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ESTRATEGIA DE MUESTREO ÓPTIMO PARA LA REDUCCIÓN DE
INCERTEZA DE PARÁMETROS ORBITALES EN SISTEMAS ESTELARES

BINARIOS.

La inferencia de parámetros orbitales para sistemas binarios es extremadamente impor-
tante para el estudio evolutivo del universo, puesto que dichos parámetros orbitales permiten
inferir las masas individuales de los cuerpos celestes participantes. El presente trabajo busca
reducir la incerteza en la estimación de parámetros orbitales mediante la selección de un
instante óptimo de observación restringido a una agenda finita de eventos. Para lograr esto
un enfoque estocástico es propuesto, el cual define un modelo probabilístico de observación
para describir el acto fenomenológico de observar un sistema. Este enfoque probabilístico
permite definir el problema de minimización mediante medidas provenientes de Teoría de la
Información para caracterizar la reducción incerteza párametrica basado en el principio de
"Maximum Entropy Sampling". El marco metodológico propuesto en este trabajo es referido
como "Optimal Sampling Criterion" y esta compuesto por una etapa de inferencia y una
etapa de estimación de entropía diferencial. A través de experimentos utilizando observa-
ciones simuladas y reales, se logra probar que la estrategia de muestreo propuesta es no solo
capas de seleccionar los instantes de observación mas informativos por orden de prioridad, si
no que también provee de sustento teórico a reglas heurísticas de muestreo utilizadas por la
comunidad astronómica.
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OPTIMAL SAMPLING METHOD FOR UNCERTAINTY REDUCTION OF
ORBITAL PARAMETERS ON BINARY SYSTEMS

The inference of orbital parameters from a binary system is extremely important to study
the evolutionary process of the universe, mainly because allows to deduce the stellar masses
of the involved celestial bodies. This work is focused on reducing the uncertainty of the para-
metric estimation by consciously selecting an optimal instant of observation from a plausible
agenda of experiments. To achieve this, a stochastic approach is proposed in which a observa-
tion model is defined to describe the phenomenological act of observation. This probabilistic
scheme allows to establish a minimization problem which uses Information Theoretic mea-
sures to characterize the reduction of uncertainty over the parameters space based on the
principle of Maximum Entropy Sampling. The proposed framework is referred as Optimal
Sampling Criteria model and is composed by an inference stage and a differential entropy
estimation stage. Through experiments using simulated and real data, the proposed optimal
sampling strategy is shown not only capable of accurately selecting the most informative
measurements by priority, but also providing theoretical substance to heuristic intuition-
based rules and identify probabilistic relationships between the orbital parameters and the
observations.
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Chapter 1

Introduction

The study and observation of binary systems is central to understand the evolution of
stellar systems. The stellar dynamics in those systems are fundamentally bounded to their
physical properties, for example the individual masses of each star, and the orbital path made
by the interaction of those celestial bodies. Consequently, the development of inference meth-
ods focused on estimating orbital parameters through observations is a key element for the
area of astro-statistics. Many authors have addressed the estimation of orbital parameters
from different angles using a wide variety of available observations. Most inference meth-
ods for orbital parameters utilize astrometric observations, informative about the position
between the involved starts, and spectroscopic data, indicative of the radial velocity of the
stars. Deterministic and stochastic approaches have been proposed to solve this problem, the
last stochastic scenario is particularly relevant in this context because it allows to introduce
the concept of parametric certainty when a Bayesian inference is performed. Naturally any
method to infer the parameters of a binary system is fundamentally related to the quantity
and the quality of the available data, without loss of generality it is possible to say that more
observations often implies a reduction of uncertainty on the inferred parameters. Unluck-
ily, astrometric and spectroscopic observation are extremely scarce in practice and obtaining
new data is very difficult, due to restrictive schedules in observatories and monetary costs.
Because of this, the astronomy community often selects instants of observation based on
heuristics and suggestion by made repetition.

This works presents an statistical study on the dynamics of a binary system, the objective
is to establish a method to suggest optimal instants of observation that minimize the expected
posterior parametric certainty based on previous observations. The probabilistic analysis
also includes a methodological approach to model the quality of the observation and its
importance in the inference scheme. The proposed Optimal Sampling Criterion corresponds
to a selection of optimal instant of observation which uses a theoretical framework to decide
the best candidate from a finite amount of candidates in a observational agenda. The main
benefit of this method is the theoretical background which supports the selection that do not
include any biased information from the designer and can be easily automated to support
the observatories to schedule observations.
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1.1. Hypothesis
This work focuses on defining an Optimal Sampling Criterion. To accomplish this the

present document aims to test the following hypothesis:

• The phenomenological relationship between observations (astrometric and spectroscopic)
and orbital parameters allows to explicitly relate previous observations with future ones.

• Obtaining new observations of a binary system always implies an expected uncertainty
reduction in the posterior distribution of the parameters.

• It is possible to minimize the expected uncertainty of the parametrical posterior distri-
bution by selection optimal instant of observation.

1.2. Objectives

1.2.1. Main objective

The main objective of this work is to establish a theoretical and methodological frame-
work that addresses the problem of optimal selection of observations, from a plausible
agenda, which minimizes the expected uncertainty of the orbital parametrical inference
of binary systems when pre-existing observations from the phenomena are already avail-
able.

1.2.2. Specific objectives

The specific objectives of this work can be listed as follows:

• Introduce Information Theory measures to define the concept of uncertainty and study
the probabilistic relationship between parameter and observations using bayesian infer-
ence.

• Extend the Maximum Entropy Sampling [Sebastiani and Wynn, 2000] methodology for
this problem, resulting in the definition of the Optimal Sampling Criterion.

• Establish a practical framework to estimate the Optimal Sampling Criterion by means
of Markov Chain Monte Carlo particle simulation and differential entropy estimation,
in a two stage workflow.

• Empirically prove the Optimal Sampling Criterion by means of an expectancy analysis
using simulated and real observations.

• Discuss the results of the empirical analysis in a astronomical scope, looking for theo-
retical support to heuristic rules used by the astronomic community.

2



1.3. Structure
This work is documented and described by the following Chapters:
Chapter 2 of this work corresponds to the Theoretical Framework, where the dynamics of

a binary are presented and the phenomenological equations are described. Also the observa-
tional model is completely defined in conjunction to the bayesian inference principals, which
will serve as basis to the proposed sampling method.

Chapter 3 explores some related works regarding inference process and some previous
attempts establish a optimal sampling selection founded in the literature. This will serve as
motivation to address the problem of optimal sampling.

Chapter 4 derives and defines the Optimal Sampling Criterion and explores many appli-
cations, The previously mentioned stages are also presented with their respective embedded
estimation techniques.

Chapter 5 explores in experimental settings the viability of the method in different scenar-
ios. A simulated environment is used to widely study how the differential entropy estimation
performs and the capability of the method to detect a priority list. A real data scenario
showed a more practical approach since the parametrical ground-thruth is missing for this
cases.

Chapter 6 summarizes the main result of this work and proposes future applications and
researches regarding the defined Optimal Sampling Criterion.

3



Chapter 2

Theoretical Framework

2.1. Binary stars systems
A Binary stellar system is the main object of study of this work and, as the name suggest,

it is composed by 2 stars that interact with each other due gravitational forces induced by
their respective masses. This interaction provokes a elliptical dynamic between each star at
the center mass of the whole system known as Keplerian orbit. In celestial mechanics there
are 2 possibles interaction between 2 celestial bodies: a parabolic movement, which leads to
a short interaction and an elliptical case where the system finds equilibrium and periodicity.
This work is only interested on the latter case.

Figure 2.1: Orbits of Starts in a Binary System. Image Source: atnf.csiro.au

One important aspect of the binary system is the "dual representation" of the motion path,
which is determined by the point of reference. For example Figure 2.1 shows the movement
of each star when the centre of mass of the system is the reference and coincides with a
focus point on both drawn ellipses for star A and B. In this context, the interaction can be
expressed as a elliptical orbit of the lower mass star B having the high mass star A in a focal
point. Both cases relate to each other by their respective semiaxes, which follows a1 +a2 = a

where a1 and a2 are the semi-major axis for the high mass star A and the lower mass star B
orbits, respectively, and a is the semi-major axis of the relative orbit of star B with respect
of star A.

4
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The reference orbit is preferred not only for observational reasons (obtaining relative
distance of stars towards an imaginary point in the sky is implausible), but also because it
simplifies the movement description of both celestial bodies. Using geometric relationships
given by conic sections mathematics and the fact that the orbit is periodic, it is possible
to identify the exact position of the star B relative to A in any moment t using the set of
parameters [T, P, e, a] in which P is the period of the orbit, T describe moment in time where
the primary star A and the secondary star B reach their minimum distance also known as
periastron1, e the eccentricity of the ellipse and a his semi-major axis. P and T can be thought
as temporal parameters while e and a being spacial parameters. The method to describe the
orbit on any instant t is through the Kepler Equation showed in Equation 2.1, where M is
the Mean Anomaly that correspond to a projection angle over a circumference centred in the
focus point of the ellipse. The equation implies that the periodical motion projects a constant
angular velocity in the Mean Anomaly M . By the other hand, the Eccentric Anomaly E is
the projection angle over a circumference centred between both focus points of the ellipse,
This projection does not follow a simple rule but relates to the Mean Anomaly M through
Equation 2.1

2πt− T
P

= E(t)− e sinE(t) = M(t) (2.1)

The Eccentric Anomaly E is a useful reference to calculate the exact position of the star
B relative to a massive star A because it allows to determine the True Anomaly ν which
represents the angle projection of the real position of the star in his elliptical motion path as
showed in Figure 2.2. This relationship is specified in Equation 2.2.

tan ν(t)
2 =

√
1 + e

1− e tan E(t)
2 (2.2)

Finally, the absolute distance between the secondary star B and the primary star A is
calculated using conic section mathematics of a well defined ellipse by the parameters [e, a].
This is described in Equation 2.3.

r(t) = a(1 + e2)
1 + e cos ν(t) (2.3)

The resultant pair (r, ν)t corresponds to the polar coordinates of the star B relative to star
A, the convention says that the reference ν = 0 is set in the periastron reached periodically
in t = T + kP ∀k ∈ Z.

The ability to theoretically relate every point of an orbit with its parameters [T, P, e, a]
allows to estimate (via observation points) parameters of a binary system, more importantly
this relationship grants the possibility to estimate important physical properties of the studied
stars, one of the most remarkable examples is the estimation of the sum of the masses of
the participants stars which connect with their orbit via the Kepler Third Law, shown in

1 due the periodical nature can also changed by T + kP ∀k ∈ Z

5



Equation 2.4, where C is a constant proportional to a, P , m1 and m2.

a3

P 2 = C(m1 +m2) (2.4)

In the next subsections, it will be discussed how measures made over the binary system
relate to their orbital parameters through phenomenological equations.

2.1.1. Astrometric data

Astrometry is one of the most ancient disciplines of astronomy and is dedicated to measure
as precise as possible the position of celestial bodies in the sky and correctly document their
respective movements. In current days, this astrometrics observations are taken by extremely
high resolution telescopes which allows to study the dynamics of binary systems undetectable
on naked eye. The practical techniques needed to obtain this data points are beyond the
methodological scope of this work, for further studies a presentation of this methods can
be founded in [Reffert, 2009]. The astrometric observations are performed over the sky-
plane of observation which differs with the true orbit plane. In the previous subsection
was studied how the relative kinematics of both stars are described when the observer is
located perpendicular to the plane of movement, this parametrical representation can be
adjusted to a more generalized form for addressing the scenario when the orbital plane of
the system is rotated in a 3D fashion with respect to the sky-plane of observation (defined
perpendicular to the observer), allowing to completely parametrize all the observable binary
systems founded in nature. In order to accomplish this generalized model 3 rotational angles
must be introduced.

Figure 2.2: Orbital Parameters. Image Source: wikipedia.org

The Figure 2.2 depicts the projection of the orbit to a plane of reference where the observer
is placed upside of the gray plane. This representation features three new angles to describe
any possible orientation of the system relative to the sky-plane. In particular:

• i is the inclination angle and as its name suggests it determines the perpendicular

6

https://en.wikipedia.org/wiki/Orbital_elements##/media/File:Orbit1.svg


inclination of the orbit over the plane of reference.
• ω is the argument of periastron, its measures the angle discrepancy between the ascend-

ing node and the periastron.
• Ω is the Longitude of ascending node which relates the ascending node with the reference

direction γ (Astronomical North) through an angle projected on the plane of reference
itself.

The addition of new parameters to understand the astrometric observations induces an ex-
pansion of the parametrical space to represent the system leading to a new vector [T, P, e, a, i, ω,Ω].
Consequently by using the Thile-Innes representation it is possible to obtain the exact
position of the observation at any given time t using an alternative parametrical vector
[T, P, e, A,B, F,G], being [A,B, F,G] part of the Thiele-Innes representation. The deriva-
tion of this representation and the exact equations that determine the orbit are discussed in
Appendix A.1 2.

2.1.2. Spectroscopic data

Astrometric is not the only method used to measure the physical characteristics of a
binary system. The eventual discrepancy of the orbital plane and the observational plane
can suggest that the problem complexity will only rise with more data points and no new
information of the system can be gathered, fortunately the spatial rotation itself allows to
study movement of the system relative to the observer. At the start of Chapter 2 it was
discussed the "dual representation" of the orbit and why a relative orbit is a better choice
(due to mathematical complexity and simplicity of observation). Unfortunately the dual
representation fuses the concepts of semi-major axes a1 and a2, described in Figure 2.1, in
to a greater elliptical orbit of semi-major axis a = a1 + a2 resulting in to the loss of the ratio
a1/a2, this missing information obfuscate the mass of each star making it unobtainable from
only astrometric observations implying that in order to estimate these values a new type of
observation must be introduced.

Spectroscopic observations are the measurement of the spectral shift of a celestial body
induced by the radial velocity of the star with respect to an observer, this phenomenon
is produced by the Doppler effect an directly affects the absorption and emission spectral
lines location of the star. In Figure 2.3 both possible spectral shift are represented for the
absorption spectrum of a star, the middle segment represents the natural spectral behavior
for a star (derived from the known molecular composition of the star) an serve as basis to
measure the shift. When the star moves away from the observer the perceived absorption
lines move to a lower frequencies, this behavior is named red-shifting, on the other hand when
the star is getting closer to the observer the absorption lines move to a higher frequencies
and the phenomenon is named blue-shifting. In summary, measuring the magnitude and
direction of the shifting effect induced by the Doppler effect allows to infer the radial velocity
of the observed star.

2 For further analysis on the described model the work of [van de Kamp, 1967] details all the matters re-
garding the definition of the Thile-Innes representation
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Figure 2.3: Doppler effect on absorption spectrum of a moving star. Image
Source: wtamu.edu

Once the Radial Velocity of each star is estimated, it is possible to explicitly establish
how the orbital parameters relate to the estimated values, this can be achieved by using
vector derivatives of the model presented in Figure 2.2. By this approach, it is possible to
find a closed form to express the Radial Velocity of each star as pictured in Equation 2.5. A
detailed derivation of this results is described in [Claveria, 2017].

V1(t) = V0 + 2πa1 sin i
P
√

1− e2
[cos(ω + ν(t)) + e cosω]

V2(t) = V0 −
2πa2 sin i
P
√

1− e2
[cos(ω + ν(t)) + e cosω]

(2.5)

To calculate exactly the velocity of each star is necessary to introduce three new paramet-
rical variables: V0 the constant velocity of the centre of mass of the system, πp the parallax
of the system, and q the quotient of mass between both participant bodies. The complete
derivation of Equation 2.5 from the reference scheme presented in Figure 2.2 is described in
the Appendix A.2. This new phenomenological equation results in a updated parametrical
representation of the whole system dynamics composed as [T, P, e, a, i, ω,Ω, V0, πp, q].

As presented in Section 2.1.1 an alternative vectorization for the system is possible by in-
troducing the variablesH and C, inducing a new parametrical vector [T, P, e, i,Ω, V0, πp, q,H,C],
this representation will be important for future practical matters, one of his advantages is
the linear dependence between the parameters, allowing to reduce the dimensional complex-
ity of the representation into [T, P, e, i,Ω, πp, q,H,C]. This new vector is first introduced
and derived in [Mendez et al., 2017] and plays an important role in the performance of the
inference algorithm.

This work is focused on astrometric and spectroscopic observations, and how the param-
eters of the system interact with them. The binary system will be completely determined
by its respective parametrical vector denoted by θ and the aim of this work is to study how
these phenomenological equations determine the knowledge of the system.
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2.2. Observation Model
In order to measure stochastic relationships between the data and the binary system is

crucial to understand, or more importantly to model, the phenomenological act of observing
the system in any of their physical states. The reason to set the problem in this way is to
address the fact that noisy observations change the statistics of the parametrical space. The
intuition says that a observation free from any source of noise is unpractical for real case
scenarios, from this perspective a probabilistic approach allows relating the observations of
the system to its parameters,

In this section it is proposed and formalized a probabilistic approach to model the act of
observation by means of specific equations of the system exposed presented in Section 2.1
and the use of Central Limit Theorem.

2.2.1. Predictive Distribution

An observation model is proposed to obtain samples coming from a probability distribution
that is function of the parameters of the system. The existing dependency means that every
observation, as sample of a random variable, carries information about the parameter state
of the system. Now in order to make explicit the relationship between the parameters and
the observations we need to define the family of functionsM that is indexed by an specific
moment of time t. A function of this class at time t is a function and describe the function
M t : O → Y , which maps a defined system a particular value for θ ∈ O to a point in the
observation space Y . By this means M t(θ) denotes the observation in the instant t for a
system completely defined by θ ∈ O. As discussed before, we will consider two kinds of
measurements, astrometric and spectroscopic which are defined in the observable plane (in
mas) and RV spectre (in kms−1) respectively. Each of them has its own associated physical
equations, as mentioned in the previous section, and its consequently own respective family
of functions M∗ with a particular subindex ∗ to differentiate between them.

With the intent of maintaining abstraction in the representation of the observational
model, we are going to refer to a generic family M which can be any kind of observation
over a particular system; so any methodological analysis on this problem can be immediately
translated to astrometric, spectroscopic or any other observation available from the studied
system. In this context, it will be assumed that any indexation t over the family of functions
M will have the same codomain Y for any case. A more generalized description for the family
of functionsM can be achieved by adding a super index on the codomain, this re-definition
allows to introduce in the analysis multiple kinds of observation, which in a practical setting
is often the case. In this initial analysis, and for the sake of simplicity and avoiding heavy
mathematical notation, the codomain Y will be set as the same for any index t. In future
practical analysis on astrometric and spectroscopic observations the results from this chapter
will be extended to fit the practical setting.

Using a Bayesian approach requires that the objects of interest, in this case the parameters
and observation, are defined as random variables. We denote the random variable for the
parameters by Θ ∈ O and its distribution pΘ, the prior distribution pΘ represents the previous
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knowledge of the system over the parameter space before being measured or observed. In
many cases this distribution is set uniform over O to avoid any bias on future estimations,
in other words prior information on the parametrical space says that all possibles values for
θ ∈ Θ have the same probability of being the real parametrical state of the system. This
uniform assumption is not mandatory, so under other assumptions the prior distribution can
take any desirable shape. In similar fashion, we introduce a collection of random variables
related to the physical observable states of the system as Y := {Y t|t ∈ T }, where each random
variable Y t ∈ Y and its distribution pY t describes observations made over the system, pY t
relates to the knowledge of the system Θ through the phenomenological function M t. Unlike
the previous definition of Θ, every random variable Y t ∈ Y has its distribution pY t free from
any designer choice, this is because its shape is explicitly defined from pΘ and the relationship
between both random variables introduced as the conditional distribution pY t|Θ. In order to
explicitly calculate pY t it is necessary to define pY t|Θ. For this particular case of study the
relationship between the parameters and observation is strictly deterministic, meaning that
for each θ ∈ Θ ∃!yt ∈ Y t meaning that the definition of the conditional distribution pY t|Θ
must be established as shown in Equation 2.6, being this the observational case when no
noise is perceived.

∀t ∈ T pY t|Θ(yt|θ) = δMt(θ)(yt) (2.6)

where M t(θ) is the real observable state given a system characterized by θ at the instant t
and δc is the Dirac Delta function centered at c. The Equation 2.6 evidences a deterministic
dependency of Y t under Θ in a statistical approach. This behavior is observed due the
uniqueness of state for a well defined system, in other words, a set system θ will only project
one observable state at index t, this phenomenon is ruled by the deterministic function M t

and will take the specific value M t(θ).
It is extremely important to understand that the reciprocal dependency only holds for

those functions M t where M t−1 exists, which is not often in astronomical settings. The
functions M t are mostly composed by non linear relationships between the parameters θ
meaning that the link between Θ and Y t is not unique. In general there exists a collection
of {θi}Ni=1 denoted by Sys,t, which project the same physical state ys ∈ Y at the moment t
holding the following expression.

M t(θi) = M t(θj) = ys ∀θi, θj ∈ Sys,t (2.7)

Pursuing the same line of thought it is possible to infer that the distributions pθ and pY t ,
related by this complex mapping M t and the marginal distribution of Y t (through Θ), can
be explained via probabilistic marginalization, as shown in Eq 2.8.

pY t(yt) =
∫
O
pY t|Θ(yt|θ)pΘ(θ)dθ

=
∑

θ∈Sys,t
pΘ(θ) (2.8)

Under this context pY t is named as the Prior Predictive Distribution or Prior-PD and
represents the prior knowledge of the system but expressed in the observational space Y
instead of the parametric one O. In a practical sense, this marginalization is extremely
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complex or possibly untracteable because of the absence of a close expression for Sys,t in
Equation 2.7. So a direct integration would be prohibitive, nonetheless the Equation 2.8 will
be useful in further derivations.

2.2.2. Observational Predictive Distribution

Once all the natural relationships between the system and its projections over the ob-
servational space O has been made, we can to introduce the noise in the phenomenological
act of observation. The intuition says that any measure made over a phenomena is always
corrupted to a certain point by exogenous agents, which add non related information to the
observation. This noise implies that the deterministic behavior described in Equation 2.6 is
no longer faithful and a new random variable must be introduced in order to formalize this
idea.

Let us denote the random variable Y t
α ∈ Y as the observation over the system at moment

t. The uncertainty of this process is captured by a fixed parameter α (physical limitations
and instrumental noise), which will parametrize the distribution pY tα|Y t . The most important
difference between pY t|Θ in Equation 2.6 and pY tα|Y t is that the lost observational distribution
can no longer be deterministic. Consequently we need to specify the shape on pY tα|Y t , this
election is contained in α and will rule the theoretical behavior of the observer.

As observed in Equation 2.8 the characterization of pY tα is obtained via marginalization of
the previously discussed distribution pY tα|Y t as shown in Equation 2.9.

pY tα(ytα) =
∫
Y
pY tα|Y t(y

t
α|yt)pY t(yt)dyt

=
∫
O
pY tα|Θ(ytα|θ)pΘ(θ)dθ

(2.9)

The distribution of Y t
α in Equation 2.9 shows two clear characterization of pY tα|Θ through

pY tα|Y t and pY tα|Θ respectively. In particular, we have a deterministic relationship between Θ
and Y t, as showed in Equation 2.6, meaning that the derivation of pY tα|Θ can be performed
by the definition of pY tα|Y t and the mapping M t through change of variable.

In formal terms, pY tα will be referred as the Prior Observational Predictive Distribution
or Prior-OPD and it represents the actual belief of how the system will be observed at the
moment t by a instrument paremetrized by α.

It is important to mention that the projection of the prior distribution pΘ through ob-
servational variables, such as Y t which are absolutely or partially dependant of our prior
distribution, can be pictured as a generative model. The Figure 2.4 represents this projec-
tion of the prior distribution to observational variables by defining a graph diagram where
the arrows that connect the random variables are the conditional distributions. These links
hold a particular direction implying a non trivial relationship for the reciprocal statement
(one-direction generative model). In fact the characterization of pΘ|Y tα it is a problem by
itself that is addressed in the Bayesian Inference framework. One last remark about the
observation model is that any modification regarding p will lead to different characterization
of pY t and pY tα , meaning that any new information about the system presented in Figure 2.4
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changes the probabilistic relationship between Θ and Y t
α. This point will be crucial for future

derivation for the Optimal Sampling Method.

Figure 2.4: Observational Model.

Most of the time a particular election of pY tα|Y t is considered. In instrumentation, the
observational noise is usually modeled as the addition of N external sources of information
which are statistically independent from the actual phenomena of interest . This model
presents some mathematical challenges due to the addition of several external random vari-
ables, then in order to characterize this noise we need to determine the shape its distributions.
An incorrect choice of this distribution could lead to a biased estimation of the instrumental
noise. Importantly, the Central Limit Theorem states, in general, if we have N i.i.d. sources
with a density distribution that holds a bounded variance, then as N →∞, the sum of those
noised sources will follow a normal distribution. This theorem implies that assuming this
general hypothesis and choosing a expected value 0 for each exogenous source will lead to
a correct characterization of the instrument noise and no systematic effects. Therefore we
can establish pY tα|Y t(ytα|yt) ∼ N (yt, α) and alternatively pY tα|Θ(ytα|θ) ∼ N (M(θ)t, α) being α a
diagonal co-variance matrix which implies independent sources of noise in each observational
dimension.
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2.3. Bayesian Framework

2.3.1. Bayesian Inference

Bayesian Inference (B.I.) is a statistical method used to model how the knowledge of a
variable is affected after a observation of another variable has been performed. This theory is
named after the Bayes Theorem which serves as the motor of this method. Bayesian Inference
is relevant for this work because allows to relate the observational model on Section 2.2.2.
with the acquisition of information through the explicit equations presented on Section 2.1..
The mathematical object that represents this relationship is the posterior distribution pΘ|D,
the shape of this distribution can be inferred through the Bayes theorem which can give a
closed characterization for pΘ|D.

Let Θ ∈ O be the parametrical vector, the main focus of the inference, and let D ∈ YN be
a vector of observations denoted by the collection D = {Y ti

αi
|i ∈ [0, N ]}. These two objects

follow the observational model described in Figure 2.4 and will be statistically modeled in
order to perform the inference. The main objective of the Bayesian inference is to characterize
the posterior distribution pΘ|D but, as mentioned in the previous section, the observational
model does not define explicitly term, so a numerical method to approximate this value will
be applied. The Equation 2.10 states the Bayes Theorem using the previously presented
random variables Θ and D, where after a collection of observations has been made (given by
a particular set of values di) the posterior distribution pΘ|D(θ|d) ∀θ ∈ O can be determined
by means of Equation 2.10.

pΘ|D(θ|d) = pD|Θ(d|θ)pΘ(θ)
pD(d)

=
∏N
i=1 pY tiαi |Θ

(di|θ)pΘ(θ)∏N
i=1 pY tiαi

(di)

∝
N∏
i=1

p
Y
ti
αi
|Θ(di|θ)pΘ(θ)

(2.10)

The conditional distribution pΘ|D can be interpreted as a set of distributions where for
each particular d̄ ∈ D a well defined distribution pΘ|D(θ|d̄) ∀θ ∈ O is calculated. In other
words, D can be thought as a indexing variable to obtain a distribution for Θ. Under a
practical scope, a full characterization of pΘ|D ∀d ∈ D is not much informative until a point
for D takes a specific value d̄. Therefore, the only relevant distribution, from a practical
approach, is pΘ|D(θ|d̄), representing the knowledge acquired from d̄ after the observation is
made. The last important aspect of Bayesian inference is the last expression presented in
Equation 2.10 where the denominator is replaced by a proportional constant. This is made for
two reasons: first the observation sample d̄ is constant for all θ, so there is no need to evaluate
that expression to obtain a proportional term. Second the fact that we do not have a simple
closed formula for p

Y
ti
αi

being the only partial description the one presented in Equation 2.9. In
discrete settings this last expression is crucial because the proportional term can be computed
easily (by going through each value on O and then applying a simple normalization for each
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case). In contrast, in the continuous setting, the parametric estimation of binary systems is
particularly challenging due the intrinsic continuous nature of its probabilistic distributions,
however for this kind of cases the existence of sampling method allows to perform a partial
representation of the posterior distribution pΘ|D through samples. Although this simulation
does not provide a close mathematical expression for the Equation 2.10 the samples obtained
enable the empirical estimation, such as expected value, variance or other metrics regarding
the shape of p|D.

The inference process previously discussed gave a methodological approach to obtain the
posterior distribution pΘ|D of a observable system. Following the idea of Section 2.2 a new
predictive flow can be made using the same diagram featured in Figure 2.4 to generate the
distributions pY t|D and pY tα|D, which are denoted as the Posterior Predictive Distribution or
Post-PD and the Posterior Observational Distribution or Post-OPD respectively.

2.3.2. Sequential Bayesian Inference

In order to address the main objective in this work, the selection of a new instant t of
observation given previous data of the system. It is interesting to study another flavor of the
bayesian framework. Once data have been acquired from the system, it is possible to process
this information and transform it in the posterior distribution pΘ|D. Once a new observation
over the system is performed it is important to rethink the inference as a sequential and
recursive process.

pΘ|DN−1,Y
tN
αN

(θ|dN−1, ytNαN ) =
∏N
i=1 pY tiαi |Θ

(di|θ)pΘ(θ)∏N
i=1 pY tiαi

(di)

=
p
Y
tN
αN
|Θ(ytNαN |θ)

∏N−1
i=1 p

Y
ti
αi
|Θ(di|θ)pΘ(θ)

p
Y
tN
αN

(ytNαN )∏N−1
i=1 p

Y
ti
αi

(di)

=
p
Y
tN
αN
|Θ(ytNαN |θ)pΘ|DN−1(θ|dN−1)

p
Y
tN
αN

(ytNαN )

∝ p
Y
tN
αN
|Θ(ytNαN |θ)pΘ|DN−1(θ|dN−1)

(2.11)

The sequential inference is the process where in each step of inference, besides the first
instance, a redefinition on the actual prior distribution is performed using the previously
estimated posterior distribution. Therefore in each instant of inference the acquired knowl-
edge of the system is updated to allow future estimations. The theoretical justification of the
sequential inference is showed in Equation 2.11 where the final posterior distribution using
all the data is proved proportional to the one-step bayesian inference formula but using an
updated version of the prior distribution. This sequential approach is important because the
problem of optimal sampling has inherently the same structure.
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2.4. Information Theory
Information Theory is a statistics field widely use in communication applications among

other scientific frameworks, it uses probabilistic and statistics theory to model information
sources. This theory was originally proposed by [Shannon, 1948] and is considered one of
the most revolutionaries scientific works of all time. The concepts presented and defined in
this paper were crucial to understand of communications systems as we know them today.
The main objects of study in Information Theory are information sources which are defined
as random variables completely characterized by their respective distribution. This last
mathematical concept rule the behavior of the random variable so by studying its shape will
allow to understand the intrinsic properties of this information source.

The reason why Information Theory is relevant in this work is because allows to measure
information transfer from the observations to the parameters in the context of Bayesian
Inference. In order to determine an optimal sampling instant t a metric will be established to
decide if a particular election ti is a better choice than tj, this will me performed by means of
exploiting deep statistical relationship between the parametrical space and the observational
space.

2.4.1. Entropy

The first object of information is the study of a random variable. The entropy is the most
recognized concept in Information Theory and it is often interpreted as how much randomness
has a variable. The entropy of a random variable X ∈ X is denoted as H(X), the definition
of entropy is presented in Equation 2.12, being H(.) a mapping from the space of possibles
distributions pX to R. This expression is upper bounded by the entropy of a random variable
Xu ∈ X that has a distribution pXu ∼ uniform(X ) and lower bounded by the entropy of
a completely deterministic variable Xd ∈ X with distribution pXd ∼ 1xc(x) xc ∈ X . The
Equation 2.12 is composed as the sum of a term dependent on the probability value in each
element of the support of X.

H(X) = −
∑
x∈X

pX(x) log pX(x)

0 = H(Xd) ≤ H(X) ≤ H(Xu)
(2.12)

It is easy to notice that randomness of a variable and his entropy are tightly related in
the extreme cases of absolute uncertainty (uniform distribution) or deterministic behavior
(degenerate distribution). The non-extreme scenarios can be explained by other analysis,
for example applications in the communication field. The problem of lossless source cod-
ing described in [Cover and Thomas, 2006] is defined as the search of an optimal rule to
map X to a codebook C, which contains codewords of different length, the optimal rule
must guarantee the minimal expected length for the codewords. The result presented in
[Cover and Thomas, 2006] says that the optimal expected length of a codeword for the de-
scription of an arbitrary discrete random variable X is proportional to the entropy H(X),
meaning that if X concentrates a big portion of his probability mass in certain symbols of
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X the optimal codebook will assign short codewords to those symbols. The optimal code
presented in [Cover and Thomas, 2006] can be interpreted as the relationship between the
difficulty to understand the stochastic behavior of a random variable and the complexity of
coding that information. This connection is one of the reason that entropy is recognized and
used as a measure of uncertainty for a random variable in many applications.

The definition of entropy presented in [Shannon, 1948] only addresses the discrete scenario,
this is because in communication applications the information sources are mostly modeled in
discrete spaces. In contrast, the objective of this work is set in a continuous space following
the intrinsic nature of the binary systems, then a extension of Equation 2.12 must be defined.
The differential entropy corresponds to the natural extension of the entropy where the sum
is replaced by an integral. This change can be interpreted as insignificant but unfortunately
leads to the loss of some properties. The differential entropy is still upper bounded by dif-
ferential entropy of a uniform distribution in X however the lower bound is lost, implying
that the differential entropy can reach any negative value. This change hinders the inter-
pretation of the differential entropy, unlike the discrete scenario where the entropy is always
semi-positive and reaching the boundary case 0 when the random variable is degenerate. In
contrast, the differential entropy lack of some of the practical interpretations, implying that
any result derived from this concept will only serve theoretical proposes.

H(X) = −
∫
x∈X

pX(x) log pX(x)dx (2.13)

The discrete entropy and the differential entropy relate a single random variable to a
numerical value in R being only a self-description of a random object. An interesting analysis
is to study two random variables interacting with each other and the effect of this relationship
in a entropy-wise manner. For this we introduce the concept of conditional entropy as shown
in Eq 2.14.

H(X|Z) = −
∫
Z

∫
X
pX,Z(x, z) log pX|Z(x|z)dxdz (2.14)

H(X|Z) = −
∫
Z

∫
X
pX,Z(x, z) log pX|Z(x|z)dxdz

=
∫
Z
pZ(z)−

∫
X
pX|Z(x|z) log pX|Z(x|z)dx︸ ︷︷ ︸

H(X|z)

dz

=
∫
Z
pZ(z)H(X|Z = z)dz

= EZ [H(X|Z = z)]

(2.15)

The conditional entropy is most known by the first expression presented in Equation
2.14, but an alternative derivation is presented in Equation 2.15. This adds a intuitive
interpretation to measure the statistical relationship between two random variables, it is
crucial to understand that each particular value z of Z affects the distribution pX|Z(x|z),
being this distribution the mathematical object that relates X to Z. Rhis implies that
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the definition of H(X|Z) forms of expectation over the random variable Z. Intuitively the
conditional entropy is a measure of the uncertainty from the random variable X after Z has
been observed.

2.4.2. Mutual Information

The characterization of the conditional differential entropy, presented in Equation 2.14,
does not hold commutativity between X and Z. The intuition says that a measure of in-
formation should represent, symmetrically, the relationship between 2 information sources,
so the next step must be the definition of expression which quantifies the difference in un-
certainty of a variable X when an external variable Z is observed. The Mutual Information
I(X;Z) is a measure that represents the shared information between two random variables
and how much one determines the other an vice versa. The explicit definition is presented in
Equation 2.16.

I(X;Z) =
∫
Z

∫
X
pX,Z(x, z) log pX,Z(x, z)

pX(x)pZ(z)dxdz

= H(X)−H(X|Z)
= H(Z)−H(Z|X) ≥ 0

(2.16)

The Mutual Information is a fundamental measure in Information Theory, it has been used
in many applications such as feature selection [Vergara and Estevez, 2014][Beraha et al., 2019],
independence test [Berrett and Samworth, 2017], neural networks information bottleneck
[Tishby et al., 2001] and image segmentation [Junmo Kim et al., 2005], among other cases.
The Equation 2.16 shows two expressions for the Mutual Information which serve different
proposes, the first one represents the measure by using the joint and marginals distributions
of X and Z. This characterization is useful because it allows to connect this concept of infor-
mation with the Kullback-Leibler divergence denoted as DKL in Equation 2.17, this last term
is a semi-measure of distance between two distributions which reaches its minimum value at
0 when both distributions are exactly equal. Thus the Mutual Information can be pictured
as DKL(pX,Z ||pXpZ) this interpretation is heavily linked to the setting of statistical indepen-
dence because measures the discrepancy of the pX,Z to its null hypothesis of independence,
given by pXpZ .

DKL(pX1 ||pX2) =
∫ ∫

pX1(x1) log pX1(x1)
pX2(x2)dx1dx2 (2.17)

On the other hand, the last expression in Equation 2.16 can also be interpreted as the
difference between entropy of a variable and the same variable after an observation of the
other has been made. One important aspect to discuss from I(X;Z) is its extreme values, the
Mutual Information is lower bounded by 0 and this condition is reached when both variables
are independent (using the Dkl interpretation), mathematically this condition is expressed
by H(X) = H(X|Z). On the other extreme, the Mutual Information upper boundary is
min[H(X), H(Z)], this happens when either H(X|Z) = 0 or H(Z|X). The upper bound
scenario happens when a deterministic relationship exists between X and Y and behaves
exactly as Equation 2.6. This last case can be interpreted as one variable been absolutely
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descriptive from the other variable.
The last important aspect to look at from the Mutual Information it is its semidefinite

positivity, this implies that it is always expected a information gain between two information
sources. However it is crucial to remember that the concept of conditional entropy, included in
the definition of Mutual information in Equation 2.15, is defined as an expectation, therefore
it is completely plausible that for a subset Z ′ ⊂ Z that H(X|Z = z) > H(X) ∀z ∈ Z ′.
In a observational setting is completely possible that a new data point could increase the
entropy of the inferred space even if this sampling moment was hand-picked to be optimal
under a certain criteria. It is possible that samples obtained via well designed criterion,
that uses measures based on expected value of a statistical object, could imply an increase
in uncertainty in the inferred space despite being optimal before the optimal observation is
made.

In summary, Information Theoretic measures are a set of mathematical concepts useful
in the characterization of knowledge and certainty for many inference problems, being this
the reason why we are interested in considering Mutual Information and conditional entropy
for definition the optimal sampling strategy. We will use those concepts to formalize the
optimization of our optimal sampling problem in orbital parameter estimation.
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Chapter 3

Related Work

3.1. Inference
Obtaining the actual set of parameters from a binary system through observations has

been the main focus of studying stellar astronomy for many years. Usually, in order to obtain
a particular value for the parameters, an inference method using the available information
and data is performed. Through the history of astronomy, many authors and researchers
have been addressed this problem and proposed a large number of methods; those attempts
vary both on mathematical tools and in the philosophical approach. This section will briefly
discuss the history of parametrical inference for binary systems until reaching the current
state of the art on this matter.

3.1.1. Deterministic Inference

Back in the early 20th century, the first widely accepted method to obtain the orbital
parameters of a binary system was presented, often referred to as the Thiele-Innes-Van de
Boss method inspired by the works in [Thiele, 1883][Thiele, 1926][den Bos W. H, 1926]. This
scheme mainly uses three astrometric observations denoted by the polar coordinates of the
less bright star relative to the brighter one (ρ, θ, t) and the estimation of the constant c,
which corresponds to the areal velocity, related to the Kepler’s Second Law obtained via
external information. Using the proposed estimation was possible to obtain a parametrical
representation for the system and consequently a solution candidate for the problem. Follow-
ing the same approach as the Thiele-Innes-Van de Boss method, a new variant was proposed
in [Cid Palacios, 1958], where instead of using the constant c a partial astrometric observa-
tion (considering only the angular and temporal components of the original tuple (θ, t)) was
required to find the best suitable orbit. One of the last versions inspired in this principle
is presented in [Docobo, 1985] where the extra piece of information besides the three tuples
(ρ, θ, t) is an auxiliary angular variable denoted as V which induces a feasible set of orbits
E according to the data. The three methods presented above share the same methodology
in their approaches where the data (ρi, θi, ti)3

i=1 and the extra measure (c, (θ4, t4) or V ) will
project a set of plausible orbits for the system. Under this paradigm, a set of parameters
considered as a solution must project an orbit in the sky-plane that describes a perfect path
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for all astrometric points measured. In section 2.2 it was extensively discussed how noise
affected the observations of a system irremediably. Consequently, the statement that each
orbit is solution must match perfectly the data can be picture a strong miss-modeling and
naturally will lead to a not representative solution for the system.

The next generation of methods addressing the orbital parameter inference problem was
mainly focused on modeling the reliability involved in each astrometric measure. This hy-
pothesis allowed to infer orbital parameters for systems that had observations which differed
in the grade of certainty between each other meaning that some data point were more ac-
curate in comparison to others, the main theoretical focus for this kind of methods was the
definition of a fitness function, being in each case parametrized for the observations (ρi, θi, ti)
itself and a constant wi acting as a weighted certainty relative to the rest of data. The
primary challenge for this setting was the inherent optimization problem associated with the
search of an optimal solution relative to the fitness function, in [Tokovinin, 1992] for exam-
ple, this problem is addressed by the Least Squares iterative method. At the same time,
in [MacKnight and Horch, 2004] the Nelder-Mead method, also known as the downhill sim-
plex method, is applied; these new approaches allowed to solve systems that, under the first
generation of estimators, had contradictory data (observations that mismatch the predicted
model). Naturally, this new focus on estimators is considered, by the community interested
in binary systems, as an upgrade compared to earlier methods. Unfortunately, all the issues
discussed in section 2.2 and 2.3 were not addressed in this scheme because the inference is
still deterministic, meaning that a new approach for parametrical inference of binary systems
must be established.

The work of [Pourbaix, 1994] was one of the first steps towards a stochastic characteriza-
tion of the inference problem. The proposed method used the simulated annealing paradigm
from [Metropolis et al., 1953] in order to optimize the fitness function. This approach did not
use the full potential of simulated annealing [Metropolis et al., 1953], and the result lacked
the properties of a Bayesian inference setting.

3.1.2. Probabilistic Inference

The Bayesian approach was not explored until [Ford, 2005] published a method based on
Monte Carlo Markov Chains (MCMC) simulation to study the orbit of exoplanets, the parti-
cles generated by the MCMC method were taken as samples from the posterior distribution,
and then an inference was possible. Due to the evident similarities between the study of
orbits for exoplanets and binary systems, an extrapolation between both problems was nat-
ural, the works of [Lucy, 2014] and [Sahlmann et al., 2013] understood these similarities and
adopted the same framework to address the problem of estimation of orbital parameters of
binary systems. The main three advantage of this new simulation oriented method were: 1)
robustness in solution for systems hard to estimate, 2) the probabilistic approach that gave
a characterization of the posterior distribution instead of only a deterministic decision, and
3) the use of computational power to automatize the simulations quickly.

The individual masses of each star in a binary system are one of the most important
physical aspects to study. In section 2.1 we discussed how astrometric data only allows
inferring the sum of the masses, implying that in order to estimate these individual masses,
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the spectroscopic measures must be introduced. One of the first works that involved a joint
characterization of astrometric and spectroscopic data was [Pourbaix, 1998], which uses the
same approach proposed in [Pourbaix, 1994] (simulated annealing). On the other hand, one
of the most recent methods addressing the orbital parameter inference using both kinds of
observation is presented in [Mendez et al., 2017], where through Gibbs-MCMC simulation,
the posterior inference obtained is characterized by the generated samples, and consequently,
a measure of certainty can be estimated using these particles.

The current state of the art for inference of orbital parameters is held by Bayesian ap-
proaches that use simulation techniques to obtain posterior distribution samples. This sim-
ulation methodology is implemented in several study cases, for example, using the samples
to characterize the posterior distribution explicitly, allowing to study the relationship be-
tween the parametrical space and the observations [Lucy, 2014], analyzing the shape of the
marginal distributions and evaluate the quality of the inference [Mendez et al., 2017]. The
current methods and computational power available allow researchers to infer the parameters
over hundreds of binary systems with a wide variety of observational qualities. This is the
main reason why any observation available about the binary systems is crucial because it
is the only method to improve the knowledge over any particular system that is observable.
This search of more observations stimulates more recent works such as [Claveria, 2017], where
imputation techniques are implemented in order to include partial or corrupted observations.
From a different scope but under the same paradigm, the need for data encourages the de-
velopment of new scheduling observation methods that exploit the posterior characterization
of the inference and then better use the available observational resources.
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3.2. New sample selection

3.2.1. Bayesian Experiment Design

In 1948 the mathematician and electrical engineer Claude Shannon published his work
"A Mathematical Theory of Communication"[Shannon, 1948] and started a revolution in all
fields related to communication. The metrics introduced in [Shannon, 1948] were not only
relevant for this particular discipline of engineering, but the statistical approach presented in
the work of Shannon was also interesting for mathematicians involved in Bayesian inference.
For example the works [Blackwell, 1953] and [Blackwell and Girshick, 1979] were focused on
modeling experiments and studying how two experiments can be considered as equivalent
under the scope of information measures.

The increasing number of publications related to [Shannon, 1948] in conjunction with
[Blackwell, 1953] and [Blackwell and Girshick, 1979] were the initial motivation to explore
how information measures are an essential in Bayesian inference. As a result of this, the work
[Chaloner and Verdinelli, 1956] presented the foundations of what would later be referred as
Bayesian Experiment Design. The main focus of this paper was introducing the definition
of information related to an experiment and how this value is closely dependent on the
particular sample obtained in a realization of such experiment. The work starts by defining
the intrinsic information I0 related to Θ, the variable to infer, and the information I1 over
Θ after an observation of X was made, Both concepts are defined in Equation 3.1.

I0 =
∫
O
pΘ(θ) log pΘ(θ)dθ

I1(x) =
∫
O
pΘ|X(θ|x) log pΘ|X(θ|x)dθ

(3.1)

Once the main measures regarding the Equation 3.1 are described, the next step is the
mathematical definition of an experiment and how this object is related to an inference
problem. In [Chaloner and Verdinelli, 1956] an experiment is denoted by the tuple ε =
{X,B,Θ, P} being X ∈ X the observational random variable, its B σ-field subsets in X ,
pΘa prior distribution for Θ and P the set of probability measures pX|Θ ∀θ ∈ O. This tuple
describes the act of observation by using the likelihood of each possible observational outcome
contained in the set P and the prior knowledge over the variable to infer pΘ. The information
gained in an experiment ε given an observational realization x is defined in Equation 3.2,
which is the difference between the posterior information I1(x) and the prior information I0
previously defined.

I(ε, pΘ(θ), x) = I1(x)− I0 (3.2)

It is worth pointing out that studying on experiments cannot be a function dependent of
particular values x, because in a practical setting the outcome of an experiment cannot be
known prior to its execution. So an expected value analysis must be performed; therefore,
the definition of information obtained via a certain experiment ε is defined by the expected
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value of the Equation 3.2 relative to X and is made explicit through Equation 3.3.

I(ε, pΘ(θ)) = EX [I1(x)− I0] (3.3)

The analysis made in [Chaloner and Verdinelli, 1956] regarding Equation 3.3 introduces
cases of study for two or more candidate experiments, consequently also explores the proper-
ties existent in scenarios where these experiments are performed simultaneously, implying a
study of joint information from such experiments. The similarities between mutual informa-
tion of two random variables and information of an experiment are evident when comparing
Equation 2.16 and Equation 3.3, this similarity can be noticed more evidently when observ-
ing the derivations presented in [Chaloner and Verdinelli, 1956] are known properties of the
mutual information discussed in section 2.4. Lastly this work also features extensions for the-
orems presented in [Blackwell, 1953] and [Blackwell and Girshick, 1979]. On the other hand,
the definitions presented in Equation 3.1 have no immediate interpretation; this happens be-
cause the values for each experiment analyzed are always negative and have no attachment to
any intuition. Despite these drawbacks, the work presented in [Chaloner and Verdinelli, 1956]
is one of the most solid theoretical backgrounds used in experiment design for actual practical
approaches, and it offers a solid foundation for this field of study.

Most recent works inspired by Bayesian Experimental Design are focused on the theo-
retical results for a certain type of experimental configurations rather than addressing any
specific practical approach. The main objective defined in most of these works is the maxi-
mization of a utility function taken as an expected value relative to Θ and X, the Equation
3.4 shows the most common generalization of the optimization problem and pictures the
search of an optimal experimental setting considering prior knowledge over Θ and its prior
projection over X. For this particular problem setting, the definition of the functional U(.)
will induce a particular optimization problem which consequently requires a different study
in order to find a solution. Therefore for each definition of U(.), a new optimization prob-
lem is defined. An excellent review about these different problem settings is presented in
[Chaloner and Verdinelli, 1995] where the information gain is featured as one of the most
addressed forms for U(.). The results discussed in [Chaloner and Verdinelli, 1995] are purely
theoretical and due to the complexity associated to the expression Equation 3.4, often im-
plying non-traceable integers, most of the analysis presented in this matter will avoid any
practical considerations.

U(ε∗) = max
ε

∫
X

max
d

∫
O
U(d, θ, ε, x)pΘ|X,ε(θ|x, ε)pX|ε(x|ε)dθdx (3.4)

3.2.2. Maximum Entropy Sampling

The repercussions of [Shannon, 1948] and [Chaloner and Verdinelli, 1956] are still present
in modern works. One of these extensions is the framework of Maximum Entropy Sampling,
or MES, first introduced in [Shewry and Wynn, 1987] being an extremely short but condensed
work where the MES criteria are defined. The main result presented in [Shewry and Wynn, 1987]
is showed in Equation 3.5 where X is a collection of N random variables, Xs a subset of X
and Xs̄ its complement. This expression shows how the entropy of a variable X can be un-
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derstood as the sum of the entropy of a subset of the original variable Xs and the conditional
relationship between Xs and its complement Xs̄.

H(X) = H(Xs) + EXs [H(Xs̄|Xs)] (3.5)

This known result of Information Theory [Cover and Thomas, 2006] has important reper-
cussions for experimental design. A revision of this Equation is made in [Sebastiani and Wynn, 2000]
specifically to address the case of experiment selection and re-formulates the MES criteria to
contextualize on the Bayesian Experiment Design framework. For this purpose, the Equation
3.5 is re-written and the random variables θ and X are newly introduced together with the
experiment ε. The new expression is the following.

H(Θ, Y |ε) = H(Y ) + EY [H(Θ|Y, ε)] (3.6)

The hypothesis made in [Sebastiani and Wynn, 2000] states that for practical reasons, for
any experiment ε the term H(Θ, Y |ε) can be considered as constant, implying that despite
the selection of experiment ε (associated with their respective instrumental noise) the sum of
H(Y ) and EY [H(Θ|Y, ε)] will be constant for any give experimental design ε. This assumption
implies that the minimization of EY [H(Θ|Y, ε)] over ε inevitably results in the maximization
ofH(Y ) and vice-versa. In an optimal experiment selection, this relationship can be exploited
to change the objective function of the optimization problem, [Sebastiani and Wynn, 2000]
states that if the goal of the selection is to minimize the expected uncertainty of the pa-
rameters Θ when an observation is made over Y using the experiment ε, i.e. EY [H(Θ|Y, ε)]
then the problem is equivalent to select the experiment that maximizes the entropy of the
observation variable H(Y ). The Maximum Entropy Sampling (MES) is referred as such be-
cause it implies that the most informative experiment is the one that has the most entropic
observation for Y .

The scope of the MES criteria in a practical setting is not discussed in [Shewry and Wynn, 1987]
or [Sebastiani and Wynn, 2000] because these works are focused on theoretical settings where
each variable and the experiment had a specific analytical expression. In order to apply
this criterion in a practical scenario, an extensive verification of the hypothesis regarding
H(Θ, Y |ε) must be made. In the following sections, this assumption is studied and proven
not true for the case of astrometric and spectroscopic observation in our problem, meaning
that an extension for this principle must be done.
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3.3. Optimal Scheduling State of the Art

The practical study of optimal experimental settings (to improve the performance of var-
ious inference methods) is not a new topic. Multiple theoretical approaches have been pro-
posed through time, as shown in previous sections. This literature provides a strong math-
ematical framework for selecting appropriate experimental configurations. Different authors
have proposed practical solutions for specifics problems in diverse scientific fields. The main
shared feature among them is the use of a statistical model to address the phenomenological
act of observation.

3.3.1. Posterior Variance Minimization

The problem of optimal scheduling in experimental settings can be described as the act
of selecting a particular instant of observation t that gives the maximum benefit for a given
metric. In [Vanlier et al., 2012] for example, the main objective is the variance minimization
for a function z of the variable to infer Θ. In order to estimate this particular value of interest,
a simulation-oriented method (in conjunction with an empirical estimation of expectations)
is proposed. The first step of this method is an MCMC simulation to obtain samples of the
posterior distribution pΘ|Y D . This approach corresponds to a Bayesian inference analysis and
coincides with the state of the art discussed in section 3.1.2. The result of this step is a
collection of T samples {θi}Ti=1 coming from pΘ|Y D , those samples will serve as a input for
the estimation phase of the method.

pYn|Y D(yn|yD) =
∫
O
pY |Θ(y|θ)pΘ|Y D(θ|yD)dθ (3.7)

In the same fashion as Equation 2.9, the Post Observational Predictive distribution (OPD)
samples are obtained by marginalization over the posterior distribution as shown in Equa-
tion 3.7. The authors of [Vanlier et al., 2012] postulate that through this distribution, the
non-linear relationships between the observational and the parameters are preserved and con-
stitute the main object to analyze for evaluating the performance of a certain experiment.

A study of the posterior distribution after an experiment is made presented in [Vanlier et al., 2012]
which uses the expression in Equation 3.8, where the proportional value pYn|Θ(yn|θ)pΘ|Y D(θ|yD)
is equivalent to the derivation presented in Equation 2.11 implying that this expression cor-
responds to a sequential Bayesian inference.

pΘ|Yn,Y D(θ|yn, yD) = pYn|Θ(yn|θ)pΘ|Y D(θ|yD)Z1

Z2
(3.8)

Through Equation 3.8, a normalization term for pYn|Θ and a Monte Carlo approximation,
the expected posterior value after a certain experiment for the function z(Θ) can be estimated
as showed in Equation 3.9.

EΘ[z|yn, yD] ≈
T∑
i=1

p̃Yn|Θ(yn|θi)∑T
j=1 p̃Yn|Θ(yn|θj)

z(θi) (3.9)
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The Equation 3.9 is function of the particular value that the experiment takes yn, meaning
that a new expectation with respect to Yn must be performed. Under the same spirit, a Monte
Carlo approximation is applied in Equation 3.10 being G(θi, θr) part of the Gaussian model
of noise selected and representative of pYn|Θ.

EΘ,Yn [z] = 1
T

T∑
r=1

T∑
i=1

G(θi, θr)∑T
k=1G(θk, θr)

z(θi)

G(θa, θb) = exp
(
−y(θa)− y(θb)

2σ2

) (3.10)

The function z(θ) in Equation 3.10 corresponds to the projection of θ to a space of interest
Z. For simplicity, the choice of z(θ) = θ can be made, meaning that the expectation presented
in Equation 3.10 is not the main objective to minimize. In [Vanlier et al., 2012] a variance
minimization is proposed for the function z, where Equation 3.11 specifies how the variance
is calculated trough the expectations E[z2] and E[z]2 also a Variance Reduction metric is also
proposed in this work, where σ2

old is the variance only using the Post OPD samples and σ2
new

is the variance for the new data obtained via experimentation.

Var[z] = E[z2]− E[z]2

VarRedux = 1−
[
σ2
new
σ2
old

] (3.11)

In this fashion, the work [Vanlier et al., 2012] presents a structured method to select an
experiment that reduces the variance of θ of interest. It is important to remark that this
method is heavy, with a computational cost that is order O(T 2), being T is the number of
samples generated by the MCMC method.

3.3.2. MES criteria via Monte Carlo Integration

The MES criteria is one of the most useful frameworks for optimal experimental setting,
the closed and short statement made in 3.6 allows to implement this methodology in almost
any scenario. An astronomy study made in [Loredo, 2004b] about exoplanets orbits used
the Bayesian Experiment Design framework to select the best instant of observation which
reduced the expected uncertainty on the parametrical space. The work started by reviewing
the utility function presented in section 3.2.1 and quickly conclude about its lack of prac-
ticality (due to the intractability of the integrals presented in Equation 3.4), thus a MES
criteria oriented method is proposed.

The main objective of [Loredo, 2004b] is the entropy maximization of the Post OPD
subject to a proposed list of experiments. In order to estimate the differential entropy, a
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Monte Carlo Integration is used to approximate H(Yn) using Equation 3.12.

H(Yn) = −
∫
Y
pYn|Y D(yn|yD) log pYn|Y D(yn|yD)dyn

= − 1
T

T∑
i=1

log pYn|Y D(y(i)
n |yD)

(3.12)

The Equation 3.12 pictures how the distribution pYn|Y D and samples coming from it allows
to estimate the differential entropy. On this, the samples of the Post OPD pYn|Y D are obtained
via propagation of the samples coming from a MCMC simulation for the posterior distribution
pY |Y D in the same way as Equation 3.7. The value that takes the distribution pYn|Y D for a
particular value yn must be estimated. The Equation 3.7 can be reinterpreted again as an
expectation and, consequently, a Monte Carlo Integration can be performed as shown in
Equation 3.13.

pYn|Y D(yn|yD) =
∫
pYn|Θ(yn|θ)pΘ|Yn(θ|yn)dθ

≈ 1
T

T∑
i=i

pYn|Θ(yn|θi)
(3.13)

In summary, the method for optimal observation scheduling proposed in [Loredo, 2004a]
(and later used in [Loredo et al., 2012] for exoplanets detection) can be performed by a nested
Monte Carlo Integration over the samples coming from the Post OPD. This approach takes
computational cost of order O(T 2) being T the number of samples generated by the MCMC
simulation. The last aspect to remark from this work is the questionable hypothesis (from
the MES criteria) in which is stated that the joint entropy H(Θ, Yn|ε) is constant for any
experiment ε in the plausible agenda. In later chapters, this criterion will be discussed, and
the cases where this hypothesis holds will be clarified.
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Chapter 4

Optimal Sampling Criteria

4.1. MES Criteria Extension
In astronomical problems, obtaining observational data from a system is not an easy task.

Multiple exogenous factors are present which, in the long run, determine the viability of an
experimental setting, for example, the meteorological conditions that affect the instrument’s
accuracy, the observatory location and the date of the observation, even the schedule of
the observatory itself are essential constraints in an experimental selection. For practical
purposes, all of these exogenous difficulties attached to the practical restrictions of obser-
vation are reduced to a finite collection of possible measurements. On the other hand, a
more general setting can be proposed for a continuous observation model; this new approach
implies that the most informative instant should be perfectly selected for an exact moment
of observation. Unluckily a continuous approach on the scheduling problem is avoided due to
two main reasons: 1) Non-discrete approaches described in the literature are highly complex,
often implying the derivation of untraceable integrals and non-closed solutions 2) In practice
obtaining observational data is constrained by the exogenous factors such as the visibility of
the system (by meteorological conditions or observability from the telescope location) and
administrative viability of the observatory, these constraints will always lead to a finite num-
ber of viable days to observe. In conclusion, raising the mathematical complexity of the
scheduling problem in the purse of perfectly selecting observational instant in a continuous
setting does not serve any practical proposes when observing binary systems.

The optimal scheduling problem is defined as the search of an optimal experiment in a fi-
nite space A. The optimal solution is basied on a functional F representative of the expected
posterior distributions over the parameters after the experiments have been performed. The
set of experiments A will be referred to as the Agenda and each element in it is defined
as a set of experimental conditions (such as the instant of observation and the precision of
the telescope) that completely characterizes the observational setting. This definition of the
feasible space is shared in several related works as [Loredo, 2004b] and [Vanlier et al., 2012],
being in each case the experiment ε identified in different forms. The main point of de-
tachment between methods proposed in the literature is the definition of the functional F ,
for example, [Vanlier et al., 2012] represents the school of thought focused in measure the
different moments of the posterior distribution pΘ|D such as the variance (2nd moment). In
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this work, a new approach on F is studied.
Alternatively, objective functions coming from Information Theory for optimal schedul-

ing have been proposed in multiple works regarding optimal scheduling and experimental
selection[Sebastiani and Wynn, 2000][Chaloner and Verdinelli, 1995] [Loredo, 2004b]. The main
result of those papers is the definition of the Maximum Entropy Sampling criteria (or MES
criteria) which is portrayed in Equation 3.6. It is important to remark that this criterion
gives a solution to the problem of conditional entropy minimization (under the hypothesis
of the joint Entropy being constant), then concludes that the maximization of the marginal
Entropy for the observational variable directly implies a minimization in the functional of in-
terest. The definitions and nomenclature presented in Equation 3.6 are at least questionable;
the manner that this work expresses the differences between experiments ε is ambiguous and
lacks an explicit definition; it also does not explore the relationship between the observa-
tions and the parameters in an inference problem. Therefore, in order to clarify the notation
of Equation 3.6, a new expression for the MES criteria is proposed using the observational
model described in Section 2.2 and pictured in Figure 2.4.

H(θ, Y t
α) = H(Y t

α) + EY tα [H(θ|Y t
α = ytα)] (4.1)

This re-definition of 3.6 allows understanding more directly how the observational variable
affects the MES criteria. In Equation 4.1 the experiment is no longer defined by ε, instead
is completely captured by the observation Y t

α which is indexed by the observation instant t
and the observation instrument uncertainty α. This re-definition significantly clarifies the
interaction between the parameters Θ and the observation Y t

α and makes explicit the fact that
changing the characterization of an experiment (the values of t and α) will naturally affect all
the terms involved in Equation 4.1 and consequently changing the objective of minimization.
It is important to notice that Θ is not explicitly denoted as the posterior given a collection of
data D, the reason behind this is because all of the posterior knowledge acquired by observing
D can be embedded in Θ already; this is achieved by replacing the prior distribution for the
posterior distribution obtained via Bayesian Inference. In Section 2.3.2 it is discussed how,
in a sequential inference approach, an update of the prior distribution can be made in order
to simplify the calculation of future posterior distributions. Inspired by Section 2.3.2 and
in the pursue of avoiding heavy notation, the random variable Θ will refer to the posterior
distribution given data D, and consequently, Y t and Y t

α will refer to the Posterior Predictive
Distribution (Post PD) and Posterior Observational Predictive Distribution (Post OPD)
respectively, which are generated by Θ and using the marginalization technique shown in the
observation model presented in Figure 2.4.

The redefinition of the MES criteria, in Equation 4.1, allows understanding the hypothesis
and conclusions presented in [Sebastiani and Wynn, 2000] in the context of optimal schedul-
ing for orbital parameters. The term H(Y t

α) is the most straight forward concept present in
the Equation 4.1, the full characterization of the post OPD Y t

α via marginalization is speci-
fied in Equation 2.9 suggests that H(Y t

α) completely depends on the posterior knowledge Θ
and the observational indices t and α of the experiment to perform. The term H(Y t

α) also
corresponded to the main objective of MES presented in [Sebastiani and Wynn, 2000] and
applied in [Loredo, 2004b], which can be conceptualized as the uncertainty in the post OPD
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knowledge. This connection implies that obtaining a sample in the moment of major Entropy
will lead to the largest reduction in expected uncertainty for a feasible Agenda A. Intuitively
observing the most uncertain instant of the system will coincide with the most informative
observation. However, in order to give formal substance to this belief, the hypothesis of the
joint Entropy H(Θ, Y t

α), presented in [Sebastiani and Wynn, 2000] and discussed in Section
3.2.2., must be mathematically explicit.

The main point of conflict in the approach presented in [Sebastiani and Wynn, 2000] is
the verification of the joint entropy hypothesis. At first glance, a constant joint entropy
regardless of the experiment chosen is a strong hypothesis. The joint entropy H(Θ, Y t

α) is
a measure that captures deep probabilistic behavior between Θ and Y t

α, suggesting that a
constant behavior of H(Θ, Y t

α) for any selection of Y t
α only occurs in a small set of inference

settings. The joint entropy present in Equation 4.1 can be rephrased to identify the elements
that conform H(Θ, Y t

α). This new expression is the following:

EY tα [H(θ|Y t
α = ytα)] = H(θ, Y t

α)−H(Y t
α)

= H(Θ) + EΘ[H(Y t
α|Θ = θ)]︸ ︷︷ ︸

definition of joint entropy

−H(Y t
α) (4.2)

By using Equation 3.5 and inverting the order of the variables, a new expression for
the MES criteria is obtained. Importantly, the new terms H(Θ) and EΘ[H(Y t

α|Θ = θ)]
are explicitly related to our objective function EY tα [H(θ|Y t

α = ytα)]. The prior distribution
pΘ is not related with the instant of observation, meaning that, design-wise, the marginal
entropy H(Θ) is constant, and consequently easily removed from the objective function. In
the pursuit of improving the interpretability of the final objective function, a new treatment
for Equation 4.2 is proposed in Equation 4.3 by relating the conditional entropy with the
Mutual Information.

I(θ;Y t
α) = H(Θ)− EY tα [H(θ|Y t

α = ytα)]
= H(Θ)−H(Θ)− EΘ[H(Y t

α|Θ = θ)] +H(Y t
α)

= H(Y t
α)− EΘ[H(Y t

α|Θ = θ)]
(4.3)

Mutual Information is an indicator of the interaction between two random variables, as
discussed in Section 2.4.2. In addition to its definition, the derived expression in Equa-
tion 4.3 establishes that this information metric is also indicative of entropy reduction in a
Bayesian inference scenario, implying that the selection of a random variable from a feasible
set, i.e. an experiment from the plausible agenda A, will be the most informative when
the expected posterior entropy for the parametrical variable finds his minimum value. It
is important to remark that this new Equation follows the same principals as the original
MES criteria presented in [Sebastiani and Wynn, 2000] [Loredo, 2004b], but now featuring
the term Eθ[H(Y t

α|Θ = θ)]. This new extension implies that the original hypothesis on the
joint entropy being constant is necessarily equivalent to a constant behavior of the conditional
entropy Eθ[H(Y t

α|Θ = θ)]. This new connection rises the question about under which condi-
tions, for the experimental setting and the problem framework itself, this constant H(Θ, Y t

α)
assumption results valid. The simplest feasible scenario corresponds to the case where all
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experiments in the plausible agenda A have the same observational model, defined in Figure
2.4, i.e all the distributions pY tα|Θ∀θ ∈ Θ for each entry in the Agenda A are the same. This
proposition is true in several experimental settings, for example, let us take the case when a
particular phenomenon can be observed by the same instrumental equipment but in different
instances, being in each instance the observation function M is the same and consequently
distribution pY tα|Θ results equivalent in any experimental setting. Then the original MES
criteria states that the moment of maximum marginal entropy on the post OPD variable Y t

α

is the instance that reaches the minimum expected new posterior entropy H(Θ|Y t
α). Due to

the nature of the conditional entropy, the existence of exotics configurations for experiments
in A that does not have the same conditional distribution pY tα|Θ but still hold the statement
that Eθ[H(Y t

α|Θ = θ)] is constant are plausible, but the lack of a closed expression for the
conditional entropy obscures any generalization of the MES criteria in a practical setting.
In the search of a generalized discussion on the MES criteria, and addressing the practi-
cal restrictions of the inference problem on binary starts, a whole study of Equation 4.3 is
suggested, meaning that the analysis of Eθ[H(Y t

α|Θ = θ)] takes special importance. In the
context of this work, a Gaussian observational noise is considered, exposed in Section 2.2,
this assumption is important under the MES criteria scope because allows simplifying the
Equation 4.3 by virtue of the Gaussian probability distribution and its properties.

I(θ;Y t
α) = H(Y t

α)− EΘ[H(Y t
α|Θ = θ)]

= H(Y t
α)−

∫
Θ
pΘ(θ)H(Y t

α|Θ = θ)dθ

= H(Y t
α)−

∫
Θ
pΘ(θ) 1

2 ln[(2 π e)m detα]︸ ︷︷ ︸
H(Y tα|θ)

dθ

= H(Y t
α)− 1

2 ln[(2 π e)m detα]
∫

Θ
pΘ(θ)dθ︸ ︷︷ ︸

1

= H(Y t
α)− 1

2 ln[(2 π e)m detα])

(4.4)

The main aspect about a multivariate Gaussian hypothesis for pY tα is that allows to derive
a closed expression for the conditional Entropy which is only dependent on the covariance
matrix α that holds all the instrumental uncertainty of the observation, the derivation of
H(Y t

α|Θ = θ) is present in Appendix B.1. The expression in Equation 4.4 allows to use
the principals of the MES criteria but in a generalized framework, where the hypothesis of
H(Θ, Y t

α) for all observations in A being constant is equivalent to consider an agenda A that
considers only αi and αj that follows detαi = detαj

Using the Equation 4.4 as a main result of this section, under the mentioned assumptions,
it is possible to articulate a new paradigm for optimal experimental selection in a wider
range of experimental contexts than [Sebastiani and Wynn, 2000] and [Loredo, 2004b] ini-
tially proposed. Consequently, the next section aims to formalize and establish the definition
of a Optimal Sampling criteria in the context of parametrical inference for binary systems.
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4.2. Optimal Sampling Criterion
Let be Θ ∈ O a random variable that represents the parametrical knowledge at certain

point of a particular system,Mu a family of functions that can be indexed by t ∈ T resulting
in a function M t

u : O → Yu mapping the parameters on O to the space of observations
Yu ⊆ Rm , and α a constant that represents all the noise regarding a particular observation
of a system. For this particular case of study let us consider α the covariance matrix of the
Gaussian conditional distribution pY tα|Θ ∼ N (M t

u(θ), α). Then, the triplet (u, t, α) represents
an instance of the observational model graph presented in Figure 2.4 and also the setting for
an observation of the system as a noisy experiment.

The problem of selecting an experiment (u, t, α) over the agenda A := {(uj, tj, αj)|j ∈
[1, ..., J ]} that minimizes the posterior uncertainty Θ is the following:

arg max
j

I(θ;Y tj
αj

) = arg max
j

H(Y tj
αj

)− 1
2 ln[(2π e)mj detαj]) (4.5)

Solving Equation 4.5 implies an extensive search over the J available experiments. By
looking at the Equation 4.5, this selection mostly depends on the non-trivial OPD marginal
entropy H(Y tj

αj ) induced by the relationship between Θ and Y t through M t
u and the instru-

mental noise α. The second terms works as a normalization constant for each entry on A.
As discussed in the previous section, this last term can be ignored if Eθ[H(Y t

α|Θ = θ)] is
constant over any observation in A.

To contextualize the criterion on 4.5 for our binary system inference problem a detailed
list of scenarios is presented.

• u represents the measurement that is performed. For this particular work Astrometric
and Spectroscopic measurements are considered, both described in Section 2.1.

• t represents the moment in time when the observation is taken. This parameter captures
the experimental plausibility considering all the practical restrictions associated to the
act of observation. For example, the visibility of the system on the sky from a particular
location on the observational schedule from the observatory.

• α models the instrumental and ambient noise associated to a certain case of observation.
This constant is often constrained to the available instrumental equipment and in a
practical setting has a physical dimension associated.

By utilizing this notation, the triplet (u, t, α) holds all the information regarding the
experimental observation of the system. Given the generalized description of the optimization
problem in Equation 4.5 a extension for experimental selection that considers more than
one measurement can be specified. Let Aj := {(ukj , tkj , αkj)|kj ∈ [1, ..., Kj]} be a new
candidate for the Agenda A being composed by Kj individual observations defined by the
triplet (ukj , tkj , αkj) (it is important to note that each observational setting has the freedom
to take any desired practical configuration, regarding its uncertainty, and is not necessarily
related to the other observations), then the generalized version of the Optimal Sampling
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Criteria can be exposed as follows.

arg max
j

I(θ;Aj) = arg max
j

H(Aj)−
Kj∑
kj=1

1
2 ln[(2 π e)mkj detαkj ]︸ ︷︷ ︸
Conditional independence

(4.6)

To simplify Equation 4.6 the joint entropy H({Y
tkj
αkj
}Kjkj=1) of Kj observations for the jth

entry on the Agenda A is represented by H(Aj). In the same fashion the normalization term
presented in Equation 4.5 is also updated for this new approach by considering that each
observation is conditionally independent to each other (a decomposition of this conditional
entropy is applied resulting in the sum all conditional entropy presented in Equation 4.6).
The derivation of this last expression is presented in Appendix B.2. It is crucial to understand
that despite the decomposition derived for the second term, the joint entropy featured in the
first term, can not be decomposed. There is a strong dependency between the observational
variables when not conditioned to a specific value θ for Θ. This implies that a full analysis
on the newly joint space must be performed to obtain H(Aj) in Equation 4.6.

In summary, the MES criteria can be extended for experimental candidates that: 1) are
not generated by the same noise model, 2) are not coming from the same phenomenological
process and 3) considers more than one kind of observational sampling, This implies that
the new criterion can select the optimal experiment from a wider collection of plausible
phenomenons.

This new criterion is presented in Equation 4.5 for am agenda A, and it is extended in
Equation 4.6 for more general purposes. We call this Optimal Sampling Criteria which will
be the main focus of study on this work.

4.2.1. On the Interpretability of Optimal Sampling Criteria

The Optimal Sampling Criteria not only provides a closed expression to select an exper-
imental setting that minimizes the expected uncertainty of the parameters. The criterion
also gives a relationship between the noise modeling and the post OPD variable using the
entropy in each element. This definition can be interpreted as the information gain being
proportional to the previous uncertainty attached to a certain experiment (the first term of
Equation 4.5) but limited to the intrinsic noise associated to the phenomenological act of
observation (Second term). This last interpretation results in a extension of the intuition
behind the MES criteria discussed in [Sebastiani and Wynn, 2000], where the noise model
takes a crucial part to precisely select an optimal experimental setting.

Under the scope of the Gaussian model utilized for observational noise modeling on this
work, a further extension of the interpretation can be achieved. The main reason from this
is that the Gaussian distribution has a well-known closed expression that clearly isolates the
mean vector and covarianze matrix of Equation 4.4. To simplify this analysis let us take
the Gaussian uni-variate scenario, meaning that the projected variable Y t will be a scalar
in conjunction with the observational variable Y t

α. By using the marginalization technique
discussed in Section 2.2 a expression for the distribution of the observational variable Y t

α can
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be accomplished by replacing the conditional distribution pY tα|Y t (Gaussian model N (yt, α))
a new expression for pY tα can be achieved.

pY tα(ytα) =
∫
Y
pY tα|Y t(y

t
α|yt)pY t(yt)dyt

=
∫
Y

1√
2πα

e−
(ytα−yt)

2
2α pY t(yt)dyt

=
∫
Y
G(ytα − yt)pY t(yt)dyt

= (G ∗ pY t)(ytα)
Being G(x) ∼ N (0, α)

(4.7)

In the context of Optimal Sampling Criterion, Equation 4.7 shows that the marginal
distribution of Y t

α can be seen as a convolutional filtering of the post PD Y t with a Gaussian
kernel of variance α. This new representation makes evident the change in the amplitude
of the original distribution, being this variation induced by the value of α, after the filter is
applied. In the particular case of a Gaussian window, all sudden changes in amplitude of the
distribution pY t (high frequency behavior) are smoothed after the filter is applied, implying
that a more homogeneous distribution is induced. It is important to mention that the level
of smoothness provoked by a Gaussian window is captured by α. Figure 4.1 shows the case
for α = 1 the resultant convolution over a uniform[−2, 2] distribution features a more wide
and evenly distributed result than using a tighter Gaussian window (α = 0.5). For α values
near to 0 the original distribution remain almost the same while for big α values the resulting
distribution is significantly distorted to be more uniformly distributed.

Figure 4.1: Convolution of a Gaussian window over f(x) = uniform(−2, 2).
a)G(x) = N (0, 1) and b) G(x) = N (0, 0.5)

Regarding the Optimal Sampling Criteria and the convolution representation of pY tα 4.7
the following interesting cases can be mentioned:

• The deterministic posterior projection scenario: When pY t(yt) = δyc(yt), suggesting that
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the post PD has no uncertainty associated when observing the system, then the post
OPD is pY tα ∼ N (yc, α) implying that H(Y t

α) = EΘ[H(Y t
α|Θ = θ)] and consequently

I(Θ;Y t
α) = 0. This scenario aims to model what happens when a observation is per-

formed in an instant that has not prior uncertainty (i.e. is predicted as deterministic).
The intuition says that no new information should be acquired, which can be verified
through the convolution analysis of the post OPD pY tα .

• The infinitely precise measurement: When α → 0 implies pY tα → pY t resulting in
EΘ[H(Y t

α|Θ = θ)] = 0 and I(Θ;Y t
α) = H(Y t

α). This scenario shows what happens when
a infinitely precise instrument is used to measure the system. The intuition says that all
information of Y t

α is obtained after the measurement, implying that all the uncertainty
of Y t

α at the instant t is removed from the posterior pΘ|Y tα .

In summary, the Optimal Sampling Criteria can be interpreted by using the convolution of
two probability distributions. The analysis of two boundary cases corroborate the intuition
regarding the information gain from a certain experimental setting. By means of this study
it is concluded that the selection of an optimal experiment relays on the trade off between
the acquired knowledge of the system Θ, projected in a observational variable Y t

α, and the
noise uncertainty associated to the instrumental precision. It is important to remark that
this relationship is non trivial because of the convoluted nature of Y t

α and the complexity the
noise (which is not Gaussian in general).
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4.3. Estimation of Optimal Sample Criterion
The Optimal Sampling Criterion derived in Equation 4.5 is a closed expression that exactly

calculates the expected information gain from a certain experiment. However in practical
settings, the direct computation of H(Y t

α) is very different, the intrinsic difficulties of the
integrals regarding the entropy and the fact that the distribution pY tα is not known make a
direct computation of Equation 4.5 unavailable. In order to obtain practical method to select
an experiment from A for a system where the prior distribution of Θ and a collection of mea-
surements D available, a simulation and empirical differential entropy estimation methods
are proposed to solve Equation 4.8.

arg max
j

Î(θ;Y tj
αj

) = arg max
j

Ĥ(Y tj
αj

)− 1
2 ln[(2π e)mj detαj]) (4.8)

4.3.1. Particle Simulation

The first stage of the OSM (Optimal Sampling Method) correspond to obtaining the
posterior distribution pΘ|D using the available observations D and a prior pΘ. As discussed
in Section 3.1.2 several works try to solve this by applying deterministic and probabilistic
approaches. In order to obtain samples coming from the posterior distribution a particle
simulation method proposed in [Mendez et al., 2017] and [Claveria et al., 2019] that uses
Monte Carlo Markov Chains with Gibbs sampler is implemented. The implementation of
the MCMC method is shown in the Algorithm 1, this variation of MCMC features the Gibbs
sampling method along with the MCMC usual methodology. The method is performed as
follows: First a random sample from the initialization distribution µ is obtained, then the
particle simulation loop is started where the Gibbs sampling method proposes new particles
by re-sampling one dimension of the previous samples. The proposed new particle θ′ is
generated via a proposal distribution qΘ (in this case a Gaussian proposal is selected), finally
in order to accept or reject this new sample a acceptance rate definition must be computed.
In this last stage is where the MCMC method tries to imitate the posterior distribution by
using the Bayes theorem (shown in Equation 2.10) in the form of a likelihood ration between
the previous particle and the proposed one. The last step in the particle simulation loop is
to sample a binomial distribution to decide if the new particle is accepted or is rejected, in
the last case the new particle is set equal to the previous one. Finally, the algorithm ends
when a number of desired samples N have been generated. The MCMC method generates
that simulated particles follow the desired distribution, in this case the posterior distribution
pΘ|D, when the number of samples is big enough. The obtained samples are denoted by
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{θ̄i}Ni=1 following the desired posterior distribution pΘ|D.

Algorithm 1: Gibbs sampler MCMC
/* Initialization from µ */
θ(1) = Sample θ ∼ µθ
/* For each sample to generate */
for i = 2, ..., Nsteps do

/* Retrieve value from the last iteration */
θ(i) = θ(i−1)

/* For each dimension of θ */
o for j = 1, ..., d do

/* Assigns the candidate equal to the last state */
θ′ = θ(i)

/* Sample the proposal to update the j-dimension of the candidate */
θ′j = Sample θj ∼ qθ = N (θ′j , σ2

j )
/* Acceptance rate definition */

A = min
{

1, pD|Θ(d|θ′)
pD|Θ(d|θ(i))

}
/* Acceptance coin-flip */
u′ = Sample u ∼ uniform(0, 1)
if u′ < A then

/* Accept the candidate as new sample */
θ(i) = θ′

end
end

end

By using the obtained samples of the MCMC method a full computation of the observa-
tional model graph shown in Figure 2.4 can be performed. In order to avoid unnecessary
notation, the distribution pθ|D will be denoted by pθ using the sequential bayesian inference
analysis presented in Section 2.3.2. The samples from the first node of the observational
graph can be easily computed by using the deterministic mapping M t

u existing between Θ
and Y t

α as shown in Equation 4.9.

Ȳ i
∼pY t (yt)

= M t
u(θ̄i∼pΘ(θ)) ∀i ∈ [0, N ] (4.9)

For obtaining the samples of the post OPD a sampling form the join distribution pθ,Y tα can
be made. This intermediate step is made because any joint distribution pX,Z satisfies that
pX,Z(x, z) = pX(x)pZ|X(z), then by using the samples {θ̄i∼pΘ

}Ni=1 in conjunction with samples
of pY tα|Θ=θ̄i can be pack together to produce samples of the pθ,Y tα . Equation 4.10 shows this
samples.

(θ̄i, Ȳ i
obs)∼pΘ,Y tα

(θ,ytα) = (θ̄i∼pΘ(θ), Ȳ
i
obs∼p

Y tα|Θ
(ytα|θ̄i)

) ∀i ∈ [0, N ] (4.10)

Samples of post OPD can be derived from pY t,Y tα . The previously calculated samples
{Ȳ t

i

∼pY t
}Ni=1 can be utilized to produce Ȳ i

obs∼p
Y tα|Y t

(ytα|Ȳ i)
= Ȳ i

∼pY t (yt)
+ ξ̄i∼N (0,α). Equation 4.11

shows the samples of Ȳ i, Ȳ i
obs

N

i=1.
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(Ȳ i, Ȳ i
obs)∼pY t,Y tα (yt,ytα) = (Ȳ i

∼pY t (yt)
, Ȳ i

obs∼p
Y tα|Y t

(ytα|Ȳ i)
) ∀i ∈ [0, N ] (4.11)

In summary, the first stage of the Optimal Sampling produces an inference on the posterior
parametrical distribution pΘ|Y tα via simulation. The presented MCMC method produces a
set of samples i.i.d. from the post OPD pY tα . This collection of samples is the final product
of this stage and will be used in the next step of the Optimal Sampling method.

4.3.2. Differential Entropy Estimation

The second and last stage of the Optimal Sampling method corresponds to the differential
entropy estimation phase for the two terms in Equation 4.5. The differential entropy esti-
mating is a complex task that involves non-traceable integrals. There are few cases where
a closed expression can be computed: one is the Gaussian case (shown in the Appendix
B.1), by the other hand when the objective random variable has more complex probability
distributions the differential entropy is often difficult to calculate an consequently an alterna-
tive approach is suggested, the sample based differential entropy estimators are a subject of
study that has not been addressed in many contemporary researches this is because the lack
of practical applications regarding the differential entropy, the main focus on the estimation
research about Information Theory is in the mutual information measures, the majority of
this works are data-driven estimators that suffers heavily on the dimensionality curse and
consequently for high dimensional cases (generally considered from dimension 10) the per-
formance is drastically affected, being this the main reason for avoid direct estimation of the
mutual information instead of the proposed Equation 4.5.

Due to the general shortage of methods for differential entropy estimation a classical
algorithm is selected for purposes of this work, the Kochazenko-Leonenko method proposed
in [Kozachenko and Leonenko, ] is one of the first documented approaches for estimation of
the differential entropy of a random variable from which a collection of samples is available,
also is one of the most cited works about this matter being studied under several scopes, this
method have been used as a cornerstone for important works like the well-known Kraskov
mutual information estimator [Kraskov et al., 2004]. The Kochazenko-Leonenko method, or
shortly KL method, is based on a k-nearest-neighbor estimation of the objective probability
distribution pX , this assumption systematically induces a closed expression for the differential
entropy Ĥ(X), the estimator can be expressed as the sum of four terms, as shown in Equation
4.12 being ψ the digamma function and cm the volume of a m dimensional unit ball, the three
first terms are constant and depends on the selected k ∈ N neighbor of interest and m the
dimension of X, by the other hand the last term is dependent of the N particles available
from pX being ε(i) the double of the distance from the ith particle to his k-nearest-neighbor.
The detailed derivation of the Equation 4.12 is documented in Appendix B.3.

Ĥ(X) = −ψ(k) + ψ(N) + log(cm) + m

N

N∑
i=1

ε(i) (4.12)

Finally, by means of the KL method it is possible to estimate the marginal entropy for Y t
α
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using its collection of samples discussed in the Section 4.3.1.
The serialization of the inference stage and the entropy estimation stage allows to define

a full method to empirically estimate the OS criteria for each experimental setting given a
the plausible Agenda A. This framework is represented by the diagram featured in Figure
4.2, where the computation of each node in the diagram can be summarised as follows:

• The prior distribution Θ, the collected data D and the likelihood distribution for the
data pD|Θ are set as input and parameters of the Inference Stage.

• A MCMC particle simulation is performed an the samples of the posterior distribution
pΘ|D are computed.

• By using the obtained samples from pΘ|D and the plausible Agenda A, a collection of
observational particles for each jth experiment is computed.

• For each experiment a KL entropy estimation of parameter k using the observational
samples and a closed evaluation of the Gaussian noise model are performed and then
respectively the OS criteria is computed for each case.

• By using the obtained list of information gain, a priority list of experiments is defined,
then the first element present in such list is selected as the optimal experiment that
minimizes the expected uncertainty on the parametrical knowledge of the system.

Figure 4.2: Full Optimal Sampling Criteria model. The circle represent the
input prior distribution, the diamond a set of finite data and the hexagon
a list of resultant data processed by the model
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Chapter 5

Results and Analysis

The Optimal Sampling Criteria model gives a methodological framework which allows
sorting by priority a set of possible observation on a system from a plausible agenda. Under
the scenario where all the statistical information about the data and the system is perfectly
defined, i.e. we know an expression for pΘ|D, the priority list given by our criteria is, in
Equation 4.5, optimal for the set of experiments present in the agenda A, under the objec-
tive of minimization of the expected conditional entropy of the distribution pΘ|D with the
new suggested data point pY tα . On the other hand, when only estimations and raw data is
available, i.e., only empirical estimations are available for pΘ|D (as expected in a real practi-
cal scenario), the Optimal Sampling Criteria gives an approximation of the optimal list for a
given agenda A. The strong dependency of out criteria on the data motivates an extensive
study for practical considerations. In order to obtain relevant information, all the tests must
be performed for real-like observational scenarios using real and simulated data. The main
objective of this section is to find empirical results to validate the Optimal Sampling Criteria
for the task of predicting the best experimental setting.

For this empirical analysis, an Information Gain study is proposed. We study the joint
entropy of parameters and observations and the resultant marginal entropy of the parameters
obtained after a new observation has been made. It is expected that different observations will
lead to different values for the posterior entropy, attributed to the quality of the observations.
It is also expected that the OS Criterion will predict the experiments where the expected
entropy is minimal for the set of observations in the plausible agenda A. Two experimental
scenarios are proposed:

• A simulated environment where the data is generated synthetically. The generator will
be referred as the oracle and will produce data imitating the probabilistic phenomenon
of observation. The parameters of the oracle will be set by the designer and it will serve
as a reference to measure the performance of the posterior inference.

• A real experimental setting where the only information available is real data from a
certain system. Naturally in this case the ground-truth parameters are missing meaning
that only a entropy analysis on the parametrical space could be done.
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5.1. Orbital data simulation
In a real observational scenario the true parameters of the system are unknown, this fact

makes any performance analysis over an inference strategy non-feasible because the absolute
error is immeasurable. On the other hand, in a controlled experimental environment, an
artificial phenomenon can be simulated, implying that the ground-truth value for the system’s
parameters are available. This fact allows us to study the accuracy of an experimental
scheduling criterion. The accessibility of the actual ground-truth state of the system and the
possibility of synthetically generating data for any particular instant of observation makes the
simulated experimental setting the most appropriate way to measure the expected behavior
of an Optimal Sampling Criteria.

With the intention of testing the capabilities of the Optimal Sampling Criteria, the ex-
perimental setting will consider a collection of observations generated by a controlled noisy
simulation from a given ground-truth set of parameters. By using the available observations
and a given prior distribution pΘ, a MCMC simulation is performed; the obtained particles
from this process represent samples from pΘ|D. They will be utilized to empirically estimate
the terms presented in Equation 4.8. In order to obtain the priority list from the agendaA, an
instance of the Observation Model present in Figure 4.2 is fed. This generates samples from
the Post-OPD presented in Equation 2.9 for each entry in the agendaA. Finally, using the ex-
pression for the differential entropy of a Gaussian distribution and the Kozachenko-Leonenko
differential entropy estimator over the samples of each Post-OPD previously described, a list
with the Optimal Sampling values for each case is created and sorted. This procedure will
be applied for each experimental case, bringing a prediction of the optimal instant to observe
the system.

In order to measure the actual change in the posterior inference of the system for each case,
a set of ntry data points for each entry on the plausible Agenda are simulated. Consequently,
the averaged response of the obtained inferences in each entry of A is reported and compared
to the predicted behavior from the Optimal Sampling Criteria discussed before.

For this sub-section, a ground-truth set parameters coming from an artificial system are
selected. The full set is defined on the first entry of Table 5.1 and Table 5.4. The chosen
values correspond to a representative reference of the most common observable systems from
the earth; also, the values are rounded to facilitate the analysis over the experimental cases.
This section will consider two scenarios regarding the kind of data available and the plausible
agenda:

• An astrometric case where the plausible agenda is defined as [2020, 2020.6, 2021.5, 2022.4],
or in terms of the parameters of the system [T, T + 0.2P, T + 0.5P, T + 0.8P ]. All of the
cases consider an instrumental noise with α = 0.003. For each entry on the Agenda,
ntry = 5 observations are simulated.

• A spectroscopic case where the plausible agenda is defined as [2023, 2020.6, 2021.5, 2022.4],
or in terms of the parameters of the system [T + P, T + 0.2P, T + 0.5P, T + 0.8P ]. All
of the cases consider an instrumental noise with α = 0.5. For each entry on the Agenda
ntry = 5 observations are simulated.

41



5.1.1. Astrometric data

The first experimental scenario corresponds to the inference of the simulated system us-
ing only astrometric observations. Due to the Equations discussed in Appendix A.1 only
7 parameters can be inferred from only astrometric observations. This set of parameters
is presented in Table 5.1. To address this experimental case, five astrometric measures are
generated randomly, but sparse enough to cover an important portion of the visible orbit.
All of the available observations are measured in the interval of time [T, T + P ] and have
an observational error characterized by α = 0.003[arcsec] (typical value for nowadays obser-
vational instruments). The set of observations as well as the true orbit of the system are
presented in Figure 5.1. It is important to mention that the base inference obtained is fairly
close to oracle parameters. The only important difference comes from the angular values.
This discrepancy is expected due to the dual representation of angles discussed in Appendix
A.1 and the level of noise present our in the observations.

By using the base inference and its MCMC particles coming from pΘ|D , ntry = 5 sample
observations are simulated for each entry in the agenda. Then an independent inference
using the MCMC simulation is executed over a generated data point, in the same fashion
as performed in the base inference. The resultant representative orbits and all the available
observation points for the candidates are presented in Figure 5.2. Their respective predicted
inference results via MAP rule over the posterior distribution, are reported in Table 5.1.

Figure 5.1: Astrometric observations from the synthetic system and the
ground-truth orbit.

Table 5.1: Parameters from the oracle and inferred via MAP rule from a
MCMC simulation. Astrometric only simulated scenario

Case New data at T P e a i Ω ω

Oracle - 2020 3 0.5 0.05 45 35 40
Base Inf - 2020.072 3.004 0.526 0.052 50.063 32.717 47.366
2020.0 T 2019.991 3.017 0.511 0.049 44.057 35.912 38.132
2020.6 T+0.2P 2020.067 3.018 0.517 0.052 50.808 35.595 45.637
2021.5 T+0.5P 2020.053 3.017 0.519 0.051 48.636 33.387 46.450
2022.4 T+0.8P 2019.998 3.059 0.455 0.053 50.494 42.069 36.669

As it can be noticed in the Table 5.1, except for the agenda A is close to the base inference,
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the noticeable difference is observed in the angular parameters. However, as previously
discussed, this behavior is expected and it can be attributed to the angular ambiguity in the
representation when only astrometric observation are available. A naive analysis over the
inference problem by only studying the inferred values on Table 5.1 could conclude that no
information was gain by adding a new observation point (simulated in this case) in different
instants of time. A further analysis on the proposed Optimal Sampling Criteria will show
that a substantial difference between the scenarios exist and it is measurable by the statistical
tools described in Section 2.

In Section 3.1.1 we discussed that a deterministic only analysis on the inferred parameters
of the system does not bring information about the statistical properties on the inference and,
consequently, does not study the entire phenomenon of inference. In a Bayesian framework,
an inference is a decision made over a probabilistic object, such as pΘ|D. In the particular case
of out study, a Maximum A Posteriori (MAP) rule is applied over the inference. This decision
is not the only information about the parameter estimation. Indeed by re-introducing the
concepts of Section 2.2.2 and the terms in 4.8, an entropy study is proposed here.

(a) New data point at instant T (b) New data point at instant T + 0.2P

(c) New data point at instant T + 0.5P (d) New data point at instant T + 0.8P

Figure 5.2: Inferred orbits for each candidate, astrometric study. New ob-
servation is highlighted in each case.

The Posterior Predictive Distribution (or Post PD) is the object obtained by projecting the
posterior distribution pΘ|D of the system in the observational Space, as described in Section
2.2.1. In this experimental analysis, two probabilistic objects will be introduced: The Prior
Predictive Distribution (or Prior PD pΘ|D) and the Posterior Predictive Distribution (or Post
PD p

Y ti |D,Y tiαi=y
t
i,j
) resultant from the jth simulation of the ith candidate in the agenda A.

Figures 5.3, 5.4, 5.5 and 5.6 present both Prior and Post PD and they show the effect of
adding a new observation point in our inference. The drawn distributions in the Figures
5.3, 5.4, 5.5 and 5.6 are estimations obtained using a Gaussian kernel over all the particles
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available of the Prior and Post PD. On the other hand, the pink area represents the smaller
quadrilateral that contains all the particles of each distribution.

(a) Prior PD at T (b) Case 1 Post PD at T

Figure 5.3: PPD comparison for 1st case, astrometric study.

(a) Prior PD at T + 0.2P (b) Case 2 Post PD at T + 0.2P

Figure 5.4: PPD comparison for 2nd case, astrometric study.

(a) Prior PD at T + 0.5P (b) Case 3 Post PD at T + 0.5P

Figure 5.5: PPD comparison for 3rd case, astrometric study.
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(a) Prior PD at T + 0.8P (b) Case 4 Post PD at T + 0.8P

Figure 5.6: PPD comparison for 4th case, astrometric study.

As shown in Figures 5.3, 5.4, 5.5 and 5.6 for every case in the agenda a noticeable un-
certainty reduction is observed. This reduction through each instance shows that new ob-
servations reduce the variance on the inferred observational space, implying a tighter distri-
bution. The intuition, using Equation 4.8 for the Optimal Sampling Criteria, suggest that
this variance reduction in the observational space will imply a significant reduction on the
parametrical variable as well. By looking at the reductions in Figures 5.3, 5.4, 5.5 and 5.6,
a preliminary optimal list can be sorted in the ordering [1st, 2nd, 3rd, 4th] of the candidates
in the agenda A. It is clearly observable that the first candidate in Figure 5.3 presents the
greatest uncertainty reduction, meanwhile an arguable ordering can be suggested for the rest
of cases. The analysis over the Prior and Post PD on the agenda A shows empirically that
regardless of the imperceptible change on the inferred parameters, a new observation from a
system will imply a uncertainty reduction in the estimated posterior distribution.

A formal analysis of the entropy reduction can be achieved by estimating the joint and
marginal differential entropy of the posterior distribution of each case and comparing it with
the base inference reference. The observed Information Gain for the posterior distribution
p
Y t|D,Y tiαi=y

t
i,j

is defined as the mean entropy measured through all the ntry = 5 simulations
for each candidate in the agenda minus the entropy estimated for the base inference case.
The obtained Information Gain for each case is reported in Table 5.2.

Table 5.2: Information Gain referred from the base inference for each new
observation case. Astrometric only simulated scenario

Case New data at T P e a i Ω ω joint
2020.0 T 2.46 1.67 2.01 1.29 0.91 0.95 1.12 9.45
2020.6 T+0.2P 3.79 -0.84 1.46 -0.82 0.50 0.44 0.94 5.64
2021.5 T+0.5P 0.05 0.56 0.36 0.11 0.04 0.18 0.08 2.9
2022.4 T+0.8P 0.01 0.79 0.84 0.18 0.1 0.29 0.06 0.78

An analysis on the joint Information gain of the Table 5.2 shows that the empirically
estimated values attend the same ordering predicted by the visual inspection Figures 5.3, 5.4,
5.5 and 5.6. This implies that the relationship between the observational and parametrical
distributions generated by the observation model in Figure 2.4, do in fact, hold a relationship
that allows to relate the reduction of one with the other. Table 5.2 also describes the estimated
values for the marginal Information Gain for each candidate. It is possible to identify that
in most cases, a greater join IG implies a greater marginal IF for most of the parameters.
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However, it is also possible to notice that for certain cases (e.g. 2020.6), a trade-off between
the marginal IG occurs. We observe that parameters such as P and a increase their respective
entropy in order to narrow the posterior distribution for T and consequently, inducing a
greater value for the joint Information Gain. Unfortunately this particular behavior is not
covered by the discussion in Section 4, suggesting further research on this matter for future
works.

An important aspect to remark is the existence of negatives values for the marginal Infor-
mation Gain. Two things can be said to this seemly anomalous behavior: First, the Optimal
Sampling Criteria states that it is expected a joint positive Information Gain, but it does
not guarantee the same for the marginal entropy, implying that a negative value it is plausi-
ble for a finite set of sample from p

Y
ti
αi

. Second, this entropy analysis is empirical, meaning
that an estimation of the entropy via particles (i.i.d. samples) is made. The existence of an
important estimation error is likely from a trial of ntry = 5 samples.

Once all the practical analyses from the synthetic simulation of the system have been
made, it is pertinent to contrast the results with the prediction of the Optimal Sampling
Criteria proposed in this work. In order to measure the performance of the OS Criteria, a
prediction over the agenda A is made using only the estimated distribution pΘ|D from the
MCMC simulation on the base inference. The results are reported in Table 5.3.

Table 5.3: Joint Information Gain and Expected Information Gain for each
new observation case. Astrometric only simulated scenario

Case New data at IG E[IG]
2020.0 T 9.45 0.0102
2020.6 T+0.2P 5.64 0.0095
2021.5 T+0.5P 2.90 0.0078
2022.4 T+0.8P 0.78 0.0049

The Table 5.3 presents the estimated join values from Table 5.2 and contrast them with
the expected Information Gain from the Optimal Sampling Criteria as presented in Equation
4.8 shows. It is noticeable that both columns in Table 5.3 present the same ordering, implying
that the OS criteria is, in fact, capable of detecting the most relevant instant of observation
on a finite agenda A by only analyzing the inferred distribution pΘ|D. It is also evident that
the empirical estimation and the predicted Information Gain differ in magnitude, and this
discrepancy does not correspond to a linear rescaling. This difference is mainly explained
due to the difference in the dimension of the variable estimated. In the next section, it will
be studied how and when these limitations occur.

5.1.2. Astrometric and RV data

With the purpose of studying our method in a different setting, an environment with
Astrometric and Radial Velocity data, is considered. Following the same structure presented
in Section 5.1.1, a set of observations from the synthetic system is simulated. On this occasion,
an arrange of Astrometric and Spectroscopic observations is available. The main objective of
this study is to analyze how two types of observations affect the inference and if it is possible
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to apply the OS Criteria in this context. In Figure 5.7 the set of observations and the ground-
truth orbits are presented. This arrangement is composed of five Astrometric observations
with α = 0.005[arsec] and three pairs of Radial Velocity observations with α = 1[km/s].
The base inference for this experimental setting is obtained via MCMC simulation by using
the phenomenological equations described in Section 2.1.1 and 2.1.2, in the same fashion as
Section 5.1.1.

(a) Astrometric data and base inference (b) RV data and base inference

Figure 5.7: Astrometric and RV from the synthetic system and the ground-
truth orbit.

Following the same structure as the previous experimental scenario, four new candidates
observations are proposed in a new agenda A to study the Information Gain over each case.
In this setting, four pairs of observations for Radial Velocities are proposed in the time instant
[T + 0.2P, T + 0.5P, T + 0.8P, T + P ] with α = 0.5. By using the candidates in A, ntry = 5
simulations for each case are generated and MCMC estimation of the posterior distribution
pΘ|D,Y tiαi=y

ti,j is performed. A representative iteration of each candidate and its resulting
inferences are presented in Figure 5.8.
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(a) New data point at instant T + 0.2P (b) New data point at instant T + 0.5P

(c) New data point at instant T + 0.8P (d) New data point at instant T + P

Figure 5.8: Inferred orbits for each candidate, combined study. New obser-
vation is highlighted in each case.

Under the same paradigm as the section before, the MAP inference of each candidate are
averaged and presented in Table 5.4.

Table 5.4: Parameters from the oracle and inferred via MAP rule from a
MCMC simulation. Double line simulated scenario

Case New data at T P e a i Ω ω q π Vcm
Oracle - 2020.0 3.0 0.5 0.05 45.0 35.0 40.0 0.8 0.02 30.0
Base Inf - 2019.97 2.99 0.49 0.05 41.33 34.62 38.56 0.87 0.02 30.02
2020.6 T+0.2P 2019.98 2.99 0.49 0.05 41.37 35.13 37.82 0.87 0.019 30.02
2021.5 T+0.5P 2019.96 2.99 0.49 0.049 40.86 36.38 35.37 0.86 0.018 30.12
2022.4 T+0.8P 2020.017 2.99 0.49 0.05 45.54 35.35 41.10 0.89 0.02 30.11
2023.0 T+P 2020.04 2.99 0.50 0.05 47.58 34.81 43.43 0.82 0.02 29.88

The behavior presented in Table 5.4 follows the same paradigm as the previously discussed
experimental in Sections 5.1.1. . All inferred parameters are fairly close to the true value,
meaning that in a deterministic scope no much information has been gained by the new
observations point. The only relevant difference across the inferred parameters is the 4th
case of the agenda, where the mass ratio between the stars q reaches a closer value to true.
From this result, it could be expected that the 4th candidate gives a greater Information
Gain than the others. In order to visually inspect this intuition, a study on the PD projected
on the orbital space is presented in Figures 5.9, 5.10, 5.11 and 5.12.
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(a) Prior PPD at T + 0.2P (b) Post PPD at T + 0.2P

Figure 5.9: PPD comparison for 1st case, combined study.

(a) Prior PPD at T + 0.5P (b) Post PPD at T + 0.5P

Figure 5.10: PPD comparison for 2nd case, combined study.

(a) Prior PPD at T + 0.8P (b) Post PPD at T + 0.8P

Figure 5.11: PPD comparison for 3th case, combined study.

(a) Prior PPD at T + P (b) Prior PPD at T + P

Figure 5.12: PPD comparison for 4th case, combined study.

The Figures 5.9, 5.10, 5.11 and 5.12 shows the difference in certainty for each case in the
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agenda. The most evident difference in Figure 5.12 for the 4th candidate, where a noticeable
reduction happens between Prior and Post PD in a astrometric projection. This behavior
suggests that the 4th candidate will improve the quality of the inference when this observation
is taken. For the 1st, 2nd and 3rd candidates a arguable reduction can be detected through
Figures 5.9, 5.10 and 5.11. From this result, a ordered list of Information Gain candidates
could be guessed, as [4th, 3rd, 1st, 2nd].

It is essential to notice that the newly added data correspond to a Spectroscopic observa-
tion of the primary and secondary star. So it could be expected that no changes will occur in
the Post PD projected in the Astrometric Space. Nonetheless, a substantial reduction hap-
pens in most cases, meaning that underlying relationships between both kinds of observations
exist.

In the same fashion as the previously discussed environment, an Information Gain Analysis
is performed over each marginal parameter and the joint Information Gain of the whole set
of simulations. The results are presented in Table 5.5.

Table 5.5: Information Gain referred from the base inference for each new
observation case. Double line simulated scenario

Case New data at T P e a i Ω ω q π Vcm joint
2020.6 T+0.2P 0.39 0.55 0.11 0.02 -0.03 0.06 0.05 -0.01 0.12 -0.16 -0.04
2021.5 T+0.5P 0.71 1.13 1.01 0.11 0 0.26 0.29 0 0.41 -0.04 0.64
2022.4 T+0.8P 0.81 -0.14 0.38 0.14 0.31 0.06 0.06 0.37 0.2 1.03 2.71
2023.0 T+P 3.31 0.78 -3.12 0.09 0.44 0.14 0.07 1.27 0.23 2.66 4.31

The Table 5.5 describes the marginal and joint differential entropy estimation for each sim-
ulation round of the agenda. The presented values follow the same behavior as seen in Table
5.2, where some of them take negative values but others compensate this by acquiring greater
marginal Information Gain. Nonetheless, for the case 2020.6, a negative value is reached for
the joint Information Gain. This apparently contradicts the statement of semidefinite posi-
tivity of Equation 4.3. This negative behavior can occur because an empirical estimation of
entropy is performed, meaning that an error can exist when the quantity of samples of the
posterior distribution pΘ|D and the amount of trials ntry is no infinite. In conclusion, nega-
tive value observed in Table 5.5 is considered zero for practical purposes, meaning that that
particular instant observation does not carry novel information about the observed system.

In order to study the performance of the Optimal Sampling Criteria in a predictive selec-
tion, the man estimated values of Information Gain of Table 5.5 are presented in conjunction
with the expected Information Gain estimated through the Optimal Sampling Criteria.

Table 5.6: Joint Information Gain and Expected Information Gain for each
new observation case. Double line simulated scenario

Case New data at IG E[IG]
2020.6 T+0.2P -0.04 0.129
2021.5 T+0.5P 0.64 0.170
2022.4 T+0.8P 2.71 0.253
2023.0 T+P 4.31 0.253

By observing the presented values of Table 5.6, it is possible to notice that both esti-
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mated Information Gain and the expected information Gain can be sorted in the same order.
This implies that, once again, the Optimal Sampling Criteria can detect the most crucial
observation to reduce the posterior expected entropy in an inference. Similar to the behav-
ior observed in Section 5.1.1, the periastron is the most informative instant of observation.
Nonetheless, the dimensionality problems present in empirical estimation are still perceived
in this analysis, meaning that it is not possible to predict the information gain when only few
samples are available of the posterior distribution due the induced bias observable in Table
5.6, only a priority list can be predicted.

One important feature that can be noticed in this Radial Velocity simulated setting is
that the instant of observation which reduces the posterior parametrical uncertainty the
most occurs in the periastron of the orbit. This idea is commonly used (in works such as
[Lucy, 2014]) to confidently determine the individual masses of the participant stars. This
result shows that our Optimal Sampling Criterion gives a reasonable priority list of experi-
ments and can support the idea of measuring the periastron of a system, regardless of the
kind of observation.
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5.2. Real Data
In order to measure the acquisition of information, once a new piece of data is observed for

a particular system, a real data case is proposed given a collection of real observations. These
observation points were collected for survey campaign purposes, and it will be utilized to
measure how a statistical inference change when a new data point is added. The experimental
setup is composed of 6 binary system (selected using the methodology presented in Appendix
D) with only astrometric data available. The number of data points varies from case to
case, but all of them includes an astrometric measure made at instant t = 2020.824 with
α = 0.003. In the same fashion as the section before, two inferences are performed for two
different sets of data points: the first one is composed of all the available points but the one
at t = 2020.824. The second set is the full collection of astrometric observations. The main
objective of this study is the comparison of the acquisition of information, i.e. the reduction
of joint parametrical entropy and the Expected Information Gain predicted from the Optimal
Sampling Criterion.

Table 5.7 presents different inferences for the same system. The first entry corresponds
to the reported inference from the catalog of binary orbits ORB6, where authors publish
orbits found for certain systems; the best ones are reported. The entries with prefix TK are
obtained from an inference method described and available in [Tokovini, 2020], which uses
classical methods to find a plausible orbit: these results are deterministic. The third entries,
denoted by the prefix U-1, utilizes the MCMC simulation as proposed in this work over the
available data. The prefix U is set for the last one, which denotes an inference using the same
MCMC simulation but with all the available data and a new data point. It is important to
mention that, the first two entries correspond to a deterministic approach for obtaining the
orbits, meaning that Information Theory measures cannot be applied. This happens because
the knowledge on the parametrical space is not modeled as a random variable.

By analyzing the inferred values on Table 5.7 we note in general, with the exception of the
period and eccentricity of the first case, that the predicted parameters are maintained through
different methods and data supporting the idea that a sufficient quantity of data produces
a stabilized inferences. Consequently a good behavior of the OS Criterion is observed, for
example, in Figure 5.13 shows how stable are the inferences are for both cases.

(a) U-1-HIP10885 case (b) U-HIP10885 case

Figure 5.13: Comparison of predicted orbits, case HIP10885. New observa-
tion is highlighted.

As discussed previously, our Bayes approaches allow to model how the certainty of an
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inference varies when new data is added. Figure 5.14 shows how the new data point at
instant t = 2020.824 helps to reduce uncertainty regarding that instant t. Naturally, a
reduction in the parametrical space is expected, but the value is not evident from just a
visual inspection over the projected PPD.

(a) Prior PPD for case at instant t =
2020.824

(b) Post PPD for case at instant t =
2020.824

Figure 5.14: PPD comparisson for the case HIP10885.

Table 5.7: Orbital parameters inferred by various methods for 6 cases of
real data.

System T P e a i Ω ω

HDS866 2023.03 28.23 0.66 0.19 81.4 82.6 243.7
TK-HDS866 2026.81 75.09 0.35 0.16 76.82 86.19 217.37
U-1-HDS866 2027.36 76.4 0.37 0.16 77.6 86.06 219.55
U-HDS866 2027.09 64.59 0.43 0.16 78.4 86.56 234.1
HIP109634 2022.09 35.7 0.78 0.18 124.2 57.2 49.1
TK-HIP109634 2025.45 46.81 0.44 0.17 122.37 30.83 5.18
U-1-HIP109634 1991.25 29.95 0.99 0.76 96.43 66.61 83.79
U-HIP109634 1991.25 30.71 0.99 0.86 95.22 60.02 83.85
HIP9497 2006.39 14.4 0.06 0.1 152.5 120.5 227.2
TK-HIP9497 2006.69 14.16 0.08 0.1 151.58 131.81 241.86
U-1-HIP9497 2020.94 14.41 0.07 0.1 153.31 127.38 236.54
U-HIP9497 2020.85 14.18 0.08 0.1 151.7 131.7 241.52
HIP10885 1998.52 24.08 0.39 0.12 40.8 165.4 318.2
TK-HIP10885 1998.41 24.02 0.39 0.12 42.94 167 314.96
U-1-HIP10885 1998.37 24.05 0.4 0.12 41.96 167.93 313.89
U-HIP10885 1998.32 23.93 0.41 0.12 42.5 171.22 309.5
HIP14524 2021.66 38 0.55 0.3 140.6 46.1 258.2
TK-HIP14524 2021.01 34.51 0.65 0.32 131.88 22.7 79.11
U-1-HIP14524 2020.99 34.44 0.65 0.32 131.59 40.56 259.14
U-HIP14524 1991.25 29.75 0.71 0.32 127.88 26.25 257.35
HIP32767 2016.04 47.85 0.21 0.17 55.6 22.5 231.8
TK-HIP32767 2015.69 48.69 0.22 0.17 55.8 21.87 228.71
U-1-HIP32767 2015.94 47.97 0.21 0.17 55.63 22.45 230.79
U-HIP32767 2015.46 49.31 0.22 0.17 56.19 21.84 226.33

To measure the Information Gain empirically, an entropy estimation is realized for each
stochastic inference available. Also, a prediction using the Optimal Sampling Criteria model
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is made, the values obtained are reported in Table 5.8.

Table 5.8: Information Gain and Expected Information Gain

System JE JE+1 IG E[IG]
U-HDS866 11.449 9.017 2.432 0.348
U-HIP109634 -16.938 -44.543 27.605 0.049
U-HIP9497 -4.212 -19.435 15.223 0.058
U-HIP10885 -19.642 -40.585 20.943 0.008
U-HIP14524 -136.172 -179.414 43.242 0.01
U-HIP32767 -0.844 -2.177 1.333 0.095

As expected in each entry of the Table 5.8 an Information Gain is observed. The mag-
nitude of this gain varies and naturally dependent of the observed system and the available
data. On other hand the magnitude between the expected Information Gain from the OS
Criterion and the observed is maintained shown in previous experiments. The main reason
of this behavior is the difference of dimensions between the observational and parametrical
space. Considering that the entropy estimation used in this work is based in measure of
distance between particles, it is evident that this estimation suffers from the "curse of di-
mensionality"; i.e. the higher the dimension of a problem implies a higher complexity when
comparing distance between points. The theory says that parametrical entropy and obser-
vational entropy must stay in the same magnitude, but when an empirical approximation is
made this relationship is broke due dimensional issues. Therefore this behavior implies that
no comparison can be made between different systems because practical reasons and then
the possibility of a multiple system selection of Optimal Sampling is no available with the
actual configuration of the model. Nonetheless due the oracle study made in Section 5.1. it
is possible to affirm that in the context of comparing instants of observation for the same
system, the OS Criteria model is capable of predict with high degree of certainty the priority
order of a set of observations.

In summary, the experimental study on the Information Gain in the parametrical inference
of binary systems, and the performance on detecting a priority list of the Optimal Sampling
criteria, proves that the reduction of uncertainty in the parameters of a binary system is
observable. The proposed method can detect the order of priority in measurements when
a minimal quantity of data is accessible. Visual inspections on the Prior PPD can guide
the selection of an optimal experiment. However, for accurate decisions, the OS Criterion
has been shown to be an unbiased selector for realistic observation scenarios. Finally, the
simulated environment has been an essential experimental setting to prove the capacities
of the OS model due to the ability to generate noisy data and access to the ground truth
parameters. This experience also validates the intuitive belief that the periastron is a crucial
instant to observe. The OS criterion selects this sample instance even if not direct data of
the periastron have been given or the base inference differs from the ground truth.
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Chapter 6

Final Remarks and Future Work

This work presents an extensive description of how to characterize any observation on a
system and how the prior and posterior knowledge of the parameters is function of available
observations, implying that observation model can be constructed and the relationship be-
tween existing observations and new candidates is mathematically explicit. The observation
model also shows theoretically that any new observation made over the system will always
implies an expected reduction of uncertainty on the parameters, this statement is also proven
practically by measuring the uncertainty difference in all cases of simulated and real data in
Section 4.

The Optimal Sampling Criterion proposed in this work is a theoretical and practical
framework for optimal scheduling observations for binary systems. This methodology is
based on selecting an optimal experiment from a plausible agenda with a finite amount
of candidates. Analysis using simulated and real data proves that the Optimal Sampling
Criterion detects high informative data points from an agenda and helps the designer to find
observations that reduce the conditional posterior entropy more consistently to enhance the
inference. Our method is evaluated empirically by data simulation and expected entropy
analyses, proving that in a practical approach the proposed Optimal Sampling Criterion. An
analysis over the simulated data shows that the OS criterion supports in heuristic approaches,
such as the importance of observing the periastron of a system, used astronomy to select
instants of observation.

Both Optimal Sampling Criterion and observation model presented in this work are de-
scribed in the most generalized form to serve as a basis for extension of other forms of
observational phenomena.

The flexibility of the explored OS criterion and the observational model allows to imple-
ment this framework in a wide range of observational settings, for example, astronomical
surveys such as LSST from the Rubin observatory or the SDSS from the Apache Point
observatory. These observational campaigns represent a perfect scenario to implement the
proposed framework due to the imperative necessity of automatizing the labor of selecting
observations for each studied phenomenon. Naturally, the Optimal Sampling Criterion can
also be used to study the complexity of specific systems or justify heuristic decisions when
planing the observation of such systems.

As future works, the following interesting ideas are suggested:
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• Improve the stability of the inference stage. Current research on new Monte Carlo-based
method could be a source of huge improvement in the performance of put approach
and also will provide a better samples from the target distribution, promoting better
estimated values.

• Research on differential entropy estimators reduces the effect of dimensionality on the
problem, resulting in better estimations for the implementation of our OS criterion.

• Exploring new frameworks to reduce the expected entropy of a random variable that is a
function of the parameters of a studied system. A relevant example could be systematic
minimization of the expected uncertainty of the individual masses of a system instead
of their complete set of parameters.

• An systematic astronomic study on the different observable binary systems and definition
of the notion of observational complexity. This could be achieved by studying the
expected entropy reduction of the parameters from different observation strategies.
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Appendix A

Observational Data

A.1. Thiles Innes Representation
Thiele Innes representation is an alternative parametrical version to characterize the orbit

of a binary system. The definition of the constants A, B, F and G in replace of a, ω, Ω and i
is the main feature about the Thiles Innes representation. This new proposed constants are
calculated as shown in Equation A.1.

A = a(cosω cos Ω− sinω sin Ω cos i)
B = a(cosω sin Ω + sinω cos Ω cos i)
F = a(− sinω cos Ω− cosω sin Ω cos i)
G = a(− sinω sin Ω + cosω cos Ω cos i)

(A.1)

In this new representation, the parametrical vector is re-defined as [T, P, e, A,B, F,G]
instead of [T, P, e, a, ω,Ω, i]. In order to obtain the sky-plane relative position in a moment t
using the Thiele Innes representation the auxiliary variables x̄(t) and ȳ(t) must be calculated
as shown in Equation A.2, where the Eccentric Anomaly E(t) is defined in the Kepler’s
Equation (2.1) at instant t.

x̄(t) = cosE(t)− e
ȳ(t) =

√
1− e2 sinE(t)

(A.2)

Finally, the relative position of star B towards star A of the binary system in Cartesian
coordinates (X,Y ) is calculated as shown in Equation A.3.

X = Bx̄+Gȳ

Y = Ax̄+ F ȳ
(A.3)

The relationship between the standard representation [T, P, e, a, ω,Ω, i] and the Thiele
Innes representation [T, P, e, A,B, F,G] is not bijective, i.e. there is no one-to-one relation-
ship between both parametrical vectors, which means that multiples set of angles [ω,Ω, i]
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are related to the same constants [A,B, F,G]. The Thiele Innes ambiguity is evidenced in
Equation A.4.

tan(ω + Ω) = B − F
A+G

tan(ω − Ω) = −B − F
A−G

a2(1 + cos2 i) = A2 +B2 + F 2 +G2

a2 cos2 i = AG−BF

(A.4)

Due to the not-invertibility of the tan() and cos2(), multiples solutions for ω, Ω and i

results in the same Thiele Innes constants [A,B, F,G] implying that only using astrometric
observations does not provide enough information to determine the exact set of parameters
[T, P, e, a, ω,Ω, i] from the observed binary system. However, the Thile Innes representation
is still one of the most utilized frameworks to represent the astrometric behavior of a binary
system due to the linear relationship between the constants [A,B, F,G] and the variables
x̄(t) and ȳ(t), allowing inference methods to exploit this properties and find solutions to the
parametrical problem.

A.2. Radial Velocity Derivation
The radial vector z is definad as the perpendicular projection of the moving star B and the

sky-plane. Figure 2.2 shows that the radial vector z and the inclination angle i, supported
in the semi-major axis and displayed perpendicularly from it, forms a right triangle where
the vector z is the cathetus opposite to the angle i and the hypotenuse s. On the other
hand, the radial vector r and the vector s forms another right triangle, being in this time
the hypotenuse r and s the cathetus opposite to the angle ω+ν. This geometric relationship
leads to an expression of z dependent of r, presented in Equation A.5.

sin(ω + ν) = s

r
∧ sin i = z

s
=⇒ z = r sin(ω + ν) sin i (A.5)

After a simple vector derivation, the radial velocity ż can be expressed in therms of ṙ and
ν̇ as shown in Equation A.6.

ż = sin i(ṙ sin(ω + ν) + r cos(ω + ν)ν̇) (A.6)

The term ṙ is determined in A.7 by direct derivation of the closed expression for r described
in Equation 2.3.

ṙ = r
e sin ν

1 + e cos ν ν̇ (A.7)

The term ν̇ can be calculated by using the Kepler’s Second Law and integrating over the
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period P of the systems as shown in Equation A.8 . The area of an ellipse is calculated as
A = πa2√1− e2.

dA

dt
= r2ν̇

2
Integration over P==========⇒ A

P
= r2ν̇

2

ν̇ = 2πa2√1− e2

r2P

(A.8)

Finally, a closed expression for ż is available by using Equations A.7 and A.8 in Equation
A.6.

ż = 2πa sin i
P
√

1− e2
(cos(ω + ν) + e cosω) (A.9)

This characterization of radial velocity can be directly translated to a referential frame
where the central point is the centre of masses, by using the fact that the orbital paths
presented in the Figure 2.1 are elliptical (with semi-major axis a1 and a2 for both starts).
Finally it is possible to calculate the radial velocity of each star as presented in Equation 2.5.
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Appendix B

Differential Entropy

B.1. Entropy of a Multivariate Gaussian variable

Let X ∈ Rm be a random vector with Gaussian distribution ∼ N (µ, α) being µ ∈ Rm

his mean vector and α ∈ Rm×m his covariance matrix, symmetric by definition. The explicit
formula for pX is defined in Equation B.1.

pX(x) = 1
(
√

2π)m
√

detα
e−

1
2 (x−µ)Tα−1(x−µ) (B.1)

Then the differential entropy for X can be expressed using the definition in Equation 2.13.

H(X) = −
∫ m

R

1
(
√

2π)m
√

detα
e−

1
2 (x−µ)Tα−1(x−µ) ln

[
1

(
√

2π)m
√

detα
e−

1
2 (x−µ)Tα−1(x−µ)

]
dx

= −
∫ m

R
pX(x) log

[
1

(
√

2π)m
√

detα
e−

1
2 (x−µ)Tα−1(x−µ)

]
dx

= −
∫ m

R
pX(x) ∗ ln

[
1

(
√

2π)m
√

detα

]
dx−

∫ m

R
pX(x) ln

[
e−

1
2 (x−µ)Tα−1(x−µ)

]
dx

(B.2)

The First term can be simplified as shown in Equation B.3.

−
∫ m

R
pX(x) ∗ ln

[
1

(
√

2π)m
√

detα

]
dx

= ln
[
(
√

2π)m
√

detα
] ∫ m

R
pX(x)dx

= 1
2 ln [(2π)m detα]

(B.3)

For the second term of Equation B.2 an alternative representation is proposed in Equation
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B.4 by using the properties of the matrix transpose.

−
∫ m

R
pX(x) ln

[
e−

1
2 (x−µ)Tα−1(x−µ)

]
dx

= 1
2

∫ m

R
pX(x)(x− µ)Tα−1(x− µ)dx

= 1
2

∫ m

R
pX(x)

[(
α−1

)T
(x− µ)

]T
(x− µ)dx

(B.4)

In order to simply Equation B.4, the concept of trace of a matrix is introduced. Let
tr(A) = ∑d

i Ai,i be the trace of the squared matrix A ∈ Rd×d, then following three properties
hold A ∈ Rd×d:

• (1) tr(ATB) = tr(ABT )

• (2) atr(A) = tr(aA)∀a ∈ R

• (3)
∫
tr(A(x))dx = tr(

∫
A(x)dx)

By using the properties (1) and (2) the previous Equation B.4 can be rewritten as follows.

1
2

∫ m

R
pX(x)

[(
α−1

)T
(x− µ)

]T
(x− µ)dx

= 1
2

∫ m

R
pX(x)tr

([
α−1(x− µ)

]T
(x− µ)

)
dx

= 1
2

∫ m

R
pX(x)tr

(
α−1(x− µ)(x− µ)T

)
dx

= 1
2

∫ m

R
tr
(
α−1pX(x)(x− µ)(x− µ)T

)
dx

(B.5)

Finally, by using the property (3) from the trace of a matrix a closed form for the integral
can be computed.

1
2

∫ m

R
tr
(
α−1pX(x)(x− µ)(x− µ)T

)
dx

= 1
2tr

(
α−1

∫ m

R
pX(x)(x− µ)(x− µ)Tdx

)
= 1

2tr
(
α−1α

)
= 1

2tr (Im)

= m

2

(B.6)

Then adding the Equations B.3 and B.6 a closed form for the entropy of the Gaussian
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variable X is achieved.

H(X) = 1
2 ln [(2π)m detα] + m

2
= 1

2 ln [(2π)m detα] + m

2 ln(e)

= 1
2 ln [(2π)m detα] + 1

2 ln(em)

= 1
2 ln [(2πe)m detα]

(B.7)

B.2. Joint Entropy of independent variables
Let X ∈ X and Z ∈ Z be random variables with probability distribution pX and pZ , lets

consider that X and Z are independent, i.e. pX,Z(x, z) = pX(x)pZ(z) ∀x ∈ X ∧ z ∈ Z, then
the joint distribution can be calculated as follows.

H(X,Z) = −
∫
X

∫
Z
pX,Z(x, z) ln pX,Z(x, z)dzdx

= −
∫
X

∫
Z
pX(x)pZ(z) ln pX(x)pZ(z)dzdx

= −
∫
X

∫
Z
pX(x)pZ(z) ln pX(x)dzdx−

∫
X

∫
Z
pZ(z)pX(x)pZ(z) ln pZ(z)dzdx

= −
∫
Z
pZ(z)dz

∫
X
px(x) ln pX(x)dx−

∫
X
pX(x)dx

∫
Z
pZ(z) ln pZ(z)dz

= −
∫
X
pX(x)dx−

∫
Z
pZ ln pZ(z)dz

= H(X) +H(Z)

(B.8)

This expression can be trivially extended to the case of two random variables conditionally
independent, this is because for any value c of the conditional variable C the probability
distributions pX|C and pZ|C take a particular shape, then the Equation B.8 can be applied.

B.3. Kozachenko-Leonenko Differential Entropy Esti-
mation

The Kozachenko-Leonenko method is a data-driven estimator to calculate the differential
entropy from a collection of particles. The method is mainly based on interpreting the
differential entropy as an expectation ofX over the function− log pX(x) as shown in Equation
B.9.

Ĥ(x) = −1
N

N∑
i=1

log p̂X(xi) (B.9)
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In order to directly use the Equation B.9, a estimation of pX based on k nearest neighbour
is proposed. Lets define pk(ε) the probability distribution of the kth neighbor of xi being at
distance ε, this implies that k−1 elements must be in a distance minor to ε and consequently
N − K − 1 particles are further tan ε. Lets also define pi(ε) =

∫
||xi−ξ||<ε/2 pX(ξ)dξ the

probability mass contained in a sphere of radius ε/2 centred on xi, then the definition of pk
can be made explicit through Equation B.10 by using the trinomial formula.

pk(ε) = k
(
N − 1
k

)
dpi(ε)
dε

pk−1
i (1− pi)N−k−1 (B.10)

Then the following expectation can be computed, being ψ the digamma function.

Eε∼pk [log pi] =
∫ ∞

0
pk(ε) log pi(ε)dε

= k
(
N − 1
k

) ∫ 1

0
pk−1(1− p)N−k−1 log pdp

= ψ(k)− ψ(N)

(B.11)

Aiming to simplify the objective distribution and make a analogy to an multivariate
histogram approach, pX is assumed constant in a ε-ball centred in each xi, then this approx-
imation leads to the relation between the defined probability pi and pX through Equation
B.12 being cm the unitary ball in a m dimensional space.

pi(ε) ≈ cmε
mpX(xi) (B.12)

By isolating pX(xi) and applying the log function a estimation of log pX(xi) can be made
as shown in Equation B.13

log pXxi ≈ ψ(k)− ψ(N)−mE[log ε]− log cd (B.13)

Finally by taking a Monte Carlo estimation of the expectation of Equation ?? a closed
form for the Kozachenko-Leonenko differential entropy estimator is obtained.

Ĥ(X) = −ψ(k) + ψ(N) + log(cd) + m

N

N∑
i=1

ε(i) (B.14)

ε(i) corresponds to twice the distance between the kth neighbor and the particle xi.
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Appendix C

Tables

Table C.1: Variance of the inferred orbital parameters by various methods
for 6 cases of real data.

System T P e a i Ω ω

HDS866 - - - - - - -
TK-HDS866 6.23 46.79 0.022 12.48 2.88 91.34
U-1-HDS866 11.45 27.45 0.242 0.106 4.18 2.77 44.31
U-HDS866 3.45 26.42 0.195 0.078 4.15 2.06 33.81
HIP109634 - - - - - - -
TK-HIP109634 - 10.09 0.19 0.015 3.51 11.69 33.26
U-1-HIP109634 0.018 8.16 0.241 0.137 2.97 12.19 1.62
U-HIP109634 0.001 0.26 0.007 0.112 1.31 2.34 1.52
HIP9497 0.58 0.89 0.051 0.005 4.3 13.2 16.9
TK-HIP9497 0.25 0.14 0.011 0.002 2.59 4.14 5.76
U-1-HIP9497 0.55 0.32 0.02 0.001 2.26 6.77 17.59
U-HIP9497 0.18 0.14 0.01 0.001 1.71 1.59 5
HIP10885 - - - - - - -
TK-HIP10885 0.53 0.53 0.019 0.003 2.32 2.4 3.41
U-1-HIP10885 0.53 0.53 0.034 0.029 2.03 30.96 37.35
U-HIP10885 0.49 0.49 0.026 0.003 1.77 29 33.1
HIP14524 - - - - - - -
TK-HIP14524 0.027 0.38 0.008 0.003 0.8 1.39 0.56
U-1-HIP14524 0.11 1.07 0.026 0.006 2.23 2.94 0.58
U-HIP14524 0.002 0.02 0.006 0.003 0.75 0.26 0.17
HIP32767 - - - - - - -
TK-HIP32767 1.121 3.33 0.029 0.009 1.13 1.71 11.45
U-1-HIP32767 1.071 2.92 0.026 0.008 1.74 1.72 11.42
U-HIP32767 0.958 2.8 0.028 0.008 1.65 1.44 10.41
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Appendix D

ORB6 Study

The Sixth Catalog of Orbits of Visual Binary Stars(ORB61) is a public compilation of
binary stars orbits, where the inferred orbital parameters of multiple system are reported.
The inferred parameters in the ORB6 catalog are classified by its precision, the grading goes
from grade 5 (for indeterminate orbits) up to grade 1 (definitive orbits).

With the intention of make a real data analysis, as made in Section 5.2, a selection of
candidates must be performed. To achieve this, an indicative value of the phase with respect
to the periastron is proposed as a quick method to find systems that will pass near its
periastron at certain moment of observation. The ncheck indicator is defined as follows:

ncheck(tcheck) = tcheck − T
P

(D.1)

being tcheck the scheduled time to make the observation.
By using ncheck for tcheck = 2021.824 (i.e. October 27th of 2021) on each system in the

ORB6 catalog, a selection of candidate systems is computed using the following additional
filters:

• |ncheck| < 10%

• DEC < 20

• Grade 2, 3 or 4

A subset of the resultant query was selected to be observed. Such chosen systems are
presented in tables 5.7, 5.8 and C.1.

The entire code to compute the queries on the ORB6 database can be accessed in this
link2 by using the Google Colaboratory platform.

1 http://www.astro.gsu.edu/wds/orb6/orb6text.html
2 https://colab.research.google.com/drive/1ExM3qO2LbxyCKMnR7WtxCmb24pgaNLb?usp = sharing
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