
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

STUDY AND EVALUATION OF ALGORITHMS TO GENERATE POLYGON
MESHES

TESIS PARA OPTAR AL GRADO DE
MAGÍSTER EN CIENCIAS, MENCIÓN COMPUTACIÓN

MEMORIA PARA OPTAR AL TÍTULO DE
INGENIERO CIVIL EN COMPUTACIÓN

CRISTIAN ANDRÉS PARRA OYARCE

PROFESORA GUÍA:
NANCY HITSCHFELD KAHLER

MIEMBROS DE LA COMISIÓN:
CLAUDIO LOBOS YAÑEZ
IVAN SIPIRÁN MENDOZA

GILBERTO GUTIÉRREZ RETAMAL

Este trabajo ha sido parcialmente financiado por: Fondecyt 1181506

SANTIAGO DE CHILE
2021

Resumen

Actualmente, la diversificación de técnicas de modelado geométrico a través de mallas de polí-
gonos en diferentes ramas científicas como la neurociencia, la ingeniería mecánica y la astrofísica,
hace que nos interese su estudio. Las mallas de polígonos permiten modelar geometrías comple-
jas y la simulación de fenómenos complejos o comportamientos de objetos, por lo que también se
pueden utilizar en medicina, para extraer descripciones geométricas de imágenes digitales en proce-
sos de resonancia magnética computarizada. Además, los métodos de Elementos Finitos (PFEM)
y el método de Elementos Virtuales (VEM) son cada vez más populares hoy en día debido a su
flexibilidad en el modelado de dominios complejos, una base matemática importante, eficiencia y
precisión en la solución obtenida para algunos problemas complejos. Las mallas de polígonos más
utilizadas son las basadas en el diagrama de Voronoi porque se pueden obtener fácilmente a partir
de la triangulación de Delaunay.

En este trabajo de tesis estudiamos y desarrollamos diferentes enfoques para generar mallas de
polígonos y compararlas utilizando diferentes métricas de calidad. Las mallas iniciales se obtienen
usando (i) la técnica estándar de quadtree, (ii) usando quadtree con un algoritmo de división de
puntos arbitrarios (incluyendo aleatorización) (iii) kd-trees. Los elementos se pueden refinar en
puntos de borde arbitrarios hasta que cada elemento cumpla con algunos criterios de calidad es-
pecificados por el usuario, sí se generan y comparan mallas que satisfacen los requisitos.

Las diferentes estrategias para generar mallas de polígonos se implementaron como una Apli-
cación Web, desarrollada utilizando tecnologías actuales para los lenguajes Javascript y Typecript,
como React y Node.js, con el propósito de lograr una interfaz de usuario interactiva en tiempo
real para especificar métricas de calidad y el proceso actual de la malla que se está evaluando. En
particular, la aplicación permite ver cómo se comportan el quadtree y el KD-tree en tiempo real en
términos de la división del plano y la posterior generación de polígonos más pequeños.

La aplicación web se modeló utilizando patrones de diseño para obtener un software fácil de
extender al agregar nuevas estrategias para generar mallas iniciales, algoritmos de refinamiento,
recorte de polígonos, división de regiones y diferentes métricas de calidad. Esta aplicación está
orientada a explorar y evaluar nuevos algoritmos y métricas de calidad pero no a generar imple-
mentaciones óptimas con respecto a los tiempos de ejecución.

Según los resultados obtenidos en nuestros experimentos, las mallas iniciales generadas por KD-
trees se generan más rápidamente que las creadas por quadtrees, obteniendo un menor número
de elementos y de mejor calidad. En comparación con Triangle, obtuvimos mejores resultados
al refinar dentro de una región elegida por el usuario, obteniendo menos polígonos y un mayor
número de puntos. Los resultados muestran ser buenos para la aplicación de simulaciones con
métodos matemáticos como VEM, ya que el número de polígonos es menor, pero sigue cumpliendo
los criterios de calidad impuestos por el usuario en la región de interés. En cuanto a las métricas,
cuando se restringe el área máxima a un número determinado, los polígonos generados por un
quadtree utilizando el algoritmo de Splitting Longest Edge obtienen mejores métricas en ER y CR
que Triangle. Por otro lado, cuando se utiliza un KD-tree las métricas son todas más bajas en
nuestros algoritmos excepto en CR utilizando un refinamiento de quadtree.

i

Abstract

Currently, the diversification of geometric modeling techniques through polygon meshes in dif-
ferent scientific branches such as neuroscience, mechanical engineering and astrophysics, makes us
interested in their study. Polygon meshes allow the modeling complex geometries and the simulation
of complex phenomena or object behaviours, so they can also be used in medicine, for extracting
geometric description from digital images in computerized MRI processes. Moreover, the Parti-
cle Finite Element Methods (PFEM) and the Virtual Element Method (VEM) methods are each
time becoming more popular today due to their flexibility in modeling complex domains, important
mathematical basis, efficiency, and accuracy in the obtained solution for some complex problems.
The most used polygon meshes are the ones based on the Voronoi diagram because they can be
easy obtained from the Delaunay triangulation.

In this thesis work we study and develop different approaches to generate polygon meshes and
compare them using different quality metrics. Initial meshes are obtained using (i) the standard
quadtree technique, (ii) using quadtree with arbitrary point division algorithm (including random-
ization) (iii) kd-trees. Elements can be refined at arbitrary edge points until each element fulfills
some quality criteria specified by the user. So meshes that satisfy the user requirements are gener-
ated and compared.

The different strategies to generate polygon meshes were implemented as a Web Application,
developed using current technologies for the Javascript and Typescript languages, such as React
and Node.js, with the purpose of achieving a real-time interactive user interface to specify quality
metrics and the meshing step being evaluated. In particular, the application makes possible to see
how the quadtree and KD-tree behaves in real-time in terms of the division of the plane and the
subsequent generation of smaller polygons.

The web application was modeled using design patterns to obtain software easy to extend when
adding new strategies to generate initial meshes, refinement algorithms, polygon clipping, division
of regions, and different quality metrics. This application is oriented to explore and evaluate new
algorithms and quality metrics but not to generate optimal implementations with respect to running
times.

According to the results obtained in our experiments, the initial meshes generated by KD-trees
are generated faster than those created by quadtrees, obtaining a smaller number of elements and
of better quality. Compared to Triangle, we obtained better results when refining within a region
chosen by the user, obtaining fewer polygons and a higher number of points. The results show
to be good for the application of simulations with mathematical methods such as VEM, since the
number of polygons is lower, but still meets the quality criteria imposed by the user in the region of
interest. Regarding metrics, when the maximum area is restricted to a certain number, the polygons
generated by a quadtree using splitting longest edge algorithm obtains better metrics in ER and CR
than Triangle. On the other hand, when using a KD-tree the metrics are all lower in our algorithms
except in CR using a quadtree refinement.

ii

Este trabajo y todo lo que soy ahora, va dedicado a mi
padre Juan Parra y a mi madre Alicia Oyarce.

Todo es gracias a ustedes, las personas más maravillosas, fuertes y hermosas de este
mundo, que tuve la fortuna que fueran mis padres.

iii

Agradecimientos
En primer lugar quiero agradecer a toda mi familia, en particular a mis padres Alicia y Juan,

quienes han sido mis modelos a seguir y que siempre estuvieron ahí apoyándome y dándome todo
lo que estuviera en sus manos para llegar hasta acá. Todo cuanto soy ahora se los dedico a ellos,
personas de esfuerzo y que merecen mucho más de lo que soy capaz de escribir ahora. De ver-
dad se los agradezco de corazón, los amo con todo mi ser. Este trabajo viene a ser una forma
de reconocimiento y una pequeña luz de felicidad en estos tiempos difíciles que hemos tenido que
sobrellevar, involucrando temas de salud y una Pandemia mundial, quedando de manifiesto que
juntos siempre hemos sido capaces de superar todos los problemas y salir adelante.

Quiero agradecer ahora a mi gran amigo de infancia Leonardo Correa, que desde séptimo básico
hasta ahora ha sido mi confidente y quién me ha apoyado en todo lo que he hecho. Gracias por
aquellas conversaciones y risas, pasando por el Instituto Nacional, preuniversitario, hasta tiempos
recientes en donde nos juntamos a comer algo y conversar de la vida para mantenernos actualizados.

Mi próximo agradecimiento es para mi mejor amiga de la universidad, Valentina Diaz. Quiero
agradecer tu alegría, cariño y sobre todo paciencia, porque a pesar de todo siempre has estado ahí
para mi. Tú sabes que te quiero mucho y que para mi has sido y espero que sigas siendo un gran
apoyo y parte importante de mi vida.

Ahora quiero darles mis cariños y gracias a todos los que conforman el grupo del Hall Sur. En
particular a Mariana, Fran, Elisa y Pablo, mis amigos de universidad con los que compartí una
gran cantidad de almuerzos y muchas risas desde que eramos mechones. Ustedes saben que no soy
mucho de demostrar mi cariño y puedo parecer distante, pero quiero que sepan que son personas
realmente importantes para mi, y que los quiero mucho.

En mi paso por la universidad he sido auxiliar y ayudante, por lo que quiero agradecer a todos
aquellos que he conocido gracias a dicho trabajo, porque me enseñaron a crecer y a superar un poco
la timidez. Espero que a todos aquellos a los que les hice clases, haber contribuido un poco a su
enseñanza y haberles sacado una sonrisa en momentos estresantes de la universidad. En particular
quiero agradecer a Valentin Muñoz por ser mi compañero de trabajo en los años como auxiliar
de programación. Aprendimos mucho, nos reímos, estresamos y disfrutamos, pero por sobre todo
entregamos lo mejor de nosotros para dar una clase con cariño y esfuerzo.

Quiero agradecer a mi profesora guía Nancy Hitschfeld, la cual ha tenido una gran paciencia,
dedicación y cariño tanto por este trabajo como hacia mi como estudiante. Gracias además porque
junto al profesor Francisco Gutierrez me dieron la oportunidad de ser parte del equipo que llevó
a cabo varios talleres de Scratch para fomentar el pensamiento computacional en niños y niñas de
Chile. Gracias al profesor José Pino por haber confiado en mi para ser por primera vez un profesor
auxiliar, y continuar creyendo en mi labor. Y por supuesto gracias a Angélica y a Sandra del DCC,
quienes son las que mantienen en orden el DCC y hacen que todo funcione. Además, agradecer al
Fondecyt 1181506 por haber financiado parcialmente este trabajo.

Finalmente quiero agradecer a Cornershop por ser mi primer trabajo y contratarme en tiempos
difíciles de pandemia y a todas las personas que he conocido ahí, he aprendido mucho de ustedes
y me han acogido con mucho cariño. Además dar gracias al Liceo 1 Javiera Carrera, en particular
a Mariela Bozo por confiar en mi para dar clases de reforzamiento y al departamento de física
completo por su importante y abnegada labor de sacar adelante a las futuras líderes de este país.

iv

Contents

1. Introduction 1
1.1. Objectives . 2

1.1.1. Main objectives . 2
1.1.2. Specific objectives . 2

1.2. Methodology . 3
1.3. Thesis content . 3

2. Background 5
2.1. Closed Polygons . 5
2.2. Polygon Meshes . 5

2.2.1. Basic Definitions . 5
2.2.1.1. Manifold Meshes . 6
2.2.1.2. Orientation of a Mesh . 7

2.2.2. Mesh Representations . 7
2.2.2.1. Vertex-Vertex . 7
2.2.2.2. Face-Vertex . 8
2.2.2.3. Halfedge . 9

2.3. Geometry Algorithms . 10
2.3.1. Math Background . 10

2.3.1.1. Cross Product . 10
2.3.2. Points Related Algorithms . 11

2.3.2.1. Point inside Polygon . 11
2.3.2.2. Point inside Edge . 12
2.3.2.3. Point inside Circle . 13

2.3.3. Edge Related Algorithms . 13
2.3.3.1. Edge intersection . 13
2.3.3.2. Edge intersection with Quadrilateral 15
2.3.3.3. Edge intersection with Circle 16

2.3.4. Polygon Related Algorithms . 18
2.3.4.1. Polygon intersection with Circle 18
2.3.4.2. Area of a Polygon . 19
2.3.4.3. Centroid of a Polygon . 19
2.3.4.4. Getting minimum angle of a Polygon 20

2.4. Data Structures . 20
2.4.1. Quadtrees . 20
2.4.2. Generalized Quadtrees . 22
2.4.3. KD-Trees . 23

v

3. Related Work 25
3.1. Polygon Meshing Algorithms . 25

3.1.1. Geometric Meshes based on Quadtrees 25
3.1.2. Geometric Meshes based on Voronoy Cells 26
3.1.3. Geometric Meshes based on Centroid Voronoi Tessellation (CVT) . . 27

3.2. Mesh Visualizers . 27
3.3. Polygon Mesh quality metrics . 28

3.3.1. Scale Dependent measures . 28
3.3.2. Scale Invariant measures . 28

3.4. Polygon Clipping Algorithms . 29
3.4.1. Greiner Hormann Algorithm . 29

3.4.1.1. Phase 1: Searching intersections 30
3.4.1.2. Phase 2: Marking entry and exit points 30
3.4.1.3. Phase 3: Constructing the clipped polygon 31
3.4.1.4. Disadvantages of the algorithm 32

3.4.2. Extended Greiner Hormann Algorithm 33
3.4.2.1. Classification of Polygonal Chains 33

4. Design 35
4.1. Mesh Generation Process . 35
4.2. Analysis of possible solutions . 36
4.3. Proposed software architecture . 36

4.3.1. General Architecture . 36
4.3.2. General Implementation Choices . 37

4.4. Process Design . 37
4.4.1. User draws a contour geometry in our Application 38
4.4.2. User uploads Contour Geometry . 39
4.4.3. User uploads Mesh by off File . 39
4.4.4. Quadtree refining process . 41
4.4.5. Quality refining process . 42
4.4.6. Quality inspection . 44
4.4.7. Exporting . 45

4.5. Model Design . 46
4.5.1. Geometry and Selector Region . 46
4.5.2. Polygon in detail . 47
4.5.3. Clipping Algorithms . 47
4.5.4. Criteria . 48
4.5.5. Quality Refining Algorithms . 50
4.5.6. Division Algorithms . 50
4.5.7. Mesh . 51
4.5.8. HalfEdges . 52
4.5.9. Storages . 52
4.5.10. Tree . 53
4.5.11. React frontend Modeling . 54

4.6. Experimental Design . 56

vi

5. Implementation 57
5.1. Mesh Representation . 57

5.1.1. Vertices . 57
5.1.1.1. Vertex representation . 57
5.1.1.2. Vertex Storage . 58

5.1.2. Edges . 60
5.1.2.1. Edge representation . 60
5.1.2.2. Edge Storage . 61

5.1.3. Polygons . 63
5.1.3.1. Polygon representation . 63
5.1.3.2. Polygon Storage . 64

5.1.4. Halfedge Connectivity . 65
5.1.4.1. Halfedge definition . 65
5.1.4.2. Creating halfedges for a polygon mesh 66
5.1.4.3. Applying operations to polygons 68
5.1.4.4. Obtaining the neighbors of a polygon 68
5.1.4.5. Add a Polygon to the Mesh keeping while maintaining con-

nectivity . 69
5.2. Web Application Views . 70

5.2.1. Integrating PixiJS . 71
5.2.2. Geometry creation and initial panel 73
5.2.3. Quadtree Refining Panel . 76
5.2.4. Refining Panel . 79
5.2.5. Quality Component . 81

5.3. Algorithms Implementation . 81
5.3.1. Clipping Algorithms . 81

5.3.1.1. Sutherland Hodgman Algorithm 82
5.3.1.2. Extended Greiner Hormann Algorithm 84
5.3.1.3. Calculating intersections . 87
5.3.1.4. Determining the orientation of polygon chains 89
5.3.1.5. Classifying intersections . 91
5.3.1.6. Marking Intersections Chains 92
5.3.1.7. Building the Entering and Exiting lists 93
5.3.1.8. Traversing the lists . 96
5.3.1.9. Complexity Analysis . 99

5.3.2. Point insertion in Tree Data Structures 100
5.3.2.1. Half Point Division Algorithm 101
5.3.2.2. Arbitrary Point Division Algorithm 104

5.3.3. Generating the Initial Mesh . 107
5.3.3.1. Generating new polygons from a contour geometry 108
5.3.3.2. Obtaining the possible problematic points 108
5.3.3.3. Fixing polygons consistently with problem points 110

5.3.4. Refinement Algorithms . 112
5.3.4.1. Tree Refinement . 112
5.3.4.2. Splitting Longest Edge . 114
5.3.4.3. Centroid . 117
5.3.4.4. Centroid with Replication 118

vii

6. Results 121
6.1. Time Analysis . 121

6.1.1. Extended Greiner Hormann Algorithm 121
6.1.2. Initial meshes creation time . 122

6.2. Initial Mesh Generation . 124
6.2.1. Initial Meshes . 124

6.3. Quality improvements . 126
6.3.1. Initial Meshes . 127
6.3.2. Quality Refinements to Bad Polygons 128

6.3.2.1. Centroid refinement to Initial Meshes 129
6.3.2.2. Centroid Replication refinement to Initial Meshes 130
6.3.2.3. Splitting Longest Edge refinement to Initial Meshes 132

6.4. Successive quality refinements . 134
6.4.1. Declaring an upper limit to the area of the polygons 134
6.4.2. Upper limit equal to average mesh area 134

6.4.2.1. Results obtained by centroid algorithm 135
6.4.2.2. Results obtained by centroid replicate algorithm 136
6.4.2.3. Results obtained by Splitting Longest Edge algorithm . . . 137
6.4.2.4. Results obtained by Quadtree Refining algorithm 138

6.4.3. Upper limit equal to one tenth of the average area 138
6.4.3.1. Results obtained by centroid algorithm 139
6.4.3.2. Results obtained by centroid replicate algorithm 140
6.4.3.3. Results obtained by Splitting Longest Edge algorithm . . . 141
6.4.3.4. Results obtained by Quadtree Refining algorithm 142

6.4.4. Declaring an upper limit to the maximum edge length of the polygons 143
6.4.5. Upper limit equal to average edge length 143

6.4.5.1. Results obtained by Splitting Longest Edge algorithm . . . 144
6.4.5.2. Results obtained by Quadtree Refining algorithm 145

6.4.6. Upper limit equal to one half of the average edge length 145
6.4.6.1. Results obtained by Splitting Longest Edge algorithm . . . 146
6.4.6.2. Results obtained by Quadtree Refining algorithm 147

6.5. Comparison of quality metrics between different levels of refinement 148
6.5.1. Results of imposing a upper limit to the maximum area 148

6.5.1.1. Limit equal to the average area of the geometric mesh . . . 149
6.5.1.2. Limit equal to 1

10 of the average area of the geometric mesh 150
6.5.1.3. Analysis of metric results 150

6.5.2. Results of imposing a upper limit to the maximum length 151
6.5.2.1. Limit equal to the average length of the geometric mesh . . 151
6.5.2.2. Limit equal to 1

2 of the average length of the geometric mesh 152
6.5.2.3. Analysis of metric results 152

6.6. Comparing meshes with Triangle . 152
6.6.1. Comparing meshes . 153

6.6.1.1. Maximum area equal to 1979 area units 153
6.6.1.2. Maximum area equal to 198 area units 157
6.6.1.3. Maximum length equal 30 length units 158
6.6.1.4. Maximum length equal 15 length units 159

6.6.2. Comparison in quality metrics . 159

viii

6.6.2.1. Initial Mesh: Quadtree with Mid Point strategy - Maximum
area equal to 198 area units 160

6.6.2.2. Initial Mesh: KD-tree - Maximum area equal to 198 area units161
6.6.2.3. Initial Mesh: Quadtree with Mid Point strategy - Maximum

length equal to 15 length units 162
6.6.2.4. Initial Mesh: KD-tree - Maximum length equal to 15 length

units . 163

7. Conclusions 164
7.1. Application . 164
7.2. Results of Experiments . 165

7.2.1. Quadtree results . 165
7.2.2. KD-tree results . 165
7.2.3. Comparison with Triangle . 166

Bibliography 168

Appendix A. .OFF file format 171

ix

List of Tables

6.1. Trendline function for clipping algorithm . 122
6.2. Trendline function for initial time mesh generation. 123
6.3. Main study characteristics of the initial meshes. 125
6.4. Main study characteristics of the initial meshes of the unicorn geometry. . . . 128
6.5. Main study characteristics of the initial meshes of the unicorn geometry using

Centroid refinement. 130
6.6. Main study characteristics of the initial meshes of the unicorn geometry using

Centroid Replication refinement. 131
6.7. Main study characteristics of the initial meshes of the unicorn geometry using

Splitting Longest Edge refinement. 133
6.8. Main study characteristics after successive Centroid refinements to bad polygons

(Mean area). 135
6.9. Main study characteristics after successive Centroid Replicate refinements to

bad polygons (Mean area). 136
6.10. Main study characteristics after successive Splitting Longest Edge refinements

to bad polygons (Mean area). 137
6.11. Main study characteristics after successive Quadtree Refinement to bad polygons

(Mean area). 138
6.12. Main study characteristics after successive Centroid refinements to bad polygons

(One tenth of the mean area). 140
6.13. Main study characteristics after successive Centroid Replicate refinements to

bad polygons (One tenth of the mean area). 140
6.14. Main study characteristics after successive Splitting Longest Edge refinements

to bad polygons (One tenth of the mean area). 142
6.15. Main study characteristics after successive Quadtree Refining to bad polygons

(One tenth of the mean area). 142
6.16. Main study characteristics after successive Splitting Longest Edge refinements

to bad polygons (Average edge length). 144
6.17. Main study characteristics after Quadtree Refining to bad polygons (Average

edge length). 145
6.18. Main study characteristics after successive of Splitting Longest Edge refinements

to bad polygons (One half of the average edge length). 147
6.19. Main study characteristics after successive Quadtree Refining to bad polygons

(One half of the average edge length). 148
6.20. Comparing main study characteristics with Triangle (Max: 1979 area units). . 154
6.21. Comparison of refinement by region between our application using a (kdtree and

splitting longest edge) and triangle. (Criterion: maximum area 1979 units). . . 156

x

6.22. Comparing main study characteristics with Triangle (Max: 198 area units). . . 157
6.23. Comparing main study characteristics with Triangle (Max: 30 length units). . 158
6.24. Comparing main study characteristics with Triangle (Max: 15 length units). . 159

xi

List of Figures

2.1. Example of polygon mesh . 6
2.2. Manifold and no-manifold Meshes. 7
2.3. Vertex-Vertex representation example . 8
2.4. Face-Vertex representation example . 9
2.5. Halfedge example . 10
2.6. Projection P from the center C of the circle to a segment AB 16
2.7. Vector display in the projection . 17
2.8. Calculating the angle between two vectors . 20
2.9. Quadtree bunny mesh example. 23
2.10. KD-Tree example. 24
3.1. Voronoi Diagram and dual Delaunay triangulation 26
3.2. Example of degenerate intersection in quadtree. 33
3.3. Possible cases of intersections without overlap between the segments. 34
3.4. Possible cases of intersections with overlaping between the segments. 34
4.1. Flow diagram of the process of drawing a polygon 38
4.2. Flow diagram of the process of uploading a contour OFF file 39
4.3. Flow chart of the process of uploading a mesh OFF file 40
4.4. Flow chart of the process of quad-refining an initial mesh 41
4.5. Flow chart of the process of quality refining 43
4.6. Flow chart of the process of quality inspection 44
4.7. Flow chart of the process of exporting meshes 45
4.8. UML Diagram for Geometry and Selector Region 46
4.9. UML Diagram of Polygon in detail. 47
4.10. UML Diagram for clipping algorithms. 48
4.11. UML Diagram for criteria. 49
4.12. UML Diagram for refining algorithms. 50
4.13. UML Diagram for division algorithms . 51
4.14. UML Diagram for Mesh . 52
4.15. UML Diagram for HalfEdges . 52
4.16. UML Diagram for Storages . 53
4.17. UML Diagram for Tree . 54
4.18. UML Diagram for React Components. 55
5.1. General view of the application. 71
5.2. Geometry creation and initial meshes panel. 73
5.3. Application: Drawing a polygon with the given points. 75
5.4. Quadtree Refining Panel. 76
5.5. Application: Refining a polygon mesh with a quadtree. 77

xii

5.6. Application: Quadtree refinement for a polygon mesh, and subsequent user
refinement. 78

5.7. Refining Panel. 79
5.8. Application: Refining a polygon mesh with quality algorithms. 80
5.9. Quality Component. 81
5.10. Example of cutting polygons. 82
5.11. Sutherland Hodgman’s algorithm example. 82
5.12. Border cases of Greiner Hormann Algorithm. 86
5.13. Calculation of the intersections between two polygons. 87
5.14. Polygon lists before and after inserting intersection. 88
5.15. Polygon chain orientation. 89
5.16. Two polygons example. 95
5.17. Classifying intersections and building lists. 96
5.18. Example of constructing the cut polygons from both lists 99
5.19. Example of Half Division Algorithm. 102
5.20. Example of Arbitrary Point Insertion Algorithm. 104
5.21. Border cases in Arbitrary Point Insertion Algorithm. 106
5.22. Getting problematic points after clipping. 110
5.23. Fixing polygons after clipping. 112
5.24. Refinement of a polygon using quadtrees. 113
5.25. Example of splitting longest edge algorithm. 115
5.26. Splitting longest edge problem. 116
5.27. Example of refining using Centroid algorithm. 118
5.28. Example of refinement using Centroid with replication algorithm. 119
6.1. Time analysis for clipping algorithm. 122
6.2. Time analysis for initial meshes. 123
6.3. Geometry for initial mesh creation. 124
6.4. Four different strategies to obtain an initial mesh. 125
6.5. Unicorn geometry for quality refinements. 126
6.6. Four different initial meshes of the unicorn geometry. 127
6.7. Applying centroid refinement to the different initial meshes. 129
6.8. Applying centroid replication refinement to the different initial meshes. 131
6.9. Applying splitting longest edge refinement to the different initial meshes. . . . 133
6.10. Unicorn geometry with bad polygons (Mean area). 134
6.11. Succesive Centroid refinement to bad polygons (Mean area). 135
6.12. Succesive Centroid Replicate refinement to bad polygons (Mean area). 136
6.13. Succesive Splitting Longest Edge refinement to bad polygons (Mean area). . . 137
6.14. Succesive Quadtree Refinement to bad polygons (Mean area). 138
6.15. Unicorn geometry with bad polygons (One tenth of the mean area). 139
6.16. Succesive Centroid refinement to bad polygons (One tenth of the mean area). . 139
6.17. Succesive Centroid Replicate refinement to bad polygons (One tenth of the mean

area). 140
6.18. Succesive Splitting Longest Edge refinement to bad polygons (One tenth of the

mean area). 141
6.19. Succesive Quadtree Refining to bad polygons (One tenth of the mean area). . . 142
6.20. Unicorn geometry with bad polygons (Average edge length). 143

xiii

6.21. Succesive Splitting Longest Edge refinement to bad polygons (Average edge
length). 144

6.22. Succesive Quadtree Refining to bad polygons (Average edge length). 145
6.23. Unicorn geometry with bad polygons (One half of average edge length). 146
6.24. Succesive Splitting Longest Edge refinement to bad polygons (One half of the

average edge length). 146
6.25. Succesive Quadtree Refining to bad polygons (One half of the Average edge

length). 147
6.26. Metrics for Average Area. 149
6.27. Metrics for one tenth of the Average Area. 150
6.28. Metrics for Average Length. 151
6.29. Metrics for one half of Average Length. 152
6.30. Unicorn geometry refined by Triangle (Max: 1979 area units). 153
6.31. Unicorn region to be refined. 155
6.32. Unicorn region refined (Max: 1979 area units). 156
6.33. Unicorn geometry refined by Triangle (Max: 198 area units). 157
6.34. Unicorn geometry refined by Triangle (Max: 30 length units). 158
6.35. Unicorn geometry refined by Triangle (Max: 15 length units). 159
6.36. Initial Mesh: Quadtree - Quality metric comparison with Triangle (Max: 198

area units). 160
6.37. Initial Mesh: KD-tree - Quality metric comparison with Triangle (Max: 198

area units). 161
6.38. Initial Mesh: Quadtree - Quality metric comparison with Triangle (Max: 15

length units). 162
6.39. Initial Mesh: KD-tree - Quality metric comparison with Triangle (Max: 15

length units). 163

xiv

Chapter 1

Introduction

The increase of applications that use polygon meshes in real life, such as the proliferation of
video games, the modeling of objects in mechanical engineering and simulations of the earth
in geology and space in astronomy, makes the exploration of new algorithms to generate
polygon meshes a relevant research topic.

In addition, the ease of access to graphic processing with the new video cards, and the
popularity of mathematical methods for the convergence of solutions to model simulations,
such as PFEM and VEM, make the implementation of a tool that generates meshes of poly-
gons is a big challenge, since the comparison in terms of quality and number of elements
with respect to other mesh generators is relevant. In particular, in this work we compare our
results with Triangle, which is a program that generates geometric meshes composed only of
triangles.

Therefore the motivation of this thesis work is the creation of a graphics and interactive
web application that groups together an important group of topics, such as: 1) its open
source nature, 2) flexible and sustainable code based on a class design and inheritance 3)
exploration end evaluation of novel algorithms to generate an initial polygon mesh and 4)
refine mesh elements in real time. When working with polygons with an arbitrary number
of sides, this application allows greater flexibility when generating a polygon mesh, therefore
we expect that its performance will be better in terms of requiring less elements, compared
to others meshes that are only made up of triangles and quadrilaterals.

The research questions that we want to answer in this thesis are the following:

1. Does the quadtree structure and its generalizations allow the generation of proper
polygon meshes?

2. What is the best point insertion strategy in a generalized quadtree to get a proper mesh
of arbitrary polygons?

3. Is it possible to use a kd-tree structure to generate of proper polygon meshes?
4. Which strategy uses the least computational time to build an initial polygon mesh?
5. Which refinement strategy produces the best results according to the standard metrics?
6. Does an arbitrary polygon mesh allow modeling complex geometry using fewer elements

than triangles and quadrilaterals?

1

7. Does a mesh of arbitrary polygons satisfy the quality criteria, even when fewer ele-
ments are expected in their conformation compared to the meshes of triangles and
quadrilaterals?

8. Is it possible to create a flexible polygon meshing library that allows the testing, in-
clusion of new algorithms/metrics in an easy way and and the comparison between
them?

Our specific hypotheses for this thesis are the following:

1. It should be possible to develop a novel meshing algorithm based on kd-trees to generate
proper polygon meshes

2. The polygon mesh generator based on kd-trees should be able to produce meshes with
fewer elements: points, edges, and polygons, compared to quadtrees.

3. The quality of the elements should be similar or better quality than those produced by
triangle mesh generators, such as Triangle.

4. It should be possible to design a flexible, extensible and open source polygon meshing
library and application

1.1. Objectives
The objectives set for the development of this thesis work are presented below. Both the

general objective and the specific objectives are included, which define the goals and progress
of this research.

1.1.1. Main objectives

The overall goal is to develop graphic and interactive web application that allows a user
to explore and evaluate new strategies for the generation of polygon meshes based on gen-
eralized quadtrees and kd-trees. The polygons can be convex and non-convex, but not self-
intersecting. The purpose of the work is to compare the different algorithms to generate
polygon meshes and provide a framework that supports the integration, testing and compar-
ison new strategies. The meshes created inside this application will also be compared with
meshes composed of triangles, which satisfy the same quality metrics required by polygon
numerical methods.

1.1.2. Specific objectives

The specific objectives show in depth the development of this thesis, defining those goals
that must be met to achieve the general objective. In no specific order, the objectives are as
follows:

• Develop a polygon mesh generator based on generalized quadtrees and kd-trees
• Develop a polygon mesh viewer that allows you to see the meshes created by the

generator
• Develop a way for the user to interact with the generator and to refine polygon meshes

2

• Create different refinement algorithms to improve the quality of polygons
• Define and implement an appropriate set of quality metrics to compare different mesh

types
• Compare the different types of polygon mesh creation algorithms with each other, in

terms of number of elements and time taken
• Compare the different types of quality refinements with each other, in terms of quantity

of elements and time taken
• Compare the algorithms developed in this work with Triangle, in terms of quantity of

elements, time taken and quality of the generated polygons

1.2. Methodology
To address the design and implementation of different strategies for generating an initial

mesh, evaluating different refinement algorithms and metrics, we divide the development into
the following steps. Each step describes the approach:

1. Development and incorporation of refinement algorithms using quadtrees given an ini-
tial geometry. The algorithms focus on cutting polygons based on one another, depend-
ing on the regions that are generated by a quadtree or kd-tree when they partition the
space on inserting points.

2. Based on the above, we investigate efficient algorithms and data structures for clipping
polygons, and flexible representations of polygon meshes, due to the changing nature
of the generator. These data structures allow adding and refining polygons according
to different criteria.

3. Creation of a web application, based on React, that is capable of visualizing the initial
polygon, and how the mesh is formed as the user decides to refine by zones or based on
a certain criterion. The web application is built on the basis of drawing libraries that
facilitate the use of WebGL for better use of the GPU in renderings.

4. Incorporation of different quality metrics for a polygon mesh. This in order to compar-
atively determine if one mesh is better or worse than another, regardless of the shape
of the polygons that make it up.

5. Comparison of the results obtained based on a triangulation generator (Triangle), ac-
cording to the quality metrics incorporated in this thesis. The design of the experiments
is based on comparing similar procedures, such as the generation of a mesh based on
a certain geometry, and the application of refinement based on a criterion provided by
the user.

1.3. Thesis content
This thesis is organized as follows:

• Chapter 2 shows the most relevant prior knowledge you must have to understand this
work, covering geometric concepts such as polygons and geometric meshes, quadtree

3

and kd-tree data structures, as well as basic algorithms of intersections, areas, and
element memberships in others.

• Chapter 3 reviews the related work about mesh generation using quadtrees, polygon
cutting algorithms, and existing polygon mesh generators.

• Chapter 4 deals with the high-level design of the solution presented for the development
of the application and the experiments carried out in this work.

• Chapter 5 shows the implementation and the specific algorithms used for the elaboration
of the generator.

• Chapter 6 shows the results obtained for the different experiments carried out.
• Chapter 7 shows the conclusions of our work and the future work that remains to be

done to improve it.

4

Chapter 2

Background

This chapter explains some key concepts and knowledge, with the purpose of understanding
this thesis. For this, we will detail the geometric concepts, data structures and algorithms
used in this thesis.

2.1. Closed Polygons
Throughout this thesis, we continually use the concept of polygon, and therefore necessary

to have a concrete definition of what a closed polygon is.

Definition 1 (Closed polygon). A closed polygon P is described by an ordered set of ver-
tices v0, v1, v2, v3, . . . , vn−1. The connectivity of the segments of the polygon is given by two
consecutive vertices, so these are: v0v1, v1v2, . . . , vnvn−1, vn−1v0. Note that the fact that the
polygon will be closed is implicit in the definition, since the last vertex is assumed to be
connected to the first one of the set.

2.2. Polygon Meshes
This work continually refers to the concept of polygonal mesh, hence this section will

deepen some basic concepts of these, such as their definition, description, to finally describe
some examples of typical representations.

2.2.1. Basic Definitions

Definition 2 (Polygon Mesh). A Polygon Mesh or polymesh is a collection of vertices, edges
and faces that defines a shape in a 2D plane or 3D space. Formally, a Polygon Mesh is a
triple (V,E, F) where V is a set of Vertices or points in a plane or space. E ⊂ (V ×V), it is
a set of Edges or line segments, and finally F ⊂ E, is a set of Polygons, also called Faces.

5

Figure 2.1: Example of a polygon mesh of Tokyo.1

According to the shape of the Polygons, we can classify the two dimensional Meshes as
Triangle Meshes if the mesh is conformed just by triangles, Quadrilateral Meshes if the
mesh is conformed by polygons of four sides. For that mesh to be well conformed, we need
to introduce a two new classifications for the edges.

Definition 3 (Manifold Edge). An edge of a mesh is manifold, if it is part of exactly two
faces.

Definition 4 (Boundary Edge). An edge of a mesh is boundary, if is part of exactly one
face.

2.2.1.1. Manifold Meshes

With these definitions, we can say define what is a well conformed mesh for most computer
graphics applications.

Definition 5 (Manifold Mesh). A mesh is manifold if every edge in the mesh is either a
boundary edge or a manifold edge. Moreover, we say a mesh is manifold closed, if the mesh
is manifold and it is non-intersecting.

1 Image obtained from https://es.clipdealer.com/vector/media/A:112461842

6

https://es.clipdealer.com/vector/media/A:112461842

Figure 2.2: Examples of manifold and non-manifold meshes. 2

If a mesh is a manifold then three very useful properties are met:

1. A border always connects exactly two faces, unless it is a boundary border.
2. An edge always connects two vertices.
3. A polygon or face consists of a closed set of vertices joined by edges.

2.2.1.2. Orientation of a Mesh

A key concept in meshes is the orientation of the faces. If we know the orientation of a
polygon, we will know which side is inside and which side is outside of the region. The
orientation can be Counter Clockwise (CCW) or Clockwise (CW). Knowing this, we can
define what an oriented manifold mesh is.

Definition 6 (Manifold Oriented Mesh). A manifold mesh is orientable, if every face in the
mesh has consistent orderings, i.e., all faces are CCW or CW.

2.2.2. Mesh Representations

In this subsection we face the problem of how a polygon mesh can be represented. In the
literature there is a great variety of data structures that help us achieve this purpose, so in
this work we only explain the most relevant ones.

2.2.2.1. Vertex-Vertex

The mesh is represented by a list of Vertices v0, v1, v2, ..., vn−1, with their respective coordi-
nates. Each one of the vertices is connected to another list of Vertices, that represents the
ones that it is connected with. For instance, let us say that vi has coordinates (vix, viy),
and it’s connected to the list [v̂0, v̂1...v̂n−1]. That represents the fact that the point vi is
connected, or in other words, has as neighbors in the mesh, the points v̂0, v̂1...v̂n−1.

This leads to a clear disadvantage, because all the faces and edges are implicit, so every
time we need to check for a polygon in the mesh, we must traverse the list of vertices and

2 Image obtained from https://cs184.eecs.berkeley.edu/sp18/lecture/mesh-rep/slide_018

7

https://cs184.eecs.berkeley.edu/sp18/lecture/mesh-rep/slide_018

jump from one list to another to reconstruct the faces. In conclusion, the operations over
edges and faces are not easily accomplished.

Figure 2.3: Example of the representation of a cube using a list of
Vertices. 3

2.2.2.2. Face-Vertex

The mesh in this case is represented by a list of Vertices v0, v1, v2, ..., vn−1, each one with a
reference to their respective coordinates. A big difference is that now the vertices are stored
only once, and we now explicitly have a list of Faces (in contrast with Vertex-Vertex). This
list of Faces f0, f1, f2, ..., fn−1 represents each one of the Polygons in the mesh, and every fi

points to a list of Vertex references, so the space used by every Face is equal to the degree d
of it, having d references.

This representation is important because it is used directly in the development of our
work. The advantages it has are the simplicity of implementation, and the ease with which
one can handle the information of points and polygons in a static mesh. However, due to the
dynamic nature of our mesh generator, it was necessary to make changes for new insertions
and deletions of points and polygons, therefore, we extended its operations to maintain the
correctness of the information, such as polygons. have no references to points that no longer
exist within the mesh.

The detailed implementation of how the Face-Vertex representation was used in our work
can be found in the implementation section 5.1.

3 Image obtained from https://en.wikipedia.org/wiki/Polygon_mesh#/media/File:Vertex-Vertex_
Meshes_(VV).png

8

https://en.wikipedia.org/wiki/Polygon_mesh##/media/File:Vertex-Vertex_Meshes_(VV).png
https://en.wikipedia.org/wiki/Polygon_mesh##/media/File:Vertex-Vertex_Meshes_(VV).png

Figure 2.4: Example of the representation of a cube using two lists:
one for vertices and other for faces. 4

2.2.2.3. Halfedge

The halfedge data structure centers the mesh connectivity information on the edges of the
polygons. Each edge is divided into two halfedges with opposite directions, each associated
with a different polygon. In addition, each halfedge has information about the vertex that
originates it, the edge to which it is attached, and a reference to the next halfedge within a
polygon. Note that because each halfedge is steerable, therefore, the representable polygon
meshes must also be steerable, either clockwise or counterclockwise.

In our work, this representation was used, with the following connectivity information:

1. Each vertex has a reference to a halfedge that has it as its origin.

2. Each polygon has a reference to any halfedge of one of its edges, in the correct direction
(in our case all polygons are counterclockwise oriented).

3. Each edge is referenced to a halfedge in a certain direction, depending on the order in
which the edge was visited at the time of connectivity construction.

4. Each halfedge has the following references:

4.1. The vertex that is the origin of the halfedge.
4.2. The polygon to which the halfedge belongs. In case of boundary edges of the

polygon, the face of the opposite halfedge does not exist.
4.3. The edge to which the halfedge is associated.
4.4. The next halfedge inside the polygon, arranged counterclockwise.

4 Image obtained from https://en.wikipedia.org/wiki/Polygon_mesh#/media/File:Mesh_fv.jpg

9

https://en.wikipedia.org/wiki/Polygon_mesh##/media/File:Mesh_fv.jpg

4.5. A reference to the opposite halfedge associated with the edge.

Figure 2.5: Example of representation of a mesh using halfedges. 5

2.3. Geometry Algorithms

2.3.1. Math Background

2.3.1.1. Cross Product

Cross Product or Vector product of two vectors ~A and ~B, denoted ~A × ~B, it’s a binary
operation that gives another vector perpendicular to both ~A and ~B. Cross product is defined
over R3, and one of the property we’re going to use in this investigation is its anticom-
mutativity, i.e, ~A × ~B = − ~B × ~A. In other words, if we operate ~A × ~B and we examine
its sign, we can determine if the resulting vector is in the positive or negative side of the plane.

In a formal way, and remembering that this thesis works only in two dimensions, we write
any 2D vector as ~A = (ax, ay, 0) and ~B = (bx, by, 0). We calculate the cross product as it
follows.

5 Image obtained from https://www.leonardofischer.com/wp-content/uploads/2011/11/dcel.png

10

https://www.leonardofischer.com/wp-content/uploads/2011/11/dcel.png

~A× ~B = (ax, ay, 0)× (bx, by, 0)

=

∣∣∣∣∣∣∣
i j k
ax ay 0
bx by 0

∣∣∣∣∣∣∣
= axby − aybx

Now, given three points P = (px, py), Q = (qx, qy), R = (rx, ry). We are interested in
knowing the cross product of −→PQ × −→PR, and examine the sign of the result. With that
information, we later explain how we can say in which side of the vector −→PQ is the point R.
Notice that in this case, our vector ~A is (qx−px, qy−py) and our vector ~B is (rx−px, ry−py).
Replacing this in the formula given before, we obtain:

−→
PQ×

−→
PR = (qx − px) · (ry − py)− (qy − py) · (rx − px)

With that formula, we can elaborate an algorithm to calculate the cross product of three
points P , Q, R, representing in that order the cross product −→PQ×−→PR.

Algorithm 1 Cross Product of three Points P, Q and R
1: Input
2: P Point with the properties px and py

3: Q Point with the properties qx and qy

4: R Point with the properties rx and ry

5: Output
6: Numeric value of the cross product between −→PQ and −→PR

7: function CrossProduct(P , Q, R)
8: return (qx − px) · (ry − py)− (qy − py) · (rx − px)
9: end

2.3.2. Points Related Algorithms

2.3.2.1. Point inside Polygon

The Ray casting algorithm is the one used to determine if a point is inside or outside of a
polygon. This algorithm consists in extending a ray from the point you want to examine, in
a certain direction to infinity. Subsequently, the number of times the ray intersects the edge
of the polygon is examined. If the point is outside the polygon, then the ray must intersect
an even number of times, otherwise, if the point was inside, it must intersect an odd number
of times.

This algorithm has complications when the point is just on the edge of the polygon, or if
the ray intersects a corner point of the polygon. In addition, the precision problem must be
taken into account, so in our work we always work using an epsilon for all operations.

11

Algorithm 2 Point inside Polygon
1: Input
2: P Point to be checked if it’s inside Poly
3: Poly Polygon with a list of vertices v0, v1, ..., vn

4: Output
5: True if P is inside Poly. False otherwise.

6: function Inside(P , Poly)
7: inside ← False
8: points ← Poly.points
9: for i ← 0 to n-1 do
10: j ← (i+ 1) mod points.length
11: pi ← points[i]
12: pj ← points[j]
13: if P is above pi and below pj or P is above pj and below pi then
14: if P intersects the segment (pi, pj) then
15: inside ← ¬inside
16: end
17: return inside
18: end

2.3.2.2. Point inside Edge

To establish whether a point P lies within an edge E of end points Einit and Eend, it is
necessary to examine the coordinates of the point P = (Px, Py) and verify that:

1. Px is in the range defined by the minimum and maximum of the X coordinates of Einit

and Eend.
2. Similarly for Py, it must be in the range defined by the minimum and maximim of the
Y coordinates of Einit and Eend.

With this we verify that the point is in a quadrilateral region based on the Einit and Eend

points, so it remains to be verified if the point is to collinear with the edge. For that, we
use the cross product to discard all those cases in which its result is not close to zero in an
epsilon factor.

12

Algorithm 3 Point inside Edge
1: Input
2: P Point to be checked if it’s inside Edge
3: Edge Edge with two Points, init and end.
4: Output
5: True if P is inside Edge. False otherwise.

6: function Inside(P , Edge)
7: cross ← CrossProduct(Edge.init, Edge.end, P)
8: if |cross| > ε then
9: return False
10: xInside ← min(Edge.initx, Edge.endx) ≤ Px ≤ max(Edge.initx, Edge.endx)
11: yInside ← min(Edge.inity, Edge.endy) ≤ Py ≤ max(Edge.inity, Edge.endy)
12: return xInside and yInside
13: end

2.3.2.3. Point inside Circle

Verifying if a point is inside a circle is not a complex task, since it is enough to consider
that by definition of a circle, all the interior points are at a distance less than or equal (if we
consider the boundary) to the radius of the circle. Therefore, just take the distance between
the point you want to consult, and the center of the circle, and compare it with the radius: If
the distance is less than or equal to the radius, then the point is inside the circle, otherwise
it is outside it.

Algorithm 4 Point inside Circle
1: Input
2: P Point to be checked if it’s inside Circle
3: Circle Circle with a given radius and center
4: Output
5: True if P is inside Circle. False otherwise.

6: function Inside(P , Circle)
7: distance ←

√
(Px − Circle.centerx)2 + (Py − Circle.centery)2

8: return distance ≤ Circle.radius
9: end

2.3.3. Edge Related Algorithms

2.3.3.1. Edge intersection

An edge is a segment that connects two points Pstart and Pend. In this case, the Edge has a
direction, pointing to the ending point Pend. Hence, in order to know the intersection between
two edges, the procedure will be calculate for each one, the line equation that contains Pstart

and Pend, and with these two linear equations, solve for a solution (x, y).

13

It is known that given two points P1 = (x1, y1) and P2 = (x2, y2), the line that contains
the two points is described by the following equation.

y − y1 =
(
y2 − y1

x2 − x1

)
(x− x1)

If we then manipulate that equation multiplying and associating, we can get a formula of
the form Ax+By = C.

y − y1 =
(
y2 − y1

x2 − x1

)
(x− x1)

(y − y1)(x2 − x1) = (y2 − y1)(x− x1)
y(x2 − x1)− y1(x2 − x1) = x(y2 − y1)− x1(y2 − y1)
(y1 − y2)︸ ︷︷ ︸

A

x+ (x2 − x1)︸ ︷︷ ︸
B

y = y1(x2 − x1)− x1(y2 − y1)︸ ︷︷ ︸
C

(2.1)

That is convenient because we do not deal with undefined slopes for vertical lines, and
division by zero. Therefore, given two linear equations for each Edge we solve the system
with the Cramer’s rule.

`1 = A1x+B1y = C1 Line equation for first Edge
`2 = A2x+B2y = C2 Line equation for second Edge

We can then calculate the determinant of the system S =
∣∣∣∣∣A1 B1
A2 B2

∣∣∣∣∣. If S it’s zero, then

the system may have infinite solutions, or not solutions at all, so we will have to check addi-
tionally if the first edge is collinear with the second edge, checking if the cross product is zero.

Otherwise, we will calculate the solution (x, y), having in consideration that the point
may lie outside of the line segments, because we were considering them as infinite lines. The
intersection is calculated as it follows.

x = 1
S

∣∣∣∣∣C1 B1
C2 B2

∣∣∣∣∣ , y = 1
S

∣∣∣∣∣A1 C1
A2 C2

∣∣∣∣∣
Finally, the algorithm that follows the method explained before, to get the intersection

of two edges, is described now.

14

Algorithm 5 Intersection between two Edges
1: Input
2: Edge1 Edge with start Point A and end Point B
3: Edge2 Edge with start Point C and end Point D
4: Output
5: Intersection Point (x, y) if it exists, null otherwise.

6: function Intersection(Edge1, Edge2)

Calculating line AB := a1x+ b1y = c1
7: a1 ← By − Ax

8: b1 ← Ax −Bx

9: c1 ← a1(Ax) + b1(Ay)

Calculating system determinant S and solutions
10: S ← a1b2 − a2b1
11: collinear ← |CrossProduct(A,B,C)| < ε and |CrossProduct(A,B,D)| < ε
12: if |S| < ε and collinear then
13: return null
14: else
15: x ← 1

S
(b2c1 − b1c2)

16: y ← 1
S

(a1c2 − a2c1)
17: P ← new Point(x, y)
18: if Inside(P , Edge1) and Inside(P , Edge2) then
19: return P
20: else
21: return null
22: end

2.3.3.2. Edge intersection with Quadrilateral

The problem of determining if an Edge intersects a Quadrilateral becomes easy with the
function that returns the intersection of two edges. We just have to check if the given Edge
intersects at least one of the four Edges of the Quadrilateral. If that occurs then we say they
intersect, if not, then there is no intersection.

15

Algorithm 6 Intersection between Edge and Quadrilateral
1: Input
2: Edge Edge with Points init and end
3: Quad Quadrilateral with four Edges
4: Output
5: True if Edge intersects Quad. False otherwise.

6: function Intersects(Edge, Quad)
7: (leftEdge, rightEdge, topEdge, bottomEdge) ← Quad.getEdges()
8: left ← Intersection(Edge, leftEdge)
9: top ← Intersection(Edge, topEdge)
10: right ← Intersection(Edge, rightEdge)
11: bottom ← Intersection(Edge, bottomEdge)
12: return (left exists) or (top exists) or (right exists) or (bottom exists)
13: end

2.3.3.3. Edge intersection with Circle

To determine if a circle is intercepted by any AB segment, we decided to use the vector
projection strategy that joins the segment’s starting point with the center of the circle, on
segment AB. The problem with this strategy is that the point P corresponding to the inter-
section of the projection with the edge AB does not always fall on it, as can be seen in the
figure 2.6.

CC

AA

BB

PP

CC

AA

BB

PP

(A) (B)

Figure 2.6: Projection P from the center C of the circle to a segment
AB. (a) The projection falls on the segment. (b) The projection falls
outside the segment.

To solve that, we add border cases to face such problems. The first is that if there is any
endpoint of the segment that is within the circle, then necessarily the segment is intercepted.
The second is that if the point P of the projection exists, and it is also inside the segment,

16

then the circle is intercepted, as long as the distance between the center and P is less than
or equal to the radius.

CC

AA

BB

PP

CC

AA

BB

PP

(B)

Figure 2.7: Vector display in the projection

Using mathematics and geometry, and considering the vectors shown in the figure 2.7, we
know that the projection of ~AC on ~AB can be calculated as:

proj ~AB
~AC =

~AC · ~AB∥∥∥ ~AB∥∥∥2

Therefore the point P can be calculated using this scalar, weighting the vector ~AB and
carrying out the translation in the plane with the point A:

P.x = A.x+ proj ~AB
~AC ∗ ~AB.x

P.y = A.y + proj ~AB
~AC ∗ ~AB.y

Next, we show the algorithm that uses this procedure in a function called projection,
which receives a circle and a segment, and returns the point P , which is the intersection of
the projection of ~AC on ~AB. The Intersects function checks the edge cases mentioned above
and returns true if the segment intersects the circle, or false otherwise.

17

Algorithm 7 Intersection between Edge and Circle
1: Input
2: Edge Edge with start Point A and end Point B
3: Circle Circle with a center Point C and radius r
4: Output
5: True if Edge intersects Circle. False otherwise.

6: function Intersects(Edge, Circle)
7: insideStart ← Inside(Edge.A, Circle)
8: insideEnd ← Inside(Edge.B, Circle)
9: if insideStart or insideEnd is True then
10: return True
11: P ← Projection(Edge, Circle)
12: if not Inside(P , Edge) then
13: return False
14: if Distance between Circle.C and P is less or equal than Circle.r then
15: return True
16: else
17: return False
18: end

2.3.4. Polygon Related Algorithms

2.3.4.1. Polygon intersection with Circle

Checking if a polygon intersects a Circle is made much easier since we have the Intersects
function that checks if an Edge intersects a Circle. Just go through each of the edges of a
polygon and invoke the function: if its result is True, then the polygon intersects the circle,
otherwise there is no intersection. However, there is a border case in which the circle is
completely contained within the polygon or vice versa, since in both cases the above is not
true, but there is an intersection. To verify that, after processing each of the edges, we ask if
the center of the circle is inside the polygon, returning True because there is an intersection,
otherwise we return False.

18

Algorithm 8 Intersection between Polygon and Circle
1: Input
2: Polygon Polygon to be checked
3: Circle Circle with a center Point C and radius r
4: Output
5: True if Polygon intersects Circle. False otherwise.

6: function Intersects(Polygon, Circle)
7: Edge ← Get edges from Polygon
8: foreach Edge in Edges do
9: if Intersects(Edge, Circle) then
10: return True
11: end
12: return Inside(Circle.C, Polygon)
13: end

2.3.4.2. Area of a Polygon

Since our polygons do not have holes nor do they self-intersect, we can calculate the area
of a polygon as the sum of the cross products having each of the vertices of the polygon
as a pivot. This result will give us twice the area of the polygon, since for each vertex we
calculate the area of the parallelogram and not the corresponding triangle.

There are two considerations. The first is that the Nth point is equivalent to the point
with index 0. The second is that depending on the order in which the vertices are visited, it
will be the sign of the area, being counterclockwise a positive area, and clockwise negative
area. This is why we must take the absolute value to know the area. The formula for this is
as follows [7]:

A = 1
2

∣∣∣∣∣
n−1∑
i=0

(xiyi+1 − xi+1yi)
∣∣∣∣∣

2.3.4.3. Centroid of a Polygon

As for the centroid calculation, there is a formula, written by Paul Bourke in [7]. In the
formula, A represents the area, and as before, the Nth point corresponds to the point of
index 0.

Cx = 1
6A

n−1∑
i=0

(xi + xi+1)(xiyi+1 − xi+1yi)

Cx = 1
6A

n−1∑
i=0

(yi + yi+1)(xiyi+1 − xi+1yi)

19

2.3.4.4. Getting minimum angle of a Polygon

To calculate the angle of a vertex of a polygon, what we must do is obtain the vectors
corresponding to the two segments that share the vertex in the polygon, and apply the
definition shown in the figure 2.8.

Figure 2.8: Calculating the angle between two vectors

Therefore, to obtain the minimum angle it is enough to go through each one of the vertices
of a polygon and calculate each one of the angles, keeping the minimum in each iteration.
Since the number of vertices is finite and bounded to an integer, then the operation is
considered to be O(1).

2.4. Data Structures

2.4.1. Quadtrees

A quadtree is a recursive data structure, that partitions a region of the two dimensional
plane, into four new regions bounded by two straight lines parallel to each of the Cartesian
axes. There is a quadrant called root that covers the entire domain, which is recursively di-
vided into four children quadrants, each time getting smaller. Then, the complete collection
of recursively generated quadrants forms a tree.

The refinement done by a quadtree, is applied every time we insert a point in the plane,
allowing the existence of different partition algorithms of each region, depending on how we
split them. The refinement of a region done by a regular quadtree when a point is inserted,
can be described as it follows.

20

Algorithm 9 Quadtree Point Inserting
1: Input
2: Q quadtree
3: p point to be inserted in the tree
4: Output
5: True if the point was inserted. False otherwise.

6: function Insert(Q, p)
7: if current quadrant does not contain p then
8: return False
9: if p is already inserted on Q then
10: return False
11: if Q is a leaf then
12: Qpoints ← current points stored in Q
13: if capacity of Q is enough to handle p then
14: add p to Qpoints

15: return True
16: else
17: (Qnw, Qne, Qsw, Qse) = divide Q in four quadrants.
18: Q.northWest← Qnw

19: Q.northEast← Qne

20: Q.southWest← Qsw

21: Q.southEast← Qse

22: reinsert every point of Qpoints into the quadtree
23: return SubdividedInsertion(Q, p)
24: else
25: return SubdividedInsertion(Q, p)
26: end

Note that the Algorithm 9 uses a subroutine called SubdividedInsertion, that tries to
insert the point in each of the four Quadrants of the current quadtree. The details are given
below.

21

Algorithm 10 Subroutine of point insertion in Quadrants
1: Input
2: Q quadtree
3: p point to be inserted in the tree
4: Output
5: True if the point was inserted. False otherwise.

6: function SubdividedInsertion(Q, p)
7: if Insert(Q.northWest, p) then
8: return True
9: else if Insert(Q.northEast, p) then
10: return True
11: else if Insert(Q.southWest, p) then
12: return True
13: else if Insert(Q.southEast, p) then
14: return True
15: else
16: return False
17: end

If we model a Polygon as a set of Points, ordered in clockwise or counter clockwise, and we
insert every Point inside a Quadtree, then we will generate a mesh, adapting to the geometry
in every insertion. As the Quadtree is refining the plane, each Quadrant will be cutting the
polygon until every Vertex is inserted. The result is a initial mesh of the polygon.

It is important to note that according to the Bern-Eppstein-Gilbert theorem, a balanced
quadtree generates a well-formed mesh for any 2D domain.

Note that the process of dividing a quadtree into four Quadrant is not mandatory, because
sometimes we will want to divide horizontally or vertically depending of the local polygon.
Moreover, we would want to divide the quadtree not using the center of the Quadrant, as
the original Algorithm does, so we will extend this data structure to be able to handle this
operations.

2.4.2. Generalized Quadtrees

Definition 7 (Generalized Quadtree). A quadtree is called generalized, if the division of the
quadrants is variable. It is not divided always by half, but by any point inside the region, or
even be divided in two quadrants instead of four.

22

Figure 2.9: Quadtree bunny mesh example.

The generalized quadtree will help us to obtain initial meshes of different types, in order
to investigate which one produces the best results, and if these compare and resemble those
obtained with triangulations and quadrilateral meshes. The implementation section details
the algorithms for forming polygon meshes, as well as the different types of partition of the
quadrants.

2.4.3. KD-Trees

A KD-tree is called a k-dimensional tree, because it is a tree-like data structure that
partitions space in the specified dimension. In our case, the interest dimension is 2, so at
each level, dimensional cuts are obtained according to a certain axis (X or Y in the two-
dimensional case). A property of these trees is that all those points that are to the left of
the hyperplane cut by a dimension, are represented by the generated left subtree, and those
that are to the right of the hyperplane, are in the right subtree.

The cutting direction is alternated node by node between dimension X and dimension Y,
starting with X from the root of the tree. The cut of the space according to a dimension, for
example X, corresponds to a perpendicular hyperplane (in this case vertical), which divides
into two planes: all the points with the smallest X coordinate in the left tree, and with the
largest X coordinate in the right tree.

23

(5,25)(5,25)

(10,12)(10,12)

(30,40)(30,40)

(35,45)(35,45)

(50,30)(50,30)

(70,70)(70,70)

(a) Division of the space after in-
serting the points

(30,40)

(5,25)

(10,12)

(70,70)

(50,30)

(35,45)

(b) KD-Tree formed with the in-
sertion of points.

Figure 2.10: KD-Tree example with the following points inserted in
order: (30,40), (5,25), (10,12), (70,70), (50,30) and (35,45).

In the example in the figure, the nodes where the cut dimension is in X are (30,40),
(10,12) and (50,30). On the other hand, the nodes in which the cut dimension is in Y are
(5,25), (70,70) and (35,45).

The insertion of points can be done in the order in which they are entered, however, the
tree can be unbalanced. In order to solve this, a preprocessing of the points is used, selecting
the median as a pivot, inserting it into the tree and continuing to insert with the points to
the left of the median in the left subtree, and the points to the right in the right subtree.

24

Chapter 3

Related Work

3.1. Polygon Meshing Algorithms
The main algorithms used to generate polygon meshes can be categorized in two strate-

gies: (i) The use of a partition of space for creating a mesh, for example, the partition
generated by a quadtree (ii) The creation of Voronoi cells from a previously generated De-
launay triangulation with the required point density, and (iii) The generation of a Centroid
Voronoi Tesellation (CVT). The centroid of each Voronoi cell is inserted and those points are
the generators of the polygon mesh. [11] [17].

3.1.1. Geometric Meshes based on Quadtrees

The first use of quadtrees in the context of finite elements is descriibed by Yerry and
Shephard [44] [27]. In recent decades, it has been a trend to develop the FDM and FVM
based on structured or unstructured irregular meshes with quadrilaterals, triangles and poly-
gons, which have the grid flexibility of the FEM and the merits of the classic FDM and FVM
[43]. In that context, meshes generated by quadtrees gained popularity in the last years.[27]
[30]

The usual procedure for generating geometric meshes using a quadtree is to create a
bounding box that contains all the points of the geometry. Subsequently, the plane is sub-
divided into four quadrants recursively until a term condition is met, such as, for example,
verifying if the number of points that remain on a leaf of the tree are less than a certain
threshold. Another approach is to refine the quadtrees depending on its neighbours, for ex-
ample in [40] the condition of partitioning is the maximum difference between the level of
refinement of the adjacent elements.

After obtaining the partition, each of the leaves of the tree is traversed and each generated
polygon is triangulated. Finally, all the triangles generated in the leaves are joined and the
triangulation is formed. However, there is a problem with those points that are on the edges
or in the corners of the quadrants of the quadtree [29], which is solved by modifying the
coordinates of the point (and therefore losing precision).

Other strategies involves the use of quadrilateral finite elements. As described in [30]
one alternative is subdivide each triangle into three quadrilaterals, and then a node is added

25

at the centroid of the triangle and at the middle of each edge. But we decided to use the
strategy described in [41], where every element generated by a quadtree is considered as a
Polygon element, therefore we do not triangulate and for that reason, we expect a lower
number of elements. To generate the elements we followed the grid-based method [30], where
the resulting grid of the quadtree is superimpose over the initial geometry, and each Polygon
element is created using a clipping algorithm.

3.1.2. Geometric Meshes based on Voronoy Cells

Given a set of points belonging to a certain Ω domain, the Voronoi Region corresponding
to a given point Pi consists of all the points in Ω that are closer to Pi than to any other in the
set. The set of all regions forms a partition of Ω which is called the Voronoi Tessellation or
Voronoi Diagram of Ω. The initial set of points is called the generating points or generators.
The dual graph corresponds to a Delaunay Triangulation, which is formed by connecting
pairs of generator points, corresponding to adjacent Voronoi regions [5] [19].

The generation of geometric meshes using Voronoi algorithms are widely used because
there are currently several tools and algorithms that make them suitable for VEMmeshes [12].
However, the triangulations may contain triangles with small angles, or triangles with greatly
varying area so that most of the algorithms related to the Voronoi–Delaunay triangulations
do not provide a guarantee about the quality of the resulting mesh. [15]

Figure 3.1: Voronoi Diagram and dual Delaunay triangulation. 1

1 Image obtained from https://www.researchgate.net/figure/Voronoi-Dual-of-a-Delaunay-Triangular-Mesh_
fig37_262772501

26

https://www.researchgate.net/figure/Voronoi-Dual-of-a-Delaunay-Triangular-Mesh_fig37_262772501
https://www.researchgate.net/figure/Voronoi-Dual-of-a-Delaunay-Triangular-Mesh_fig37_262772501

3.1.3. Geometric Meshes based on Centroid Voronoi Tessellation
(CVT)

One of the alternatives to Voronoi diagrams to produce higher quality geometric meshes is
the concept of centroidal Voronoi tessellation based Delaunay triangulation (CVDT). Given
a set of points and a positive density function ρ, a Voronoi tessellation is a centroidal voronoi
tessellation (CVT), if the generators of each Voronoi region are also the centers of masses of
those regions. The dual graph Delaunay triangulation is called Centroidal Voronoi-Delaunay
triangulation, which provides a higher quality meshes than a regular Delaunay triangulation
[18].

The CVDT provides, in some sense, an optimal distribution of generating points. The
construction of CVDT generalizes many existing local smoothing techniques. In fact, a
centroidal Voronoi tessellation (CVT) is constructed based on an associated density function
and cost (or error, or distortion measure, or energy) functional [18] [15] [14].

3.2. Mesh Visualizers
There are several options for displaying and generating geometric meshes that are open-

source, however, no references have been found in the literature to applications that use
quadtrees or kd-trees to generate polygon meshes. Examples of viewers are: (1) TetView
[37], which is a small graphic program that allows to view tetrahedral meshes, which was
created specifically to work with TetGen [36]. (2) MeshLab [13] is a 3D geometry viewer,
which allows you to store different mesh formats and interact with them in real time. (3)
Camaron [8][9] is an application that allows to view polygon and polyhedron meshes, allowing
triangle, quadrilateral and mixed element meshes, but it lacks real-time editing. (4) Triangle
[35] is a C program for two-dimensional mesh generation and construction of Delaunay tri-
angulations, constrained Delaunay triangulations, and Voronoi diagrams. Triangle does not
have a way to refine in a certain sector, therefore to achieve a certain refinement density in
an area the entire mesh must be refined.

In our work we take the ideas of MeshLab of an interactive and user-friendly management
to visualize and edit the polygon meshes generated through quadtrees and kd-trees. For this
we create a web application that allows the manipulation of geometric meshes through mouse
clicks on a canvas. The user can select a refinement region, click on individual polygons
for refinement, choose the refinement algorithm, choose the construction strategy of the
grid using quadtrees or kd-trees and view the quality characteristics of the mesh through a
histogram. Because the application can be accessed through a web browser, the user must
not go through the compilation process and the use of flags to perform operations on a
polygon mesh, however this implies that the application will not be optimized because it is
not implemented using a low-level language like C or C++.

27

3.3. Polygon Mesh quality metrics
In the literature, there are not many works that address which quality metrics of arbitrary

polygons must have to be considered of good quality before the new mathematical methods
applied on polygon meshes, such as PFEM and VEM. In [38], different metrics associated
with triangles are discussed, and in [2], they discuss the non-consensus of what are the
appropriate metrics are to evaluate the quality of a polygon mesh in terms of its performance
against a solver, and propose a series of metrics, which we adopt in our work.

3.3.1. Scale Dependent measures

In our work we have used two measurements that are classic to evaluate a polygon: Area,
and Minimum length of an edge. These measurements depend on the scale of a polygon,
and therefore for the same mesh, we can have different results depending on the size of the
elements.

3.3.2. Scale Invariant measures

Because two different meshes (such as our and Triangle mesh) cannot be compared with
the previous metrics, we decided to adopt the invariant quality metrics at scale defined in
their work [2].

• The first is Circle Ratio (CR), which consists of the division between the radius of the
maximum circle inscribed in the polygon and the radius of the minimum circle that
encompasses all the points of the polygon (not necessarily passing through all of them).
Its range is between [0, 1] and the higher its value, the better the metric.

• The second is Perimeter Area Ratio (PAR), also called compactness of a polygon P,
defined by 2π ∗ area(P)/perimeter(P)2. Its range is between (0,∞) and the lower its
value, the better the metric.

• The third is Edge Ratio (ER), defined as the ratio between the smallest and longest
edge of the polygon. Its range is between (0, 1] and the higher its value, the better the
metric.

• Fourth is Minimum Angle of all interior angles of the polygon.

• Finally, the last metric used is Normalized Point Distance (NPD), which consists of
the division between the minimum distance between not necessarily consecutive points,
and the diameter of the minimum circumference that encompasses all the points of the
polygon. Its range is between (0, 1] and the higher its value, the better the metric.

As mentioned before, these metrics are important since they do not depend on the scale
and size of the elements, so they serve to compare the quality of a mesh generated by Triangle,
with one generated by our application.

28

3.4. Polygon Clipping Algorithms
In this section we describe in a general way the Greiner Hormann polygon cutting algo-

rithm and expose its disadvantages in relation to degenerate intersections (those in which
one polygon has an edge segment on the edge of another). Subsequently, we show a recent
extension to this algorithm that allows to solve the problem of degenerate intersections. The
implementation of the Greiner Hormann algorithm and its extension will be discussed in
detail in the Section 5.3.1.2.

3.4.1. Greiner Hormann Algorithm

In their work [23], Greiner and Hormann details an algorithm for clipping polygons in
1998. As they define, given two polygons: a clipper polygon, and the one to be cut, called
subject, the clipped polygon consists of all point interior to the clipper polygon that lie
inside the subject polygon. The clipped polygon can be just one polygon, or a set of polygons.
In other words, clipping a polygon against other, means determining the intersection of two
polygons.

The data structure used in their algorithm is the following:

vertex = {
x, y : coordinates;
next, prev : vertexPtr;
nextPoly : vertexPtr;
intersect : boolean;
entry_exit : boolean;
neighbour : vertexPtr;
alpha : float ;

}

They used a doubly linked list of nodes, where each node has a vertex inside with the
previously shown information. The basic information is the coordinates of the vertex, as
float numbers for x and y, and a reference to the previous and next vertex in the polygon.
The nextPoly information is to refer the possible new polygons generated after the clipping
process, pointing to the first vertex of the next Polygon generated.

The intersect field is a flag that is used when determining the intersection points between
subject and clipper polygons. All these intersection points have to be inserted into the sub-
ject and clipper points, in the proper place to keep the list ordered. When doing that, the
intersection inserted inside the subject keeps a reference to the same intersection inserted
into the clipper polygon, by the neighbor field of the data structure. The alpha field is used
to sort, indicating where the intersection point lies relative to the start and end point of the
edge. Finally entry_exit is a flag that records whether the intersection point is an entry or
exit point to the other polygon’s interior.

Using that data structure, we can define the algorithm in three phases:

29

3.4.1.1. Phase 1: Searching intersections

In this phase, we search for all intersection points between the subject and clipper polygons.
For doing that, we test every edge of the subject polygon to the ones of the clipper polygon,
checking if they intersect or not. If they intersect, then we get alpha values between 0 and 1,
indicating where the intersection point lies relative to the start and end of both edges. Using
the alpha values, they insert the intersections in the proper place inside the data structures
of the subject and clipper polygons.

If no intersection is found, we have then three possible cases: subject point lies completely
inside the clipper polygon or vice versa, or that both polygons are disjoint. Using the
algorithm point inside a polygon (even-odd rule), we can determine which case we have, and
return the correct result.

Algorithm 11 Pseudo-code for Phase one
1: foreach vertex Si in subject polygon do
2: foreach vertex Cj in clipper polygon do
3: if SiSi+1 intersects with the edge CjCj+1 then
4: I1 ← new Vertex(Si, Si+1)
5: I2 ← new Vertex(Cj, Cj+1)
6: link intersection points I1 and I2 by neighbour
7: sort I1 into subject polygon
8: sort I2 into clipper polygon
9: end
10: end

3.4.1.2. Phase 2: Marking entry and exit points

For labeling the point as entry and exit, they presented an analogy with a chalk cart. Let
us imagine we are pushing a chalk cart along the subject polygon boundary. If we start
on a vertex point we manipulate the hatch of the cart setting it as closed if we’re outside
the clipper polygon, or open if we are inside. We push the cart along the boundary of the
subject polygon, toggling the position of the hatch as open/closed when we cross an edge of
the clipper polygon. We stop when we reach the initial vertex. As a result of this, all the
segments of the subject polygon that are inside the clipping polygon are marked with chalk.

Using the same technique for the clipper polygon, we discover the parts that are inside
the subject polygon. Then, we find that the clipped polygon will be the result of merging
the parts discovered before.

30

Algorithm 12 Pseudo-code for Phase two
1: for both polygons P do
2: if P0 inside other polygon then
3: status ← exit
4: else
5: status ← entry
6: foreach vertex Pi in polygon do
7: if Pi.intersect then
8: Pi.entry_exit ← status
9: toggle status
10: end
11: end

3.4.1.3. Phase 3: Constructing the clipped polygon

In order to construct the new clipped polygon, they created two routines: newPolygon and
newVertex. The routine newPolygon registers the beginning of a new polygon, and the
newVertex adds the new vertex to the last polygon created by the routine newPolygon. A
simple example they give is the following:

newPolygon
newVertex(A)
newVertex(B)
newVertex(C)
newPolygon
newVertex(D)
newVertex(E)
newVertex(F)
newVertex(G)

The instructions create two polygons: P1 = ABC and P2 = DEFG. For A, the parameter
nextPoly is set pointing to D. Taking this into consideration, the pseudo code for the third
phase is the following.

31

Algorithm 13 Pseudo-code for Phase three
1: while unprocessed intersecting points in subject polygon do
2: current ← first unprocessed intersecting point of subject polygon
3: newPolygon
4: newVertex(current)
5: do
6: if current.entry then
7: do
8: current ← current.next
9: newVertex(current)
10: while current.intersect is False
11: else
12: do
13: current ← current.prev
14: newVertex(current)
15: while current.intersect is False
16: current ← current.neighbour
17: while Polygon is not closed
18: end

Essentially, the third phase consists in moving through the boundaries of the subject and
clipping polygon, reconstructing every clipping polygon. Making the analogy with the chalk
cart, first we move to one of the intersection points and open the hatch, considering this
as the creation of a new polygon. We then move along the subject polygon’s edge, in the
direction of entry_exit label of the start point. If the flag was entry, then we move forward
in the list, otherwise, we move backward.

When we find a vertex, we call the routine newVertex to add it to the polygon in creation.
Note that when we find the next intersection point, it means we leave the clip polygon’s inte-
rior, and change the traversing boundary to the clipper polygon. The direction of movement
is chosen again with the value of entry_exit label.

This process continues until we arrive at the starting vertex. There we close the hatch,
and the polygon is closed and finished. The process of traversing entering and exiting lists
continue as long as there are still intersection points that have not been processed.

3.4.1.4. Disadvantages of the algorithm

The algorithm works as long as there are no degenerate intersections. For Greiner and Hor-
mann, they call a degenerate intersection to every vertex of a polygon that lies in the edge
of another polygon. The problem in the paper is solved by perturbing these points, moving
them from their original place. This allows the algorithm to continue, but leads to inaccurate
solutions to the mathematical models used on the meshes.

This problem is important to our thesis because we deal with degenerated intersections
when we clip using the quadrants of a quadtree. If we try to disturb those intersections,
that would lead us to errors about the false belonging of points to quadrants, and with it,

32

an erroneous conformation of the polygon mesh. In addition, it would be known in advance
that disturbing the points would alter the original geometry, and therefore, the mathematical
results of applying a VEM model on the mesh would not be accurate.

FF

GG HH

II

AA

BB

CC

DD

EEJJ

KK

LL

MM

Figure 3.2: Example of degenerate intersection in quadtree

According to the figure 3.2, suppose that we have a polygon ABCDEJKLM , which we
will call the subject polygon, which will be cut by a quadrant of the quadtree represented by
the cut polygon FGHI. Note that the intersections between both polygons are points E, J ,
L and M .

These intersections are degenerate intersections, since they are cases where there is overlap
between the edges of the subject polygon and the cutting polygon, a situation that occurs
very often when working with quadtrees. The problem with these intersections is that they
lead to ambiguities in terms of generating entry and exit lists, and consequently, erroneous
results.

3.4.2. Extended Greiner Hormann Algorithm

In their work [21], Foster et al propose an extension of the algorithm, maintaining the
simplicity of the stages. What they add is a more exhaustive classification of the intersec-
tions, analyzing locally the segments that accompany the intersection in the subject polygon,
compared to the cut polygon.

3.4.2.1. Classification of Polygonal Chains

Definition 8 (Degenerate Intersection). We say that an intersection is degenerate, if it is a
point of a polygon P , which is contained in a segment of the polygon Q, or coincides with
some point of the polygon Q. The case is analogous for the points of Q, which comply with
the above properties in P .

33

Figure 3.3: Possible cases of intersections without overlap between the
segments. (A) Crossing (B) and (C) Bouncing. Image taken from [21]

Let P− and P+ be two points of the Subject Polygon, I be an intersection point with
Clipper Polygon, as the Figure 3.3 shows. Let Q− and Q+ be the points before and after the
intersection I in the Clipper Polygon respectively, then we have the following cases: If Q−
and Q+ are on opposite sides of the polygon chain P−IP+, then it is said to be a crossing
intersection. If Q− and Q+ are both on the same side, either to the right or to the left,
then we are facing a bouncing intersection.

Figure 3.4: Possible cases of intersections with overlaping between the
segments. (A) Left-on. (B) Right-on. (C) On-on. (D) On-left. (E)
On-right. Image taken from [21]

Regarding the intersections that overlap, as shown in the Figure 3.4, we must go to the
clipper polygon in the segment Q−I and IQ+, and see how the segments P−I and IP+ behave:

• If IP+ and IQ+ overlap, then then we must study the segments P−I and Q−I. If P−I
is to the left of Q−I, we will say that the intersection is "left on", otherwise it is "right
on".

• Similarly, if P−I and Q−I overlap, if IP+ is to the left of IQ+, it is an "on left"
intersection, whereas if it is to the right, it is an "on right" intersection.

• If there is overlap between both segments, then it is an "on on" intersection.

34

Chapter 4

Design

In this chapter, we describe at a high level how the mesh generator application based on
quadtrees and kd-trees was designed. We analyze the different requirements that the appli-
cation should meet, the possible solutions that we propose, and later, the chosen solution
together with the class and flow diagrams.

4.1. Mesh Generation Process
The main steps of any mesh generation process can be summarized as follows:

1. Build or read the geometry object
2. Generation of an initial mesh that fits the geometry domain
3. Generation of an intermediate mesh that satisfies the density requirements specified by

the user
4. Generation of an improved mesh that satisfies the quality criteria
5. Generation of the final mesh

For each step the designed application provides the following functionality:

1. The input geometry can be read from a file with extension .off, or drawn by the user.
In addition, an already generated mesh can also be uploaded.

2. The initial meshes can be either generated by a quadtree or kd-tree approach. In
particular, different ways of inserting points and dividing the space are applied when
using a quadtree, such as random insertion of points, and subdivision using the midpoint
or an arbitrary point.

3. The initial mesh generated by a quadtree or kd-tree can continue to be refined both
at the level of a single polygon, a selected region or the entire mesh. The user is in
charge of carrying out this process, selecting what he wants to refine intuitively with
the mouse.

4. The intermediate mesh can receive more specific quality refinements to a single polygon,
to a specific region, or to the entire mesh. The quality refinements included in the
application consist of splitting longest edge, centroid and centroid with replication.

35

5. Finally, when the user wants to finish the process, he can export his mesh in .off format,
in addition to consulting the different statistics associated with the mesh visually, such
as the number of polygons, the minimum angle, the minimum side, among others.

4.2. Analysis of possible solutions
Regarding the possible solutions to develop the polygon mesh generator, we found two:

1. Make a program under the C++ language, optimizing memory and reaction time. How-
ever, the display of the meshes becomes complex because integrating drawing libraries
is not something direct or trivial. In addition, this path implies a fairly high learning
curve due to the handling of graphical algorithms at a very low level.

2. Make a web application under the Javascript and Typescript languages, using the React
framework and some graphic library to show the generated meshes. The advantage of
this path is the language friendliness, and the ease with which a web application can be
integrated with new WebGL technologies to use the GPU with high-level instructions.
The great disadvantage of this path is that the application will not be optimized in
time or memory, so it would remain an application for learning and displaying meshes.

Based on the pros and cons of the two paths, we decided to follow that of the web
application, due to the rapid need to obtain a visualization of the generated polygon meshes
and thus focus on the logic of the mesh generator, in particular the obtaining smaller polygons
with a consistent cutting algorithm. In addition, the ease and experience with the Javascript
and Typescript languages, make the learning curve focus only on the graphic field and the
corresponding algorithms.

4.3. Proposed software architecture
In this section we show our architecture proposal for the application we want to create.

We focus on the first instance on the decisions we make for the creation of the software, and
then analyze the design of processes, the modeling of classes and components, and finally the
design of experiments.

4.3.1. General Architecture

Because our polygon mesh generator must be created from scratch, it means that there is
a greater degree of freedom in terms of the architecture that we must choose for the applica-
tion. As mentioned before, we have decided to create the mesh generator as a web application
using the new technologies that are in vogue, such as the Javascript and Typescript languages
with Node.js and React. The architecture on which these applications are based is the use
of components, which we can see as classes, with communication and information flow from
top to bottom. This means that there is a larger component that renders various small com-
ponents by passing global information to them via props, while each small component has
its own information, encapsulating its behaviors.

36

However, this structure is made only for rendering the views of the application. Regarding
the logic and generation of the polygon mesh itself, we follow the guidelines of a framework
for a modular component mesh generator using object-oriented programming [4]. This logic
is encapsulated in a layer far from the views, and is in charge of defining each element of
the application, such as points, edges, polygons, algorithms, among others, and how these
interact with each other to generate polygon meshes.

Regarding how to display the results, we decided to use a graphics-focused library that
can be easily integrated into web applications, and that is optimized as much as possible to
render quickly using WebGL. The use of a library makes integration to a web page much
more efficient and simple, focusing on the interface that the library provides for managing
drawings on a canvas, instead of going into direct WebGL commands that are beyond reach
of this thesis.

4.3.2. General Implementation Choices

As mentioned before, we decided to use Javascript and Typescript, in particular we used
React and NodeJs for creating the views of the application. The logic of the application is
done with Typescript, using the benefits of classes, types and cleaner code.

In relation to the graphic library, we used PixiJS, also written in Javascript, so its incorpo-
ration into the web application is much easier. This library is optimized for two-dimensional
rendering work using the WebGL engine to speed up the drawing of polygons on web pages
using the GPU through a high-level and easy-to-use interface.

4.4. Process Design
In this section we address the different processes that a user is able to follow in our

application. We explain how a user can start the process by drawing a polygon by clicking
on a canvas to insert its vertices, or by uploading a file in off 1 format with the initial
geometry, or a mesh already created. Additionally, we see the process of how the user can
refine the initial meshes generated by the application, and check their quality according to
quality criteria. Finally, the user can export their results in off, or Veamy file format.

1 Files in .off format are explained in more detail in Appendix A.

37

4.4.1. User draws a contour geometry in our Application

User draw polygon contour

End

A new mesh is
generated from

the test

All the points are
inserted in the
Tree with the

current algorithm

Start

User starts
drawing polygon
by clicking "Start
polygon" button

The vertices are
inserted inside a

quadtree by
default

User places
polygon vertices
with clicks on the

canvas

User clicks on
"End polygon"

button

Polygon is
created from the
points inserted

An initial mesh is
generated

The vertices are
inserted inside a

quadtree by
default

Clear Canvas?

Choose predefined
geometry test?

Check if a
quadtree refining
algorithm or kd-
tree is selected

Choose tree mesh
generation strategy

Yes

No

No

Yes

Yes

No

Figure 4.1: Flow diagram of the process of drawing a polygon.

In this process the user does not have an initial geometry, so the application offers the
possibility of drawing one on the canvas. To do this, the user must click on the canvas, in
each place where there is a vertex of the geometry. When the user presses the "end polygon"
button, the points are joined in the same order in which they were created, generating the
initial geometry. If the user is not satisfied with his geometry, he/she can click on the "clear
canvas" button to go back to the beginning. The user also has the ability to choose test ge-
ometries already defined within the application. If you choose one, it overwrites the existing
geometry on the canvas.

In any case, the initial points of the geometry (either drawn by the user or a pre-existing
one), are inserted in a quadtree that by default implements the division of its quadrants
using the midpoint algorithm. In case the user wants to choose another quadtree division
algorithm, or use a kd-tree, the points are reinserted and a new initial mesh is generated.
This last step concludes the process in which the user creates an initial geometry from the
application.

38

4.4.2. User uploads Contour Geometry

User uploads contour geometry

End

A new mesh is
generated from

the test

All the points are
inserted in the
Tree with the

current algorithm

Start

User clicks on
"Upload .off file"

button

Mid point division
strategy is used

by default

User uploads
contour .off file

from device

Application parse
the points

Points are
inserted into a

quadtree

An initial mesh is
generated

The polygons are
generated by

clipping process

Clear Canvas?

Choose predefined
geometry test?

Check if a
quadtree refining
algorithm or kd-
tree is selected

Choose tree mesh
generation strategy

Yes

No

No

Yes

Yes

No

Figure 4.2: Flow diagram of the process of uploading a contour OFF
file.

Here the user uploads to the application a file with the extension .off, which can contain
only points, or a list of points with a single polygon. The conformation of the .off file is
assumed to be correct, that is, the defined points conform exactly to the initial geometry,
and there are no excesses. Initially the application parses the file, obtaining all the points
and their coordinates, and as in the previous process, inserts them in a quadtree with division
algorithm using the midpoint. From now on, the process is identical to the previous one,
since the user can select predefined tests, draw a geometry and change the type of tree or its
division algorithm.

4.4.3. User uploads Mesh by off File

We now explain the process of how the application acts when a user uploads a mesh
represented in a off file. First, the user must upload the file to the application, then internally,
it parses the information, getting the points and storing them considering their indexes. After
that, the application parses the polygon information, creating each one of them, assuming

39

that the information of the mesh inside the file is correct.

User uploads .off Mesh file

End

A new mesh is
generated from

the test

Quadtree with half
division algorithm is

used by default

All the points are
inserted in the

Tree

Start

User clicks on
"Upload .off file"

button

Every polygon is
created

User uploads .off
file from device
with an existing

Mesh

Every polygon
information is

parsed

Application
assumes the
mesh is well
conformed

An initial mesh is
generated

No quadtree or
kd-tree is created

in this process

Clear Canvas?

Choose predefined
geometry test?

Yes

No

No

Yes

Figure 4.3: Flow chart of the process in which the user uploads a mesh
OFF file.

However, there is a big difference with respect to the two previous processes, since here it
is not possible to create a quadtree or kd-tree. This is because it is very difficult to obtain a
tree whose subdivision is capable of generating the mesh that the user enters. Consequently,
each polygon does not have a reference to the quadrant that generated it, so the options to
change the tree type and its division algorithm are not available for this process.

40

4.4.4. Quadtree refining process

Quad Refining Process

User has initial
mesh created

from drawing or
uploading a

contour geometry

Quadtree
Refining?

Single polygon
selection?

Region
Selection?

Refine bad
polygons?

User clicks on the
polygon he wants

to refine

Start

User clicks on
Selection mode

switch

By default the
geometry selector

region is a
bounding box

Change selector
region?

User select
between

bounding box or
circle

User clicks and
drags cursor on

canvas

Selector region is
drawn on the

canvas

All the polygons
that intersects the

region are
selected

Refine Region?

User clicks on
"Refine selected"

button

Selected
polygons are

refined

Refine whole
mesh?

Select quality
criterion

Adjust criterion
tolerance

Bad polygons are
automatically

painted with red
color

Refine bad
polygons?

User clicks on
"Refine bad
polygons"

Every polygon on
the mesh is
reevaluated

according to the
criterion

User clicks on
"Refine all" button

All polygons are
refined, without
considering the

criterionEnd

The polygon is
refined, without
considering the

criterion

No Yes No No

Yes Yes

No

Yes

No

Yes

NoNo

Yes

No

Yes

Yes

Figure 4.4: Flow chart of the process of quad-refining an initial mesh.

It consists of a subdivision using the midpoint of the quadrant that generated a certain
initial polygon, either using a quadtree or kd-tree. We decided to call this process "quadtree
refining" because only the midpoint division strategy is available, leaving other possible divi-
sion implementations as future work. This procedure is available only for those meshes that

41

were generated by a quadtree or kd-tree, that is, one available for all the cases explained
above except when the user uploads an already created mesh. In case the user wishes to
carry out this refinement, the user has four alternatives:

1. Refine a single polygon: If the user moves the pointer towards the canvas, they can
see that the polygons are marked red when it intersects them. If the user clicks, the
polygon is marked as "selected" and further refined. This procedure can be done many
times.

2. Refine a delimited region: If the user wants to refine all the polygons that are in a
certain region, he can do so by enabling the "selection mode" switch. If the user clicks
on the canvas, and holds it down, he can see how the selection region is increasing or
decreasing in size while moving the pointer. There are two selection regions in the app:
Bounding Box and Circle. Still, the integration of new selection geometries is easy due
to the class modeling done for this. When the user stops clicking, all those polygons
that intersect the selection region will be marked in red, and they can be refined by
pressing the "refine selected" button, or you can redraw a new selection region.

3. Refine polygons marked as bad: If the user decides to apply a quality criterion,
such as marking as "bad polygons" all those that have an area greater than an arbitrary
number, then he can choose to refine only those polygons, leaving the others intact.
For that, as mentioned, a quality criterion and a tolerance must be chosen, and then
click on the "Refine bad polygons" button.

4. Refine whole mesh: Finally, if the user decides to refine all the polygons of the mesh,
he can do so by clicking on the "Refine all polygons" button. In this option all polygons
are marked as if they were selected and refined.

4.4.5. Quality refining process

It starts with the assumption of an existing initial mesh, and consists of applying qual-
ity refinement algorithms to the polygons of said mesh. It is important to note that if a
refinement of this type is performed, refinement by quadtree is automatically disabled, due
to edge conditions and inconsistencies. This refinement has the same four alternatives as the
previous process, with the difference that a quality refinement algorithm must be previously
chosen. This application implements the following three types of algorithms:

1. Centroid: Refining using the Centroid of the polygon.

2. Centroid with Replication: Refining using the Centroid and replicating the polygon
around it.

3. Splitting Longest Edge: Refining splitting the longest edge of the polygon by the
mid point, and create two polygons with similar area ratio.

42

Quality Refining Process

User has initial mesh
created from drawing

or uploading a
contour geometry or
Quad Refined Mesh

Quality Refining?

Single polygon
selection?

Region
Selection?

Refine bad
polygons?

User clicks on the
polygon he wants

to refine

Start

User clicks on
Selection mode

switch

By default the
geometry selector

region is a
bounding box

Change selector
region?

User select
between:

bounding box or
circle

User clicks and
drags cursor on

canvas

Selector region is
drawn on the

canvas

All the polygons
that intersects the

region are
selected

Refine Region?

User clicks on
"Refine selected"

button

Selected
polygons are

refined

Refine whole
mesh?

Select quality
criterion

Adjust criterion
tolerance

Bad polygons are
automatically

painted with red
color

Refine bad
polygons?

User clicks on
"Refine bad
polygons"

Every polygon on
the mesh is
reevaluated

according to the
criterion

User clicks on
"Refine all" button

All polygons are
refined,

regardless of their
quality status

End

The polygon is
refined,

regardless of its
quality status

A dummy
refinement
algorithm is

chosen by default

Choose quality refining

algorithm?

User choose the
algorithm between:
Centroid, Centroid
with Replication or
Splitting Longest

Edge

No Yes

Yes

Yes

No

Yes

No

No

Yes

No

Yes

No

Yes

No

No

Yes

No

Yes

Figure 4.5: Flow chart of the process of quality refining.

43

4.4.6. Quality inspection

In the middle of any of the processes explained above, the user can check the quality of
the mesh according to typical metrics for a mesh: minimum and maximum average area,
minimum and maximum average edge length and average maximum and minimum angle
of the mesh. The information is shown through a bar histogram, whose horizontal axis
corresponds to each polygon, and the vertical axis to the value of the analyzed metric. Based
on this information, the user can enter a tolerance value, which will automatically mark as
bad polygons, all those that are under or above the said value, depending on whether the
metric is maximum or minimum respectively.

Quality Mesh Information

End

Give criterion
tolerance?

Polygons that do
not apply the
criteria are

marked as bad

Bad polygons are
tinted as red

Start

User clicks on
criterion selector

Possible criteria
are: Area (min,

max), Edge
Length (min,

max), and Angle
(min, max)

User clicks in one
of the possible

criteria

A graph with the
data of all the
polygons is
shown as
histogram

Yes

No

Figure 4.6: Flow chart of the process of quality inspection.

44

4.4.7. Exporting

Exporting

Start

User clicks on
exporting button

Create OFF mesh
file?

Off mesh is
created and
available for
downloading

Create Veamy
mesh file?

Veamy file is
created and
available for
downloading

Copy Veamy file
to clipboard

Veamy file is
copied to the

clipboard

End

Yes

No

Yes

No

Yes

No

Figure 4.7: Flow chart of the process of exporting meshes.

Finally, if the user wants to download an OFF file or Veamy file with the result of its
mesh after its refinements, the user can click on the exporting button, and then download the
file. The user can also choose to copy the results and keep them on the clipboard, however,
this process is not always possible due to the large number of lines that the file may have.
It is important to emphasize that the only mesh available for download is the last one that
the user sees, that is, all the intermediate steps that made up the mesh are not recoverable,
leaving the implementation of the feature of undoing or redoing a certain refinement to a
mesh as future work.

45

4.5. Model Design
We detail now the class modeling used in our application. First we explain the modeling of

the internal classes, where each of the main operations are carried out, such as the refinement
of the polygons, the storage of the mesh information or the different algorithm strategies.
Subsequently, we cover the frontend modeling of the application through React, visualizing
the interactions between the different components created.

4.5.1. Geometry and Selector Region

In our modeling we consider the following basic classes: Point, Edge, Polygon, Circle
and Bounding Box. We separated Circle and Bounding Box from Polygon for convenience,
due to the number of particular methods they had, and their later use in the creation of
selection regions. To group these classes, we create an interface called Geometry, which
must implement the isEqual and toString methods.

Selector Region
{abstract}

Attributes

Operations

abstract intersects(BoundingBox): boolean
abstract settingMouseListeners(): void
polygonsHitTest(): void

Geometry
<<interface>>

Attributes

Operations

isEqual(Geometry): boolean
toString(): string

Polygon

Attributes

 pointIndexes: Array<number>;
 needsRefinement: boolean;
 quadrantParent: Quadrant | null;
 refFactor: number;
 selected: boolean;
 graphics: PIXI.Graphics;
 halfEdge!: HalfEdge;
 index: number;

Operations

addPoint(Point): void;
containsPoint(Point): boolean;
shareEdge(Polygon): boolean;
isCounterClockwise(): boolean;
insertPointOnEdge(Point): Array<number>;
toCounterClockwise(): void;
toClockwise(): void;
containsEdge(): boolean;
isConvex(): boolean;
save(): void;
display(): void;

Point

Attributes

 pointGraphics: PIXI.Graphics;
 halfEdge: HalfEdge;
 index: number;

Operations

isEqual(Point): boolean;
isInsidePolygon(Polygon): boolean;
distance(Point): number;
isInsideEdge(Edge): boolean;
display(): void;

Edge

Attributes

 halfEdge: HalfEdge;
 index: string;
 init: Point;
 end: Point;

Operations

static areEdgesCollinear(Edge, Edge): boolean;
extendedEdgeIntersection(Edge, boolean): Object
edgeIntersection(Edge): Point | null;
intersectsBoundingBox(BoundingBox): boolean;
isEqual(Edge): boolean;
isInvertedOf(Edge): boolean;
toString(): string;

Circle

Attributes

cx: number;
cy: number;
r: number;
circleGraphics: PIXI.Graphics;

Operations

settingMouseListeners(): void;
isIntersected(Polygon): boolean;
intersects(BoundingBox): boolean;
projectPointOnSegment(Point, Point): Point;
intersectsEdge(Point, Point): boolean;
intersectsPoint(Point): boolean;
display(): void;
isEqual(Circle): boolean;
toString(): string;

Bounding Box

Attributes

x0: number;
y0: number;
x1: number;
y1: number;

Operations

settingMouseListeners(): void;
splitByAxis(String, Point): Object;
isIntersected(Polygon): boolean;
getBoundaryPoints(): Object;
getBoundaryEdges(): Object;
contains(Point): boolean;
intersects(BoundingBox): boolean;
isEqual(BoundingBox): boolean;
toString(): string;

Null Region

Attributes

Operations

settingMouseListeners(): void;
intersects(BoundingBox): boolean;

Figure 4.8: UML Diagram for Geometry and Selector Region.

Among the classes that implement the Geometry interface, there are two that are used
as a selection region: Circle and Bounding Box. In order to encapsulate the behavior of
generating a polygon selection region, we created an abstract class called Selector Region.
This class defines the following:

1. Intersects: An abstract method that describes how selection geometries intersect a
quadrilateral (Bounding Box). This is necessary because for optimization reasons, the
intersection between the selection region and a polygon is actually done with a Bounding
Box that contains the polygon. This lowers the selection in precision, but increases the
speed of the process.

2. Setting Mouse Handlers: Another abstract method that indicates how mouse events,
such as click, drag and drop, are reflected in the selector geometry in real time.

3. Polygons Hit Test: This method is not abstract, and consists of iterating over each
of the polygons, extracting its bounding box and detecting those that intersect with

46

the selection region. This process is done by invoking the intersects method mentioned
above.

4.5.2. Polygon in detail

The polygon class is one of the most relevant within the implementation, so below we
show its modeling in more detail.

Polygon

Attributes

 pointIndexes: Array<number>;
 needsRefinement: boolean;
 quadrantParent: Quadrant | null;
 refFactor: number;
 selected: boolean;
 graphics: PIXI.Graphics;
 halfEdge!: HalfEdge;
 index: number;

Operations

addPoint(Point): void;
containsPoint(Point): boolean;
shareEdge(Polygon): boolean;
isCounterClockwise(): boolean;
insertPointOnEdge(Point): Array<number>;
toCounterClockwise(): void;
toClockwise(): void;
containsEdge(): boolean;
isConvex(): boolean;
save(): void;
display(): void;

Operations

<<Functions>>

Attributes

Operations

polygonArea(Polygon): number;
makeConvexHull(Polygon): Array<Point>;
findCentroid(Array<Point>): Point;
polygonEdgeLengths(Polygon): Array<number>;
maxAngle(Polygon): number;
maxLength(Polygon): number;
minAngle(Polygon): number;
minLength(Polygon): number;
perimeter(Polygon): number;
splitPolygon(Edge, Indexes: Array<number>): Array<Polygon>;
triangulate(Polygon): Array<Polygon>;

Metrics

<<Functions>>

Attributes

Operations

circleRatio(Polygon): number;
edgeRatio(Polygon): number;
minPointToPointDistance(Polygon): number;
normalizedPointDistance(Polygon): number;
perimeterAreaRatio(Polygon): number;

exports exports

Figure 4.9: UML Diagram of polygon in detail.

As we can see in the Figure 4.9, the polygon class was divided into three sections, due
to the great complexity that it acquired. We decided to create a separate module from the
class that contains all the operations allowed for a polygon, such as obtaining the maximum
area, calculating the convex lock, obtaining the centroid, among others. Also, we create
another module that contains all the functions to calculate the metrics of a given polygon.
This modeling allows the polygon class to focus on aspects of geometry, such as orientation,
adding points to its contour and saving the polygon in storage.

4.5.3. Clipping Algorithms

After the quadtree or kd-tree generates a grid over the input polygon, the next natural
step is clip the polygon according to each quadrant generated by the tree. In order to do
that, we designed an interface with a method clip(subjectPolygons, clipperPolygons). So
every strategy for clipping algorithms must override that method.

47

Clipping Algorithm
<<interface>>

Attributes

Operations

clip(subjectPoints, clipperPoints): Point[][];

SutherlandHodgmanAlgorithm

Attributes

Operations

clip(subjectPoints, clipperPoints): Point[][];

GreinerHormannAlgorithm

Attributes

Operations

circularIncludesPoint(Circular<Point>, Point): boolean;
insertIntersection(Circular<Point>, currentPoint: Point, intersection: Point): void;
calculateIntersections(subjectPoints, clipperPoints): Object;
classifyIntersections(intersections): Object;
markIntersectionChains(intersections): Object;
buildEnterExistList(clipperPoints, intersections): Object;
traverse(subject, clip, entering, exiting): Point[][];
traverseList(currentList, entering, exiting, currentNode, startPoint): Object;
findNonIntersectionPoint(polyP, polyQ): Point | null;
clip(subjectPoints, clipperPoints): Point[][];

Figure 4.10: UML Diagram for clipping algorithms.

We implemented two algorithms for clipping polygons: Sutherland Hodgmann and Ex-
tended Greiner Hormann. Both original algorithms have critical disadvantages for the pur-
pose of this thesis, so we decided to extend the Greiner Hormann algorithm according to the
recent work [21] in order to accomplish the polygon cutting with degenerated intersections.
The details of the implementation of each algorithm and the extension of the last one, will
be on the corresponding section.

4.5.4. Criteria

We model the criteria using the strategy pattern. In this case, all the criteria extends
from an abstract class and not from a interface. This is because we need to implement get-
Tolerance and setTolerance for every criteria. The tolerance is the value that defines the
criterion, for example, tolerance for MinAngleCriterion is the minimum angle allowed for
discerning between a bad or good polygon.

48

MaxAngleCriterion

Attributes

Operations

apply(polygons)

MaxAreaCriterion

Attributes

Operations

apply(polygons)

MaxLenghtCriterion

Attributes

Operations

apply(polygons)

NullCriterion

Attributes

Operations

apply(polygons)

Criterion
{abstract}

Attributes

tolerance

Operations

getTolerance()
setTolerance(newTolerance)
apply(polygons)

MinAngleCriterion

Attributes

Operations

apply(polygons)

MinAreaCriterion

Attributes

Operations

apply(polygons)

MinLenghtCriterion

Attributes

Operations

apply(polygons)

Figure 4.11: UML Diagram for criteria.

The abstract method is apply(polygons), so every criterion must set a flag in the poly-
gons that needs refinement if they not pass the criterion. Every class is a new strategy for
applying a criteria to the polygons, making the process of adding a new one a simple task.

We define a NullCriterion in case of the user doesn’t want to apply a criterion to the
mesh he’s constructing. This criterion is the default of the application, so if the user wants to
apply criteria, he needs to change it to another one. The others criteria are the standard ones
used in meshes, related to the length of the edges, the area and the angles of the polygons.

49

4.5.5. Quality Refining Algorithms

We use an abstract class to define the different types of refinements, implementing in the
parent class how a polygon can be triangulated or divided into convex parts (polygonize) and
the subsequent arrangement that must be made to the mesh so that it is well constituted.
The different quality refinement strategies must implement the abstract refine method, so
exchanging strategies or implementing new ones is a simple task. The implementation of
each of the strategies shown is explained in the corresponding section.

Refinement Algorithm
{abstract}

Attributes

Operations

abstract refine(intersectedPolygons, Mesh): Array<Polygon>;
- fixingPolygons(): Array<Polygon>;
+ triangulateAndFix(Polygon, Mesh): Array<Polygon>;
+ polygonizeAndFix(Polygon, Mesh): Array<Polygon>;

CentroidRefineAlgorithm

Attributes

Operations

refine(intersectedPolygons, Mesh): Array<Polygon>;

CentroidReplicatePolygonAlgorithm

Attributes

Operations

refine(intersectedPolygons, Mesh): Array<Polygon>;

NullRefinementAlgorithm

Attributes

Operations

refine(intersectedPolygons, Mesh): Array<Polygon>;

SplittingLongestEdgeRefineAlgorithm

Attributes

Operations

getBestPartition(Polygon, insertedPoint): Object;
splitLongestEdge(Polygon): void;
refine(intersectedPolygons, Mesh): Array<Polygon>;

Figure 4.12: UML Diagram for refining algorithms.

We implemented a NullRefinementAlgorithm, that does not affect the intersected poly-
gons, in other words, just returns the list of polygons, with no modifications. This algorithm
is important because it is the default refinement algorithm in the application, and is changed
only if the user wants to do so. In other words, if the user doesn’t want to refine the mesh,
then the default algorithm will leave the mesh intact.

4.5.6. Division Algorithms

For the division algorithms we use the strategy again, and so we can add different parti-
tions of a quadtree without altering its code. We model the DivisionAlgorithm as an interface,
with three methods: divide, insert and divideQuadrant. Every class that implements the

50

interface, must implement the logic of insertion and division of a quadtree, in particular, the
way the quadrants are divided.

DivisionAlgorithm
<<interface>>

Attributes

Operations

divide(Quadtree, Point): void;
insert(Quadtree, Point): boolean;
divideQuadrant(Quadrant, Point): void;

HalfDivisionAlgorithm

Attributes

Operations

- subvidedInsertion(Quadtree, Point): boolean;
- halfDivision(Quadrant): void;
- reinsert(Quadtree): void;
insert(Quadtree, Point): boolean;
divide(Quadtree): void;
divideQuadrant(Quadrant): void;

PointDivisionAlgorithm

Attributes

Operations

- arbitraryDivision(Quadtree, Point): boolean;
insert(Quadtree, Point): boolean;
divide(Quadrant, Point): void;
divideQuadrant(Quadrant, Point): void;

Figure 4.13: UML Diagram for division algorithms.

The default algorithm of quadtree division is HalfDivisionAlgorithm, meaning every
quadrant is divided using the mid points of the bounding edges. While the other algorithm
consists of the arbitrary insertion of points, dividing each of the quadrants according to the
coordinates of the points in question. This strategy is called PointDivisionAlgorithm, and
it also implements the DivisionAlgorithm interface.

4.5.7. Mesh

We have designed the Mesh class thinking that its task is to maintain the integrity of all
polygons. For this, it has a reference to the initial geometry that generated the mesh, and
the quadrants generated by a quadtree or a kd-tree. The methods offered by the class are
based on these references to arrange the polygons around one that was refined, reorder the
links between the halfedges, among other operations. The Mesh class uses the Integrity class
to maintain a consistent state after each operation.

51

Mesh

Attributes

initialPolygon: Polygon;
quadrants: Dict<string, Quadrant>;

Operations

addQuadrants(oldQuadrant, newQuadrants): void;
displayQuadrants(): void;
fixPolygons(polygonsToFix, problemPointIndexes): void;
getProblemPoints(initialPolygon, newPolygons): Array<Point Indexes>;
generateNewPolygons(): void;
processMeshHalfedges(): void;
fixContour(): void;
fixFlipHalfedges(): void;

Integrity

Attributes

Operations

checkMesh(): boolean;
- checkEdges(): boolean;
- checkPolygons(): boolean;
- checkHalfedges(): boolean;
- checkLinks(): boolean;

uses

Figure 4.14: UML Diagram for Mesh.

4.5.8. HalfEdges

The HalfEdge class is important for the development of the application, because the con-
sistency of the mesh depends on a good implementation of the links between the HalfEdges.
This complexity was extracted in two modules: One dedicated to performing operations such
as creating a polygon and inserting an Edge, and another dedicated to querying the mesh,
such as obtaining all the polygons that share a certain Edge, the HalfEdges that they share
a point, the neighbors of a polygon, among others.

HalfEdge

Attributes

nextHalfEdge: HalfEdge;
flipHalfEdge: HalfEdge;
vertex: Point;
edge: Polygon;
face: Polygon | null;

Operations

setVertex(Point): void;
setEdge(Edge): void;
setFace(Polygon | null): void;
setNextHalfEdge(HalfEdge): void;
setFlipHalfEdge(HalfEdge): void;
onBoundary(): boolean;
isFree(): boolean;

Operations

<<Functions>>

Attributes

Operations

createPolygon(Polygon): void;
insertEdge(indexStart, indexEnd): void;
makeAdyacent(inHalfedge, outHalfedge): boolean;
removeEdge(Edge): boolean;
removeHalfEdgesFromPolygon(Polygon): void;

Queries

<<Functions>>

Attributes

Operations

getBoundaryEdges(): Array<Edge>;
getMinLengthBoundary(): number;
getBoundaryLength(): number;
findFreeIncident(startPoint, startHalfEdge, stopHalfEdge): HalfEdge | null;
pointEdges(Point): Array<Edge>;
pointHalfEdges(Point): Array<HalfEdge>;
pointPolygon(Point): Array<Polygon>;
polygonHalfEdges(Polygon): Array<HalfEdges>;
polygonNeighbors(Polygon): Array<Polygon>;
polygonPoints(Polygon): Array<Point>;
prevHalfEdge(HalfEdge): HalfEdge;

exports exports

Figure 4.15: UML Diagram for HalfEdges.

4.5.9. Storages

Previously we saw that the Mesh class had no reference to its elements, and this is because
its storage was assigned to different Storages classes, one for points, one for edges, and another
for polygons. Each of the classes is a global singleton within the application, and they are
required to maintain the consistency of the mesh elements.

52

EdgeMap

<<Singleton>>

Attributes

 edgeMap: Dict<string, Edge | null>;

Operations

constructMap(): void;
clear(): void;
existEdge(Edge): boolean;
existEdgeFromKeys(directKey, invertedKey): boolean;
isDeleted(Edge): boolean;
getPointsFromKey(string): {p1: Point, p2: Point};
getEdgeIndexes(Edge): Array<number>;
getKeys(Edge): { directKey: string, invertedKey: string };

PointStorage

<<Singleton>>

Attributes

 pointReferences: Array<Point | null>;

Operations

existPoint(Point): boolean;
addPoint(Point): number | null;
getAllPoints(): Array<Point>;
getPoint(index): Point;
getIndex(Point): number | null;
totalPoints(): number;
clear(): void;
removePoints(Polygon): boolean;
toString(): string;

PolygonStorage

<<Singleton>>

Attributes

 polygonReferences: Array<Polygon | null>;

Operations

clear(): void;
getAllPolygons(): Array<Polygon>;
getPolygon(index): Polygon | null;
existPolygon(Polygon): boolean;
splitPolygonsEdge(Edge, Point): void;
removePolygon(Polygon): boolean;
totalPolygons(): number;
isDeletedByIndex(Index): boolean;
isDeleted(Polygon): boolean;
addPolygon(Polygon): number | null;
toString(): string;

new new new

Figure 4.16: UML Diagram for Storages.

Storages must keep the state of items consistent, and handle the cases in which they are
added or removed. For this there are associated methods that are responsible for this work,
and that depend on each other. For example, the deletion of a polygon in its Storage, invokes
the elimination of edges from Edge Storage and later the elimination of points from Point
Storage.

4.5.10. Tree

For the modeling of the trees, we decided to create an abstract class that defines for all
the trees the process of inserting random points, however, each class must implement its
way of being displayed on the screen and how the points are inserted. Each tree contains
Quadrant objects, which represent the leaves of the trees after the insertion of all the points.
These Quadrant are responsible for producing each of the initial mesh polygons, which will
save a reference to them for further refinement.

53

Quadrant

Attributes

northWest: Quadrant | null;
northEast: Quadrant | null;
southWest: Quadrant | null;
southEast: Quadrant | null;
depth: number;
parent: Quadrant | null;
boundary: Bounding Box;
id: string;

Operations

isLeaf(): boolean;
getLeaves(): Array<Quadrant>;
display(): void;

Tree
{abstract}

Attributes

Operations

abstract insert(Point): boolean;
abstract getLeaves(): Array<Quadrant>;
abstract buildFromPoints(Array<Point>): void;
abstract display(): void;
buildRandomTree(Array<Point>): void;

QuadTree

Attributes

 northWest: QuadTree | null;
 northEast: QuadTree | null;
 southWest: QuadTree | null;
 southEast: QuadTree | null;
 points: Array<Point>;
 parent: QuadTree | null;
 depth: number;
 boundary: BoundingBox;
 capacity: number;
 divisionAlgorithm: DivisionAlgorithm;

Operations

insert(Point): boolean;
getLeaves(): Array<Quadrant>;
buildFromPoints(Array<Point>): void;
checkCapacity(): boolean;
isLeaf(): boolean;
getRoot(): QuadTree;
display(): void;

KDTree

Attributes

 root: KDTreeNode | null;
 depth: number;

Operations

- buildTree(points, depth, parent): KDTree | null;
buildFromPoints(Array<Point>): void;
getLeaves(): Array<Quadrant>;
insert(Point): boolean;
display(): void;

KDTreeNode

Attributes

 left: KDTreeNode | null;
 right: KDTreeNode | null;
 parent: KDTreeNode | null;
 dimension: number;
 obj: { x: number; y: number };

Operations

extends

extends

uses

uses

Figure 4.17: UML Diagram for Tree

According to the Figure 4.17, we see that a Quadtree is recursively defined, that is, its
children are still Quadtrees. In the case of a KD tree, it was decided to create an additional
class for the tree nodes, in order to make the process of division by axes much easier.

4.5.11. React frontend Modeling

React is a framework that facilitates the work of creating user interfaces. These interfaces
are created by using components, which extend from a predefined component in React. This
makes each interface a different class or functional component, with its own states and meth-
ods, therefore modularizing the code. In addition, interfaces that wish to display information
must implement the render() method using the .jsx format, which is a Javascript extension
for writing elements using tags, in order to format the presentation of the application, the
same way as HTML does.

54

<<Component>>
App

States:
currentState
currentQualityCriterion
currentRefiningRegion
currentRefiningMethod
canvas
drawingGraphics
qtree
mesh
currentTabIndex
refiningRef
showPoints
Operations:
onSetAppState(newState, value)
handleChange(event, value)
setTabProps(index)
TabPanel(props)
render()

<<Component>>
Drawing

States:
geometryValue
divisionValue
divisionAlgorithm
fileUploaded
Operations:
recreateQuadtree(newDivisionAlgorithm)
executeTest(qtree)
changeQuadtreeDivision(event, value)
onSelectGeometryTest(event, value)
drawPolygonFromFile(vertices, faces, isVeamy)
render()

<<Component>>
Exporting

States:
offText
Operations:
createFile()
render()

<<Component>>
QuadRefining

States:
sliderValue
refLevel
maxNeighborRefFactor
Operations:
onSliderChange(event, value)
render()

<<Component>>
Quality

States:
criterionValue
tolerance
Operations:
createData()
onSelectChange(event, value)
createBars()
createChart(props)
render()

<<Component>>
Refining

States:
sliderValue
region
refiningMethod
Operations:
onSliderChange()
onSelectRegionChange()
onSelectRefiningChange()
refineBadPolygons()
refineAllPolygons()
render()

<<Component>>
Statistics

States:
jsonStatistics
Operations:
showJson()
render()

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

Figure 4.18: UML Diagram for React Components.

In the first instance, we create a main component called App, which will be in charge of
using the other components (from now on, called child components) to correctly display the
application. The App component has, within itself, the information on the current state in
which the application is found (If we are exporting to an OFF file, if we see statistics, or we
are refining), as well as the essential elements such as the drawing canvas, the polygon mesh,
and the quadtree.

All this information is passed to the child components through the React properties,
called props in the framework, in conjunction with a function called onSetAppState, which
consists of a callback function, which modifies the status of the global component from a child
component. This is how the application is always updated, depending on the actions carried

55

out by each child component, therefore, it is enough to implement the logic of refinement,
statistics, among others, in each of these components, and then update the application global,
so that the information is consistent.

4.6. Experimental Design
We have to conduct experiments to compare the meshes generated through generalized

quadtrees and kd-tress with triangulations and other types of meshes. For this, what we do
is to test certain geometric domains both in our software, as in Triangle, to later compare
the obtained metrics and establish conclusions.

The task described above requires that the input files for each software be compatible
with each other, which is not possible without preprocessing. This is because the formats in
which the geometries are presented vary between one program and another.

In the first instance, what we did was only compare the results obtained by our application
between the different algorithm strategies:

• We compare the initial meshes of each of the tree types that we implement in the thesis
work, with their different strategies, and we see which of them have the fewest elements,
what their average angles and edges are, and how long they take to generate the initial
meshes.

• Subsequently, we verified how the refinement by quadtree behaves successively, com-
paring the procedure with and without considering the neighbors of the polygons.

• Then we applied a quality refinement to each of the polygons of each of the initial meshes
generated on a unicorn geometry, and we compared the relevant data mentioned above
to verify which ones have the best performances.

• With a given initial mesh, we successively applied the same quality criteria to all the
polygons of the mesh, in order to study how it behaves while more polygons exist, in
terms of time and number of elements generated. Finally, we study how quality metrics
behave through different refinements for the same quality refinement algorithm, in order
to study whether the result improves or worsens.

Finally, given a geometry created by our polygon mesh generator, what we do is compare
each of the relevant metrics with triangle, such as the number of elements, the minimum
angle, minimum length and computation time used. Then we compare each of the quality
metrics for both programs, in order to check the performance of the meshes generated by our
generator, with respect to the Triangle triangulations.

56

Chapter 5

Implementation

In this chapter we describe the main algorithms and data structures inside our mesh generator
based on kd-trees and modified quadtrees, and the visualizer that helped to see if operations
were correct. First we explain the implementation of the web application, and after we
address the algorithms behind that accomplish the generation of polygonal meshes.

5.1. Mesh Representation
In this section we explain how we implement those essential elements for the representation

of a polygon mesh, which are: Vertices, Edges, Polygons and Halfedges. For each element,
we explain how it was represented as a class, and the implementation of their respective
Storages.

5.1.1. Vertices

Vertices are the most basic elements and are responsible for giving consistency to our
application. We first define the information that an object of the Point class stores, and
then, how it is stored to keep the information in a consistent way.

5.1.1.1. Vertex representation

The points or vertices of the meshes have basic information such as their components on the
X axis and on the Y axis. Additionally, we add three fields: A reference to a halfedge, an
index corresponding to the place the point occupies in the Storage array, and a reference to
the graphics object for faster rendering.

1 class Point implements Geometry {
2 pointGraphics: PIXI.Graphics;
3 halfEdge!: HalfEdge;
4 index: number;
5

6 constructor(public x: number, public y: number) {
7 this .pointGraphics = null;
8 this . index = -1;
9 }

57

10 }

5.1.1.2. Vertex Storage

The implementation of vertex storage, called PointStorage, consists of an array that has
references to objects of the Point class. When a point is added to the array, it will always
remain with that index, unless explicitly removed. In that case, that index can no longer
be used again, thereby ensuring that the consistency of the information is maintained. This
means that spaces are left with flags, which indicate that the point in that index is undefined,
which guarantees that the already existing point indexes are always used.

Algorithm 14 Adding a Point inside the PointStorage
1: Input
2: point The Point to be saved
3: Output
4: Returns null if the point couldn’t be saved.
5: Otherwise, returns the index of the point.

6: function AddPoint(point)
7: Ensure the point is correct
8: if not ExistPoint(point) then
9: add the point to the array of the PointStorage
10: set the point index property as the index of the point in the array
11: return point.index
12: return null
13: end

The addPoint function in the first instance performs a verification of the properties of
the delivered point, making sure that they are correct. Later in line 8, we see the great
dependency that exists in the existPoint function that is detailed below. If the point is
missing, then it is added, adding to the point the index it occupies in the array, otherwise
the point cannot be added.

58

Algorithm 15 Verify if a Point exists inside the PointStorage
1: Input
2: point The Point to be saved
3: Output
4: Returns true if the point exists. false otherwise.

5: function ExistPoint(point)
6: Ensure the point is correct
7: if index of point is equal to -1 then
8: foreach storedPoint in all stored points in PointStorage do
9: if storedPoint is equal to point then
10: assign point.index to storedPoint.index
11: return true
12: end
13: return false
14: Ensuring that the index does not point to an undefined location in PointStorage
15: Ensure that the point saved in the storage is equal to point
16: return true
17: end

The existPoint function is responsible for performing the important consistency check
of the points inside the PointStorage. First it is in charge of verifying if the point is well
defined, and later on line 7, it verifies if the index is -1 with two possible cases:

1. If it is, the point is a candidate to be saved, however, there is a possibility that a new
instance of an already existing point has been created (therefore it would have index
-1 with the same coordinates), and in that case, we would have two repeated points in
the storage. To avoid that, we sweep through all the saved points (line 8) and perform
the heavy comparison process of identifying if the float coordinates are equal with an
epsilon tolerance. If they are the same, then the index of the point instance is changed
to the index of the point stored in the array, and it returns true. If no point is the
same, the function can safely return that point does not exist.

2. In case the index is not -1, we should still make consistency comparisons. The first is
to verify that the said index points to a place that is defined in the array, that is, that
there is a point in the array in that index. If so, then we must ensure that point is
equal to the point we want to add. Only in that case, the function can safely return
that the point actually exists.

With this procedure, we optimize the number of times the sequential lookup is accessed
through all the saved points, since it is only done with the Point objects that are created for
the first time and have index -1. For all the rest, checking if a point exists is done at O(1),
going directly to the index of the array.

Using consistent indexes makes other tasks also O(1). For example, to determine if two
points are equal: it is enough to compare the integer indices (if both are different from -1),
since by construction, if two points have the same coordinates, they must have the same

59

indices. This allows us to avoid floating point comparisons and their associated errors, in-
creasing the performance of the application.

Regarding the elimination of points, it is a complex process that introduces many incon-
sistencies in the connectivity of the mesh if it is not done well. This is why the elimination
process is done according to a polygon that you want to eliminate, as follows:

Algorithm 16 Delete points from PointStorage
1: Input
2: polygon The polygon object to which its points are removed
3: Output
4: Returns true after all the points are processed.

5: function RemovePoints(polygon)
6: Ensure the polygon is well defined
7: foreach pointIndex in point indexes of polygon do
8: canBeDeleted ← true
9: foreach poly in all other polygons in the neighborhood do
10: if poly contains polyIndex then
11: canBeDeleted ← false
12: end
13: if canBeDeleted is true then
14: ind ← Get index from polygon
15: set array[ind] of PointStorage to null
16: end
17: return true
18: end

For each index of points that make up the polygon, we initially set a flag on line 8 as a
possible candidate to be eliminated. Later we inspect the neighborhood of the polygon to
delete, and if there is any other polygon that shares this point, then its elimination would
bring inconsistencies, so we change the flag to false. Finally on line 13, we ask if the flag is
still true, in that case the function can safely delete the point, acquiring its index and setting
the PointStorage array at that position as null.

5.1.2. Edges

5.1.2.1. Edge representation

An Edge to be wel defined in its construction depends on two objects of the Point class:
initPoint and endPoint. Therefore, when creating a new edge, we must make sure that the
points are added to the PointStorage first. Taking that into consideration, the information
stored for an object of the Edge class are the references to the initPoint and endPoint
points, a reference to the associated Halfedge, and the index that identifies the Edge, which
is a String formed by the indexes of the initPoint and endPoint points joined by a hyphen.

60

1 class Edge implements Geometry {
2 halfEdge!: HalfEdge;
3 index: string ;
4 init : Point;
5 end: Point;
6

7 constructor(initPoint : Point, endPoint: Point) {
8 const processPoints = (init : Point, end: Point): string => {
9 PointStorage.addPoint(init) ;

10 PointStorage.addPoint(end);
11 const directKey = `${init.index}-${end.index}`;
12 return directKey;
13 };
14

15 this . index = processPoints(initPoint, endPoint);
16 this . init = initPoint;
17 this .end = endPoint;
18 }
19 }

5.1.2.2. Edge Storage

Due to the nature of the edge index, we use a HashMap called EdgeMap to save them. For
example the edge E1 = (P1, P2), with P1 and P2 Point objects of indices i1 and i2 respectively,
is saved as ”i1− i2” in the Edge Storage. We save the Edges only once, then if we ask for the
existence of the edge in the other direction E2 = (P2, P1) EdgeMap replies affirmatively, but
it’s not saved in reality. To achieve this, when verifying the existence of an edge E = (P,Q)
in the EdgeMap, we extract its index and ask if the key P.index-Q.index or Q.index-P.index
exists. If true, then the edge is saved, otherwise the edge does not exist on the mesh.

The creation of Edges for an initial mesh assumes that all the polygons are well generated
according to our restrictions, that is, that they do not intersect or have repeated points. The
process is simple, and is shown below:

61

Algorithm 17 Adding edges to EdgeMap
1: Output
2: Mutates the EdgeMap adding all the edges of the polygons

3: function ConstructMap
4: Ensure the EdgeMap is empty
5: foreach polygon in all the polygon in the mesh do
6: foreach firstIndex in point indexes of polygon do
7: get the nextIndex after firstIndex in polygon
8: directKey ← create String ’firstIndex-nextIndex’
9: invertedKey ← create String ’nextIndex-firstIndex’
10: if not ExistEdgeFromKeys(directKey, invertedKey) then
11: (P1, P2) ← get the points from PointStorage using the directKey
12: newEdge ← new Edge(P1, P2)
13: create entry into the EdgeMap associating directKey with newEdge
14: end
15: end
16: end

What the constructMap function does is go through each of the saved polygons of the
mesh, and for each one, go through the indexes of the points that make it up. Consecutive
points are obtained, creating a new border, and it is added to the EdgeMap as long as it
does not exist, so this function depends on existEdgeFromKeys. Due to the nature of a
HashMap, we can verify if an edge is found or not, thanks to the fact that the keys are made
based on the indexes of the vertices, which we know are not duplicated.

Algorithm 18 Check if edge exists in EdgeMap
1: Input
2: directKey String representing the index key of the edge
3: invertedKey String represented the inverted index key of the edge
4: Output
5: True if the edge exists, False otherwise

6: function ExistEdgeFromKeys(directKey, invertedKey)
7: Ensure the directKey and invertedKey are well defined
8: return EdgeMap has directKey or invertedKey inside its keys
9: end

Regarding the elimination of edges, the task is made easier thanks to the incorporation of
halfedges, since we can immediately access the opposite polygon that occupies the same edge
if it exists. In that case you cannot delete the edge because it introduces inconsistencies, so
you can only delete the edges that are on the boundary and the associated polygon is deleted,
or the edge is shared between two polygons and both are deleted. To delete an Edge, due to
the properties of the HashMap, just search for the record that contains the direct or inverted
key of the Edge, and delete it from the Map, as shown below:

62

Algorithm 19 Delete edge from EdgeMap
1: Input
2: edge The edge object to be deleted
3: Output
4: Returns true if the edge could be deleted. False otherwise.

5: function RemoveEdge(edge)
6: Ensure the edge is well defined and it’s not already deleted
7: directFace ← Polygon of edge
8: flipFace ← Polygon associated to edge in the other direction
9: deletable ← False
10: if halfedge of edge is on boundary then
11: if directFace exists and is in process of elimination then
12: deletable ← True
13: else if flipFace exists and is in process of elimination then
14: deletable ← True
15: else
16: if both flipFace and directFace are deleted then
17: deletable ← True
18: if deletable then
19: (directKey, invertedKey) ← get keys from edge
20: Delete directKey key from EdgeMap if it exists.
21: Otherwise, delete invertedKey key from EdgeMap.
22: return True
23: else
24: return False
25: end

5.1.3. Polygons

5.1.3.1. Polygon representation

A Polygon in our application is represented as an array of integers, corresponding to the
indices of the Point objects that make it up. The polygon is well defined if the points are
properly stored in PointStorage, and if there is no repetition of indexes in their definition.

1 export default class Polygon implements Geometry {
2 pointIndexes: Array<number>;
3 needsRefinement: boolean;
4 quadrantParent: Quadrant | null;
5 refFactor : number;
6 selected : boolean;
7 graphics: PIXI.Graphics = new PIXI.Graphics();
8 halfEdge!: HalfEdge;
9 index: number;

10

63

11 constructor(points: Array<Point> = []) {
12 const addPoints = (pointsList: Array<Point>): Array<number> => {
13 for (let i = 0; i < pointsList .length; i++) {
14 const p = pointsList[i];
15 PointStorage.addPoint(p);
16 }
17 return PointStorage.getIndexesFromPoints(pointsList);
18 };
19

20 this .pointIndexes = points.length === 0 ? [] : addPoints(points);
21 this .needsRefinement = false;
22 this .quadrantParent = null;
23 this . refFactor = -1;
24 this . selected = false ;
25 this . index = -1;
26 }
27 }

The creation of a polygon can be from a list of Point objects, or create an empty polygon
and then add the points. The relevant information for a polygon is as follows:

1. A reference to the point indexes an array.
2. A boolean that tells us whether or not a polygon needs refinement.
3. A reference to the quadrant that generated it in case it was generated from a quadtree

or kd-tree. This field is null if the polygon is incorporated from a mesh already made.
4. A integer numeric factor that tells us how many times the polygon has been refined.
5. Finally an integer numeric index indicating the position of the polygon in the storage.

If the index is equal to -1 it means that the point was never stored in the PointStorage.

5.1.3.2. Polygon Storage

Saving polygons is equal to how points were saved, using an array of Polygon objects called
PolygonStorage. Each polygon occupies a space in the array, adopting the index it occupies
as its identification property. The advantage that polygons are defined as an array of integer
indices is that we avoid floating point operations when checking if a point is part of the points
that make up the polygon, or if one polygon is equal to another. In the first case, it is enough
to see if an integer belongs to an integer array, and in the second, if the ordered index lists
of both polygons are equal.

64

Algorithm 20 Add polygon to PolygonStorage
1: Input
2: polygon The polygon object to be stored
3: Output
4: Returns the index of the stored polygon. Null if it could not be saved.

5: function AddPolygon(polygon)
6: Ensure the polygon is well defined
7: if not ExistPolygon(polygon) then
8: add the polygon to the array of the PolygonStorage
9: set the polygon index property as the index of the polygon in the array
10: return polygon.index
11: return null
12: end

A complex process for maintaining the consistency of information is the elimination of
polygons. Deleting a polygon implies removing all the vertices and edges that define it,
however, that can undefine other polygons that share these elements. The elimination process
delegates its work to the functions of each Storage, to ensure the correct result.

Algorithm 21 Delete polygon from PolygonStorage
1: Input
2: polygon The polygon object to be deleted
3: Output
4: Returns true if the polygon could be deleted. False otherwise.

5: function RemovePolygon(polygon)
6: Ensure the polygon is well defined
7: if polygon has index equal to -1 then
8: return false
9: potentialDeletedEdges ← get the edges of polygon
10: index ← get the index of polygon
11: set array[index] of PolygonStorage to undefined
12: foreach edge in potentialDeletedEdges do
13: DeleteEdge(edge) from EdgeMap
14: end
15: RemovePoints(polygon) from PointStorage
16: return true
17: end

5.1.4. Halfedge Connectivity

5.1.4.1. Halfedge definition

For the implementation of halfedge, the minimum information was saved in each instance of
the objects, being these:

65

1. Reference to next and opposite halfedge
2. Reference to the vertex that originates the halfedge
3. Reference to the edge to which it belongs
4. Reference to the polygon in which the halfedge is located

The above described in code, looks like this:

1 export default class HalfEdge {
2 constructor() {
3 this .nextHalfEdge = undefined;
4 // reference to the opposite halfedge associated with the edge
5 this .flipHalfEdge = undefined;
6 this .vertex = undefined;
7 this .edge = undefined;
8 this . face = undefined;
9 }

10

11 onBoundary() {
12 return ! this .flipHalfEdge;
13 }
14

15 isFree () {
16 return ! this . face ;
17 }
18 }

In addition, two auxiliary methods were created that allow us to ask if a halfedge is on
the edge or not. For this, it is enough to ask if the opposite halfedge exists or not, since in
case of being on the edge, there is no external face and therefore the opposite is not defined.
In addition, there is a method that tells us if the halfedge is free or not, asking if there is an
assignment of it to any polygon.

5.1.4.2. Creating halfedges for a polygon mesh

For the creation of halfedges given a mesh of polygons, we must assume that the mesh is
manifold, so it will be well constituted and each arc shares a maximum of 2 polygons, there
are no discrepancies between the edges of the polygons, and that they always have a vertex
of beginning and another end. Under these assumptions, the function goes through each of
the polygons of the mesh, and subsequently, goes through each of the points of each polygon,
performing the following procedure.

66

Algorithm 22 Creating halfedges for a polygon mesh.

1: function ProcessMeshHalfedges
2: foreach poly in Polygons of the Mesh do
3: foreach currentPoint in Points of poly do
4: nextPoint ← get the next point after currentPoint
5: edge ← get Edge with points currentPoint-nextPoint
6: hEdge ← new HalfEdge()
7: set currentPoint as the origin vertex of hEdge
8: set poly as the polygon of hEdge
9: set edge as the associated edge of hEdge
10: if edge has associated halfedge then
11: set the opposite of hEdge to edge.halfEdge
12: set the opposite of edge.halfEdge to hEdge
13: else
14: set hEdge as the associated one to the edge
15: set hEdge as next of previousHalfEdge
16: set hEdge as the associated one to the currentPoint
17: end
18: set the first halfEdge created from poly, as the associated one of poly
19: set the first halfEdge as the next of lastHalfEdge
20: end
21: end

Since the halfedges are centered on the edges, we must go through each of the points as it
is done in line 3 to access the associated edges. Let us call Pi the current point and Pi+1 the
next point in counterclockwise order of the current polygon that is being reviewed, called P.
With these points we obtain the only mesh border defined by those points, called E, on line
5, and later we create a new HalfEdge with no assignments on line 6, called hEdge.

Now the algorithm must assign all possible references for vertex, border, polygon, and
halfedge.

1. Starting with halfedge, which we called hEdge, we set Pi as the origin point, P as its
associated polygon, and edge E as its associated edge.

2. Subsequently, we must make the assignment for E. If E already has an associated
halfedge, then it means that we are visiting the edge but in an opposite direction,
so we set that halfedge and hEdge as opposites between them. In case there is no
associated halfedge, then we set the halfedge of E as hEdge.

3. Then in line 15 we update the next reference of the previous halfedge that was created,
with the current hEdge.

4. Finally we assign the halfedge hEdge as the halfedge associated with the vertex Pi.

After processing all the points of the polygon, we must assign to P some halfedge of the
newly created that is free (that is, without assigning a polygon). We arbitrarily assign the
first halfedge created.

67

To end the halfedge cycle, on line 19 we assign the next reference of the last halfedge,
with the first halfedge created. In this way, the polygon can be traversed in counterclockwise
order using only the halfedges.

5.1.4.3. Applying operations to polygons

Thanks to the halfedge structure, the operation on polygons has a very well defined base
structure, so it serves as a template for functions that want to obtain information or elements
of a polygon. To do this, start from the halfedge associated with the polygon, and make a
copy of its reference. Subsequently, a reference is created whose initial value will be the same
halfedge of the associated polygon, but which will change to the halfedge corresponding to
the next parameter. This process will continue until the changing reference is equal to the
starting halfedge again.

Algorithm 23 Template of a function that operates on a polygon.
1: Input
2: polygon An instance of a Polygon on which to perform an operation

3: function PolygonOperation(polygon)
4: startHalfedge ← get halfedge of polygon
5: he ← get halfedge of polygon
6: do
7: <Do operation>
8: he ← he.nextHalfedge
9: while he is not equal to startHalfedge
10: end

5.1.4.4. Obtaining the neighbors of a polygon

Following the function model described in the section, we have created a function that obtains
the neighbors of a polygon in constant time O(1). To accomplish that, we loop through the
polygon halfedges and each of them, extract the polygon from the opposite halfedge (if it
exists), and store its index in an array. After having visited all the halfedges, the function
returns the array of polygon indexes corresponding to all the neighbors.

68

Algorithm 24 Obtaining the neighbors of a polygon
1: Input
2: polygon Polygon to which its neighbors are obtained
3: Output
4: List of neighbors indexes

5: function PolygonNeighbors(polygon)
6: startHalfedge ← get halfedge of polygon
7: he ← get halfedge of polygon
8: neighbors ← []
9: do
10: if he is not a boundary halfedge then
11: add index of polygon associated with he.flipHalfEdge
12: he ← he.nextHalfedge
13: while he is not equal to startHalfedge
14: return neighbors
15: end

5.1.4.5. Add a Polygon to the Mesh keeping while maintaining connectivity

The construction of halfedges for a static mesh allows us to perform operations very quickly,
such as obtaining neighbors, obtaining the edges of a polygon, and obtaining all the edges
that affect a vertex. This is because connectivity is kept constant and consistent. However,
in our work we need to modify the polygon mesh, so adding a polygon not only implies main-
taining consistency in the saved information, but also in the connectivity of the halfedges.

69

Algorithm 25 Adding a polygon inside a Mesh
1: Input
2: mesh Mesh of polygons
3: polygon Polygon to create inside the mesh
4: Output
5: Mesh is mutated, with polygon inside it

6: function CreatePolygon(mesh, polygon)
7: polyPoints ← get the points of polygon in CCW order
8: foreach currentPoint in polyPoints do
9: he ← new HalfEdge()
10: nextPoint ← get next point of currentPoint
11: edge ← get Edge with points currentPoint-nextPoint
12: if edge exists then
13: existentHalfedge ← extract the halfedge of edge
14: if currentPoint.index is equal to existentHalfedge.vertex.index then
15: he ← existentHalfedge
16: else
17: set existentHalfedge as the opposite of he
18: set he as the opposite of existentHalfedge
19: else
20: edge ← new Edge with points currentPoint and nextPoint
21: set he as the associated halfedge of edge
22: save edge into the EdgeMap
23: set edge as the associated edge of he
24: set polygon as the associated polygon of he
25: set currentPont as the associated vertex of he
26: set next of previous halfedge as he
27: end
28: set the first halfedge as the associated polygon halfedge
29: set the next first halfedge as the last halfedge created
30: end

This function is similar to that of creating halfedges for any polygon mesh, except for
the fact that you must ask about the existence of a border that belongs to the polygon you
want to add and that is already inside the polygon mesh. In this case, from line 12 to 18, the
references of the halfedges are updated. Otherwise, the border must be created and added
to the EdgeMap (which was not done in the Algorithm 22 since it assumed that all the
polygons were already created and saved).

5.2. Web Application Views
The web application we created was made using the React library and the Javascript

language, for the creation of the user interface. This is because React simplifies many of the
tasks that concern the creation of views, and how information flows between its components.

70

In addition to the visualization of the mesh generation, we integrate PixiJS, which is a
quick library for rendering 2D elements using WebGL. We chose this library due to its speed
and capacity of drawing thousands of polygons on screen, transferring processes to the GPU,
through a friendly implementation on top of WebGL.

Figure 5.1: General view of the application.

The main view of the application consists of 3 main components.

1. On the left, it corresponds to the operation panels of the application, where we can
select the initial creation of a polygon mesh using an .OFF file or an own creation
drawing the points on the canvas, refine the mesh using a quadtree with division using
the midpoint, or refine using the application’s own algorithms.

2. In between, there is the graphics section, which shows us how the different quality
metrics are distributed, such as the minimum and maximum angle, the minimum and
maximum edge length, and the area of each polygon.

3. On the right, we find the canvas, where the polygon mesh is drawn and the polygons are
displayed. Above it is a summary of basic information such as the number of vertices,
polygons, and the average area of each polygon and the length of its edges.

Next, we will see how the PixiJS library was integrated, to display the canvas in an
application made with the React framework.

5.2.1. Integrating PixiJS

The integration of PixiJS with React is done using a component for rendering the canvas
in the web application. Using the componentDidMount() function, we determine what are
the things that are done after the component is rendered in the application. In this particular
case, what we do is create the PixiJS application, using the corresponding parameters, create
a camera display layer to zoom on the canvas, and add the necessary information to the
application status, such as the tree initial, and references to the application.

71

1 class PixiJS extends Component {
2 constructor(props) {
3 super(props);
4 this .pixiContainer = null;
5 this .app = null;
6 }
7

8 async componentDidMount() {
9 const { onSetAppState, p5Props, setStateAsync } = this.props;

10 const app = new PIXI.Application({
11 width: 700,
12 height: 700,
13 transparent: false ,
14 antialias : true,
15 backgroundColor: CONSTANTS.COLOR.BACKGROUND,
16 });
17 this .app = app;
18 this .pixiContainer.appendChild(app.view);
19

20 // create viewport
21 const viewport = new Viewport({
22 screenWidth: window.innerWidth,
23 screenHeight: window.innerHeight,
24 worldWidth: 700,
25 worldHeight: 700,
26 // the interaction module is important for wheel to work properly when renderer.view

↪→ is placed or scaled
27 interaction : app.renderer.plugins. interaction ,
28 });
29

30 app.stage.addChild(viewport);
31 app.stage. interactive = true;
32

33 // activate plugins
34 viewport
35 .drag()
36 .pinch()
37 .wheel()
38 . decelerate () ;
39

40 // setting the pixiApp and viewport into the app state
41 await setStateAsync({ pixiApp: app });
42 onSetAppState({ pixiViewport: viewport });
43

44 // Creating the boundary
45 const boundary = new BoundingBox(0, 0, 700, 700);
46 const tree = new QuadTree(boundary, 1, new PointDivisionAlgorithm());
47

48 // Create the quadtree
49 onSetAppState({

72

50 tree ,
51 });
52 }
53

54 render() {
55 const { classes } = this.props;
56 return (
57 <div
58 ref={(thisDiv) => {
59 this .pixiContainer = thisDiv;
60 }}
61 className={classes.pixiCanvas}
62 />
63) ;
64 }
65 }

Note that we have used the ref property of React, to obtain information about the Div
that the PixiJS canvas will contain. That is why in the componentDidMount() function this
information is known, and can be saved, for the correct creation of the PixiJS application.

5.2.2. Geometry creation and initial panel

Figure 5.2: Panel to create initial meshes.

This panel is in charge of creating initial meshes on the part of the user, whose main
functions are as follows:

1. Upload a .off file for processing in the application
2. Create a polygon by hand, by clicking on the canvas to insert the points.
3. Use one of the tests already created to verify how the application behaves.
4. Change the type of tree that will serve as the data structure for creating meshes

If the user chooses to create a polygon from scratch (i.e. without using an .off file), he
can select what type of tree the user wants for the initial mesh shaping:

73

1. A quadtree that divides in half, until each point is only in its quadrant. Uses Half Point
Division Algorithm.

2. A quadtree that divides using the inserted points as coordinates. Uses Arbitrary Point
Division Algorithm.

3. The same algorithm as above, but with a random insertion. Uses Randomized Arbitrary
Point Division Algorithm.

4. A KDtree of 2 dimensions. Uses the KD-trees own division algorithm.

The figure 5.3 shows how on the left, the user has clicked on the button Start Polygon to
start drawing, and then has entered a set of points to build a polygon, showing on each point
the order in which the user clicked for its creation. The points will be joined in the same order
in which they were entered, so the user must be careful not to enter a polygon that self-enters.

Finally, the user must click on the End Polygon button to finish drawing, to create the
polygon, and see how the initial mesh is created from the tree (quadtree or kdtree) generated
by the insertion of points. In the case of the figure 5.3, a quadtree with an arbitrary insertion
algorithm was used, creating an initial mesh according to the points entered by the user.

74

(a) Points given by the user.

(b) Creating a polygon and a Initial Mesh with user-entered points

Figure 5.3: Drawing a polygon with the given points.

75

5.2.3. Quadtree Refining Panel

Figure 5.4: Quadtree Refining Panel.

In this panel, the user can perform a deeper refinement in those generated polygons that
he needs, by clicking on them, or refining all the polygons generated in the initial mesh. The
refinement will be done by means of an additional subdivision in half to the quadrant that
generated the polygon, which implies that it is necessary that the polygon has been cut by
the application for this refinement to work. In other words, if a user enters a ready-made
polygon mesh, this refinement will not be possible.

There are two possible numerical values that the user can enter. Refinement level corre-
sponds to the number of times the refinement process is carried out, that is, how many times
it is refined on the set of polygons created after each refinement. The other input corresponds
to the maximum refinement factor that can exist as the difference between a polygon and its
neighbors.

Figure 5.5 (a) shows how to visualize an initial mesh of a unicorn created from a preloaded
test, using a quadtree with half point division algorithm. To that initial mesh, a refinement
is applied using a quadtree with the same algorithm to each one of the polygons, clicking
the Refine All button. On this example, only one refinement process was used, and with a
maximum difference of refinement of one with respect to the neighbors of each polygon. The
result of this process is seen in Figure 5.5 (b).

76

(a) Initial mesh of polygons with unicorn outline.

(b) Mesh generated after pressing the Refine All button.

Figure 5.5: Refining a polygon mesh with a quadtree.

Figure 5.6 (a) shows how the user is able to place the mouse cursor over the polygons that
the user wants to refine, which are marked in red. When the user clicks the said polygon is
refined, resulting in four new sub-polygons, as seen in figure 5.6 (b). Note that the parameters
of amount of refinements and max neighbor factor did not change.

77

(a) The user places the cursor on the polygon that he wants to refine.

(b) After clicking on the polygon, it is subdivided into four new polygons.

Figure 5.6: Quadtree refinement for a polygon mesh, and subsequent
user refinement.

78

5.2.4. Refining Panel

Figure 5.7: Refining Panel.

This panel is in charge of making quality refinements using the different algorithms im-
plemented in this work, which are:

1. Centroid, detailed in Algorithm 44
2. Centroid with replicaction, detailed in Algorithm 45
3. Splitting longest edge, detailed in Algorithm 43

Refinement can be done in three possible ways. The first way is for the user to click
on the polygons they want to refine, just as they did with the refinement using quadtree.
The other two have to do with the buttons that appear in the figure: Refine Bad Polygons
takes all those polygons whose needsRefinement flag is true according to the selected quality
criteria and refines them, while Refine All Polygons takes all the polygons independently of
whether or not they need refinement, and they are refined.

In the Figure 5.8 we can see how a user selects a polygon from a simple initial mesh of
a triangle outline, and after clicking it, the polygon is refined using the centroid algorithm
(note that it is the one selected in the input).

79

(a) The user places the cursor over the polygon that he/she wants to refine.

(b) After clicking on the polygon, it is subdivided according to the centroid
algorithm.

Figure 5.8: Refining a polygon mesh with quality algorithms.

80

5.2.5. Quality Component

Figure 5.9: Quality Component.

This component is in charge of displaying graphics according to a certain metric, for ex-
ample, the minimum length, the minimum angle and areas of the polygons of the mesh. For
this, there is an input for the user, in which the metric can be chosen, and another input in
which the maximum tolerance allowed for said metric can be chosen. With this, all those
polygons of the mesh whose metric is above the maximum tolerance value, will be marked
with the flag needsRefinement as true, and will be shown shown in blue on the canvas. If the
polygons are correct, they will be shown in green.

The bar graph that shows the synthesized information of the polygons of the entire mesh,
changes automatically as new polygons with refinements are obtained, or if a new metric is
chosen.

5.3. Algorithms Implementation
Next we will see the implementation of the different algorithms used by each of the panels,

to carry out their tasks. In particular, we will review the polygon cutting algorithms, the
generation of a compliant mesh, the insertion of the points in the trees and the different
refinement techniques.

5.3.1. Clipping Algorithms

Throughout this thesis, polygon cutting is the central algorithm used to generate smaller
polygons. The cut of polygons consists of locating the area of intersection generated after
superimposing the polygon that we want to cut, which we call the subject polygon, with
another polygon, which we call the cutting polygon.

81

Figure 5.10: Example of cutting polygons. Suppose that the subject
polygon is ABCDE and the cutting polygon is FGHI. The cut polygon
is ABKGJ.

For this process, it is necessary to correctly obtain the intersections between the subject
polygon and the clipper polygon. In the case of the Figure 5.10, these intersections correspond
to points J and K. Later, we generate the cut polygon using the appropriate points. Below,
we detail the implementation of the algorithms we use in this research.

5.3.1.1. Sutherland Hodgman Algorithm

Figure 5.11: Sutherland Hodgman’s algorithm example. The input
polygon is cut against the clipping window. Image taken from [1]

For Sutherland Hodgman’s algorithm, we need to extend in an infinite line each of the
segments that conforms the cutting polygon (clipping window in the example), to look for

82

the intersections with the Subject polygon.

Algorithm 26 Sutherland Hodgman algorithm for clipping polygons
1: Input
2: subject List of Points, representing the polygon to be cut
3: clipper List of Points, representing the cutter polygon
4: Output
5: List of Points, representing the clipped polygon

6: function Clip(subject, clipper)
7: subjectCCW ← subject.orderedPointsToCCW()
8: clipperCCW ← clipper.orderedPointsToCCW()
9: clippingEdges ← clipperCCW.getCCWEdges()
10: output ← subjectCCW
11: foreach clipEdge in clippingEdges do
12: input ← output
13: output ← []
14: for i ← 0 to input.length-1 do
15: currentPoint ← input[i]
16: nextPoint ← input[(i + 1) mod input.length]

For the implementation of the Sutherland Hodgman algorithm, we must go through each
of the segments that make up the cutting polygon (clipping window), considering as if they
were infinite lines. To do this, we first create a reference called output on line 10, which will
initially be identical to the subject polygon, and that will contain the partial results of the
polygon cut, until its final result.

In each iteration, we create a variable called input, which will be equal to the previous
obtained result (stored in the output variable), and reinitialize output to an empty polygon.
Within the innermost cycle, we must ask each point of the current polygon built, and the
point that follows, whether they are within or outside the cut region. If we are inside the
subject polygon and the next one as well, then both are part of the result, otherwise if the
next one is in the cut region, the current point and the intersection are part of the result. In
case the current point is in the cut region, we ask if the next one is inside the subject polygon
(incoming case), in this case, we add the intersection, and then the next point to the result.
After having processed the current point, we continue with the next point, and so on until
we have gone through all of them.

83

Algorithm 26 Sutherland Hodgman algorithm for clipping polygons (cont.)
17: if currentPoint is inside the clipping region then
18: if nextPoint is inside the clipping region then
19: add nextPoint to output
20: else
21: currentEdge ← Edge(currentPoint, nextPoint)
22: intersection ← Intersection(clipEdge, currentEdge)
23: add intersection to output
24: else
25: if nextPoint is inside the clipping region then
26: currentEdge ← Edge(currentPoint, nextPoint)
27: intersection ← Intersection(clipEdge, currentEdge)
28: if intersection is equal to nextPoint then
29: add intersection to output
30: else
31: add intersection to output
32: add nextPoint to output
33: ensure output is Counterclockwise
34: end
35: end
36: return output
37: end

5.3.1.2. Extended Greiner Hormann Algorithm

The implementation of Greiner Hormann’s extended algorithm follows the procedures ex-
plained in the work of Foster et al. [21], adapting the instructions to our work as appropriate.
The algorithm can be described in a series of steps:

1. Calculate all the intersections between both polygons

2. Classify intersections

3. Mark the chains of degenerate intersections

4. Check for crossing intersections

4.1. If they exist, then we create the entry and exit lists
4.2. We go through the lists, to form the cut polygons

5. If it does not exist, we check if the polygon is completely inside or outside the clipper
polygon. If this is not the case, then the polygons do not intersect.

Due to the complexity of the algorithm and its stages, we decided to make a template
of each operation, extracting the logic to different functions. Therefore, the clip() function
receives the polygon to cut (Subject Polygon) and the cutter polygon (Clipper Polygon), and
through different auxiliary function calls, it firstly processes the intersections between them.

84

The calculation of the intersections is updated in each phase of the algorithm, either by
adding information flags, or by adding new points. Updates to the intersection list serve as
input for each new step in the algorithm.

Algorithm 27 Extended Greiner Hormann algorithm for clipping polygons
1: Input
2: subject List of Points, representing the polygon to be cut
3: clipper List of Points, representing the cutter polygon
4: Output
5: List of Points, representing the clipped polygon

6: function Clip(subject, clipper)
7: subjectCCW ← subject.orderedPointsToCCW()
8: clipperCCW ← clipper.orderedPointsToCCW()
9: subjectCircular ← new Circular(subjectCCW)
10: clipperCircular ← new Circular(clipperCCW)
11: intersections ← CalculateIntersections(subjectCircular, clipperCircular)
12: intersections ← ClassifyIntersections(intersections)
13: intersections ← markIntersectionChains(intersections)
14: existsCrossing ← areCrossingIntersections(intersections)

Finally, as mentioned in the algorithm stages, we analyze if there are crossing intersections.
If they exist, then a reconstruction of each of the sub-polygons is performed by going through
a list of enter or exit intersections. If it does not exist, we carry out an inspection for edge
cases.

85

Algorithm 27 Extended Greiner Hormann algorithm for clipping polygons (cont.)
15: if existsCrossing is True then
16: (entering, exiting) ← BuildEnterExitList(clipperCircular,

intersections)
17: polygons ← Traverse(subjectCircular, clipperCircular,

entering, exiting)
18: return polygons
19: else
20: polygons ← new Circular()
21: subjectPoly ← new Polygon(subjectCCW)
22: clipperPoly ← new Polygon(clipperCCW)
23: noInterSubject ← findNonIntersectionPoint(subjectCircular,

clipperCircular)
24: noInterClipper ← findNonIntersectionPoint(clipperCircular,

subjectCircular)
25: if noInterSubject exists and is inside clipperPoly then
26: add subjectPoly to polygons /*subjectPoly completely inside clipperPoly*/
27: else if noInterClipper exists and is inside subjectPoly then
28: add clipperPoly to polygons /*clipperPoly completely inside subjectPoly*/
29: else if subjectPoly is equal to clipperPoly then
30: add subjectPoly or clipperPoly to polygons /*Both polygons are equal*/
31: else
32: return polygons /*Then, there’s no intersection between polygons*/
33: return polygons

34: end

Figure 5.12: The three types of edge cases for the algorithm. (A) The
Subject Polygon is completely contained within the cutter polygon.
(B) Analogous case, when the cutter polygon is completely contained
within the Subject Polygon. (C) There is no intersection between both
polygons.

We note that the non-existence of crossing points does not necessarily imply that there

86

is no possible result. According to the Figure 5.12, we see that the case (A) and (B), even
when there are no intersections between their segments, the intersection between both poly-
gons is not empty. In the case of (A), the result of the algorithm must give as a result the
Subject Polygon, while in (B), the Clipper Polygon. Only in the case of (C) where there is
no intersection of any kind, the polygon cut operation is empty.

The treatment of the said edge cases begins on line 19 of the algorithm. For the Find-
NonIntersectionPoint(P, Q) method, its implementation consists of finding a segment of
the polygon P that is not present in the Q. We then proceed to find the midpoint of that
segment, asking if the point exists and if it is inside the region bounded by Q: if that is the
case then P is completely contained within Q. That procedure can be done by assigning P
and Q as Subject Polygon and Clipper Polygon appropriately. On the other hand, another
trivial case is when both polygons are equal, in that case it is enough to return any of them.
Finally, if no previous case has occurred, then the intersection is null.

5.3.1.3. Calculating intersections

Regarding the calculation of intersections between two polygons P and Q, we performed
the usual procedure of comparing each segment of P , with all the segments of Q, in search
of intersections. However, we must not only find these points, but also insert them in the
appropriate places in the list of points of the polygons P and Q, so that they are well formed
and ordered in counterclock wise.

Figure 5.13: Calculation of the intersections between two polygons.

Consider the ABCD and EFGH polygons. The intersections that must be found between
both polygons are the red points I and J , and must be inserted in the corresponding places.
Finally the resulting polygons are ABCJDI and EIFJGH.

87

Algorithm 28 Calculating intersections between two polygons
1: Input
2: subject Circular List of Points, representing the polygon to be cut
3: clipper Circular List of Points, representing the cutter polygon
4: Output
5: List of Points, representing the intersections

6: function CalculateIntersections(subject, clipper)
7: currentSubject ← subject.head
8: intersections ← []
9: do
10: currentClip ← clipper.head
11: do
12: subjectEdge ← new Edge(currentSubject, currentSubject.next)
13: clipperEdge ← new Edge(currentClip, currentClip.next)
14: interInfo ← ExtendedEdgeIntersection(subjectEdge, clipperEdge)
15: if interInfo exists then
16: insert interInfo in subject list after currentSubject
17: insert interInfo.intersection in clipper list after currentClip
18: currentClip ← currentClip.next
19: while currentClip is different from clipper.head
20: currentSubject ← currentSubject.next
21: while currentSubject is different from subject.head

A B C D
Intersection: J
degenerate: false
type: x-intersection

Intersection: I
degenerate: false
type: x-intersection

A B C D

(A)

(B)

Figure 5.14: Representation of polygons.(A) Before inserting the in-
tersections.(B) After inserting the intersection info.

The insertion of the intersections in the list of points of the polygon is done by adding
nodes with additional information to the doubly linked circular list. The information consists
of whether it is a degenerate intersection or not, and the type of intersection that is according
to the classification of the paper [21].

88

Algorithm 28 Calculating intersections between two polygons (cont.)
22: foreach element in subject do /*element can be a Point or interInfo*/
23: if element is an inserted intersection then
24: add element to intersections if they do not exist
25: element ← extract intersection point from interInfo of element
26: end
27: foreach intersectionInfo in intersections do
28: (prevSubj, nextSubj) ← find prev and next of the intersection in subject
29: add (prevSubj, nextSubj) to intersectionInfo
30: (prevClip, nextClip) ← find prev and next of the intersection in clipper
31: add (prevClip, nextClip) to intersectionInfo
32: end
33: return intersections
34: end

Finally, we run a linear tour of the Subject Polygon’s list of points on line 22 of the
Algorithm 28, to insert the information nodes into a list of intersections only. Subsequently,
we mutated the list so that the polygon only contains points and avoid confusion later. In line
27 of the Algorithm 28, we update the node links so that the circular list is consistent with
the new inserted points. This Algorithm ends by returning the list of intersection information
nodes.

5.3.1.4. Determining the orientation of polygon chains

To classify intersections, we first create an auxiliary function that allows us to obtain the
orientation (left or right) of a point Q with respect to two consecutive segments of a polygon.
Following the nomenclature used in [21], we define these segments as a polygonal chain.

Definition 9 (Polygonal Chain). A polygon chain is a sequence of two consecutive segments
of a polygon.

Figure 5.15: Three possible cases of orientation for a point, with re-
spect to a polygonal chain. The light gray region is considered to be to
the left of the polygon chain, while the dark gray region is considered
to be to the right. Image taken from Article [1].

The main idea for the development of this function is to study the cross product consider-
ing the point Q that we want to study as the origin, and both segments in question. A third
cross product is calculated considering the first point of the polygonal chain as the origin,
obtaining the product with respect to the segments of the chain. With these results, calling

89

them S1, S2 and S3, we can establish the orientation of Q with respect to the polynomial
chain.

Algorithm 29 Getting which side of two consecutive edges, P1P2 and P2P3, is a point Q
1: Input
2: Q Point to be checked
3: P1 Start Point of the first Edge
4: P2 End Point of the first Edge, and start of the second Edge.
5: P3 End Point of the second Edge.
6: Output
7: ’LEFT’ or ’RIGHT’, depending on which side is Q

8: function PointChainOrientation(Q, P1, P2, P3)
9: S1 ← CrossProduct(Q, P1, P2)
10: S2 ← CrossProduct(Q, P2, P3)
11: S3 ← CrossProduct(P1, P2, P3)
12: if S3 < 0 then
13: if S1 < 0 and S2 < 0 then
14: return ’LEFT’
15: else if S1 > 0 or S2 > 0 then
16: return ’RIGHT’
17: else if |S3| < ε then
18: if S1 < 0 then
19: return ’LEFT’
20: else if S1 > 0 then
21: return ’RIGHT’
22: else /*Case S3 > 0*/
23: if S1 < 0 or S2 < 0 then
24: return ’LEFT’
25: else if S1 > 0 and S2 > 0 then
26: return ’RIGHT’
27: end

According to the Algorithm 29, we define S3 as the cross product of the polygonal chain
P1P2P3, the result of which serves to determine if in P2, the chain makes a left turn, continues
straight, or makes a right turn.

If S3 indicates that it is a turn to the left (line 12), we ask in relation to Q what the
cross products S1 and S2 are like. If both are to the left, then Q is in the left region of the
P1P2P3 chain, otherwise, if either is to the right of P1P2P3, then Q is to the right. If S3 is
close enough to 0 (line 17), we consider that P1P2P3 are collinear, so it is enough to ask for
a single cross product to see if Q is on the left or on the right. Finally, if S3 indicates a turn
to the right (line 22), it is enough to see if any of the products crosses S1 or S2 is to the
left. If so, the point is on the left, otherwise, if both cross products go to the right, then Q
is necessarily to the right of the polygon chain.

90

5.3.1.5. Classifying intersections

According to the previous procedures, we currently have a list of intersections where each
one has three different data:

1. The Point object that internally has the X and Y coordinates of the intersection.

2. A boolean flag that tells us if the intersection is degenerate or not.

3. A string that tells us the type of intersection it is, according to the classification of the
paper.

Our job now to continue the algorithm is to be able to discern whether an intersection
is entering to the cut region, or exiting. If all the intersections were non-degenerate (of the
x-crossing type), then an intersection that is cataloged as entering from polygon P to polygon
Q, necessarily implies that the next intersection will be exiting. However, with degenerate
intersections the case does not occur, because there are intersection points of P that are
contained in the edge of Q or equal to some vertex of Q, so it is ambiguous to say whether
they are entering or exiting intersections.

Remember that the intersections, according to the type of polygonal chain, can be:

1. Crossing
2. Bouncing
3. Left/On
4. Right/On
5. On/On
6. On/Left
7. On/Right

Therefore, the implementation goes through a series of questions about all possible cases
involving intersections, both when the segments overlap, and when the intersection is over a
segment of the polygon, following the procedures explained in the section. The classification
will be saved as a String added to each node of the intersection list, modifying it and returning
it with the changes.

91

Algorithm 30 Classifying Intersections
1: Input
2: Linter List of interInfo structures
3: Output
4: Linter updated with intersection types flags

5: function ClassifyIntersections(Linter)
6: foreach interInfo in Linter do
7: I ← extract intersection Point from interInfo
8: P1 ← extract prevSubj from interInfo
9: P2 ← extract nextSubj from interInfo
10: Q1 ← extract prevClip from interInfo
11: Q2 ← extract nextClip from interInfo
12: if (P2 = Q2 and PointChainOrientation(Q1, P1, I, P2) is ’RIGHT’) or

(P2 = Q1 and PointChainOrientation(Q2, P1, I, P2) is ’RIGHT’)
then

13: add flag ’left-on’ to interInfo
14: else if (P2 = Q2 and PointChainOrientation(Q1, P1, I, P2) is ’LEFT’) or

(P2 = Q1 and PointChainOrientation(Q2, P1, I, P2) is ’LEFT’)
then

15: add flag ’right-on’ to interInfo
16: else if (P2 = Q2 and P1 = Q1) or (P2 = Q1 and P1 = Q2) then
17: add flag ’on-on’ to interInfo
18: else if P1 = Q1 and PointChainOrientation(Q2, P1, I, P2) is ’RIGHT’) or

(P1 = Q2 and PointChainOrientation(Q1, P1, I, P2) is ’RIGHT’)
then

19: add flag ’on-left’ to interInfo
20: else if P1 = Q1 and PointChainOrientation(Q2, P1, I, P2) is ’LEFT’) or

(P1 = Q2 and PointChainOrientation(Q1, P1, I, P2) is ’LEFT’)
then

21: add flag ’on-right’ to interInfo
22: else /*Then, there’s no overlapping*/
23: firstSide ← PointChainOrientation(Q1, P1, I, P2)
24: secondSide ← PointChainOrientation(Q2, P1, I, P2)
25: if firstSide is not equal to secondSide then
26: add flag ’crossing’ to interInfo
27: else
28: add flag ’bouncing’ to interInfo
29: end
30: return Linter

31: end

5.3.1.6. Marking Intersections Chains

The intersection chains correspond to those edges that overlap between the subject poly-
gon and the cut polygon. To identify them, we know that according to the construction
and classification of our intersections, the chains must start with an intersection of the type
’left-on’ or ’right-on’, subsequently a variable number of intersections ’on-on’, and finally
an intersection of type ’on-left’ or ’on-right’.

Note that if the start is ’left-on’ and the end is ’on-left’, there was no crossing from the

92

subject polygon to the interior or exterior of the cut polygon, analogous situation for ’right-
on’ and ’on-right’. Therefore, all the intersections in the chain can be classified as bouncing,
however if there is a change of direction, for example going from ’left-on’ to ’on-right’, the
last intersection should be considered of type crossing.

Algorithm 31 Marking Intersections Chains
1: Input
2: Linter List of interInfo structures
3: Output
4: Linter updated with intersection chains flags

5: function MarkIntersectionChains(Linter)
6: starters ← [] /*Identifying start Points of every chain*/
7: foreach interInfo in Linter do
8: if flag of interInfo is ’right-on’ or ’left-on’ then
9: add interInfo into starters
10: end
11: interCircular ← new Circular(Linter)
12: while starters have Points inside do
13: startingPoint ← pop element from starters
14: finalPoint ← follow next nodes on interCircular from startingPoint, until

intersection with flag ’on-left’ or ’on-right’ is found, marking
intersections flags as ’bouncing’ in between.

15: if (startingPoint is ’left-on’ and finalPoint is ’on-left’) or (startingPoint
is ’right-on’ and finalPoint is ’on-right’)

then

16: change finalPoint flag to ’bouncing’
17: else if (startingPoint is ’left-on’ and finalPoint is ’on-right’) or

(startingPoint is ’right-on’ and finalPoint is ’on-left’)
then

18: change finalPoint flag to ’crossing’
19: change startingPoint flag to ’bouncing’
20: end
21: return Linter

22: end

To make the implementation easier, the first thing we did was obtain each of the be-
ginnings of these chains, that is, add to an array the intersections that are ’right-on’ or
’left-on’. Later, as long as there are intersections in the said array as it appears in line 12,
we remove the first one that is in the stack, and we follow the chain until the appearance of
an intersection of end of the chains (’on-right’ or ’on-left’). From line 15 to line 19, we mark
the intersections according to the values of the beginning and the end of the chain, being
bouncing if there was no change of direction, and crossing otherwise. Finally we return on
line 21 the appropriately marked intersections.

5.3.1.7. Building the Entering and Exiting lists

The next step is the construction of the Entering and Exiting lists with the corresponding
intersections, from the point of view of the subject polygon. For simplicity, both lists are be

93

doubly linked circular. The algorithm in summary is simple and follows the logic that every
time we find a crossing intersection, it is because we change state, either we go from being
inside to being outside the cutting polygon or vice versa.

Algorithm 32 Building Entering and Exiting Lists
1: Input
2: clipper Circular List of Points representing the clipper polygon
3: Linter List of interInfo structures
4: Output
5: Linter updated with intersection chains flags

6: function BuildEnterExitList(clipper, Linter)
7: firstCrossing ← True
8: nextLabel ← ”
9: entering ← new Circular()
10: exiting ← new Circular()
11: foreach interInfo in Linter do
12: if flag of interInfo is "crossing" then
13: if firstCrossing is True then
14: nextPoint ← get nextSubj from interInfo /*If next point is inside

clipper polygon, then
we are entering

*/

15: inside ← Inside(nextPoint, Polygon(clipper))
16: borderCrossing ← Verify if nextPoint is in the list clipper
17: if inside is True or borderCrossing is True then
18: add intersection point from interInfo to entering
19: nextLabel ← "exiting"
20: else /*Otherwise, we are getting out of the

clipper polygon
*/

21: add intersection point from interInfo to exiting
22: nextLabel ← "entering"
23: firstCrossing ← False
24: else
25: if nextLabel is "entering" then
26: add intersection point from interInfo to entering
27: nextLabel ← "exiting"
28: else
29: add intersection point from interInfo to exiting
30: nextLabel ← "entering"
31: end
32: return (entering, exiting)
33: end

For the implementation in lines 9 and 10 we create the empty circular lists. Later on
line 11 we go through each of the intersections that we have (with their respective additional
information that we have been adding). From line 13 to line 23, special treatment is made
for the first crossing intersection that the algorithm finds, since depending on which region

94

the next point of that intersection on the subject polygon is located, it will be the list that
will be entered: If the next point is inside the cut polygon, it means that the subject polygon
is entering the cut section, so we added this intersection to the Entering list. Otherwise, the
polygon leaves the cut section, so it is added to the Exiting list.

Subsequently, depending on the value of the first intersection, the following crossing
intersections will alternate the Entering and Exiting values as shown from line 25 to line
30, because the other intersections are of the bouncing type necessarily due to construction
and chain management of intersections previously made. Finally, on line 32, both lists are
returned.

AA

BB CC

DD

EE

FF

GG

HH

II

JJ

KK

LL

MM

NN

OO

PP

Subject
Polygon

E

F

G

H

I

J

K

L

M

N

O

P

Clipping
Polygon

A

B

C

D

Figure 5.16: Two polygons example.

Let us consider the figure 5.16, to illustrate our algorithm so far. It shows two polygons:
one orange that will be our subject polygon and the other with a crossed line that will
be our cut polygon, represented by the ABCD points. This is the initial situation, where
the intersections have not been calculated or inserted in each polygon, nor have they been
classified.

95

AA

BB CC

DD

EE

FF

GG

HH

II

JJ

KK

LL

MM

NN

OO

PPII11

II22 II33

II44

Subject
Polygon

E

F

G

H

I4

I

J

K

L

I3

M

N

O

I2

P

I1

Clipping
Polygon

A

I1

B

I4

C

J

K

L

D

I3

N

I2

Intersections

I1: crossing

I4: crossing

J: left-on

K: on-on

L: on-left

I3: crossing

N: bouncing

I2: crossing

Figure 5.17: Classifying intersections and building lists.

In the figure 5.17, we can see that the intersections have been calculated and inserted
in the corresponding places in the polygon lists. In the lists, intersections I1, I2, I3 and I4
are crossing, while the rest are degenerate intersections. Note that JKL intersections form a
chain of type left-on, on-on, and on-left, and since the starting direction matches the ending
(left), the intersections are bouncing and do not involve a crossing type.

Regarding the creation of the Entering and Exiting lists, we have the following. The first
intersection in the list is I4, which is of type crossing. We examine the point before this
intersection, in our case it is H, and since it is outside the cut polygon, the intersection I4
must necessarily go in the entering list. Therefore, the algorithm alternates between entering
and exiting as appropriate, obtaining as results for crossing intersections: I3 is exiting, I2 is
entering and I1 is exiting. The said behavior is seen visually in the figure 5.17 by arrows that
enter the cutting polygon and others that exit.

5.3.1.8. Traversing the lists

Finally, after building the two lists Entering and Exiting, we can go through both the subject
polygon and the cut polygon, in order to create the cut polygons. The algorithm consists of
going through each one of the intersections that are in the Entering list, locating its place in
the list of points of the subject polygon, and going forward until we find an Exiting intersec-
tion. At that moment, we must change the list to the list of points of the cut polygon, and
continue going through its list. This process of jumping between lists is performed until the
algorithm returns to the intersection with which it started.

The implementation of this part was done through two functions. The Traverse function
goes through each of the intersections of the Entering list, and invokes the TraverseList

96

function with the list of points of the corresponding polygon (subject or clipper).

Algorithm 33 Traversing Entering and Exiting lists to obtain the cut polygons
1: Input
2: subject Circular List of Points representing the subject polygon
3: clipper Circular List of Points representing the clipper polygon
4: entering Circular List of Points representing entering intersections
5: exiting Circular List of Points representing exiting intersections
6: Output
7: Circular list with the new cut polygons

8: function Traverse(subject, clipper, entering, exiting)
9: polygons ← new Circular() /*Contains the new cut polygons*/
10: Lcurrent ← subject
11: while entering has points do
12: polygon ← new Circular()
13: start ← get intersection point from entering.head
14: transitionNode ← entering.head
15: count ← 0
16: while transitionNode is not Null and (count = 0 or (count > 0 and start is not

equal to transitionNode value)) do
17: (transitionNode, poly) ← TraverseList(Lcurrent, entering, exiting, polygon,

transitionNode, start)
18: if Lcurrent is equal to subject list then
19: Lcurrent ← clipper
20: else
21: Lcurrent ← subject
22: count ← count + 1
23: polygon ← poly
24: end
25: cutPolygon ← new Polygon(polygon)
26: order cutPolygon to CounterClockwise
27: add cutPolygon to polygons
28: end
29: return polygons
30: end

Showing the implementation in more detail, on line 10 we save a variable with the current
list that initially corresponds to that of the subject polygon. On line 11 we start a cycle for
each of the entering intersections that exist in the list of the same name. Within the cycle,
we make a new cycle on line 16 for the construction of the polygon, whose term condition is
that the transition node is null (that is, that we have reached the same node with which we
started). Then we call the TraverseList function on line 17, obtaining the current polygon
and the transition node from which the jump was made in the current list. After that, we
must alternate the current list to the list of points of the cut polygon or to the subject poly-
gon as appropriate.

97

Finally, at the end of the innermost cycle, a cut polygon has been obtained, which is
saved in the polygons list. At the end of the outermost cycle, corresponding to the entering
intersections, we will have all the possible polygons cut in the polygons list, so we return
their value on line 29.

Algorithm 34 Helper function to traverse just one list at time
1: Input
2: Lcurrent Circular List of Points. Can be subject or clipper polygon
3: entering Circular List of Points representing entering intersections
4: exiting Circular List of Points representing exiting intersections
5: polygon Circular List that will contain the new polygon
6: tNode Circular node from where the traverse started
7: start Start Point from where the traverse started
8: Output
9: Next transition node for moving to the other list

10: function TraverseList(Lcurrent, entering, exiting, polygon, tNode, start)
11: Ensure value of tNode is inside Lcurrent

12: if value of tNode is inside entering list then
13: remove the value of tNode from entering, mutating it
14: listNode ← get Node from Lcurrent that has the same value as tNode
15: do
16: add Point value from listNode to polygon
17: listNode ← listNode.next
18: if Value of listNode is equal to the start point then
19: return null
20: while listNode is not null and entering and exiting don’t

include the value of listNode
21: return (listNode, polygon)
22: end

The function that goes through a particular list, first makes sure that the transition
node exists in the current list, which should always happen since by construction, if they
are intersections, they must belong to both lists (subject polygon list and clipper polygon
list). Then on line 12 we remove the intersection from the entering list to reach the cycle
condition. After line 15 to line 20, we go through the current list adding all the points to the
polygon creation list, bearing in mind that if we reach the initial node, we return null as a
value. Otherwise, we must return the polygon that we have created so far, and the transition
node on line 21.

98

AA

BB CC

DD

EE

FF

GG

HH

II

JJ

KK

LL

MM

NN

OO

PPII11

II22 II33

II44

Subject
Polygon

E

F

G

H

I4

I

J

K

L

I3

M

N

O

I2

P

I1

Clipping
Polygon

A

I1

B

I4

C

J

K

L

D

I3

N

I2

Figure 5.18: Example of constructing the cut polygons from both lists.

To conclude with the example presented, we see how in the figure 5.18, the polygon lists
are traversed starting from the first intersection of entering, which is I4. We go through the
subject polygon list until we reach the next crossing intersection, which is I3. In this case, we
must change the list and go through the clipping polygon list. We keep going through each
of the lists, jumping between the crossing intersections, until we reach the initial intersection
I4. Note that when visiting the intersection I2, which is in Entering list, it is deleted from
the list in line I2 and I3, so the algorithm ends since the Entering list is empty. At that
moment, we gather all the points we visit, making up the only polygon cut as the result of
the cut algorithm.

5.3.1.9. Complexity Analysis

To analyze the complexity of the clipping algorithm, we analyzed each stage separately
according to our implementation, and then saw if it corresponded to the theoretical results.
Each of the stages has the following analysis. Suppose we have a subject polygon of ns points
and a clipper polygon of nc points. Then:

1. Intersections: we perform a comparison for each edge of subject with the nc arcs
of clipper. This process is done ns times, so this operation is O(nc · ns). Let ni be
the number of intersections found, then we perform a selection sweep of intersections
inserted in the copy list of subject which takes O(ns + ni), and then we obtain the
neighborhood of intersections in subject and clipper, a process that takes O(nc)+O(ns)
time. Therefore the dominance is O(nc · ns).

2. Classify intersections: For each of the intersections found, we perform a classification
according to the calculations made with the cross products. As we have already pre-

99

calculated the points, obtaining the previous and next point is O(1), so the whole
process runs in O(ni).

3. Mark Intersections: To obtain those intersections that initiate a degenerate chain
on a polygon, just go through the list of intersections, which takes O(ni). Then we
perform a second iteration, considering as start the intersections obtained previously
to categorize them, a process that again takes O(ni).

4. Entering and Exiting: Forming the list of intersections that are classified as entering
or exiting, corresponds to a sweep through all intersections, which takes O(ni) time.

5. Traverse: For each of the intersections marked as entering, we start traversing the clip-
per and subject polygons, exchanging the lists. This process takes at most O(ns + nc).

The analysis of our implementation corresponds to the theoretical result presented in
[23], which shows that polygon cutting grows in the order of O(nm), where n and m are the
number of edges that polygons have. It is concluded in the same work that 80% of the time
spent by any polygon cutting algorithm is consumed by the computation of intersections,
having as lower bound the order O(nm). In the work presented in [21], it is proposed that
the extension to the algorithm involves a labeling phase of O(k), where k is the number of
intersections, which corresponds to the result obtained in our analysis.

5.3.2. Point insertion in Tree Data Structures

If we look at the algorithm shown in Algorithm 9, it assumes that the insertion of points
in a quadtree is done at the leaf level so that there is always a maximum of one point for each
quadrant. This is accomplished through a division of each quadrant into four sub regions,
using the midpoint of each quadrant as the vertical and horizontal axis of division.

To generalize this behavior, the algorithm was modified allowing a quadtree to use objects
corresponding to a family of division and insertion strategies. With this, the insertion of
points will be determined as a strategy to follow that depends on how the insert method is
implemented.

1 export default class QuadTree {
2 constructor(boundary, capacity, divisionAlgorithm) {
3 /** @type {QuadTree} */
4 this .northWest = null;
5 /** @type {QuadTree} */
6 this .northEast = null;
7 /** @type {QuadTree} */
8 this .southWest = null;
9 /** @type {QuadTree} */

10 this .southEast = null;
11

12 this .boundary = boundary;
13 this .capacity = capacity;
14 this .divisionAlgorithm = divisionAlgorithm;

100

15 this . isLeaf = true;
16 this .points = [];
17 this .parent = null;
18 }
19

20 // inserts a point inside the quadtree
21 insert (point) {
22 this .divisionAlgorithm. insert (this , point) ;
23 }

In this case, we can see how we delegate the entire insertion process to the insertion
algorithm. Next, we will detail the insertion algorithm using divisions in the middle, and
divisions at the insertion points.

5.3.2.1. Half Point Division Algorithm

The algorithm is similar to the one shown in Algorithm 9, except for the following details.
First, we add a parent parameter, to have reference to the quadrant that originated the cur-
rent quadrant, which allows us to hierarchically scale until we reach the root of the tree.

Furthermore, we explicitly detail that division into four quadrants always by using the
midpoint of each quadrant.

101

Figure 5.19: Example of Half Division Algorithm. (A) Insertion of
point E. (B) Insertion of point F . (C) Insertion of point G. (D)
Insertion of point H.

102

Algorithm 35 Half Point Division Inserting
1: Input
2: Q quadtree
3: p point to be inserted in the tree
4: Output
5: True if the point was inserted. False otherwise.

6: function Insert(Q, p)
7: if current quadrant does not contain p then
8: return False
9: if p is already inserted on Q then
10: return False
11: if Q is a leaf then
12: Qpoints ← current points stored in Q
13: if capacity of Q is enough to handle p then
14: add p to Qpoints

15: return True
16: else
17: mark Q as non leaf
18: Divide(quadtree)
19: reinsert every point of Qpoints into the quadtree
20: return SubdividedInsertion(Q, p)
21: else
22: return SubdividedInsertion(Q, p)
23: end

The SubdividedInsertion used is the same as the one defined in Algorithm 10. Now we
will detail how the divide method implemented in this algorithm is.

Algorithm 36 Half Point Division Dividing
1: Input
2: Q quadtree
3: Output
4: Mutates the quadtree, dividing it into four quadrants

5: function Divide(Q)
6: box ← Qboundary

7: midPoint ← get mid point from box
8: (Qnw, Qne, Qsw, Qse) = divide Q using midPoint
9: Q.northWest← Qnw

10: Q.northEast← Qne

11: Q.southWest← Qsw

12: Q.southEast← Qse

13: assign Q as parent to Q.northWest, Q.northEast, Q.southWest and Q.southEast
14: end

103

5.3.2.2. Arbitrary Point Division Algorithm

This algorithm differs from the previous one, mainly in how the subregions are divided ac-
cording to the point to be inserted. Note that there is no reinsertion because there is no
storage capacity for points in the quadrants, since strictly speaking, the points will only
serve to subdivide the space.

The above indicates that the insert algorithm is faster, however it is subject to more edge
cases that were not presented in the previous algorithm. These cases correspond to when it
falls on a corner point or, on a segment of the edge of the quadrant. In those cases, there will
be quadrants that will not exist, and therefore, they must be treated in a particular way.

Figure 5.20: Example of Arbitrary Point Insertion Algorithm. (A)
Insertion of point E. (B) Insertion of point F . (C) Insertion of point
G. (D) Insertion of point H.

104

Algorithm 37 Arbitrary Point Division Inserting
1: Input
2: Q quadtree
3: p point to be inserted in the tree
4: Output
5: True if the point was inserted. False otherwise.

6: function Insert(Q, p)
7: if Q is null then
8: return False
9: if current quadrant does not contain p then
10: return False
11: if p is already inserted on Q then
12: return False
13: if Q is a leaf then
14: mark Q as non leaf
15: Divide(quadtree, point)
16: else
17: SubdividedInsertion(Q,p)
18: return false
19: end

105

Figure 5.21: Example of Arbitrary Point Insertion Problems. (A)
Insertion of point P in right edge of quadrant. (B) Insertion of point
Q in bottom right corner of quadrant. (C) Insertion of point R in
bottom edge of quadrant. (D) Insertion of point S in top left corner
of quadrant.

106

Algorithm 38 Arbitrary Point Division Dividing
1: Input
2: Q quadtree
3: p point to be inserted in the tree
4: Output
5: True if the point was inserted. False otherwise.

6: function Divide(Q, p)
7: box ← Qboundary

8: boxEdges ← get the edges from box
9: boxCorners ← get the corner points from box
10: (Qnw, Qne, Qsw, Qse) = divide Q using p coordinates
11: Q.northWest← Qnw

12: Q.northEast← Qne

13: Q.southWest← Qsw

14: Q.southEast← Qse /*Consider that some quadrants are not
valid. Now we will overwrite those of the
corners.

*/

15: if p is equal to top left of boxCorners then
16: set all quadrants except Q.southEast to null
17: else if p is equal to the top right of boxCorners then
18: set all quadrants except Q.southWest to null
19: else if p is equal to the bottom left of boxCorners then
20: set all quadrants except Q.northEast to null
21: else if p is equal to the bottom right of boxCorners then
22: set all quadrants except Q.northWest to null /*If not, then over-

write those of the
point over edge.

*/

23: else if p is over the left edge of boxEdges then
24: set Q.northWest and Q.southWest to null
25: else if p is over the top edge of boxEdges then
26: set Q.northWest and Q.northEast to null
27: else if p is over the right edge of boxEdges then
28: set Q.northEast and Q.southEast to null
29: else if p is over the bottom edge of boxEdges then
30: set Q.southEast and Q.southWest to null /*If no overwrite hap-

pened, then the point
divided the quadrant
in four.

*/

31: end

5.3.3. Generating the Initial Mesh

Taking into consideration each of the algorithms shown in this work, in particular Greiner
Hormann’s Extended polygon cutting algorithm, we can explain how each of the mesh poly-
gons is generated. The three important processes in its generation are detailed below: Cre-
ation of the polygons using the cutting algorithm, Obtaining the problem points and finally

107

the arrangement of the consistency of the polygons.

5.3.3.1. Generating new polygons from a contour geometry

Algorithm 39 Building the initial mesh
1: Input
2: polygon Polygon to be clipped. Can be drawn by the user, or uploaded by a file
3: Output
4: Mutate the storage of Polygons, adding the new clipped polygons

5: function GenerateNewPolygons(polygon)
6: remove polygon from the polygon storage
7: problemPoints ← new Circular()
8: newPolygons ← []
9: foreach quadrant in leaves from the quadtree do
10: boundary ← get boundary points from the quadrant
11: clippedPolygons ← new GreinerHormannAlgorithm().clip(polygon, bound-

ary)
12: if exists polygons in clippedPolygons then
13: newProblemPts ← GetProblemPoints(polygon, clippedPolygons, problem-

Points)
14: add all points from newProblemPts to problemPoints, without repetition
15: foreach newPoly in clippedPolygons do
16: add quadtrantParent reference to newPoly, pointing to quadrant
17: add newPoly to newPolygons
18: end
19: end
20: FixPolygons(newPolygons, problemPoints)
21: end

The polygon mesh generation algorithm receives an initial polygon, which corresponds to the
geometry contour we want to mesh, either created by the user or delivered in an OFF file.
When starting the application, the polygon immediately generates a quadtree or kd-tree that
generates quadrants, so it is enough to take each of them and apply the Extended Greiner
Hormann Algorithm of cutting polygons to generate the new polygons, such as It is shown
in line 11. Based on the new polygons obtained and the original polygon, we invoke the
GetProblemPoints function to obtain those problem points and store them in a list as in
line 14. From line 15 to 18 , we save the new generated polygons, and set the quadrant that
generated each polygon as property. Finally, after all the polygons are generated, we invoke
the FixPolygons function, using the problem points obtained and the new polygons, to have
a consistent mesh.

5.3.3.2. Obtaining the possible problematic points

Given a starting polygon P, we say that a point is problematic if there is a point that belongs
to some polygon created from P by means of a cutting algorithm, and is not part of the original

108

polygon. According to this definition, we can easily find all the problematic points by going
through each of the points of the polygons generated by the cutting algorithm, and verify if
they exist in the original polygon.

Algorithm 40 Getting the problematic points after clipping
1: Input
2: polygon Polygon to be clipped. Can be drawn by the user, or uploaded by a file
3: clipped List of lists of new polygons, generated by the clipping algorithm
4: probP ts Circular List of problematic points
5: Output
6: Circular List of new problematic points

7: function GetProblemPoints(polygon, clipped, probPoints)
8: newProbPoints ← new Circular()
9: foreach polygon in clipped polygons do
10: foreach point in polygon.points do
11: if point is neither inside polygon nor probPoints then
12: add point to newProbPoints, with no repetitions
13: end
14: end
15: return newProbPoints
16: end

The natural implementation corresponds to a nested cycle, and for each one of the poly-
gons generated by the cutting algorithm, we iterate through all its points again. If the point
in question does not exist in the original polygon, we add it to a list that contains the result,
as seen on line 12. Something that is not explicit is that verifying if a point exists among
those that make up a polygon, is equivalent to verifying if an integer exists inside a list of
integers. This is because the points are represented by their index, and the polygons keep
within themselves a list of indexes representing their points.

109

AA

BB

CC

DD

EE

FF
GGHH

Figure 5.22: Getting problematic points after clipping.

Let us consider the figure 5.22. The BCA triangle has been cut into four new sub-
polygons according to the midpoint division algorithm, generating the FHDA and BEHF
quadrilaterals, and the HGD and ECGH triangles. Of the original points of the BCA
triangle, there are now new DEFGH points that did not exist before, which is why these
points say they are called problem points.

5.3.3.3. Fixing polygons consistently with problem points

Finally, to fix the polygons, what we do go through each one of the created polygons, and
for each one of the problematic points, we check if they exist between any of their edges,
without considering the extreme points. If the conditions are met, the point is inserted in
the corresponding place.

110

Algorithm 41 Fix the polygons with the new generated points
1: Input
2: clipped List of lists of new polygons, generated by the clipping algorithm
3: probP ts Circular List of problematic points
4: Output
5: Circular List of new problematic points

6: function FixPolygons(clipped, probPoints)
7: foreach polygon in clipped do
8: circularPoly ← new Circular(polygon.points)
9: foreach p in probPoints do
10: currentNode ← circularPoly.head
11: do
12: currentEdge ← new Edge(currentNode.value, currentNode.next.value)
13: if p is inside currentEdge and is not equal to any of its endpoints then
14: add p after currentNode.value in circularPoly
15: currentNode ← currentNode.next
16: while currentNode is different from circularPoly.head
17: end
18: assign the circularPoly points as the new ones of polygon
19: save polygon into the storage
20: end
21: end

We can see that in the implementation, for each edge without its ends, it is asked if the
point in question is in the middle of it or not, as seen in line 13 and 14. Finally, the list of
points must be updated, mutating the polygon and overwriting the one that is stored in the
PolygonStorage as it is done in lines 18 and 19.

111

AA

BB

CC

DD

EE

FF
GGHH

II

JJ

KK

Figure 5.23: Fixing polygons after clipping.

Consider the neighbors of the triangle shown above, shown in the figure. These correspond
to the BAI, BJC, and ACK triangles. Note that when adding the DEFGH points to the
initial triangle, the neighbors are left with problems of agreement, since, for example, without
applying a correction, the segment AB of the BAI triangle is not aware of the new point F .
This is why the FixPolygons function check each of the neighbors to locate those edges that
need the intersection of a problem point.

5.3.4. Refinement Algorithms

5.3.4.1. Tree Refinement

To perform a refinement through a quadtree, it is necessary that the mesh has been generated
through the application, and not imported from outside. This is because when importing a
mesh already created, it implies not having a generating quadtree to refer to, and therefore
subdivide the polygons.

For those polygons that were created from quadtrees, allowed the user to select by means
of clicks, which are the polygons that they are interested in refining. When this is done, the
polygon gets its generating quadtree by means of a reference saved in the Polygon object,
and proceeds to perform a division into four new regions.

112

Figure 5.24: Refinement of a polygon using quadtrees. (A) The user
clicks on the PCQN polygon. (B) The quadrant that generated the
polygon is subdivided into four equal quadrants. Then, with the new
quadrants, the polygon is cut into four new ones.

As an example of the procedure, an example is shown in the figure. The ABCD polygon
is cut into four sub-polygons using a quadtree. If we assume that a user clicks on the PCQN
polygon, then the algorithm accesses the quadtree that generated the polygon (in this case
NFKJ) and it is divided into four equal quadrants.

With these quadrants, the PCQN polygon is subdivided into four sub-polygons, each
one referencing the quadrants that generated them.

113

Algorithm 42 Tree Refinement
1: Input
2: polys intersected polygons to be refined
3: mesh a reference to the mesh being constructed
4: Output
5: A list of the new generated polygons.

6: function RefineByQuadtree(polys, mesh)
7: newPolygons ← []
8: foreach polygon in polys do
9: neighbors ← get neighbors for polygon
10: quad ← polygon.quadrant
11: divide quad in four quadrants using the Algorithm 36.
12: set quad as a non leaf quadrant
13: newLeaves ← get the four new leaves from the divided quadtree
14: cut polygon using Greiner Hormann clip method
15: fix the neighborhood of polygon
16: add all the cut polygons (if they exists) to newPolygons
17: delete polygon from PolygonStorage (if it was cut)
18: end
19: return newPolygons
20: end

5.3.4.2. Splitting Longest Edge

The algorithm for dividing the longest segment of a polygon consists of a generalization of that
defined for triangles. First, the segment with the longest length is searched. Subsequently,
the midpoint of said segment is obtained, and the areas of all the polygons formed by the
cut segment that joins the midpoint and a point inside the polygon, are inspected.

114

Figure 5.25: Example of how a polygon is refined using the longest
edge splitting algorithm. (A) is the polygon to be refined. (B) select
the longest segment CD and search for the midpoint G (C) inspect
the area of the possible polygons (D) select the partition that has the
smallest difference between its areas.

For example, in the figure if we consider the cut segment as BG, it generates two poly-
gons: BCG and BGDEFA. However, the difference between their areas is not the best,
since there are partitions that further minimize this difference.

When we find the segment that cuts the polygon with the minimum difference in areas
(in our example, that segment is AG), we proceed to cut the polygon and return the two
that are generated (in our example Poly1 and Poly2).

115

Figure 5.26: Algorithm problem for non-convex polygons. (A) The
algorithm determines that segment AE generates the best difference
between polygons ABE and AEC. However, these polygons are non-
existent. (B) The solution is to triangulate the polygon when it is not
convex.

However, the algorithm suffers from a problem when polygons are non-convex, because
the segments between the midpoint of the longest side and the interior points do not always
lie inside the polygon (Figure 5.26). These non-contained diagonals inside the polygon gen-
erate non-existent polygons as seen in the Figure 5.26, giving erroneous results.

To avoid this, the polygon is triangulated, so that at a later stage, the algorithm can be
applied to the generated triangles in case more refinement is needed. The implementation of
the algorithm explained above is detailed below.

116

Algorithm 43 Splitting Longest Edge
1: Input
2: polys intersected polygons to be refined
3: mesh a reference to the mesh being constructed
4: Output
5: A list of the new generated polygons.

6: function Refine(polys, mesh)
7: newPolygons ← []
8: problemPoints ← []
9: foreach polygon in polys do
10: if polygon is not convex then
11: triangles ← triangulate polygon
12: add every triangle in triangles to newPolygons
13: else
14: maxEdge ← get max edge from polygon
15: midPoint ← get mid point from maxEdge
16: add midPoint to PointStorage
17: add midPoint to problemPoints
18: insert index of midPoint into polygon
19: (poly1, poly2) ← GetBestPartition(maxEdge, midPoint)
20: save poly1 and poly2, fixing mesh
21: fix the neighborhood of polygon in mesh
22: remove polygon from PolygonStorage
23: end
24: return newPolygons
25: end

5.3.4.3. Centroid

This algorithm consists of calculating the centroid of the polygon, to subsequently join each
interior point with the said point. The result for convex polygons is a collection of triangles,
which all share the centroid as a common point.

This algorithm also has problems if the polygon is not convex, due to the existence of
segments between centroid and point not completely contained within the polygon. In these
cases, the polygon is triangulated, without using the centroid.

117

Figure 5.27: Example of refinement of a polygon using the centroid.
(A) obtaining the centroid point G (B) triangles are obtained by join-
ing each internal point, with the centroid G.

Algorithm 44 Centroid Refinement
1: Input
2: polys intersected polygons to be refined
3: mesh a reference to the mesh being constructed
4: Output
5: A list of the new generated polygons.

6: function Refine(polys, mesh)
7: newPolygons ← []
8: foreach polygon in polys do
9: if polygon is not convex then
10: triangles ← triangulate polygon
11: add every triangle in triangles to newPolygons
12: else
13: centroid ← FindCentroid(polygon)
14: foreach point in polygon.points do
15: auxPoints ← [point, point.next, centroid]
16: create new Polygon from auxPoints
17: add the new Polygon to newPolygons
18: end
19: remove polygon from PolygonStorage
20: end
21: return newPolygons
22: end

5.3.4.4. Centroid with Replication

This algorithm consists of using the centroid, to create a new polygon smaller than the original
one at the center of it, and new polygons in between. For this, we take the midpoints of each

118

of the segments that join the internal points and the centroid. Then, the inner points of the
larger polygon are joined to the corresponding points of the inner polygon, and finally, the
inner points are joined together. This procedure forms a polygon identical to the original in
the middle of it, and quadrilaterals between them.

Figure 5.28: Refinement example using centroid with replication.
(A) obtain the centroid G of a polygon (B) obtain the midpoints
H, I, J,K, L,M of each segment that joins the internal points with
the centroid (C) form the internal polygon HIJKLM (D) form the
internal quadrilaterals.

This algorithm has the same problems for non-convex polygons, so they triangulate in-
stead of using this refinement. The implementation of this strategy is detailed below.

119

Algorithm 45 Centroid with Replication
1: Input
2: polys intersected polygons to be refined
3: mesh a reference to the mesh being constructed
4: Output
5: A list of the new generated polygons.

6: function Refine(polys, mesh)
7: newPolygons ← []
8: foreach polygon in polys do
9: if polygon is not convex then
10: triangles ← triangulate polygon
11: add every triangle in triangles to newPolygons
12: else
13: centroid ← FindCentroid(polygon)
14: interiorPoints ← []
15: foreach p in polygon.points do
16: intPoint ← get middle point from p to centroid
17: add intPoint to interiorPoints
18: end
19: create polygon using interiorPoints
20: save polygon to PolygonStorage
21: add polygon to newPolygons
22: for i ← 0 to polygon.points.length do
23: P1 ← polygon.points[i]
24: P2 ← polygon.points[i+ 1 mod polygon.points.length]
25: P3 ← interiorPoints[i+ 1 mod interiorPoints.length]
26: P4 ← interiorPoints[i]
27: create new polygon from P1, P2, P3, P4
28: save the new polygon to PolygonStorage
29: add the new polygon to newPolygons
30: end
31: remove polygon from PolygonStorage
32: end
33: return newPolygons
34: end

120

Chapter 6

Results

In this section we show the results obtained in the experiments and tests we performed
with the polygon mesh generator. We divide the results into the following categories: (1)
Time analysis for the polygon clipping algorithm and the initial mesh creation algorithm
for both quadtree (in both its half division and point division strategies) and kdtree. (2)
Characteristics of the initial meshes generated by quadtrees and kdtrees. (3) Application of
refinement algorithms to improve the quality of the meshes (4) Successive refinements to all
those polygons that do not meet a certain quality condition (5) Analysis of quality metrics
and finally (6) Comparison of the meshes generated by our application contrasted with those
obtained by Triangle.

6.1. Time Analysis
To analyze time, we focused on measuring the duration of the process of cutting polygons

against quadrilaterals, thereby simulating the generation of a polygon based on the grid of a
quadtree. We then analyze the time it takes to generate an initial mesh using quadtrees and
kdtrees. The results of the experiments are presented below.

6.1.1. Extended Greiner Hormann Algorithm

The timing performance results of our implementation of the extended Greiner Hormann
algorithm are shown below.

121

0

500

1000

1500

2000

10 20 30
Number of points

T
im

e
(m

s)

Figure 6.1: Time analysis for clipping algorithm.

From the obtained graph and the obtained fit, we obtained as a result that our imple-
mentation runs in time O(n2), where n is the initial number of points of the polygon that is
cut by a quadrilateral. The fit has an R2 of 0.9981, so we consider that the trend line fits
appropriately to the curve obtained.

Table 6.1: Trendline function for clipping algorithm

Trendline function R2

3.5801x2 − 40.731x + 154.13 0.9981

6.1.2. Initial meshes creation time

To compare the initial mesh generation times, we generated a random polygon with a
given number of points, and created a mesh using a quadtree (with the strategy of dividing
with the midpoint and using the points that make up the polygon) and a kdtree. The results
obtained from measuring the time for each strategy are as follows.

122

0

500

1000

1500

10 20 30
Number of points

T
im

e
(m

s)

qtree_half qtree_point kdtree

Figure 6.2: Time analysis for initial meshes.

The results obtained indicate that the algorithms run in O(n2) time, differing from each
other only in the constant accompanying the quadratic term. According to the graph, the
best performance is obtained by the kdtree algorithm for the generation of initial meshes,
followed by the division using the midpoint, and as last place the strategy of using arbitrary
points.

Table 6.2: Trendline function for initial time mesh generation.

Algorithm Trendline function R2

Quadtree Half Division 1.5422x2 + 1.7949x− 0.5408 0.994
Quadtree Point Division 1.7776x2 + 4.3276x + 1.9348 0.9995

KDtree 0.5642x2 + 1.9096x + 0.846 0.9996

The explanation we found for the better performance obtained by a kdtree is the opti-
mization it makes at the moment of ordering the points and choosing in which direction to
divide the quadrant (according to the X or Y direction). However, the performance of obtain-
ing an initial mesh is determined by the quadratic time it takes to cut the initial geometry
with respect to the grid generated by the kdtree. This is why the improvement is seen only
at the level of constants, and not in the order of performance of the initial mesh generation
algorithm.

123

6.2. Initial Mesh Generation
We show now the results of creating an initial mesh for the geometry shown in Figure 6.3.

This geometry is interesting to analyze because it has a non-convex angle, so it is important
to see how it behaves at the level of shaping an initial mesh of polygons, as well as further
refinement using a quadtree with a division strategy using the midpoint of each quadrant.

Figure 6.3: Geometry used for the creation of an initial mesh, and the
subsequent analysis of different refinements.

6.2.1. Initial Meshes

Four initial meshes were obtained using two types of trees. The first tree consists of a
quadtree, to which different criteria of insertion of points and division of quadrants have been
applied. These are: Division using the midpoint, Division using an arbitrary point, and a
random insertion of points. The fourth initial mesh is the one generated using a kd-tree, the
structure we want to evaluate in this thesis in the context of polygon mesh generation.

124

(a) Mid Point Division Initial
Mesh

(b) Arbitrary Point Division Ini-
tial Mesh

(c) Randomized Point Division
Initial Mesh

(d) KD-Tree Initial Mesh

Figure 6.4: Four different strategies to obtain an initial mesh of poly-
gons.

The first three strategies take up a quadtree for creating an initial mesh. We can see
that even when the data structure is the same, there are differences in the result that is
delivered, depending on the insertion order of the points. The last strategy, which uses a
two-dimensional KD-Tree, alternates the X and Y coordinates to make horizontal and vertical
cuts respectively, using a recursive ordering looking for the median of the points, for a better
result.

Table 6.3: Main study characteristics of the initial meshes.

Division Algorithm Npolygons Npoints Min Lengthmean Anglemin Areamean Time (ms)

Half Point Division 8 17 131.29 57.4 18861.31 66.96
Arbitrary Point Division 7 11 205.65 33.31 21555.79 52.55

Randomized Arbitrary Point Division 8 13 172.97 43.95 18861.31 39.72
KD-Tree 6 11 210.5 40.7 25148.42 22.29

According to the results obtained in table 6.3, we can see that the creation time of the ini-
tial meshes depends on the cutting complexity between the quadrant and the initial polygon.
For example, we see that the number of generated polygons by the midpoint algorithm is
equal to that of the random insertion criterion, however, their times differ by approximately
40%. This is attributable to the fact that the cuts made in the mid point algorithm are more

125

complex and require a greater number of points compared to the random insertion algorithm.

The best build time is the KD-tree algorithm. We attribute this to the lower polygon cut
processing that needs to be done when choosing only one cut direction (vertical or horizontal),
compared to the arbitrary point algorithm, which always performs cross cut. Consequently,
the number of polygons and points in the initial mesh is less and, therefore, the generation
time. The comparison is made with this algorithm because its nature is similar, demonstrat-
ing this in that the similar number of points and polygons are obtained.

Regarding the minimum average angle, the best result has the mesh obtained using the
mid point algorithm (The largest average of small angles). We attribute this to the fact that
due to the cuts made by the quadrants of the quadtree they are not at the point level, so
there are numerous right angles, unlike the other strategies.

6.3. Quality improvements
In this section we discuss about the quality refinements implemented in this work, applied

on a polygon mesh. Initially we apply a quality refinement, that is, the refinement algorithm
using a centroid, the replication algorithm using the centroid, and the cut of the polygon
according to the longest side, to each polygon of the initial meshes shown in the figure 6.3
in order to inspect the different characteristics of the resulting mesh.

Later we are interested in how each of the algorithms behave to converge to a mesh in
which all the polygons meet a certain condition. For this analysis we start as before with
an initial polygonal mesh, on which we carry out successive refinements on those polygons
that do not meet a certain quality condition, such as, for example, have a greater area or a
side greater than a certain limit value. After that, we examine the important results for our
investigation, such as the execution time, the minimum angle, the length minimum of one
segment of the polygon, and the number of points and polygons generated.

Figure 6.5: Contour of a unicorn geometry used in quality refinements.

For this section we use a unicorn-shaped geometry shown in figure 6.5, which has 37
points and multiple non-convex angles.

126

6.3.1. Initial Meshes

The first thing we did was generate the four types of initial meshes created from the uni-
corn geometry, shown in the figure 6.5, on which we applied the different quality refinements.
As before, four different processes were applied: The use of a quadtree with three different
strategies of insertion of points and division of quadrants, and the use of a two-dimensional
KD-Tree.

(a) Mid Point Division Initial
Mesh

(b) Arbitrary Point Division Ini-
tial Mesh

(c) Randomized Point Division
Initial Mesh

(d) KD-Tree Initial Mesh

Figure 6.6: Four different initial meshes of the unicorn geometry.

127

Table 6.4: Main study characteristics of the initial meshes of the uni-
corn geometry.

Division Algorithm Npolygons Npoints Min Lengthmean Anglemin Areamean Time (ms)

Half Point Division 68 143 30.68 71.49 1979.17 1772.53
Arbitrary Point Division 66 101 47.32 51.34 2039.15 913.83

Randomized Arbitrary Point Division 67 102 42.27 51.27 2008.71 902.04
KD-Tree 35 67 50.2 46.46 3845.25 334.97

In relation to the number of elements, we see that the largest number of points and poly-
gons generated is produced by the division algorithm using the midpoint, this is because
there are no cuts in the points of the polygon contour, a greater amount is produced of
quadrilaterals or figures that have at least a right angle. The least amount of elements is
produced by the KD-Tree algorithm, as a consequence of the division at each point through
only one axis. We also see that unlike arbitrary point algorithms, randomized or not, the
KD-Tree algorithm generates fewer problematic quadrilaterals, that is, those in which the
difference between the longest and smallest segment is very large.

Regarding the shape of the polygons obtained on average, we note that the largest figures
are found in the mesh generated by the KD-Tree algorithm, obtaining on average the longest
minimum segment length and the largest area. As for the minimum angle, on average the
Half Point algorithm has the highest average value, attributed to the fact that there are a
large number of right angles that increase the average and make it tend towards said value.

In relation to time, we can see that the KD-Tree algorithm is approximately 3 times faster
than quadtree’s arbitrary point algorithms, and almost 6 times faster than the mid point
algorithm. We attribute this behavior to the fact that the number of calculated intersections
(and consequently the generation of quadrants and generated polygons) is less than in the
other algorithms, so the processing time is lower.

6.3.2. Quality Refinements to Bad Polygons

We can also perform a quality refinement on a mesh. Here we seek to further refine those
polygons that belong to a sector of our interest, or those that do not meet the quality criteria
provided by the user. The quality refinement algorithms implemented in this work are as
follows: Join each of the points with the centroid of the polygon (Centroid Algorithm),
creating a replica of the polygon having as its center the centroid of the original polygon
(Centroid Replication Algorithm), and finally the union of the midpoint that divides the
largest segment of the polygon, with some of its points, maintaining a similarity between the
areas of the resulting polygons (Splitting Longest Edge).

In the next subsection we see how these quality refinements behave when applied to each
of the initial meshes generated by each of the different strategies. The quality refinements
initially are applied to each one of the polygons, to obtain a better understanding of the
relevant study parameters.

128

6.3.2.1. Centroid refinement to Initial Meshes

The refinement using the centroid explained in the section 5.3.4.3 involved the calculation of
the centroid, and the union of each point of the polygon with it. This procedure was possible
only if the polygon is convex, due to degenerate diagonals that can appear in non-convex
polygons. As a solution, the non-convex polygons are polygonized, instead of applying the
centroid algorithm. The results obtained after applying the refinement centroid algorithm to
each of the different initial meshes generated by our application are as follows:

(a) Mid Point Division Initial
Mesh with Centroid refinement
applied.

(b) Arbitrary Point Division Ini-
tial Mesh with Centroid refine-
ment applied.

(c) Randomized Point Division
Initial Mesh with Centroid re-
finement applied.

(d) KD-Tree Initial Mesh with
Centroid refinement applied.

Figure 6.7: Applying centroid refinement to the different initial meshes.

Analyzing the four different results, we can see graphically in the figure 6.7 that the
meshes generated on the initial meshes of the mid point division algorithm and that of kd-

129

tree show better results. Using the arbitrary point algorithm in normal and random insertion,
we obtained elongated triangles as a result due to the creation of rectangles in which the ratio
between their length and width is much greater than one. When there are points close to
the contour of the unicorn, or that have their X and Y coordinates close, these elongated
rectangles are produced, which lead to geometries with a very large maximum angle.

Table 6.5: Main study characteristics of the initial meshes of the uni-
corn geometry using Centroid refinement.

Division Algorithm Npolygons Npoints Min Lengthmean Anglemin Areamean Time (ms)

Half Point Division 302 204 29.01 32.8 445.64 133.16
Arbitrary Point Division 280 167 48.08 17.13 480.66 63.32

Randomized Arbitrary Point Division 267 158 47.22 20.37 504.06 61.74
KD-Tree 160 102 50.87 22.22 841.15 41.15

Regarding the statistical results obtained, we see that the initial mesh that takes less
time to produce is that generated by the KD-tree algorithm, being approximately 3 times
less than the time taken by the Half Point algorithm. The KD-tree algorithm produces
geometries with a larger area than all other algorithms and with a greater average minimum
length. Regarding the minimum angle, the Mid Point algorithm produces the highest value,
and regarding the number of elements, the KD-tree algorithm produces approximately half
of the elements than the other algorithms. We can see that the KD-tree algorithm produces
very good results compared to the other algorithms, however, we must consider that the
initial mesh generated by a KD-Tree naturally has fewer elements, so when applying the
centroid algorithm, fewer polygons and a shorter time are generated accordingly. A better
comparison would be with an initial mesh generated with a KD-Tree with a similar amount
of elements to the other strategies, but that is beyond the scope of this work.

6.3.2.2. Centroid Replication refinement to Initial Meshes

In relation to the replication centroid algorithm explained in section 5.3.4.4 applied to each
of the initial meshes, it has the same considerations as the centroid algorithm, that is, those
polygons that are non-convex are poligonized to avoid degenerate diagonals. The results are
the following.

Regarding the shape of the geometries obtained in the meshes as we see in the figure
6.8, the pattern is repeated with respect to the refinement centroid algorithm, since in the
divisions using arbitrary points, elongated rectangles appear that lead to the creation of
extended triangles and large maximum angles. We think that the generation of elongated
elements is due to the same explanation of close coordinate points, since it occurs to a greater
extent only in the algorithms of division of arbitrary points. However, a difference between the
two methods is that the initial mesh in the random case can be generated from a distribution
of points such that there are few cases where the points are close to each other. This explains
the reason for the improvement in the polygons obtained in the random insertion compared
to the sequential insertion, dividing the quadrants according to the points to insert.

130

(a) Mid Point Division Initial
Mesh with Centroid replication
refinement applied.

(b) Arbitrary Point Division Ini-
tial Mesh with Centroid replica-
tion refinement applied.

(c) Randomized Point Division
Initial Mesh with Centroid repli-
cation refinement applied.

(d) KD-Tree Initial Mesh with
Centroid replication refinement
applied.

Figure 6.8: Applying centroid replication refinement to the different
initial meshes.

Table 6.6: Main study characteristics of the initial meshes of the uni-
corn geometry using Centroid Replication refinement.

Division Algorithm Npolygons Npoints Min Lengthmean Anglemin Areamean Time (ms)

Half Point Division 363 428 18.5 45.42 370.75 620.16
Arbitrary Point Division 346 381 28.62 38.34 388.97 366.34

Randomized Arbitrary Point Division 345 380 29.58 36.81 390.1 305.57
KD-Tree 195 227 30.32 37.84 690.17 162.67

131

Regarding the computation time of the initial meshes, again KD-Tree is the fastest algo-
rithm of all, however it is the one that produces fewer elements, approximately half of the
other algorithms, so it makes fewer cuts between polygons. We reached the same conclusions
mentioned above regarding the optimal level of comparison of a KD-Tree mesh with those of
a quadtree. Even so, the time used by the algorithm of division by the midpoint takes a great
amount of time, being approximately 5 times greater than that used in the KD-Tree and 2
times greater than in those algorithms for inserting arbitrary points. This is because the di-
vision by midpoint algorithm produces more intersections of the polygons in the quadrants,
so the number of cuts that must be made is much greater, and therefore smaller polygons
are produced that are subjected to the algorithm.

6.3.2.3. Splitting Longest Edge refinement to Initial Meshes

Finally, in the refinement algorithm using splitting longest edge explained in the section
5.3.4.2, the same procedure is done for the generated polygons that are not convex like the
two previous refinement algorithms. The results are the following.

We can see in relation to the shape of the generated elements in figure 6.9 that the
tendency to have elongated elements in the algorithms of insertion of arbitrary points is
maintained, so that regardless of the refinement method, said characteristic is maintained
and is inherent to the geometry. It follows then that those geometries that have close coor-
dinate points produce similar results even if the insertion is randomized or not.

And in relation to the data obtained for different elements, we see that the trend continues
in relation to computing time, with the mid-point algorithm being the one that takes the
longest time, but the one that produces smaller edges and higher minimum angles. The
algorithm that takes the least time is the KD-Tree algorithm, also obtaining the best result
in terms of number of elements, achieving the fewest number of polygons and vertices inserted
in the initial mesh, but due to the little natural refinement of the algorithm, they produce
very large elements, having the highest average area compared to all other algorithms. The
same considerations as previously studied are then maintained with respect to an appropriate
comparison for the results obtained by a KD-Tree.

132

(a) Mid Point Division Initial
Mesh with splitting longest edge
refinement applied.

(b) Arbitrary Point Division Ini-
tial Mesh with splitting longest
edge refinement applied.

(c) Randomized Point Divi-
sion Initial Mesh with splitting
longest edge refinement applied.

(d) KD-Tree Initial Mesh with
splitting longest edge refinement
applied.

Figure 6.9: Applying splitting longest edge refinement to the different
initial meshes.

Table 6.7: Main study characteristics of the initial meshes of the uni-
corn geometry using Splitting Longest Edge refinement.

Division Algorithm Npolygons Npoints Min Lengthmean Anglemin Areamean Time (ms)

Half Point Division 139 204 26.23 51.59 968.23 705.96
Arbitrary Point Division 132 167 33.51 38.03 1019.57 529.6

Randomized Arbitrary Point Division 130 164 34.2 38.31 1035.26 526.11
KD-Tree 70 102 40.46 40.24 1922.63 149.23

133

6.4. Successive quality refinements
In this section we show the results obtained after making successive quality refinements

on those polygons that do not meet a certain condition. In particular, we study the initial
mesh generated using the midpoint algorithm, shown in the figure 6.6 and how this varies
as we apply refinements to arrive at a mesh that meets the quality criteria. For the analysis
we focus on two usual quality criteria for polygons, marking as "bad" those polygons that
exceed a certain area, or that have a longer side at a certain value.

6.4.1. Declaring an upper limit to the area of the polygons

The following analysis consists of applying the three quality refinements to the initial
polygon mesh obtained from applying the division using the midpoint on the unicorn geom-
etry. We consider for the experiment the value of the average area of the entire mesh as the
upper threshold, consequently all the polygons that have a greater area will be considered as
bad polygons.

After that, we consider different fractions of said value, to be more strict and mark more
polygons as bad, reaching 1/10 of the average area of the initial mesh as the acceptable area
limit.

6.4.2. Upper limit equal to average mesh area

The calculation of the average area of the polygons of the initial mesh gives an approx-
imate 1979 square units of area, which marks 10 polygons that must be refined. Below we
show which are the polygons to be refined marked with a red hue, and later, the results after
applying each of the different quality refinements.

Figure 6.10: Unicorn geometry with bad polygons (Mean area).

134

6.4.2.1. Results obtained by centroid algorithm

(a) First refinement (b) Second refinement

Figure 6.11: Succesive Centroid refinement to bad polygons (Mean
area).

Table 6.8: Main study characteristics after successive Centroid refine-
ments to bad polygons (Mean area).

Refinement Level Npolygons Npoints Min Lengthmean Anglemin Areamean Time (ms)

1 112 152 38.55 55.57 1201.64 28.01
2 132 161 40.24 50.01 1019.57 17.95

135

6.4.2.2. Results obtained by centroid replicate algorithm

(a) First refinement (b) Second refinement

Figure 6.12: Succesive Centroid Replicate refinement to bad polygons
(Mean area).

Table 6.9: Main study characteristics after successive Centroid Repli-
cate refinements to bad polygons (Mean area).

Refinement Level Npolygons Npoints Min Lengthmean Anglemin Areamean Time (ms)

1 121 195 31.15 59.54 1112.26 74.36
2 166 240 29.51 53.33 810.75 79.9

136

6.4.2.3. Results obtained by Splitting Longest Edge algorithm

(a) Third refinement (b) Sixth refinement

Figure 6.13: Succesive Splitting Longest Edge refinement to bad poly-
gons (Mean area).

Table 6.10: Main study characteristics after successive Splitting
Longest Edge refinements to bad polygons (Mean area).

Refinement Level Npolygons Npoints Min Lengthmean Anglemin Areamean Time (ms)

1 78 152 32.38 69.35 1725.43 53.55
2 95 169 32.49 65.82 1416.67 98.99
3 107 181 32.63 63.57 1257.79 60
4 116 190 32.47 62.55 1160.2 39.39
5 121 195 32.37 61.27 1112.26 17.83
6 122 196 32.26 61.42 1103.15 3.75

137

6.4.2.4. Results obtained by Quadtree Refining algorithm

(a) First refinement (b) Second refinement

Figure 6.14: Succesive Quadtree Refinement to bad polygons (Mean
area).

Table 6.11: Main study characteristics after successive Quadtree Re-
finement to bad polygons (Mean area).

Refinement Level Npolygons Npoints Min Lengthmean Anglemin Areamean Time (ms)

1 111 194 28.22 77.26 1212.47 505.32
2 123 203 28.61 78.5 1094.18 119.73

6.4.3. Upper limit equal to one tenth of the average area

One tenth of the average area is about 198 square units, thereby marking 51 polygons as
bad polygons. Below we show which are the polygons to be refined marked with a red hue,
and later, the results after applying each of the different quality refinements.

138

Figure 6.15: Unicorn geometry with bad polygons (One tenth of the
mean area).

6.4.3.1. Results obtained by centroid algorithm

(a) Second refinement (b) Fourth refinement

Figure 6.16: Succesive Centroid refinement to bad polygons (One tenth
of the mean area).

139

Table 6.12: Main study characteristics after successive Centroid refine-
ments to bad polygons (One tenth of the mean area).

Refinement Level Npolygons Npoints Min Lengthmean Anglemin Areamean Time (ms)

1 257 188 32.15 35.76 523.67 108.41
2 530 320 29.2 25.04 253.93 327.75
3 868 489 27.72 20.22 155.05 620.83
4 1300 705 26.14 17.92 103.53 1055.39

6.4.3.2. Results obtained by centroid replicate algorithm

(a) Second refinement (b) Fourth refinement

Figure 6.17: Succesive Centroid Replicate refinement to bad polygons
(One tenth of the mean area).

Table 6.13: Main study characteristics after successive Centroid Repli-
cate refinements to bad polygons (One tenth of the mean area).

Refinement Level Npolygons Npoints Min Lengthmean Anglemin Areamean Time (ms)

1 302 368 21.09 48.29 445.64 457.71
2 910 976 15.65 37.85 147.89 2595.05
3 1678 1744 13.64 32.37 80.2 6291.69
4 1687 1753 13.6 32.45 79.78 88.89

140

6.4.3.3. Results obtained by Splitting Longest Edge algorithm

(a) Second refinement (b) Fourth refinement

(c) Eighth refinement (d) Tenth refinement

Figure 6.18: Succesive Splitting Longest Edge refinement to bad poly-
gons (One tenth of the mean area).

141

Table 6.14: Main study characteristics after successive Splitting
Longest Edge refinements to bad polygons (One tenth of the mean
area).

Refinement Level Npolygons Npoints Min Lengthmean Anglemin Areamean Time (ms)

1 122 188 28.34 54.45 1103.15 450.68
2 209 275 23.75 49.59 643.94 1252.74
3 330 396 21.06 44.63 407.83 2626.45
4 481 547 18.72 41.92 279.8 4133.18
5 657 723 17.36 38.23 204.85 5602.9
6 806 872 16.36 37.18 166.98 4417.65
7 926 992 15.75 36.26 145.34 3229.33
8 1013 1079 15.29 35.92 132.86 2198.12
9 1053 1119 15.07 35.7 127.81 671.64
10 1056 1122 15.05 35.68 127.45 109.2

6.4.3.4. Results obtained by Quadtree Refining algorithm

(a) Second refinement (b) Fourth refinement

Figure 6.19: Succesive Quadtree Refining to bad polygons (One tenth
of the mean area).

Table 6.15: Main study characteristics after successive Quadtree Re-
fining to bad polygons (One tenth of the mean area).

Refinement Level Npolygons Npoints Min Lengthmean Anglemin Areamean Time (ms)

1 202 312 19.83 79.27 666.33 2132.99
2 667 848 11.58 83.7 201.8 10063.5
3 1477 1718 8.43 86.54 91.13 26918.14
4 1963 2230 7.58 87.39 68.57 25736.54

142

6.4.4. Declaring an upper limit to the maximum edge length of
the polygons

Another common type of analysis is to perform quality refinements until all the polygons
in a given polygon mesh have no side longer than a certain value, provided by the user. Later,
we perform the analysis for half of that value, with the corresponding algorithms.

Something important to note is that the Centroid and Centroid with Replication refine-
ment algorithms do not converge to a solution, because in each refinement, they maintain
the shape of each initial polygon, and in no case is the length of the segments of the elements
shortened. Therefore, the only analyzed methods are Splitting longest edge and Quadtree
Refining.

6.4.5. Upper limit equal to average edge length

The calculation of the average edge length of the polygons of the initial mesh gives an
approximate 30 units, which marks 43 polygons that must be refined. Below we show which
are the polygons to be refined marked with a red hue, and later, the results after applying
each of the different quality refinements.

Figure 6.20: Unicorn geometry with bad polygons (Average edge
length).

143

6.4.5.1. Results obtained by Splitting Longest Edge algorithm

(a) Second refinement (b) Fifth refinement

Figure 6.21: Succesive Splitting Longest Edge refinement to bad poly-
gons (Average edge length).

Table 6.16: Main study characteristics after successive Splitting
Longest Edge refinements to bad polygons (Average edge length).

Refinement Level Npolygons Npoints Min Lengthmean Anglemin Areamean Time (ms)

1 114 180 29.32 56.15 1180.56 310.76
2 187 253 25.25 51.16 719.7 976.96
3 281 347 22.8 46.26 478.95 1595.22
4 385 451 20.81 44.88 349.57 2190.13
5 475 541 20.07 41.48 283.33 1870.07
6 565 631 19.07 39.64 238.2 1999.23
7 636 702 18.38 37.98 211.61 1387.24
8 687 753 17.92 36.82 195.9 873.35
9 725 791 17.49 35.68 185.63 595.98
10 735 801 17.37 35.31 183.11 106.34
11 739 805 17.33 35.14 182.12 39.86

144

6.4.5.2. Results obtained by Quadtree Refining algorithm

(a) First refinement (b) Third refinement

Figure 6.22: Succesive Quadtree Refining to bad polygons (Average
edge length).

Table 6.17: Main study characteristics after Quadtree Refining to bad
polygons (Average edge length).

Refinement Level Npolygons Npoints Min Lengthmean Anglemin Areamean Time (ms)

1 181 284 21.55 79.26 743.64 1629.77
2 419 563 15.14 83.76 321.24 4054.19
3 566 720 13.7 85.1 237.81 2790.32

6.4.6. Upper limit equal to one half of the average edge length

One half of the average edge length of the polygons is about 15 units, which marks 59
polygons that must be refined. Below we show the polygons to be refined marked with a red
hue, and later, the results after applying each of the different quality refinements.

145

Figure 6.23: Unicorn geometry with bad polygons (One half of average
edge length).

6.4.6.1. Results obtained by Splitting Longest Edge algorithm

(a) Second refinement (b) Fifth refinement

Figure 6.24: Succesive Splitting Longest Edge refinement to bad poly-
gons (One half of the average edge length).

146

Table 6.18: Main study characteristics after successive of Splitting
Longest Edge refinements to bad polygons (One half of the average
edge length).

Refinement Level Npolygons Npoints Min Lengthmean Anglemin Areamean Time (ms)

1 130 196 27.4 53.02 1035.26 564.3
2 242 308 21.69 47.56 556.13 1895.42
3 438 504 17.79 41.45 307.27 5564.14
4 748 814 14.66 38.17 179.92 15208.71
5 1173 1239 12.8 34.55 114.73 31600.35
6 1687 1753 11.45 32.78 79.78 48701.09
7 2299 2365 10.43 30.37 58.54 73139.26
8 2903 2969 9.66 28.97 46.36 78343.87
9 3391 3457 9.17 27.54 39.69 58845.49
10 3792 3858 8.83 26.37 35.49 46852.58
11 4052 4118 8.59 25.47 33.21 24088.05
12 4189 4255 8.48 24.85 32.13 9657.58
13 4277 4343 8.4 24.4 31.47 5115.46
14 4321 4387 8.38 24.16 31.15 2291.16
15 4357 4423 8.37 23.96 30.89 1757.97
16 4394 4460 8.34 23.76 30.63 1791.38
17 4418 4484 8.32 23.63 30.46 1148.22
18 4434 4500 8.31 23.55 30.35 748.79
19 4445 4511 8.3 23.49 30.28 531.41

6.4.6.2. Results obtained by Quadtree Refining algorithm

(a) Second refinement (b) Fourth refinement

Figure 6.25: Succesive Quadtree Refining to bad polygons (One half
of the Average edge length).

147

Table 6.19: Main study characteristics after successive Quadtree Re-
fining to bad polygons (One half of the average edge length).

Refinement Level Npolygons Npoints Min Lengthmean Anglemin Areamean Time (ms)

1 202 312 19.83 79.27 666.33 2077.83
2 670 851 11.55 83.73 200.89 10342.6
3 1650 1926 7.86 86.72 81.58 33974.16
4 2234 2529 7.07 87.53 60.25 28500.06

6.5. Comparison of quality metrics between different
levels of refinement

In this section we study the quality metrics on the geometric meshes of the refinements
made previously. The analysis was carried out on the geometric meshes that fulfilled the
condition of Area and Maximum length, after multiple refinements using the different al-
gorithms. Our purpose is to obtain the best algorithm according to the metrics, and thus
compare it with Triangle.

Remember that the metrics are independent of the polygon scale, and they’re defined in
a certain range and with a certain trend. For the purposes of a better analysis we summarize
this information below:

• The Circle Ratio (CR) metric is defined in a range of [0, 1] and the greater and closer
to 1 is, the better.

• The Edge Ratio (ER) metric is defined in a range of (0, 1] and the greater and closer
to 1 is, the better.

• The Normalized Point Distance (NPD) metric is defined in a range of (0, 1] and the
greater and closer to 1 is, the better.

• The Perimeter Area Ratio (PAR) metric is defined in a range of (0,∞) and the smaller
and closer to 0, the better.

6.5.1. Results of imposing a upper limit to the maximum area

148

6.5.1.1. Limit equal to the average area of the geometric mesh

0.58
0.54

0.59

0.7

0.27
0.29 0.31

0.35

0.48

0.36

0.46

0.58

0.45

0.32
0.35

0.43

0.00

0.25

0.50

0.75

1.00

Centroid Centroid with Replication Splitting Longest Edge Quadtree Refining
Algorithms

M
et

ric
 V

al
ue

Circle Ratio Perimeter Area Ratio Edge Ratio Normalized Point Distance

Figure 6.26: Metrics for Average Area.

149

6.5.1.2. Limit equal to 1
10 of the average area of the geometric mesh

0.4
0.44 0.45

0.81

0.14

0.2
0.24

0.38
0.41

0.33

0.55

0.88

0.41

0.3

0.42

0.63

0.00

0.25

0.50

0.75

1.00

Centroid Centroid with Replication Splitting Longest Edge Quadtree Refining
Algorithms

M
et

ric
 V

al
ue

Circle Ratio Perimeter Area Ratio Edge Ratio Normalized Point Distance

Figure 6.27: Metrics for one tenth of the Average Area.

6.5.1.3. Analysis of metric results

The analysis of the results obtained, and the comparison between them for each of the metrics,
is as follows:

1. Circle Ratio (CR): The trend in this measure is downward between both limit sce-
narios, with the exception of the Quadtree Refining algorithm, which goes from 0.7 to
0.84, being the only one that has an upward trend.

2. Edge Ratio (ER): In this case, there are two refinement algorithms that increase their
value when going from one scenario to the other, which are Longest Splitting Edge and
Quadtree Refining. The biggest change between the two is the Quadtree Refining
algorithm, going from 0.58 to 0.88, so we conclude that this is the best algorithm for
this metric.

3. Normalized Point Distance (NPD): In this metric, we again attribute Quadtree
Refining as the best algorithm, going from 0.43 to 0.63, thus obtaining better results
in deeper refinements.

4. Perimeter Area Ratio (PAR): Finally, in this metric that has the best result the
closer it is to 0, the best algorithm is the Centroid Algorithm, falling from 0.27 to 0.14.
In this case, it should be noted that the Centroid Refining algorithm did not perform
well, even maintaining an upward trend, which implies that it obtained a worse result.

150

6.5.2. Results of imposing a upper limit to the maximum length

It is important to remember that in relation to getting shorter and shorter lengths, the
only refinement strategies that converge to such a mesh are Splitting Longest Edge and
Quadtree Refining. The analysis of the results obtained, and the comparison between them
for each of the metrics, is as follows:

6.5.2.1. Limit equal to the average length of the geometric mesh

0.43

0.78

0.22

0.37

0.53

0.79

0.37

0.57

0.00

0.25

0.50

0.75

1.00

Splitting Longest Edge Quadtree Refining
Algorithms

M
et

ric
 V

al
ue

Circle Ratio Perimeter Area Ratio Edge Ratio Normalized Point Distance

Figure 6.28: Metrics for Average Length.

151

6.5.2.2. Limit equal to 1
2 of the average length of the geometric mesh

0.34

0.82

0.16

0.38

0.5

0.88

0.32

0.63

0.00

0.25

0.50

0.75

1.00

Splitting Longest Edge Quadtree Refining
Algorithms

M
et

ric
 V

al
ue

Circle Ratio Perimeter Area Ratio Edge Ratio Normalized Point Distance

Figure 6.29: Metrics for one half of Average Length.

6.5.2.3. Analysis of metric results

1. Circle Ratio (CR): For this metric, the best result was obtained by the Quadtree
Refining algorithm, going from 0.78 to 0.82, maintaining the upward trend.

2. Edge Ratio (ER): Like the previous metric, the best result was obtained by the
Quadtree Refining algorithm, going from 0.79 to 0.88.

3. Normalized Point Distance (NPD): Again the best result was obtained with the
Quadtree Refining algorithm, going from 0.57 to 0.63.

4. Perimeter Area Ratio (PAR): In this metric, the Quadtree Refining algorithm
remained relatively constant, with the Splitting Longest Edge algorithm obtaining a
better result, dropping from 0.22 to 0.16.

6.6. Comparing meshes with Triangle
We now present the comparisons between the results obtained by our application and

those obtained by Triangle. We compare using the initial mesh obtained by a quadtree with
division using mid point, and the initial mesh generated by kd-tree, as shown in the Figure 6.6
with two strategies: Quadtree Refining and Splitting Longest Edge, until a certain criterion

152

is fulfilled. First we focus on the main elements of the mesh, such as the number of Polygons
and average length of Edges and then we compare the quality metrics in each scenario.

6.6.1. Comparing meshes

Below we show the results obtained from comparing the initial meshes, and their subse-
quent refining until meeting the condition imposed by the user in reference to the maximum
possible value of area and length of the polygons. Something important to note is that the
time is not comparable between Triangle and our application, because the results shown in-
clude the rendering time and frame changes, so a more accurate time analysis considers only
the formation time of the mesh, leaving this as future work.

6.6.1.1. Maximum area equal to 1979 area units

Figure 6.30: Unicorn geometry refined by Triangle (Max: 1979 area
units).

The results obtained show that in number of polygons and points, Triangle obtains better
performance than any of our algorithms, the closest being using kd-trees with the splitting
longest edge strategy. Regarding the minimum length, Triangle gets a higher value, followed
by KD-Tree with splitting longest edge, which indicates that Triangle forms bigger triangles
with respect to our meshes. Finally, with respect to the average minimum angle, our algo-
rithms generate higher values than Triangle, in particular the Quadtree strategies maintain a
higher minimum angle value due to the natural incorporation of quadrilaterals in refinements.

153

Table 6.20: Comparing main study characteristics with Triangle (Max:
1979 area units).

Algorithm Npolygons Npoints Min Lengthmean Anglemin Areamean Time (ms)

KD-Tree
Quadtree
Refining 222 333 23.75 73.41 606.3 347.25

Splitting
Longest
Edge

119 151 39.73 43.6 1131.08 326.23

Quadtree with mid
point strategy

Quadtree
Refining 123 203 28.61 78.5 1094.18 119.73

Splitting
Longest
Edge

122 196 32.26 61.42 1103.15 3.75

Triangle - 108 74 56.88 41.58 1246.15 2

However, there are scenarios where it is not necessary to refine the entire mesh, but
only a certain region is of interest. For example, if we want to perform a simulation with
mathematical methods on a polygon mesh, it is usual that the region of interest is a small
part of the entire geometry, so we are interested in obtaining the quality criterion by refining
only in that area.

154

Figure 6.31: Unicorn region to be refined (Max: 1979 area units).

We take as an example the region of interest shown in the Figure 6.31. What we did was
to use as a criterion a maximum of 1972 area units for all polygons within that area, using as
initial mesh one generated by kdtree, and as refinement algorithm the splitting longest edge.

155

Figure 6.32: Unicorn region refined (Max: 1979 area units).

As shown in Figure 6.32, there are still polygons in the mesh that do not meet the quality
criteria, however they are not considered when refining the polygons that belong within the
region of interest. In particular we can see that the region demarcated by the user has a
deeper level of refinement than the rest of the polygon mesh.

The results obtained are shown in Table 6.21. Because Triangle is not able to refine
a certain region, it performs a refinement on the whole mesh to reach the imposed area
criterion. On the other hand, because our application is able to refine only the polygons that
do not meet the criterion, our refined mesh has 63 polygons, compared to 108 polygons in
the mesh generated by Triangle. In relation to the number of points, Triangle has a better
optimization at the time of constructing the mesh, obtaining a smaller number of points than
our application. In relation to the construction time, similar results were obtained, being our
application 0.4 ms faster than Triangle.

Table 6.21: Comparison of refinement by region between our applica-
tion using a (kdtree and splitting longest edge) and triangle. (Crite-
rion: maximum area 1979 units).

Algorithm Npolygons Npoints Min Lengthmean Anglemin Areamean Time (ms)

KDTree - Splitting Longest Edge 63 95 45.07 43.83 2136.49 1.6
Triangle 108 74 56.88 41.58 1246.15 2

156

6.6.1.2. Maximum area equal to 198 area units

Figure 6.33: Unicorn geometry refined by Triangle (Max: 198 area
units).

The results when the refinement is stricter, show that the number of polygons in the trees that
used splitting longest edge is less than that generated by Triangle. However, the number of
points needed to generate the mesh, practically double. We attribute this to the existence of
collinear points that are formed in the refinement of splitting longest edge in the neighboring
polygon. In relation to the minimum length, similar results are obtained between Triangle
and the longest edge splitting strategy in each tree, and finally in relation to the average
minimum angle of the mesh, Triangle obtains a better result. We also note that the trend to
an average close to 90º for refinement per quadtree is maintained, due to the generation of
quadrilaterals.

Table 6.22: Comparing main study characteristics with Triangle (Max:
198 area units).

Algorithm Npolygons Npoints Min Lengthmean Anglemin Areamean Time (ms)

KD-Tree
Quadtree
Refining 3304 3817 6.75 85.6 40.74 329.58

Splitting
Longest
Edge

1032 1064 17.16 32.31 130.43 325.44

Quadtree with mid
point strategy

Quadtree
Refining 1963 2230 7.58 87.39 68.57 25736.54

Splitting
Longest
Edge

1056 1122 15.05 35.68 127.45 109.2

Triangle - 1069 573 17.94 44.67 125.9 4

157

6.6.1.3. Maximum length equal 30 length units

Figure 6.34: Unicorn geometry refined by Triangle (Max: 30 length
units).

Now the criterion is applied to the maximum length of an Edge that a polygon can have.
When we impose a threshold of 30 units of length, we see that the refinement by quadtree
obtains a smaller amount of polygons in both strategies with respect to Triangle, however,
it uses a greater amount of points for this. A particular case is the poor performance of
KD-tree, obtaining a large number of elements to meet the quality criteria. In relation to
the areas, we see that the polygons generated by the quadtree strategy have a higher value
than those obtained by Triangle.

Table 6.23: Comparing main study characteristics with Triangle (Max:
30 length units).

Algorithm Npolygons Npoints Min Lengthmean Anglemin Areamean Time (ms)

KD-Tree
Quadtree
Refining 3295 3804 6.76 85.66 40.85 342.99

Splitting
Longest
Edge

1119 1151 16.76 23.49 120.28 360.18

Quadtree with mid
point strategy

Quadtree
Refining 566 720 13.7 85.1 237.81 2790.32

Splitting
Longest
Edge

739 805 17.33 35.14 182.12 39.86

Triangle - 781 442 20.46 47.09 172.32 2

158

6.6.1.4. Maximum length equal 15 length units

Figure 6.35: Unicorn geometry refined by Triangle (Max: 15 length
units).

If we make the criterion more strict imposing a maximum length of 15 units, then we see that
the refinement by Quadtree obtains fewer Polygons in its iterative strategy of continuing to
partition according to the midpoint of each quadrant in relation to Triangle. We also see
that the performance of splitting longest edge using Quadtrees drops, being surpassed by
Triangle. Another important aspect is that Triangle occupies a smaller number of points in
all cases, practically half compared to the best refinement that follows, which is Quadtree.

Table 6.24: Comparing main study characteristics with Triangle (Max:
15 length units).

Algorithm Npolygons Npoints Min Lengthmean Anglemin Areamean Time (ms)

KD-Tree
Quadtree
Refining 9601 10513 4.19 87.65 14.02 364.56

Splitting
Longest
Edge

5922 5954 8.21 17.54 22.73 342.12

Quadtree with mid
point strategy

Quadtree
Refining 2234 2529 7.07 87.53 60.25 28500.06

Splitting
Longest
Edge

4445 4511 8.3 23.49 30.28 531.41

Triangle - 3106 1655 10.25 47.37 43.33 9

6.6.2. Comparison in quality metrics

159

6.6.2.1. Initial Mesh: Quadtree with Mid Point strategy - Maximum area equal
to 198 area units

0.81

0.45

0.63

0.38

0.24
0.27

0.88

0.55

0.74

0.63

0.42

0.7

0.00

0.25

0.50

0.75

1.00

Splitting Longest Edge Quadtree Refining Triangle
Algorithms

M
et

ric
 V

al
ue

Circle Ratio Perimeter Area Ratio Edge Ratio Normalized Point Distance

Figure 6.36: Initial Mesh: Quadtree - Quality metric comparison with
Triangle (Max: 198 area units).

1. Circle Ratio (CR): In this metric, triangle obtained 0.63, while the Splitting longest
edge algorithm obtained a better metric with a value of 0.81. The quadtree refining
algorithm obtained 0.45, a lower value than the other two methods.

2. Edge Ratio (ER): Continuing with the previous behavior, the refinement of Splitting
Longest Edge obtained 0.88, while Triangle obtained 0.74.

3. Normalized Point Distance (NPD): In this metric Triangle obtained 0.7 being the
algorithm that had the best value, followed by Splitting Longest Edge with a value of
0.63.

4. Perimeter Area Ratio (PAR): Finally, the algorithm that obtained the best metric
was Quadtree Refining with 0.24, remembering that lower is better.

160

6.6.2.2. Initial Mesh: KD-tree - Maximum area equal to 198 area units

0.41

0.82

0.63

0.22

0.25
0.27

0.55

0.34

0.74

0.4

0.29

0.7

0.00

0.25

0.50

0.75

1.00

Splitting Longest Edge Quadtree Refining Triangle
Algorithms

M
et

ric
 V

al
ue

Circle Ratio Perimeter Area Ratio Edge Ratio Normalized Point Distance

Figure 6.37: Initial Mesh: KD-tree - Quality metric comparison with
Triangle (Max: 198 area units).

1. Circle Ratio (CR): In this metric the best result was obtained by Quadtree Refining
performed on the KD-tree, obtaining a value of 0.82 compared to Triangle, which
obtained 0.63. The lowest result was obtained with Splitting longest edge, which had
0.41.

2. Edge Ratio (ER): In this metric Triangle obtained the best performance with 0.74,
followed by Splitting longest ege with 0.55.

3. Normalized Point Distance (NPD): Here Triangle also obtained the best result
with 0.7, followed by Splitting longest edge which was 0.4.

4. Perimeter Area Ratio (PAR): In this metric Triangle obtained the worst perfor-
mance, being the best Splitting longest edge with 0.22 and then Quadtree Refining
with 0.25. (The smaller it is, the better the metric).

161

6.6.2.3. Initial Mesh: Quadtree with Mid Point strategy - Maximum length
equal to 15 length units

0.82

0.34

0.66

0.38

0.16

0.28

0.88

0.5

0.77

0.63

0.32

0.73

0.00

0.25

0.50

0.75

1.00

Splitting Longest Edge Quadtree Refining Triangle
Algorithms

M
et

ric
 V

al
ue

Circle Ratio Perimeter Area Ratio Edge Ratio Normalized Point Distance

Figure 6.38: Initial Mesh: Quadtree - Quality metric comparison with
Triangle (Max: 15 length units).

1. Circle Ratio (CR): In this metric, triangle obtained 0.66, while the Splitting longest
edge algorithm obtained a better metric with a value of 0.82. The quadtree refining
algorithm obtained 0.34, a lower value than the other two methods.

2. Edge Ratio (ER): Continuing with the previous behavior, the refinement of Splitting
Longest Edge obtained 0.88, while Triangle obtained 0.66.

3. Normalized Point Distance (NPD): In this metric Triangle obtained 0.76 being
the algorithm that had the best value, followed by Splitting Longest Edge with a value
of 0.63.

4. Perimeter Area Ratio (PAR): Finally, the algorithm that obtained the best metric
was Quadtree Refining with 0.16, remembering that lower is better.

162

6.6.2.4. Initial Mesh: KD-tree - Maximum length equal to 15 length units

0.31

0.87

0.66

0.13

0.26
0.28

0.48

0.36

0.77

0.27
0.3

0.73

0.00

0.25

0.50

0.75

1.00

Splitting Longest Edge Quadtree Refining Triangle
Algorithms

M
et

ric
 V

al
ue

Circle Ratio Perimeter Area Ratio Edge Ratio Normalized Point Distance

Figure 6.39: Initial Mesh: KD-tree - Quality metric comparison with
Triangle (Max: 15 length units).

1. Circle Ratio (CR): In this metric, the Quadtree refining algorithm obtained the best
performance with a value of 0.87, followed by Triangle with a value of 0.66.

2. Edge Ratio (ER): Here Triangle had the best performance with a value of 0.77, with
the Splitting Longest Edge algorithm being the second best with 0.48.

3. Normalized Point Distance (NPD): Like the previous metric, Triangle had the
best result at 0.75, while our two strategies had similar results close to 0.3.

4. Perimeter Area Ratio (PAR): Finally in PAR, the best metric was obtained in
Splitting longest edge with 0.13, followed by Quadtree Refining and Triangle with
results of 0.26 and 0.28 respectively.

163

Chapter 7

Conclusions

In this thesis work, we validate the veracity of our hypotheses regarding the meshes of
arbitrary polygons generated by quadtrees and kd-trees, in particular, about the least number
of elements and the quality of these in relation to the metrics. To test the hypotheses, we
create a mesh generator that uses different types of point insertion algorithms to explore how
the mesh creation and refinement behaves comparing them with Triangle.

7.1. Application
The application was developed using the web application technologies that are used to-

day, being written in Typescript to give it a more object-oriented approach. We built this
application in order to be an aid in the visualization of polygon meshes, and the study of
different refinement algorithms, so performance in time and resources is not an objective of
this thesis. The performance at the level of visualization and drawing of meshes was not
optimized at a deep level, using a library that abstracts the functionalities of WebGL. As fu-
ture work, we proposed an implementation that takes these aspects into account, integrating
GPU and parallelism.

The application was built thinking about the ease of integration of new refinement al-
gorithms, new data structures that partition two-dimensional space, and new metrics for
polygons. That is why interfaces and abstract classes were built in such a way that adding
a new strategy means only implementing or extending some of them. Another important
aspect of the application is its ease of use and the versatility it has of being up on a server
and being accessed from any web browser. In addition to this, the user is able to obtain
information on the current mesh graphically, and propose refinements to certain areas or to
certain polygons that do not meet a certain criteria.

The application within its functionalities has the ability to create a geometry using as
contour points the clicks that the user makes on the screen. When the user finishes the
process, the points are joined in the same order in which they were inserted and an initial
geometry is formed, which is refined using any of the implemented algorithms, generating an
initial polygon mesh.

In addition to the above, the application is capable of performing refinements in a certain

164

region chosen by the user using the mouse. This feature is not present in Triangle, so to
obtain a density of polygons in a certain region in that program, the entire mesh must be
refined. Refine by regions is important to carry out simulations using the VEM method
on polygon meshes where a certain region is relevant to the user since collinear points are
inserted in the edges, reducing the final number of polygons.

7.2. Results of Experiments
Below we present the conclusions of the results of our experiments, dividing them into

three categories: Quadtree results, KD-tree results and finally the comparison with Triangle.

7.2.1. Quadtree results

The initial meshes generated by Quadtrees obtain a greater number of elements, due to
the cuts that must be made with each polygon. Quadtrees using the mid point algorithm
tend to create quadrilaterals, while the algorithm of random or non-arbitrary points forms
elongated figures if the points are very close to each other.

The analysis of the metrics in the quality refinements was done on an initial mesh gener-
ated by a quadtree with the division algorithm using the midpoint. Taking this into consid-
eration, the results obtained are that by imposing restrictions on the mesh area, the stricter
it is and the better the result of successive quadtree refining, versus the application of quality
algorithms. This behavior is seen in all metrics except the Perimeter Area Ratio, whose best
performance was obtained with refinement using the centroid. The same trend happens when
the restriction is over the length of the mesh.

7.2.2. KD-tree results

The initial meshes generated by KD-trees are faster than those generated by quadtrees,
and they generate fewer elements and of better quality. We attribute this to the fact that
the cuts are made at the same insertion points, and on a single axis, so there are fewer
intersections.

Its in-depth analysis was made when comparing the algorithms with Triangle. The num-
ber of polygons generated when a restriction is imposed on the maximum area of a mesh
turned out to be less than those generated by Triangle when using a KD-tree with the Split-
ting Longest Edge algorithm, however, the number of points for the construction of the mesh
turned out to be double.

On the other hand, the performance of KD-trees when a restriction is imposed on the
maximum length of a polygon mesh drops drastically, generating three times as many poly-
gons with refinement per quadtree and twice as many polygons using splitting longest edge,
in relation to what was obtained with Triangle.

165

7.2.3. Comparison with Triangle

In the experiment of placing a limit on the maximum area going from 1979 to 198, we
see that the number of polygons generated by a KD-tree with splitting longest edge (1032)
and those generated by a Quadtree with splitting longest edge (1056) are less than those
polygons generated by Triangle (1069). In spite of that, Triangle does a better treatment of
points obtaining in number approximately half of those required in our best algorithms.

However, where our application has better results than Triangle is when it is necessary to
perform a refinement in a certain area of the polygon mesh. According to the results obtained
in our experiments, when refining inside a region chosen by the user we obtained 63 polygons
and 95 points, while Triangle obtained 108 polygons and 74 points. The results show to be
good for the application of simulations using mathematical methods such as VEM, since the
number of polygons is lower, but still meets the quality criteria imposed by the user in the
region of interest. Moreover, our refining algorithm generates collinear points at the edges of
the polygons, which contributes in a higher density of points inside the region and therefore,
obtaining a better solution when performing mathematical simulations.

The process of generating the refined mesh in a certain region was faster in our applica-
tion taking 1.6 ms (without considering the painting of the mesh on canvas), while Triangle
took 2 ms. However, we believe that a larger number of experiments are needed to obtain a
more accurate time analysis.

In relation to metrics, when the maximum area is restricted to 178, the polygons gen-
erated by a quadtree with splitting longest edge obtain better metrics in ER and CR than
Triangle. On the other hand, when using a KD-tree the metrics are all lower in our algo-
rithms except CR using a refinement with quadtree.

When we limit the maximum length of a polygon mesh from 30 to 15 units long, we
see that a quadtree that subdivides itself with the midpoint strategy, gets 2234 polygons,
while Triangle gets 3106. Triangle in this case also has a better treatment of points, less in
related to all our algorithms. In relation to metrics, the same trend is maintained when the
maximum area was limited.

166

Future Work

In relation to future work, the application has a lot of room for improvement. In the first
instance, as previously explained, the application was not made with time efficiency in mind,
so a programming language such as C ++ that allows more effective handling of program
memory and better handling of cutting operations, it would bring about a substantial im-
provement to the application.

We propose an improvement in the number of elements that the application is capable of
processing. Currently the application is capable of processing refinements up to level 4 or 5,
depending on the algorithm, in a time close to 1 minute, for an approximate number of 7000
polygons. However, having a greater number of polygons, the time increases considerably, so
the refinement algorithms can be optimized for a greater number of polygons, or optimize the
painting of the mesh on the application canvas, since this process is costly. For this, a better
mesh buffer management is proposed redrawing only those polygons that have changed, and
keep in the canvas those that remain unchanged.

In relation to the type of polygons that the application can support, currently it has as
a restriction that these cannot be auto-intersected nor can they have holes. This is why a
proposed improvement is to modify the application so that it can support these types of
polygons. The application’s polygons cannot contain interior points inside them either, since
when receiving a geometry drawn by the user, the application assumes that all points are on
the edge of the polygon and not outside or inside it. The same happens when receiving a
mesh in .off format, assuming that the existing points are the ones that make up the poly-
gons, ignoring those that are not on their edges.

There is also a lot of room for improvement in terms of new algorithms. For example,
it is proposed to create new quadtrees or KD-trees division algorithms that do not produce
elements that tend to be quadrilaterals with right angles, or an algorithm that locally sees
which is the best union of points to not produce elements unnecessarily small.

Finally, a validation analysis of the meshes generated by our application using mathemat-
ical methods such as VEM is proposed, since according to our results, the meshes produced
have characteristics (greater refinement and high density of points in the region of interest)
that would allow us to generate better solutions when the user is interested in performing a
simulation in a certain region of the polygon mesh.

167

Bibliography

[1] Michael Aftosmis, Marsha Berger, and John Melton. “Adaptive Cartesian Mesh Gen-
eration”. In: (Nov. 2000).

[2] M Attene et al. “Benchmark of Polygon Quality Metrics for Polytopal Element Meth-
ods”. In: arXiv preprint arXiv:1906.01627 (2019).

[3] C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa. “The Quickhull algo-
rithm for convex hulls”. In: ACM Transactions on Mathematical Software 22.4 (1996),
pp. 469–483.

[4] María Cecilia Bastarrica and Nancy Hitschfeld-Kahler. “Designing a product family of
meshing tools”. In: Advances in Engineering Software 37.1 (2006), pp. 1–10.

[5] Mark de Berg et al. Computational Geometry: Algorithms and Applications. 3rd ed.
Santa Clara, CA, USA: Springer-Verlag TELOS, 2008.

[6] Marshall W Bern and Paul E Plassmann. “Mesh Generation.” In: Handbook of compu-
tational geometry 38 (2000).

[7] Paul Bourke. “Calculating the area and centroid of a polygon”. In: Swinburne Univ. of
Technology 7 (1988).

[8] Aldo Canepa, Nancy Hitschfeld-Kahler, and Claudio Lobos. “Camarón: a visualization
tool for the quality inspection of polyhedrical meshes”. In: (2015).

[9] Aldo Canepa et al. “Camarón: An Open-source Visualization Tool for the Quality In-
spection of Polygonal and Polyhedral Meshes”. In: International Conference on Com-
puter Graphics Theory and Applications. Vol. 2. SCITEPRESS. 2016, pp. 130–137.

[10] The Geometry Centre.QHull. 1995. url: http://www.qhull.org/ (visited on 10/22/2017).
[11] Heng Chi, Lourenço Beirão da Veiga, and Glaucio H Paulino. “A simple and effec-

tive gradient recovery scheme and a posteriori error estimator for the Virtual Element
Method (VEM)”. In: Computer Methods in Applied Mechanics and Engineering 347
(2019), pp. 21–58.

[12] Heng Chi et al. “Virtual element method (VEM)-based topology optimization: an in-
tegrated framework”. In: Structural and Multidisciplinary Optimization 62.3 (2020),
pp. 1089–1114.

[13] Paolo Cignoni et al. “Meshlab: an open-source mesh processing tool.” In: Eurographics
Italian chapter conference. Vol. 2008. Salerno, Italy. 2008, pp. 129–136.

[14] Q. Du, V. Faber, and M. Gunzburger. “Centroidal Voronoi Tessellations: Applications
and Algorithms”. In: SIAM Rev. 41 (1999), pp. 637–676.

168

http://www.qhull.org/

[15] Qiang Du and Max Gunzburger. “Grid generation and optimization based on cen-
troidal Voronoi tessellations”. In: Applied mathematics and computation 133.2-3 (2002),
pp. 591–607.

[16] Qiang Du and Desheng Wang. “Recent progress in robust and quality Delaunay mesh
generation”. In: Journal of Computational and Applied Mathematics 195.1-2 (2006),
pp. 8–23.

[17] Qiang Du and Desheng Wang. “Tetrahedral mesh generation and optimization based
on centroidal Voronoi tessellations”. In: International journal for numerical methods in
engineering 56.9 (2003), pp. 1355–1373.

[18] Qiang Du et al. “Centroidal Voronoi tessellation algorithms for image compression,
segmentation, and multichannel restoration”. In: Journal of Mathematical Imaging and
Vision 24.2 (2006), pp. 177–194.

[19] Ramsay Dyer, Hao Zhang, and Torsten Möller. “Voronoi-Delaunay duality and De-
launay meshes”. In: Proceedings of the 2007 ACM symposium on Solid and physical
modeling. 2007, pp. 415–420.

[20] Steven Fortune. “Voronoi diagrams and Delaunay triangulations”. In: Computing in
Euclidean geometry. World Scientific, 1995, pp. 225–265.

[21] Erich L Foster, Kai Hormann, and Romeo Traian Popa. “Clipping simple polygons with
degenerate intersections”. In: Computers & Graphics: X 2 (2019), p. 100007.

[22] G. Garretón et al. “A New Approach for 2-D Mesh Generation for Complex Device
Structures”. In: NUPAD V - Technical Digest (1994), pp. 159–162.

[23] Günther Greiner and Kai Hormann. “Efficient clipping of arbitrary polygons”. In: ACM
Transactions on Graphics (TOG) 17.2 (1998), pp. 71–83.

[24] Leonidas Guibas and Jorge Stolfi. “Primitives for the manipulation of general subdivi-
sions and the computation of Voronoi”. In: ACM Transactions on Graphics 4.2 (1985),
pp. 74–123. arXiv: arXiv:1011.1669v3. url: http://portal.acm.org/citation.cfm?
doid=282918.282923.

[25] Nancy Hitschfeld-Kahler. “Generation of 3D mixed element meshes using a flexible
refinement approach”. In: Engineering with Computers 21.2 (2005), pp. 101–114.

[26] K. Ho-Le. “Finite element mesh generation methods: a review and classification”. In:
Computer-Aided Design 20.1 (1988), pp. 27–38.

[27] Grégory Legrain, Raphaël Allais, and Patrice Cartraud. “On the use of the extended
finite element method with quadtree/octree meshes”. In: International Journal for Nu-
merical Methods in Engineering 86.6 (2011), pp. 717–743.

[28] Claudio Lobos and Eugenio González. “Mixed-element Octree: A meshing technique
toward fast and real-time simulations in biomedical applications”. In: International
Journal for Numerical Methods in Biomedical Engineering 31.12 (Dec. 2015), n/a–n/a.
arXiv: NIHMS150003. url: http://onlinelibrary.wiley.com/doi/10.1002/cnm.
1494/full%20http://doi.wiley.com/10.1002/cnm.2725.

[29] F Pascal and JL Marechal. “Fast adaptive quadtree mesh generation”. In: 1998 Inter-
national Meshing Roundtable (1998).

169

https://arxiv.org/abs/arXiv:1011.1669v3
http://portal.acm.org/citation.cfm?doid=282918.282923
http://portal.acm.org/citation.cfm?doid=282918.282923
https://arxiv.org/abs/NIHMS150003
http://onlinelibrary.wiley.com/doi/10.1002/cnm.1494/full%20http://doi.wiley.com/10.1002/cnm.2725
http://onlinelibrary.wiley.com/doi/10.1002/cnm.1494/full%20http://doi.wiley.com/10.1002/cnm.2725

[30] Axelle Pochet et al. “A new quadtree-based approach for automatic quadrilateral mesh
generation”. In: Engineering with Computers 33.2 (2017), pp. 275–292.

[31] J. Ruppert. “A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh Gen-
eration”. In: Journal of Algorithms 18 (1994), pp. 548–585. url: http://hdl.handle.
net/2060/19970014411.

[32] Jonathan Richard Shewchuk. “Delaunay refinement algorithms for triangular mesh gen-
eration.” In: Computational Geometry 22 (2002), pp. 21–74.

[33] Jonathan Richard Shewchuk. “Reprint of: Delaunay refinement algorithms for trian-
gular mesh generation”. In: Computational Geometry: Theory and Applications 47.7
(2014), pp. 741–778. url: http://dx.doi.org/10.1016/j.comgeo.2014.02.005.

[34] Jonathan Richard Shewchuk. Triangle A Two-Dimensional Quality Mesh Generator
and Delaunay Triangulator. 2005. url: https://www.cs.cmu.edu/~quake/triangle.
html (visited on 10/22/2017).

[35] Jonathan Richard Shewchuk. “Triangle: Engineering a 2D quality mesh generator and
Delaunay triangulator”. In: (1996), pp. 203–222. url: http://link.springer.com/10.
1007/BFb0014497.

[36] Hang Si. “TetGen, a Delaunay-based quality tetrahedral mesh generator”. In: ACM
Transactions on Mathematical Software (TOMS) 41.2 (2015), pp. 1–36.

[37] Hang Si. TetView: A tetrahedral mesh and piecewise linear complex viewer. 2011.
[38] Lokesh Singh. “Mesh Generation : A Critical Review”. In: 4.6 (2016), pp. 15–21.
[39] Ivan E Sutherland and Gary W Hodgman. “Reentrant polygon clipping”. In: Commu-

nications of the ACM 17.1 (1974), pp. 32–42.
[40] A Tabarraei and N Sukumar. “Adaptive computations on conforming quadtree meshes”.

In: Finite elements in Analysis and Design 41.7-8 (2005), pp. 686–702.
[41] A Tabarraei and N Sukumar. “Extended finite element method on polygonal and

quadtree meshes”. In: Computer Methods in Applied Mechanics and Engineering 197.5
(2008), pp. 425–438.

[42] Shang-Hua Teng and Chi Wai Wong. “Unstructured mesh generation: Theory, practice
and perspectives”. In: 10.3 (2000), pp. 227–266.

[43] Weiming Wu, Alejandro Sánchez, and Mingliang Zhang. “An implicit 2-D shallow wa-
ter flow model on unstructured quadtree rectangular mesh”. In: Journal of Coastal
Research 59 (2011), pp. 15–26.

[44] Mark A Yerry and Mark S Shephard. “A modified quadtree approach to finite element
mesh generation”. In: IEEE Computer Graphics and Applications 3.1 (1983), pp. 39–46.

170

http://hdl.handle.net/2060/19970014411
http://hdl.handle.net/2060/19970014411
http://dx.doi.org/10.1016/j.comgeo.2014.02.005
https://www.cs.cmu.edu/~quake/triangle.html
https://www.cs.cmu.edu/~quake/triangle.html
http://link.springer.com/10.1007/BFb0014497
http://link.springer.com/10.1007/BFb0014497

Appendix A

.OFF file format

The .off extension file is a way to represent the decomposition of polygons of a geometric
figure. There are many variants of this type of file, which include additional information such
as the color in RGB format of points and faces and the edges of the polygon mesh.

The simplest way to define an .OFF file is as follows:

1. An optional OFF header, denoting the file type
2. Number of vertices and number of faces
3. One line for each vertex, with its X, Y and Z coordinates
4. One line for each face, with the number of vertices that make it up and then the indices

of each vertex separated by a space.

The following is an example 1of a .OFF file for a cube that has RGBA color information
for each of its faces.

1 OFF
2 #
3 # cube.off
4 # A cube.
5 # There is extra RGBA color information specified for the faces .
6 #
7 8 6 12
8 1.632993 0.000000 1.154701
9 0.000000 1.632993 1.154701

10 −1.632993 0.000000 1.154701
11 0.000000 −1.632993 1.154701
12 1.632993 0.000000 −1.154701
13 0.000000 1.632993 −1.154701
14 −1.632993 0.000000 −1.154701
15 0.000000 −1.632993 −1.154701
16 4 0 1 2 3 1.000 0.000 0.000 0.75
17 4 7 4 0 3 0.300 0.400 0.000 0.75
18 4 4 5 1 0 0.200 0.500 0.100 0.75
19 4 5 6 2 1 0.100 0.600 0.200 0.75
20 4 3 2 6 7 0.000 0.700 0.300 0.75
21 4 6 5 4 7 0.000 1.000 0.000 0.75

1 Example extracted from the page https://people.sc.fsu.edu/~jburkardt/data/off/off.html

171

https://people.sc.fsu.edu/~jburkardt/data/off/off.html

In our work we used a variant of this OFF format, in which only point 2 changes. We
put only the number of vertices nv in that line, then nv lines of vertex coordinates, later we
put a line with the number nf of faces, and later nf lines identical to those described for the
faces in the OFF format.

For example, the .OFF file for the unicorn outline used in this thesis work is shown below,
where there are only the number of vertices and then the coordinates of each point, omitting
the OFF line. Since the definition lines of a polygon does not exist, it is assumed that all the
points are connected in the order entered, and that they make up a contour of a geometry.

1 37
2 160 650
3 190 635
4 205 590
5 220 530
6 280 530
7 355 530
8 370 590
9 385 635

10 400 650
11 415 635
12 436 575
13 445 515
14 454 387.5
15 454 305
16 505 320
17 535 314
18 550 290
19 550 260
20 550 215
21 520 155
22 550 65
23 556 50
24 535 59
25 454 104
26 415 101
27 400 110
28 340 170
29 319 191
30 310 236
31 301 305
32 199 311
33 130 335
34 112 386
35 109 446
36 112 530
37 124 587
38 139 638

172

	Contents
	Introduction
	Objectives
	Main objectives
	Specific objectives

	Methodology
	Thesis content

	Background
	Closed Polygons
	Polygon Meshes
	Basic Definitions
	Manifold Meshes
	Orientation of a Mesh

	Mesh Representations
	Vertex-Vertex
	Face-Vertex
	Halfedge

	Geometry Algorithms
	Math Background
	Cross Product

	Points Related Algorithms
	Point inside Polygon
	Point inside Edge
	Point inside Circle

	Edge Related Algorithms
	Edge intersection
	Edge intersection with Quadrilateral
	Edge intersection with Circle

	Polygon Related Algorithms
	Polygon intersection with Circle
	Area of a Polygon
	Centroid of a Polygon
	Getting minimum angle of a Polygon

	Data Structures
	Quadtrees
	Generalized Quadtrees
	KD-Trees

	Related Work
	Polygon Meshing Algorithms
	Geometric Meshes based on Quadtrees
	Geometric Meshes based on Voronoy Cells
	Geometric Meshes based on Centroid Voronoi Tessellation (CVT)

	Mesh Visualizers
	Polygon Mesh quality metrics
	Scale Dependent measures
	Scale Invariant measures

	Polygon Clipping Algorithms
	Greiner Hormann Algorithm
	Phase 1: Searching intersections
	Phase 2: Marking entry and exit points
	Phase 3: Constructing the clipped polygon
	Disadvantages of the algorithm

	Extended Greiner Hormann Algorithm
	Classification of Polygonal Chains

	Design
	Mesh Generation Process
	Analysis of possible solutions
	Proposed software architecture
	General Architecture
	General Implementation Choices

	Process Design
	User draws a contour geometry in our Application
	User uploads Contour Geometry
	User uploads Mesh by off File
	Quadtree refining process
	Quality refining process
	Quality inspection
	Exporting

	Model Design
	Geometry and Selector Region
	Polygon in detail
	Clipping Algorithms
	Criteria
	Quality Refining Algorithms
	Division Algorithms
	Mesh
	HalfEdges
	Storages
	Tree
	React frontend Modeling

	Experimental Design

	Implementation
	Mesh Representation
	Vertices
	Vertex representation
	Vertex Storage

	Edges
	Edge representation
	Edge Storage

	Polygons
	Polygon representation
	Polygon Storage

	Halfedge Connectivity
	Halfedge definition
	Creating halfedges for a polygon mesh
	Applying operations to polygons
	Obtaining the neighbors of a polygon
	Add a Polygon to the Mesh keeping while maintaining connectivity

	Web Application Views
	Integrating PixiJS
	Geometry creation and initial panel
	Quadtree Refining Panel
	Refining Panel
	Quality Component

	Algorithms Implementation
	Clipping Algorithms
	Sutherland Hodgman Algorithm
	Extended Greiner Hormann Algorithm
	Calculating intersections
	Determining the orientation of polygon chains
	Classifying intersections
	Marking Intersections Chains
	Building the Entering and Exiting lists
	Traversing the lists
	Complexity Analysis

	Point insertion in Tree Data Structures
	Half Point Division Algorithm
	Arbitrary Point Division Algorithm

	Generating the Initial Mesh
	Generating new polygons from a contour geometry
	Obtaining the possible problematic points
	Fixing polygons consistently with problem points

	Refinement Algorithms
	Tree Refinement
	Splitting Longest Edge
	Centroid
	Centroid with Replication

	Results
	Time Analysis
	Extended Greiner Hormann Algorithm
	Initial meshes creation time

	Initial Mesh Generation
	Initial Meshes

	Quality improvements
	Initial Meshes
	Quality Refinements to Bad Polygons
	Centroid refinement to Initial Meshes
	Centroid Replication refinement to Initial Meshes
	Splitting Longest Edge refinement to Initial Meshes

	Successive quality refinements
	Declaring an upper limit to the area of the polygons
	Upper limit equal to average mesh area
	Results obtained by centroid algorithm
	Results obtained by centroid replicate algorithm
	Results obtained by Splitting Longest Edge algorithm
	Results obtained by Quadtree Refining algorithm

	Upper limit equal to one tenth of the average area
	Results obtained by centroid algorithm
	Results obtained by centroid replicate algorithm
	Results obtained by Splitting Longest Edge algorithm
	Results obtained by Quadtree Refining algorithm

	Declaring an upper limit to the maximum edge length of the polygons
	Upper limit equal to average edge length
	Results obtained by Splitting Longest Edge algorithm
	Results obtained by Quadtree Refining algorithm

	Upper limit equal to one half of the average edge length
	Results obtained by Splitting Longest Edge algorithm
	Results obtained by Quadtree Refining algorithm

	Comparison of quality metrics between different levels of refinement
	Results of imposing a upper limit to the maximum area
	Limit equal to the average area of the geometric mesh
	Limit equal to 110 of the average area of the geometric mesh
	Analysis of metric results

	Results of imposing a upper limit to the maximum length
	Limit equal to the average length of the geometric mesh
	Limit equal to 12 of the average length of the geometric mesh
	Analysis of metric results

	Comparing meshes with Triangle
	Comparing meshes
	Maximum area equal to 1979 area units
	Maximum area equal to 198 area units
	Maximum length equal 30 length units
	Maximum length equal 15 length units

	Comparison in quality metrics
	Initial Mesh: Quadtree with Mid Point strategy - Maximum area equal to 198 area units
	Initial Mesh: KD-tree - Maximum area equal to 198 area units
	Initial Mesh: Quadtree with Mid Point strategy - Maximum length equal to 15 length units
	Initial Mesh: KD-tree - Maximum length equal to 15 length units

	Conclusions
	Application
	Results of Experiments
	Quadtree results
	KD-tree results
	Comparison with Triangle

	Bibliography
	Appendices
	Appendix A .OFF file format

