transfer orbit for f2 = 5 Hz
and t2 = 5 T, fS = 25 Hz.
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(e) Zoom in at the Moon to
Transfer orbit for f2 = 5 Hz and
t2 = 5 T, fS = 25 Hz.

(f) Transfer orbit in non rotating
frame for f2 = 5 Hz and t2 = 5
T, fS = 25 Hz.

Figure 4.35: Transfer orbit for f1 = 20 Hz and t1 = 4 T. Then, f2 = 5 Hz,
with t2 = 5 T and fS = 20 Hz and fS = 25 Hz.
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Figures 4.36 and 4.37 shows transfer orbits with initial altitude of 36k km for f1 = 10 Hz
and t1 = 2 T.

(a) Transfer orbit for f2 = 9 Hz
and t2 = 4 T, fS = 25 Hz.
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(b) Zoom in at the Moon to
transfer orbit for f2 = 9 Hz and
t2 = 4 T, fS = 25 Hz.

(c) Transfer orbit in non rotating
frame for f2 = 9 Hz and t2 = 4
T, fS = 25 Hz.

(d) Transfer orbit for f2 = 12 Hz
and t2 = 4 T, fS = 15 Hz.
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(e) Zoom in at the Moon to
transfer orbit for f2 = 12 Hz and
t2 = 4 T, fS = 15 Hz.

(f) Transfer orbit in non rotating
frame for f2 = 12 Hz and t2 = 4
T, fS = 15 Hz.

Figure 4.36: Transfer orbit for f1 = 10 Hz and t1 = 2 T. Then, f2 = 9 Hz,
with t2 = 4 T and fS = 25 Hz; f2 = 12 Hz, with t2 = 4 T and fS = 15 Hz
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(a) Transfer orbit for f2 = 12 Hz
and t2 = 4 T, fS = 20 Hz.
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(b) Transfer orbit for f2 = 12 Hz
and t2 = 4 T, fS = 20 Hz.

(c) Transfer orbit in non rotating
frame for f2 = 12 Hz and t2 = 4
T, fS = 20 Hz.

(d) Transfer orbit for f2 = 12 Hz
and t2 = 4 T, fS = 25 Hz.
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(e) Transfer orbit for f2 = 12 Hz
and t2 = 4 T, fS = 25 Hz.

(f) Transfer orbit in non rotating
frame for f2 = 12 Hz and t2 = 4
T, fS = 25 Hz.

Figure 4.37: Transfer orbit for f1 = 10 Hz and t1 = 2 T. Then, f2 = 12 Hz,
with t2 = 4 T and fS = 20 Hz and fS = 25 Hz.

Figures 4.38 shows transfer orbits with initial altitude of 36k km for f1 = 10 Hz and t1 = 2
T.

Table 4.4 displays the results of the orbits with initial altitude of 36k km or GEO orbit. Two
results are highlighted at table 4.4, these two orbits present the same regularity mentioned
at table 4.1 in section 4.3. the mean propeller mass of these orbits is mp = 0.166 kg and the
mean total energy used of the whole orbit is Ep = 18.992 kWh = 68.370 MJ.
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(a) Transfer orbit for f2 = 9 Hz
and t2 = 4 T, fS = 25 Hz.
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(b) Transfer orbit for f2 = 9 Hz
and t2 = 4 T, fS = 25 Hz.

(c) Transfer orbit in non rotating
frame for f2 = 9 Hz and t2 = 4
T, fS = 25 Hz.

(d) Transfer orbit for f2 = 12 Hz
and t2 = 4 T, fS = 25 Hz.
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(e) Transfer orbit for f2 = 12 Hz
and t2 = 4 T, fS = 25 Hz.

(f) Transfer orbit in non rotating
frame for f2 = 12 Hz and t2 = 4
T, fS = 25 Hz.

Figure 4.38: Transfer orbit for f1 = 20 Hz and t1 = 1 T. Then, f2 = 9 Hz,
with t2 = 4 T and fS = 20 Hz and fS = 25 Hz.

Table 4.4: Values of the propeller, time and energy used for every transfer
orbit from a geostationary orbit.

f1[Hz] t1[T] f2[Hz] t2[T] fS[Hz] Hlmin[km] mp[kg] Ep[kWh] Ep[MJ]
5 4 5 5 20 4620 0.163 18.702 67.327
5 4 5 5 25 4335 0.162 18.580 66.888
10 2 9 4 25 2547 0.158 18.121 65.236
10 2 12 4 15 1587 0.180 20.655 74.358
10 2 12 4 20 371 0.167 19.095 68.742
10 2 12 4 25 2732 0.167 19.102 68.767
20 1 9 4 25 15371 0.161 18.430 66.348
20 1 12 4 20 6966 0.168 19.249 69.296

It is interesting to see that the fuel and the total energy needed to make a transfer orbit
from a GEO orbit to a lunar orbit is around one third the needed to make a transfer orbit
from a LEO orbit to a lunar orbit. This indicates that the fuel and energy requirements from
LEO to GEO orbit is two thirds of the total fuel and energy requirements of a transfer orbit
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from a LEO to a lunar orbit.

4.7. A 10 % Reduction of ∆m and c

In this section results on transfer orbits are presented where the propeller mass ∆m and
the velocity of the mass ejected from the thruster c are reduced in a 10 %. The objective
of this section is to find if it is still possible to find transfer orbits to the Moon from LEO
orbit after the reduction in parameters ∆m and c. Additional results (orbits) are left at the
appendix I.

4.7.1. A 10 % Reduction of ∆m
This section presents results on a reduction of a 10 % on the ejected mass from the satellite.

The value ∆m = 1 · 10−10 kg is reduced to ∆m = 9 · 10−11 kg.

(a) Transfer orbit for f2 = 7 Hz
and t2 = 5 T, fS = 25 Hz.
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(b) Zoom in at the Moon to
transfer orbit for f2 = 7 Hz and
t2 = 5 T, fS = 25 Hz.

(c) Transfer orbit in non rotating
frame for f2 = 7 Hz, t2 = 5 T
and fS = 25 Hz.

Figure 4.39: Transfer orbit for f1 = 5 Hz and t1 = 17.6 T. Then, f2 = 7 Hz,
t2 = 5 T and fS = 25 Hz.

(a) Transfer orbit for f2 = 5 Hz
and t2 = 7 T, fS = 25 Hz.

0.85 0.90 0.95 1.00 1.05 1.10 1.15
x

0.15

0.10

0.05

0.00

0.05

0.10

0.15

y

36k km

(b) Zoom in at the Moon to
transfer orbit for f2 = 5 Hz and
t2 = 7 T, fS = 25 Hz.

(c) Transfer orbit in non rotating
frame for f2 = 5 Hz and t2 = 7
T, fS = 25 Hz.

Figure 4.40: Transfer orbit for f1 = 10 Hz and t1 = 8.8 T. Then, f2 = 5 Hz,
with t2 = 7 T and fS = 25 Hz.
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(a) Transfer orbit for f2 = 9 Hz
and t2 = 4.4 T, fS = 20 Hz.
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(b) Zoom in at the Moon to
transfer orbit for f2 = 9 Hz and
t2 = 4.4 T, fS = 20 Hz.

(c) Transfer orbit in non rotating
frame for f2 = 9 Hz and t2 = 4.4
T, fS = 20 Hz.

Figure 4.41: Transfer orbit for f1 = 20 Hz and t1 = 4.4 T. Then, f2 = 9 Hz,
with t2 = 4.4 T and fS = 20 Hz.

Table 4.5: Values of the propeller, time and energy used for every transfer
orbit from a LEO orbit to a lunar orbit with a 10 % reduction in ∆m.

f1[Hz] t1[T] f2[Hz] t2[T] fS[Hz] Hlmin[km] mp[kg] Ep[kWh] Ep[MJ]
5 17.6 7 5 25 1918 0.508 64.692 232.891
10 8.8 5 7 25 4532 0.510 64.895 233.622
20 4.4 9 4.4 20 7177 0.519 66.055 237.798

If the cases studied in section 4.5 are called initial case, we can see from table 4.5 that
the propeller mass is not different from the one from the initial case, but the energy required
and the time are higher in around 10 %. The time in this case and in the initial case it is the
time required to the satellite achieve an altitude of approximately 160k km.

4.7.2. A 10 % Reduction of c

In this section results with a 10 % reduction on the velocity of the mass ejected c are
presented. The velocity c = 1 · 105 m/s is reduced in a 10%, to the value c = 9 · 104 m/s.
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(a) Transfer orbit for f2 = 5 Hz
and t2 = 5 T, fS = 25 Hz.
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(b) Zoom in at the Moon to
transfer orbit for f2 = 5 Hz and
t2 = 5 T, fS = 25 Hz.

(c) Transfer orbit in non rotating
frame for f2 = 5 Hz and t2 = 5
T, fS = 25 Hz.

Figure 4.42: Transfer orbit for f1 = 5 Hz and t1 = 17.6 T. Then, f2 = 5 Hz,
with t2 = 5 T and fS = 25 Hz.

(a) Transfer orbit for f2 = 9 Hz
and t2 = 4.4 T, fS = 20 Hz.
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(b) Zoom in at the Moon to
transfer orbit for f2 = 9 Hz and
t2 = 4.4 T, fS = 20 Hz.

(c) Transfer orbit in non rotating
frame for f2 = 9 Hz and t2 = 4.4
T, fS = 20 Hz.

Figure 4.43: Transfer orbit for f1 = 10 Hz and t1 = 8.8 T. Then, f2 = 9 Hz,
with t2 = 4.4 T and fS = 20 Hz.
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(a) Transfer orbit for f2 = 9 Hz
and t2 = 4.4 T, fS = 15 Hz.
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(b) Zoom in at the Moon to
transfer orbit for f2 = 9 Hz and
t2 = 4.4 T, fS = 15 Hz.

(c) Transfer orbit in non rotating
frame for f2 = 9 Hz and t2 = 4.4
T, fS = 15 Hz.

Figure 4.44: Transfer orbit for f1 = 20 Hz and t1 = 4.4 T. Then, f2 = 9 Hz,
with t2 = 4.4 T and fS = 15 Hz.

Table 4.6: Values of the propeller, time and energy used for three cases of
transfer orbit from a LEO orbit to a lunar orbit with a 10 % reduction in c.

f1[Hz] t1[T] f2[Hz] t2[T] fS[Hz] Hlmin[km] mp[kg] Ep[kWh] Ep[MJ]
5 17.6 5 5 25 4545 0.567 65.025 234.090
10 8.8 9 4.4 20 7915 0.574 65.787 236.833
20 4.4 9 4.4 15 4400 0.589 67.546 243.166

It is interesting to see that in this case both, the propeller mass and the energy requi-
rements, are higher in approximately 10 % than the initial case. The time of flight is also
around 10 % higher than the initial case.

4.7.3. Simultaneous Reduction of a 10 % in ∆m and c

In this section the results are presented with both reductions at the same time, a 10%
reduction in ∆m and a 10% reduction in the velocity c.
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(a) Transfer orbit for f2 = 5 Hz
and t2 = 6 T, fS = 25 Hz.
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(b) Zoom in at the Moon to
transfer orbit for f2 = 5 Hz and
t2 = 6 T, fS = 25 Hz.

(c) Transfer orbit in non rotating
frame for f2 = 5 Hz and t2 = 6
T, fS = 25 Hz.

Figure 4.45: Transfer orbit for f1 = 5 Hz and t1 = 19.6 T. Then, f2 = 5 Hz,
with t2 = 6 T and fS = 25 Hz.

(a) Transfer orbit for f2 = 9 Hz
and t2 = 4.9 T, fS = 20 Hz.
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(b) Zoom in at the Moon to
transfer orbit for f2 = 9 Hz and
t2 = 4.9 T, fS = 20 Hz.

(c) Transfer orbit in non rotating
frame for f2 = 9 Hz and t2 = 4.9
T, fS = 20 Hz.

Figure 4.46: Transfer orbit for f1 = 10 Hz and t1 = 9.8 T. Then, f2 = 9 Hz,
with t2 = 4.9 T and fS = 20 Hz.
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(a) Transfer orbit for f2 = 19 Hz
and t2 = 4.9 T, fS = 25 Hz.
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(b) Zoom in at the Moon to
transfer orbit for f2 = 19 Hz and
t2 = 4.9 T, fS = 25 Hz.

(c) Transfer orbit in non rotating
frame for f2 = 19 Hz and t2 =
4.9 T, fS = 25 Hz.

Figure 4.47: Transfer orbit for f1 = 20 Hz and t1 = 4.9 T. Then, f2 = 19
Hz, with t2 = 4.9 T and fS = 25 Hz.

Table 4.7: Values of the propeller, time and energy used for three cases of
transfer orbit from a LEO orbit to a lunar orbit with a 10 % reduction in
∆m and a 10 % reduction in c.

f1[Hz] t1[T] f2[Hz] t2[T] fS[Hz] Hlmin[km] mp[kg] Ep[kWh] Ep[MJ]
5 19.6 5 6 25 3030 0.568 72.316 260.338
10 9.8 9 4.9 20 17015 0.577 73.490 264.564
20 4.9 19 4.9 25 2523 0.578 73.557 264.805

In this case, the time of flight is 22.5 % higher than the initial case so the satellite can reach
the altitude of approximately 160k km. The propeller mass is approximately 12 % higher than
the initial case and the energy requirements around 24 % higher than the initial case.
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Chapter 5

Conclusions

In this section the conclusions of this work are presented. Also a future work is proposed.
The main conclusions of this work are:

1. It was possible to implement the equations of the Planar and Circular Restricted 3 Body
Problem (PCR3BP), on a jupiter notebook using codes written in Python 3, and solve
them using the fourth order Runge-Kutta method (rk4).

2. The expected results were obtained in the cases of LEO, GEO and LLO orbits, as circular
orbits around the Earth and the Moon, respectively.

3. It was possible to compute transfer orbits from a LEO orbit to a lunar orbit, all of this
in the context of the PCR3BP, for a satellite of standard Cubesat of six units or eight
kilograms of total initial mass.

4. It was found that the satellite needs around one half of a kilogram of propeller to
complete the whole transfer orbit, from a LEO orbit to a HEO orbit, transiting from
the Earth to the Moon and finally decelerating to orbit the Moon.

5. The total time of flight of the satellite from a LEO orbit to a lunar orbit depends on the
applied force. In this case, the thruster fixed its force by choosing an operation frequency.
For frequencies of 5, 10 and 20 Hz, the total time was 16, 8 and 4 periods of time of the
Earth-Moon system (with one period equal to 27.3 days approximately), respectively,
to reach an altitude of 160k km approximately. Then the satellite took between 1 and 2
periods to reach a lunar orbit.

6. Some orbits showed a stationary behaviour, i.e. the satellite remained at the same posi-
tion in the rotating frame of reference, as the Earth and the Moon do. This particular
case of orbit occurred at an altitude of 350k km in every case, with an exception where
it stayed at an altitude of 450k km approximately. These cases are because the thruster
force is equal and opposite to the net gravity forces at that point, leaving the satellite
at rest in the rotating frame.

7. In some cases, the orbit of the satellite reached the surface of the Moon. These kinds of
orbits could be useful if they are considered as possible paths to make a satellite land
on the Moon. These types of orbits must be avoided if the satellite is meant to orbit the
Moon.
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8. Transfer orbits from a geostationary orbit (GEO) were obtained (orbit with an initial
altitude of 36k km). It was found that the propeller mass and energy requirements was
one third of the case of transfer orbit from a LEO orbit to a lunar orbit. Also, the time
of flight of the transfer orbit from LEO to an altitude of approximately 160k km was
reduced to a one quarter of every case of study.

9. The ejected mass ∆m and the velocity of the ejected mass c were reduced in a 10 %,
individually and simultaneously. For the case that ∆m was reduced, the time of flight to
160k km of altitude and the total energy required increased in a 10 %, the mass propeller
was approximately the same as the case without reduction in ∆m. For the case that
c was reduced in a 10 %, the time of flight to 160k km of altitude, the propeller mass
and the total energy requirement increased in a 10 %, approximately. For the case ∆m
and c were reduced in a 10 %, the time of flight to 160k km of altitude increased in
a 22.5 %, the propeller mass increased in a 10 % approximately and the total energy
required increased in a 20 % approximately.

Future Work
A next step of this research would be the extension to the three dimensional case, the

circular restricted three body problem (CR3BP). In general, the satellite will be orbiting
the Earth out of the Earth-Moon plane. To make a better approximation of the orbit of the
satellite will require to consider the z component of the movement of it. Nevertheless, the
PCR3BP can still be a good approach to the satellite orbit in the Earth-Moon system if the
movement of the satellite is restricted to the Earth-Moon plane.

Attitude dynamics must be considered to make a better approximation of the evolution
of the thrust force. In general, the satellite will spin around some axis. To estimate where
the thrust force is aiming, the attitude of the satellite needs to be considered.

In this work it is considered a perturbation aspect of the gravity field of the Earth (J2
factor), but this is not in the case of the Moon. The Moon presents mass concentrations, or
the so called mascons. Mascons make the gravitational field near of the Moon vary such that
it is necessary to consider them to make a better approximation to the orbit of the satellite
when it is in lunar orbit[70].

The thruster can be modeled in more detailed if the electromagnetic aspects of the pul-
sed plasma thruster (PPT) are considered. In general, the PPT can be modeled as an RLC
circuit and the thrust can be computed using the square of the current, the plasma induc-
tance and the geometry of the thruster[71].

Even this work considers some perturbation aspects on the orbit of the satellite like the
atmospheric drag and the Sun gravity, there are other perturbation phenomena that could
be integrated gradually in the model as it becomes more complex. Some of these pertur-
bations could be the Sun radiation pressure (see Curtis, chapter 12.9[25]), Earth radiation
pressure[72], solar wind, among others.
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Anexo A

Miscellaneous Content

This appendix presents some miscellaneous content, mainly audiovisual content from the
YouTube platform.

The Moon.

Landing on the Moon.

Space Race.

The Apollo Mission.

Moon base.

Artemis program.

Artemis Lunar Exploration program overview.

The Three Body Problem.

Planar Circular Restricted Three Body Problem (PCR3BP).
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Anexo B

Derivation of µ factor

To derive the µ factor present in the equations of motion of the Planar and Circular
Restricted 3 Body Problem (PCR3BP), first calculate the center of mass or barycenter of
the Earth-Moon system.

The center of mass is defined as:

RCM = Mere +Mlrl
Me +Ml

(B.1)

Where Me is the mass of Earth, Ml is the mass of the Moon, re is the distance from the
center of mass to the center of the Earth and rl is the distance from the center of mass to
the center of the Moon.

To find a frame of reference centered at the center of mass, it is imposed that RCM = 0.
With this, the equation (B.1) can be reduced to

−Mere = Mlrl (B.2)

Furthermore, the distances can be normalized by the mean distance between the Earth
and the Moon, D. Because now the distance between Earth and the Moon is 1, it can be
noted that if |re|

D
= µ, then |rl|

D
= 1− µ.

The Earth-Moon system can be thought as depicted in figure 2.1, then the quantity re is
negative, thus |re| = −re. With all of this, equation (B.2) reduces to

Meµ = Ml (1− µ) (B.3)

From equation, (B.3) it can be find an expression for the factor µ

µ = Ml

Me +Ml

(B.4)

The factor µ defines or determines the PCR3BP. Every system of two massive bodies has
its own µ factor. For the case of Earth-Moon system µ ≈ 0.012. Table B.1 shows values for
different primaries of the factor µ. Note that by definition, the µ factor is the normalized mass
of the Moon or the normalized of the lighter of the primaries. In consequence, the normalized
mass of the heavier primary, the Earth in the case of interest of this work, is equal to 1− µ,
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Table B.1: Values for the factor µ for different primaries. Extracted from
Frnka 2010[73].

System m1[kg] m2[kg] µ

Earth-Moon 5.9736 · 1024 7.7477 · 1022 1.12151 · 10−2

Titan-Saturn 5.8460 · 1026 1.3452 · 1023 2.3660 · 10−4

Sun-Earth 1.9891 · 1030 5.9736 · 1024 3.0039 · 10−7

Sun-Saturn 1.9891 · 1030 5.8460 · 1026 2.8571 · 10−4

Sun-Jupiter 1.9891 · 1030 1.4313 · 1027 7.1904 · 10−4

as it can be seen below

Me

Me +Ml

= Me +Ml −Ml

Me +Ml

= Me +Ml

Me +Ml

− Ml

Me +Ml

= 1− µ

Thus, the factor µ defines the distance of the center of the Earth to the barycenter and
the normalized mass of the Moon. Equivalently, the factor 1− µ defines the distance of the
center of the Moon to the barycenter and the normalized mass of the Earth.

74



Anexo C

Derivation of the Equations of Motion

For the case of a satellite in PCR3BP, the equation to solve is the next one

mr̈ = F1 + F2 (C.1)

Where m is the mass of the satellite and r̈ is the acceleration of the satellite in the rotating
frame. The forces F1 and F2 are the gravity force between the satellite and the Earth and
the satellite and the Moon, respectively.

F1 = GMem

r3
1

r1

F2 = GMlm

r3
2

r2

(C.2)

Where r1 and r2 are the position vectors of the satellite respective to the center of the
Earth and the center of the Moon, respectively. The acceleration r̈ must be written considering
the relative motion between the inertial frame of reference, which is fixed and centered at
the center of mass or barycenter of the Earth-Moon system, and the non inertial frame of
reference, which is rotating such that the Earth and the Moon appears fixed in this frame of
reference. From Curtis, chapter 1.7 of relative motion [25] is used the next expression:

r̈ = aG + ṅ × r + n × (n × r) + 2n × vrel + arel (C.3)

The term aG is the linear acceleration between frames, which in PCR3BP is zero. The
term n is the angular velocity of the rotating frame and in the case of PCR3BP n = nk̂, with

n =
√
GMeMl

D
is the mean motion of the Earth and/or the Moon around the barycenter (this

factor is set to 1 in the PCR3BP). The mean motion is constant, then ṅ = 0. The remaining
terms: n × (n × r) = −n2

(
x̂i + ŷj

)
, 2n × vrel = 2n

(
x̂i− ŷj

)
and arel = ẍî + ÿĵ + z̈k̂.

Replacing this terms in C.1 and eliminating the mass m results

ẍ− 2nẏ − n2x = −(1− µ)
r3

1
(x+ µ)− µ

r3
2

(x+ µ− 1)

ÿ + 2nẋ− n2y = − µ
r3

1
y − µ

r3
2
y

(C.4)
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These last equations can be written as

ẍ = 2nẏ + ∂Ω
∂x

ÿ = −2nẋ+ ∂Ω
∂y

(C.5)

With Ω = n2 (x2 + y2)
2 + 1− µ

r1
+ µ

r2
as an effective potential.

Setting the value of n = 1 as it is in PCR3BP in equations (C.5), the equations of motion
of the satellite in PCR3BP are obtained and they are the same as presented in equations
(2.1). The effective potential Ω is also obtained as it is presented in equation (2.2).
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Anexo D

Frames of Reference and Initial
Conditions

To derive the initial velocity used in equation (2.5) the force of gravity is considered equal
to a centripetal force

Fg = Fc

GMem

(Re +H0)2 = mv2
0

Re +H0

v0 =
√

GMe

Re +H0

(D.1)

The velocity of a satellite in a LEO orbit can be approximated by this formula, because
this orbit is approximately circular. Please note this expression must be normalized by a
factor 1

nD
to be used in the PCR3BP. Here, n is the mean motion of the Earth-Moon system

and D is the mean distance between Earth and the Moon. For simplicity the notation v0 will
be kept to refer the velocity in equation (D.1) but normalized by 1

nD
.

This velocity is in a frame of reference centered at Earth, then it is necessary to transform
it to a frame of reference centered at the center of mass (so it can be used as an initial velocity
for the PCR3BP).

The expressions (D.2) are proposed by Curtis[25] in chapter 1.7 of relative motion to
transform velocities between inertial and non inertial frame of reference

r = rG + rrel

v = vG + n × rrel + vrel
(D.2)

Where r is the position of the satellite in the inertial frame, rG is the position of the origin
of the non inertial frame of reference respect to the inertial frame and rrel is the position of the
satellite in the non inertial frame of reference, v is the velocity of the satellite in the inertial
frame, vG is the velocity of the origin of the non inertial frame respect to the inertial frame,
n is the angular velocity of the non inertial frame and vrel is the velocity of the satellite in
the non inertial frame of reference. Because the expression for v0 is in a non inertial frame of
reference respect to the barycenter, the equation (D.2) can be applied to use this value of the
initial velocity but in the frame of reference with origin at the center of mass or barycenter.
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cc

Sat

(a) t = 0

dd

(b) t > 0

Figure D.1: Frames of reference centered at Earth G and at the barycenter
B. The arc of circle represents the surface of the Earth. The initial conditions
of the satellite are known in G. At t > 0 the origin of G rotates around the
origin of B with angular velocity equal to n and radius µ. The vectors rG,
rrel and r at t = 0 are slightly off axis x so they can be readable. The
distances are not at scale.

Figure D.1 shows the reference centered at Earth G and the reference centered at the
barycenter B at t = 0 and at t > 0. The initial position can be defined in G as the initial
altitude of the satellite plus the radius of the Earth. Also, the initial velocity can be defined
in G by relation (D.1). Figure D.1 shows the necessary factors to transform initial conditions
from G to B.

rG = −µx̂

rrel =
(
Re +H0

D

)
x̂

vG = −nµŷ
n = 0

vrel = v0ŷ

(D.3)

Using the relations (D.3) with equations (D.2) it is possible to write the transformation
from G to B for the initial conditions as shown below.

r =
(
Re +H0

D
− µ

)
x̂

v = (v0 − nµ) ŷ
(D.4)

Figure D.1 also shows the evolution of the reference G at t > 0. Note the Earth rotates
represented by an arc of a circle, while the distance between the origin of G and B is constant
and equal to µ. To simplify equations consider x0 = Re +H0

D
− µ.
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Sat

(a) t = 0. (b) t > 0.

Figure D.2: Frames of reference centered at the barycenter B and the ro-
tating frame R also centered at the barycenter. The initial position of the
satellite is known at B. The angular velocity of R is n = nk̂.

Now, the same process it is repeated to transform the position and velocity from the
inertial frame B, fixed at the barycenter, to the non inertial frame R, the rotating frame of
reference centered at the barycenter, with the difference that in this case it is found rrel and
vrel, known r and v. From figure D.2 it is found:

rG = 0
r = x0x̂

vG = 0
Ω = nk̂
v = (v0 − nµ) ŷ

(D.5)

In this case rrel = x0x̂, then n × rrel = nx0ŷ. Using the relations in equation (D.5) with
equations (D.2), the initial conditions for the rotating frame in the PCR3BP using LEO
initial conditions are

rrel = x0x̂
vrel = (v0 − nµ− nx0) ŷ

(D.6)

Setting n = 1, the initial conditions for the PCR3BP are found as presented in equation
2.6. Figure D.2 also shows the evolution of the system R, which rotates with angular velocity
n = nk̂.
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Anexo E

Jacobi Constant C Derivation

The Jacobian integral constant C can be derived from equations of motion 2.1, multiplying
the first one of them by ẋ and the second one by ẏ.

ẋẍ = 2ẋẏ + ẋ
∂Ω
∂x

ẏÿ = −2ẋẏ + ẏ
∂Ω
∂y

(E.1)

Adding both equations of E.1 it is obtained

ẋẍ+ ẏÿ = ∂Ω
∂x

ẋ+ ∂Ω
∂y

ẏ (E.2)

This last expression can be rewritten as

d

dt

(
ẋ2 + ẏ2

)
= 2dΩ

dt
(E.3)

Integrating over time (
ẋ2 + ẏ2

)
= 2Ω− C (E.4)

Because v2 ≥ 0, it is true that 2Ω− C ≥ 0, consequently

Ω ≥ C/2 (E.5)

The relation (E.5) restricted the possible positions of the satellite, restricting the possible
orbits that the satellite can transit. Examples of these forbidden zones for the case Earth-
Moon system can be seen in figure 4.14.
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Anexo F

Gravity-gradient Stabilization for a
Cubesat of Six Units

Chapter 10.10 “Gravity-gradient Stabilization” of Curtis[25] develops the theory of gravity
gradient and it can be applied to find which will be the orientation of the satellite as it moves
along the orbit.

Figure F.1: A six units homogenous Cubesat schematic. The satellite will
orbit in the direction of the x axis (the red one). The z axis (the green one)
is the radial position of the center of mass of the satellite.

Figure F.1 shows an schematic of the cubesat of six units. For an homogeneus parallele-
piped, the principal moments of inertia are Iii = m

12 (j2 + k2), where i, j, k are a triad, so if
i = x, then j = y and k = z, and so on. The mass of the body is represented by the factor
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m. The principal moments of inertia for the parallelepiped will be:

A = 8
12
(
12 + 32

)
= 2

310

B = 8
12
(
22 + 32

)
= 2

313

C = 8
12
(
22 + 12

)
= 2

35

(F.1)

In this case, the result of equation (F.1) is in arbitrary units, with the mass in kilograms
and the distances in cubesat units length (1 unit = 10 cm). To determine if the body is a
minor-axis spinner

Ipitch = C Iyaw = A Iroll = B

If Iroll > Iyaw, then the satellite will be stable in pitch, as it is in this case

kY = Ipitch − Iroll

Iyaw
= 5− 13

10 = −0.8 kR = Ipitch − Iyaw

Iroll
= 5− 10

13 ≈ −0.4

Because kY kR = 3.2 > 0 one of the requirements is met. Now it is computed

1 + 3kR + kY kR − 4
√
kY kR ≈ 1− 1.2 + 3.2− 7.2 = −4.2 < 0

Because this last expression is negative, the satellite will not be a minor-axis spinner.
For the case of major-axis spinner

Ipitch = B = 2
313 Iyaw = C = 2

35 Iroll = A = 2
310

Because Iroll > Iyaw the satellite will be stable in pitch.

kY = Ipitch − Iroll

Iyaw
= 13− 10

5 = 0.6 kR = Ipitch − Iyaw

Iroll
= 13− 5

10 = 0.8

Because kY kR ≈ 0.5 > 0 the first requirement is met. Now it is computed

1 + 3kR + kY kR − 4
√
kY kR ≈ 1 + 2.4 + 0.5− 2.8 = 1.1 > 0

Because the second requirement is met, the satellite will be oriented with its minor axis along
the radial from Earth’s center, the major axis aligned with the normal of the orbit and its
intermediate axis aligned with the direction of movement. Consequently, the area for the
drag will be the area of 3 units of Cubesat, A = 3 · 10cm·10cm. Please note this area my be
normalized by the factor D2 to be used in the PCR3BP equations of motion.
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Anexo G

Derivation of Factor Associated to J2

To consider the effect of the oblateness of the Earth on its potential gravity, the function
Φ (r1, φ) is added to the regular expression of the Earth gravity potential.

Φ (r1, φ) = 1− µ
r1

∞∑
k=2

Jk

(
re
r1

)k
Pk (cosφ) (G.1)

The function Pk are the Legendre’s polynomials and can be computed by Rodrigues’
formula.

Pk(x) = 1
2!2k

dk

dxk

(
x2 − 1

)k
(G.2)

For k = 2, P2(x) = 1
2(3x2 − 1). Considering that x = cosφ and φ = π

2 , then cos π
2 = 1 =⇒

x = 0. Then P2(0) = −1
2 . Then, the correction to the potential until the first term can be

written as
Φ (r1, φ) = −1

2 (1− µ) r2
eJ2

3 cos2 φ− 1
r3

1
(G.3)

Now, the acceleration will be given by -∇Φ

−r̂1
∂Φ
∂r1

= −3
2 (1− µ) r2

eJ2
3 cos2 φ− 1

r4
1

r̂1

−φ̂ 1
r1

∂Φ
∂φ

= 1
2 (1− µ) r2

eJ2
6 cosφ(− sinφ)

r4
1

φ̂

(G.4)

Because in PCR3BP φ = π
2 , the angular component will not contribute to the perturbation

(because cos π
2 = 0). To determine the x and y components of ∂Φ

∂r1
,it necessary to compute

x̂ · r̂1
∂Φ
∂r1

and ŷ · r̂1
∂Φ
∂r1

, respectively. Note

x̂ · r̂1 = x+ µ

r1
ŷ · r̂1 = y

r1

Considering this, the expressions for the perturbations due to J2 factor by x and y com-
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ponents are

−x̂ · r̂1
∂Φ
∂r1

∣∣∣∣∣
φ=π

2

= −3
2J2

(
re
r1

)2
(1− µ) x+ µ

r3
1

−ŷ · r̂1
∂Φ
∂r1

∣∣∣∣∣
φ=π

2

= −3
2J2

(
re
r1

)2
(1− µ) y

r3
1

(G.5)

The result in equations (G.5) is identical to the ideal case (with no perturbations) except
for the factor 3

2J2
(
re
r1

)2
, which appears in both components. With this, it can be concluded

that the change in Earth gravity potential due to the oblateness of Earth in function of the
J2 factor is as shown below in equation G.6

−(1− µ)(x+ µ)
r3

1
→ −(1− µ)(x+ µ)

r3
1

[
1 + 3

2J2

(
re
r1

)2
]

−(1− µ) y
r3

1
→ −(1− µ) y

r3
1

[
1 + 3

2J2

(
re
r1

)2
] (G.6)

As it is presented in equation (2.16).
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Anexo H

Zeng’s Method to Compute ∆m

To compute the factor ∆m proposed by Zeng we use the expression below

∆m = MCF2
γmEgasγE
ECC

Where MCF2 = 50 gr/mol is the relative molecular weight of CF2, Egas is the energy that
actual ablates the surface of the PTFE, which is usually between 3 % and 4 % of E0, being
E0 the energy at the capacitor, ECC is the chemical bond energy of the carbon-carbon bonds
and is equal to 340 kJ/mol and γE is the ratio of energy to successful generates the ejected
mass and it is defined as 1/2.

The factor γm is the ratio of the ejected mass over the total mass able to be ablated and can
be defined as γm = n

βN
, where n are the ejected molecules of PTFE, N is the total number of

molecules of PTFE able to be ablated and β is the fracture density. The parameters associated
to γm are not specified at Zeng’s work, but using the numbers n = 5200, N = 10000 and
β = 1/2, then γm = 1.04. With this choice of numbers, the theoretical results found at Zeng’s
work can be obtained with a good approximation.

Given the energy at the capacitor as E0 = 1
2CV

2, where C is the capacitance of the
capacitor, we can compute the results of Zeng’s work considering they used a capacitor with
C = 2µF. Table H.1 shows the results at Zeng’s work. The final row of table H.1 is the ejected
mass here estimated for Zeng’s work, the result is very similar to the values at Zeng’s work.

Table H.1: Comparison between Zeng’s results and estimation.

Parameter Case 1 Case 2 Case 3 Case 4
Discharge voltage [kV] 0.75 1.06 1.30 1.50
Discharge energy [mJ] 560 1120 1690 2250

Ejected mass from Zeng’s work[61] [µg] 1.29-1.73 2.56-3.44 3.87-5.15 5.19-6.83
Ejected mass, estimation [µg] 1.29-1.72 2.58-3.44 3.88-5.17 5.16-6.88

With these parameters, the graph at figure 3.5 in section 3.4 can be obtained. For more
details the reader is refered to Zeng’s work[61].
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Anexo I

Additional Results of Section 4.7

In this appendix, additional results of section 4 are presented.

(a) Transfer orbit for f2 = 7 Hz
and t2 = 5 T, fS = 15 Hz.
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y
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(b) Zoom in at the Moon to
transfer orbit for f2 = 7 Hz and
t2 = 5 T, fS = 15 Hz.

(c) Transfer orbit in non rotating
frame for f2 = 7 Hz and t2 = 5
T, fS = 15 Hz.

Figure I.1: Transfer orbit for f1 = 5 Hz and t1 = 17.6 T. Then, f2 = 7 Hz,
with t2 = 5 T and fS = 15 Hz. The factor ∆m has been reduced in a 10 %.

(a) Transfer orbit for f2 = 7 Hz
and t2 = 5 T, fS = 15 Hz.
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(b) Zoom in at the Moon to
transfer orbit for f2 = 7 Hz and
t2 = 5 T, fS = 15 Hz.

(c) Transfer orbit in non rotating
frame for f2 = 7 Hz and t2 = 5
T, fS = 15 Hz.

Figure I.2: Transfer orbit for f1 = 5 Hz and t1 = 17.6 T. Then, f2 = 7 Hz,
with t2 = 5 T and fS = 20 Hz. The factor ∆m has been reduced in a 10 %.
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(a) Transfer orbit for f2 = 5 Hz
and t2 = 5 T, fS = 20 Hz.
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(b) Zoom in at the Moon to
transfer orbit for f2 = 5 Hz and
t2 = 5 T, fS = 20 Hz.

(c) Transfer orbit in non rotating
frame for f2 = 5 Hz and t2 = 5
T, fS = 20 Hz.

Figure I.3: Transfer orbit for f1 = 5 Hz and t1 = 17.6 T. Then, f2 = 5 Hz,
with t2 = 5 T and fS = 20 Hz. The factor c has been reduced in a 10 %.

(a) Transfer orbit for f2 = 8 Hz
and t2 = 0.960 T, fS = 15 Hz.
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(b) Zoom in at the Moon to
transfer orbit for f2 = 8 Hz and
t2 = 0.960 T, fS = 15 Hz.

(c) Transfer orbit in non rotating
frame for f2 = 8 Hz and t2 =
0.960 T, fS = 15 Hz.

Figure I.4: Landing orbit for f1 = 20 Hz and t1 = 4.4 T. Then, f2 = 8 Hz,
with t2 = 0.960 T and fS = 15 Hz. The factor c has been reduced in a 10 %.
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(a) Transfer orbit for f2 = 9 Hz
and t2 = 4.4 T, fS = 25 Hz.
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(b) Zoom in at the Moon to
transfer orbit for f2 = 9 Hz and
t2 = 4.4 T, fS = 25 Hz.

(c) Transfer orbit in non rotating
frame for f2 = 9 Hz and t2 = 4.4
T, fS = 25 Hz.

Figure I.5: Transfer orbit for f1 = 10 Hz and t1 = 8.8 T. Then, f2 = 9 Hz,
with t2 = 4.4 T and fS = 25 Hz. The factor c has been reduced in a 10 %.

(a) Transfer orbit for f2 = 13 Hz
and t2 = 4.4 T, fS = 25 Hz.
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(b) Zoom in at the Moon to
transfer orbit for f2 = 13 Hz and
t2 = 4.4 T, fS = 25 Hz.

(c) Transfer orbit in non rotating
frame for f2 = 13 Hz and t2 =
4.4 T, fS = 25 Hz.

Figure I.6: Transfer orbit for f1 = 20 Hz and t1 = 4.4 T. Then, f2 = 13 Hz,
with t2 = 4.4 T and fS = 25 Hz. The factor c has been reduced in a 10 %.

88



(a) Transfer orbit for f2 = 6 Hz
and t2 = 4.9 T, fS = 15 Hz.
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(b) Zoom in at the Moon to
transfer orbit for f2 = 6 Hz and
t2 = 4.9 T, fS = 15 Hz.

(c) Transfer orbit in non rotating
frame for f2 = 6 Hz and t2 = 4.9
T, fS = 15 Hz.

Figure I.7: Transfer orbit for f1 = 20 Hz and t1 = 4.9 T. Then, f2 = 6 Hz,
with t2 = 4.9 T and fS = 15 Hz. Both, The factor ∆m and the factor c,
have been reduced in a 10 %.

(a) Transfer orbit for f2 = 17 Hz
and t2 = 4.9 T, fS = 15 Hz.
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(b) Zoom in at the Moon to
transfer orbit for f2 = 17 Hz and
t2 = 4.9 T, fS = 15 Hz.

(c) Transfer orbit in non rotating
frame for f2 = 17 Hz and t2 =
4.9 T, fS = 15 Hz.

Figure I.8: Transfer orbit for f1 = 20 Hz and t1 = 4.9 T. Then, f2 = 17 Hz,
with t2 = 4.9 T and fS = 15 Hz. Both, The factor ∆m and the factor c,
have been reduced in a 10 %.
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(a) Transfer orbit for f2 = 18 Hz
and t2 = 4.9 T, fS = 20 Hz.
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(b) Zoom in at the Moon to
transfer orbit for f2 = 18 Hz and
t2 = 4.9 T, fS = 20 Hz.

(c) Transfer orbit in non rotating
frame for f2 = 18 Hz and t2 =
4.9 T, fS = 20 Hz.

Figure I.9: Transfer orbit for f1 = 20 Hz and t1 = 4.9 T. Then, f2 = 18 Hz,
with t2 = 4.9 T and fS = 20 Hz. Both, The factor ∆m and the factor c,
have been reduced in a 10 %.
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Anexo J

The Fourth Order Runge-Kutta
Method

The fourth order Runge-Kutta method (rk4) is a numerical method to integrate differential
equations. It is widely used because its simplicity and its high precision. In equation (J.1)
the rk4 solves systems of the form of equation (J.1).

ẋ = f(t,x) (J.1)

Given an initial state x0 and an initial time t0, rk4 computes as shown below.

k1 = f(t0,x0)
k2 = f(t0 + h/2,x0 + hk1/2)
k3 = f(t0 + h/2,x0 + hk2/2)
k4 = f(t0 + h,x0 + hk3)

(J.2)

x = x0 + h

6 (k1 + 2(k2 + k3) + k4) (J.3)

Where x is the next vector state and h is the time step. In the next iteration x is used as
x0 and t0 + h as t0. This is done as long as required by the number of iterations.
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Anexo K

Code

Python modules used

1 import numpy as np
2 import pandas as pd
3 import matplotlib.pyplot as plt
4 from matplotlib.pyplot import figure
5 import math
6 import time
7 import os #to pause with pause()
8 import winsound

The function densityParams(r1) receives the position of the satellite respects to Earth (r1)
and returns the value of the constants ρ0, h0 and H. These values are used to define the value
of the atmospheric density.

1 def densityParams(r1):
2 """Return the constant parameters rho0, h0 and H for density function"""
3

4 global densityCounter
5 h = (r1 - r_e)
6 flag = True
7 while(flag):
8 if h > h0_list.iloc[-1]:
9 rho0, h0, H = rh0_list.iloc[-1], h, H_list.iloc[-1] #for the case of no molecular

↪→ drag
10 flag = False
11 elif (h <= h0_list.iloc[densityCounter] and h > h0_list.iloc[densityCounter-1]):
12 rho0, h0, H = rho0_list.iloc[densityCounter-1], h0_list.iloc[densityCounter-1],

↪→ H_list.iloc[densityCounter-1]
13 flag = False
14 elif dh >= 0:
15 densityCounter +=1
16 #print("densityCounter:", densityCounter, " and h = ", h)
17 elif dh < 0:
18 densityCounter -=1
19 #print("density Counter: ", densityCounter, " and h = ", h)
20 return rho0, h0, H
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The function rk4(x, y, vx, vy, m, t) receives the the position, velocity and mass of the
satellite plus the current time. It returns the new or final position, velocity and mass of the
satellite after one step.

1 def rk4(x, y, vx, vy, m, t):
2 """Return the position (x, y), the velocity (vx,vy) and the mass of the satellite given

↪→ initial values, step time and mu in
3 the context of the Planar Circular Restricted 3 Body Problem (PCR3BP)"""
4

5 xAux = x
6 yAux = y
7 vxAux = vx
8 vyAux = vy
9 mAux = m

10 tAux = t
11

12 r1Aux = ((xAux+mu)**2 + yAux**2)**0.5
13 r2Aux = ((xAux+mu-1)**2 + yAux**2)**0.5
14 vAux = (vxAux**2+vyAux**2)**0.5
15 hAux = (r1Aux - r_e)
16 rhoAux = rho0 * e**(-(hAux-h0)/H)
17 vDragAux = ((vxAux - yAux)**2 + (vyAux + xAux)**2)**0.5
18 oSAux = -wS*tAux + oS0
19 xSAux = aS*np.cos(oSAux)
20 ySAux = aS*np.sin(oSAux)
21 rSAux = ((xAux-xSAux)**2 + (yAux-ySAux)**2)**0.5
22

23 k11 = vxAux
24 k12 = vyAux
25 k13 = 2*vyAux + xAux - (1-mu)*(xAux+mu)/r1Aux**3*(1+3*J2/2*(r_e/r1Aux)**2) -

↪→ mu*(xAux+mu-1)/r2Aux**3 + Th/m*vxAux/vAux - k/m*rhoAux*vDragAux*(
↪→ vxAux-yAux) - mS*(xAux-xSAux)/rSAux**3 - mS*xSAux/aS**3

26 k14 = -2*vxAux + yAux - (1-mu)*yAux/r1Aux**3*(1+3*J2/2*(r_e/r1Aux)**2) - mu*
↪→ yAux/r2Aux**3 + Th/m*vyAux/vAux - k/m*rhoAux*vDragAux*(vyAux + xAux) -
↪→ mS*(yAux-ySAux)/rSAux**3 - mS*ySAux/aS**3

27 k15 = -NTh * dm * f
28

29

30

31 xAux = x + dt/2 * k11
32 yAux = y + dt/2 * k12
33 vxAux = vx + dt/2 * k13
34 vyAux = vy + dt/2 * k14
35 mAux = m + dt/2 * k15
36 tAux = t + dt/2
37

38 r1Aux = ((xAux+mu)**2 + yAux**2)**0.5
39 r2Aux = ((xAux+mu-1)**2 + yAux**2)**0.5
40 vAux = (vxAux**2+vyAux**2)**0.5
41 hAux = (r1Aux - r_e)
42 rhoAux = rho0 * e**(-(hAux-h0)/H)
43 vDragAux = ((vxAux - yAux)**2 + (vyAux + xAux)**2)**0.5
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44 oSAux = -wS*tAux + oS0
45 xSAux = aS*np.cos(oSAux)
46 ySAux = aS*np.sin(oSAux)
47 rSAux = ((xAux-xSAux)**2 + (yAux-ySAux)**2)**0.5
48

49 k21 = vxAux
50 k22 = vyAux
51 k23 = 2*vyAux + xAux - (1-mu)*(xAux+mu)/r1Aux**3*(1+3*J2/2*(r_e/r1Aux)**2) -

↪→ mu*(xAux+mu-1)/r2Aux**3 + Th/m*vxAux/vAux - k/m*rhoAux*vDragAux*(
↪→ vxAux-yAux) - mS*(xAux-xSAux)/rSAux**3 - mS*xSAux/aS**3

52 k24 = -2*vxAux + yAux - (1-mu)*yAux/r1Aux**3*(1+3*J2/2*(r_e/r1Aux)**2) - mu*
↪→ yAux/r2Aux**3 + Th/m*vyAux/vAux - k/m*rhoAux*vDragAux*(vyAux + xAux) -
↪→ mS*(yAux-ySAux)/rSAux**3 - mS*ySAux/aS**3

53 k25 = -NTh * dm * f
54

55

56

57 xAux = x + dt/2 * k21
58 yAux = y + dt/2 * k22
59 vxAux = vx + dt/2 * k23
60 vyAux = vy + dt/2 * k24
61 mAux = m + dt/2 * k25
62 tAux = t + dt/2
63

64 r1Aux = ((xAux+mu)**2 + yAux**2)**0.5
65 r2Aux = ((xAux+mu-1)**2 + yAux**2)**0.5
66 vAux = (vxAux**2+vyAux**2)**0.5
67 hAux = (r1Aux - r_e)
68 rhoAux = rho0 * e**(-(hAux-h0)/H)
69 vDragAux = ((vxAux - yAux)**2 + (vyAux + xAux)**2)**0.5
70 oSAux = -wS*tAux + oS0
71 xSAux = aS*np.cos(oSAux)
72 ySAux = aS*np.sin(oSAux)
73 rSAux = ((xAux-xSAux)**2 + (yAux-ySAux)**2)**0.5
74

75 k31 = vxAux
76 k32 = vyAux
77 k33 = 2*vyAux + xAux - (1-mu)*(xAux+mu)/r1Aux**3*(1+3*J2/2*(r_e/r1Aux)**2) -

↪→ mu*(xAux+mu-1)/r2Aux**3 + Th/m*vxAux/vAux - k/m*rhoAux*vDragAux*(
↪→ vxAux-yAux) - mS*(xAux-xSAux)/rSAux**3 - mS*xSAux/aS**3

78 k34 = -2*vxAux + yAux - (1-mu)*yAux/r1Aux**3*(1+3*J2/2*(r_e/r1Aux)**2) - mu*
↪→ yAux/r2Aux**3 + Th/m*vyAux/vAux - k/m*rhoAux*vDragAux*(vyAux + xAux) -
↪→ mS*(yAux-ySAux)/rSAux**3 - mS*ySAux/aS**3

79 k35 = -NTh * dm * f
80

81

82

83 xAux = x + dt * k31
84 yAux = y + dt * k32
85 vxAux = vx + dt * k33
86 vyAux = vy + dt * k34
87 mAux = m + dt * k35
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88 tAux = t + dt
89

90 r1Aux = ((xAux+mu)**2 + yAux**2)**0.5
91 r2Aux = ((xAux+mu-1)**2 + yAux**2)**0.5
92 vAux = (vxAux**2+vyAux**2)**0.5
93 hAux = (r1Aux - r_e)
94 rhoAux = rho0 * e**(-(hAux-h0)/H)
95 vDragAux = ((vxAux - yAux)**2 + (vyAux + xAux)**2)**0.5
96 oSAux = -wS*tAux + oS0
97 xSAux = aS*np.cos(oSAux)
98 ySAux = aS*np.sin(oSAux)
99 rSAux = ((xAux-xSAux)**2 + (yAux-ySAux)**2)**0.5

100

101 k41 = vxAux
102 k42 = vyAux
103 k43 = 2*vyAux + xAux - (1-mu)*(xAux+mu)/r1Aux**3*(1+3*J2/2*(r_e/r1Aux)**2) -

↪→ mu*(xAux+mu-1)/r2Aux**3 + Th/m*vxAux/vAux - k/m*rhoAux*vDragAux*(
↪→ vxAux-yAux) - mS*(xAux-xSAux)/rSAux**3 - mS*xSAux/aS**3

104 k44 = -2*vxAux + yAux - (1-mu)*yAux/r1Aux**3*(1+3*J2/2*(r_e/r1Aux)**2) - mu*
↪→ yAux/r2Aux**3 + Th/m*vyAux/vAux - k/m*rhoAux*vDragAux*(vyAux + xAux) -
↪→ mS*(yAux-ySAux)/rSAux**3 - mS*ySAux/aS**3

105 k45 = -NTh * dm * f
106

107

108

109 x += dt/6 * (k11+2*(k21+k31)+k41)
110 y += dt/6 * (k12+2*(k22+k32)+k42)
111 vx += dt/6 * (k13+2*(k23+k33)+k43)
112 vy += dt/6 * (k14+2*(k24+k34)+k44)
113 m += dt/6 * (k15+2*(k25+k35)+k45)
114

115 return x, y, vx, vy, m

The function thruster(f, fStop) receives the operation frequency and the stop frequency of
the thruster.

1 def thruster(f, fStop):
2

3 Th = NTh * c * dm * f
4 if C[j] <= Cmin and x[j]<=la1:# and r1[j] <= la1:
5 Th = 0
6 if x[j]>la1:
7 Th = (-1) * NTh * c * dm * fStop
8 if C[j] >= Cstop and x[j]>la1:# and r1[j] <= la1:
9 Th = 0

10 return Th

This block defines constants associated to the PCR3BP.

1 ### GLOBAL CONSTANTS ###
2 # All constants are measured in MKS units
3
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4 G = 6.6743e-11 #Newton’s constant
5 M_e = 5.972e24 # Earth mass
6 R_e = 6.371e6 # Earth radius
7 M_l = 7.342e22 # Moon mass
8 R_l = 1.7371e6 # Moon radius
9 D = 3.84402e8 # Earth-Moon distance (from their centers)

10 H_LEO = 5e5 # altitude LEO orbit
11 H_GEO = 3.6e7 # Geosyncronus altitute
12 m0 = 8 # initial satellite mass
13 de = 0.5 * 5e-9 * (5e3)**2 # Energy per shoot in Joules for a Capacitor of 5nF and 5kV
14 pi = np.pi
15 e = np.exp(1)
16 #R = 8.31446261815324 #Gas constant
17 dm = 1e-10 # Ejected mass per shoot of the thruster in kg at 1.5kV
18 c = 1e5
19 NTh = 4 # Number of Thrusters used per shoot
20 Cmin = 3.015
21 Cstop = 3.189
22 J2 = 1.0826e-3
23 mS = 328900.54 # dimensionless Sun mass in E-M units Koon 2011
24 aS = 388.81114 # dimensionless Sun distance from barycenter in E-M units, Koon

↪→ 2011
25 wS = 0.925195985520347 # dimensionless Sun angular velocity in E-M units, Koon 2011
26 oS0 = 0 # Sun initial position
27

28 ### Factors to make variables dimensionless and derived constants
29

30 M = M_e + M_l
31 n = (G*M/D**3)**0.5 # Rajeev, Advanced Mechanics, p.95
32 mu = M_l/M # Lunar mass relative to the total mass
33 T = 2*pi/n # Period E-M system in seconds
34 f0 = 1/T # Frequency E-M system in Hz, it is used to normalize the frequency

↪→ of the thruster
35 Tdays = T/3600/24 # Period E-M system in days
36 dt = 1e-4 # dimensionless step time, equivalent to 235.7 seconds, approximately
37 r_e = R_e/D
38 r_l = R_l/D
39 m0 /= M
40 dm /= M
41 c /= (n*D)

This block defines the constants associated to the atmospheric drag.

1 ### Drag Constants
2

3 C_D = 2.2 # Drag coefficient
4 A = 3 * 0.1 * 0.1 / D**2 # Six units cubesat face area of 3 units, dimless area
5 k = 0.5 * A * C_D # Drag constant times mass, IMPORTANT: this numeber must

↪→ be divided by the mass in the equations.
6

7 meanDensityFile = pd.read_csv(’density5.csv’)
8 h0_list = meanDensityFile.iloc[:, 0].astype(’float’) * 1e3/D
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9 #temp = meanDensityFile.iloc[1:, 1].astype(’float’) # temperature
10 #MolWt = meanDensityFile.iloc[1:, 4].astype(’float’) # Molecular Weight in kg/

↪→ kmol
11 #g = G*M_e/(R_e+h0_list)**2 # gravity at h0
12

13 #H_list = (R * temp / (MolWt * g))*1e3/D # dimless scale height
14 #h0_list = h0_list * 1e3/D # dimless h0
15 rho0_list = meanDensityFile.iloc[:, 3].astype(’float’) *D**3/M # dimless density, initial

↪→ density per altitude segment
16 H_list = meanDensityFile.iloc[:, 4].astype(’float’) * 1e3/D
17 densityCounter0 = 25

This block defines the initial conditions of the PCR3BP and initializes all the vectors.

1 ### Initial Conditions ###
2 #Computing initial conditions using Ugai2010
3 label = ’LEO’
4 H0 = H_LEO
5

6 ###Nondimensional Initial conditions around earth
7 v0 = (G * M_e / (R_e + H0))**0.5 / (n*D)
8 x0 = (R_e + H0) / D - mu
9 vy0 = v0 - mu - x0 # this converts v0 from GEO to barycenter vy0

10

11 ### Null initial conditions
12 y0, vx0 = 0, 0
13 m0 = 8/M
14 oS0 = 0
15 flag = False
16 #Initial condition from a final point, this overwrite the Null initial conditions
17

18 #x0, y0, vx0, vy0, m0, oS0, t0, flag = xf, yf, vxf, vyf, mf, oSf, tf, True
19

20 frac = 0.25 #1-0.175 #/number of Moon periods, use a number/Tdays to count days, eg: for
↪→ 3 days of orbits use 3/Tdays

21 N = int(frac*2*pi/dt)
22

23 x, y = np.zeros(N), np.zeros(N)
24 x[0], y[0] = x0, y0
25

26 vx, vy = np.zeros(N), np.zeros(N)
27 vx[0], vy[0] = vx0, vy0
28

29 m = np.zeros(N)
30 m[0] = m0
31

32

33 r01, r02 = ((x0 + mu)**2 + y0**2)**0.5, ((x0 + mu - 1)**2 + y0**2)**0.5
34 r1, r2 = np.zeros(N), np.zeros(N)
35 r1[0], r2[0] = r01, r02
36

37
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38 K0 = 0.5 * (vx0**2 + vy0**2)
39 U0 = - (1-mu)/r01 - mu/r02
40 K, U = np.zeros(N), np.zeros(N)
41 K[0], U[0] = K0, U0
42

43 t, E = np.zeros(N), np.zeros(N)
44 t0, E0 = 0, K0 + U0
45 t[0], E[0] = t0, E0
46

47 Omega0 = 0.5 * (x0**2 + y0**2) - U0
48 Omega = np.zeros(N)
49 Omega[0] = Omega0
50

51 C = np.zeros(N)
52 C0 = 2 * (Omega0 - K0)
53 C[0] = C0
54

55 Dm, DE = np.zeros(N), np.zeros(N)
56

57 densityCounter = densityCounter0
58 rho0, h0, H = rho0_list[densityCounter], h0_list[densityCounter], H_list[densityCounter]
59

60 drag = np.zeros(N)
61 drag[0]=k/m0*rho0*((vx0-y0)**2+(vy0+x0)**2)*e**(-(r01-r_e-h0)/H)
62 C0

All this code is executed twice. Usually, the first running computes the orbit until a
high orbit. The second running computes the transfer orbit and the orbit around the Moon.
Considering this, the next block allows to concatenate the position vector obtained in the
first and the second running to present an only one total orbit later.

1 ### Run this block only in the fisrt loop
2 if flag:
3 x=np.concatenate((X,x[1:]))
4 y=np.concatenate((Y,y[1:]))
5 tNRF = np.concatenate((tNRF,[ti+tf for ti in t[1:]]))
6 else:
7 X=x
8 Y=y
9 tNRF = t

This block plots the orbit of the satellite close to the Moon. This allows to see the orbit
near the Moon. The variable name“ it is used only for printing purposes.

1 Moon = plt.Circle((1-mu, 0), R_l/D, color=’silver’)
2 fig, ax = plt.subplots(figsize=(10, 10))
3 ax.add_artist(Moon)
4 plt.plot(x, y, color = ’k’, linestyle = ’-’)
5 #plt.plot(x[260000:300000], y[260000:300000])
6 plt.plot(la1, 0, color=’r’, marker=’+’)
7 plt.plot(la2, 0, ’r+’)
8 plt.xlim(la1-mu,la2+mu)
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9 plt.ylim(-(la2-la1)/2-mu,(la2-la1)/2+mu)
10 plt.xlabel(’x’,size=20)
11 plt.ylabel(’y’, size=20)
12 plt.xticks(fontsize=20, rotation=0)
13 plt.yticks(fontsize=20, rotation=0)
14 print("Minimun distance to moon surface: ", int((min(r2)*D-R_l)*1e-3), "km")
15

16 name=’f5T16’ + ’f’ + str(int(f*f0)) + ’T’ + str(frac) + ’fS’ + str(int(fStop*f0))
17 name=’f’ + str(int(f*f0)) + ’T’ + str(frac)
18 name
19 #plt.savefig(’transferOrbits4\’ + name + ’Zoom.png’)
20 #plt.savefig(’transferOrbits4\’ + name + ’Zoom.eps’)

This block plots the orbit of the PCR3BP. The red crosses represent the 5 Euler-Lagrange
points.

1 Earth = plt.Circle((-mu, 0), R_e/D, color=’blue’)
2 Moon = plt.Circle((1-mu, 0), R_l/D, color=’silver’)
3 fig, ax = plt.subplots(figsize=(10, 10))
4 ax.add_artist(Earth)
5 ax.add_artist(Moon)
6

7 #plt.plot(-mu, 0, ’bo’)
8 #plt.plot(1-mu, 0, ’k.’)
9 plt.plot(la1, 0, color=’r’, marker=’+’)

10 plt.plot(la2, 0, ’r+’)
11 plt.plot(la3, 0, ’r+’)
12 plt.plot(la4[0], la4[1], ’r+’)
13 plt.plot(la5[0], la5[1], ’r+’)
14 #plt.grid()
15 #plt.title(’H$_0$ = {H_0} km, v$_0$ = {v_0:1.1f} km/s’.format(H_0=int(1e-3*H0), v_0=

↪→ v0*n*D*1e-3), size=30)
16 plt.xlabel(’x’,size=20)
17 plt.ylabel(’y’, size=20)
18 plt.axis(’equal’)
19 plt.xticks(fontsize=20, rotation=0)
20 plt.yticks(fontsize=20, rotation=0)
21 plt.plot(x, y, color = ’k’, linestyle = ’-’)
22 #plt.xlim(-mu-0.1,-mu+0.1)
23 #plt.ylim(-0.12,0.12)
24 #plt.plot(x[0:500], y[0:500])
25 #plt.plot(x[0:130000], y[0:130000], color = ’k’, linestyle = ’-’)
26 #plt.plot(x[0:285446], y[0:285446])
27 lapse = N*dt/n/3600/24
28 print("lapse in days = ", lapse)
29

30 #plt.savefig(’transferOrbits4\Hmax\’ + name + ’.png’)
31 #plt.savefig(’transferOrbits4\Hmax\eps\’ + name + ’.eps’)

The next block is used to plot the value of the constant Jacobi C in function of time.

1 #plt.grid()
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2 fig = plt.figure(figsize=(16,9))
3 plt.grid()
4 plt.title(’Jacobi Constant $C$’, size=25)
5 plt.xticks(fontsize=20, rotation=0)
6 plt.yticks(fontsize=20, rotation=0)
7 plt.xlabel(’Time [day]’,size=20)
8 plt.ylabel(’Constant $C$ [au]’, size=20)
9 plt.xticks(fontsize=20, rotation=0)

10 plt.yticks(fontsize=20, rotation=0)
11 plt.plot(t/n/3600/24, C)
12 #plt.ylim(C0*.99995,C0*1.00005)
13 #plt.savefig(’transferOrbits\jacobiC\ ’ + name + ’JacobiC.png’)
14 #plt.savefig(’transferOrbits\jacobiC\ ’ + name + ’JacobiC.eps’)
15 print("Minimum value of Cmin = ", min(C), "and final value of Cfinal = ", C[-1])

This block plots the high reached by the satellite in function of time.

1 plt.figure(figsize=(12,9))
2 plt.plot(t/n/3600/24 ,(r1*D-R_e)*1e-6)
3 plt.title(’Height v/s Time’, size=25)
4 plt.xlabel(’Time [day]’,size=20)
5 plt.ylabel(’Height [$k$ km]’, size=20)
6 plt.xticks(fontsize=20, rotation=0)
7 plt.yticks(fontsize=20, rotation=0)
8 print(’max height:’, max((r1*D-R_e)*1e-3))
9

10 #plt.savefig(’transferOrbits4\Height_ ’ + name + ’.png’)
11 #plt.savefig(’transferOrbits4\Height_ ’ + name + ’.eps’)

This block plots the high reached by the satellite respect to the Moon

1 plt.figure(figsize=(12,9))
2 plt.plot(t/n/3600/24,(r2-r_l)*D*1e-6)
3 plt.title(’Height Moon v/s Time’, size=25)
4 plt.xlabel(’Time [day]’,size=20)
5 plt.ylabel(’Height [$k$ km]’, size=20)
6 plt.xticks(fontsize=20, rotation=0)
7 plt.yticks(fontsize=20, rotation=0)
8 print("distance from the surface of the Moon to the sat with a minimun: r2_{Min}-r_l = ",

↪→ int(min(r2*D*1e-3)-R_l*1e-3), ’km’)
9 #plt.savefig(’HighMoon’+ Ti + ’T’ + Tf + ’.png’)

10 #plt.savefig(’HighMoon’+ Ti + ’T’ + Tf + ’.eps’)

This line of code simply make a sound to let know the computing has finished.

1 # Play Windows exit sound.
2 winsound.PlaySound("SystemExit", winsound.SND_ALIAS)

This line of code defines the new initial condition for the second running, this line of code
has to be ran in the first running and only in the first running of the whole code.

1 ###Defining new initial condition in function of the last point obtained in the first
↪→ computing
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2 xf, yf, vxf, vyf, mf, oSf, tf= x[-1], y[-1], vx[-1], vy[-1], m[-1], -wS*t[-1]+oS0, t[-1]

the next lines of code have to be executed one by one, this is because the value obtained
in the variables in the first execution are used in the second one.

1 propellerMass = Dm[-1]*M
2 propellerMass
3 propellerMass + 0.47399237945192785
4 DE[-1]/3.6e6
5 DE[-1]/3.6e6 + 82.29034365442136

This block plot the total mass ejected from the thruster in function of time.

1 plt.figure(figsize=(12,9))
2 plt.plot(t/n/3600/24,Dm*M*1e3)
3 plt.title("Mass Ejected", size=25)
4 plt.xlabel(’Time [day]’,size=20)
5 plt.ylabel(’Mass Propeled [mg]’, size=20)
6 plt.xticks(fontsize=15, rotation=0)
7 plt.yticks(fontsize=15, rotation=0)
8 flag1, flag2 = True, True
9 for i in range(N-1):

10 if Dm[i+1] == Dm[i] and flag1 == True:
11 print(i-1)
12 flag1 = False
13 if Dm[i+1] != Dm[i] and flag1 == False and flag2 == True:
14 print(i-1)
15 flag2 = False
16

17 #plt.savefig(’Mass’+ Ti + ’T’ + Tf + ’.png’)
18 #plt.savefig(’Mass’+ Ti + ’T’ + Tf + ’.eps’)

This block defines labels used in the next plots.

1 ### plot parameters ###
2 Hi=’4k’
3 Hf=’120k’
4 Ti=’1’
5 Tf=’4’

This block plots the total energy used by the thruster in function of time

1 plt.figure(figsize=(12,9))
2 plt.plot(t/n/3600/24,DE/3600/1e3)
3 plt.title("Energy for Propulsion", size=25)
4 plt.xlabel(’Time [day]’,size=20)
5 plt.ylabel(’Energy [kWh]’, size=20)
6 plt.xticks(fontsize=15, rotation=0)
7 plt.yticks(fontsize=15, rotation=0)
8

9 #plt.savefig(’Energy’+ Ti + ’T’ + Tf + ’.png’)
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10 #plt.savefig(’Energy’+ Ti + ’T’ + Tf + ’.eps’)

This block plots the modulus of the acceleration on the satellite due to the thruster in
function of time.

1 plt.figure(figsize=(12,9))
2 plt.plot(t/n/3600/24,Th/m*1e3)
3 plt.title("Thrust Acceleration", size=25)
4 plt.xlabel(’Time [day]’,size=20)
5 plt.ylabel(’Thrust Acceleration [mm/s$^2$]’, size=20)
6 plt.xticks(fontsize=15, rotation=0)
7 plt.yticks(fontsize=15, rotation=0)
8

9 #plt.savefig(’forcesComparison\Thrust’+ Ti + ’T’ + Tf + ’.png’)
10 #plt.savefig(’forcesComparison\Thrust’+ Ti + ’T’ + Tf + ’.eps’)

This block plots the modulus of the acceleration on the satellite due to the oblateness of
Earth (J2 factor) in function of time.

1 plt.figure(figsize=(12,9))
2 plt.figure(figsize=(12,9))
3 plt.plot((r1-r_e)*D*1e-3,(1-mu)*(3/2*J2*(r_e/r1)**2) * ((((x+mu)/r1**3)**2 + (y/r1**3)

↪→ **2)**0.5)*n**2*D*1e6)
4 plt.title(’J2 Acceleration’,size=25)
5 plt.xlabel(’Height [km]’,size=20)
6 plt.ylabel(’J2 Acceleration [$\mu$m/s$^2$]’, size=20)
7 plt.xticks(fontsize=15, rotation=0)
8 plt.yticks(fontsize=15, rotation=0)
9

10 #plt.savefig(’forcesComparison3\J2Height_’+ Hi + ’_’ + Hf + ’.png’)
11 #plt.savefig(’forcesComparison3\J2Height_’+ Hi + ’_’ + Hf + ’.eps’)

As the last block, the next one plots the modulus of the acceleration on the satellite due
to the oblateness of Earth (J2 factor), but this time in function of height of the satellite
respect to Earth.

1 plt.figure(figsize=(12,9))
2 plt.plot(t/n/3600/24,(1-mu)*(3/2*J2*(r_e/r1)**2) * ((((x+mu)/r1**3)**2 + (y/r1**3)**2)

↪→ **0.5)*n**2*D*1e6)
3 plt.title(’J2 Acceleration’,size=25)
4 plt.xlabel(’Time [day]’,size=20)
5 plt.ylabel(’Acceleration by J2 [$\mu$m/s$^2$]’, size=20)
6 plt.xticks(fontsize=15, rotation=0)
7 plt.yticks(fontsize=15, rotation=0)
8 min((1-mu)*(3/2*J2*(r_e/r1)**2) * ((((x+mu)/r1**3)**2 + (y/r1**3)**2)**0.5)*n**2*D*1

↪→ e6)
9 #plt.ylim(0,10)

10 #plt.xlim(60,85)
11 #plt.savefig(’forcesComparison\J2_Tail’+ Ti + ’T’ + Tf + ’.png’)
12 #plt.savefig(’forcesComparison\J2_Tail’+ Ti + ’T’ + Tf + ’.eps’)

This block plots the modulus of the acceleration on the satellite due to the atmospheric
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density of Earth in function of time.

1 plt.figure(figsize=(12,9))
2 plt.plot(t/n/3600/24,drag*D*n**2*1e6)
3 plt.title(’Drag Acceleration’,size=25)
4 plt.xlabel(’time [days]’,size=20)
5 plt.ylabel(’Drag Acceleration [$\mu$m/s$^2$]’, size=20)
6 plt.xticks(fontsize=15, rotation=0)
7 plt.yticks(fontsize=15, rotation=0)
8

9 #plt.savefig(’forcesComparison\Drag’+ Ti + ’T’ + Tf + ’.png’)
10 #plt.savefig(’forcesComparison\Drag’+ Ti + ’T’ + Tf + ’.eps’)

As the last block, this one plots the modulus of the acceleration on the satellite due to the
atmospheric density of Earth (J2 factor), but this time in function of height of the satellite
respect to Earth.

1 plt.figure(figsize=(12,9))
2 plt.plot((r1-r_e)*D*1e-3,drag*D*n**2*1e6)
3 plt.title(’Drag Acceleration’,size=25)
4 plt.xlabel(’Height [km]’,size=20)
5 plt.ylabel(’Drag Acceleration [$\mu$m/s$^2$]’, size=20)
6 plt.xticks(fontsize=15, rotation=0)
7 plt.yticks(fontsize=15, rotation=0)
8

9 #plt.savefig(’forcesComparison\Drag’+ Hi + ’H’ + Hf + ’.png’)
10 #plt.savefig(’forcesComparison\Drag’+ Hi + ’H’ + Hf + ’.eps’)

This block computes the position of the Sun as a funtion of time.

1 ### SUN ###
2 oS = -wS*t+ oS0
3 xS = aS*np.cos(oS)
4 yS = aS*np.sin(oS)
5 rS = ((x-xS)**2 + (y-yS)**2)**0.5

This block plots the modulus of the acceleration on the satellite due to the Sun’s gravity
in function of time.

1 plt.figure(figsize=(12,9))
2 plt.plot(t/n/3600/24,(((- mS*(x-xS)/rS**3 - mS*xS/aS**3)**2+(- mS*(y-yS)/rS**3 - mS*yS

↪→ /aS**3)**2)**0.5)*n**2*D*1e6)
3 plt.title(’Sun Acceleration’, size=25)
4 plt.xlabel(’Time [days]’,size=20)
5 plt.ylabel(’Sun Acceleration [$\mu$m/s$^2$]’, size=20)
6 plt.xticks(fontsize=15, rotation=0)
7 plt.yticks(fontsize=15, rotation=0)
8

9 #plt.savefig(’forcesComparison\Sun’+ Ti + ’T’ + Tf + ’.png’)
10 #plt.savefig(’forcesComparison\Sun’+ Ti + ’T’ + Tf + ’.eps’)

As the last block, this one plots the modulus of the acceleration on the satellite due to
the Sun’s gravity, but this time in function of height of the satellite respect to Earth.
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1 plt.figure(figsize=(12,9))
2 plt.plot((r1-r_e)*D*1e-3,(((- mS*(x-xS)/rS**3 - mS*xS/aS**3)**2+(- mS*(y-yS)/rS**3 - mS

↪→ *yS/aS**3)**2)**0.5)*n**2*D*1e6)
3 plt.title(’Sun Acceleration’, size=25)
4 plt.xlabel(’Height [km]’,size=20)
5 plt.ylabel(’Sun Acceleration [$\mu$m/s$^2$]’, size=20)
6 plt.xticks(fontsize=15, rotation=0)
7 plt.yticks(fontsize=15, rotation=0)
8

9 #plt.savefig(’forcesComparison\Sun’+ Hi + ’H’ + Hf + ’.png’)
10 #plt.savefig(’forcesComparison\Sun’+ Hi + ’H’ + Hf + ’.eps’)

The next code computes the ablated mass from the Nanofocus using the work of Wagner[62].

1 ### Ablated Mass, Wagner2004slug for Nanofocus ###
2 # Wagner gives an empirical expression that can be used directly
3 # with the number from the nanofocus
4 # Wagner’s formula: m_b = 1.32e-6*A_p^0.65*E_0^0.35
5

6 # Constants
7 pi = np.pi
8 C = 3.3e-9 #Nanofocus capacitance, [F]
9 R = 0.85e-3 #exterior radius of the plasma gun

10 r = 0.25e-3 #interior radius of the plasma gun
11 A_p = pi * (R**2 - r**2) #Ablated area
12

13 # Equations
14 N = 10 #Number of points on the graph
15 V = np.zeros(N)
16 E_0 = np.zeros(N)
17 m_b = np.zeros(N)
18 for i in range(N):
19 V[i] = 5e2 * (i+1); #Discharge voltage, [V]
20 E_0[i] = 0.5 * C * V[i]**2 #Initial Energy, Energy in the capacitor, (J)
21 m_b[i] = 1.32e-6 * A_p**0.65 * E_0[i]**0.35 #mass in kg
22

23 plt.figure(figsize=(16,9))
24 plt.plot(V,m_b, color=’b’)
25 xAxis = [i * 1e3 for i in [0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5]];
26 xLabels = [’0.5’,’1.0’,’1.5’,’2.0’,’2.5’,’3.0’,’3.5’,’4.0’,’4.5’,’5.0’];
27 plt.plot(V,m_b)
28 yAxis = [i * 1e-10 for i in [ 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]];
29 yLabels = [’0.2’,’0.3’,’0.4’,’0.5’,’0.6’,’0.7’,’0.8’,’0.9’];
30 plt.title(’Ablated Mass Nanofocus’, size=30)
31 plt.xlabel(’Voltage [kV]’, size=25)
32 plt.ylabel(’Ablated mass [10$^{-10}$kg]’, size=25)
33 plt.xticks(xAxis, xLabels, size=20);
34 plt.yticks(yAxis, yLabels, size=20);
35

36 #plt.savefig(’ablatedMass\Wagner2004.png’)
37 #plt.savefig(’ablatedMass\Wagner2004.eps’)

104



The next code computes the ablated mass from the Nanofocus using the work of Zeng[61]
in the other.

1 ### Ablated Mass, zeng2019new for NANOFOCUS ###
2 # Description
3 # This is the implementation of equations from ’zeng2019new’
4 # It computes the ablated mass from a pulsed plasma thruster
5 # Constants
6 n = 5310 #number of simulated CF2 units that break away from the surface,

↪→ arbitrary yet
7 beta = 0.5 #fracture density, arbitrary yet
8 N = 10000 #total number of simulated CF2 units, arbitrary yet
9 gamma_E = 0.5 #ratio of energy of ablation and total Egas

10 M_CF2 = 50 * 1e-3 #relative molecular mass of CF2, approx 50 [kg/mol]
11 E_CC = 348000 #chemical bond energy carbon-carbon [J/mol]
12 e_gas = 1.5e6 #specific energy breakdowwn PTFE [J/kg], Burton1998
13 C = 3.3e-9 #capacitance [F] of NANOFOCUS
14

15 # Equations
16 gamma_m = n / (beta * N); #ratio of mass ablated
17 points = 10 #points to be plotted
18 V = np.zeros(points)
19 E_0 = np.zeros(points)
20 m_b1 = np.zeros(points)
21 m_b2 = np.zeros(points)
22 m_b3 = np.zeros(points)
23 m_b4 = np.zeros(points)
24

25 for i in range(points):
26 V[i] = 5e2 * (i+1); #Discharge Voltage [V]
27 E_0[i] = 0.5 * C * V[i]**2;
28 E_gas1 = 0.01 * E_0[i];
29 E_gas3 = 0.03 * E_0[i];
30 E_gas4 = 0.04 * E_0[i]; #percent, 3 or 4
31 m_b1[i] = M_CF2 * gamma_m * (E_gas1 * gamma_E / E_CC);
32 m_b3[i] = M_CF2 * gamma_m * (E_gas3 * gamma_E / E_CC);
33 m_b4[i] = M_CF2 * gamma_m * (E_gas4 * gamma_E / E_CC);
34

35

36 plt.figure(figsize=(16,9))
37 plt.plot(V,m_b3)
38 plt.plot(V,m_b4)
39 xAxis = [i * 1e3 for i in [0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5]];
40 xLabels = [’0.5’,’1.0’,’1.5’,’2.0’,’2.5’,’3.0’,’3.5’,’4.0’,’4.5’,’5.0’];
41 yAxis = [i * 1e-10 for i in [0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2]];
42 yLabels = [’0.0’,’0.2’,’0.4’,’0.6’,’0.8’,’1.0’,’1.2’];
43 plt.title(’Ablated Mass Nanofocus’, size=30)
44 plt.xlabel(’Voltage [kV]’, size=25)
45 plt.ylabel(’Ablated mass [10$^{-10}$kg]’, size=25)
46 plt.xticks(xAxis, xLabels, size=20);
47 plt.yticks(yAxis, yLabels, size=20);
48 plt.legend([’3% of E$_0$’,’4% of E$_0$’], fontsize=20)
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49

50 #plt.savefig(’ablatedMass\Zeng2019.png’)
51 #plt.savefig(’ablatedMass\Zeng2019.eps’)

The next block computes the Hill’s zones given a value for the constant Jacobi C.

1 #Hill’s regions
2

3 dHill = 1.5
4 delta = 0.01
5 Nhill = int(dHill/delta)
6 xHill = []
7 yHill = []
8

9 C0 = 2.989 #to vary the value of C0
10 for j in range(0, 2*Nhill + 1):
11 for i in range(0, 2*Nhill + 1):
12 xH = -dHill + delta * i
13 yH = -dHill + delta * j
14 r1 = ((xH+mu)**2 + yH**2)**0.5
15 r2 = ((xH+mu-1)**2 + yH**2)**0.5
16 U = -(1-mu)/r1 - mu/r2
17 Omega = (xH**2 + yH**2)/2 - U
18 if Omega <= C0/2:
19 xHill.append(xH)
20 yHill.append(yH)
21

22 plt.figure(figsize=(10, 10))
23 plt.scatter(xHill,yHill,s=.5,c=’k’)
24 plt.plot(-mu,0,’b.’)
25 plt.plot(1-mu,0,’k.’)
26 plt.plot(la1, 0, ’r+’)
27 plt.plot(la2, 0, ’r+’)
28 plt.plot(la3, 0, ’r+’)
29 plt.plot(la4[0], la4[1], ’r+’)
30 plt.plot(la5[0], la5[1], ’r+’)
31 #plt.grid()
32 plt.title(’Hill region for C = %1.3f’ % C0, size=30)
33 plt.xlabel(’x’,size=20)
34 plt.ylabel(’y’, size=20)
35 print("with C0 = ", C0)
36 plt.ylim(-1.5,1.5)
37 plt.xlim(-1.5,1.5)
38 #plt.ylim(-0.1,0.1)
39 #plt.xlim(la2*.99,1.01*la2)
40 #plt.savefig(’Hill’ + str(int(C0)) + ’C’ + str(round(C0-int(C0), 3))[2:] + ’.png’)
41 #plt.savefig(’Hill’ + str(int(C0)) + ’C’ + str(round(C0-int(C0), 3))[2:] + ’.eps’)
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