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NEW QUANTUM TECHNOLOGIES: BATTERIES WITH QUBITS AND
ELECTROMAGNETIC RESONATORS

In this thesis, an emerging quantum technology is studied as an open quantum system: the
quantum battery (QB). This new technology has recently emerged as a promising tool for
the thermodynamic control at the quantum scale [1–6]. A quantum battery is a quantum
mechanical system that behaves as an efficient energy storage device. Its realization is mo-
tivated by the fact that genuine quantum effects such as entanglement or squeezing can
typically boost the performances of classical protocols, e.g., by speeding up the underlying
dynamics [7, 8]. These systems have been mostly studied neglecting the dissipation due to
the interaction with the environment surrounding them. In this thesis, the main focus is to
push forward the knowledge frontier in this regard, incorporating dissipation into the QB
system. In order to do so, numerical simulations were performed to study if the collective
effects that have been previously reported in QBs [9], still hold under dissipation. In particu-
lar, the system studied is made out of N non-mutually interacting two-level systems (qubits)
charged via a single electromagnetic field mode in a resonator. This configuration is com-
pared to N copies of a resonator with one qubit. The former is a collective QB while the
latter is a parallel QB. The results show that the performance of parallel and collective QBs
(for instance, the power) decreases under dissipation as expected. Nevertheless, the ratio
between the power of the collective over the parallel QB increases with dissipation meaning
that the deterioration in performance is smaller for the collective QB. More remarkably, it is
found that the loss in performance due to dissipation can be reduced by scaling up the QB,
which means equally increasing the injected energy and number of qubits. In many systems
this is easier to do than decreasing dissipation. For example, nitrogen-vacancy centers in
diamond (NV centers), which can be prepared to behave as spin qubits, may be in groups of
hundreds in a sample of diamond [10]. This characteristic, together with its large values of
decoherence time (time before losing the quantum phase) and longitudinal relaxation time
(time before reaching thermal equilibrium) at room temperature [11], are the motivation to
analyze, in this thesis, the feasibility of making QBs with NV centers. As a result of this
analysis, it is concluded that for the type of QBs studied in this thesis, the technology is not
yet good enough to realize a so called charger-based QB. Nonetheless, a general experimental
restriction has been deduced, and the possibility of using NV centers for stable adiabatic QBs
(not the focus of this thesis) has been identified as promising future work. The collective
enhancements and performances were also studied in regard of charging energy, ergotropy
(maximum amount of extractable energy with unitary operations), and transfer rate. For
the first two, similar results as for the charging power are obtained. For the transfer rate,
instead, it is found that its collective enhancement decreases and its performance increases
as the dissipation rate increases. Last but not least, in the writing of this thesis, an effort to
introduce new common nomenclature in the area of QBs has been done, as the literature is
not completely consistent with the terms used up to now.
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RESUMEN DE LA TESIS PARA OPTAR
AL GRADO DE MAGÍSTER EN CIENCIAS, MENCIÓN FÍSICA
POR: JAVIER ALEJANDRO CARRASCO ÁVILA
FECHA: 2021
PROF. GUÍA: FELIPE BARRA DE LA GUARDA
PROF. CO-GUÍA: JERÓNIMO MAZE RÍOS

NEW QUANTUM TECHNOLOGIES: BATTERIES WITH QUBITS AND
ELECTROMAGNETIC RESONATORS

En esta tesis, una tecnología cuántica emergente es estudiada como un sistema cuántico
abierto: la batería cuántica (QB). Esta ha emergido recientemente como una herramienta
prometedora para el control termodinámico a la escala cuántica [1–6]. Una QB es un sistema
cuántico que se comporta como un dispositivo eficiente de almacenamiento de energía. Está
motivada por el hecho de que efectos cuánticos genuinos tales como entrelazamiento o com-
presión pueden aumentar el rendimiento de protocolos clásicos, por ejemplo, acelerando la
dinámica subyacente [7, 8]. Estos sistemas han sido estudiados en su mayoría despreciando
la disipación debida a la interacción con el entorno que los rodea. En esta tesis, el foco
principal es avanzar en esta frontera de conocimiento, incorporando disipación. Para hac-
erlo, simulaciones numéricas fueron realizadas para estudiar si los efectos colectivos que han
sido reportados previamente en QBs [9] aún se mantienen bajo disipación. En particular, el
sistema estudiado está hecho de N sistemas de dos niveles (cúbit) que no interactúan mutu-
amente, cargados por medio de un modo de campo electromagnético en un resonador. Esta
configuración es comparada con N copias de un resonador con un cúbit. El primero es una
QB colectiva y el último es una QB paralela. Los resultados muestran que el rendimiento
en potencia de QBs paralelas y colectivas decrece bajo disipación como es esperado. Sin
embargo, la razón entre las potencias de la QB colectiva sobre la QB paralela incrementa con
la disipación, significando que la deterioración en rendimiento es menor para la QB colectiva.
Por otro lado, se observa que la pérdida en rendimiento debido a la disipación se puede re-
ducir escalando la QB, lo que significa aumentar igualmente la energía inyectada y el número
de cúbits. En muchos sistemas esto es más fácil de hacer que disminuir la disipación. Por
ejemplo, los centros nitrógeno-vacancia en diamante (centros NV), que pueden ser preparados
como cúbits de espín, pueden estar en grupos de cientos en una muestra de diamante [10].
Esta característica, junto con sus grandes valores de tiempo de decoherencia (tiempo antes
de perder la fase cuántica) y tiempo de relajación longitudinal (tiempo antes de alcanzar
equilibrio térmico) a temperatura ambiente [11], son la motivación para analizar, en esta
tesis, la factibilidad de fabricar QBs con centros NV. Como un resultado de este análisis, se
concluye que para el tipo de QBs estudiadas en esta tesis, la tecnología aún no es lo suficien-
temente buena para construir una, así llamada, QB basada en cargador. Sin embargo, una
restricción experimental general ha sido deducida y la posibilidad de usar centros NV para
QBs adiabáticas estables (no el foco de esta tesis) ha sido identificado como trabajo futuro
prometedor. Las mejoras colectivas y rendimientos también fueron estudiados en términos
de energía, ergotropía (máxima cantidad de energía extraíble con operaciones unitarias) y
tasa de transferencia. Para los primeros dos, resultados similares a los para potencia son
obtenidos. Para la tasa de transferencia, en cambio, se obtiene que su mejora colectiva de-
crece y su rendimiento crece a medida que la tasa de disipación incrementa. Por último, en
esta tesis, se ha introducido nueva nomenclatura común en el área de QBs, debido a que la
literatura no es completamente consistente con los términos usados hasta ahora.
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Introduction

The possibility of using quantum resources for technological purposes is currently an active
research field, in which quantum batteries (QBs) have emerged as promising tools for the
thermodynamic control at the quantum scale [1–6]. A quantum battery is a quantum mechan-
ical system that behaves as an efficient energy storage device. Its realization is motivated
by the fact that genuine quantum effects such as entanglement or squeezing can typically
boost the performances of classical protocols, e.g., by speeding up the underlying dynam-
ics [7, 8]. Enhancements provided by quantum correlations in the charging (or discharging)
process of a QB has been previously discussed in [12–15]. More recently, possible realizable
models have been explored, including spin-chains and qubits interacting with electromagnetic
fields [9, 16–21].

Up to now, research efforts have been mostly focused on understanding QBs as closed systems,
isolated from the environment. The dissipation of real QBs has only recently been considered
[22–28]. Hence, an important question to answer is how dissipation harms the performance
of a QB. Understanding collective enhancements in the presence of dissipation is crucial to
experimentally realize QBs.

In this thesis, the aforementioned question is addressed by analyzing the case of N non-
mutually interacting two-level systems (qubits) charged via a single electromagnetic field
mode in a resonator. This system is described by the Tavis-Cummings model [29,30], which
is known to provide an effective description of experimentally feasible many-body systems in
circuit and cavity QED [31–34]. This configuration is compared to N copies of a resonator
with one qubit. The former is a collective QB while the latter is a parallel QB.

Additionally, the feasibility of using nitrogen-vacancy centers in diamond (NV centers) as
spin qubits in the Tavis-Cummings QBs, is studied. The main motivations for using NV
centers is the experimental capability of grouping up hundreds of them (ideal for studying
the collective behaviors) with one diamond sample [10], as well as the long dissipation times
they possess at room temperature.

Therefore, the general and specific problems to solve in this thesis are:

1. General problem: Lack of knowledge in the behavior of QBs when dissipation is not
neglected, which also results in a lack of experimental realizations of QBs to serve as
proofs of concept and beyond.

2. Specific problem: The collective behavior of Tavis-Cummings QBs is not known
when the system is under dissipation.
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Hence, the work reported in this thesis attempts to help in the solution of this problems by
the

1. Specific solution: simulating Tavis-Cummings QBs under dissipation to analyse the
changes in the collective behavior that are relevant for QBs, while analysing the feasi-
bility of fabricating these QBs with NV centers.

Therefore, the hypothesis is that, through the results obtained from implementing the specific
solution, a deeper knowledge on the experimental limitations and collective behavior of QBs
will be obtained.

Outline of the thesis

In order to understand the results of this thesis, a background knowledge in open quantum
systems, quantum optics, and NV centers is required. Therefore, chapter 1 is about the
fundamental concepts of each of these subjects. It starts with a brief description of closed
quantum systems in order to contrast them with the description of open quantum systems.
Later on, a section about the quantum description of light and its interaction with spin qubits
is developed. There is a deep emphasis in the quantization of the electromagnetic field, since
it was re-derived from zero with the knowledge of various textbooks, but without completely
following any of them. The main reason for this was to avoid large jumps in the steps in order
to assure comprehension and readability for a larger audience. Also, because it is relevant
for the thesis to understand the quantization inside a resonator or cavity, as opposed to the
quantization in free-space, which is not completely explained in the textbooks used. By the
end of chapter 1, the NV centers are introduced with detail in order to understand in what
consists its spin qubit, and relevant data for the analyses to be done about implementing
QBs with NV centers.

In chapter 2, quantum batteries are introduced from zero, using novel nomenclature to help
distinguish between different types of QBs that, in the literature are sometimes referred to
with the same name. Also the dynamical figures of merit of the QBs are introduced, as
well as a novel figure of merit called collective enhancement. After the introduction of
Tavis-Cummings QBs, by the end of chapter 2, an analysis of experimental limitations is
done, obtaining a general restriction for Tavis-Cummings QBs, and applying it to the case
of NV centers with the data introduced in chapter 2.

In chapter 3, the results from the numerical simulations are presented and analyzed deeply,
utilizing the new figure of merit (collective enhancement). Finally, the conclusions summarize
all the main results of the thesis.

The work and results reported in this thesis about the collective enhancements (i.e. mainly
chapter 3) have been published as a preprint manuscript in arXiv titled “Collective enhance-
ment in dissipative quantum batteries” [35].
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Chapter 1

Fundamental concepts

The fundamental theoretical concepts to understand quantum batteries and the results devel-
oped in this thesis are explained in this chapter. First of all, quantum batteries are quantum
systems and hence it is important to understand their dynamical evolution. This is the
objective of sections 1.1 and 1.2, allowing to respectively describe the temporal evolution
of a quantum battery isolated from, and immersed in a much bigger quantum environment
acting as energy reservoir. Secondly, the quantum batteries studied in this thesis consist
in quantum light interacting with matter qubits (two-level quantum systems corresponding
to either magnetic or electric dipoles). Hence, the quantum description of light is needed,
which is presented in section 1.3 together with its interaction with atoms and spins as qubits.
Finally, to understand possible implementations of the quantum batteries studied, nitrogen-
vacancy centers in diamond have been chosen as the main matter qubits of interest for this
thesis. Therefore, understanding what they are and under which conditions they exhibit
qubit behavior, along with their experimental limitations, is necessary and it is the objective
of section 1.4.

1.1 Closed quantum systems

A closed quantum system (e.g. a quantum battery) is described by its Hamiltonian H, an
operator acting on a Hilbert space H, which dictates the time evolution of its state, usually
represented by its density operator ρ ∈ S(H), where S(H) is the set of states of H. In the
Schrödinger picture, the dynamic evolution of this quantum state is given by the Liouville-
von Neumann equation [36]

dρ

dt
= − i

~
[H, ρ], (1.1)

where ~ is the reduced Planck’s constant. The solution to equation (1.1) from time t0 to
t > t0 is given by

ρ(t) = U(t, t0)ρ(t0)U †(t, t0) (1.2)

3



in terms of the operator [36]

U(t, t0) = T←e
− i

~
∫ t
t0
H(τ)dτ

, (1.3)

where T← is the chronological time-ordering operator, which orders products of time-dependent
operators such that their time-arguments increase from right to left as indicated by the arrow.

In particular, if ∂tH = 0, i.e. no explicit time-dependency is shown in the Hamiltonian,
which means that the system is energy-conservative (no extraction nor injection of energy is
happening), then the unitary operator (1.3) simplifies to

U(t, t0) = e−iH~ (t−t0), (1.4)

yielding

ρ(t) = e−iH~ (t−t0)ρ(t0)eiH~ (t−t0). (1.5)

Equivalently, it is possible to define the Liouville super-operator

L · = − i

~
[H, · ], (1.6)

and write the Liouville-von Neumann equation (1.1) as

dρ

dt
= Lρ, (1.7)

with the formal solution [36]

ρ(t) = T←e
∫ t
t0
L(τ)dτ

ρ(t0), (1.8)

which, for energy-conservative systems, simplifies to

ρ(t) = eL(t−t0)ρ(t0). (1.9)

This form of expression, using L, serves to extend the solution of closed quantum systems to
open quantum systems by adding the needed details explained in the next section.

1.2 Open quantum systems

An open quantum system S is just a part of a bigger closed universe-system U containing an
environment E that interacts with S. Hence, U is described by the Hamiltonian

HU = HS +HE +HS−E, (1.10)

where HS is the self-Hamiltonian of the open system S, HE is the free Hamiltonian of the
environment E, and HS−E is the Hamiltonian describing the interaction between S and E.
The environment E is a much bigger system than S.
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Each one of the systems, S, E, and U=S+E, have its own quantum state, ρS ∈ S(HS),
ρE ∈ S(HE), and ρU ∈ S(HU = HS ⊗HE), respectively. Clearly, as U is a closed system,
its dynamics is determined through equation (1.7) with H = HU. Nevertheless, solving the
evolution for the entire universe-system is unfeasible as it would require firstly to know the
exact form of HE with all its internal structure, and secondly to consider a too complex and
big Hamiltonian to solve either analytically or numerically. Furthermore, as the system of
interest to study is S, too much untraceable and irrelevant information is contained in the
solution for ρU(t).

Therefore, an equation for solely ρS(t) ≡ TrE{ρU(t)}, where all degrees of freedom corre-
sponding to E have been traced out, is ideal. To achieve this, many assumptions on the
systems and their interaction must be taken into account. Depending on the strength, λ, in
HS−E there are two main regimes that are studied separately: the weak coupling limit,
if λ is much smaller than the strength of the rest of HU; and the strong coupling limit,
if not [36, 37]. This thesis is concerned with the weak-coupling limit, valid for the systems
studied. Although, in order to understand the dynamical evolution in this regime, the more
general framework of Lindblad dynamics is required.

1.2.1 Lindblad dynamics

The reduced state ρS(t) is said to evolve through Lindblad dynamics if it is given by the
Lindblad master equation [36, 37]

dρS

dt
= LρS, (1.11)

where the Lindblad super-operator L is given by

L · = − i

~
[HL, · ] + D( · ), (1.12)

D( · ) ≡
N2−1∑
k

γk

[
Lk · L†k −

1

2

{
L†kLk, ·

}]
, (1.13)

where Lk are called Lindblad operators, D is called the dissipator, N = dim (HS),
and γk are the relaxation or dissipation rates for the different decay modes k of the open
system S. In this thesis, HL is referred to as the Lindblad Hamiltonian, which in general is
different than HS. The dimensionless Lindblad operators Lk are operators on HS that couple
S, through the different dissipation channels (decay modes) k, to E. The products √γkLk are
called collapse or jump operators and they can undergo unitary transformations leaving the
generator L invariant. There is also another transformation that leaves L invariant, which
is shown in appendix A [36,37].

The solution to the Lindblad equation (1.11) is given by the non-unitary map [36,37]

E(t,t0) : ρS(t0) 7→ E(t,t0)ρS(0) ≡ ρS(t) (1.14)

expressed

E(t,t0) = T←e
∫ t
t0
L(τ)dτ

, (1.15)

5



which, in the case of ∂tHL = 0 and ∂tLk = 0, simplifies to

E(t,t0) = eL(t−t0). (1.16)

Hence, the solution of the Lindblad equation seems identical to the solution (1.8) of the
Liouville-von Neumann equation, just remembering the change of L. Nevertheless, there
is the important difference that the map E(t,t0) is not unitary. This is an essential, very
significant, characteristic of open quantum systems, typically leading to decoherence, i.e.
the loss of well defined quantum superposition states [36]. Indeed, decoherence is a form of
dissipation that does not involve energy loss and, hence, comes from a specific form of Lk
accompanied by a dissipation rate γk.

Limitations

The given Lindblad equation an its solution given by the map E(t,t0) are valid within the
fulfillment of some conditions. The dynamical map E(t,t0) must be a completely positive
trace-preserving (CPTP1) Markovian linear map, where:

• CPTP means that the evolution keeps the state positive despite of its interaction with
the environment and always with trace one. Therefore, noticing that the self-adjoint
property is also hold, this means that the state is kept as a quantum state.
• Markovian means that it can be decomposed in any arbitrary number of CPTP linear

maps over subsequent time intervals. Hence, it gives a notion of time-continuity during
the evolution without backflow from the environment.

Rigorous mathematical definitions of these properties are given in appendix A [36,37].

1.2.2 Weak coupling limit

Within the weak coupling limit,
HL ≡ HS +HLS, (1.17)

where HLS is called the Lamb-shift Hamiltonian, and it commutes with HS. Therefore,
HLS only produces a shift in the energy levels of S due to its coupling to the environment E,
leaving all dissipative effects contained in the dissipator D.

There are many ways to obtain the Lindblad master equation related to the microscopic
structure of the systems studied. One possible recipe within the weak coupling limit, valid
for ∂tHU = 0, i.e. when there are no external fields, is given in appendix B. The Lindblad
master equations for the systems studied in this thesis are given in section 1.3.

Comparing equations (1.11) and (1.7), it is clear that the Lindblad equation contains the
Liouville-von Neumann equation as the specific case where HLS = 0 and D = 0. The

1Although one could argue that this, rather than a limitation, is a requirement for real systems. And any
non-CPTP map would only represent an approximation to real dynamics.
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first equality has sense as the Lamb-shift occurs due to the coupling to the environment.
Furthermore, the latter equality is simply achieved by considering null dissipation rates, i.e.
γk = 0, with the natural meaning that no dissipation is happening. Therefore, one gets
equation (1.7) as the natural simplification of equation (1.11) when there is no dissipation,
i.e. S is a closed quantum system. This also justifies using the same symbol for the Liouville
and the Lindblad super-operators.

Limitations

For the evolution to be a CPTP Markovian linear map, i.e. for the Lindblad equation to be
valid, the following approximations are required in the weak coupling limit [36]:

• Born approximation: the systems S and E are coupled weakly enough in order to
neglect the effect of S over E and, therefore, ρU(t) ≈ ρS(t)⊗ ρE(t0).
• Markov approximation: the time-scale of decay for the environment τE is much

shorter than the smallest time-scale of the open system dynamics τS � τE. This
approximation is often deemed a “short-memory environment” as it requires that envi-
ronmental correlation functions decay on a time-scale fast compared to those of S.
• Secular approximation: the elements in the master equation corresponding to tran-

sition frequencies ∆νk,l ≡ |νk − νl| are ∆νk,l � 1/τS, i.e. all fast rotating terms in the
interaction picture can be neglected. This is also called rotating wave approximation.

1.3 Quantum light and matter

1.3.1 Quantum electromagnetic waves

Separating radiation and static fields

From classical electrodynamics, it is known that light is a propagating wave of electromagnetic
field. This result is extracted from Maxwell’s equations,

∇× E = −∂B
∂t
, ∇×B = µoε0

∂E
∂t

+ µ0J,

∇ · E =
ρ

ε0
, ∇ ·B = 0,

(1.18)

where E and B are the total electric and magnetic fields, respectively; ρ and J are the charge
and current densities, respectively; ε0 and µ0 are the permittivity and permeability of free
space, respectively.

Although, Maxwell’s equations not only describe electromagnetic waves, but also static fields
attached to the existence of charges in space. The latter fields are not electromagnetic
radiation and, therefore, not light. Hence, before quantizing light, a separation of these two

7



types of electromagnetic fields is needed. The standard approach is used in this thesis, using
Coulomb’s gauge ∇ ·A = 0 for the vector potential, A, defined by B ≡∇×A.

Within this gauge and considering the wave vector k dual to the position r under spatial
Fourier transform, the vector potential fulfills A ⊥ k and the two degrees of freedom corre-
sponding to electromagnetic fields of radiation are given by the two orthogonal components of
A, namely A1 and A2, which are ⊥ k. These two vectors, spanning the plane ⊥ k, define the
two well known directions of polarization ê1,2 ≡ A1,2/‖A1,2‖ fulfilling ê1 ⊥ ê2. Furthermore,
within Coulomb’s gauge, the electromagnetic fields of radiation are related to A by

B ≡∇×A, (1.19)

E⊥ = − ∂

∂t
A, (1.20)

where E⊥ ≡ [E · ê1] ê1 + [E · ê2] ê2, and the static electric field E‖ ≡ [E · (k/‖k‖)] (k/‖k‖)
belonging to charges is given by

E‖ = −∇U, (1.21)

U =
1

4πε0

∫
d3r′

ρ(r′, t)

‖r− r′‖
, (1.22)

where U(r, t) is the known scalar potential.

Hence, the Maxwell’s equations of radiation are

∇× E⊥ = −∂B
∂t
, ∇×B = µoε0

∂E⊥
∂t

+ µ0J⊥, (1.23)

where only components ⊥ k have been left, and J⊥ ≡ [J · ê1] ê1 + [J · ê2] ê2 gives rise to
radiation coming from accelerated charges moving in the direction k̂ ≡ k/‖k‖. Although, to
focus on radiation itself, independent of its source, J⊥ = 0 is set. This happens, for example,
in free space. Additionally, applying equations (1.19, 1.20), the radiation equations (1.23)
reduce to

∇2A− 1

c2

∂2A

∂t2
= 0, (1.24)

which is a homogeneous wave equation for waves propagating at the speed of light in vacuum,
c ≡ 1/

√
µ0ε0.

Therefore, within Coulomb’s gauge and absence of radiation sources, all radiation information
in Maxwell’s equation is given by A, which can also be shown to be gauge invariant by simply
noticing that E⊥ is gauge invariant and using equation (1.20). A formal proof of this is given
in appendix C. Hence, gauge independent dynamics of light can be obtained by simply using
A under Coulomb’s gauge. Because of these reasons, within this choice of gauge, the vector
potential A is called the radiation field.
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Fields as a collection of harmonic oscillators

The radiation equation (1.24) can be recast in the dual k-space by applying the 3D spatial
Fourier transform, obtaining

∂2Ã

∂t2
+ c2k2Ã = 0, (1.25)

where Ã(k, t) ≡
∫ +∞
−∞ A(r, t)e−ik·r d3r is the spatial Fourier transform of the radiation field

in rectangular coordinates, and k = ‖k‖. Furthermore, projecting onto the polarization
direction ê ∈ {ê1, ê2}, scalar harmonic oscillator equations

∂2Ãe
∂t2

+ c2k2Ãe = 0, (1.26)

are obtained, where Ãe ≡ Ã · ê. These harmonic oscillators oscillate at angular frequency
ωk = ck and have solutions

Ãe(k, t) = α̃e,ωke
−iωkt + β̃e,ωke

iωkt, (1.27)

over which, the inverse-Fourier transform is applied to recover the radiation field components,

Ae(r, t) =
1

(2π)3

∫ +∞

−∞
d3k

(
α̃e,ωke

−iωkt + β̃e,ωke
iωkt
)

eik·r (1.28)

=
1

(2π)3

∫ +∞

0

d3k
{(
α̃e,ωke

−iωkt + β̃e,ωke
iωkt
)

eik·r + c.c.
}
, (1.29)

where the integration limits hold for all three rectangular coordinates, and the second equality
comes from A ∈ R3 ⇒ Ã(k, t) = Ã∗(−k, t)⇒ Ãe(k, t) = Ã∗e(−k, t), and k = ‖±k‖.

In equation (1.29), it is clear that terms ∝ α̃e,ωk and ∝ β̃e,ωk correspond to waves propagating
along the k̂ and −k̂ directions, respectively. Therefore, if no boundary conditions are set, i.e.
plane waves in both ±k directions are independent complete solutions, the study might be
separated for only waves propagating along k̂ by setting the condition β̃e,ωk = 0. Nonetheless,
to contain standing wave solutions that appear from boundary conditions, β̃e,ωk will be left
as a yet to determine integration constant.

Recalling that A = Ae1 ê1 + Ae2 ê2, the complete solution is given by

A(r, t) =
∑

e=e1,e2

ê

(2π)3

∫ ∞
0

d3k
(
α̃e,ωke

i(k·r−ωkt) + β̃e,ωke
i(k·r+ωkt) + c.c.

)
, (1.30)

where the relative differences between α̃e1,ωk(β̃e1,ωk) and α̃e2,ωk(β̃e2,ωk) define different polar-
izations.

Hence, replacing the expression (1.30) into equations (1.19, 1.20), the electromagnetic fields
of radiation are obtained,

E⊥(r, t) = i
∑

e=e1,e2

1

(2π)3

∫ ∞
0

d3kωkê
(
α̃e,ωke

i(k·r−ωkt) − β̃e,ωkei(k·r+ωkt) − c.c.
)
, (1.31)

B(r, t) = i
∑

e=e1,e2

1

(2π)3

∫ ∞
0

d3k (k× ê)
(
α̃e,ωke

i(k·r−ωkt) + β̃e,ωke
i(k·r+ωkt) − c.c.

)
, (1.32)
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which can be replaced in the electromagnetic radiation Hamiltonian,

H =
1

2

∫
V

d3r

(
ε0E

2
⊥ +

1

µ0

B2

)
, (1.33)

where V is the volume of integration, to obtain

H =
2ε0

(2π)3

∑
e=e1,e2

∫ ∞
0

d3kω2
k

(
α̃e,ωk α̃

∗
e,ωk

+ β̃e,ωk β̃
∗
e,ωk

)
. (1.34)

The complex amplitudes α̃e,ωk , β̃e,ωk can be rewritten as

(
α̃e,ωk
β̃e,ωk

)
≡

√
~(2π)3

2ε0ωk

(
αe,ωk
βe,ωk

)
(1.35)

where αe,ωk , βe,ωk are just the amplitudes rescaled. Then, the electromagnetic fields of radi-
ation and their Hamiltonian are rewritten as

E⊥(r, t) = i
∑

e=e1,e2

∫ ∞
0

d3kEωk ê
(
αe,ωke

i(k·r−ωkt) − βe,ωkei(k·r+ωkt) − c.c.
)
, (1.36)

B(r, t) = i
∑

e=e1,e2

∫ ∞
0

d3kBωk(k̂× ê)
(
αe,ωke

i(k·r−ωkt) + βe,ωke
i(k·r+ωkt) − c.c.

)
, (1.37)

H =
∑

e=e1,e2

∫ ∞
0

d3k ~ωk
(
αe,ωkα

∗
e,ωk

+ βe,ωkβ
∗
e,ωk

)
, (1.38)

where

Eωk ≡

√
~ωk

2ε0(2π)3
, Bωk ≡

Eωk
c
. (1.39)

Quantization

To easily quantize, the amplitudes αe,ωk , βe,ωk ∈ C can be rewritten in terms of new variables
q
α(β)
e,ωk , p

α(β)
e,ωk ∈ R as

αe,ωk =
1√

2~ωk

(
ωkq

α
e,ωk

+ ipαe,ωk
)
, (1.40)

βe,ωk =
1√

2~ωk

(
ωkq

β
e,ωk
− ipβe,ωk

)
, (1.41)

from which the Hamiltonian (1.38) is rewritten as

H =
∑

e=e1,e2

∫ ∞
0

d3k
1

2

{
(pαe,ωk)

2 + ω2
k(q

α
e,ωk

)2 + (pβe,ωk)
2 + ω2

k(q
β
e,ωk

)2
}
, (1.42)
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where it is clear that the Hamiltonian corresponds to a continuous collection of non-interacting
simple harmonic oscillators with canonical positions qα(β)

e,ωk and momentums pα(β)
e,ωk (for further

detail, refer to [38]). From here, the quantization is trivially achieved by upgrading the canon-
ical variables to operators satisfying the commutation relations dictated by the principles of
quantum mechanics, i.e.[

qα(β)
e,ωk

, q
α(β)
e′,ωk′

]
=
[
pα(β)
e,ωk

, p
α(β)
e′,ωk′

]
= 0,

[
qα(β)
e,ωk

, p
α(β)
e′,ωk′

]
= i~δe,e′δk,k′ , (1.43)

which is equivalent to upgrading the complex amplitudes αe,ωk(β∗e,ωk) and α∗e,ωk(βe,ωk) to
annihilation and creation operators, ae,ωk(be,ωk) and a†e,ωk(b

†
e,ωk

), respectively, fulfilling the
bosonic commutation relations

[ae,ωk , ae′,ωk′ ] = [a†e,ωk , a
†
e′,ωk′

] = 0, [ae,ωk , a
†
e′,ωk′

] = δe,e′δk,k′ , (1.44)

[be,ωk , be′,ωk′ ] = [b†e,ωk , b
†
e′,ωk′

] = 0, [be,ωk , b
†
e′,ωk′

] = δe,e′δk,k′ . (1.45)

Hence, the quantized electromagnetic fields of radiation and their Hamiltonian, in the Heisen-
berg picture, are

E⊥(r, t) = i
∑

e=e1,e2

∫ ∞
0

d3kEωk ê
(
ae,ωke

i(k·r−ωkt) − b†e,ωke
i(k·r+ωkt) − h.c.

)
, (1.46)

B(r, t) = i
∑

e=e1,e2

∫ ∞
0

d3kBωk(k̂× ê)
(
ae,ωke

i(k·r−ωkt) + b†e,ωke
i(k·r+ωkt) − h.c.

)
, (1.47)

H =
∑

e=e1,e2

∫ ∞
0

d3k ~ωk
(
a†e,ωkae,ωk + b†e,ωkbe,ωk + 1

)
, (1.48)

which can be written in the Schrödinger picture by simply setting t = 0. The expression
of the Hamiltonian was obtained by first symmetrizing the products of complex amplitudes
and then upgrading to operators, i.e. αe,ωkα∗e,ωk 7→

1
2
(αe,ωkα

∗
e,ωk

+α∗e,ωkαe,ωk) and βe,ωkβ
∗
e,ωk
7→

1
2
(βe,ωkβ

∗
e,ωk

+ β∗e,ωkβe,ωk).

Fields inside a resonator

If the electromagnetic radiation is confined inside a resonator (e.g. a cavity), standing
wave solutions emerge. Typical boundary conditions of this situation correspond to a par-
allelepiped geometry with A = 0 in each face. This implies that, before quantization,
Ãe = −Ã∗e ⇒ αe,ωk = −β∗e,ωk . Hence, after quantization, a = −b, which has sense as a
photon traveling in the k̂ direction only exists if the same photon is traveling in the −k̂ di-
rection after reflection on the boundaries. Moreover, the border conditions used correspond
to perfect metallic surfaces, for which a phase change in π radiands after reflection is known
to happen in classical electrodynamics. This phase change is captured in the minus sign
relating a to b.

Additionally, a discrete number of wave-vectors k is allowed by the boundary conditions. For
the given resonator those are

kn ≡ k(nx,ny ,nz) ≡ knxx̂ + kny ŷ + knz ẑ =
2πnx
Lx

x̂ +
2πny
Ly

ŷ +
2πnz
Lz

ẑ, (1.49)
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where Lx,y,z are the dimensions of the parallelepiped cavity, and nx,y,z ∈ N. To account this
effect correctly, a modes distribution

g(k) =
2π

Lx

2π

Ly

2π

Lz

∑
nx

∑
ny

∑
nz

δ(kx − knx)δ(ky − kny)δ(kz − knz) (1.50)

must be inserted inside the k-integrals of the fields and the Hamiltonian.

Therefore, equations (1.46–1.47) can be recast in terms of standing wave modes as

E⊥(r, t) =
∑

e=e1,e2

∑
k=kn

Eωk ê
(
b†e,ωke

iωkt + be,ωke
−iωkt

)
sin(k · r), (1.51)

B(r, t) =
∑

e=e1,e2

∑
k=kn

iBωk(k̂× ê)
(
b†e,ωke

iωkt − be,ωke−iωkt
)

cos(k · r), (1.52)

H =
∑

e=e1,e2

∑
k=kn

~ωk
(
b†e,ωkbe,ωk +

1

2

)
, (1.53)

where the transformations√
2(2π)3

V
Eωk 7→ Eωk ,

√
2(2π)3

V
Bωk 7→ Bωk ,

√
2(2π)3

V
βe,ωk 7→ βe,ωk (1.54)

have been done before quantization, i.e. the factors (2π)3 have been changed by V/2, where
V ≡ LxLyLz is the volume of the parallelepiped cavity.

Quantum states of light

A single mode of linearly polarized electromagnetic radiation has a Hamiltonian

H = ~ω
(
b†b+

1

2

)
, (1.55)

obtained from equation (1.53) by choosing a specific allowed pair (e,k). This Hamiltonian
has the same basis of the number operator N = b†b known from the quantum simple harmonic
oscillator. Hence, the eigenenergies are quantized in levels separated by ~ω. This quanta of
energy of electromagnetic radiation is called a photon.

Therefore, the base vector states of electromagnetic radiation are the number states |n〉,
where n is the number of photons. These are also called Fock states, and can be written as
a density operator

ρFock
n ≡ |n〉〈n| , (1.56)

where the vacuum vector state |0〉 is included and is different than having no field, implying
it is always present, unlike in classical electrodynamics. Hence, this is an important result
from the quantum theory.

Other very important states are the coherent states, defined as the eigenkets, |β〉, of the
annihilation operator, b, with associated eigenvalue β ∈ C, i.e. b |β〉 = β |β〉. These states
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are important because allow to recover the classical electromagnetic fields and Hamiltonian
of radiation as the expectation values of their quantum (operator) versions. In this sense,
β can be seen as the complex amplitude before quantization, which justifies using the same
notation for both. The coherent states can be expanded in the Fock basis as

|β〉 = e−
|β|2

2

∞∑
m=0

βm√
m!
|m〉 , (1.57)

corresponding to a mean number of photons 〈β|N |β〉 = |β|2.

The third basic class of quantum sates of light is the one of the (Gibbs) thermal states

ρth ≡ e
− H
kBT

Tr
(

e
− H
kBT

) , (1.58)

where T is the temperature, and kB is the Boltzmann’s constant. For a single mode of light,
the thermal state can be expanded in the Fock basis as

ρth
n̄ ≡

1

1 + n̄

∞∑
m=0

(
n̄

1 + n̄

)m
|m〉〈m| , (1.59)

where n̄ = Tr
(
Nρth

n̄

)
is the mean number of photons, related to the temperature by

n̄ =
1

e
~ω
kBT − 1

, (1.60)

known as the Bose-Einstein distribution in statistical mechanics (recall that photons are
bosons, seen in the fulfillment of the commutation relations (1.44) and (1.45)).

Each of these states can be squeezed and displaced in the phase space by squeezing and
displacing operators, respectively. The resulting states are also very interesting and have
unique properties. Nevertheless, in this thesis, only the Fock, coherent, and thermal states
are used and analyzed in detail to describe quantum batteries.

1.3.2 Atoms and spins

Spin and atomic qubits interacting with light

A single mode of linearly polarized light inside a 1-D resonator is described, in the Schrödinger
picture, by the fields

E⊥(z) = Eωx̂
(
b† + b

)
sin(kzz), (1.61)

B(z) = iBωŷ
(
b† − b

)
cos(kzz), (1.62)

and the free Hamiltonian (1.55). These have been obtained, again, from equation (1.53) by
choosing a specific allowed pair (e,k), and also considering a 1-dimensional volume V = L.
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Figure 1.1: Spin qubit inside a single mode electromagnetic resonator for waves of wavelength
λ. The right energy level diagrams represent the effect of the raising and lowering spin
operators σ±, as well as the effect of the creation and annihilation operators b, b†. Picture
adapted from [39].

Without loss of generality, an electric field polarized in the x̂ direction has been chosen,
representing modes confined in the ẑ propagation direction.

At the center of this resonator (z = 0), a spin qubit is placed (see Figure 1.1). Hence it
interacts with the oscillating magnetic field B(z) = Byŷ through the interaction Hamiltonian

Hint = −µ ·B, (1.63)

where µ is the magnetic dipole moment of the spin-1
2
system, given by

µ = −γS, (1.64)

where γ/(2π) is the gyromagnetic ratio of the spin system considered, and S ≡ Sxx̂+Syŷ+Szẑ
is the spin-1

2
operator vector, i.e.

Sj ≡
~
2
σj, ∀j = x, y, z (1.65)

where σj are the Pauli operators diagonalized among the ẑ direction, which in matrix repre-
sentation are

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (1.66)

Hence,

µy ≡ µ · ŷ = −γ~
2

∑
i,j

σijy |j〉〈i| ≡ −γ
∑
i,j

M ij
y |j〉〈i| , (1.67)
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where σijy is the (i, j)−matrix-element of σy, and M ij
y ≡ ~

2
σijy is the corresponding transition

matrix element of the magnetic dipole. The kets |j〉 ∈ {|e〉 ≡
(
1 0

)ᵀ
, |g〉 ≡

(
0 1

)ᵀ} are the
eigenvectors of σy, where |e〉 and |g〉 are the excited and ground states of the z−spin qubit,
respectively.

Therefore, using equations (1.62) and (1.67) in (1.63) at z = 0 gives

Hint = −iγBω

∑
i,j

M ij
y |j〉〈i| ⊗

(
b† − b

)
, (1.68)

which simplifies to

Hint = −~g (σ+ − σ−)
(
b† − b

)
, (1.69)

where σ+ ≡ |e〉〈g| and σ− ≡ |g〉〈e| = (σ+)† are raising and lowering operators for the spin
qubit, respectively; and

g ≡
γBω

∣∣M eg
y

∣∣
~

=
γBω

2
(1.70)

is the coupling constant. The tensor product has been omitted to simplify notation.

The secular terms σ+b
† and σ−b are neglected in the so called rotating wave approximation,

valid for g � ω [39–44]. This is the same type of approximation explained at the end of section
1.2, in which rapidly oscillating terms are neglected, although this time the approximation is
made on terms that come from the Hamiltonian instead of the dissipator. In this limit, the
interaction Hamiltonian (1.69) reduces to

Hint = ~g
(
σ+b+ σ−b

†) . (1.71)

Hence, adding the free Hamiltonians of each subsystem, i.e. the light mode and the spin
qubit, the complete Hamiltonian under the rotating wave approximation is

HJC = ~ωb†b+
~
2
ωqσz + ~g

(
σ+b+ σ−b

†) , (1.72)

known as Jaynes-Cummings Hamiltonian, where ωq is the angular frequency of the qubit,
i.e. ~ωq is the energy separation between its two eigenenergies. The constant factor 1

2
of the

Hamiltonian (1.55) has been eliminated by simply performing an energy shift of ~ω
2

to the
reference energy used, which does not change the dynamics.

If the electric field is linearly polarized in ∓ŷ instead of x̂, the interaction Hamiltonian (1.71)
is changed to

H′int = ±i~g
(
σ+b− σ−b†

)
, (1.73)

where g has not been changed, because
∣∣M eg

y

∣∣ =
∣∣M ge

y

∣∣ = |M eg
x | = |M ge

x | = ~
2
.

Nevertheless, Hint and H′int reproduce the same dynamics as there is a unitary transformation
between the two Hamiltonians. This proof is left in appendix D. Furthermore, if instead
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of a spin qubit interacting with the oscillating magnetic field, the study is done over an
atom interacting as an electric dipole with the oscillating electric field, the Hamiltonian
(1.71) is also obtained if the coupling constant is changed to g = −EωPeg · ĵ/~ [40, 41],
where Peg · ĵ = q 〈e|r|g〉 · ĵ is the g → e transition matrix element of the electric dipole
along the polarization direction of the electric field, ĵ, and −q is the electric charge of the
electron. Therefore, the Jaynes-Cummings Hamiltonian can be used without loss of generality
to represent the quantum dynamics of a spin or atomic qubit interacting with a single linearly
polarized light mode.

When there are N qubits, instead of a single one, the Jaynes-Cummings Hamiltonian (1.72)
is changed to the Tavis-Cummings Hamiltonian,

HTC = ~ωb†b+
~
2

N∑
i=1

ωiqσ
i
z + ~

N∑
i=1

gi(σi+b+ σi−b
†), (1.74)

where the index i indicates the i−th qubit. If the qubits are identical, ωiq = ωq. Additionally,
if they are spread within a spherical volume of a diameter much smaller than the wavelength
of the light mode, i.e. they can all be considered to be at z = 0, then gi = g. In this case
HTC simplifies to

H′TC = ~ωb†b+
~
2
ωq

N∑
i=1

σiz + ~g
N∑
i=1

(σi+b+ σi−b
†), (1.75)

which can be recast as

H′TC = ~ωb†b+ ~ωqJz + ~Ω(J+b+ J−b
†), (1.76)

where Ω =
√
Ng is the collective coupling factor, and Jz, J± are dimensionless (divided by

~) collective spin−N
2
operators given by

Jz =
1

2

N∑
i=1

σiz, J± =
1√
N

N∑
i=1

σi±. (1.77)

where J± has been normalized by
√
N . In this way, N qubit excitations correspond to 1

excitation of the complete ensemble normalized. Hence, noticing that the coupling factor of
this ensemble of qubits, Ω, is enhanced by a factor

√
N compared to the single-qubit coupling

factor, g, it is clear that the collective system of qubits evolves with an interaction dynamics
at a rate

√
N faster than for single qubits. For the initial conditions of interest for this

thesis (excepting thermal states), this was checked in [9]. For more details and other initial
conditions refer to [43].

The resonator can be classically driven by injecting a stream of classical coherent light of
angular frequency ωd. In this case, the driving Hamiltonian

Hd = ~Fd
(
e−iωdtb† + eiωdtb

)
, (1.78)

must be added to the Tavis-Cummings Hamiltonian. The term Fd is the driving amplitude,
i.e. the amplitude of the classical light injected, which can also present time-dependence.
Hence, using H′TC, the total Hamiltonian is

H′DTC = ~ωb†b+ ~ωqJz + ~Ω(J+b+ J−b
†) + ~Fd

(
e−iωdtb† + eiωdtb

)
, (1.79)
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where DTC stands for “driven Tavis-Cummings”. For a single mode resonator, if the driving
field is injected through semi-transparent walls, the only allowed driving angular frequency
is ωd = ω [43], which is usually the case of interest.

The Hamiltonian H′DTC is the one that describes the quantum batteries studied in this thesis,
whether driving is considered (Fd 6= 0) or not (Fd = 0). Hence, to study the quantum bat-
teries in dissipative conditions (coupled to an environment), the specific possible dissipation
mechanisms for the qubits and the resonator’s electromagnetic field must be understood.

When adding dissipation to the system with free Hamiltonian H′DTC, if the system is weakly
coupled to the environment, the dynamics is described by the Lindblad master equation
(1.11). The typical mechanisms of dissipation considered here are three [42]:

• The resonator light mode is coupled to a thermal bath of photons, i.e. an environment
composed of infinite light modes in thermal state at a given temperature T . The
resulting dissipation effects over the resonator mode are given by a dissipator Dr and
a null Lamb-shift Hamiltonian.
• The qubits are coupled to the same thermal bath of photons that couple with the

resonator light mode. Nevertheless, the coupling factors are different, resulting in
different relaxation rates. The resulting dissipation effects over the qubits are given by
a dissipator Dq1 and a non-null Lamb-shift Hamiltonian.
• The qubits are coupled to other sources of dissipation. The specific dissipation mech-

anisms here depend on the specific system used as qubit. Nevertheless, a general phe-
nomenological dissipator can be used to account for the decoherence effects produced
due to these interactions. The resulting dissipation effects over the qubits are given by
a dissipator Dq2 and a null Lamb-shift Hamiltonian.

In general, the dissipator can not be separated in many dissipators each representing the dis-
sipation mechanisms of the separated subsystems. However, for the driven Tavis-Cummings
model with Hamiltonian H′DTC it is possible to separate the total dissipator D as [42]

D = Dr + Dq1 + Dq2, (1.80)

which is useful because each dissipation mechanism occurs at a different relaxation rate, which
allows to consider only the dissipators acting in the time-scale of interest. For example, often
the relaxation rates of the qubits are much smaller than the ones of the resonator light mode,
allowing to consider D ≈ Dr for short enough time-scales, which are the ones studied along
the current thesis.

The dissipator Dr of equation (1.80) is explicitly given by [42]

Dr(ρ) = κ(nth + 1)
[
2aρa† −

{
a†a, ρ

}]
+ κnth

[
2a†ρa−

{
aa†, ρ

}]
, (1.81)

where nth is the mean number of thermal photons in the environment, related to the tem-
perature of the bath through the equation (1.60), and 2κ = γr,0 is the relaxation rate of Dr

at zero temperature.
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Figure 1.2: (a) Structure of the NV center in the diamond lattice, highlighting the NV axis
along the ẑ direction. (b) Diagram showing the electrons of the NV– . Five (blue) correspond
to the valence orbital of N, and one (green) donor electron coming from the diamond lattice
was trapped in the vacancy. Also, the picture shows the (red) electrons from the valence
orbitals of the nearby carbons that would normally (without the defect) complete the bonds.

1.4 Nitrogen-Vacancy centers in diamond

1.4.1 Structure

The nitrogen-vacancy center in diamond or NV center, for short, is a defect in the diamond
lattice produced by the replacement of a carbon atom with a nitrogen atom and an adjacent
missing carbon atom (the vacancy). This is depicted in Figure 1.2.a, where the so called NV
axis is identified as the axis along the ẑ direction. The NV center of practical interest for
quantum technologies is the negatively charged one (NV– ) in which a donor electron from
the lattice is trapped by the center [11], as depicted in Figure 1.2.b. Therefore, along this
thesis, whenever talking about the NV center, it is implicitly referred to the NV– , unless
explicitly stated otherwise.

The NV– consists of the nitrogen nucleus and six electrons (e−), five from the valence orbital
of the nitrogen, and one donor electron from the lattice. These electrons must occupy the
available energy levels from the neighbouring bonds, some of which are dangling due to the
vacancy. Symmetry arguments based on the trigonal structure of the lattice are required to
notice that, effectively, only two of the six electrons are free to move between the energy
levels available by the dangling bonds [11]. Hence, these two electrons behave as a spin-1
system. On the other hand, the nitrogen atom can be a nitrogen-14 (14N) or nitrogen-15
(15N) [11], meaning that the nuclear spin can be a spin-1 or spin-1

2
system, respectively.

Besides the energy levels described before, the NV– also shows optical transitions, located
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Figure 1.3: Optical energy levels of the NV– . The frequency separations between energy
levels are shown in blue, and lifetime transitions in red. The 12 ns decay from |e〉 to |g〉
usually occurs to an excited state of the phonon sideband (PSB) of |g〉, indicated by the
continuous arrow finishing higher than the base level of |g〉. Values from [10,45].

between the conduction and valence bands of the diamond crystal [10,11]. As a first approx-
imation, there is a ground state |g〉, and an optical excited state |e〉, where the term optical
is used to remark that the frequency separation between the two levels corresponds to visible
light in the electromagnetic spectrum. These are the two main eigenstates, which are triplets
due to the spin-1 system formed by the NV– electrons. There are also two singlet states,
but they are not relevant for the current thesis. These energy levels explained are depicted
in Figure 1.3, where each energy level is shown as a continuous of levels (fading from black
to white in the picture), due to phonons that appear when the interaction with the lattice
vibration modes is taken into account [11,45].

The application of the NV– of interest for the current thesis is building an effective two-level
quantum system that interacts with microwaves. To do so, it is enough to use the ground
state |g〉, as is shown in the next subsections. Nonetheless, the protocols used to initialize
such qubit in its ground state, require of the optical transitions [10,11].

1.4.2 The NV– Hamiltonian

The complete expression of the effective Hamiltonian that describes the ground state triplet
of the NV– , neglecting the interaction with nearby carbon nuclear spins, is given by

HNV = Hc
NV + VNV (1.82)

where Hc
NV is the canonical spin-Hamiltonian of trigonal defects, and VNV is the

potential that accounts for interactions with external fields. In detail, the former is given
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by [11]

Hc
NV

h
= Dgs

[
S2
z −

S(S + 1)

3

]
+ A‖gsSzIz + A⊥gs [SxIx + SyIy] + Pgs

[
I2
z +

I(I + 1)

3

]
, (1.83)

where Sj (Ij), ∀j = x, y, z, are the dimensionless spin operators of the NV– electrons (ni-
trogen nucleus) with total spin number S = 1 (I = 1, 1

2
; for 14N and 15N, respectively).

Dgs, A
‖
gs, A⊥gs, and Pgs are constant factors that account for the strength of each interaction

in the Hamiltonian Hc
NV, where the subindex “gs” is there to remember that they correspond

to the optical ground state of the NV– . Dgs is the fine structure splitting2due only to
spin-spin interaction between the NV– electrons, neglecting spin-orbit interactions, which is
experimentally justified [11]. A‖(⊥)

gs is the axial (non-axial) magnetic hyperfine param-
eter, and Pgs is the nuclear electric quadrupole parameter. The latter is non-zero only
for 14N. All these factors (Dgs, A

‖
gs, A⊥gs, and Pgs) vary very slowly with the temperature.

Therefore, measured values (see Tables 1.1 and 1.2) are used for each range of temperatures
in which the NV– is to be studied.

Temperature (K) Dgs (GHz)

4–7 2.88

300 2.87

Table 1.1: Fine structure splitting parameter for different temperatures. Despite of a very
wide variation in temperature, Dgs changes very little. Data from [11].

Isotope A
‖
gs (MHz) A⊥gs (MHz) Pgs (MHz)

14N -2.16 2.7 -4.94
15N 3.0 3.6 —

Table 1.2: Factors that set the interaction strength of terms involving the nitrogen nuclear
spin. The nitrogen-15 has no nuclear electric quadrupole parameter. The temperature vari-
ation of these parameters is negligible and, hence, not reported. Data from [11].

γe (MHz/G) g
‖
gs g⊥gs d

‖
gs (Hz cm/V) d⊥gs (Hz cm/V)

2.8 2.0029 2.0029 17 0.35

Table 1.3: Factors accounting for the interaction strength between the free Hamiltonian of
the NV– and external fields. Data from [11,46,47].

2Also called zero field splitting [10].
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Isotope γN (kHz/G)

14N 0.3
15N -0.432

Table 1.4: Gyromagnetic ratio of the nitrogen nuclear spin. Data from [46,48,49]

The potential VNV of equation (1.82) in general includes interactions with an external mag-
netic field B = Bxx̂ + Byŷ + Bzẑ, an external electric field E = Exx̂ + Eyŷ + Ezẑ, and an
external strain field δ = δxx̂ + δyŷ + δzẑ. Hence VNV is in general given by [11]

VNV = V magnetic
NV + V electric

NV + V strain
NV , (1.84)

1

h
V magnetic

NV = µBg
‖
gsSzBz + µBg

⊥
gs(SxBx + SyBy) + µNgNI ·B, (1.85)

1

h
V electric

NV = d‖gsEz

(
S2
z −

S(S + 1)

3

)
+ d⊥gs

{
Ex(S

2
y − S2

x) + Ey(SxSy + SySx)
}
, (1.86)

1

h
V strain

NV = d‖gsδz

(
S2
z −

S(S + 1)

3

)
+ d⊥gs

{
δx(S

2
y − S2

x) + δy(SxSy + SySx)
}
, (1.87)

where µB is Bohr’s magneton, µN is the nuclear magneton of the nitrogen, g‖(⊥)
gs is the axial

(non-axial) component of the ground state electronic g-factor tensor, gN is the isotropic
nuclear g-factor of the nitrogen, and d‖(⊥)

gs is the axial (non-axial) component of the ground
state electric dipole moment. Experimental measurements of these quantities are shown in
Tables 1.3 and 1.4, where the gyromagnetic ratios of the electron, γe ≡ geµB, and the nitrogen
nucleus, γN ≡ gNµN, are also shown.

1.4.3 Constructing a spin qubit with the NV–

The most common way to construct a qubit from the NV– Hamiltonian is by applying solely
an external static (classic) magnetic field Bstat = Bstat

z ẑ over the NV center. Hence, VNV =
V magnetic

NV . Furthermore, since γN � γe, the interaction between the nitrogen’s nuclear spin and
Bstat
z can usually be neglected in V magnetic

NV . Similarly, by noticing that Dgs � A
‖
gs, A⊥gs, Pgs, the

spin-spin interactions involving the nitrogen’s nuclear spin can also be neglected. Therefore,
the total NV Hamiltonian is reduced to

H′NV

h
= Dgs

[
S2
z −

2

3

]
+ γeSzB

stat
z , (1.88)

where g‖gs ≈ g⊥gs ≈ ge has been applied (see Table 1.3). The resultant Hamiltonian H′NV

was obtained by neglecting all nitrogen’s nuclear terms, which means ignoring the hyperfine
structure of the NV center. This is a good approximation as long as there is no addition of
terms that modifies the dynamics of interest into one that evolves at a rate of the order of
magnitude of the neglected terms, namely, at MHz for A‖gs, A⊥gs, and Pgs; or kHz for γN.

21



fine structure“naive” description hyperfine structure

g| 〉

0| 〉

±1| 〉

Dgs

A||
gs

Pgs

Pgs(m =±1)S (m =0,±1)I

(m =0)I

(m =0)I

(m =±1)I

(m =±1)I

(m =0)S

a)

b)

g| 〉

0| 〉

±1| 〉

Dgs

A||
gs

(m =± )I 1
2
_

(m =±1)S

(m =0)S

(m =± )I 1
2
_

(m =± )I 1
2
_

N14

N15

Figure 1.4: Details of the optical ground state of the NV– for (a) 14N, and (b) 15N. The fine
structure takes into consideration the spin-1 structure of the NV– electrons. The hyperfine
structure also considers the spin structure of the nitrogen nucleus, together with the spin-
spin interaction between the NV– electrons and the nitrogen nucleus. The dimensionless
spin eigenvalues of the NV– electrons (nitrogen nucleus) are denoted by mS (mI). Diagrams
based on [11].

The effect of Bstat
z on equation (1.88) is splitting the eigenenergy associated to |±1〉 through

the Zeeman effect, as depicted in Figure 1.5. If Bstat
z is large enough, the eigenenergy with

spin projection mS = 1 can be neglected. Hence, by selecting the two lowest energy levels3as
an effective two-level system, a qubit Hamiltonian is finally constructed,

Hq
NV = h(Dgs − γeB

stat
z )

1

2
σz, (1.89)

where ~ωq = h(Dgs−γeB
stat
z ) is the qubit energy separation, i.e. the separation between the

3This is just one of the alternatives. More generally, the eigenstate that will not be driven by the microwave
is neglected. Hence, the two other eigenstates form the qubit of practical interest.
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Figure 1.5: Construction of a qubit from the hyperfine structure of the optical ground state
of the NV– . By turning on an static (classic) magnetic field Bstat

z ẑ, the degenerated |±1〉
vector state starts splitting, through the Zeeman effect. For large enough Bstat

z , the highest
energy level can be ignored, defining the qubit by the subsystem with eigenkets |0〉 and |1〉.

two eigenenergy levels of the qubit. Hence, equation (1.89) can be recast as

Hq
NV =

~
2
ωqσz, (1.90)

which is the general form of describing the free Hamiltonian of a spin-1
2
qubit.

This NV– qubit has been experimentally realized many times. It is characterized by having a
large longitudinal relaxation time T1 ≈ 3−10 ms [11,50,51], and large dephasing times
T ∗2 ≈ 1.7 − 3.7 µs [11, 46] and T2 ≈ 32 − 600 µs [11], at room temperature (300 K). Large
variations are due to different types of NV samples [10, 11]. These times are the inverse of
dissipation rates due to interaction with the environment. The longitudinal relaxation time
is the mean time the spin qubit reaches thermal equilibrium. The dephasing time, instead,
is a decoherence time, and corresponds to the average time the spin qubit can maintain its
quantum phase. The difference between T2 and T ∗2 is that the former is valid for a single
NV qubit (or an ideal homogeneous sample), while the latter is valid for an ensemble of NV
qubits with different local conditions [11].

1.4.4 NV– spin qubit inside a resonator

If the NV center described, in its optical ground state, by Hq
NV is placed at the center of

a single-mode electromagnetic resonator, the interaction with the quantum electromagnetic
wave must be taken into consideration. In particular, if the quantum fields are the ones of
equations (1.61) and (1.62), which are linearly polarized as E = Exx̂ and B = Byŷ, then the
additional interaction Hamiltonian is

Hint =
h

2
γe(σyBy), (1.91)

where equations (1.85) and (1.86) have been used together with neglecting the third energy
level of the NV’s ground state (recall the conditions valid forHq

NV to faithfully representHNV),
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as well as the interaction with the electric field. The latter approximation is valid because the
interaction with the electric field is orders of magnitude smaller than the interaction with the
magnetic field. Indeed, the magnitudes of the electromagnetic field are Bω and Eω = cBω,
where ω is the resonator frequency and c ≈ 2.998 · 108 m/s is the speed of light in vacuum
(for simplicity, to avoid additional quantum interactions with the dielectric media, vacuum
is considered inside the resonator, which also implies that the phase speed of the radiation
is c), and hence, using Table 1.3, it is possible to obtain the scaling orders of the magnetic
and electric interactions, namely

O(γeBω) = O(Bω)× 106 Hz/G (1.92)
O(d⊥gsEω) = O(Bω)× 108 m/s× Hz cm/V = O(Bω)× 102 Hz/G, (1.93)

which yields

O(γeBω)

O(d⊥gsEω)
= 104 (1.94)

⇒ O(γeBω)� O(d⊥gsEω), (1.95)

justifying that the interaction with the electric field of the radiation can be neglected. The
second equality of equation (1.93) was obtained by applying 1 cm/V = 10−6 s/(G m).

The interaction Hamiltonian of equation (1.91) is the same one of equation (1.63). Hence, the
dynamics is described by the Jaynes-Cummings Hamiltonian (1.72) with coupling constant

g = γeBωπ, (1.96)

directly obtained from equation (1.70)4.

The extension towards many qubits inside a resonator then follows as described in subsection
1.3.2. Nonetheless, it is experimentally difficult to get a sample of NV spin qubits with all of
them having the same qubit energy separation, because each NV center has its own different
z-axis5, meaning that the static field Bstat will be projected with a different magnitude
over the different NV axes. This phenomena is known as inhomogeneous broadening of
the NV centers. Therefore, in most scenarios, under the rotating wave approximation, the
Hamiltonian (1.76) is just a first approximation to the real Hamiltonian (1.74).

4The factor π appears because γe is in units of frequency, while γ in equation (1.70) is in units of angular
frequency.

5There are four possible orientations for the z-axis in diamond due to its trigonal structure depicted in
Figure 1.2.a.
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Chapter 2

Quantum batteries

2.1 A new quantum technology

A quantum technology is defined as a technology that uses fundamental quantum properties of
a system to obtain an advantage in performance over the corresponding analogous technology
that does not exploit those quantum properties. Examples of quantum technologies are:

• Quantum computers, which use quantum entanglement and superposition to achieve
speedups in numerical computations that, in principle, seem impossible for nowadays
classical computers.
• Quantum communications, where quantum state teleportation, entanglement and su-

perposition are used to either have unbreakable internet security keys, relying on physics
principles rather than algorithmic complexity, or build a full quantum channel able to
share quantum information rather than classical information.
• Quantum sensing, where the sensibility and nature of quantum interactions are used

to improve precision of parametric measurements (e.g. time, temperature, or any non-
quantum observable) beyond what is possible with classical systems.

Similarly, a recent new quantum technology has been discovered and is being studied: quan-
tum batteries (QBs). This concept has emerged as a promising tool for the thermodynamic
control at quantum scales [1–6]. A QB is a quantum mechanical system that behaves as an
efficient energy storage device. Its realization is motivated by the fact that genuine quantum
effects, such as entanglement or squeezing, can typically boost the performances of classical
protocols, e.g., by speeding up the underlying dynamics [7, 8]. Enhancements provided by
quantum correlations in the charging (or discharging) process of a QB has been discussed
in general terms in [12–15]. More recently, possible realizable models have been explored,
including spin-chains and qubits interacting with electromagnetic fields [9, 16–21].
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2.2 Definition

2.2.1 Holder-only quantum batteries

The main part of any QB is a quantum system able to store energy. This quantum system is
named holder throughout this thesis. If the QB consists of solely the holder, it is a holder-
only QB. Nonetheless, to completely define a QB, a protocol that details how to charge,
discharge and keep the energy stored in the holder is required.

A holder-only QB consists of the holder with associated free Hamiltonian Hh on which an
external classical time-dependent field is applied, adding a Hamiltonian V (t), to charge and
discharge the holder. Hence, the total Hamiltonian of this QB is given by

H′λ = Hh + λV (t), (2.1)

where the parameter λ can be 0 or 1 and defines in which stage is the QB: λ = 1 for the
charging and discharging stages, and λ = 0 for the storage stage. When λ = 1, the charging
or discharging process occurs through a unitary operation

Ut = T←e
− i

~
∫ t
t0
H′
λ(τ)dτ

, (2.2)

where t0 is the initial time of the corresponding process. This charging-storage-discharging
protocol, together with the hamiltonian H′λ, fully describes a holder-only QB (depicted in
Fig. 2.1). This protocol works as long as the stage switching, i.e. the change of value of λ,
occurs in a timescale much smaller than the one of the Hamiltonian dynamics.

t
Üc Üs Üd

U t

h

U t

hh h h

charging storage discharging

Figure 2.1: A generic holder-only QB consisting of a holder “h” in its three operation stages:
charging, storage, and discharging. The holder, initially empty, obtains energy through a
unitary operation Ut active for a time τc. The energy transferred to the holder is stored for
a time τs until it is desired to use the energy. Afterwards, the holder is discharged through
the unitary operation Ut active for a time τd. This thesis focuses on time scales for which the
holder dissipation is negligible.

2.2.2 Charger-based quantum batteries

This thesis focuses on charger-based QBs, but holder-only QBs have been explained before
because many texts of the current literature don’t make the effort to distinguish between
them, and sometimes calling “quantum battery” to just the holder.
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Figure 2.2: A generic charger-based QB consisting of a charger “c” and a holder “h” in
its three operation stages: charging, storage, and discharging. The holder, initially empty,
obtains energy from the charger interacting a time τc with the Hamiltonian Hc−h. The
energy transferred to the holder is stored for a time τs until it is desired to use the energy. To
discharge the holder in a time τd it is possible to proceed in transducing mode (bottom) with
external classical fields over the holder through a unitary operation Ut, or in normal mode
(top) through the charger where the dissipation channels might be used to finally extract the
energy. This thesis focuses on time scales for which the charger dissipation (D) is relevant,
but holder dissipation is negligible.

A general definition of charged-based QBs, i.e. QBs where the holder is assisted by an
additional quantum system, is not fully given in the current literature, and solving it is the
goal of this section.

A general charger-based QB consists of two subsystems: an energy “holder” that stores energy
for long times, and an energy “charger” that acts as transducer of energy to deliver external
input energy into the holder. The charger can also be used as a discharging path for the
holder, unless the battery is designed to be directly discharged from the holder via external
classical fields. This thesis defines the former discharging mode as “normal”, and the latter
as “transducing”. Furthermore, it is identified that the battery can be charged up either
from initial conditions or through external classical driving. In the former charging case
(ICC), the charger is prepared in an energetic state and then left to interact with the holder
allowing energy transfer, while in the latter (DC) the charger starts empty in energy and it
simply acts as the path to directly transfer the external input energy into the holder.

In the ICC case, the charger-based QB system is effectively described by the Hamiltonian
Hλ, an operator in the total Hilbert space Hc ⊗Hh that is given by

Hλ = Hc +Hh + λHc−h, (2.3)

where Hc,h (acting on Hc,h) are the free Hamiltonians of the charger and holder, respectively,
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Figure 2.3: The two ways of charging up the holder: driven charging (DC) and initial con-
ditions charging (ICC). In DC the charger and holder are initially empty and the energy is
supplied from an external classical driving onto the charger via the Hamiltonian Hd(t). In
ICC instead, the charger starts from a prepared energetic initial condition that then allows
the energy transfer to the holder. The states shown in the storage stage, correspond to only
the times just after the end of the charging process. For longer storage times, the charger is
empty in both DC and ICC.

interacting via the Hamiltonian Hc−h (acting on Hc ⊗Hh). The parameter λ can be 0 or 1
and defines in which stage is the QB: λ = 1 for the charging and normal discharging stages,
and λ = 0 for the storage and transducing discharging stages. For this QB protocol to
work, the switching time between stages must be much smaller than the characteristic time
of the dynamical evolution of the battery in each separate stage. Fulfilling this condition,
the Hamiltonian Hλ is correctly considered time-independent in each separate stage. The
previously defined QB model is pictured in Fig. 2.2.

In the DC case, the Hamiltonian of the charger-based QB system is

Hλ,ξ(t) = Hλ + ξHd(t), (2.4)

where Hd(t) (acting on Hc) is the driving Hamiltonian, active only in the charging stage,
which is expressed by the binary value of the parameter ξ ∈ {0, 1}: ξ = 1 in the charging
stage, and ξ = 0 otherwise. The difference between the ICC and DC cases is depicted
in Fig. 2.3. The protocol explained for the DC case also works as long as the switching
between stages (now determined by the change of both, λ and ξ) occurs in a much shorter
timescale than the one of the Hamiltonian dynamics at each separate stage. Nonetheless,
unlike the other QBs described, for DC charger-based QBs the charging stage is governed by
a time-dependent Hamiltonian because ∂Hd(t)

∂t
6= 0.

This thesis focuses on ICC charger-based QBs. Hence, the QB Hamiltonian used is Hλ

defined by equation (2.3). The dynamical evolution is then given by the Lindblad master
equation (1.11) using Hλ as the system Hamiltonian HS and where the dissipator D is in
general a combination of dissipators acting on the holder and the charger, both separately and
jointly. But, in this thesis, it is argued that a QB has practical sense only if the dissipation
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rates of the holder, γih, are much smaller than the ones of the charger, γjc , i.e. γih � γjc for
all dissipation channels i, j. In particular, γmax

h ≡ maxi{γih} � minj{γjc} ≡ γmin
c . Hence,

if the frequency holder-charger coupling factor is g � γmax
h but comparable to γmin

c , during
charging and discharging stages it is sufficient to consider only the charger dissipator Dc in
the master equation, allowing to set D ≈ Dc as depicted in Fig. 2.2. During the storage
stage, holder dissipators might be added, but the situation of storage times τs � 2π/γmax

h

where holder dissipation is negligible is still interesting as battery since τs � 2π/γmin
c is

still allowed, meaning that the QB could achieve an energy storage beyond what would be
possible with just the charger.

2.3 Parallel and collective versions

‖

#
Hc-h
D
c
1h

Hc-h

D
c

Hc-h

D
c

h

h

h h1 1 11h

1h 1h

1 1

1

1

N

N

Figure 2.4: Collective (#) and parallel (‖) versions of a QB of size N . The collective QB has
one charger “c” with Ec initial energy and one holder “h” consisting in N units cells “h1”. The
parallel QB has N copies of “c” with Eh/N initial energy, each interacting with a different
unit cell “h1” as holder. Hence, the ‖ QB is just N copies of the N -times down-scaled # QB.

If the holder of a QB consists in N copies of a subsystem, i.e. N holder unit cells, we can
compare its performance versus N copies of the QB with only one holder unit cell. These
represent two versions of a QB that have the same maximum storable energy. The former is
the collective version (#) as it has N holder unit cells interacting with the same charger,
while the latter is the parallel version (‖) as it has N independent copies of one charger
with one holder unit cell (see Fig. 2.4).

2.4 Dynamical Figures of merit

In this thesis, the most relevant dynamical quantities for a charger-based QB are selected
and identified as its dynamical figures of merit, f . These are defined in such a way that,
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the larger is f , the better the QB performance in that regard. Therefore, ideally all figures
of merit f would be as large as possible in a QB.

How much energy can be transferred and stored into the holder is clearly a very relevant
quantity for the QB, to be maximized if possible. The transfer of energy from charger to
holder, or viceversa, takes some time τ to be ideally minimized. Depending on the application
of the QB, the power during the charging and discharging stages is more relevant than the
transferred energy, and it is also to be maximized if possible. Finally, if the charger-based
QB is to be discharged in transducing mode, i.e. by an external classical field directly
acting on the holder, the maximum amount of extractable energy through unitary operations
(ergotropy [52]) is more relevant than the amount of stored energy in the holder.

Thus, the following are defined as dynamical figures of merit:

• Charger (holder) energy, Ec(h).
• Charger (holder) transfer rates, Ωc(h) ≡ 2π/τ .
• Charger (holder) power, Pc(h) = Ec(h)Ωc(h).
• Holder ergotropy, Eh.

Ergotropy

The ergotropy is the maximum amount of extractable energy through unitary operations, for
a given quantum state. Hence, it is given by [1]

E [ρ] ≡ tr(ρH)− min
U∈U
{tr
(
UρU †H

)
}, (2.5)

where ρ is the state of the system just before applying the unitary operation, H is the free
Hamiltonian of the system, and U is the space of allowed unitary operators U .

If H is non-degenerate, a simple formula for computing E can be obtained. Indeed, the state
ρ and (non-degenerate) Hamiltonian H of a system can be written orderly as

ρ =
∑
k

rk |rk〉〈rk| , rk ≥ rk+1, (2.6)

H =
∑
k

εk |εk〉〈εk| , εk < εk+1, (2.7)

where rk, εk are the eigenvalues and |rk〉 , |εk〉 the eigenkets of the state and Hamiltonian,
respectively. Then the ergotropy of ρ can be calculated by [52]

E [ρ] =
∑
jk

rjεk(|〈rj|εk〉|2 − δjk), (2.8)

where δjk is the Kronecker delta.
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2.5 Quantum advantage

In holder-only QBs, parallel and collective versions are also defined, but in this case, as there
is no charger, they differ in if the holder units cells interact (collective version) or not (parallel
version) with each other [1].

This type of QB allows different procedures for charging up the holder, represented by dif-
ferent drivings V (t) in equation (2.1). In order to fairly compare different procedures, an
energy constrain is needed. A possible constrain is ‖Hh‖op = Emax for a given maximum
energy Emax > 0, where ‖Hh‖op equals the largest eigenvalue of Hh. Under this constrain,
a maximum amount of charging power, P ‖∗op , is obtained for the parallel version of the QB.
This maximum is the solution to the power optimization problem over all possible drivings.
The “*” symbol is used on P to remember that the constrain ‖Hh‖op = Emax has been set.

In order to compare a specific procedure (whether in collective or parallel version) with the
optimal parallel procedure, and determine which charges up the holder faster, a ratio called
quantum advantage is defined by [1]

P ∗

P
‖∗
op

=
1/τ ∗

1/τ ‖∗
, (2.9)

where P ∗ is the power of the procedure in study, and the equality holds due to the chosen
constrain, meaning that both procedures charge up the holder in the same amount of energy.

This concept of quantum advantage is, ideally, to be extended to open holder-only QBs,
where the holder suffers from dissipation, but the optimization problem becomes harder.
Furthermore, it would be ideal to extend this concept to open charger-based QBs, in which
only charger dissipation is relevant during the charging stage, but again the optimization
problem becomes too complex to be practical in most scenarios. Hence, inspired by the
quantum advantage, a new figure of merit is defined for charger-based QBs in the next
section.

2.6 Collective enhancement

When the parallel and collective versions of an isolated charger-based QB are compared, the
latter shows an increase in the transfer rate due to correlations [12–15]. This motivates the
definition of the transfer rate collective enhancement (similar to the quantum advantage of
equation (2.9)) Γ1/τ̄ = (1/τ̄#)/(1/τ̄ ‖) ≡ Ω̄#/Ω̄‖ where τ̄# and τ̄ ‖ are the interaction times (τ)
needed to charge or discharge the QB up to its first dynamical maximum in the collective and
parallel versions, respectively. Γ1/τ̄ quantifies how much larger is the transfer rate Ω̄ ≡ 2π/τ̄
for the collective version compared to parallel one. If Γ1/τ̄ > 1, the collective QB has a larger
transfer rate than the parallel QB, meaning that Ω̄ is enhanced in the collective version of
the QB.

This thesis extends the previous concept to all interesting dynamical figures of merit f of
a QB that quantify its performance (larger f , better battery), by defining novel figures of
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merit: the collective enhancements

Γf̄ ≡
f̄#

f̄ ‖
. (2.10)

If Γf̄ > 1, f is enhanced in the collective version. Therefore, Γf̄ is identified as a very
important quantity, a new figure of merit, of charger-based QBs in their collective version.

For isolated QBs, Γ1/τ̄ > 1 and ΓĒh < 1, where the bar represents the event of first maximum
transferred energy into the holder during the charging stage. In this thesis, it is shown
that the former inequality also holds for non-isolated QBs, while the latter changes in the
simulated systems.

2.7 Tavis-Cummings quantum batteries

This thesis focuses on a QB model in which the charger is a single electromagnetic field mode
in a resonator coupled to an array of N non-mutually interacting identical spin qubits that act
as the holder [9]. Under the rotating wave approximation, the microscopic Hamiltonian is that
of the Tavis-Cummings model given by equation (1.79) for the driven QB case, and given by
equation (1.76) if the QB is charged by a prepared initial condition of charger. Focusing on the
latter, the QB hamiltonianHλ is constituted by: Hc = ~ωca†a,Hh = ~ωh

∑N
i=1 σ

+
i σ
−
i ,Hc−h =

~g
∑N

i=1(aσ+
i +a†σ−i ), where a (a†) is a bosonic annihilation (creation) operator, σ±i are raising

(+) or lowering (−) spin operators for the i-th qubit, ωc,h are the characteristic frequencies
of the resonator and the qubits, respectively, and g is the coupling strength. The charger
dissipator is given by equation (1.81), Dc[·] = κ(nth + 1)(2a · a† − a†a · − · a†a) + κnth(2a† ·
a− aa† · − · aa†), where 2κ is the charger dissipation rate at zero temperature. This type of
QB is called Tavis-Cummings quantum battery.

In this physical system, transitioning between battery stages means to change between negli-
gible (λ = 0) and non-negligible (λ = 1) holder-charger interaction, which can be achieved by
external fields that modify ωc,h to transition between far-from-resonant (λ = 0) and resonant
(λ = 1) dynamics. Hence, ωc = ωh during charging and normal discharging stages.

Simulations of the Tavis-Cummings QB have been performed for this thesis using g = 10−3ωc
to be consistent with the rotating wave approximation. Also, nth = 0 is used in order to
study solely the dissipation from the charger avoiding the re-population effects of a nonzero
temperature. The cases of driven charging and nth > 0 are beyond the scope of this thesis
and they are left as future work.

2.8 Dissipation

Up to now, research efforts have been mostly focused on understanding QBs as closed systems,
isolated from the environment. The dissipation of real QBs has only recently been considered
[22–28].
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In [22], DC charger-based QBs were studied in 3 simple systems: qubit-qubit interaction,
electromagnetic single mode cavity-cavity interaction, and the Jaynes-Cummings model; con-
sidering dissipation at very low temperatures. Hence, there is energy flow from the driving
(coherent channel of energy) and, if T 6= 0, from the thermal bath (incoherent channel of
energy) into the QB. The interplay between both was analyzed, concluding differently de-
pending on the system. In the thermal protocol (Fd = 0 and T > 0), the ergotropy was shown
to be always zero in the three systems, while in the mixed regime (Fd > 0 and T > 0) for the
particular case of the Jaynes-Cummings model, the time at which energy and ergotropy are
maximal was shown to decrease monotonically with the driving field Fd.

In [23], a special protocol to extract work from a holder-only QB in a (Gibbs) thermal state
was designed. To do so, the protocol requires and engineered thermal bath made out of
copies of the QB system, which allows the QB to reach an active equilibrium Gibbs state,
instead of a passive one, which in short, means that it has non-zero ergotropy, allowing work
extraction.

In [24], the aging of DC Tavis-Cummings QBs was studied, analyzing their performance
after many cycles of charging and discharging while considering the individual decays of the
spin qubits as dissipation (dissipator Dq2 of equation (1.80), but incomplete as no dephasing
dissipator is included). It was concluded that, because of the slow, individual decay processes
during energy storage, the battery “ages” and can store less energy in subsequent charging
processes, although a limit-cycle charging capacity is reached, depending on the duration of
the storage and discharging intervals.

In [25], a novel holder-only QB is proposed, build as a special open quantum network with a
symmetry that topologically prevents energy loss during the storage stage.

In [26], the dissipative dynamics of a holder-only QB made out of a single qubit was studied.
Decoherence and pure dephasing mechanisms were considered by separate as the dissipator,
showing better performance in the former case as a higher amount of energy can be charged
up, which is also more stable during the storage stage.

In [27], optimal quantum control theory and quantum thermodynamics are combined to build
a protocol that corrects decoherence during the storage stage of a QB. The protocol consists
in nonselective, frequent, projective measurements that keep the open QB in its highest
ergotropy state.

In [28], a holder-only QB is charged and discharged via interactions with local bosonic reser-
voirs, while Markovian or non-Markovian dephasing noises are also considered. Counter
to intuition, some results showed that the dephasing noise helped to obtain better battery
performances in ergotropy and transfer rate, specially for the non-Markovian case.

All previously listed studies attempt to help towards answering the question of how harming
dissipation is for the performance of a QB. But, as the difficult task it is, each study tackles
a different aspect, usually studying specific cases. Contributing to this task, the work of this
thesis extends the study previously done in [9] and [4] for closed charger-based QBs, by incor-
porating charger dissipation. Most importantly, in [9], an advantage in charging power when
comparing the collective and parallel versions of a Tavis-Cummings QB is reported. In this
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thesis, the main question to answer is if this advantage still holds, or not, under dissipation,
while also studying other figures of merit. Hence, the work of the current thesis means a
step forward in understanding collective enhancements in the presence of dissipation, which
is crucial to experimentally realize QBs. This is achieved by performing lengthy simulations
with QuTiP [53], a Python library for simulation of quantum systems, whose results are
shown and analyzed in chapter 3.

2.9 Feasibility of experimental realizations

There are many experimentally feasible many-body systems in circuit and cavity QED [31–
34], described by the Tavis-Cummings model. Nonetheless, the charger-based QBs described
require additional restrictions to properly work with the formalism explained. Firstly, there
must be a mechanism to easily transition from resonant to far-from-resonance dynamics,
and viceversa, on the same qubits-resonator system. Secondly, these transitions must be
performed quickly enough to allow the study of each battery stage separately with time-
independent Hamiltonians. Finally, for the QB to be useful, the dissipation rate of the
resonator must be much larger than the one of the qubits. The latter condition is usually
fulfilled, as the qubits used often correspond to matter qubits, with natural dissipation rates
much larger than photon systems. The other two conditions, though, must be studied with
further detail.

2.9.1 Condition of fast enough stage switching

The time τY in which the switching between battery stages must be performed should be
much smaller than the charging time τc, i.e.

τY � τc, (2.11)

which is in general very hard to achieve.

In more detail, the change in detuning (difference between resonator and qubit frequencies)
must be δ = 0 −→∼ 10g to fulfill the condition of far-from-resonance, δ � g. The factor of
10 is justified numerically with simulations not shown here, in which a detuning of δ = 10g
was enough far of resonant to be able to neglect the qubit-resonator interaction. In order to
achieve such change, the external control field Y (the one that determines δ, as for example,
a magnetic field Bstat

z in the case of NV– ) must be changed in ∆Y = 0 −→ 10g/γY , where
γY is named in this thesis as the gyro-field factor (an attempt to generalize the concept of
the gyromagnetic factor). Moreover, from [9] and the simulations to be shown in chapter 3,
the charging time can be approximated by1

τc ∼
τc|N=1√
N
≤ τc|N=1 ≈

2π

4g
, (2.12)

1Depending on the initial conditions, this will be a better or worse approximation.
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where τc|N=1 is the charging time of the case with 1 qubit. Therefore, the condition (2.11)
is recast

τY �
2π

4g
√
N
. (2.13)

Then, setting a realizable rate of change R∆Y ≡ ∆Y/τY of the control field, a condition for
g is obtained,

40

γYR∆Y

( g
2π

)2

� 1√
N
, (2.14)

which sets an unwanted upper bound for g. It is undesired for the QB because lower g means
slower Rabi-like oscillations [40, 43], and therefore, slower battery charging and discharging.
Also, smaller values of g means that more detailed energy-level structures of the system
approximated as a qubit must be taken into consideration to actually realize a qubit, which
might become a huge problem. For example, the hyperfine structure of the NV– might not
be possible to neglect, as was done at the end of chapter 1. Therefore, the upper bound set
by (2.14) should, ideally, be the highest possible, which is achieved with large values of γY
and R∆Y .

2.10 Using NV centers for quantum batteries

The NV centers in diamond and Rydberg atoms have large decoherence times even at room
temperature [10, 11, 45–47, 50, 51, 54]. Instead, other possible implementations, as supercon-
ducting qubits, require very low cryogenic temperatures and have even smaller decoherence
times. Therefore, to overpass the limitation of temperature, Rydberg atoms might be the
answer for a proof of concept, although it would be hard to accomplish a technologically
practical QB with at least ∼ 104 of them. Hence, the candidate of NV centers is to be
analyzed here, since they can come in large numbers in diamond samples [10].

For NV spin qubits, Y can be a magnetic field Bstat
z that changes the qubit frequency via

Zeeman effect, as explained in chapter 1. Recalling the value of the NV gyromagnetic ratio γe

(see Table 1.3), the gyro-field factor in this case is γB = γe = 2.8 MHz/G. Finally, a realistic
possible change of magnetic field is of around 100 G in 300 µs, corresponding to R∆B ≈ 0.3
G/µs. Then the condition (2.14) is fulfilled, for N = 1, ..., 104, if

g

2π
≤ gmax

2π
∼ 1 kHz, (2.15)

where 1 order of magnitude of difference has been considered sufficient for the “�” inequality
(2.14) to hold. Unfortunately, these values of g are so small that not even the hyperfine
structure of the NV center is enough to correctly define a qubit, making it a too hard to
realize alternative for a charger-based QB, at least with current technology than only permits
R∆B ≈ 0.3. Larger values of R∆B ≈ 0.3 in some future might allow to rethink the use of NV
centers for this application.

Nonetheless, the long longitudinal relaxation time of the NV– , plus the ability to have hun-
dreds of them together, all at room temperature, makes it a good candidate to realize other
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type of QBs not explained in this thesis, since they are more recent and focus on maximiz-
ing ergotropy, rather than the charging power. These are the stable adiabatic quantum
batteries (SA-QBs), which have been recently studied by [5,6,21], and it is an approach in
which the evolution doesn’t rely on being fully coherent. Therefore, encouragement toward
studying how to implement SA-QBs with NV centers, is recommended as a conclusion of this
analysis.
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Chapter 3

Collective enhancement in dissipative
Tavis-Cummings quantum batteries

3.1 Main simulation results

1.0 g

Figure 3.1: Mean energy Eh and ergotropy Eh charged on the holder (array of N qubits) when
charging from an initial Fock light state. The mean energy Ec of the charger (resonator) and
heat Q from the QB are also shown. The dynamics seen correspond to Rabi-like oscillations,
transferring energy from the charger to the holder. The holder oscillations for different N and
κ are given in the next section. The segmented red lines are crossing at the first maximum
of Eh, defining the time at which all performances are analyzed.

The matter of study in this chapter is the robustness of the collective enhancements when
dissipation is taken into account in the Tavis-Cummings QB. Three cases are studied: Fock,
coherent, and thermal states as initial condition of the resonator. All three with mean
number of photons Tr{a†aTrh{ρ(0)}} = N . In all cases, the qubits are initially in their
ground state. The figures of merit analyzed are the holder (charger) energy Eh(c), transfer
rate Ωh(c) ≡ 2π/τh(c), power Ph(c) ≡ Eh(c)/τh(c), and ergotropy Eh(c) during the charging stage.
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(a) (b)
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4g
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Figure 3.2: Collective (a) enhancements Γf̄ and (b) performances for the first maximum
charge when charging from Fock initial conditions for energy, transfer rate, power, and er-
gotropy. The results for coherent and thermal initial conditions are given in the next section.

Figure 3.1 depicts these energies and the heat from the QB, Q(t) ≡ −
∫ t

0
Tr{H(t′)D[ρ(t′)]}dt′,

over time. Frequencies are shown in terms of the Rabi frequency of the Fock case when
N = 1 and κ = 0, given by ΩR ≡ 2g. Figure 3.2 shows the collective enhancements Γf̄
and performances f̄ for the Fock case for different values of κ and N . The other two cases
produce very similar results and are hence included in the next section. Nonetheless, the key
differences between them are visualized in Figure 3.3 for the respective collective and parallel
QBs.

Naturally, larger dissipation rates produce faster loss of energy available to charge up the
holder resulting in a decrease of Ē#

h as well as Ē#
h (see Figure 3.2). On the other hand, larger

κ also means that the first maximum transferred energy into the holder, although smaller, is
reached sooner, and therefore the transfer rate performance increases (see Figure 3.2). Hence,
as the decrease of Ē#

h shows to be higher than the increase of Ω̄#
h , the charging power P̄

#
h ends
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2g

1.0 g

Figure 3.3: Distribution of the total energy over the QB. Collective (#) and parallel (‖) are
compared for the three cases of initial conditions simulated.

up decreasing. These results are plotted for different N in Figure 3.2.b, which shows that
the curves move upwards when N increases, meaning that a reduction in performance due to
dissipation may be restored by scaling up the QB. For κ = 0 this behavior was obtained in [9],
and our results for κ > 0 can here be thought as an extrapolation of those results. Although,
caution must be taken with the statement about restoring the performance, because the
separation between curves of consecutive values of N seems to get smaller in each increment
for a fixed κ, and even more as κ is also increased. However, for values of κ around 4g or
smaller, it is argued that there is no need to fabricate a resonator with the highest possible
quality factor as long as there is compensation by scaling up the QB. This can be of practical
advantage for realizing a QB with systems where adding more qubits and photonic energy is
feasible, as in the case of NV centers, which come as natural defects in diamond crystals [10].

The increase of the performances with N is explained (for κ = 0) by the collective behavior
of the qubits producing a larger effective Rabi frequency, allowing for a faster population of
the excited eigenenergies, as discussed from equations (1.76) and (1.77) in chapter 1. This
upgrade of the performances is better quantified as collective enhancement in Figure 3.2.a,
where it is clear that the collective QB version is better than the parallel one (Γf̄ > 1), except
for the energies at κ ≈ 0 where ΓĒh ≤ 1. This exception is important because it shows that
a simple extrapolation of the collective enhancement in energy obtained at κ = 0 would give
the wrong result as if the parallel battery was to perform better. Moreover, it is observed
that collective enhancements in energy and power increase for larger dissipation rates, which
means that despite of the decrease of the respective performances in both QB versions, the
collective one decreases less, i.e. it is more robust under dissipation. Instead, the collective
enhancement in charging transfer rate decreases with larger κ, meaning that the parallel QB
is more robust in this regard.
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Regarding the ergotropy, its collective enhancement is not shown as the numerator and
denominator become (non-simultaneously) exactly zero very often. Except for values of
κ ∼ 0, it is obtained ΓĒ > 1, meaning that for transducing QBs more energy is available in
the collective version. This information is shown in Figure 3.3, specially clear for the Fock
case. Figure 3.3 shows the energy distributed in its different available forms, and from here
it is concluded that the coherent case is the best. This happens because the coherent case
is much more robust than the Fock one against dissipation. Only for κ ≈ 0 and N ≈ 1 the
Fock case is better as seen in the next section. For κ = 0 and large enough N , the coherent
case is better because when the initial condition is a coherent state, the amount of energy
locked in the charger-holder correlations is minimized as studied in [4].

3.2 Comparison between initial conditions

The main differences between the three cases of initial conditions simulated are represented
in Figure 3.3. Nonetheless, further details are analyzed in this section. The coherent and
thermal cases have been simulated up to N = 4 and N = 6, respectively, due to the rapid
increment in numerical complexity (see appendix F for the specifics). The performances of
the dynamical figures of merit (energy, transfer rate, power, and ergotropy) are presented
in Figure 3.4. The collective enhancements are presented in Figure 3.5. Simulation results
complementary to Figure 3.1 are shown in Figs. 3.6-3.8, showing the Rabi-like oscillations
up to near the first energy maximum, for N = 1, ..., 4 and κ ∈ [0, 2ΩR].

The performances of Figure 3.4 are very similar if we compare them with each other by
fixing the dynamical figure of merit and changing the charger initial condition. The most
noticeable difference is for Ω̄#

h , which shows a change of curvature between κ ≈ 0 and
κ ≈ 0.5 in the coherent and thermal cases, as opposed to the Fock case. This occurs because,
as can be seen in Figure 3.6 by following the dots, the first energy maximum does not
move monotonically to the left with the increase of κ. Additionally, from Figure 3.4, it
is noticed that Ω̄#

h and Q̄# are the only quantities whose curves for different N do not
quickly converge as κ increases. Instead, the curves tend to spread more. In particular, this
means that the transfer rate performance increases faster for collective QBs with larger N ,
i.e. ∂Ω̄#

h

∂κ

∣∣∣
N1

& ∂Ω̄#
h

∂κ

∣∣∣
N2

,∀N1 > N2, where N1,2 are values of N from the simulations. This
conclusion may appear contradictory with the plots of ΓΩ̄h in Figure 3.5 showing a decrease
as κ increases. Nonetheless, this is not the case, because

∂ΓΩ̄h

∂κ
< 0 is equivalent to

∂Ω̄#
h

∂κ

∂Ω̄
‖
h

∂κ

<
Ω̄#
h

Ω̄
‖
h

≡ ΓΩ̄h . (3.1)

Hence, ∂Ω̄#
h

∂κ
& ∂Ω̄

‖
h

∂κ
is allowed as long as ΓΩ̄h & 1, which is always the case in the results.

The collective enhancements of Figure 3.5 are also very similar if we compare them with each
other by fixing the figure of merit and changing the charger initial condition, excepting the
ergotropy, because of the appearance of zeros in the denominator in the Fock and thermal
cases, resulting in non-plotted data. Hence, the ergotropy is better analyzed with Figure
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Figure 3.4: Performances of the collective QB for Fock, coherent and thermal states as the
charger initial condition. Comparing between these cases of initial condition, there is no
significant meaningful difference.

3.7, which clearly shows that the coherent case is the more robust against dissipation, and
explains the ergotropy shown in Figure 3.3.

In Figures 3.6, 3.7, and 3.8 the dots mark the value of the quantity studied for the analysis
of performances and collective enhancements, i.e. evaluation of the curves at the time of first
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Figure 3.5: Collective enhancements of the relevant figures of merit for Fock, coherent and
thermal states as the charger initial condition. Comparing between these cases of initial
condition, there is no significant meaningful difference, excepting the ergotropy.

maximum of holder energy. Hence, by tracking the dots it is noticeable that, in general, the
maximum of holder energy does not correspond to the maximum of holder ergotropy, nor
to the maximum of total excited population

∑
i p
|ei〉
h . For the latter, this happens because

not every eigenstate ponderates the same eigenenergy in the collective quantum system of N
qubits. Hence, the energy and population maximums would only coincide if at the time of
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Figure 3.6: Holder energy over time up to near the first maximum for Fock, coherent and
thermal states as the charger initial condition. Results of the collective QB version. It it
observed that the Fock case reaches a higher first maximum of holder energy Eh than the
coherent and thermal cases. Nonetheless, these maximums are obtained in a shorter time in
the thermal case. Also, as the dissipation rate growths, the three cases tend to the same curve.
The magenta dots show the values used for the performances and collective enhancements.

maximum population, the excited eigenstates correspond to the ones with largest eigenener-
gies.
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Figure 3.7: Holder ergotropy over time up to near the first holder energy maximum for
Fock, coherent and thermal states as the charger initial condition. Results of the collective
QB version. The Fock case shows the highest ergotropy for κ ≈ 0, but it rapidly goes to
zero as κ increases. Instead, the coherent case changes less, which means that its ergotropy
performance is more robust under dissipation. The magenta dots show the values used for
the performances and collective enhancements.
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Figure 3.8: Holder population of the excited states over time up to near the first holder energy
maximum for Fock, coherent and thermal states as the charger initial condition. Results of
the collective QB version. Plots showing how the holder population can be inverted from
the ground state into the excited states. The magenta dots show the values used for the
performances and collective enhancements.
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Conclusions

In this thesis different types of open QBs have been defined and a study of their collective
behavior under dissipation has been done. Three types of charger initial conditions have been
considered. For this study, the collective enhancements have been defined as novel figures
of merit for the performance of a collective QB over its parallel version. In particular, the
work was focused on the case of a QB made of a photonic resonator and an array of qubits
to obtain quantitative estimations.

Throughout this work, it has been observed that dissipation, while diminishing the perfor-
mance in charging energy and power, the corresponding collective enhancements are instead
boosted up, because the collective QB version is more robust against dissipation. Regarding
the charging transfer rate, the opposite occurs as the parallel version is more robust in this
quantity. In addition, it was shown that, a higher collective performance can be achieved
by scaling up the QB, i.e. increasing the number of qubits and photonic energy in the same
amount, although due to the decrease in energy performance, this effect is only meaningful
for κ . 4g. Furthermore, this up-scaling increases all collective enhancements. Also, it was
shown that initially preparing the resonator light mode in a coherent state produces better
results in ergotropy performance than a Fock or thermal state.

This work shows that collective QBs are better than parallel ones in a different way than
simple extrapolation from results of isolated QBs (κ = 0) as was commented for the energy
collective enhancement. It also shows that the dissipation rate γc,0 = 2κ and the scale N
of the QB can be seen as degrees of freedom to design a QB with a desired performance,
while understanding that collective QBs are more robust under changes in dissipation. This
is particularly useful if increasing N is much easier than decreasing γc,0 in the specific system
to experimentally realize, or if the precision error in obtaining a specific γc,0 is important.

An analysis about the feasibility of building charger-based QBs was also realized. A general
experimental restriction of the QB protocol was deduced, and it was concluded that it is not
possible to fulfill with current technologies if using NV centers as spin qubits conforming the
holder. Nonetheless, its potential for building SA-QBs was recognized and it is proposed as
future work.

Finally, the collective enhancements and performances introduced here, along the clarification
of different types of QBs, will serve for future studies in the field, considering different
batteries and their experimental realizations.
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Appendix A

Quantum Markovian dynamical maps

The map E(t,t0) that describes the desired evolution,

E(t,t0) : ρS(0) 7→ E(t,t0)ρS(0) ≡ ρS(t), (A.1)

is very well known for the case of Markovian dynamics, where

E(t2,t0) = E(t2,t1)E(t1,t0),∀t2 > t1 > t0 ∈ R (A.2)

is fulfilled. This corresponds to the restricted case where correlations between S and E are
negligible during the whole dynamical evolution of ρU [36, 37].

The objective is, then, to obtain the most general dynamical map

E(t,t0) : ρS(0) 7→ E(t,t0)ρS(0) ≡ ρS(t), (A.3)

that maintain the properties of the density operator ρS to correctly represent a quantum
state. These properties are

1. Trace preservation,
2. Complete positivity,

Hence, the super-operator that transforms the open systems’ state at the initial time t0 = 0
to the corresponding one at time t > 0, i.e. the map

Et : ρ(0) 7→ Etρ(0) ≡ ρ(t), (A.4)

is the completely positive trace-preserving (CPTP) contraction one-parameter
semigroup [37]

Et = eLt. (A.5)

CPTP contraction one-parameter semigroup means that the one-parameter map Et has the
properties (if it belongs to a finite-dimensional Banach space):
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1. Complete positivity: Et ⊗ 1 is a positive operator.
2. Preserves the trace: Tr{ρ(t)} = 1,∀t ≥ 0.
3. It is a one-parameter semigroup: Et2Et1 = Et2+t1 ,∀t1, t2 ≥ 0, and E0 = 1.
4. It is a contraction: ‖Et‖1 ≤ 1,∀t ≥ 0.

In the 4th property, ‖Et‖1 ≡ supσ∈H,σ 6=0

{
‖Etσ‖1
‖σ‖1

}
, with ‖σ‖1 ≡ Tr

{√
σ†σ
}

= Tr{σ},∀σ ∈ H,
where the second equality holds because σ is a quantum state (σ† = σ, σ ≥ 0 and Tr{σ} = 1),
since it belongs to H.

Allowed transformations to the Lindblad super-operator

The generator of Lindblad dynamics, i.e. the Lindblad super-operator L is invariant under
the following transformations [36]:

1. Unitary transformations of the set of collapse operators,

√
γiLi 7→

√
γ′iL

′
i =

∑
j

uij
√
γjAj, (A.6)

where uij is a unitary matrix.
2. Inhomogeneous transformations

Ai 7→ A′i = Ai + ai, (A.7)

H 7→ H +
1

2i

∑
j

γj

(
a∗jAj − ajA

†
j

)
+ b, (A.8)

where ai are complex numbers and b is real.

Because of the second invariance property, it is always possible to choose traceless Lindblad
operators [36].
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Appendix B

The Lindblad master equation from a
microscopic derivation: the weak
coupling limit

The interaction Hamiltonian HS−E can always be written as a sum of tensor-product self-
adjoint operators1 Aa ⊗Ba = A†a ⊗B†a,

HS−E =
∑
a

Aa ⊗Ba, (B.1)

where Aa and Ba act on HS and HE, respectively.

Within this notation and the weak coupling limit, a quantum Markovian master equa-
tion that describes the evolution of the reduced state ρS(t), in the Schrödinger picture, can
be obtained as an extension to the Liouville-von Neumann equation (1.1). In particular,
under specific assumptions announced later, the equation obtained is the Lindblad master
equation [36, 37]

∂tρS = − i

~
[HL, ρ] + D(ρS), (B.2)

1To obtain this, it is noticed that, since HS−E = H†S−E, the most general way to write HS−E is: HS−E =∑n
a=1X

†
a⊗Ya+Xa⊗Y †a , where Xa, Ya are general operators. But, as any operator O can be written as a sum

of its hermitian and anti-hermitian parts: O = Oh + Oa−h ≡ Oh + iO′h, where Oh ≡ (O†+O)
2 , O′h ≡

i(O†−O)
2

are both hermitian; then this property can be applied on Xa, Ya to obtain equation (B.1) through:

Aa = 2(Xa)h, Ba = 2(Ya)h, for a = 1, ..., n;
Aa = 2(X ′a−n)h, Ba = 2(Y ′a−n)h, for a = n+ 1, ..., 2n.
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where

HL ≡ HS +HLS, (B.3)

HLS ≡
∑
a,b,ω

Sa,b(ω)A†a(ω)Ab(ω), (B.4)

Sa,b(ω) ≡ P.V.

∫ ωmax

−ωmax

dω′

ω − ω′
Tr{Ba(ω′)BbρE} (B.5)

D( · ) ≡
∑
a,b

γa,b(ω)

[
Ab(ω) · A†a(ω)− 1

2

{
A†a(ω)Ab(ω), ·

}]
, (B.6)

γa,b(ω) ≡

{
2πTr{Ba(ω)BbρE}, if ω ∈ [−ωmax, ωmax]

0, if not
, (B.7)

Aa(ω) =
∑

ε,ε′: ε′−ε=~ω

|ε〉〈ε|Aa |ε′〉〈ε′| , (B.8)

Ba(ω) =

∫
ε′−ε=~ω

dε dε′ |ε〉〈ε|Ba |ε′〉〈ε′| , (B.9)

with HU ≡ HS +HE +HS−E independent of time (although, still valid for certain time-
dependent situtions, as in driven cavity photonic fields considered in this thesis [42])

In the above, t ≥ 0 is the time variable (evolution parameter), HL is what is called Lindblad
hamiltonian in this thesis, HLS is the Lamb-Shift hamiltonian, D(·) is the dissipator
(super-)operator, Tr{Ba(ω)BbρB} are called environmental correlation functions, and
[−ωmax, ωmax] is the range of frequencies (energies) where the interaction is allowed (i.e. the
interaction is bounded, which is a requisite for the Lindblad equation to be well defined
in the WCL).

Also, Aa(ω),Ba(ω) are the eigenoperators of the super-operators i[HS, ·] and i[HE, ·], respec-
tively (with eigenvalues −iω):

Aa(ω) =
∑

ε,ε′: ε′−ε=ω

|ε〉〈ε|Aa |ε′〉〈ε′| ,

Ba(ω) =

∫
ε′−ε=ω

dε dε′ |ε〉〈ε|Ba |ε′〉〈ε′| ,

where |ε〉 , |ε〉 are the eigenvector-states associated with the eigenvalues ε, ε of HS and HE,
respectively. For equation (B.9), an integral is used instead of a sum, because the spectrum
of HE must be continuous for the Lindblad equation to be well defined in the WCL
(avoiding divergencies).

By defining the super-operator

L· ≡ −i[HL, ·] + D(·), (B.10)

then the Lindblad equation can be rewritten as

∂tρS = LρS. (B.11)
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Thus, the solution to the Lindblad equation is given by

ρS(t) = eLtρS(0), (B.12)

which is well defined (by the series expansion) in the WCL with HU independent of time.
Therefore, L is called the generator of the evolution of the state ρS.

All of the above (of this appendix) is valid only if the initial condition of the universe-system
is

ρU(0) = ρS(0)⊗ ρE(0), (B.13)

i.e. the initial state of the universe-system is completely separated [36, 37].
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Appendix C

Gauge invariance of the radiation field

Within Coulomb’s gauge, the electromagnetic fields of radiation are related to A by

B ≡∇×A, (C.1)

E⊥ = − ∂

∂t
A, (C.2)

E‖ = −∇U, (C.3)

where E⊥ ≡ [E · ê1] ê1 + [E · ê2] ê2, and the static electric field is E‖ ≡ [E · k̂]k̂.

Now, the general admitted gauge transformations that leave Maxwell’s equations invariant,
are

A 7→ A′ = A +∇φ, (C.4)

U 7→ U ′ = U − ∂φ

∂t
, (C.5)

where φ is a function of class C2 (i.e. doubly differentiable with continuous second derivative).
But, ∇φ · ê1 = ∇φ · ê2 = 0, since in spatial Fourier space ∇φ becomes ikφ̃ ‖ E‖. Hence,
projecting in the ê1, ê2 directions, returns back to equation (C.2) as if no change had been
performed, i.e. both E⊥ and A were kept invariant under the gauge transformation.

�
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Appendix D

Relation between interaction
hamiltonians in the Tavis-Cummings
model

Let’s change g −→ ~g, or equivalently, set ~ = 1 for the calculations of this section. Given
the interaction Hamiltonians

Hs = ig(aJ+ − a†J−), (D.1)
He = g(aJ+ + a†J−), (D.2)

of the Tavis-Cummings model, corresponding to different polarizations of the electromagnetic
field; it is desired to find a unitary transformation Ũ relating the two as

He = Ũ †HsŨ . (D.3)

Since Ũ is unitary, it must have an exponential form Ũ = e−iαA, where A is an operator.
Hence, setting B = iα∗A†, and imposing (ansatz to be able to use the Baker-Campbell-
Hausdorff, or BCH, lemma [55]) B† = −B, it is obtained

He = eBHse
−B (D.4)

= ig
(
eBaJ+e−B − eBa†J−e−B

)
, (D.5)

which can only be true if equations

eBa†J−e−B = ia†J−, (D.6)
eBaJ+e−B = −iaJ+, (D.7)

are fulfilled.

These conditions can be summarized as

eBC±e−B = ±iC± = C±e±iπ/2 (D.8)

= C±
∑
k

1

k!

(
±i
π

2

)k
, (D.9)
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which, applying the BCH lemma, is equivalent to fulfill

[B, [B, · · · , [B,C±] · · · ] =
(
±i
π

2

)k
C±, ∀k ∈ N, (D.10)

where the left-hand-side is a k-times nested commutator.

Now, as a natural ansatz for B, is chosen

B = β1aa
† + 2β2Jz, (D.11)

with β∗1,2 = −β1,2 in order to fulfill B† = −B. Hence, Re{β1,2} = 0.

From here, it is enough to know the commutation relations [Jz, J±] = ±J±/2 and [a, a†] = 1
to calculate the first terms of the BCH formula for both C±, and recognize the pattern
obtained as

[B, [B, · · · , [B,C±] · · · ] = (±β)kC±, (D.12)

where β ≡ β1 − β2, so Re{β} = 0.

Then, choosing β = iπ/2 all the restrictions are fulfilled. Therefore,

Ũ = e−(β1a†a+2β2Jz),∀β1,2 ∈ iR : (β1 − β2) = i
π

2
; (D.13)

represents a family of unitary transformations that transform between the two versions of
the Tavis-Cummings model. Hence, either can be used without loss of generality to represent
either case.

�
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Appendix E

Qubit ergotropy in the
Jaynes-Cummings model

If the state ρ and (non-degenerate) Hamiltonian H of a system are written orderly as

ρ =
∑
k

rk |rk〉〈rk| , rk ≥ rk+1, (E.1)

H =
∑
k

εk |εk〉〈εk| , εk < εk+1, (E.2)

where rk, εk are the eigenvalues and |rk〉 , |εk〉 the eigenkets of the state and Hamiltonian,
respectively; then the ergotropy of ρ can be calculated by [52]

E [ρ] =
∑
jk

rjεk(|〈rj|εk〉|2 − δjk), (E.3)

where δjk is the Kronecker delta. Thus, for the case of the Jaynes-Cummings model (N = 1)
with a Fock state as the charger initial condition, focusing on the qubit sub-system (tracing
over the resonator), it is easy to obtain the state of the qubit

ρ = sin2(gt) |e〉〈e|+ cos2(gt) |g〉〈g| , (E.4)

which is diagonal in the energy basis with eigenvalues λ1(t) = sin2(gt) and λ2(t) = cos2(gt)
corresponding to the eigenkets |e〉 and |g〉, respectively.

It can be seen that if

λ1(t) ≥ λ2(t)⇐⇒ cos(2gt) ≤ 0 (E.5)

⇐⇒ gt ∈
[
π

4
,
3π

4

]
± kπ, k ∈ N. (E.6)

Therefore, outside of these intervals, the ordering of the eigenvalues is inverted.

Now, in units of ~ωc, H = σz/2 with eigenvalues ε1 = −1/2, ε2 = 1/2 and eigenkets |ε1〉 = |g〉,
|ε2〉 = |e〉.
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Finally, by simply applying the formula (E.1), the ergotropy is obtained as

E(t) =

{
1− 2 cos2(gt), gt ∈

[
π
4
, 3π

4

]
± kπ

0 gt 6∈
[
π
4
, 3π

4

]
± kπ

, (E.7)

which corresponds to Eh/(~ωc), and clearly has the first maximum at t = 2π/4g ≡ π/ΩR

(used as timescale for all plots) with a value Ēh = ~ωc, after recovering the original units in
energy.

For the Tavis-Cummings model (N ≥ 1), the equivalent numerical procedure is done to
calculate the ergotropy.
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Appendix F

Complementary plots and simulation’s
details

Simulation results that are complementary to the plots shown in chapter 3, are displayed in
Figures F.1-F.5. Indeed, if the resonator energy, E#

c , and the heat from the QB, Q#, are
added to the holder energy, E#

h , the total energy is conserved constant over time and equal
to N~ωc, as it should. In other words, adding the corresponding plots of Figures F.3, F.4,
and 3.6, it always gives 1, as the energy is normalized in units of N~ωc in these plots. The
same can be done with the populations of Figures F.5 and 3.8. This serves as a first validity
check of the numerical results.

Although, a more important validity check was done in all simulations: checking that the
Hilbert space of the electromagnetic field was correctly truncated. This was achieved by setting
an error tolerance of 4 decimals for the calculation of E#

c . If the tolerance was surpassed,
the simulation was automatically redone with a larger Hilbert space until the tolerance is
no longer surpassed. This is very important to keep good calculations of the ergotropy
and heat, that require information of the whole density matrix ρ. When choosing thermal
and coherent states as the charger’s initial condition, it was very difficult to fulfill the error
tolerance restriction, which is the main reason to present less data for those simulations.
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Figure F.1: Performances of the collective QB for Fock, coherent and thermal states as the
charger initial condition. Same data of Fig. 3.4, interchanging the way of visualizing N and
κ.
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Figure F.2: Collective enhancements of the relevant figures of merit for Fock, coherent and
thermal states as the charger initial condition. Same data of Fig. 3.5, interchanging the way
of visualizing N and κ.
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Figure F.3: Resonator energy over time up to near the first holder energy maximum for
Fock, coherent and thermal states as the charger initial condition. Results of the collective
QB version. These plots can be seen as the complement of Fig. 3.6, since it shows how the
resonator energy Ec is reduced while it is been transferred to the holder as Eh. Although,
Ec + Eh is not a constant because some energy is lost in form of heat Q, shown in Fig. F.4.

60



Figure F.4: Heat from the QB over time up to near the first holder energy maximum for
Fock, coherent and thermal states as the charger initial condition. Results of the collective
QB version. These plots are very similar between the three cases of initial condition, with
small differences only appreciable for κ ≈ 0.
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Figure F.5: Holder population of the ground state over time up to near the first holder energy
maximum for Fock, coherent and thermal states as the charger initial condition. Results of
the collective QB version. These plots show that inverting the holder population is better
done in the Fock case, but as κ increases the differences tend to be negligible.
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