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RESUMEN DE LA MEMORIA PARA OPTAR
AL TÍTULO DE MAGÍSTER EN CIENCIAS DE LA INGENIERÍA, MENCIÓN ELÉCTRICA,
Y AL TÍTULO DE INGENIERO CIVIL ELÉCTRICO
POR: NICOLÁS JAVIER ASTORGA ROCHA
FECHA: 2021
PROF. GUÍA: PABLO ESTÉVEZ VALENCIA

MODELOS GENERATIVOS-INFERENCIALES: TEORÍA Y APLICACIONES

This thesis studies generative-inference (GI) models i.e. generative models based on neural
networks that consider an inference model. The inference model is useful to reach the most
relevant features of the observed space X compressed into the latent space Z. We propose two
desired properties for them: one associated with the graphical model and other associated
to their representation learning capabilities. Having formalized these properties we focus on
how to accomplish them under two frameworks: 1) Matching the joint distributions of GI
models and 2) using a novel perspective based on the mutual information of GI models’s
distributions. From these general perspectives we propose new GI models. We also validate
the theoretical findings with extensive experimental results.

We found that the prior distribution p(z) of GI models is fundamental for both generation
and representation learning. We derive the models theoretically with multi-modal priors
instead of uni-modal priors like N (0, I). Based on this theory we proposed two models.
One model is used for image clustering, obtaining state of the art performance. The other
model can be used for anomaly detection in lightcurve datasets thanks to a new decoder and
anomaly detection score.
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RESUMEN DE LA MEMORIA PARA OPTAR
AL TÍTULO DE MAGÍSTER EN CIENCIAS DE LA INGENIERÍA, MENCIÓN ELÉCTRICA,
Y AL TÍTULO DE INGENIERO CIVIL ELÉCTRICO
POR: NICOLÁS JAVIER ASTORGA ROCHA
FECHA: 2021
PROF. GUÍA: PABLO ESTÉVEZ VALENCIA

MODELOS GENERATIVOS-INFERENCIALES: TEORÍA Y APLICACIONES

Esta tesis estudia modelos generativos-inferenciales (GI) i.e. modelos generativos basados
en redes neuronales que consideran un modelo de inferencia. El modelo de inferencia es
útil para alcanzar las características más relevantes del espacio observado X comprimidas
en el espacio latente Z. Proponemos dos propiedades deseadas para estos modelos: una
asociada al modelo gráfico y otra asociada a sus capacidades de representación. Habiendo
formalizado estas propiedades, nos enfocamos en alcanzarlas bajo dos marcos: 1) Hacer
coincidir las distribuciones conjuntas de los modelos GI y 2) utilizando una perspectiva
novedosa basada en la información mutua de las distribuciones de los modelos GI. Desde
estas perspectivas proponemos nuevos modelos GI. También validamos los hallazgos teóricos
con extensos resultados experimentales.

Observamos que la distribución prior p(z) de los modelos GI es fundamental tanto la
generación de datos como para su representación. Derivamos teóricamente los modelos con
priors multimodales en lugar de unimodales. Basándonos en esta teoría, propusimos dos
modelos. Un modelo es usado para realizar clustering en imágenes, obteniendo resultados en
el estado del arte. El otro modelo puede ser usado para detección de anomalías en curvas de
luz gracias a un nuevo decodificador y un nuevo score para detectar anomalías.
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Chapter 1

Introduction

In probability and statistics, discriminative and generative models are the two main ap-
proaches to model data and/or unobserved distributions. Discriminative methods usually
model the posterior distribution of the data p(z|x), being x ∈ X the observed variable and
z ∈ Z the target variable. For example x may represent the independent variables or features
entering a classifier and z the class predicted by the classifier. On the other hand generative
models often takes Z as a hidden latent space and estimate the joint distribution p(x, z).
Usually this joint distribution is obtained by approximating the real data distribution q(x)
with a modelled marginal distribution p(x). In general this approximation is obtained by
sampling points zi from a prior distribution p(z) and obtaining, after several transformations,
its decodified version called x̃i. Ideally this decodified version x̃i of zi should have a high
likelihood with respect to the real distribution q(x), i.e. we can use the model to create new
synthetic data that is similar to our observations.

The data that come from this sampling procedure have different properties depending
on the optimization and the transformations applied to zi. Simpler transformations have
been used by classical approaches like Naive Bayes models [65, 82], Hidden Markov Models
[89, 90], Gaussian mixture models [76, 93], Latent Dirichlet allocations [7], among others.
More recent generative models [29, 53, 94, 110] have used deep neural networks [28] to
increase the amount and flexibility of the transformations applied to zi. Neural networks are
universal approximators [72] and thanks to recent advances [34, 43, 78, 24] generative models
have scaled to unprecedented high dimensional data. Examples of such models are Generative
Adversarial networks [29] (GANs), Variational Autoencoders [53] (VAEs), Normalizing flows
[94] and Autoregressive models [110].

When Z is lower dimension than X the generative process induce a compression of the
real distribution q(x) into the prior distribution p(z), this information could be used if an
inference model is available to reach the latent space Z of the prior. The generative models
that consider such inferential distribution will be denominated as generative-inference mod-
els for the remainder of this thesis. The study of the generative and representation learning
capabilities of generative-inference models is the main focus of this work. In representation
learning it is desirable that the inferred space should be useful for tasks like compression
or classification, for this reason we will consider models that can be optimized when the
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dimension of the latent space Z is less than the observable space X . Two generative models
that follow this optimization are Variational autoencoders [53] (VAEs) and Generative ad-
versarial networks [29] (GANs) which will be considered as the generative process of many
generative-inference models.

In VAE an encoder and a decoder network pair is trained to map the data to a low-
dimensional latent space, and to reconstruct it back from the latent space, respectively. The
encoder is used for inference while the decoder is used for generation. The main limitations of
the standard VAE are the restrictive assumptions associated with the explicit distributions of
the encoder and decoder outputs. For the latter this translates empirically as loss of detail in
the generator output. In GAN a generator network that samples from latent space is trained
to mimic the underlying data distribution while a discriminator is trained to detect whether
the generated samples are true or synthetic (fake). This adversarial training strategy avoids
explicit assumptions on the distribution of the generator, allowing GANs to produce the
most realistic synthetic outputs up to date [8, 48, 49, 50]. The weaknesses of the standard
GAN are the lack of inference capabilities and the difficulties associated with training (e.g.
mode collapse). Recent works [66, 19, 23] have extended GANs including classifiers and/or
encoders to perform inference. Generative models that include a classifier and/or encoder
can be used for additional applications like semi-supervised learning and clustering.

VAEs have been extended by adding associated class information in [54, 74] with a semi-
supervised approach. Other unsupervised VAE approaches have chosen to modify the prior
distribution [46, 47] to force separability of the latent variables and perform clustering. GANs
have also been studied with a similar purpose in [103, 79, 4] for clustering and in [66, 17, 98]
for semi-supervised learning. Some models have combined both GANs and VAEs approaches
to exploit their advantages [23, 20, 68, 14] but these have not been used largely for clustering
or semi-supervised learning. The performance of clustering or semi-supervised learning can
be associated with the correlation between the input and the latent variables. In the literature
the area of study that looks for useful embeddings of the data is called representation learning
and is one of our main concerns in the study of generative-inference models.

Representation learning [6] of data in an unsupervised way is a fundamental problem
in machine learning. The objective of representation learning is to train an encoder that
transforms the observable space into a generally lower dimensional space and thus obtain
a “representative space” of data. The properties required in a “representative space” will
depend on the task at hand. For dimensionality reduction tasks a representative space is one
where redundancy and noise are reduced, effectively compressing the data to its most relevant
features. For classification tasks a “representative space” should be a low-dimensional space
whose characteristics are linearly separable. Nowadays finding linearly separable spaces is
the main goal of “representation learning” and many unsupervised algorithms evaluate their
effectiveness on a supervised task that is trained after an unsupervised training [3, 38, 35].
One way to measure the representation learning capabilities of a model is by using the concept
of mutual information from the field of information theory.

Information theory is a broad area initially proposed by Shannon in 1948 [99], that studies
the quantification and storage of information. Generative models store the empirical data
distribution information in a prior distribution to generate realistic data. The likelihood of
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the data is maximized using information-theoretic concepts such as divergences and cross-
entropies between distributions of random variables. This optimization gives us a way to
approximate an empirical distribution with a model but it does not tell us insights of how
correlated is our input with respect its codifications. To measure such dependency informa-
tion theory gives us another tool called mutual information. Mutual information have been
used by discriminative methods obtaining state of the art performance [3, 35] in represen-
tation learning tasks. In generative models mutual information has been maximized in [14].
Few works in generative models have chosen a more general approach [121] but they have
not explored the trade-offs between generation and representation learning. Our work studies
generative-inference models from an information theory viewpoint to understand them from a
broader perspective. We study the relation of generative-inference models using information
theory measures like mutual information, Kullback Leibler (KL) divergence and cross-entropy.
We perform a deep theoretical and empirical analysis of the trade-offs between generation
and representation capabilities. Finally, we propose new generative-inference models based
on this analysis.

The structure of this thesis is the following. In Chapter 2 we describe the most fundamental
previous work required for the understanding of this thesis. In Chapter 3 we enunciate the
foundations of generative-inference models. In Chapter 4 we show how to obtain generative-
inference models from a joint distribution matching perspective between their generative
and inference distributions. In Chapter 5 we associate generative-inference models with the
mutual information of the generative and inference distributions. We analyze the trade-offs
between generation and representation capabilities of generative-inference models. From this
analysis we propose and thoroughly evaluate new generative-inference models. In Chapter 6
we present the empirical results obtained by these new models and we test some observations
made in Chapter 5. In Chapter 7 we study models that consider an additional categorical
variable, in particular we create a new clustering model called MPCC for which we present
extensive experiments in Chapter 8. In Chapter 9 we apply a generative-inference model
called VaDE to a practical application in astronomy. Finally in Chapter 10 we discuss the
implications of our work and future research.

1.1 Hypothesis
• It is possible to design a framework that generalizes generative-inferential models based

on information theory.

• The optimization framework of generative-inference models is relevant for training, and
has a big impact on their generative and inference capabilities. In other words, even
if the architectures to model the conditional distributions p(x|z) (decoder) and q(z|x)
(encoder) are the same they can perform drastically different depending of how the
model is trained.

• The selection of the prior for generative-inference models has a big impact on generation
and inference. Generative-inference models can be extended with multimodal priors to
perform tasks such as clustering and outlier detection, outperforming the traditional
unimodal priors. Depending on the task at hand this will be measured using Fréchet
inception distance, classification accuracy or cluster purity.
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1.2 General Objective
To develop a new theoretical framework to unify and generalize existing generative-inference
models. The framework is based on the relation between the distributions that compose
generative-inference models. We recognize two general schemes to unify generative-inference
models. The first scheme is based on a matching joint distributions perspective. The second
scheme is the association of generative and inference distributions under the concept of mutual
information. This association allows us to study the impact on the model’s loss functions in
terms of generation and inference. Based on this analysis and unified framework we propose
new generative-inference models.

1.3 Specific Objectives
• Associate the loss function of generative-inference models with the Kullback Leibler

divergence of its distributions and identify if a relation between generation and/or
inferential capabilities exists.

• Develop a new mathematical perspective that associates the loss function of a generative-
inference model with the mutual information of its distributions and identify if a relation
between generation and/or inferential capabilities exists.

• Identify metrics computed in an unsupervised way that allows us to identify generative-
inference models that perform good in generation, inference or both.

• Propose, analyze and test a generative-inference model for clustering in computer vision
benchmark datasets by changing the common unimodal prior distribution N (0, I) by
a mixture distribution prior.

• Propose, analyze and test a generative-inference model for classification and outlier
detection applied to astronomical light curves. This includes the design of a new decoder
based on Gaussian processes that allows training with irregularly sampled time series.
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Chapter 2

Generative-Inference models:
Background

In this chapter we study the most relevant methods and evaluation metrics for the under-
standing of this thesis. Since our work comprehend the study and association of different
generative-inference models in a common general mathematical framework, some of the pre-
vious work will be explained in following chapters where the context is closer to a more
specific contribution. For example, in Chapter 3 we give the foundations of what we called
generative-inference models and we formalize some of the notation that is introduced in this
chapter. We chose this structure for an easy reading of the thesis.

Two generative models are the base of our study: Generative adversarial networks (GANs)
[29] and Variational autoencoders (VAEs) explained in section 2.1.1 and 2.2, respectively. In
section 2.3 we explained the most relevant metrics that are used in this thesis, more specific
metrics are explained in the corresponding chapters.

2.1 Generative models

2.1.1 Generative adversarial networks

Generative adversarial networks (GANs) [29] is a method that approximates the available
samples of the real data distribution q(x) by decoding a prior distribution p(z) with a
decoder p(x|z) i.e it seeks to match the marginal distributions of the generative model
p(x) = Ep(z)[p(x|z)] with the empirical data distribution qδ(x) =

1
N

∑N
i=1 δ(x − xi), where δ

is dirac delta function. The GAN loss function can be formulated as follows:

max
D

Ex∼qδ(x)[f(D(x))] + Ex̃∼p(x,z)[g(D(x̃))], (2.1)

min
G

Ex̃∼p(x,z)[h(D(x̃))]. (2.2)

This formulation is generalized in [21] where D is a discriminator network and G is a generator
network, tilde is used to denote sampled variables. In the original GAN formulation [29]
these functions are defined as f(y) = − log(1 + e−y), g(y) = −y − log(1 + e−y) and h(y) =
−y − log(1 + e−y).
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Figure 2.1: Diagram of GAN adversarial training.

The score of the discriminator network is maximized for data that come from the empir-
ical data distribution qδ(x) and the score is minimized when the data is received from the
generator network as observed in Eq. (2.1). Realistic samples from p(x) are obtained by
enforcing the decoder p(x|z) to maximize the score of the discriminator network as shown in
Eq. (2.2).

In [29] it is demonstrated that vanilla GAN minimizes the Jensen Shannon divergence
DJS(p(x)||q(x)) under an optimal discriminator and generator. More recent approaches
[85, 1, 108] in the literature have shown that other integral probability metrics like Wasser-
stein distance [1], Maximum Mean Discrepancy (MMD) [67], or any divergence from the
f-divergence family [85] are minimized under different selection of f , g, and h. We will use
the notation D(p(x)||q(x)) to refer to any divergence [85] or integral probability metric [1, 67]
that can be minimized using a general adversarial training approach like Eq. (2.1) and Eq.
(2.2). In general these equations optimize loss functions that induce a matching between
p(x) and q(x). In Fig. 2.1 shows a diagram of the vanilla GAN optimization procedure.

2.2 Variational autoencoders

The Variational autoencoder (VAE) [53] is a generative model that maximizes the likelihood
of the marginal distribution of the generative model p(x) with respect to the real distribution
q(x). In practice it is not feasible to optimize the likelihood Eq(x)[log p(x)] since it requires
to evaluate each sample xi from the real data distribution q(x) with p(x). To estimate the
marginal distribution of the model p(x) = Ep(z)[p(x|z)] a large amount of samples zi ∼ p(z)
are required for each xi. The search space of p(z) can be reduced by introducing an amortized
encoder distribution that obtains samples z̃ ∼ q(z|x) dependent on real data xi. The VAE
loss function LVAE can be obtained by adding this amortized encoder as follows:
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Eq(x)[log p(x)] = Eq(x)

[
log

∫
z

p(x|z)p(z)dz
]

= Eq(x)

[
log

∫
z

p(x|z)p(z)
q(z|x)

q(z|x)dz
]

= Eq(x)

[
logEq(z|x)

[
p(x|z)p(z)
q(z|x)

]]
≥ Eq(x)Eq(z|x)

[
log

p(x|z)p(z)
q(z|x)

]
(2.3)

= Eq(x)

[
Eq(z|x) log p(x|z)−DKL(q(z|x)||p(z))

]
(2.4)

≡ ELBO ≡ −LVAE,

where Jensen’s inequality was used in step (2.3). From the previous demonstration we note
that the VAE loss function LVAE is a lower bound on the marginal likelihood Eq(x)[log p(x)],
which is commonly known as the evidence lower bound (ELBO). For an efficient computation
of the loss function in Eq. (2.4), the term Eq(x)q(z|x)[log p(x|z)] is computed by minimizing the
MSE between the input data xi and its reconstruction. The term Eq(x)[DKL(q(z|x)||p(z))] is
computed in closed-form assuming q(z|x) and p(z) as normal distributions with a diagonal
covariance matrix N (µ̃, σ̃2) and N (0, I), respectively. The parameters µ̃ and σ̃ are learned
through neural networks. Under this assumption the second term in Eq. (2.4) has the
following closed-form

DKL(q(z|x)||p(z)) =
J∑

j=1

µ̃2 + σ̃2 − log σ̃2 + 1, (2.5)

where J is the dimensionality of the latent space.

Fig 2.2 shows a graphical diagram of the VAE loss function obtained by the previous
demonstration (Eq. (2.4)). VAE is one of the most studied generative models of the lit-
erature and several approaches have advanced on them, increasing the flexibility of their
encoder q(z|x) or prior p(z). Particularly relevant are the methods that modify the re-
striction DKL(q(z|x)||p(z)). β-VAE [37] adds a constant to the divergence and Adversarial
variational bayes (AVB) [77] replaces it with adversarial training. AVB matches this distri-
bution similarly to GANs by identifying the pair of points (xi, z̃i) from the pair (xi, zi), where
xi ∼ qδ(x), z̃i ∼ q(z|x = xi) and zi ∼ p(z) (for insight about this type of training see sec-
tion 4.1) . Adversarial autoencoders (AAE) [75] and Wasserstein autoencoders (WAE) [107]
replace this divergence with adversarial training in the marginal distributions minimizing
Adv(q(z)||p(z)). Finally Info-VAE [120] and also WAE replace this divergence with MMD in
the marginal distributions minimizing MMD(q(z), p(z)). In Chapters 4 and 5 we show how
these models can be unified from a matching joint distributions perspective and a mutual
information perspective, respectively.

2.3 Evaluation metrics
As mentioned in Chapter 1 the main focus of this thesis is the study of generative-inference
models i.e. models with generative and inferential capabilities. The generative capability
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Figure 2.2: Diagram for the optimization of a variational bound of Eq(x)[log p(x)].

is measured by broadly [8, 50] used metrics, the Inception score (IS) [98] and the Fréchet
inception distance (FID) [36], which are explained in sections 2.3.1 and 2.3.2, respectively.
The inferential capabilities are measured using a linear predictor on top of the frozen rep-
resentation as is done in state of the art unsupervised representation learning algorithms
[12, 13, 9].

2.3.1 Inception Score (IS)

Inception Score (IS) is a quality metric that measures how realistic an image looks for an
human observer. A higher value of this score is better. This score was originally presented
in [98] and is the first proposition for an automatic evaluation of the generative capabilities
of generative models. The IS metric is given by

IS = exp
(
Epδ(x)[DKL(p

∗(y|x)||p∗(y)))]
)

(2.6)
= exp

(
(Epδ(x)p∗(y|x)[log p

∗(y|x)]− Ep∗(y)[log p
∗(y)]

)
, (2.7)

where pδ(x) are samples of the generative model and p∗(y) is the marginal distribution of
the data classified using the pretrained classifier p∗(y|x). The meaningful information of a
generated image is measured by the first term in Eq. (2.7) that is expected to have low
entropy for p∗(y|x). The variability of a generated image is measured by the second term of
Eq. (2.7), i.e. the distribution p∗(y) should have high entropy.

The IS metric has been widely used in the literature [8, 114, 20] but it has a severe limita-
tion. The variability is measured by the entropy of p∗(y), but it only measures variability in
terms of different classes. For example the entropy of p∗(y) could be high but the generated
images of a given index y = c can be the same generated image repeated several times.

2.3.2 Fréchet inception distance (FID)

The Fréchet inception distance (FID) is a generation quality score that also measures how
the generated images of the model look to a human observer. This score improves over
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the IS as it includes the variability of the generated images over multiple features. For its
computation a pretrained classifier p∗(y|x) is required. Instead of using the labels as IS, FID
uses a pretrained classifier to obtain an embedding z in an earlier layer of the network. This
embedding is fitted with a multivariate Gaussian distribution with statistics µ and Σ. When
the samples of the generated model pδ are used as input we obtain the mean and covariance
µ1 and Σ1, respectively. When the samples from the real data are used as input we obtain the
mean and covariance µ2 and Σ2, respectively. The FID score compares these distributions as
follows:

FID = ||µ1 − µ2||2 + Tr(Σ1 + Σ2 − 2(Σ1Σ2)
1/2), (2.8)

where lower values are associated with more similar distributions. We refer the reader to [36]
for complete derivation of Eq. (2.8).

In the original paper [36] they used an inception network pretrained on Imagenet [18] as
a feature extractor with an embedding of 2048 dimensions. For both IS and FID we will
specify how the pretrained classifier is obtained.
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Chapter 3

Generative-Inference models:
Foundations

We will refer as generative-inference models to every model that considers a generative model
p and an inference model q. For these models, in general we will consider two variables: x ∈ X
and z ∈ Z, X being the observable space and Z being a latent low-dimensional manifold
space. When two variables are considered the joint distributions are p(x, z) and q(x, z).
The generative model p(x, z) = p(x|z)p(z) is decomposed in a prior distribution p(z) and
a decoder p(x|z) usually modeled as a neural network (NN), see Fig. 3.1a for a graphical
insight and Fig. 3.2a for the graphical model. The inference model q(x, z) = q(x)q(z|x)
is decomposed in the true underlying distribution of the data q(x) and an encoder q(z|x)
usually modeled as a NN that codifies the data, see Fig. 3.1b for a graphical insight and Fig.
3.2b for the graphical model. Note that we refer to q(x) as the real data distribution and
not to the empirical data distribution as previous work [23, 2]. We will use δ as sub-index to
emphasize that we are using the empirical distribution, i.e. a counting distribution based on
a finite sample from a theoretical distribution. For example, in this case q(x) is the real data
distribution and qδ(x) =

1
N

∑N
i=1 δ(x − xi) is the empirical data distribution of the samples

generated by q(x), where δ is dirac delta function. For the rest of this thesis every term that
requires an expectation Eq(x) will be evaluated in practice by Eqδ(x) since we don’t have access
to q(x).

Matching the empirical data distribution qδ(x) with the marginal distribution of the gen-
erative model p(x) is one of the main goals of generative-inference models. Moreover, the
objective of these models is to have the ability to generalize i.e. approximate q(x) having
only access to qδ(x) (see Fig. 3.3). In Chapter 4 we will observe how p(x) matches q(x)
for different generative-inference models. We argue that correctly approximating the real
distribution depends on the architecture and the optimization framework. In this work we
will explore these capabilities for generative-inference models based on two dependencies: the
optimization framework and the selection of the prior distribution. The prior distribution has
a big impact in the approximation of the real distribution, which is observed in generation
quality performances [49, 2]. This impact can be explained by the fact that disconnected
features in the observed space should have also disconnected features in the low-dimensional
manifold space (see Fig. 3.5). We can manipulate the low-dimensional space through the use
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(a) Generative model (b) Inference model

Figure 3.1: (a) Generative model (coloured green) composed by a prior distribution p(z)
usually modeled as a standard normal distribution N (0, I) and a decoder p(x|z) usually
modeled as a neural network. (b) Inference model (coloured blue) composed by the real data
distribution q(x) and a encoder q(z|x) usually modeled as a neural network.

(a) Generative model (b) Inference model

Figure 3.2: Graphical model of (a) generative model and (b) inference model.

of different priors.

Another goal of generative-inference models is to match q(z) = Eq(x)[q(z|x)] with the
selected prior distribution p(z). The selection of the prior distribution has important effects in
the inferred variables q(z) of these models and its influence is thoroughly studied in Chapters
7 and 8. A restrictive prior p(z) can hinder the ability to properly compress the data of
the empirical data distribution qδ(x) into p(z) (see Fig. 3.3). For example, different classes
shouldn’t share certain features in the low-dimensional manifold space (See Fig. 3.5). The
most broadly used prior in the literature is the very restrictive p(z) = N (0, I), which is
commonly used in GANs [29] and in VAEs [53]. This prior doesn’t give the possibility for
data that is separated in the observable space to be separated in the latent space. One option
to increase the flexibility of the prior distribution is to model it as a mixture of distributions

p(z) =
K∑
i=1

p(z|y = ci)p(y = ci) with y ∈ Y ,

where Y is the space of categorical variables. The models that consider mixture of distribu-
tions in their prior are studied in Chapter 7. In this thesis we address representation learning
by studying the class separation in the manifold space and its relation with the prior distri-
bution p(z). In Chapter 5 we observe that the inductive-bias of generative-inference models
is given by the maximum likelihood of the decoder or encoder, or more intuitively by the
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reconstruction error reduction in X or Z, respectively (see Fig. 3.4). This reconstruction
error is one way to measure the dependency of xi ∈ X with its corresponding variable in the
latent space z(xi) ∈ Z and can be associated with the concept of mutual information and
representation learning.

Note that representation learning is not a primary objective in GANs [29] since they don’t
even have an inference model. We establish two desired properties of generative-inference
models that will be thoroughly studied in Chapters 4 and 5 (see Fig. 3.3 and Fig. 3.5).
These properties are:

• Desired property 1. The marginal distributions of generative-inference models should
match i.e. q(z), p(z) should be equal and p(x), q(x) should be equal.

• Desired property 2. Data xi ∈ X sampled from the empirical data distribution qδ(x)
should have a high correlation with its codified version z(xi) ∈ Z in the latent space.

Desired property 1 is a restriction given by the graphical models p and q. The in-
ferred marginal distribution q(z) should follow the prior distribution p(z) and the generated
marginal distribution p(x) should follow the real distribution q(x). We study this property
from a joint matching distribution perspective in Chapter 4 and from a mutual informa-
tion perspective in Chapter 5. Note that matching marginal distributions doesn’t give us
information about the relation between an observation xi ∈ X and its latent codification
z(xi) ∈ Z.

Desired property 2 tells us about the representation learning capabilities of the model.
If the codified version z(xi) of the data xi ∼ qδ(x) is well represented in the latent space
this would mean that a simpler classifier can be trained in the lower dimensional space
Z. The desired property 2 is studied in Chapter 5 by deriving the loss function of various
generative-inference models from a mutual information perspective and associating them
with their representation learning objective. We study the mutual information perspective
by bounding it with likelihoods Eq(x)[log p(x|z)] or Ep(z)[log q(z|x)], which is different from
the approaches studied in [88] that train a critic to differentiate zi ∼ p∗(z), xi ∼ p∗(x) from
xi, zi ∼ p∗(x, z).

At the end of Chapter 5 we compare the mutual information perspective and the joint
matching distribution perspective observing the trade-offs between generation/compression
capabilities and representation learning. Finally we create new models based on these anal-
yses.
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Figure 3.3: Diagram of the first objective of generative-inference models. The first objective
of these models is that their marginals distributions should match, i.e. p(x) matches q(x) and
q(z) matches p(z). The red rectangle makes reference to this first objective. The blue and
green colors are associated with components of the inference and generative model, respec-
tively. Solid lines correspond to the true underlying distribution, the circles correspond to
samples from this distribution, dashed lines correspond to the approximation of the marginal
distribution obtained by the model and dotted arrows correspond to transformations, i.e.
conditional distributions of the model; encoder or decoder.
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Figure 3.4: Diagram of the second objective of generative-inference models. The second
objective of these models is that the samples from the underlying distributions of the data and
its reconstruction should match, i.e. Eqδ(x)q(z|x)[log p(x|z)] and Ep(z)p(x|z)[log q(z|x)] should be
high. The red rectangles makes reference to this second objective. The blue and green
colors are associated with components of the inference and generative model, respectively.
Rectangles and data with both colors correspond to transformations or samples, respectively,
that involve the two model distributions. Solid lines correspond to the true underlying
distribution, the circles correspond to samples from this distribution, dashed lines correspond
to the approximation of the marginal distribution obtained by the model and dotted arrows
correspond to transformations i.e. conditional distributions of the model; encoder or decoder.
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Figure 3.5: Example that shows the impact of a badly selected prior for the observable
distribution. We should not set an unimodal distribution as a prior if the distribution of
the observable space is a mixture of distributions. The points xA and xB are separated
despite that their respective codifications z̃A,i and z̃B,j are close in the latent space. This will
happen without loss of generality to some of the pairs that comes from different modes in
the observable space and have an unimodal distribution as prior.
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Chapter 4

Generative-Inference models: A
matching joint distributions perspective

Desired properties 1 and 2 presented in Chapter 3 can be achieved by matching the joint
distributions p(x, z) and q(x, z). If the joint distributions are equal then the marginal dis-
tributions p(x), q(x) and q(z), p(z) are equal too (desired property 1). This is easy to
observe by integrating one variable i.e.

∫
z
p(x, z)dz =

∫
z
q(x, z)dz ≡ p(x) = q(x) and∫

x
p(x, z)dx =

∫
x
q(x, z)dx ≡ p(z) = q(z). Additionally if the joint distributions are equal the

conditionals distributions are also equivalent as we can observe mathematically q(x, z)/q(z) =
p(x, z)/p(z) ≡ q(x|z) = p(x|z) and q(x, z)/q(x) = p(x, z)/p(x) ≡ q(z|x) = p(z|x). If this
occurs using deterministic conditional distributions we would obtain perfect reconstructions
[19] (desired property 2). This means that the encoder distribution q(z|x) would maintain
the most relevant and representative features of the observed data. As we will observe math-
ematically this dependency of the variables in the observable and latent space will present
itself as a maximization in the likelihood of the decoder or encoder. We will analyze this
correlation from an information theoretic perspective in the next chapter. In this chapter we
focus on the matching of joint distributions perspective.

The literature shows two different ways of matching the joint distributions. The first way
is by matching the joint distributions adversarially [23, 19, 68, 20]. The second way is based
on decomposing the matching of the joint distributions in simpler terms. In general this is
done using the Kullback-Leibler (KL) divergence in which the order of the joint distributions
matters. Decomposing DKL(q(x, z)||p(x, z)) or DKL(p(x, z)||q(x, z)) yields different models
with different characteristics. In what follows these models are studied in detail.

4.1 Matching q(x, z) and p(x, z) adversarially

Matching q(x, z) and p(x, z) adversarially [19, 23] is based on the same objective of Generative
adversarial networks (GANs) proposed in [29] (Chapter 2). This objective can be extended
to match the joint distribution q(x, z) and p(x, z) as shown in Eq. (4.1). If the same f(y),
g(y) and h(y) of the vanilla GAN are used it can be proved [19, 23] that Eq. (4.1) minimizes
the Jensen Shannon divergence of the joint distributions i.e. minimizes DJS(q(x, z)||p(x, z)).
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max
D

Ex,z̃∼q(x,z)[f(D(x, z̃))] + Ex̃,z∼p(x,z)[g(D(x̃, z))],

min
G

−Ex,z̃∼q(x,z)[h(D(x, z̃))] + Ex̃,z∼p(x,z)[h(D(x̃, z))].
(4.1)

More recently [20] combined adversarial matching of the joint distributions with adversar-
ial matching of the marginals resulting in an overall better performance. In [68] the authors
noted that matching the joint distributions adversarially have identifiability problems i.e.
the inference and the generative model don’t have the capability to perform good reconstruc-
tions. To solve the drawback of joint distribution adversarial approaches they also maximize
the likelihood of the decoder and encoder in the observable space and the latent space, re-
spectively. Veegan in [104] proposed a similar approach maximizing only of the encoder in
the latent space. In Fig. 4.1 we can observe a diagram of adversarial training for joint
distributions matching.

Figure 4.1: Diagram of adversarial training to match joint distributions.

In the literature this type of training has been used to match other joint distributions. In
AVB [77] (section 2.2) the pairs xi ∼ q(x), z̃i ∼ q(z|x = xi) and the pairs xi ∼ q(x), zi ∼ p(z)
are distinguished by a discriminator, loss function that we will refer as D(q(x)q(z|x)||q(x)p(z)).
In ALICE [68], in domain adaptation experiments, this training objective is used to maxi-
mize the likelihood, distinguishing the pairs (xi, xi) and the pairs (xi, x̃i), with xi ∼ q(x), x̃i ∼
p(x|z = zi ∼ q(z|x = xi)). When one domain is low dimensional Z this type of training has
no been explored, yet is still an open problem if this approach could result useful for repre-
sentation learning tasks.
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4.2 Minimizing DKL(q(x, z)||p(x, z)) by decomposing it
We start by decomposing the KL divergence of the joints q(x, z) and p(x, z) as follows:

DKL(q(x, z)||p(x, z))
= DKL(q(x)||p(x)) + Eq(x)[DKL(q(z|x)||p(z|x))] (4.2)
= Eq(x)Eq(z|x)[− log p(x|z)]− hq(x) + Eq(x)[DKL(q(z|x)||p(z))] (4.3)
= Eq(x)Eq(z|x)[− log p(x|z)]− hq(x)− hq(z|x)− Eq(z)[log p(z)] (4.4)
= Eq(x)Eq(z|x)[− log p(x|z)]− hq(x) + Iq(x, z) +DKL(q(z)||p(z)), (4.5)

where hq(x) is the differential entropy of the data, which we can not be optimized. Iq(x, z)
is the mutual information of the inference model q. Eq. (4.5) is obtained by adding and
subtracting the differential entropy hq(z) in Eq. (4.4), since Iq(x, z) = hq(z)− hq(z|x).

This divergence can be decomposed as in Eq. (4.3) or Eq. (4.5). Eq. (4.3) is optimized
by Variational Autoencoders (VAEs) with the exception of the entropy term hq(x). β-VAE
[37] and Adversarial Variational Bayes (AVB) [77] also follow Eq. (4.3) modifying the op-
timization of DKL(q(z|x)||p(z)), in particular β-VAE adds a constant to the KL-divergence
term and AVB replaces it with adversarial training. We note that this view has been previ-
ously discussed for VAE models [121, 69] but we expand it including models that match the
marginal distributions q(z), p(z) as follows.

Other methods can be associated with Eq. (4.5) by replacing DKL(q(z)||p(z)) with sim-
ilar objectives. Info-VAE [120], Adversarial Autoencoders (AAEs) [75], Wasserstein Au-
toencoders (WAEs) [107] have followed this approach using adversarial training or maximum
mean discrepancy between the marginal distributions. They don’t explicitly optimize Iq(x, z)
and thus the entropy term hq(z|x), which is included in Iq(x, z). The relevance of this term
and its relation with the generative capabilities are discussed at the end of Chapter 5.

The first term of the DKL(q(x, z)||p(x, z)) decomposition is Eqδ(x)Eq(z|x)[− log p(x|z)]. This
cross-entropy term is optimized using MSE for most models. In [68] they replace this cross-
entropy using a more flexible approach like adversarial training [68]. In Fig. 4.2 we show
graphically and intuitively how the decomposition of DKL(q(x, z)||p(x, z)) is optimized.

4.3 Minimizing DKL(p(x, z)||q(x, z)) by decomposing it
We start by decomposing the KL divergence of the joints p(x, z) and q(x, z) as

DKL(p(x, z)||q(x, z))
= DKL(p(z)||q(z)) + Ep(z)[DKL(p(x|z)||q(x|z))] (4.6)
= Ep(z)Ep(x|z)[− log q(z|x)]− hp(z) + Ep(z)[DKL(p(x|z)||q(x))] (4.7)
= Ep(z)Ep(x|z)[− log q(z|x)]− hp(z)− hp(x|z)− Ep(x)[log q(x)]. (4.8)
= Ep(z)Ep(x|z)[− log q(z|x)]− hp(z) + Ip(x, z) +DKL(p(x)||q(x)). (4.9)

The divergence DKL(p(x, z)||q(x, z)) can be decomposed either as Eq. (4.7) or Eq. (4.9).
Note that it is not possible to minimize Ep(z)[DKL(p(x|z)||q(x))], the third term of Eq. (4.7),
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Figure 4.2: Diagram for the optimization of DKL(q(x, z)||p(x, z)) decomposition.

using a closed form solution since we don’t have access to the q(x) distribution. This could
be optimized using adversarial training like AVB, but to the best of our knowledge this
hasn’t been explored in the literature. We note that some models follow this perspective by
matching the marginal distributions p(x), q(x) instead of all the terms of DKL(p(x, z)||q(x, z))
as follows.

Minimizing DKL(p(x, z)||q(x, z)) has been explored in Adversarial Inference by Matching
Priors and Conditionals (AIM) [69] and in Info-GAN [14] using some components of Eq.
(4.9). The first term of Eq. (4.9), Epδ(z)Ep(x|z)[− log q(z|x)], is optimized with the MSE for
the Gaussian case or the negative loglikelihood for more general cases. The second term hp(z)
is the entropy of the prior, which can be fixed or optimized. The third term Ip(x, z) is the
mutual information of the generative model that is not optimized explicitly. The last term
is the Kullback-Leibler divergence DKL(p(x)||q(x)), matching these marginal distributions
is replaced by adversarial training in [69] and [14]. In Fig. 4.3 we show graphically and
intuitively how the decomposition of DKL(p(x, z)||q(x, z)) is optimized.

4.4 Which method should I use to match q(x, z) and p(x, z)?

In theory minimizing DKL(q(x, z)||p(x, z)), DKL(p(x, z)||q(x, z)) or D(q(x, z)||p(x, z)) should
be equivalent in the optimal case of q(x, z) = p(x, z). But in practice this is not the case
because of the training procedure or the model capacity of either q(z|x) or p(x|z). In Chapter
6 we perform an empirical study of many generative-inference models with different training
objectives. In the following we give general insights about the advantages and disadvantages
of minimizing DKL(q(x, z)||p(x, z)), DKL(p(x, z)||q(x, z)) or D(q(x, z)||p(x, z)).

In DKL(q(x, z)||p(x, z)) the expected negative log-likelihood Eqδ(x)Eq(z|x)[− log p(x|z)] oc-
curs in the observed space X (Eq. (4.4)), which can be difficult to minimize using MSE in
high dimensional X . Additionally, from Eq. (4.4) the term Eq(z)[log p(z)] show that samples
from q(z) should have high likelihood with respect to p(z). The support of q(z) is increased
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Figure 4.3: Diagram for the optimization of DKL(p(x, z)||q(x, z)) decomposition.

by maximizing the entropy hq(z|x) from the same equation. Since the support of q(z) doesn’t
cover all the support of p(z) models that minimize DKL(q(x, z)||p(x, z)) have better repre-
sentation learning capabilities than models that minimize DKL(p(x, z)||q(x, z)). In Chapter
5 we explain in detail this observation by associating the loss function of several models with
the mutual information of their distribution.

Models that minimize DKL(q(x, z)||p(x, z)) instead should have better generative capabil-
ities since they match p(x) and q(x) directly, minimizing DKL(p(x)||q(x)) from Eq. (4.8). In
practice adversarial training is used to match p(x) and q(x) and can scale to more complex
datasets than models that minimize DKL(q(x, z)||p(x, z)). In conclusion models that mini-
mize DKL(p(x, z)||q(x, z)) are more suitable for generation. Instead, models that minimize
DKL(q(x, z)||p(x, z)) are more useful when the complexity of X is low (when using MSE for
reconstruction error in the observed space) and the main task of interest is representation
learning instead of generation.

Models that minimize D(q(x, z)||p(x, z)) use adversarial training so these are expected to
have high generative capabilities. On the other hand, previous works [19, 20, 23] have shown
poor reconstruction performance for these models. In [69] they showed that their model
AIM, obtained by decomposing DKL(p(x, z)||q(x, z)), outperforms models that minimize
D(q(x, z)||p(x, z)). It is unknown if the representation learning capabilities of the models that
minimize D(q(x, z)||p(x, z)) are better than the models obtained from DKL(p(x, z)||q(x, z))
or DKL(q(x, z)||p(x, z)). In Chapter 6 we show empirical results comparing the generative
and representation learning capabilities of generative-inference models with different training
objectives.
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Chapter 5

Generative-Inference models:
Representation learning perspective
through mutual information.

In this chapter we present a general formulation for generative-inference models from the
perspective of representation learning. This formulation is obtained using the information
theoretic concept of mutual information (MI). Shannon’s MI between the observable variables
x ∈ X and latent variables z ∈ Z is defined as

Ir(x, z) =

∫
X

∫
Z
r(x, z) log

r(x, z)

r(x)r(z)
dx dz (5.1)

= DKL(r(x, z)||r(x)r(z))
= Er(x,z) [log r(x|z)]− Er(x) [log r(x)]

= Er(x,z) [log r(z|x)]− Er(z) [log r(z)] ,

where r(x, z) is the joint distribution of x and z. The definition of MI depends on the
choice of the joint distribution. In this case we have two definitions of MI, one for the joint
distribution of the inference model q(x, z) and one for the generative model p(x, z). In what
follows we will use the sub-indexes q and p to refer to quantities associated with the inference
and generative distributions, respectively. The sub-index r is used to refer to quantities
associated with either one of the distributions.

We start by decomposing the MI of the inference model q(x, z) = q(x|z)q(z) as follows

Iq(x, z) = Eq(x,z) [log q(x|z)]− Eq(x) [log q(x)]

= Eq(x,z) [log p(x|z)]− Eq(x)[log q(x)] + Eq(z)[DKL(q(x|z)||p(x|z))] (5.2)
= Eq(x,z)[log p(x|z)]−Rmodel

q (x, z)+Rmodel
q (x, z)

+ hq(x) + Eq(z)[DKL(q(x|z)||p(x|z))]
= Eq(x,z)[log p(x|z)]−Rmodel

q (x, z)+∆Imodel
q (5.3)

= − Lmodel
q +∆Imodel

q (5.4)
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where the loss function of the model is given by

Lmodel
q = Eq(x,z)[− log p(x|z)] +Rmodel

q (x, z), (5.5)

and the mutual information gap of the generative-inference model loss function and the MI
of the inference model is given by

∆Imodel
q = Rmodel

q (x, z)+ hq(x) + Eq(z)[DKL(q(x|z)||p(x|z))]. (5.6)

The terms collected in Lmodel
q correspond to the loss function’s components of the generative-

inference model. The loss function is composed by the likelihood and the term Rmodel
q which

represents a set of restrictions (regularization) for the distributions of the model. This re-
striction vary depending on the model and is also part of the MI gap ∆Imodel

q . Later we
will recognize this restriction term in generative-inference models from the literature to show
that their loss functions comply with this formulation.

The MI of the generative model p(x, z) = p(z|x)p(x) can be decomposed in a similar way
to Eq. (5.3) as follows:

Ip(x, z) = Ep(x,z)[log p(z|x)]− Ep(z) [log p(z)]

= Ep(x,z)[log q(z|x)]− Ep(z)[log p(z)] + Ep(x)[DKL(p(z|x)||q(z|x))] (5.7)
= Ep(x,z)[log q(z|x)]−Rmodel

p (x, z)+Rmodel
p (x, z)

+ hp(z) + Ep(x)[DKL(p(z|x)||q(z|x))]
= Ep(x,z)[log q(z|x)]−Rmodel

p (x, z)+∆Imodel
p (5.8)

= − Lmodel
p +∆Imodel

p , (5.9)

where Lmodel
p and ∆Imodel

p are the generative distribution counterparts of the aforementioned
terms. The decompositions in Eq. (5.4) and Eq. (5.9) associate the loss function of the
model Lmodel

r with the MI Ir(x, z). In both decompositions the term ∆Imodel
r represents the

gap between the loss function of the model and the MI. For a generative-inference model
to learn faithful representations this gap should be small. The term Rmodel

r (x, z) ≥ 0 is a
restriction over the distributions of the model and is included in both Lmodel

r and ∆Imodel
r .

When Lmodel
r is minimized the restriction is also minimized. A small value for the restriction

is desirable as it reduces the gap.

In the literature Rmodel
r (x, z) has been utilized to match some of the distributions of the in-

ference model and/or generative model in addition to the decoder likelihood Eq(x,z)[log p(x|z)]
or encoder likelihood Ep(x,z)[log q(z|x)]. Models loss function that maximize Eq(x,z)[log p(x|z)]
are bounds of Iq(x, z) (see Eq. (5.3)) and models loss function that maximize Ep(x,z)[log q(z|x)]
are bounds of Ip(x, z) (see Eq. (5.8)). In Table 5.1 we collected all generative-inference mod-
els that are bounds of Iq(x, z), Ip(x, z) or both and present their corresponding restrictions
Rmodel

r (x, z). We note that models loss function that are bounds of Iq(x, z) tend to ap-
ply restrictions on their latent variable distributions in order to match p(z) with q(z|x) or
q(z). On the other hand models that are bounds of Ip(x, z) try to match their distribu-
tions in the observed space e.g. q(x) with p(x). Table 5.1 give us an idea of the current
model’s restrictions and the ones that are not yet explored. Note that the models that match
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Restrictions for models that bound Imodel
q

Models that match q(z|x), p(z) RVAE
q (x, z) = Eq(x)[DKL(q(z|x)||p(z))] [53]

Rβ−VAE
q (x, z) = β · Eq(x)[DKL(q(z|x)||p(z))] [37]
RAVB

q (x, z) = D(q(z|x)q(x)||p(z)q(x)) [77]
Models that match q(z), p(z) RAAE/WAE

q (x, z) = D(q(z)||p(z)) [75, 107]
RInfo-VAE/WAE

q (x, z) = MMD(q(z), p(z)) [120, 107]
Models with other restrictions RVAE-GAN

q (x, z) = DKL(q(z|x)||p(z)) +D(p+(x)||q(x)) [61]
RCycle-GAN

q (x,x′) = D(p(x′)||q(x′)) [122]
Restrictions for models that bound Imodel

p

Models that match p(x), q(x) RAIM/InfoGAN
p (x, z) = D(p(x)||q(x)) [69, 14]

Models with other restrictions RVeegan
p (x, z) = D(p(x, z)||q(x, z)) [104]

Restrictions for models that bound Imodel
q + Imodel

p

Models with other restrictions RALICE
q (x, z) = D(p(x, z)||q(x, z)) [68]

RDiscoGAN
q (x,x′) = D(p(x)||q(x)) +D(p(x′)||q(x′)) [51]

Table 5.1: Restrictions of different generative-inference models. We separate models that
are bounds of Iq(x, z), Ip(x, z) or both. The D can be replaced for any adversarial training.
The variable x′ ∈ X ′ appeared in Cycle-GAN and DiscoGAN refers to data that belongs
to a high dimensional space (similar to X ). D(p+(x)||q(x)) refers to an adversarial training
optimization with samples from the posterior q(z|x) and the prior p(z) [61].

joint distribution [23, 19] solely do not maximize likelihood and can not be analyzed by the
proposed perspective.

As shown before several generative-inference models can be formulated as optimizing a
bound on the MI Ir(x, z). Note that this quantity is not fixed and depends on the joint
distribution that we are measuring i.e. p(x, z) = p(x|z)p(z) or q(x, z) = q(z|x)q(x). These
models are learned through training but we can still obtain a measurable quantity that
depends on the distributions p and q. For example, we can compute the MI of the inference
model q as

Iq(x, z) = Eq(x,z) [log q(z|x)− log q(z)] (5.10)

= Eq(x,z)

[
log

q(z|x)p(z)
p(z)q(z)

]
= Eq(x)[DKL(q(z|x)||p(z))]−DKL(q(z)||p(z)), (5.11)

using either Eq. (5.10) or Eq. (5.11). Eq. (5.11) allows us to know if the model’s
restriction augment or reduce the maximum reachable MI. Low/High MI implies less/more
representation learning capabilities. Under certain assumptions it is possible to use Eq. (5.10)
or Eq. (5.11) to measure the maximum inference model MI. For example, in Eq. (5.10) we can
compute both entropy terms, Eq(x,z)[log q(z|x)] = −hq(z|x) is the encoder entropy (commonly
Gaussian) and Eq(z)[log q(z)] = −hq(z) can be computed approximating q(z) as a multivariate
Gaussian. In Eq. (5.11) Eq(x)[DKL(q(z|x)||p(z))] can be computed similarly to VAEs [53]
and DKL(q(z)||p(z)) can be computed by approximating q(z) as a multivariate Gaussian and
using the close form solution of the KL divergence between Gaussian distributions (Appendix
A).
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Figure 5.1: Diagram for the optimization of a variational bound of Iq(x, z).

The MI of the generative model p can be decomposed in a similar way to Eq. (5.11) as

Ip(x, z) = Ep(x,z)[log p(x|z)− log p(x)] (5.12)
= Ep(z) [DKL(p(x|z)||q(x))]−DKL(p(x)||q(x)) (5.13)

but in this case the terms are more difficult to compute. In Eq. (5.12) we require the entropy
of the marginal and conditional distribution, which are hard to compute in high dimensions.
In Eq. (5.13) both Ep(z)[DKL(p(x|z)||q(x))] and DKL(p(x)||q(x)) can be estimated using
adversarial training but they will be biased by the discriminator used. This bias makes the
MI of the generative model unfeasible to use in practice.

Note that Eq. (5.10) or Eq. (5.12) measures the maximum reachable MI but the likelihood
decreases the gap of an arbitrary model to this measure. Ignoring Rmodel

r (x, z), in the case
of q = p we have equal conditional distributions and the gap between the likelihood and
the MI will be given by the differential entropy hq(x) = −Eq(x)[log q(x)] for Iq(x, z) (see
Eq. (5.2)) and hp(z) = −Ep(z)[log p(z)] for Ip(x, z) (see Eq. (5.7)). In the ideal case of
Rmodel

r (x, z) = 0 and p = q the MI of the generative and the inference model are equal and
thus, in terms of representation learning, it is preferable to optimize a bound of Ip(x, z) since
generally hp(z) < hq(x). Given the previous theoretical analysis it is important to force the
joint distributions to be equal p = q and use a restriction Rmodel

r that can be minimized to
zero. Restrictions Rmodel

r > 0 will increase the gap ∆Imodel
r of the model loss function Lmodel

r

to the mutual information Ir(x, z).

We expect models that optimize the bound of Iq(x, z) to have better representation learn-
ing capabilities than models that optimize the bound of Ip(x, z). Generally, models that
optimize Iq(x, z) use restrictions of the form Eq(x) [DKL(q(z|x)||p(z))] or DKL(q(z)||p(z))
that directly affect Iq(x, z) (see Eq. (5.11)) i.e. their representation learning capability.
Their generative performance is optimized indirectly by the likelihood Eq(x,z)[log p(x|z)] and
will also depend on how well the model q(z) fits p(z). Symmetrically we expect models
that optimize the bound of Ip(x, z) to have better generative capabilities than models that
optimize the bound of Iq(x, z). Generally, models that optimize Ip(x, z) use restrictions
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Figure 5.2: Diagram for the optimization of a variational bound of Ip(x, z) .

of the form Ep(z) [DKL(p(x|z)||q(x))] or DKL(p(x)||q(x)) that directly optimize their genera-
tive performance. Their performance on inference is optimized indirectly by the likelihood
Ep(x,z)[log q(z|x)] and will also depend on how well the model p(x) approximates q(x). Models
with combined restrictions could result in better representation learning and generation ca-
pabilities. The representation learning or the generative performance in any case will depend
on the limitations of the modeled q(z|x), p(x|z) and the restrictions imposed.

5.1 Detailed Analysis

VAEs are bad for representation learning. From Eq. (5.11) we note when q(z|x) =
p(z) the inference model becomes uninformative i.e. Iq(x, z) = 0 since all the conditional
distribution q(z|x) collapse to the prior p(z). The latter observation is critical for models
that try to match the distributions q(z|x) and p(z) such as VAE, β-VAE and AVB. From a
theoretical point of view these models will have a limited capacity for representation learning
since they reduce the maximum MI reachable by the inference model (Eq. (5.11)). Moreover
their restriction Rmodel

q cannot reach the minimum zero value, if this were the case q(z|x)
should be equal to p(z) obtaining an uninformative q(z|x). In consequence the restriction
Rmodel

q should be positive increasing the gap ∆Imodel
q (Eq. (5.6)). From Eq. (5.11) we can

note that models that match the marginal distributions q(z) and p(z) would likely perform
better for representation learning since they increment Iq(x, z) by reducing DKL(q(z)||p(z))
(Eq. (5.11)). The models AAE, WAE and Info-VAE enter in this category by bounding
the inference model MI. The models AIM and InfoGAN also belong to this category as they
bound the generative model MI. Based on these observations we develop new methods that
match the marginals q(z) and p(z), which methods are presented in Section 6.2.

Matching conditional distributions by optimizing the likelihood. Without loss
of generality, given a fixed mutual information Iq(x, z), optimizing the corresponding ex-
pected log-likelihood Eq(x,z)[log p(x|z)] decreases the divergence between conditional distri-
bution Eq(z)[DKL(q(x|z)||p(x|z))]. This can be observed in Eq. (5.10) since Eq(x)[log q(x)]
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cannot be optimized. The minimization of Eq(z)[DKL(q(x|z)||p(x|z))] occurs when optimiz-
ing the decoder p(x|z) under the support of q(z). In practice Iq(x, z) is fixed in two situations:
when we train a model iteratively and when q is fixed because is learned before p. In an
iterative training we have a certain q and p in an arbitrary iteration and the gradients are
computed under those distributions at that iteration validating our analysis in this case.
When q is learned before p, p(x|z) will be optimized under a fixed q(z|x) and q(z). In prac-
tice q is easier to learn than p since encoding a lower dimension is simpler than decoding
a higher dimension. Finally, note that the symmetrical analysis of the mutual information
Ip(x, z) is valid, the likelihood optimized in this case is Ep(x,z)[log q(z|x)] and the divergence
minimized is Ep(x)DKL(p(z|x)||q(z|x)) (see Eq. (5.7)). In practice the assumption of a fixed
p in this is case is more accurate since q(z|x) is learned by fixing p in Ep(x,z)[log q(z|x) [69] to
avoid unstable training. In Iq(x, z) the backpropagation in Eq(x,z)[log p(x|z)] occurs in both
q and p [53].

Matching joint distributions by optimizing likelihood and matching marginals.
From the previous analysis maximizing the likelihood Eq(x,z)[log p(x|z)] is equivalent to min-
imizing Eq(z)[DKL(q(x|z)||p(x|z))] under the support of q(z). If we additionally match the
marginals q(z) with p(z) we will be matching the conditionals and the marginals, which
is equivalent to matching the joint distributions. We can also observe this from a KL Di-
vergence perspective as shown in Eq. (4.6) or Eq. (4.8). We will later discuss about the
empirical restrictions to match p(z) with q(z). Note that the symmetrical case is also valid,
i.e. maximizing Ep(x,z)[log q(z|x)] and matching p(x) with q(x) enforces matching the joints.

5.1.1 Generative capabilities for models that bound Iq(x, z)
The generative capabilities of a model are measured by how well p(x) = Ep(z)[p(x|z)] approx-
imates q(x) having only access to qδ(x). Note that in p(x) = Ep(z)[p(x|z)] the expectation is
over all the prior p(z) i.e. we expect that each sample from the prior after decoding looks re-
alistic. As we previously discussed, models loss function that bound Ip(x, z) usually optimize
directly D(p(x)||q(x)) and thus their generative performance. The generative capabilities of
models that bound Iq(x, z) will depend on how well they fit q(z) to p(z) and how well they
optimize the likelihood Eq(x,z)[log p(x|z)]. In the literature these models usually use restric-
tions of the form Rmodel

q (x, z) = Eq(x)[Ddist(q(z|x), p(z))] or Rmodel
q (x, z) = Ddist(q(z), p(z)),

dist in this case refers to a divergence or distance between distribution. Theoretically, we
will see that using one restriction or the other can have drastic effects over the generative
performance for models that bound Iq(x, z).

Let’s consider a model that bounds Iq and have infinite capacity. Under these assumptions
Eq(x,z)[log p(x|z)] is maximum and the generative capabilities of the model will depend only on
how well q(z) fits p(z). One could think that we should prefer models that match q(z) directly
to p(z), unfortunately in practice obtaining a good approximation for q(z) = Eq(x)[q(z|x)] is
hard since we only have qδ(x) available instead of q(x). In this empirical case the marginal
distribution will be given by q(z) = Eq(x)[q(z|x)] ≈ Eqδ(x)[q(z|x)] = 1

N

∑
i=1 q(z|x = xi). From

the last equality we note that the model should approximate p(z) relying on finite data from
qδ(x) and the stochasticity of the encoder distribution q(z|x). If the entropy of q(z|x) is low
the model won’t achieve this objective since it won’t be considering all the values that p(z)
could take. Models that match the marginals like AAE, WAE, or Info-VAE don’t consider
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this entropy term hq(z|x) and thus their optimization to match p(z) with q(z) reduces to
estimating q(z) using only the first statistical moment of q(z|x). From this observation,
methods like VAE and β-VAE will have better generation capabilities since they enforce the
maximization of hq(z|x).

Although the increment of hq(z|x) enforces a bigger support of q(z) it also has negative
consequences in representation learning. We can observe this drawback in two manners.
The first and simplest is by observing the definition of the mutual information Iq(x, z) =
DKL(q(x, z)||q(x)q(z)). The mutual information is the KL divergence between q(x, z) and
q(x)q(z). Informally the MI is trying to distinguish the samples xi, z̃i ∼ q(x, z) from the
samples of xi, z̃i ∼ q(x)q(z). If we increase the entropy hq(z|x) then it is going to be harder to
distinguish samples from both distributions lowering the mutual information. The second way
to note the drawback of adding the entropy term is by observing Eq. (5.11). We can note that
if we choose a new restriction that considers to maximize an additional entropy term hq(z|x)
i.e. Rnew-model

q = Rmodel
q − hq(z|x) the gap ∆Imodel

q to the mutual information will increase.
This is because in general the differential entropy hq(z|x) is negative (the entropy of the
conditional distribution is low) and −hq(z|x) increments the gap to the mutual information
∆Imodel

q . Moreover it also minimizes the maximum MI reachable since Iq = hq(z)− hq(z|x)
(Eq. (5.11)).

We observe that maximizing hq(z|x) affects the MI of the inference model and also in-
creases the gap of the model loss function ∆Imodel

q . This in general should affect the repre-
sentation learning capabilities of the model i.e. its ability to separate classes in the latent
space. However, representation learning is only going to be affected if the codified data from
different classes are close in the latent space. This occurs if we use an unimodal prior such
as N (0, I) since in some frontier of the latent space the data from different classes would be
close. On the contrary we would like that data from the same class to be close together in
the latent space so p(x) properly generalizes q(x) having only qδ(x) available. We could use
a multimodal prior (studied in detail in Chapter 7) to model and enforce similar features
to be close in the latent space and dissimilar features to be far. In a multimodal prior the
increment of hq(z|x) shouldn’t affect the representation learning capabilities since it would
be enforcing the smoothness of data with similar features.

5.2 Related methods

The most similar work in the literature is [121] where they express the loss function of different
generative-inference models with the MI and consistency terms of their distributions. In
comparison we treat the loss functions of many generative-inference models as a bound of
the MI, which is fundamentally different to [121]. This different view allows us to extract
additional conclusions about the behaviour of the generative-inference models. Thanks to
our interpretations we can expand the generative-inference models of the literature as shown
in Chapter 6.

Another interpretation from [121] that differs from our work, is treating β-VAE [37] as
a model that minimizes the mutual information between the observed variables x ∈ X and
the latent variables z ∈ Z. In [121] the loss function of β-VAE is expressed as Lβ−VAE =
(β − 1)Iq(x, z) + βDKL(q(z)||p(z)) + Eq(z)[DKL(q(x|z)||p(x|z))], being the divergences terms
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consistency constrains. Following this it is affirmed that the minimization of Lβ−VAE with β >
1 implies a minimization on Iq(x, z). From the perspective of our work this is not necessarily
true. As previously discussed, under reasonable empirical assumptions the optimization
of DKL(q(x|z)||p(x|z) is equivalent to the maximization of Eq(x)q(z|x)[log p(x|z)] and thus it
affects the optimization of q(z|x). The encoder q(z|x) is the only optimizable component of
q(x, z), which defines Iq(x, z). Therefore if Iq(x, z) is actually minimized will depend on how
Eq(x)q(z|x)[log p(x|z)] scales with respect to (β − 1)Iq(x, z).

5.3 Discussion
Matching the joint or marginal distributions together with the optimization of the generative
model MI bound seems promising for models with good representation learning performance.
Models like AIM and Veegan follow this optimization procedure so it is interesting if their
generative and inference capabilities translate according to this observation in practice. Note
that when we maximize the likelihood with the same marginals (or models that enforce this
condition) we are also matching the joint distribution. Enforcing the joint distributions to
be equal using different approaches seems promising in terms of representation learning and
generation. The most similar methods in the literature that uses this kind of approach are
ALICE [68] and Veegan [104]. We will test these and other generative-inference models in
the next Chapter. Finally it is worth to mention that all the analysis made in this chapter
comes from a theoretical point of view. In practice it is relevant to explore if the model
can actually minimize the expected log-likelihood Eq(x,z)[log p(x|z)], Ep(x,z)[log q(z|x)] or KL
divergence of the marginals DKL(q(z)||p(z)), DKL(p(x)||q(x)).
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Chapter 6

Generative-Inference models: Empirical
analysis and proposed models

In Chapter 5 we studied from a theoretical point of view the generative inference models loss
functions and their relationship with the mutual information of their distributions. In this
chapter we observe empirically how this theory translates into practice. For this purpose
we implement various generative-inference models using the same graphical model for the
distributions p(x|z) and q(z|x) for fair comparison.

In section 6.1 we enunciate the possible limitations of generative-inference models in prac-
tice. Motivated by the relevance of matching marginal distributions, studied in the previous
chapter, in section 6.2 we propose new generative inference models. In section 6.3 we test
various generative-inference models with a focus on the trade-off between generation and
representation learning capabilities

6.1 Practical considerations of generative-inference’s loss
functions

The generative-inference models loss function that can appear when we decompose the match-
ing of their joint distributions or when we associate them with the mutual information of their
distributions are Eq(x,z)[log p(x|z)], Ep(x,z)[log q(z|x)], DKL(p(x|z)||q(x)), DKL(p(x)||q(x)),
DKL(q(z|x)||p(z)) or DKL(q(z)||p(z)). In the following we will study the assumption made
to compute these loss functions.

In practice Eq(x,z)[log p(x|z)] usually is computed using l2 norm [53] (MSE) or l1 norm [68].
When optimizing in this way it is assumed that each of the input neurons are independent of
each other. This assumption can drastically affect the optimization of p(x|z) for input data
x with correlated neurons (for example, images). Some previous work [22] has assumed a
covariance for the distribution p(x|z), however this estimation can be difficult to estimate in
high dimensional data. This limitation is present in all models that optimize Eq(x,z)[log p(x|z)]
i.e. models that bound Iq(x, z). In practice we will use the MSE in the observed space as
an estimation of Eq(x,z)[log p(x|z)].
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The likelihood Ep(x,z)[log q(z|x)] in practice has been computed using l1 norm [68], l2 norm
[104] or Gaussian likelihood [69] (Eq. (6.1), for diagonal Gaussian encoder N (ũ, σ̃2) = q(z|x)).
Each of these loss functions assume neuron independence across the J dimensions of the latent
space, similarly for MSE in the observed space. Although this is a strong assumption in the
observed space, for latent variable is not restrictive since the model learn how to codify the
data x in the latent dimension Z using q(z|x). In practice we use Gaussian likelihood (Eq.
(6.1)) to estimate the likelihood as follows

Ep(z)p(x|z)[− log q(z|x)] = Ezi∼p(z),x̃i∼p(x|z=zi)

[
J∑

j=1

1

2
log(2πσ̃2

ij) +
(zij − µ̃ij)

2

2σ̃2
ij

]
, (6.1)

The term DKL(p(x|z)||q(x)) has not been optimized in the literature but this can be done
in a similar way as AVB [77], using adversarial training. In practice adversarial training has
been used in GAN models to optimize the term DKL(p(x)||q(x)) minimizing not necessarily
the KL divergence, using implicit training and not assuming a distribution in p(x|z). Given
the current success of GAN models in complex datasets we hypothesize that GANs will have
better generation and representation learning capabilities than autoencoding models that
maximize Eq(x,z)[log p(x|z)] and assuming a distribution in p(x|z). Note we don’t consider
models that maximize the likelihood in the observed space hierarchically since they corre-
spond to a different graphical model, moreover the architecture of these models are drastically
different to GAN models.

Recent contributions [15] have shown improvement in the generation capabilities of VAE
models using such hierarchically optimization.

The term DKL(q(z|x)||p(z)) usually is optimized in VAE models, in [53] it is assumed that
both distributions are diagonal. Previous contributions [94, 55] have improved the flexibility
of the posterior q(z|x). For simplicity we will consider q(z|x) as diagonal Gaussian for all
experiments.

Finally the term DKL(q(z)||p(z)) has been optimized using adversarial training [75, 107]
or using Maximum mean discrepancy [120, 107]. Minimizing DKL(q(z)||p(z)) is limited by
the estimation of q(z) that is computed using a finite amount of x ∼ qδ(x) as we discussed in
the previous chapter. We note that closed form solution models to minimize DKL(q(z)||p(z))
has not been explored in the literature so we propose them in the next section.

6.2 Wasserstein Variational Autoencoders and others

As we have discussed in the previous chapter, matching the marginals distributions is relevant
to maximize the mutual information of the inference or generative model. Although several
models in the literature match the marginals adversarially like AAE [75], WAE [107] or AIM
[69] none of these models use closed form solutions. We note that matching the marginals in
the observable space is not feasible since q(x) is not known. In contrast this is possible for
the latent variable by making small assumptions. Motivated by [123] we can obtain the first
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two statistics of q(z) given a certain data batch as

µ(z) = Eq(z)[z] =
1

N

N∑
i=1

zi (6.2)

Cov(z, z) = Eq(z)[(z − µ(z))(z − µ(z))T ] =
1

N − 1

N∑
i=1

[(zi − µ(z))(zi − µ(z))T ] (6.3)

where Eqs. 6.2 and 6.3 correspond to the mean and the covariance of q(z), respectively.
In these equations zi is a vector sampled from q(z) = Eqδ(x)[(q(z|x)] and the sub-index i
represents a particular data sample in the batch. In practice we can use the µ’s from the
posterior distribution q(z|x = xi) for each data xi ∼ qδ(x) in the batch. One option to
match these first two statistics to the prior distribution p(z) = N (0, I) is to minimize the
Kullback Leibler divergence DKL(q(z)||p(z)), DKL(p(z)||q(z)) or even DJS(q(z)||p(z)). The
KL between two Gaussian distributions has the following closed form

DKL(N (µ1,Σ1)||N (µ2,Σ2)) =
1

2

[
log

|Σ2|
|Σ1|

−D + (µ1 − µ2)Σ
−1
2 (µ1 − µ2)

T + Tr{Σ−12 Σ1}
]
.

(6.4)

Another option is to minimize the Wasserstein distance W2 [112] between q(z) and p(z). The
Wasserstein distance between two Gaussian distributions has the following closed form

W2(N (µ1,Σ1),N (µ2,Σ2)) = ||µ1 − µ2||2 + Tr(Σ1 + Σ2 − 2(Σ1Σ2)
1/2). (6.5)

We call Wasserstein Variational Autoencoder (WVAE) to the model that use the restric-
tion RWVAE

q = W2(q(z), p(z)) and maximizes the likelihood in the observable space X i.e.
its loss function is given by LWVAE = Eq(x,z)[log p(x|z)] + W2(q(z), p(z)). Since this model
optimizes Eq(x,z)[log p(x|z)] it is a bound of I(x, z). Note that WVAE uses a closed-form
solution to match the marginal distributions q(z) and p(z) that differs from WAE [107] that
uses adversarial training or MMD.

We can also obtain other models following a similar approach: Jensen Shannon Varia-
tional Autoencoder (JSVAE) that minimizes RJS-VAE

q = DJS(q(z)||p(z)), inverse Kullback
Leibler Variational Autoencoder (IKL-VAE) that minimizes RI-VAE

q = DKL(q(z)||p(z)) and
forward Kullback Leibler Variational Autoencoder (FKL-VAE) that minimizes RF-VAE

q =
DKL(p(z)||q(z)). We will compare WVAE and JS-VAE against other generative-inference
models with a focus on the trade-off of generation and inference. We don’t test IKL-VAE or
FKL-VAE since their loss function are collected by JS-VAE.

6.3 Experiments

6.3.1 Dataset

We evaluate various generative-inference models in three benchmarks datasets: a handwritten
digit dataset (MNIST, [63]), one color image dataset (CIFAR-10 [58]) and a fashion products
image dataset (Fashion-MNIST, [115]).
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6.3.2 Evaluation metrics

We measure the quality of the generated samples of all generative-inference models using the
Fréchet inception distance (FID) [36] and the inception score (IS) [98]. For representation
learning we train a linear classifier on top of the frozen representation of the encoded variables.
For the computation of these metrics the labels y are required. Only these supervised metrics
will be given as an oracle for the generative-inference model performance. In practice however
these metrics are not useful for choosing a model if we are training in an unsupervised way.

In Chapter 5 we observed many unsupervised loss functions that appear by associating
generative-inference models with the mutual information of their distributions. The mutual
information can be computed assuming q(z) as Gaussian as discussed in the previous chapter.
We called this estimation as Ĩq(x, z), note Ĩq(x, z) should be ≥ 0 but in practice this could be
negative when the Gaussian assumption of q(z) is no longer valid. Other metrics that appears
to be useful are DKL(q(z)||p(z)) and hq(z|x) since they are obtained by decomposing Ĩq(x, z).
The term DKL(q(z)||p(z)) can be computed assuming q(z) Gaussian similarly to Ĩq(x, z).The
entropy hq(z|x) is easier to compute since q(z|x) is assumed Gaussian generally. Finally
the likelihoods Eq(x,z)[log p(x|z)], Ep(x,z)[log q(z|x)] give us an insight of the codification and
decodification capabilities of q(z|x) and p(x|z).

As we will observe the relevance of these unsupervised terms will give us a close insight of
how well our model perform in generation or representation learning empirically. We want
to emphasize the relevance of the unsupervised metrics obtained in the training set and the
metrics obtained in test set. The test metrics measure the ability of generalization of the
models but they are not usually available, unless we separate data for this purpose. We found
the unsupervised metrics obtained in the training are equally informative and can be used in
practice.

6.3.3 Architecture details

We compare various generative-inference models using the same architecture for the estima-
tion of p(x|z) and q(z|x) for fair comparison. We test various models autoencoding models
like VAE [53], Info-VAE [120] and the proposed models from section 6.2. We also include
GAN models: ALI [23], ALICE [68], Veegan [104] and AIM [69]. In the following we de-
scribed the general architecture for these models, additionally for GAN models we include
the discriminator architecture.

We use the BigGAN model techniques [8] as a base for all our experiments. We employ
ResNet [34] architectures and Spectral Normalization [78]. The residual block components
of the generator and discriminator/encoder are shown in Fig. 6.1 (a) and (b), respectively.
We only use discriminator architectures for GANs based models, we called this discriminator
as Dx. All the 3 × 3 Conv use a padding equal to one, while 1 × 1 Conv have no padding.
The upsampling operation of the generator residual block is done using bilinear interpolation
(“Resblock up” in Table 6.1). The downsampling operation of the encoder residual block is
done using average pooling with kernel size two (“Resblock down” in Table 6.2). A general
scheme of the generator, discriminator and encoder architecture is shown in Fig. 6.2. The
first residual block of the discriminator/encoder inverts the order of the 1 × 1 Conv and
the average pooling and omits the first ReLU activation. Residual blocks with an asterisk
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correspond to the ones that do not perform average pooling and as a consequence they do
not use 1 × 1 Conv. We can write the architectures for all datasets in a general way as in
Fig. 6.2 or more specific as in Tables 6.1, 6.2 and 6.3, where C, J and D change between
datasets. For MNIST and FMNIST C = 32, J = 10 and D = 1. For CIFAR10 C = 96,
J = 128 and D = 3.

For models that estimate joint distribution like ALI, ALICE and Veegan we also considered
two additional discriminators with the same architectures. These discriminators consist of
one residual block with two NN with 8C hidden units and a last hidden layer with one neuron
as output, we additionally use skip connection. One discriminator codify z and the other
discriminate the pair of point (x̃, z) ∼ p(x, z) from the pair (x, z̃) ∼ q(x, z), let’s call these
discriminators as Dz and Dxz respectively. The input of Dxz is the concatenation of the last
features of Dx and Dz.

We use the Adam optimizer [52] with its default parameters β1 = 0 and β2 = 0.999. We
use a learning rate of 2e − 4 for all networks and experiments. All generator, discriminator
and encoder parameters use Spectral Normalization and are initialized with N (0, 0.02I). For
evaluation we use standing statistics [8] i.e. in evaluation mode we run many times (in our
case 16) the forward propagation of the generator model x̃ ∼ p(x, z) storing the means and
variances aggregated across all forward.

The latent z is used to estimate the parameters of batch normalization layers and can
be associated as form of conditional batch normalization [24]. We use the same z in each
generator block (see Fig. 6.1) and different linear transformations represented in the yellow
boxes of Fig. 6.1.

We develop a Pytorch implementation based on the implementation of Big-GAN 1. The
IS and FID scores are calculated as explained in section 2.3 and training a classifier with
the train set of the corresponding datasets (MNIST and FMNIST). The architecture of the
classifier is the same that the encoder except that the last linear transformation correspond
linear with Softmax activation and the number of dimensions in the output is equal to the
number of classes instead of J . To obtain the statistics of FID the test set is used. The
architecture for the CIFAR10 dataset is the same inception network trained in imagenet [18]
but for pytorch implementation.

1https://github.com/ajbrock/BigGAN-PyTorch
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(a) Generator block (b) Discriminator/Encoder
block

Figure 6.1: Residual blocks used in generator, discriminator and encoder networks.

(a) Generator (b) Encoder (c) Discriminator

Figure 6.2: Architectures for the generator, encoder and discriminator networks, respec-
tively. The input of the generator and encoder may vary depending on the model i.e. GAN
based or not. Note that discriminator network is only used in GAN based models.
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z̃i ∈ RJ ∼ N (µ̃i, σ̃
2
i )

or zi ∈ RJ ∼ N (0, I)

Linear(J) → 4× 4× 4C

Resblock up 4C → 4C

Resblock up 4C → 4C

Resblock up 4C → 4C

Output Layer:
BN, ReLU, 3× 3 Conv C → D

Tanh

Table 6.1: Generator

x ∈ R32×32×D

Resblock down D → 4C

Resblock down 4C → 4C

Resblock 4C → 4C

Resblock down 4C → 4C

Resblock down 4C → 4C

Flatten

×2 : Linear (32//24 × 4C) → J

Table 6.2: Encoder

x ∈ R32×32×D

Resblock down D → 4C

Resblock down 4C → 4C

Resblock 4C → 4C

Resblock 4C → 4C

ReLU, Global sum pooling

(linear → 1)

Table 6.3: Discriminator

6.4 Results
The estimation of the distributions q(z|x) and p(x|z) depends drastically on the complexity
of the dataset (see sections 6.4.1 and 6.4.3), the number of dimensions of Z (see section
6.4.2) and the architecture of q(z|x) and p(x|z). We choose a state of the art architecture
(see section 6.3.3) for both VAE and GAN models that has a sufficiently high capacity for
the estimation of q(x).

6.4.1 Datasets with low complexity

Table 6.4 shows the most relevant metrics for the MNIST dataset computed in the training
set. For this simple dataset we assume that the distribution q(z|x) and p(x|z) have enough
capacity to maximize the likelihood Eq(x,z)[log q(z|x)], Ep(x,z)[log p(x|z)] or for the estimation
D(q(x)||p(x)) (or any GAN model).

From Table 6.4, as we discussed in the previous chapter, models that optimize the bound
Iq(x, z) tend to have better representation learning capabilities and models that bound
Ip(x, z) tend to have better generative capabilities. We note from Table 6.4 that any model
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with better generative capabilities perform worse in representation learning and any model
with better representation learning tend to have worse generative capabilities. More gener-
ally for any model that bounds Iq(x, z), Ip(x, z) or both a higher entropy hq(z|x) translates
in better generative capabilities. We note that this also occurs for GAN models that do not
maximize necessarily hq(z|x). We hypothesize that for GAN models hq(z|x) tells us about
how the encoder q(z|x) compress the data in the prior distribution. Autoencoding models
that do not maximize hq(z|x) have lower hq(z|x) (see Table 6.4) which translates in better
representation learning capabilities. VAE models minimize DKL(q(z|x)||p(z)) augmenting
hq(z|x) and improving generative capabilities despite their worse representation learning ca-
pabilities.

Theoretically we seek for a high Iq(x, z) and a model with high Eq(x,z)[log p(x|z)] so the
gap is closer (see Eq. (5.3)) to the mutual information Iq(x, z). We observe the generative
and representation learning capabilities of some generative-inference models in Figures 6.3
and 6.4, respectively. Note that ALI is the only method that can not be considered in the
analysis made in Chapter 5 and is the only with Iq(x, z) < 0. We can observe the general
tendencies of all generative inference models in Figures 6.5 and 6.6 for representation learning
and generative capabilities, respectively. From these results we can have a close idea of the
generative and representation learning capabilities of a model using unsupervised metrics
in the training set when simpler datasets are used. This general tendency is observed in
FMNIST (Appendix B) although the supposition of the adequate behaviour of q(z|x) and
p(x|z) tend to vanish, i.e more models have Iq(x, z) < 0 or worse reconstructions. These
tendencies can happen when we augment z, since the estimation of Iq(x, z) is worse, or when
more complex datasets are considered since it is harder for q(z|x), p(x|z) to encode or decode
these distributions.

Finally we observe that the proposed WVAE have a similar behaviour than VAE and
Info-VAE (MMD), where the latter is a direct competitor of WVAE since both match the
marginal distributions. Table 6.4 shows that both WVAE and Info-VAE (MMD) have similar
test accuracies but WVAE have a much better trade-off in terms of generation. It is worth
mentioning that VAE has better generative performance and worse representation learning
capabilities as the theory developed in Chapter 5 indicates.
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Model LL in X LL in Z DZKL DVAE
KL Ĩq(x, z) hq(z|x) IS FID Acc%

VAE (β = 0.33) −4.57
±0.02

−3.73
±0.12

0.10
±0.03

27.76
±0.18

27.68
±0.15

−13.44
±0.07

8.95
±0.01

223.76
±8.52

91.37
±0.73

VAE (β = 1.00) −4.43
±0.02

−3.62
±0.08

0.19
±0.09

20.94
±0.21

20.72
±0.21

−6.89
±0.14

9.36
±0.02

105.89
±2.75

87.86
±0.60

VAE (β = 30.00) −1.90
±0.01

−0.34
±0.01

34.52
±1.15

1.18
±0.05

−33.32
±1.17

12.98
±0.01

3.03
±0.07

4714.07
±75.28

56.06
±1.50

WVAE (β = 0.33) −4.66
±0.02

−3.51
±0.06

0.03
±0.00

62.26
±0.52

62.28
±0.52

−48.14
±0.52

8.59
±0.04

351.22
±5.04

93.63
±0.47

WVAE (β = 1.00) −4.64
±0.03

−3.50
±0.03

0.16
±0.06

62.69
±0.26

62.72
±0.25

−48.88
±0.32

8.62
±0.03

342.92
±13.82

94.00
±0.13

WVAE (β = 30.00) −4.61
±0.01

−3.09
±0.01

0.14
±0.01

62.70
±0.33

62.71
±0.33

−48.86
±0.34

8.19
±0.13

518.53
±30.97

93.50
±0.28

MMD (β = 0.33) −4.71
±0.04

−0.74
±0.02

2.01
±0.02

85.04
±1.21

65.82
±0.35

−43.40
±0.33

6.45
±0.14

1483.71
±103.37

94.86
±0.02

MMD (β = 1.00) −4.68
±0.01

−1.28
±0.07

1.73
±0.02

74.43
±0.74

64.97
±0.29

−44.60
±0.40

6.76
±0.33

1151.08
±135.75

94.45
±0.24

MMD (β = 30.00) −4.67
±0.01

−3.50
±0.12

0.37
±0.03

63.80
±0.50

63.44
±0.53

−48.89
±0.40

8.27
±0.08

461.61
±20.17

93.86
±0.57

JS-VAE (β = 0.33) −4.59
±0.02

−3.31
±0.18

0.12
±0.02

61.58
±0.47

61.58
±0.46

−47.09
±0.43

8.43
±0.02

436.72
±5.33

93.86
±0.04

JS-VAE (β = 1.00) −4.56
±0.02

−3.27
±0.07

0.01
±0.00

61.64
±0.56

61.67
±0.56

−47.45
±0.58

8.49
±0.09

403.08
±18.21

92.68
±0.41

JS-VAE (β = 30.00) −3.49
±0.64

−1.89
±0.71

0.07
±0.02

67.25
±6.78

67.26
±6.78

−52.89
±6.73

8.07
±0.03

815.19
±213.64

80.32
±8.62

AIM −3.05
±0.01

−2.48
±0.01

1.36
±0.19

10.58
±0.09

9.70
±0.06

3.06
±0.23

9.79
±0.01

25.92
±1.62

88.83
±0.79

Veegan −2.54
±0.07

−1.73
±0.11

1.09
±0.15

9.94
±0.18

8.91
±0.25

4.09
±0.22

9.72
±0.02

38.63
±6.12

81.35
±6.30

ALI −1.54
±0.37

−0.33
±0.17

27.63
±38.14

21.92
±16.17

−5.58
±53.86

−7.65
±15.94

8.82
±1.24

388.02
±465.66

51.73
±28.48

ALICE −3.04
±0.14

−1.84
±0.20

0.50
±0.07

15.00
±0.62

14.42
±0.69

−0.89
±0.76

9.69
±0.02

46.62
±2.70

89.13
±0.54

Table 6.4: Relevant metrics for the generative-inference models considered in MNIST dataset
with J = 10. LL in X and LL in Z refer to the MSE in the observed and latent space re-
spectively. DZKL = DKL(q(z)||p(z)) is computed in closed form assuming q(z) as multivariate
Gaussian. DVAE

KL = DKL(q(z|x)||p(z)). In bold we represent the main unsupervised learning
metrics of our study; Ĩq(x, z) measures the MI of the inference model q and LL in X
measures the likelihood in X .
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Figure 6.3: Ĩq(x, z) vs Log MSE in the observed space. The color corresponds to the
classification accuracy of a linear predictor trained on the latent space learned from MNIST
with J = 10. The scatters show the mean of the three runs for each model. For VAE, WVAE,
JS-VAE, MMD we chose the β that obtained the best result according to FID.
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Figure 6.4: Ĩq(x, z) vs Log MSE in the observed space. The color corresponds to the FID
score in MNIST with J = 10. The scatter shows the mean of the three runs for each model.
For VAE, WVAE, JS-VAE, MMD we chose the β that obtained the best result according to
FID.

Figure 6.5: Tendency of all generative-inference models considered using Ĩq(x, z) vs Log
MSE in the observed space for classification accuracy by a linear predictor on the latent
space in MNIST with J = 10.
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Figure 6.6: Tendency of all generative-inference models considered using Ĩq(x, z) vs Log
MSE in the observed space for FID in MNIST with J = 10.

6.4.2 Changing the number of latent dimensions

We explore varying the latent dimensions from J = 10 to J = 20 in Table 6.5. We also show
the same general tendencies of all runs in figures 6.7 and 6.8 for classification and generation,
respectively. We observe that in general the accuracy for J = 20 is higher than for J = 10,
in contrast we observe worse generative performance. We hypothesize that when J is higher
there is more space in the prior p(z) that the decoder should decode well, however since the
space is bigger the task of classification is easier. This is not always the case, for example
more complex datasets will need more space (J dimensions) to compress the data in the
prior, see Appendix B for FMNIST results.
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Model LL in X LL in Z DZKL DVAE
KL Ĩq(x, z) hq(z|x) IS FID Acc%

VAE (β = 0.33) −5.23
±0.03

−2.29
±0.03

2.02
±0.12

36.23
±0.16

35.08
±0.23

−8.76
±0.17

8.82
±0.02

259.46
±11.28

91.67
±0.56

VAE (β = 1.00) −4.73
±0.02

−1.18
±0.02

22.52
±2.00

23.51
±0.13

1.47
±2.10

4.39
±0.18

9.35
±0.02

107.46
±12.03

88.49
±0.19

VAE (β = 30.00) −1.90
±0.00

−0.16
±0.00

86.56
±1.05

1.18
±0.01

−85.35
±1.06

27.17
±0.02

3.11
±0.14

4694.91
±131.56

60.45
±0.41

WVAE (β = 0.33) −5.52
±0.02

−2.64
±0.01

1.39
±0.01

118.30
±0.19

118.27
±0.19

−91.35
±0.19

7.70
±0.03

736.55
±8.62

95.06
±0.37

WVAE (β = 1.00) −5.54
±0.03

−2.57
±0.05

1.25
±0.05

118.73
±0.54

118.74
±0.53

−91.70
±0.56

7.65
±0.02

767.54
±12.19

94.88
±0.13

WVAE (β = 30.00) −5.36
±0.02

−2.09
±0.02

0.70
±0.20

130.26
±0.36

130.28
±0.38

−102.76
±0.23

7.31
±0.07

961.73
±37.96

92.89
±0.45

MMD (β = 0.33) −5.50
±0.07

−1.01
±0.18

2.01
±0.03

142.58
±1.27

124.57
±0.16

−86.64
±0.59

6.07
±0.32

1492.64
±70.36

95.81
±0.34

MMD (β = 1.00) −5.54
±0.05

−1.42
±0.09

1.75
±0.03

132.05
±0.57

122.43
±0.12

−87.54
±0.46

6.64
±0.11

1185.70
±116.86

95.88
±0.19

MMD (β = 30.00) −5.51
±0.06

−2.93
±0.03

2.22
±0.02

120.86
±0.31

118.76
±0.34

−92.60
±0.35

6.94
±0.02

1017.10
±21.88

95.40
±0.24

JS-VAE (β = 0.33) −4.80
±0.77

−1.98
±0.73

1.02
±1.25

131.52
±22.33

130.29
±20.50

−102.62
±21.97

7.14
±0.39

933.93
±153.30

91.45
±2.85

JS-VAE (β = 1.00) −5.33
±0.04

−2.41
±0.04

0.16
±0.06

116.82
±0.77

116.91
±0.78

−88.08
±0.90

7.39
±0.03

865.89
±15.22

92.84
±0.39

JS-VAE (β = 30.00) −5.03
±0.09

−1.88
±0.07

0.31
±0.13

111.87
±5.04

111.84
±5.01

−82.70
±4.84

7.06
±0.03

948.96
±40.82

90.30
±0.18

AIM −3.18
±0.01

−0.89
±0.01

12.02
±0.14

7.49
±0.18

−3.92
±0.34

20.29
±0.20

9.72
±0.02

40.89
±8.69

90.86
±0.40

Veegan −2.13
±0.57

−0.53
±0.14

9.82
±0.30

9.13
±2.00

−0.25
±1.55

18.81
±1.85

9.25
±0.72

259.20
±313.76

82.45
±8.20

ALI −1.76
±0.12

0.17
±0.03

4.62
±1.41

43.25
±5.45

38.68
±7.05

−14.92
±5.71

9.75
±0.02

38.33
±2.56

86.90
±1.93

ALICE −3.21
±0.07

−0.60
±0.03

8.61
±0.68

15.66
±0.79

7.26
±1.03

12.51
±0.73

9.71
±0.06

43.43
±14.84

88.94
±2.02

Table 6.5: Relevant metrics for the generative-inference models considered in MNIST dataset
with J = 20. LL in X and LL in Z refer to the MSE in the observed and latent space re-
spectively. DZKL = DKL(q(z)||p(z)) is computed in closed form assuming q(z) as multivariate
Gaussian. DVAE

KL = DKL(q(z|x)||p(z)). In bold we represent the main unsupervised learning
metrics of our study; Ĩq(x, z) measures the MI of the inference model q and LL in X
measures the likelihood in X .
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Figure 6.7: Tendency of all generative-inference models considered using Ĩq(x, z) vs Log
MSE in the observed space for classification accuracy by a linear predictor on the latent
space in FMNIST with J = 10.

Figure 6.8: Tendency of all generative-inference models considered using Ĩq(x, z) vs Log
MSE in the observed space for classification accuracy by a linear predictor on the latent
space in FMNIST with J = 20.
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6.4.3 Datasets with higher complexity

In simpler datasets the optimization for any generative-inference model is not a limitation.
In more complex datasets like CIFAR10 the models tend to have worse generation and/or
reconstruction than in simpler datasets. This implies that the suppositions to compute
Ĩ(q(x, z)) are no longer valid. The likelihood Eq(x,z)[log p(x|z)] computed by the MSE between
the input neurons and their reconstruction can also be a bad estimation. As a consequence
the generative and representation learning capabilities of generative-inference models are
reduced to observing their empirical results.

Table 6.4.3 shows the main results of many generative-inference models in order to give an
idea of the models that scale better for more complex datasets. We observe that AIM is the
model with the best results overall. In figures 6.9, 6.10 and 6.11 we observe the reconstruction
ability of VAE, ALI and AIM models, respectively. To the best of our knowledge no current
work in the literature has considered and compared as many generative-inference models
under similar optimization conditions.

Model Acc% FID IS

VAE 38.02± 2.61 100.05± 15.61 3.01± 0.21
AIM 76.54± 0.43 11.80± 0.19 7.08± 0.06
ALI 58.94± 4.38 20.08± 1.89 6.28± 0.20
Veegan 70.85± 1.43 17.70± 1.44 6.57± 0.24
ALICE 67.80± 1.28 17.75± 0.93 6.47± 0.12

Table 6.6: Accuracy on test by linear predictor and generative scores for CIFAR10 dataset.
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Figure 6.9: Reconstructions for VAE model by classes. Odd columns represent real data
and even columns correspond to their reconstructions.

Figure 6.10: Reconstructions for ALI model by classes. Odd columns represent real data
and even columns correspond to their reconstructions.
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Figure 6.11: Reconstructions for AIM model by classes. Odd columns represent real data
and even columns correspond to their reconstructions.

6.4.4 Discussion

In this chapter we computed the empirical results of many generative-inference models taking
in consideration the theoretical analysis developed in Chapter 5. We note that for low
complexity datasets and small latent dimensions J we can use Iq(x, z) and the likelihood
Eq(x,z)[log p(x|z)] to obtain a close approximation of how a generative-inference model behaves
in comparison to others in an unsupervised way. When using more complex datasets it is
not possible to use these statistics since each one of them can be wrongly estimated. As a
consequence, to know what models behave better we have to rely on empirical results. When
simpler datasets are used and VAE based models are optimized correctly (q(z|x) and p(x|z)
don’t suffer limitations to estimate distributions) there exists a strong trade-off between
generation and representation learning for any generative-inference model considered. When
more complex datasets are used the representation learning and generation are dominated
by the models that scale better. When using the same BigGAN architecture for all models
we found that AIM is more consistent and have better inference and generative capabilities
than the other models. In simpler datasets it is possible to use either WVAE or VAE for
representation learning depending on the generative needs of the particular application.
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Chapter 7

Generative-Inference models: Extending
the graphical model to three variables

In Chapter 6 we showed that generative-inference models that consider the variables x ∈ X
and z ∈ Z have a trade-off between its generation and inference capabilities and that this
trade-off could be alleviated by choosing more flexible priors. In this chapter, we review
the existing models that add a categorical variable y ∈ Y to their graphical model. This
additional variable is used to condition the prior p(z) to various conditional priors p(z|y)
that are dependent of the categorical variable y. This modification allows having a flexible
multimodal prior formed by a mixture of distributions p(z) =

∑
y p(y)p(z|y), which can also

be used for clustering applications. Figures 7.1a and 7.1b show how the structure of the
generative and inference model change when this new categorical variable y is added. The
general three-variable graphical model is given by

• p(x, z, y) = p(y)p(z|y)p(x|z, y),
• q(x, z, y) = q(y|x, z)q(z|x)q(x).

We can observe the graphical models diagrams of the generative and inference model in
Fig. 7.3a and 7.3b, respectively. In the following sections we review the models that consider
variables x ∈ X , z ∈ Z and y ∈ Y , and follow a similar decomposition to those of the
previous chapters in terms of the matching joint distribution perspective and the mutual
information perspective. In Section 7.1 we prove that Variational Deep Embedding [46]
can be obtained by decomposing DKL(q(x, z, y)||p(x, z, y)). Noting that the decomposition
of DKL(p(x, z, y)||q(x, z, y)) has not been explored in the current literature, we propose a
method called Matching priors and conditional for clustering [2] which is thoroughly explained
in Section 7.2.
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(a) Two variables generative model (b) Three variables generative model

Figure 7.1: Generative models of (a) two variables and (b) three variables.

(a) Two variables inference model (b) Three variables inference model

Figure 7.2: Inference models of (a) two variables and (b) three variables.

(a) Generative model (b) Inference model

Figure 7.3: Three variable graphical model of (a) generative model and (b) inference model.
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7.1 Variational Deep Embedding (VaDE)

Variational Deep Embedding [46] (VaDE) is a three variable generative-inference model for
clustering that considers the following graphical model for generation and inference

• p(x, z, y) = p(y)p(z|y)p(x|y),
• q(x, z, y) = q(y|z)q(z|x)q(x),

respectively. The assumptions made in the graphical model are i) q(y|z) = q(y|z, x), i.e. z
contains all the necessary information from x to estimate y and ii) p(x|z, y) = p(x|z) i.e.
z contains all the necessary information from y to estimate x. Figures 7.4a and 7.4b show
a graphical model diagram of the generative and inference model, respectively. In section
7.1.1 we present the loss function of VaDE with a small modification in the notation with
respect to the original demonstration [46]. In section 7.1.2 we demonstrate that in fact VaDE
matches the joint distributions between the inference and the generative model. Finally in
section 7.1.3, we show the corresponding decomposition of the VaDE loss function associating
it with the mutual information of the inference model.

(a) Generative model (b) Inference model

Figure 7.4: VaDE graphical model of (a) generative model and (b) inference model.

7.1.1 Deriving the loss function of VaDE using Jensen’s inequality

In this section we show how the original loss function of VaDE was obtained in [46]. The
demonstration starts from maximizing the marginal likelihood between the real data distri-
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bution q(x) and the model data distribution p(x) as is shown in Eq. (7.1).

Eq(x) [log p(x)] = Eq(x)

[
log

∫
z

∑
y

p(x, z, y)∆ydz

]

= Eq(x)

[
log

∫
z

∑
y

q(y, z|x)p(x, z, y)
q(y, z|x)

)∆ydz

]

= Eq(x)

[
logEq(z|x)q(y|x,z)

[
p(x, z, y)

q(y, z|x)

]]
≥ Eq(x)Eq(z|x)q(y|x,z)

[
log

p(x, z, y)

q(y, z|x)

]
= Eq(x)Eq(z|x)q(y|x,z)

[
log

p(x|z, y)p(z|y)p(y)
q(y|z, x)q(z|x)

]
= − LVaDE(x) (7.1)

To optimize VaDE in [46] it was assumed that p(x|z, y) = p(x|z) and q(y|x, z) = q(y|z).
It addition a Gaussian distribution for q(z|x) and p(z|y) to obtain closed-form solutions was
used.

7.1.2 Loss function of VaDE from a matching joint distributions
perspective

Here we show that VaDE is in fact matching the joint distributions of the encoder and decoder
by matching posteriors and marginals in the space of the observed variable x (data). We
start by expanding the divergence between the joint distributions of the encoder and decoder
as

DKL (q(x, z, y)||p(x, z, y)) =
∫
x

∫
y

∫
z

q(x, z, y) log
q(x, z, y)

p(x, z, y)
dx dy dz

=

∫
x

∫
z

q(x, z)

∫
z

q(y|x, z) log q(y|x, z)
p(y|x, z)

dx dy dz

+

∫
x

q(x)

∫
z

q(z|x) log q(z|x)
p(z|x)

dz dx+

∫
x

q(x) log
q(x)

p(x)
dx

= Ez,x∼q(z,x) [DKL (q(y|z, x)||p(y|z, x))]
+ Ex∼q(x) [DKL (q(z|x)||p(z|x))] +DKL (q(x)||p(x)) . (7.2)

The first divergence on the right hand side of Eq. (7.2) is

DKL (q(y|z, x)||p(y|z, x)) = Ey∼q(y|z,x)

[
log

q(y|z)
p(z|y)p(y)

]
+ log p(z), (7.3)

where we used the replacements q(y|z, x) = q(y|z) and p(y|z, x) = p(x|z)p(z|y)p(y)
p(x|z)p(z) , which come

from the graphical model assumptions considered in [46].
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The second divergence on the right hand side of Eq. (7.2) is

DKL (q(z|x)||p(z|x)) = Ez∼q(z|x)

[
log

q(z|x)
p(x|z)

− log p(z)

]
+ log p(x), (7.4)

and the third divergence on the right hand side of Eq. (7.2) is

DKL (q(x)||p(x)) = Ex∼q(x) [log q(x)− log p(x)] . (7.5)

If we add the expectations over q(z, x) = q(z|x)q(x) of Eq. (7.3), with q(x) of Eq. (7.4) and
Eq. (7.5) we obtain:

Ez,x∼q(z,x) [DKL (q(y|z, x)||p(y|z, x))] + Ex∼q(x) [DKL (q(z|x)||p(z|x))] +DKL (q(x)||p(x))
= Eq(x)[log q(x)− Ez,y∼q(z,y|x)[log p(x|z)− log q(z|x)− log q(y|z) + log p(z|y) + log p(y)]]

= Eq(x)

[
log q(x) + LVaDE

q (x)
]
,

where LVaDE(x) corresponds to Eq. 9 in [46]. This means that by maximizing VaDE’s loss
function one is matching the conditionals and marginals between encoder and decoder in
data space. Note that the entropy of the data distribution Eq(x) [log q(x)] is constant during
optimization.

7.1.3 Loss function of VaDE from a mutual information persepctive

The loss function of VaDE can also be obtained as a variational bound of a sum of mutual
information of the inference model given by

Iq(x, z) + Eq(x)[Iq(z, y|x)] = −LVaDE
q +∆IVaDE

q , (7.6)

where ∆IVaDE
q is the gap between the loss function LVaDE

q and the sum of the mutual infor-
mations presented in Eq. (7.6). To demonstrate this equivalence we begin by expanding the
first term on the left as

Iq(x, z) = Eq(x,z)[log p(x|z)]− Eq(x)[log q(x)]

+ Eq(x,z)[DKL(q(x|z)||p(x|z)).
(7.7)

Symmetrically, the second term on the left hand side can be expanded as

Eq(x)[Iq(z, y|x)] = Eq(x)[Eq(z,y|x)[log p(z|y)]− Eq(z|x)[log q(z|x)]
+ Eq(z,y|x)[DKL(q(z|y)||p(z|y))].

(7.8)

Adding equations (7.7) and (7.8), and subtracting the positive restriction RVaDE
q (x, z, y) =

Eq(x,z,y)[DKL(q(y|z)||p(y))] on the right side, we obtain by the non-negativity of the KL di-
vergence the following:

Eq(x)[Iq(z, y|x)] + Iq(z, y) ≥ −LVaDE
q ,

i.e. the loss function of VaDE is a lower bound of two mutual information terms. The mutual
information gap in this case collects the following terms

∆IVaDE
q = Eq(x,z,y)[DKL(q(y|z)||p(y))] + Ep(x,z,y)[DKL(p(z|x)||q(z|x)) +DKL(p(y|z)||q(y|z))].
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7.2 Matching priors and conditional for clustering

Noting that models obtained by decomposing DKL(p(x, z, y)||q(x, z, y) have not been ex-
plored in the literature we propose a new model called Matching Priors and Conditional for
Clustering (MPCC). MPCC is a GAN-based model with (a) a learnable mixture of distribu-
tions as prior for the generator, (b) an encoder to infer the latent variables from the data and
(c) a clustering network to infer the cluster membership from the latent variables. Since this
is a new model in the literature the following subsections provide detailed explanations of the
optimization process. Sub-section 7.2.1 presents the definition of the model. Sub-section 7.2.2
shows how the loss function of MPCC is obtained by decomposing DKL(p(x, z, y)||q(x, z, y)).
Finally sub-section 7.2.3 shows how the MPCC loss function can be associated with the mu-
tual information of the generative model. Experiments and results using MPCC are presented
in Chapter 8.

7.2.1 Model definition

We specify the graphical models for generation and inference as follows:

• p(x, z, y) = p(y)p(z|y)p(x|z, y),
• q(x, z, y) = q(y|z)q(z|x)q(x).

The only assumption in the graphical model is that q(y|z) = q(y|z, x), i.e. z contains all
the necessary information from x to estimate y. Figures 7.5a and 7.5b show graphical model
diagram of the generative and inference model, respectively.

(a) Generative model (b) Inference model

Figure 7.5: MPCC graphical model of (a) generative model and (b) inference model.

For generation, we seek to match the decoder p(x|z, y) to the real data distribution q(x).
The latent variable is defined by the conditional distributions p(z|y) which can be any dis-
tribution under certain restrictions that are presented in Section 7.2.2. The marginal dis-
tribution p(y) is defined as a multinomial distribution with weight probabilities ϕ. Note
that under this graphical model the latent space becomes multimodal defined by a mixture
of distributions p(z) =

∑
y p(y)p(z|y). For inference the latent variables are obtained by

the conditional posterior q(z|x) using the empirical data distribution q(x). The distribution
q(y|z) is a posterior approximation of the cluster membership of the data.
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MPCC is optimized by minimizing the forward Kullback-Leibler divergence of the condi-
tionals and priors between the inference and generative networks as follows:

DKL (p(x, z, y)||q(x, z, y)) =
∫
x

∫
y

∫
z

p(x, z, y) log
p(x, z, y)

q(x, z, y)
dx dy dz

=

∫
y

∫
z

p(z, y)

∫
x

p(x|z, y) log p(x|z, y)
q(x|z, y)

dx dy dz

+

∫
y

p(y)

∫
z

p(z|y) log p(z|y)
q(z|y)

dz dy +

∫
y

p(y) log
p(y)

q(y)
dy

= Ez,y∼p(z,y) [DKL (p(x|z, y)||q(x|z, y))]
+ Ey∼p(y) [DKL (p(z|y)||q(z|y))] +DKL (p(y)||q(y)) , (7.9)

In the following sections we derive a tractable expression for Eq. (7.9) and present the
MPCC algorithm.

7.2.2 Loss function and optimization of MPCC from a matching
joint distributions perspective

Because q(y), q(z|y) and q(x|z, y) are impossible to sample from, we derive a closed-form solu-
tion for Eq. (7.9). In particular for any fixed y and z we can decompose DKL(p(x|z, y)||q(x|z, y))
as follows:

DKL(p(x|z, y)||q(x|z, y))

= Ep(x|z,y)

[
log

p(x|z, y)
q(x)

q(z, y)

q(z, y|x)

]
= Ep(x|z,y)

[
log

p(x|z, y)
q(x)

− log q(y|z)− log q(z|x) + log q(z|y) + log q(y)

]
. (7.10)

Adding log p(z|y) + log p(y) − log q(z|y) − log q(y) to both sides of Eq. (7.10) and taking
the expectation with respect to p(z, y) Eq. (7.9) is recovered. After adding these terms and
taking the expectation we can collect the resulting right hand side of Eq. (7.10) as follows:

Ep(z,y)[DKL(p(x|z, y)||q(x|z, y)) +DKL(p(z|y)||q(z|y)) +DKL(p(y)||q(y))]
= Ep(y)p(z|y)[DKL(p(x|z, y)||q(x))]︸ ︷︷ ︸

Loss I

+Ep(y)p(z|y)p(x|z,y)[− log q(z|x)− log q(y|z)]︸ ︷︷ ︸
Loss II

+ Ep(z|y)p(y)[log p(y) + log p(z|y)]︸ ︷︷ ︸
Loss III

, (7.11)

where Loss I seeks to match the true distribution q(x), Loss II is related to the variational
approximation of the latent variables and Loss III is associated with the distribution of the
cluster parameters. The right hand term of Eq. (7.11) is a loss function, composed of three
terms with distributions that we can sample from. In the next section we explain the strategy
to optimize each of the terms of the proposed loss function.

MPCC follows the idea that the data space X is compressed in the latent space Z and
a separation in this space will likely partition the data in the most representatives clusters
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p(z|y). The separability of these conditional distributions will be enforced by q(y|z) which
also backpropagates through the parameters of p(z|y). The connection with the data space
is through the decoder p(x|z, y) for generation and the encoder q(z|x) for inference.

In what follows we describe the assumptions made in the distributions of the graphical
model and how to optimize Eq. (7.11). For simplicity we assume the conditional p(z|y) to
be a Gaussian distribution, but other distributions could be used with the only restriction
being that their entropy should have a closed-form or at least a bound (second term in
Loss III). In our experiments the latent variable z|y ∼ N (µy, σ

2
y) is sampled using the

reparameterization trick [53], i.e. z = µy +σy ⊙ ε where ε ∼ N (0, I) and ⊙ is the Hadamard
product. The parameters µy, σ2

y are learnable and they are conditioned on y. Under Gaussian
conditional distribution the latent space becomes a GMM, as we can observe mathematically
p(z) =

∑
y p(y)p(z|y) =

∑
y p(y)N (µy, σ

2
y).

The distribution p(x|z, y) is modeled by a neural network and trained via adversarial
learning, i.e. it does not require parametric assumptions. The inferential distribution q(z|x)
is also modeled by a neural network and its distribution is assumed Gaussian for simplicity.
The categorical distribution q(y|z) may also be modeled by a neural network but we propose
a simpler approach based on the membership from the latent variable z to the Gaussian
components. A diagram of the proposed model considering these assumptions is shown in
Fig. 7.6. We now expand on this for each of the losses in Eq. (7.11).

Loss I: Instead of minimizing the Kullback-Leibler divergence shown in the first term
on the right hand of Eq. (7.11) we choose to match the conditional decoder p(x|z, y) with
the empirical data distribution q(x) using a generative adversarial approach. The GAN loss
function can be formulated as [21]

max
D

Ex∼q(x)[f(D(x))] + Ex̃∼p(x,z,y)[g(D(x̃))],

min
G

Ex̃∼p(x,z,y)[h(D(x̃))],
(7.12)

where D and G are the discriminator and generator networks, respectively, and tilde is used
to denote sampled variables. For all our experiments we use the hinge loss function [70],
[108], i.e. f = −min(0, o − 1), g = min(0,−o − 1) and h = −o, being o the output of the
discriminator. The parameters and distribution associated with Loss I are colored in blue
in Fig.7.6.

Loss II: The first term of this loss is estimated through Monte Carlo sampling as

Ep(y)p(z|y)p(x|z,y)[− log q(z|x)]

= Eyi∼p(y),zi∼p(z|y=yi),x̃i∼p(x|z=zi,y=yi)

[
J∑

j=1

1

2
log(2πσ̃2

ij) +
(zij − µ̃ij)

2

2σ̃2
ij

]
︸ ︷︷ ︸

Lq(µ̃i,σ̃2
i ,zi)

, (7.13)

where J is the dimensionality of the latent variable z. By minimizing Eq. (7.13) we are
maximizing the log-likelihood of the encoder q(z|x) with respect to the Gaussian prior p(z|y).
This reconstruction error is estimated by matching the samples zi ∼ p(z|y = yi) with the
Gaussian distribution (µ̃i, σ̃

2
i ) ∼ q(z|x = x̃i), where x̃i is the decoded representation of zi.
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Figure 7.6: Diagram of the MPCC model. The blue colored elements are associated with
Loss I (Eq. (7.12)). The green colored elements are associated with Loss II (Equations 7.13
and 7.14). The red colored elements are associated with Loss III (Eq. (7.16)). The dashed
line corresponds to the generator (GMM plus decoder).

The second term of Loss II is equivalent to the cross-entropy between the sampled label
yi ∼ p(y) and the estimated cluster membership ỹi

Lc(yi, ỹi) = −
K∑
k=1

yik log ỹik, (7.14)

where K is the number of clusters and

ỹim = q(y = m|z = zi) =
N (zi|µm, σ

2
m)∑K

k=1N (zi|µk, σ2
k)
, (7.15)

is the membership of zi to the m-th cluster. The parameters µm and σ2
m are learnable, and

m ∈ [1, . . . , K] is the index corresponding to each cluster. The parameters and distribution
associated with Loss II are colored in green in Fig. 7.6. In practice Eq. (7.15) is estimated
using the log-sum-exp trick.

Loss III: This loss is associated with the regularization of the Gaussian mixture model
parameters ϕ, µ and σ2 and has a closed form

Ep(y)p(z|y)[log p(y) + log p(z|y)]

=
K∑
k=1

ϕk

[
log ϕk −

J∑
j=1

(
1

2
+

1

2
log(2πσ2

kj)

)]
︸ ︷︷ ︸

Lp(ϕ,σ2)

, (7.16)

where the first term corresponds to the entropy maximization of the mixture weights, i.e.
in general every Gaussian will not collapse to less than K modes of the data distribution
which is a solution with lower entropy. In our experiments we fix ϕk = 1/K, i.e. ϕ is not
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learnable. The second term is a regularization for the variance (entropy) of each Gaussian
which avoids the collapse of p(z|y). The parameters associated with Loss III are shown in
red in Fig. 7.6.

Loss I scale differs from that of the terms associated with the latent variables. To balance
all terms we multiply Eq. (7.13) by one over the dimensionality of x1 and the second term of
Eq. (7.16) by one over the dimensionality of the latent variables. During training Loss III is
weighted by a constant factor λp. We explain how this constant is set in Section 8.1.3. The
full procedure to train the MPCC model is summarized in Algorithm 1. Note that MPCC is
scalable in the number of clusters since Eq. (7.13) is a Monte Carlo approximation in y and
the cost of Eq. (7.16) is low since J is small in comparison to the data dimensionality.

Algorithm 1 MPCC algorithm
1: K, J ← Set number of clusters and latent dimensionality
2: η, ηp ← Set learning rates
3: θg , θd, θe ← Initialize network parameters
4: ϕ, µ, σ2 ← Initialize GMM parameters
5: θc ← [ϕ, µ, σ2]
6: repeat
7: for Dsteps do
8: x1, . . . , xn ∼ q(x) ▷ Draw n samples from empirical distribution
9: y1, . . . , yn ∼ p(y) ▷ Draw n samples from categorical prior
10: zi ∼ p(z|y = yi), i = 1, . . . , n ▷ Draw n samples from Gaussian conditional prior
11: x̃i ∼ p(x|z = zi, y = yi), i = 1, . . . , n ▷ Generate samples using generator network
12: θd ← θd + η∇θd

[
1
n

∑n
j=1 f(D(xj)) +

1
n

∑n
i=1 g(D(x̃i))

]
▷ Gradient update on discriminator network

13: end for
14: y1, . . . , yn ∼ p(y) ▷ Draw n samples from categorical prior
15: zi ∼ p(z|y = yi), i = 1, . . . , n ▷ Draw n samples from Gaussian conditional prior
16: x̃i ∼ p(x|z = zi, y = yi), i = 1, . . . , n ▷ Generate samples using generator network
17: (θg , θc)← (θg , θc)− η∇(θg,θc)

1
n

∑n
i=1 h(D(x̃i)) ▷ Gradient update on generator network

18: for Esteps do
19: y1, . . . , yn ∼ p(y) ▷ Draw n samples from categorical prior
20: zi ∼ p(z|y = yi), i = 1, . . . , n ▷ Draw n samples from Gaussian conditional prior
21: x̃i ∼ p(x|z = zi, y = yi), i = 1, . . . , n ▷ Generate samples using generator network
22: (µ̃i, σ̃

2
i ) ∼ q(z|x = x̃i), i = 1, . . . , n ▷ Encode x̃ to obtain mean and variance

23: θe ← θe − η∇θe
1
n

∑n
i=1 Lq(µ̃i, σ̃

2
i , zi) ▷ Gradient update on encoder network

24: if first Estep then
25: ỹi ∼ q(y|z = zi), i = 1, . . . , n

26: θc ← θc − ηp∇θc

[
1
n

∑n
i=1 Lc(yi, ỹi) + λp · Lp(ϕ, σ2))

]
▷ Gradient update on Prior parameters

27: end if
28: end for
29: until convergence

7.2.3 Loss function of MPCC from a mutual information perspec-
tive

The loss function of MPCC can be obtained as a variational bound of the sum of mutual
information of the generative model given by

Ep(y)[Ip(x, z|y)] + Ip(z, y) = −LMPCC
p +∆IMPCC

p , (7.17)

where ∆IMPCC
p is the gap between the loss function LMPCC

p and the sum of the mutual
informations presented in Eq. (7.17). To demonstrate this equivalence we begin by expanding
the first term on the left as

Ep(y)[Ip(x, z|y)] = Ep(y)[Ep(x,z|y)[log q(z|x)]− Ep(z|y)[log p(z|y)]
+ Ep(x,z|y)[DKL(p(z|x)||q(z|x))].

(7.18)

1If x is an image then its dimensionality would be channels× height× width
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Symmetrically, the second term on the left hand side can be expanded as

Ip(z, y) = Ep(z,y)[log q(y|z)]− Ep(y)[log p(y)]

+ Ep(z,y)[DKL(p(y|z)||q(y|z)).
(7.19)

Adding equations 7.18 and 7.19 then subtracting the positive restriction RMPCC
p (x, z, y) =

D(p(x)||q(x)) on the right side, we obtain by the non-negativity of the KL divergence the
following:

Ep(z)[Ip(x, z|y)] + Ip(z, y) ≥ −LMPCC
p ,

i.e. the loss function of MPCC is a lower bound of two mutual information terms. The
mutual information gap in this case collects the following terms

∆IMPCC
p = D(p(x)||q(x)) + Ep(x,z,y)[DKL(p(z|x)||q(z|x)) +DKL(p(y|z)||q(y|z))].

7.2.4 Related methods

In Section 7.2 we showed that the latent space of MPCC is reduced to a GMM under Gaussian
conditional distributions. Because all the experiments are performed based on this assump-
tion, in this section we summarize the literature of generative and autoencoding models that
consider GMMs. The combination of generative models and GMMs is not new. Several
methods have applied GMM in autoencoding [111], [123] or GAN [32], [95] with applications
in novelty detection, anomaly detection, training in scarce data regimes or generative capa-
bility evaluations. Other approaches have performed clustering using GMM and GANs but
are not directly comparable to MPCC because they use mixtures of various generators and
discriminators [119] or fixed priors with ad-hoc set parameters [5].

Among the related works on generative models for clustering the closest approaches to
MPCC are ClusterGAN [79] and Variational Deep Embedding (VaDE) [46]. ClusterGAN
differs from our model in that it sets the dimensions of the latent space as either continuous or
categorical while MPCC uses a continuous latent space which is conditioned on the categorical
variable y.

On the other hand, VaDE differs greatly in the training procedure, despite its similar
theoretical basis. VaDE, as a variational autoencoder model, matches the joint distribu-
tions in the inverse KL sense DKL(q(x, z, y)||p(x, z, y)) by matching the posteriors and the
marginals in data space as demonstrated in section 7.1.2 . MPCC optimizes the forward KL,
i.e. matching the priors in latent space and conditionals in data space. Optimizing different
KLs yield notably different decompositions and thus training procedures. For the inverse KL
[46] it is more difficult to generalize the latent space to any multi-modal distribution as we
discuss in what follows.

In MPCC the latent space can be naturally extended to any mixture of distributions, the
only requirement being that the entropy of each distribution component p(z|y) should have a
closed-form or at least a bound. In general any model decomposed by the forward KL enjoy
this property.
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Inverse KL decomposition’s, such as the case of VAE and VaDE, need a closed-form solu-
tion for the divergence between the posterior and the prior. In VaDE this term corresponds
to

Eq(x)Eq(z,y|x)[log q(z|x)− log p(z|y)] = Eq(x)Eq(y|x)[DKL(q(z|x)||p(z|y))], (7.20)

which has a closed-form since q(z|x) and p(z|y) are Gaussians. Other distributions can be
used, however they need to be from the exponential family and to have the same distribution
[84], although some exceptions exists [101], [16]. In addition to the exponential family re-
quirement, a reparameterization trick is needed for the posterior distribution further limiting
the distributions that can be used and requiring other forms of reparameterization [25], [97],
[44].

Alternatively, adversarial training can be used to match the marginal posterior with more
flexible priors. However it has been observed [96] that this kind of optimization [75], [77]
underestimates its Kullback-Leibler divergence and it worsens the likelihood of the decoder
likely affecting its clustering capabilities.
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Chapter 8

Experiments and results for matching
priors and conditional for clustering

In this chapter we run experiments and discuss the inference and generative capabilities of
MPCC using competitive benchmarks from the literature. Code is available at here.

8.1 Experimental setup

8.1.1 Datasets

In order to evaluate MPCC we performed clustering in five benchmark datasets: a hand-
written digit dataset (MNIST, [63]), a handwritten character dataset (Omniglot, [60]), two
color image dataset (CIFAR-10 and CIFAR-100 [58]) and a fashion products image dataset
(Fashion-MNIST, [115]). For CIFAR-100 we consider the 20 superclasses. Omniglot was
created using the procedure described in [41]. Because the task is fully unsupervised we
concatenate the training and test sets as frequently done in the area [41], [11], [116]. All
datasets have 10 classes except for Omniglot and CIFAR-20 with 100 and 20, respectively.
All images were rescaled to 32 × 32 and reescaled to [-1,1] in order to use similar network
architectures. The CIFAR-10 results shown in tables 8.4, 8.5 and 8.6 were trained using only
the training set (50,000 examples) for a fair comparison with the literature. For all clustering
experiments we use the same number of clusters as classes in the dataset.

8.1.2 Evaluation metrics

Following [116], the performance of MPCC is measured using the clustering accuracy metric
in which each cluster is assigned to the most frequent class in the cluster. Formally this is
defined as

ACC = max
m∈M

∑N
i=1 1{yi = m(ci)}

N
, (8.1)

where N is the total number of samples, yi is the ground truth, ci = argmaxk q(y = k|z = zi)
is the predicted cluster and M is the space of all possible mappings between clusters and
labels.
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To measure the quality of the samples generated by MPCC we use the inception score
(IS) [98] and the Fréchet inception distance (FID) [36].

8.1.3 Empirical details

Our architecture is based on optimization techniques used in the BigGAN [8]1, we found that
simpler architectures such as DCGAN [91] were not able to learn complex distributions like
CIFAR-10 while optimizing the parameters of the prior. Architecture details are given in
section 8.1.4. We consider parameter sharing between the encoder and discriminator, and we
test the importance of this in Section 8.2.2. We set Dsteps = 4 (see Algorithm 1). We made
small changes in the architecture and optimization parameters depending on the dataset (see
section 8.1.4).

We observed the same relation between batch size and (IS, FID) reported in [8]. However
we found artifacts that hurt accuracy performance when using batch size larger than 50. For
simplicity we used this value in all experiments. We consider a weighting factor λp for Loss
III (Eq. (7.16)). We observed that if λp = 1, the standard deviation of the prior σ would
increase monotonically, hindering training. On the other hand if λp is too small, σ decreases,
collapsing at some point. We found empirically that a value of λp = 0.01 combined with a
minimum threshold for σ of 0.5 allow the algorithm to converge to good solutions.

The parameter settings indicated above were fixed for all experiments and didn’t show
a big effect in accuracy performance. In section 8.2.1 we explore the parameters that most
affect training. We trained all experiments for 75,000 iterations, except for MNIST and
Omniglot which was 125,000 iterations. For unconditional and conditional training we kept
the model of the last iteration.

8.1.4 Architecture details

In MPCC we use the BigGAN model techniques [8] as a base for all our experiments. This
architecture employs ResNet [34] and Spectral Normalization [78]. Each Resnet block follows
the same configuration described in section 6.3.3 and can be observed in Fig. 8.1. The
architectures vary with respect the experiments made in Chapter 6. Fig. 8.2 (a) shows the
generator used for the datasets employed. Fig 8.2 (b) shows the unconditional architecture
of the discriminator. In the case of the conditional discriminator a term Embed(y) · h is
added, where h is the output of the global sum pooling (see Table 8.2). We can write the
architectures for all datasets in a general way as in Fig. 8.2 or more specific as in Tables 8.1,
8.2 and 8.3, where C, J and D change between datasets.

As we observed in the result section (Table 8.5), we found an improvement in terms of
sampling quality and reconstruction error when parameters between the discriminator and
the encoder are shared. We experimented on the number of residual blocks shared and found
that the best performance was obtained when sharing the first three residual blocks.

We use the optimizer configuration and network initialization described in section 6.3.3.
We also use a learning rate of 2e−4 for all networks and experiments but with the exception

1https://github.com/ajbrock/BigGAN-PyTorch
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of the prior parameters that is studied latter. For evaluation we use standing statistics [8]
i.e. in evaluation mode we run many times (in our case 16) the forward propagation of the
generator model x̃ ∼ p(x, z, y) storing the means and variances aggregated across all forward
passes.

We use three techniques depending on the dataset to deliver the latent information z and
y into the decoder distribution p(x|z, y). The first two correspond to a hierarchical latent
space architecture [8], which concatenates Embed(y) with a subset of z, followed by a linear
transformation to estimate the statistics of the batch norm layers followed by (see Fig. 8.1).
The first method is shown in Fig. 8.2, which splits the latent variable z into equal chunks,
delivering each one to a different part of the network. In this case we have four chunks (1
entry + 3 residual blocks). The second method is similar to the first one, the only difference
being that all z are shared and no split operation is done. The schematic of this generator
is equivalent to Fig. 8.2 (a) except that the purple box performs a copy instead of split
operation. The third method passes all the latent z as usual [91] and uses conditional batch
normalization [24]. This method learns embeddings conditioned on y, which are different for
each layer, i.e. the linear transformation in the yellow boxes of Fig. 8.1 correspond to an
embedding, and the shared embedding should be ignored.

• For CIFAR10 and CIFAR20 we use the first method since this is the default architecture
used in BigGAN. For simplicity we kept this configuration for all ablation and clustering
experiments with these datasets. We found that mode collapse problems would appear
if the third method is used in these datasets. The configuration of the parameters for
these datasets is C = 96, D = 3 (RGB), J = 128 and ηp = 6 · 10−4.

• For datasets with simpler distributions such as MNIST and Omniglot, the third method
is more stable and yields the best results. We found that if we use hierarchical la-
tent space architectures poor results were obtained. In particular we observed that
the chunks in the first method are decorrelated, which is particularly bad for simpler
datasets such as MNIST and Omniglot because the network gains lot of capacity ig-
noring the embedding y and learning the full real distribution in all the clusters. The
configuration of the parameters for these datasets is D = 1 (grayscale), J = 24 and
ηp = 1.6 · 10−3. For MNIST C = 12 and for Omniglot C = 16.

• For FMNIST we observed that a poor performance was obtained with both the first
and third method. The best results for this dataset were obtained using the second
method. The configuration of the parameters for this dataset is C = 24, D = 1 (gray),
J = 16 and ηp = 1.6 · 10−3.

We developed a Pytorch implementation for MPCC based on the implementation of Big-
GAN2. The IS and FID scores are calculated using the official implementations3. We run
each model in a GeForce RTX 2080 Ti, the amount of time that MPCC iterates depends on
the dataset but it is within the range of 12-24 hours.

2https://github.com/ajbrock/BigGAN-PyTorch
3https://github.com/bioinf-jku/TTUR
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(a) Generator block (b) Discriminator/Encoder
block

Figure 8.1: Residual blocks used for MPCC generator, discriminator and encoder networks.

(a) Generator (b) Discriminator (c) Encoder

Figure 8.2: Architectures of MPCC generator, discriminator and encoder networks, respec-
tively
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yi ∈ {0, . . . , K − 1} ∼ Cat(ϕ)
zi ∈ RJ ∼ N (µyi , σ

2
yi
)

Share Embed(y) ∈ RJ

Linear(J) → 4× 4× 4C

Resblock up 4C → 4C

Resblock up 4C → 4C

Resblock up 4C → 4C

Output Layer:
BN, ReLU, 3× 3 Conv C → D

Tanh

Table 8.1: Generator

x ∈ R32×32×D

Resblock down D → 4C

Resblock down 4C → 4C

Resblock 4C → 4C

Resblock 4C → 4C

ReLU, Global sum pooling

(linear → 1)
if conditional :+ Embed(y)·h

Table 8.2: Discriminator

x ∈ R32×32×D

Resblock down D → 4C

Resblock down 4C → 4C

Resblock 4C → 4C

Resblock down 4C → 4C

Resblock down 4C → 4C

Flatten

×2 : Linear (32//24 × 4C) → (32//24 × 4C)//2

×2 : Linear ((32//24 × 4C)//2) → J

Table 8.3: Encoder

8.2 Results

8.2.1 Ablation study

We found that Esteps, the number of encoder updates per epoch, and ηp, the learning rate
of the prior parameters, are the most relevant hyperparameters to obtain high accuracy
and generation quality. Increasing Esteps improves the estimation of q(z|x) since the prior
and generator parameters are changing constantly. Rows 1-3 of Table 8.4 show that the
reconstruction error (MSE) decreases with Esteps. Generation quality metrics (IS, FID) also
improve with larger values of Esteps due to the shared parameters between encoder and
discriminator.

At initialization the GMM components might not be separated. We observed that the
clustering accuracy drops when the generators learns a good approximation of the real dis-
tribution before the clusters are separated. To avoid this we use a larger learning rate for the
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Table 8.4: Esteps stands for the encoder up-
dates and ηp for the learning rate of the prior
parameters. The scale of MSE is in 10−3.
The statistics were obtained for at least three
runs.
Esteps ηp Acc % IS FID MSE

1 2e-4 41.31
±5.74

8.82
±0.07

11.38
±0.23

1.34
±0.96

2 2e-4 38.67
±3.52

9.02
±0.05

9.66
±3.98

1.01
±1.11

4 2e-4 38.27
±2.46

9.25
±0.09

7.50
±0.43

0.331
±0.09

4 4e-4 52.58
±5.30

9.44
±0.06

6.55
±0.33

0.48
±0.22

4 6e-4 61.99
±4.96

9.49
±0.15

6.59
±0.45

1.04
±1.03

Table 8.5: Comparison of MPCC and AIM-
MPCC methods with sharing parameters (S)
and without sharing (NS) on the CIFAR-10
dataset. The scale of MSE is in 10−3. The
statistics were obtained for five runs.
Model Acc % IS FID MSE

AIM-MPCC (NS) - 8.24
±0.07

21.55
±1.47

1.52
±0.84

AIM-MPCC (S) - 9.09
±0.04

10.42
±0.36

1.64
±1.42

MPCC (S) 61.99
±4.96

9.49
±0.15

6.59
±0.45

1.04
±1.03

parameters of the GMM prior with respect to the parameters of the generator, encoder and
discriminator. Rows 4-6 of Table 8.4 show that the clustering accuracy increases for larger
values of ηp.

8.2.2 Comparison between GMM Prior and Normal Prior

Using the best configuration found in the ablation study, we performed a comparison with
AIM [69], whose results are shown in Table 8.5. We can consider AIM as a particular case
of MPCC where a standard Normal prior is used instead of the GMM prior. AIM does
not perform clustering therefore we compare it with MPCC in terms of reconstruction and
generation quality. We use the same architecture and parameter settings of MPCC for AIM
and we denote this model as AIM-MPCC. To extend our analysis further, Table 8.5 includes
the results of using parameter sharing between the encoder and the discriminator (section
8.1.4), an idea that was considered but not fully explored in [69].

Note that AIM-MPCC (NS) is considered a baseline because the prior is Gaussian and the
encoder doesn’t share parameters with the discriminator thus the existence of the encoder
doesn’t affect the generation quality. In Table 8.5 we can observe the relevance of parameter
sharing, with this configuration (Esteps = 4) the baseline improves by 0.85 (IS) and 11.13
(FID) points. Adding the GMM in the prior improves an additional 0.4 (IS) and 3.93 (FID)
points. In total when using the GMM Prior and parameter sharing with additional encoder
updates we improve the baseline from 21.55 to 6.59 (69.4% improvement) in terms of FID
score and 1.25 points (15.2% improvement) in terms of IS. It is important to notice that
these techniques are general and can be easily applied to any GAN scheme.

8.2.3 Generation quality of MPCC

Using the configuration of row five from Table 8.4 we compare MPCC with nine state of the
art methods (as of July 2020), surpassing them in terms of IS and FID scores in both the
unsupervised and supervised setting, as shown in Table 8.6. The unconditional generation
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Table 8.6: Inception and FID scores for CIFAR-10, in unconditional and conditional training.
Higher IS is better. Lower FID is better. †: Average of 10 runs. ‡: Best of many runs. ††:
Average of 5 runs. Results without symbols are not specified.

Model IS FID

DCGAN [91] 6.64± 0.14 −
SN-GAN† [78] 8.22± 0.05 21.7± 2.1
AutoGAN [27] 8.55± 0.10 12.42
PG-GAN ‡ [48] 8.80± 0.05 −
NCSN [102] 8.91 25.32
MPCC†† 9.49± 0.15 6.59± 0.45

(a) Unconditional (unsupervised) generation

Model IS FID

WGAN-GP [31] 8.42± 0.10 −
SN-GAN † [78] 8.60± 0.08 17.5
Splitting GAN ‡ [30] 8.87± 0.09 −
CA-GAN † [83] 9.17± 0.13 −
BigGAN [8] 9.22 −
MPCC†† 9.55± 0.08 5.69± 0.17

(b) Conditional (supervised) generation

is the most significant with an improvement of 46.9% (FID) over state-of-the-art (SOTA),
AutoGAN [27]. Most notably its performance is better than the current best conditional
method (BigGAN).

8.2.4 Clustering results

Table 8.7 shows the clustering results for the selected benchmarks. We observe that in all the
available benchmarks MPCC outperform the related methods, VADE [46] and ClusterGAN
[79]. In more complex datasets such as CIFAR10, MPCC notably surpass discriminative
based models (e.g. [41], [45]) which are the most competitive methods in the current liter-
ature. For benchmarks with more classes the margin is even larger obtaining improvements
over the SOTA of ∼ 42% and ∼ 9.7% points in Omniglot and CIFAR-20 respectively, demon-
strating empirically the scalability of MPCC when using a high number of clusters.

It can be observed that for all datasets our proposed method either achieves or surpasses
the SOTA in terms of clustering. Figures 8.3 and 8.4 show examples of generated and
reconstructed images, respectively, using the MPCC model with the highest accuracy in the
MNIST and CIFAR-10 datasets.

8.3 Discussion
Our results show that MPCC achieves a superior performance with respect to the SOTA on
both clustering and generation quality. We note that the current SOTA on unsupervised and
semisupervised learning relies on consistency training [117] and/or data augmentation [45],
i.e. techniques that are complementary to MPCC and could be used to further improve our
results.

To the best of our knowledge MPCC is the first deep generative clustering model capable
of dealing with more complex distributions such as CIFAR-10/20 and the first to report
clustering accuracy on these datasets. Additionally, we empirically prove the scalability of
MPCC showing significant improvements in datasets with a larger number of classes, 20 in
case of CIFAR-20 and 100 in case of Omniglot, such scalability has not been proven for the
current literature on generative models [46], [79], [103], [118].
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Table 8.7: Clustering accuracies for several methods and datasets. All the results of CIFAR-
20 dataset were extracted from [45], the results of IMSAT and DEC from [41], the results
of InfoGAN and ClusterGAN from [79] and the remaining from their respective papers. †:
average of 5 or more runs. ‡: best of 5 runs. §: best of 10 or more runs. ∥: best of 3 runs.
Results without symbols are not specified.

Datasets

Methods MNIST Onmiglot FMNIST CIFAR-10 CIFAR-20

DEC [116] 84.3§ 5.3± 0.3† − 46.9± 0.9† 18.5
VADE [46] 94.46§ − − − -
InfoGAN [14] 89.0‡ − 61.0‡ − -
ClusterGAN [79] 95.0‡ − 63.0‡ − -
DAC [11] 97.75∥ − − 52.18∥ 23.8
IMSAT (VAT) [41] 98.4± 0.4† 24.0± 0.9† − 45.6± 0.8† -
ADC [33] 98.7± 0.6† - - 29.3± 1.5† 16.0
SCAE [57] 98.5± 0.10† - - 33.48± 0.3† -
IIC [45] 98.4± 0.65† - - 57.6± 0.3† 25.5± 0.46†

MPCC (Five runs) 98.48± 0.52 65.87± 1.46 62.56± 4.16 64.25± 5.31 35.21± 1.69
MPCC (Best three runs) 98.76± 0.03 66.95± 0.62 64.99± 2.22 67.73± 2.50 36.51± 0.71

Our experiments show that MPCC’s key innovations: GMM prior, loss function and opti-
mization scheme (e.g. extra encoder updates with parameter sharing) are not only relevant
to achieve a good clustering accuracy but also allows us to obtain unprecedented results in
terms of generation quality (Table 8.6). Which translates in improvements of 69.4% over the
baseline (Table 8.5) and 46.9% over the SOTA (Table 8.6) in terms of FID score. We think
that the exceptional generation capabilities of MPCC are related to the support that each
cluster covers of the real domain. Since each cluster learns a subset of the real distribution
the interpolation between two points within a cluster is smoother compared to the case where
no latent separation exists. The latter is explained by the learnable shared features which
exploit the similarities existing in a cluster and are not present in a fixed global prior (i.e.
ALI, AIM).

The high generation quality can be appreciated in Fig. 8.3 (more samples in Appendix
D), where many clusters sample consistently different classes. However we can still see some
classes mixed in some clusters, for example in columns 7-8 with cats and dogs. MPCC also
presents a competitive performance in terms of conditional distribution matching (Fig. 8.4).
The errors observed in reconstruction are semantic and similar to those observed in [20].

MPCC opens the possibility of future research in many relevant topics which are out
of the scope of this thesis. Based on our experiments the most important extensions are:
1) Experiment with other conditional distributions p(z|y), e.g. other exponential-family
distributions or other flexible distributions by bounding their entropy (Section 7.2.2). This
can be suitable for more expressive priors as it’s shown in recent work [114]. 2) Experiment
with imbalanced distribution of classes by changing ϕ accordingly, we consider this to be a
relevant problem in the unsupervised setting which only a few works have addressed [105]. 3)
Experiment with higher resolution datasets such as ImageNet [18] or CelebA [71]. Current
works on clustering have not focus their attention to higher-resolution due to its complexity,
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(a) MNIST samples (b) CIFAR-10 samples

Figure 8.3: Generated images for a) MNIST and b) CIFAR-10 datasets, respectively. Every
two columns we set a different value for the categorical latent variable y. i.e. the samples
shown correspond to a different conditional latent space z ∼ p(z|y).

(a) MNIST reconstruction (b) CIFAR-10 reconstruction

Figure 8.4: Reconstructions for a) MNIST, and b) CIFAR-10 datasets, respectively. Odd
columns represent real data and even columns correspond to their reconstructions.

MPCC is a promising approach to tackle this task from a semantic perspective [20].
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Chapter 9

An astronomical application with
Variational Deep Embedding

In this chapter we validate the practical application of generative-inference models on real
data from astronomical light curve datasets. A light curve is a time series of the luminosity
of an astronomical object. Astronomers analyze the light curves to obtain insight about
the underlying physical processes of the objects [87]. Light curve analysis is particularly
important to study transient and variable astronomical objects. Light curves captured by
earth-based telescopes are characterized by their irregular sampling and non-constant errors
(heterocedasticity), which hinders the application of classical methods for time series analysis.

In recent years, astronomy has seen an exponential growth in data volume, speed and
complexity due to the installation of large panoramic telescopes [42]. An emblematic example
is the Vera Rubin Observatory with its main program the Legacy Survey of Space and Time
(LSST) [106], which will produce 20TB of data every night. The application of machine
learning in these cases is necessary for the automatic analysis of the data. Moreover models
and techniques that can exploit the supervised and the unsupervised information will be
key. As seen in this thesis generative-inference models can be trained without labels by
compressing the real data into a lower dimensional latent space for further applications.

In this chapter we tackle the problem of anomaly detection [10] in astronomical datasets.
This problem is formulated as separating data x̄ that didn’t come from the real distribution
q(x) where the model was trained. Solving this problem is key to discover new objects
never observed before that may contribute to the literature as new astrophysical theories.
We propose to select anomalous data using a new unsupervised information score and a
model called LC-VaDE which adapts Variational Deep Embedding (VaDE) for astronomical
lightcurve datasets. This model is trained using unsupervised and supervised information
available in the dataset.

The use of VaDE in this application is justified based on the following observations

1. VaDE is a model that bounds Iq(x, z) + Eq(x)Iq(z, y|x) so it explicitly optimizes the
mutual information of the inference model, which is directly associated with its repre-
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sentation learning capabilities.
2. VaDE, as a model that bounds Iq(x, z), optimizes the likelihood Eq(x,z)[log p(x|z)]. In

what follows we will show a closed-form solution to estimate this quantity for astro-
nomical lighcurve datasets. In these datasets a simple optimization of Eq(x,z)[log p(x|z)]
is preferred over an implicit adversarial training like MPCC since their dimensional
complexity is less than that of image datasets.

In astronomical lightcurve datasets an estimation of the associated error σ of the lumi-
nosity µ is generally available. To exploit this information we can estimate µ̂ and σ̂ with
p(x|z) to reduce the cross-entropy with the available statistics of the data µ and σ. Note
that the cross-entropy −

∫
N (µ, σ2) logN (µ̂, σ̂2) have a closed form solution for the Gaussian

distribution, a common assumption when dealing with lightcurve astronomical datasets [40].

As explained before, astronomical lightcurve datasets have the advantage that it is possible
to optimize models based on the cross-entropy in the observed space but they still have other
difficulties. There are two main issues that we have to take into consideration when working
with lightcurve datasets:

1. The length of each lighcurve is variable
2. The observation times in a lightcurve are irregularly and sometimes sparsely sampled

These difficulties are of special consideration for generative-inference models, because these
models consider an encoder and a decoder, and both should be able to deal with variable
length and irregularly sampled time series. One alternative to deal with this difficulty is to
use recurrent neural networks (RNN) [39]. RNNs can deal with variable length but they don’t
scale well for long sequences or when many RNNs modules are stacked. For this reason we
will use architectures based on convolutional neural networks [59, 62] to encode and decode
lightcurve data. Some encoders approaches can encode data using irregularly sampled time
series [100], but there are not many decoders that can decode variable length data with
irregularly sampled time series. To use convolutional based architectures we propose a new
decoder that takes advantage of the Gaussianity of p(x|z) to infer data sampled at arbitrary
times t, similar to a Gaussian process [92]. The optimization of this decoder is possible
thanks to the simplicity of autoencoding procedures like VaDE.

The main contributions of this work are:

• A new decoder that is able to deal with irregularly sampled and variable-length times
series.

• A new generative-inference model called LC-VaDE based on VaDE to train a latent
variable mixture model for astronomical light curves.

• A new anomaly detection score based on information theory.

9.1 Related work
Variational deep embedding (VaDE) is a VAE model that changes the common prior p(z) =
N (0, I) to a learnable mixture of Gaussians. This modification in the prior allows VaDE to
perform applications like clustering [2, 46] but to the best of our knowledge it hasn’t been
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applied to irregularly sampled time series or for anomaly detection in time series datasets.
Previous work [123] have used autoencoding models with mixture of Gaussians in its embed-
ding to perform anomaly detection. To the best of our knowledge this is the first attempt
of using a generative-inference model with a multimodal prior for this task. There are two
main differences of our work with [123]: 1) [123] is not a generative model and 2) its anomaly
detection score is based on energy functions [64] instead of information theory. We will com-
pare our model with [123] since it is the most similar method in the literature and it also has
been used in astronomical applications [109].

9.2 Astronomical datasets

Following previous autoencoding work [80], we consider the All Sky Automated Survey [56]
(ASAS) and Linear [86] variable star lightcurve datasets. Fig. 9.1 shows a histogram of
the periodic variable star classes present in these datasets. A variable star is a star whose
luminosity changes over time. The luminosity of an object i is obtained by taking pictures
of the sky for a given passband frequency filter b = 1, . . . , B and at times ti,j,b, where j
denotes the j-th picture of object i. Photometry [81] is then used to estimate the magnitude
(relative flux) µi,j,b and its associated error σi,j,b for every object, picture and band. The
tuples (ti,j,b, µi,j,b, σi,j,b) defines the lightcurve dataset. The number of tuples per object and
per band varies across the dataset. Additionally ti,j,b is sampled irregularly, which increases
the difficulty of astronomical lightcurve datasets.

For periodic variable stars it is possible to fold the lightcurve using

tfold = mod (tunfold, p)/p, (9.1)

where p is the period of the lightcurve and mod is the modulus operator. The result of this
operation normalizes the observation times tunfold to a phase space tfold ∈ [0, 1]. In practice
we will use tfold in all experiments and denote it simply as t. For an arbitrary ti,j,b the index
j can take the values j ∈ 1 . . . Tb, being Tb the length of the lightcurve i for band b. In the
datasets considered in this work the maximum value of Tb is 200 and number of bands B is
1.

For the anomaly detection problem we will separate all the data in a training and test
sets. The test set contains Nanomaly number of samples from the anomaly class and a equal
number of Nanomaly samples from the inlier class preserving the balance of classes of the inlier
data. The training set is constructed with all the inlier data that is not used for testing.
Nanomaly is defined as the number of samples from the minority class of the dataset. We
use each class of the dataset as outlier in different experiments. We don’t use a validation
set since in practice it is not feasible to have outlier data available. For each lightcurve we
normalize its statistics with the mean m of the magnitudes and standard deviation s of the
magnitudes of the lightcurve itself. For training we consider additional features f that can
be useful to the model for the task of classification. In this work we will consider the vector
f = (m, s, p) as additional features.
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(a) Linear dataset (b) Asas dataset

Figure 9.1: Histogram of the classes available in the Linear and ASAS datasets.

9.3 A decoder for variable length and irregular sample
time series

Astronomical lightcurves have variable length and irregular sampling and we need both an
encoder and a decoder that can deal with these difficulties. For the encoder we use the
interpolation prediction network [100] followed by a CNN architecture1. For the decoder we
propose a new framework based on Gaussian process. In Gaussian process usually a collection
of observed data xi, indexed by their times ti, form a multivariate Gaussian distribution that
is used to predict data on times tpred. In our case we will learn induction points xind

i , indexed
by fixed times tind

i , to form a multivariate Gaussian distribution that will be used to predict
data on times tpred. We can take tpred from the empirical distribution ti, xi ∼ q(x, t) to have
an estimate x̂i of the observed data xi. In what follows we give a general and a more detailed
overview of the proposed procedure.

We start by encoding the data µ(ti,j,b), σ(ti,j,b) into latent variables z. Using a CNN ar-
chitecture we decode the latent variables z into a fixed amount of induction points x̂ind

i,b (tk) =

(µ̂ind
i,b (t

ind
k ), σ̂ind

i,b (t
ind
k )) that are associated with equally spaced times tind

k with k ∈ 1 . . . I, being
I the number of induction points. These induction points are used to infer µ̂(ti,j,b), σ̂(ti,j,b)
at the irregularly sampled instants ti,j,b, which are the times associated to data. We train the
model by maximizing the likelihood µ̂(ti,j,b), σ̂(ti,j,b) with respect to the empirical observa-
tions µ(ti,j,b), σ(ti,j,b). The gradients backpropagate to learn the induction points. We also
use backpropagation to learn the kernel parameters θkernel typically used in Gaussian process.
This Gaussian process is amortized since the neural network can compute its parameters in
one forward pass.

The coding and decoding processes are shown in Fig. 9.2. Note that any autoencoding
model can be used, generative or not. The detailed steps of the autoencoding process are the
following

1More details of the architecture are given in Section 9.5.2
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1. Sample (xi, ti) ∼ qδ(x, t) from the empirical data distribution, where xi = (µi, σi).
2. Encode the data xi = (µi, σi) with the encoder q(z|x) into a lower dimensional space (see

section 9.4 for the architecture used). We set q(z|x) as a Gaussian distribution defined
by the statistics µ̃i, σ̃i. Using the reparameterization trick we sample zi,h ∼ q(z|x = xi)
with h referring to a random sample from this distribution, in the following we use
notation zi for simplicity.

3. We separate the codification as zi = [zrep
i , zkernel

i ]. We make this distinction to separate
the representation learning information of the lightcurve in zrep from the necessary
information to estimate the kernel parameters in zkernel (Eq. (9.3)).

4. Decode zrep
i with p(xind|z). The distribution p(xind|z), parameterized by a CNN archi-

tecture (see details in section 9.5.2), decodes zrep
i into a fixed amount of induction points

x̂ind
i,b (tk) = (µ̂ind

i,b (t
ind
k ), σ̂ind

i,b (t
ind
k )). Note that each induction point x̂i,b is associated with

fixed and regularly sampled times tk defined as

tk =
k

I + 1
k ∈ 1 . . . I, (9.2)

where tk does not depend on the data point i. The total number of induction points is
given by I ×B, where I is defined by the architecture, B is the number of bands. Note
that that the number of neurons necessary to decode is 2× I ×B since x is formed by
the tuple (µ̂, σ̂).

5. Decode zkernel
i with p(θkernel|z). The distribution p(θkernel|z), parameterized by a NN

architecture (more details in the section 9.5.2), decodes zkernel
i into the kernel parameters

θkernel
i . In practice we use an exponential quadratic kernel for all of our experiments

defined as
kθi(t, t

′) = σ2
θi
exp

(
−||t− t′||2

2l2θi

)
, (9.3)

where its parameters are defined by θkernel
i = (σθi , lθi) and are learned through back-

propagation (see architecture details in section 9.5.2).
The kernel defines the covariances Σ̂ind,ind, Σ̂ind,obs and Σ̂obs,obs. The sub-index “obs”
refers to covariances obtained by using the real times t. The sub-index “ind” refer to the
covariances obtained by using the induction points times tind. The covariance Σ̂ind,ind

can be modified depending on the noise σ̂ind
i (tind

k )) of each induction point as follows:

Σ̂ind,ind
i =


kθi(t

ind
1 , tind

1 ) + (σ̂ind
i (tind

1 ))2 . . . . . . kθi(t
ind
I , tind

I )
... . . . ...

...
...

... . . . ...
kθi(t

ind
I , tind

1 ) . . . . . . kθi(t
ind
I , tind

I ) + (σ̂ind
i (tind

I ))2

 (9.4)

6. Using the induction points we can compute the posterior distribution p(x̂|x̂ind, tind, t)
to estimate x̂ at times t that can be compared to the observed data x. Note that the
induction points are Gaussian so the posterior p(x̂|x̂ind, tind, t) is Gaussian too and can
be computed in closed-form as follows:

p(x̂|x̂ind, tind, t) = N (Σ̂obsobs,ind(Σ̂ind,ind)−1µ̂ind︸ ︷︷ ︸
µ̂

, Σ̂obsobs,obsobs − Σ̂obsobs,ind(Σ̂ind,ind)−1Σ̂ind,obsobs︸ ︷︷ ︸
Σ̂

)

(9.5)
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Encoder Decoder

Figure 9.2: Diagram of the autoencoding process for astronomical light curves using the
proposed decoder.

7. For simplicity we consider the diagonal of Σ̂ to define the posterior as a Normal dis-
tribution N (µ̂, σ̂2). Since the posterior distribution is Normal and each sample of the
empirical data distribution is also Normal we can estimate the likelihood as

Eqδ(x,t)q(z|x,t)[log p(x|z, t)] =
1

N

N∑
i=1

∫
x

N (x;µi, σ
2
i ) logN (x; µ̂i, σ̂

2
i )dx (9.6)

=
1

N

N∑
i=1

B∑
b=1

Tb∑
j=1

− log(2πσ̂2
i,j,b)−

σ2
i,j,b

2σ̂2
i,j,b

− (µi,j,b − µ̂i,j,b)
2

σ̂2
i,j,b

(9.7)

We refer to [46] for the demonstration of the cross-entropy for Gaussian distributions.

9.4 Anomaly detection with LC-VaDE

9.4.1 Graphical model

For anomaly detection we will train LC-VaDE with labels to be comparable with the baseline
[109]. We will consider the following generative-inference graphical model,

• p(x, z, y, f |t) = p(x|z, t)p(z|y)p(f |y)p(y)
• q(x, z, y, f, t) = q(x, f, t)q(z|x, t)q(y|z, f).
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The structure of LC-VaDE is similar to VaDE [46], a three variable graphical model. LC-
VaDE additionally considers the addition of the time t and features f (described in section
9.2) used for classification. The joint distribution q(x, f, t) includes the observable data x,
features f and the time vector t of the observable data. We encode the data with q(z|x, t)
using x and times t. We classify the data to a mode of the prior y with q(y|z, f). For q(y|z, f)
we use the information from z the codified data and the additional features f . For the prior
distribution we use a categorical prior p(y), and the conditional priors p(z|y), p(f |y) that
are learnable Gaussians dependant on y. The decoder p(x|z, t) is used to decode the data
from z and t. Note that we impose the dependency t in p(x|z, t) since we want to learn
the underlying process to generate x, and t are the observations times available from that
underlying process.

The proposed graphical model can be obtained by decomposing the inference model as
q(x, z, y, f, t) = q(x, z, y)q(z|x, f, t)q(y|x, z, f, t) and the generative model as p(x, z, y, f |t) =
p(x|z, y, f, t)p(z|f, y, t)p(f |y, t)p(y|t) and making the following independence assumptions.
For q(z|x, f, t) we want the latent variable z to be a codified version of x and not for the
additional features f . With this independence in consideration the posterior z simplifies as
q(z|x, f, t) = q(z|x, t). For the task of classification executed by q(y|x, z, f, t) we assume the
data x and the time t are already codified in z, so to estimate y only z and f are needed
simplifying the posterior of y as q(y|x, z, f, t) = q(y|z, f). For the generative model we assume
that all latent variables and f are independent of the time t. This assumption is possible since
t stands for the available time observations of x and are not part of the underlying process
of x. To estimate x we only need z and t since x and f are independent and z contains the
categorical information of y. With these considerations the decoder p(x|z, y, f, t) simplifies to
p(x|z, t). Since we also assume the independence of z and f , p(z|y, f, t) simplifies to p(z|y).
Finally with the time independency consideration p(f |y, t) simplifies to p(f |y).

9.4.2 Loss function of LC-VaDE

For the training of LC-VaDE we consider supervised and unsupervised information. We refer
to the model that use both sources of information as LC-VaDES. LC-VaDES minimizes the
following loss function

LLC-VaDES = LLC-VaDE + h(y, ỹ), (9.8)

where y is the real label and ỹ is the label estimated by the model. The term h(y, ỹ) refers
to the cross-entropy between both distributions. We obtain ỹ by sampling data xi, fi, ti ∼
qδ(x, f, t) and encoding it with z̃i ∼ q(z|x = xi, t = xi) and ỹi = q(y|z = zi, f = fi). LLC-VaDE

refers to the ELBO of the marginal distribution p(x|t) obtained using Jensen’s Shannon
inequality as follows:

Eq(x,t)[log p(x|t)] ≥ Eq(x,z,y,f,t)

[
p(x, z, y, f |t)
q(x, z, y, f, t)

]
(9.9)

≡ Eq(x,t)q(z|x,t)[[log p(x|z, t)] + Eq(y|z,f)[log p(z|y)]
+ Eq(f)q(y|z,f)[log p(f |y)]] + Eq(y)[log p(y)]

+ hq(y|z) + hq(z|x) (9.10)
≡ −LLC-VaDE. (9.11)
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Encoder Decoder

Classifier

Figure 9.3: Diagram of the LC-VaDE loss function. The terms Eq(y|z,f)[log p(z|y)],
Eq(f)q(y|z,f)[log p(f |y)]] are represented by the “cross-entropy terms” red box. The terms
hq(y|z), hq(z|x) are represented by the “entropy terms” red box.

Note that the ELBO is trained in an unsupervised manner and the supervised information
is only used for the cross-entropy term included in Eq. (9.8). All the terms in Eq. (9.10)
can be computed in closed-form similarly to [46], since all distributions are either Gaussian
or categorical. To obtain a closed-form solution for the variable f , the distribution q(f)
is assumed to be N (fi, σ

2
fi
) with σ2

fi
→ 0. We assumed that the prior distribution p(y) is

uniform since we force label balance during training. For the rest of this work we refer to
LC-VaDES as LC-VaDE, when there is no ambiguity. Fig. 9.3 shows all the terms involved
in the computation of the loss function of LC-VaDE.

9.4.3 Anomaly detection score

For anomaly detection we prefer a score based on the information obtained from the latent
variables. We avoid including information about the observed space because it could perform
badly in situations where outlier lightcurves are less noisy than inlier light curves. Models
that include reconstruction error in the observed space could bias the model [123, 73], treating
an object as outlier only because it is noisier. For this reason we decide to compress the first
two statistics of the data i.e. xi = (µi, σi). If xi = (µi, σi) then its codified version zi(xi)
should contain all the information of µi and σi.

We choose to measure the mutual information Iq(z, y|x) between the codified data zi(xi)
and each mode from the prior p(y) given the data xi. Since this mutual information has an
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intractable term we use the following bound

Iq(z, y|x, f) = Eq(z,y|x,f)[log p(z|y)] + hq(z|x) + Eq(y)[DKL(q(z|y)||p(z|y))]
≥ Eq(z,y|x,f)[log p(z|y)] + hq(z|x) ≡ IAS(x), (9.12)

where we have assumed DKL(·) ≥ 0. We call this expression Information Anomaly Score
(IAS). Intuitively the IAS score considers three factors: (1) the prediction of the classifier
q(y|z, f), (2) the likelihood of q(z|x) in the conditional prior p(z|y) and (3) the entropy
hq(z|x). The factors (1) and (2) are collected by the term

Eq(z,y|x,f)[log p(z|y)] = Eq(y|z,f)q(z|x)[log p(z|y)] =
K∑
k=1

q(y|z(xi), fi)

∫
z

N (µ̃i, σ̃
2
i ) logN (µk, σ

2
k),

where for simplicity the subindexes i and k refer to the statistics of the encoded data and
the prior parameters, respectively. This term weights the prediction q(y = k|x, f) with
the likelihood of the encoded data in the k-th Gaussian of the prior. This means that
Eq(z,y|x,f)[log p(z|y)] and thus the IAS score will be low if either the entropy of q(y|z) is high
or the likelihood Eq(y|z,f)[log p(z|y)] is low. The last factor implies that a high entropy hq(z|x)
augments the IAS score. We interpret the entropy hq(z|x = xa) as how much latent space the
input xa fill. Probably an input with higher entropy hq(z|x) is more confundable with other
data than inputs with less entropy. An input xb with higher entropy hq(z|x = xb) probably
contains features that are maximized in training, thus the entropy should be higher for inlier
inputs than outlier inputs.

9.5 Experiments
In this section the experimental setup for the anomaly detection task is provided. In Section
9.5.1 we explain the metrics used to evaluate the anomaly detection performance. In Section
9.5.2 we give the architectural details of our work and in Section 9.5.3 we present the qual-
itative and quantitative results. Finally in section 9.5.4 we discuss the impact of our work
and future contributions.

9.5.1 Metrics

In a practical anomaly detection problem it is not possible to choose a specific threshold to
separate inlier and outlier data since usually a validation set is not available. Due to this we
use a grid of thresholds and compute the Area under the Receiver Operating Characteristic
curve (AUCROC) and area under the precision-recall (AUCPR), as is commonly used in the
literature [26].

9.5.2 Architecture details

Following the experiments shown in previous chapters, we use the BigGAN model techniques
[8] as a base for all our experiments. We also employ ResNet [34] architectures and Spectral
Normalization [78]. We followed the same residual block components of the generator (in
this case the decoder) and encoder shown in figures 6.1 (a) and (b), respectively, although
in this case a discriminator is not used. All the 3 × 3 convolutions use a padding equal to
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one while 1 × 1 convolutions have no padding. The upsampling operation of the generator
residual block is done using bilinear interpolation (“Resblock up” in Table 6.1) increasing
the width dimension by two. The downsampling operation of the encoder residual block is
done using average pooling with kernel size three (“Resblock down” in Table 9.2). A general
scheme of the decoder and encoder architecture is shown in Fig. 9.4.

The interpolation prediction encoder [100] is a learnable filter operation that can reduce
a variable amount of input data into a fixed amount (in our case 64). It performs low-
pass and high-pass interpolations and cross-correlation of the input bands (if D > 1, D the
dimensionality of the input of the network). Because it performs three operations it increases
the input dimension by three (see Table 9.2). The first residual block of the encoder inverts
the order of the 1×1 Conv and the average pooling and omits the first ReLU activation. We
can write the architectures for all datasets in general way as in Fig. 9.4 or more specific as
in Tables 6.1, 6.2 and 6.3, where C, J and D may change between datasets. In this case, for
both Linear and ASAS and in all our experiments C = 72, J = 10, (dim(zrep)+dim(zkernel) =
10 + 2 = 12) and D = 2 (Number of bands µ + Number of bands σ = 1 + 1 = 2). For a
general case note that D = 2×B.

The latent zrep is used to estimate the parameters of the batch normalization layer. We
use the same zrep in each decoder block (see Fig. 6.1) and different linear transformations
represented in the yellow boxes of Fig. 6.1. Tables 9.1 and 9.2 specify the parameters of the
decoder and encoder block, respectively.

In Fig. 9.4 we consider different parameters p(θkernel|z)(m) for different kernel parameters
m. In the case of the exponential quadratic kernel the parameter is defined as θkernel

i =
(σθi , lθi) i.e. two sets of parameters are necessary for p(θkernel|z). In Fig. 9.4 the number of
hidden units of the linear transformations used for p(θkernel|z) is BW × 4C (see Table 9.1),
except for the last which is one. The “Activation∗” block is different for different kernels, in
particular σθi = 10 · Sigmoid(·) and lθi = 1/I · Sigmoid(·).

We use the Adam optimizer [52] with its default parameters β1 = 0.9 and β2 = 0.999 and
an initial learning rate of 1e− 3 for all networks and experiments.
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(a) Decoder (b) Encoder

Figure 9.4: Architectures for the decoder and encoder networks, respectively.

z̃rep
i ∈ RJ ∼ N (µ̃i, σ̃

2
i )

Linear(J) → BW × 4C

Resblock up 4C → 4C

Resblock up 4C → 4C

Resblock up 4C → 4C

x2 :Output Layer:
BN, ReLU, 3× 3 Conv C → 1

Table 9.1: Decoder p(xind|z). BW refers to a
bottom width parameter, which it defines the
number of induction points I. We use BW = 3,
given that we have 3 upsampling resblocks the
number of induction points is I = 3× 23 = 24.

x ∈ R200×1×D

Interpolation prediction block
D → 2D

Resblock down 2D → 4C

Resblock down 4C → 4C

Resblock down 4C → 4C

Resblock down 4C → 4C

Flatten

×2 : Linear (32//24 × 4C) → J

Table 9.2: Encoder

9.5.3 Results

In Table 9.3 we show the results of testing LC-VaDE using all the possible classes as outlier.
The worst result for both Linear and ASAS datasets comes from the eclipsing binary classes:
Beta Persei and W Ursae Majoris. Other classes are close to the perfect score of 100% and
when Delta Scuti (in Linear dataset) is chosen as outlier the model reaches the perfect score.

Fig. 9.6 and Fig. 9.7 show reconstructed light curves for each class on the test set for
the Linear and ASAS datasets, respectively (In Fig. 9.6 Beta Persei reconstructions are
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Table 9.3: AUCROC and AUCPR for Linear and ASAS datasets by outlier class. Classes
are ordered by number of data samples in the training set.

Outlier class AUCROC AUCPR

Delta Scuti 100.00± 0.00 100.00± 0.00
Beta Persei 86.55± 2.97 85.56± 3.63
RR Lyrae FO 96.41± 2.02 96.40± 1.73
W Ursae Majoris 71.37± 12.05 64.72± 10.75
RR Lyrae FM 95.72± 3.78 93.59± 7.09

(a) Linear dataset

Outlier class AUCROC AUCPR

Classical Cepheid 98.58± 2.41 98.72± 2.07
Semireg PV 99.98± 0.15 99.98± 0.43
Beta Persei 89.73± 1.59 84.76± 0.22
RR Lyrae FM 94.78± 0.15 89.91± 0.43
W Ursae Majoris 81.62± 6.15 71.51± 4.31

(b) Asas dataset

not included because of its low number on test set). For the Linear dataset we chose the
case where the Delta Scuti class is taken as outlier, which has a good anomaly detection
performance (see Table 9.3). For the ASAS dataset we chose the case where the W Ursae
Majoris is taken as outlier, which has the worst anomaly detection performance (see Table
9.3). For the Linear dataset we found that even the outlier class is well reconstructed. On
the other hand, for the ASAS dataset the outlier class has bad reconstructions and tend to
reconstruct Beta Persei classes rather than the input.

Fig. 9.8 and Fig. 9.9 show reconstructed light curves on the test set ordered by their IAS
for the same runs used in Fig. 9.6 and Fig. 9.7, respectively. For the Linear dataset (Fig.
9.8) we show that the most outlier data (smallest IAS) are effectively the data corresponding
to the outlier class. We found that even for data with the smallest IAS its reconstructions are
close to the input data. This implies that models that detect anomalous data based solely
on the reconstruction error [73] could result in poor anomaly detection performance. For the
ASAS dasaset (Fig. 9.9) the performance is bad. In this case the model does not reconstruct
the outlier (in this case W ursae majoris) correctly case and the smallest IAS does not always
correspond to the outlier class. Fig. 9.5 shows histograms of the mutual information bound
(IAS) for the run in Linear and ASAS datasets. The superior performance in the Linear
dataset is clearly observed by more separable histograms than in the ASAS dataset.

Table 9.4 compares our model with the most similar baseline [123] in the literature, which
is based on energy function (see section 9.1). This model has been used in astronomy [109]
and considers RNN architectures for the encoder and decoder (architecture proposed in [80])
to deal with variable length and irregular sampling. For completeness we compare against the
original RNN architecture of [109], and also with an energy based anomaly detection model
with the same architecture that is used in LC-VaDE. The latter presented very unstable
training so we chose only the runs that could converge for the comparison. Finally, to show
the relevance of multimodal priors we implemented an unimodal version of LC-VaDE using
the same architecture of LC-VaDE. This model can be understood as a VAE model with
the addition supervision in the latent space. The anomaly score in this case is computed by
measuring the likelihood of the encoded data into the prior N (0, I).
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(a) MI bound with Delta Scuti as outlier (b) MI bound with W Ursae Majoris as outlier

Figure 9.5: Histogram of the mutual information bound for the Linear dataset using Delta
Scuti as outlier (a) and for the ASAS dataset using W Ursae Majoris as outlier.

9.5.4 Discussion

We present a novel generative-inference model called LC-VaDE. With this model we surpasses
the most similar baseline in the current literature, improving over the autoencoding mixture
model based on energy function [123]. When we used recurrent neural networks and energy
function as anomaly score as is done in [109] the results are stable and consistent, but
the performance is inferior than when we use our proposed architecture. The proposed
architecture improves over the RNN architecture by a significant margin. We found however
difficulties in training when we used the Linear dataset. We attribute these instabilities to
the need of the covariance regularization for each estimated Gaussian that was noted by
[123, 109]. In contrast our proposed model LC-VaDE using the same architecture is stable
and with a much better performance than the energy baseline. We test different combination
for the class chosen as outlier observing consistent result. We also compare LC-VaDE with
its uni-modal version i.e. only one Gaussian as prior resulting in a VAE with additional
supervision on the embedding. We show that the uni-modal version is outperformed by a
large margin which highlights the relevance of multi-modal priors.

For LC-VaDE a new decoder motivated by Gaussian processes was proposed. This decoder
can be seen as an amortized Gaussian process since it can generate at any given/request time
from the induction points. The decoder is particularly useful for representation learning since
it forces the reconstruction of the entire light curve using only the induction points, which
are considerable less dimensional than the input of the network. The decoder is suitable to
deal with the difficulties associated with light curve datasets: irregular sampling and variable
length data. Moreover this decoder estimates the variance (photometric error) i.e. the model
is capable to capture the variance of the data in the latent space.

From the observations made in Section 9.5.3 we can conclude that the model have low
anomaly detection performance when the outlier class is badly reconstructed. For the ASAS
dataset the worst performance is obtained when W Ursae Majoris is taken as the outlier

79



RR Lyrae
FM

RR Lyrae
FO

W Urase
Majoris

Delta Scuti
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Figure 9.6: Light curve reconstructions in the Linear test set when Delta Scuti is used as
the outlier class. Red dots refer to observed data, blue dots are the induction points µ̂ind

with error bars σ̂ind. The blue line corresponds to the predicted data on real times t, and the
shaded blue area to its standard deviation.
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Beta Persei

Classical
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RR Lyrae
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Figure 9.7: Light curve reconstructions in the ASAS test set when W Ursae Majoris is used
as the outlier class. Red dots refer to observed data, blue dots are the induction points µ̂ind

with error bars σ̂ind. The blue line corresponds to the predicted data on real times t, and the
shaded blue area to its standard deviation.
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Figure 9.8: Examples sorted by the mutual information bound (IAS) for the Linear test
set when Delta Scuti is selected as the outlier class. The two top/bottom rows correspond
to data with the lowest/highest IAS. Red dots refer to observed data, blue dots are the
induction points µ̂ind with error bars σ̂ind. The blue line corresponds to the predicted data
on real times t, and the shaded blue area to its standard deviation.
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Figure 9.9: Ordered data by mutual information bound (IAS). The top 2 rows/bottom
correspond to data with low/high IAS. In this case the W Ursae Majoris is left as the outlier
data to be detected. Red dot point refers to real data, blue points are the induction points
µ̂ind with error bars σ̂ind. Blue line corresponds to the predicted data on real times t, its
standard deviation with light blue surrounding color.
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Table 9.4: AUCROC and AUCPR for the Linear and ASAS dataset. The outlier class to
be detected is the minority class of the correspoding dataset, i.e. Delta Scuti and Classical
Cepheid for Linear and ASAS datasets, respectively. LC-VaDE statistics were obtained using
four runs, and baseline models through three runs. (S) refers to the same architecture used
in LC-VaDE.

Datasets

Linear ASAS

Methods AUCROC AUCPR AUCROC AUCPR

Energy GMM (RNN) [109] 62.80± 0.53 62.96± 0.90 88.20± 0.06 81.97± 0.01
Energy GMM (S) 98.15± 0.79 97.89± 0.98 94.39± 0.47 89.78± 1.01
VAE baseline (S) 46.86± 6.26 48.75± 7.74 60.23± 5.63 63.12± 7.98

LC-VaDE (ours) 100.00± 0.00 100.00± 0.00 98.58± 2.41 98.72± 2.07

class. This is contrasted with bad reconstruction observed in Fig. 9.7. However, the best
performance of Linear dataset occurs when Delta Scuti is taken as outlier (see Table 9.3) and
the reconstructions of the Delta Scuti are good. This empirical fact motivates the creation
of a new anomaly detection score that takes the IAS score in consideration but also the
reconstruction error in the observed space.

LC-VaDE is a generative-inference model for the representation learning task in light curve
astronomical data since it can use both unsupervised information and supervised information
that will be key to the LSST survey. The proposed decoder forces even more the codification
of a useful embedding by learning induction points that generate the entire input light curve.
There are several interesting research lines to expand this model: 1) Learn the times of the
induction points forcing the model to learn more relevant features, 2) Consider other kernels
like the spectral kernel [113] allowing the possibility of learning the periods of the light-curves
and 3) Trying more challenging datasets like the ZTF survey.
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Chapter 10

Conclusions

This thesis presents a thorough study of generative-inference models, i.e. generative models
based on neural network architectures that also consider an inference model. The inference
model is useful to reach the most relevant features of the observed space X compressed
into the latent space Z. The study comprehends the formalization of the graphical models
considered, the generalization of generative-inference model into a common mathematical
framework from a information theory perspective, the empirical demonstration of the be-
haviour expected by this perspective, the study of generative-inference with more flexible
graphical models and the proposition of new models for clustering and anomaly detection
applications.

For the general case of a generative-inference model of two variables x ∈ X and z ∈ Z
we propose two desired properties of generative-inference models: one associated with the
graphical model and the generative capabilities of the model, and other associated with
the representation learning capabilities of the model. These desired properties have not
been formalized in the literature so it is a step forward to understand the generative and
representation learning capabilities of generative-inference models.

With the two desired properties formalized, we study how these properties can be achieved.
We found two perspectives to be useful for this task: 1) Matching the joint distribution
of generative-inference models and 2) a new proposed perspective associating generative-
inference model with the mutual information of their distributions. We expand the first
perspective of matching joint distribution already explored in the literature including models
that match the marginal distributions. We note this perspective is useful since it tell us
about the optimizations that can be utilized to achieve the two desired properties that we
enunciated.

Although the joint matching distribution perspective tell us about what loss functions can
be used to achieve the desired properties, it doesn’t tell us directly about the representation
capabilities of the model. To achieve such perspective we associate generative-inference
model loss functions with the mutual information of their distributions. This perspective is
remarkably useful since just from identifying the loss function of the model we can have a
close idea of how the model will be behave in representation learning as well as in generation.
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We also proposed a new generative-inference model based on this theory.

We validate the theory presented using a state of the art architecture, comparing various
generative-inference models under similar optimization conditions. In simpler datasets, when
no capacity restriction exists, we note that the theory accurately predicts the empirical results
in the sense of comparing various models and identifying what models should behave better in
representation learning or generation. We also observed the relevance of the entropy hq(z|x)
in the generative capabilities of the model and its generalization capacity. For more complex
datasets we tested mainly GAN based models and we were able to conclude what model
behave better.

We noted that the prior distribution p(z) is fundamental for both generation and represen-
tation learning and models that have a multi-modal prior instead of an uni-modal prior like
N (0, I) are studied. We derive, based on the two theoretical perspectives, the models that can
enter in these categories. We found that models decomposed using DKL(p(x, z, y)||q(x, z, y))
are not present in the literature, so we presented it as a new model called MPCC. We
experiment extensively showing state of the art performances in clustering and generation
(as of July 2020) on CIFAR10 benchmark. The results also show that multi-modal priors
outperform uni-modal priors.

Finally, to validate the usability of generative-inference models in practice, we applied
them in real world light curve applications for the task of anomaly detection. To deal with
the variable length and irregular sampling of light curves we proposed a new decoder based
on Gaussian processes. We also expand the graphical model of a multi-modal generative-
inference model to make it suitable to use in light curve applications, we called this model
LC-VaDE. With this model we surpass the most similar baselines and we also show the
superiority of multi-modal priors in representation learning.

The theoretical and empirical results of this thesis are extensive. Because we associate
generative-inference model by a general framework we were able to understand them from
a broader perspective, translating the theoretical findings in practice and proposing new
models not existing in the current literature. We found unsupervised metrics that can be
used in practice to select generative-inference models by their representation or generative
capabilities and we also show the relevance of the prior distribution for both tasks. This
thesis serves as a guide for the understanding and the application of generative-inference
models in representation learning and generation. The hypotheses made in this thesis were
helpful to guide this research, understand generative-inference models and experiment with
them.

10.1 Future work

In this thesis we studied the general formulation of generative inference models with two vari-
ables x ∈ X , z ∈ Z and three variables x ∈ X , z ∈ Z, y ∈ Y , respectively. In the literature
the two variable graphical model has been extended for more latent variables z1, z2 . . . zk, par-
ticularly for VAE models in [15, 73] to improve convergence in more complex datasets. The
likelihood is estimated hierarchically and although these architectures differs greatly from
GAN architectures, this way to estimate likelihood could be used for models that bound
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Ip(x, z), which hasn’t been explored in the literature. We also plan to explore more deeply
the models obtained by decomposing DKL(p(x, z)||q(x, z)) or DKL(p(x, z, y)||q(x, z, y)). The
current models that optimize these decompositions are AIM [69] and MPCC (Chapter 7), re-
spectively. These models optimize DKL(p(x)||q(x)) adversarially instead of DKL(p(x|z)||q(x))
(see Chapters 4 and 7). We hypothesize that optimizing DKL(p(x|z)||q(x)) should improve
the generation capabilities of the model despite worse representation learning capabilities (in
MPCC this disadvantage may not be present given its multi modal prior).

In this thesis we maximize the correlation of observed variables x ∈ X and latent vari-
ables z ∈ Z by maximizing the likelihood, i.e. reducing the reconstruction error. Recent
approaches have tackled this approach using contrastive learning techniques that can also be
associated with a maximization of a bound of the mutual information [88]. These techniques
achieve state of the art results in complex datasets [12, 13] and could be useful to regularize
the discriminator or the encoder resulting in better representation learning and/or generative
capabilities of the model.
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Appendix A

Demonstration of KL divergence between q(z) and p(z)

(Chapter 6)
We look to obtain a closed form solution of DKL(q(z)||p(z)). The demonstration start by
taking the following generic Gaussian distributions as p(x) = (2π)−

D
2 |Σ1|−

1
2 e−

1
2
(x−µ1)TΣ1(x−µ1)

and q(x) = (2π)−
D
2 |Σ2|−

1
2 e−

1
2
(x−µ2)TΣ2(x−µ2).

DKL(p(x)||q(x)) (1)

=

∫
[log p(x)− log q(x)] p(x)dx (2)

=

∫
1

2

[
log

|Σ2|
|Σ1|

− (x− µ1)Σ
−1
1 (x− µ1)

T

+ (x− µ2)
TΣ−12 (x− µ2)

]
p(x)dx (3)

=
1

2

[
log

|Σ2|
|Σ1|

− Tr{E[(x− µ1)(x− µ1)
T ]Σ−11 }

+ E[(x− µ2)
TΣ−12 (x− µ2)]

]
p(x)dx (4)

=
1

2

[
log

|Σ2|
|Σ1|

− Tr{Id}+ (µ1 − µ2)Σ
−1
2 (µ1 − µ2)

T

+ Tr{Σ−12 Σ1}
]
p(x)dx (5)

=
1

2

[
log

|Σ2|
|Σ1|

−D + (µ1 − µ2)Σ
−1
2 (µ1 − µ2)

T

+ Tr{Σ−12 Σ1}
]
p(x)dx (6)
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Appendix B

Additional empirical results (Chapter 6)
For the completeness of our results we also test different generative-inference models for
FMNIST dataset. In Table B.1 and in Table B.2 we observed the main metrics studied in
Chapter 6 for latent dimensions J = 10 and J = 20 respectively. In Fig. B.1 and Fig. B.2 we
observe similar tendencies than the observed in Chapter 6 although more generative-inference
models have Iq(x, z) < 0 i.e. the suppositions to compute this metric start to fail. Finally to
show that in this dataset the reconstructions also start to fail we show them for VAE, ALI
and AIM models in Fig. B.3, Fig. B.4 and Fig. B.5 respectively.
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Model LL in X LL in Z DZKL DVAE
KL Ĩq(x, z) hq(z|x) IS FID Acc%

VAE (β = 0.33) −4.27
±0.02

−3.22
±0.03

0.15
±0.07

24.43
±0.08

24.33
±0.09

−10.36
±0.10

7.25
±0.04

203.14
±6.24

76.00
±0.42

VAE (β = 1.00) −4.08
±0.01

−2.16
±0.02

3.79
±1.57

16.44
±0.13

12.93
±1.58

−2.55
±0.04

7.76
±0.02

173.01
±8.01

71.89
±0.92

VAE (β = 30.00) −2.60
±0.00

−0.38
±0.00

31.16
±0.12

2.61
±0.02

−28.55
±0.12

11.58
±0.02

5.36
±0.06

869.86
±17.77

62.24
±0.39

WVAE (β = 0.33) −4.32
±0.01

−2.73
±0.07

0.10
±0.05

61.31
±0.18

61.33
±0.18

−47.33
±0.27

6.48
±0.03

298.05
±11.62

76.90
±0.23

WVAE (β = 1.00) −4.33
±0.01

−2.77
±0.10

0.22
±0.00

61.29
±0.23

61.33
±0.22

−47.57
±0.22

6.55
±0.01

290.79
±3.63

77.10
±0.60

WVAE (β = 30.00) −4.27
±0.01

−2.31
±0.08

0.14
±0.05

62.36
±0.28

62.37
±0.29

−48.51
±0.27

6.07
±0.06

349.08
±9.70

76.37
±0.39

MMD (β = 0.33) −4.35
±0.00

−1.27
±0.13

1.98
±0.01

83.03
±0.25

64.72
±0.66

−43.09
±0.76

3.83
±0.22

972.40
±53.15

78.03
±0.58

MMD (β = 1.00) −4.36
±0.01

−1.74
±0.19

1.74
±0.03

73.95
±2.14

63.73
±1.27

−43.87
±1.33

4.42
±0.17

819.98
±72.13

77.84
±0.33

MMD (β = 30.00) −4.33
±0.01

−3.04
±0.02

0.45
±0.02

62.38
±0.57

61.85
±0.56

−47.97
±0.61

6.08
±0.04

353.25
±6.97

77.87
±0.59

JS-VAE (β = 0.33) −4.31
±0.00

−2.55
±0.12

0.11
±0.04

61.20
±0.40

61.22
±0.40

−46.76
±0.42

6.32
±0.02

334.88
±3.74

77.39
±0.33

JS-VAE (β = 1.00) −4.29
±0.03

−2.40
±0.23

0.02
±0.02

60.86
±0.66

60.92
±0.67

−46.69
±0.75

6.39
±0.13

328.56
±30.39

76.69
±0.28

JS-VAE (β = 30.00) −4.14
±0.04

−2.02
±0.21

0.03
±0.02

60.99
±0.79

61.01
±0.79

−46.69
±0.83

6.02
±0.02

386.39
±10.68

74.91
±0.59

AIM −2.85
±0.01

−2.26
±0.00

2.44
±0.02

9.12
±0.30

7.76
±0.35

3.97
±0.34

8.80
±0.02

18.67
±1.91

71.46
±0.99

ALI −1.56
±0.63

−0.18
±0.07

35.56
±48.35

17.49
±12.55

−17.75
±60.91

−3.64
±12.71

7.56
±1.54

174.40
±197.57

47.82
±26.54

Veegan −1.58
±0.59

−1.72
±0.62

2.31
±0.58

6.89
±1.20

4.61
±1.22

7.26
±0.65

6.14
±1.81

393.04
±253.67

62.74
±5.46

ALICE −3.54
±0.01

−1.20
±0.07

11.11
±1.71

23.39
±0.43

12.29
±1.45

−9.20
±0.69

7.86
±0.12

239.66
±22.85

66.51
±0.41

Table B.1: Relevant metrics for the generative-inference models considered in FMNIST
dataset with J = 10. LL in X and LL in Z refer to the MSE in the observed and la-
tent space respectively. DZKL = DKL(q(z)||p(z)) is computed in closed form assuming q(z) as
multivariate Gaussian. DVAE

KL = DKL(q(z|x)||p(z)). In bold we represent the main unsuper-
vised learning metrics of our study; Ĩq(x, z) measures the MI of the inference model q and
LL in X measures the likelihood in X .
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Model LL in X LL in Z DZKL DVAE
KL Ĩq(x, z) hq(z|x) IS FID Acc%

VAE (β = 0.33) −4.56
±0.01

−1.44
±0.01

12.68
±1.65

29.62
±0.17

17.65
±1.79

−1.95
±0.19

7.19
±0.03

184.96
±4.25

77.20
±0.38

VAE (β = 1.00) −4.15
±0.00

−0.73
±0.03

41.89
±2.61

16.95
±0.18

−24.58
±2.85

11.07
±0.26

7.78
±0.03

169.36
±3.00

72.78
±0.88

VAE (β = 30.00) −2.59
±0.00

−0.17
±0.00

83.45
±0.21

2.62
±0.02

−80.80
±0.23

25.72
±0.02

5.43
±0.02

857.41
±6.03

63.78
±0.40

WVAE (β = 0.33) −4.81
±0.02

−2.10
±0.05

1.59
±0.20

113.24
±0.23

113.20
±0.25

−86.47
±0.07

5.99
±0.02

356.97
±4.22

81.02
±0.33

WVAE (β = 1.00) −4.82
±0.01

−2.02
±0.00

1.39
±0.12

113.13
±0.22

113.12
±0.25

−86.21
±0.14

5.91
±0.01

377.29
±4.13

80.81
±0.21

WVAE (β = 30.00) −4.58
±0.02

−1.43
±0.09

1.02
±0.13

124.49
±0.52

124.44
±0.52

−97.21
±0.52

5.46
±0.07

470.43
±12.97

77.51
±0.45

MMD (β = 0.33) −4.82
±0.03

−1.04
±0.05

2.05
±0.04

140.96
±2.32

119.69
±0.88

−82.93
±0.96

3.90
±0.16

936.09
±47.45

81.26
±0.21

MMD (β = 1.00) −4.82
±0.02

−1.40
±0.07

1.84
±0.04

131.97
±2.41

118.23
±1.21

−84.00
±0.96

4.12
±0.15

839.27
±30.59

81.03
±0.10

MMD (β = 30.00) −4.80
±0.02

−2.44
±0.02

2.85
±0.27

116.99
±0.74

113.44
±0.85

−87.91
±0.77

4.88
±0.05

597.30
±6.16

81.05
±0.06

JS-VAE (β = 0.33) −4.79
±0.01

−1.91
±0.02

0.07
±0.02

112.78
±0.76

112.89
±0.77

−84.33
±0.73

5.86
±0.10

403.76
±12.88

80.71
±0.07

JS-VAE (β = 1.00) −4.74
±0.03

−1.77
±0.08

0.05
±0.02

112.14
±0.90

112.26
±0.89

−83.74
±0.94

5.85
±0.07

402.94
±7.28

80.51
±0.24

JS-VAE (β = 30.00) −4.15
±0.09

−0.64
±0.19

0.35
±0.01

97.26
±3.00

97.24
±3.03

−68.02
±3.00

5.48
±0.08

497.19
±4.86

75.86
±0.32

AIM −2.89
±0.03

−0.87
±0.01

13.30
±0.57

6.79
±0.17

−5.40
±0.74

20.48
±0.18

8.72
±0.04

22.03
±2.77

75.70
±0.67

ALI −1.95
±0.05

0.25
±0.07

5.20
±0.89

45.23
±6.13

40.17
±6.48

−16.98
±5.62

8.71
±0.01

31.85
±0.66

77.54
±0.67

Veegan −2.16
±0.57

−0.72
±0.40

11.26
±0.77

7.96
±1.21

−2.96
±0.17

20.08
±0.63

7.70
±1.35

123.05
±127.64

71.00
±2.85

ALICE −3.52
±0.04

−0.44
±0.04

40.37
±1.51

19.01
±4.34

−21.42
±4.20

9.43
±4.49

8.09
±0.06

175.50
±35.16

70.09
±0.31

Table B.2: Relevant metrics for the generative-inference models considered in FMNIST
dataset with J = 20. LL in X and LL in Z refer to the MSE in the observed and la-
tent space respectively. DZKL = DKL(q(z)||p(z)) is computed in closed form assuming q(z) as
multivariate Gaussian. DVAE

KL = DKL(q(z|x)||p(z)). In bold we represent the main unsuper-
vised learning metrics of our study; Ĩq(x, z) measures the MI of the inference model q and
LL in X measures the likelihood in X .
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Figure B.1: Tendency of all generative-inference models considered using Ĩq(x, z) vs Log
MSE in the observed space for classification accuracy by linear predictor on the latent space
in FMNIST with J = 10.

Figure B.2: Tendency of all generative-inference models considered using Ĩq(x, z) vs Log
MSE in the observed space for classification accuracy by linear predictor on the latent space
in FMNIST with J = 20.
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Figure B.3: Reconstructions for VAE model by classes. Odd columns represent real data
and even columns correspond to their reconstructions.

Figure B.4: Reconstructions for ALI model by classes in FMNIST. Odd columns represent
real data and even columns correspond to their reconstructions.
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Figure B.5: Reconstructions for AIM model by classes. Odd columns represent real data
and even columns correspond to their reconstructions.
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Appendix C

Additional observation of Chapter 8: Optimization prob-
lems MPCC
We observed two types of errors which restrict the architecture and the optimization tech-
niques. Theses difficulties are particularly relevant for the CIFAR10 and CIFAR20 datasets
which present the more complex distributions. We used the default parameters of the CI-
FAR10 architecture unless otherwise stated.

The first problem is associated with the batch size. We found that we can’t optimize
MPCC with a big batch size while using a large learning rate of the prior parameter ηp. Note
that the latter is necessary to obtain good accuracy performance as it was shown in the thesis
(Table 8.5 from Chapter 8). The batch size is relevant to increase the IS and FID scores
[8]. Artifacts or saturation problems would appear when doing a small modification in the
optimization. The examples shown in Fig. C.6 (a) use a batch size slightly larger than the
one used in the thesis (Chapter 8) of 50. We observe that using a slightly larger batch size
(64) with a prior learning rate of ηp = 8 ·104 the results change drastically and the generated
images show notable saturation.

Mode collapse is an important topic in GANs research and is the second problem that
we observed in MPCC. Usually it is associated with the limitations in generation quality
caused by the model, which memorize only a small part of the real distribution affecting the
performance of the GAN. In MPCC the mode collapse problem can make an entire cluster
collapse. Setting Dstep = 4 solves this problem partially for a large amount of models and
is sufficient to obtain good performance. In Fig. C.6 (b) we show samples from a model
trained with bs = 64 and ηp = 2 · 10−4 where we can see how a mode collapse problem looks
in MPCC. We observed that when using a large prior learning rate ηp = 6 ·10−4 this problem
would regularly appear after 150,000 iterations. This doesn’t occur for the best configuration
of MPCC (the one reported in the thesis) and setting ηp = 2 · 10−4 even after a large number
of iterations, however we would like to increase ηp further as we observed that it correlates
with better clustering accuracy (Table 8.5 in the thesis).
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(a) Saturation problems (b) Mode collapse problems

Figure C.6: Generated images with bad optimization setting at iteration 50000. Sub-figure
(a) shows images associated with saturation problems and (b) with mode collapse problems.
Each row represents a different cluster.
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Appendix D

Additional qualitative results of MPCC (Chapter 8)
In this section we provide additional reconstructions and samples of MPCC for the CIFAR-10
dataset in Figures D.7 and D.8, and for the MNIST dataset in D.9 and D.10. To give more
insight about MPCC’s capacity we also include samples for datasets with a high number of
classes, CIFAR-20 and Omniglot in Figures D.11 and D.12 respectively.
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Figure D.7: Generated images for the CIFAR-10 dataset. Every two columns we set a
different value for the categorical latent variable y. i.e. the samples shown correspond to a
different conditional latent space z ∼ p(z|y).

Figure D.8: Reconstructions for the CIFAR-10 dataset. Odd columns represent real data
and even columns correspond to their reconstructions. The real label is used to sort the
column pairs.
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Figure D.9: Generated images for the MNIST dataset. Every two columns we set a different
value for the categorical latent variable y. i.e. the samples shown correspond to a different
conditional latent space z ∼ p(z|y).

Figure D.10: Reconstructions for the MNIST dataset. Odd columns represent real data and
even columns correspond to their reconstructions. The real label is used to sort the column
pairs.
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Figure D.11: Generated images for CIFAR-20 dataset. In every row we set a different
value for the categorical latent variable y, i.e. the samples shown correspond to a different
conditional latent space z ∼ p(z|y).
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Figure D.12: Generated images for Omniglot dataset. In every row we set a different
value for the categorical latent variable y, i.e. the samples shown correspond to a different
conditional latent space z ∼ p(z|y). 30 cluster were randomly chosen.
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