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Self-propelled swimmers such as bacteria agglomerate into clusters as a result of their persis-
tent motion. In 1D, those clusters do not coalesce macroscopically and the stationary cluster size
distribution (CSD) takes an exponential form. We develop a minimal lattice model for active parti-
cles in narrow channels to study how clustering is affected by the interplay between self-propulsion
speed diversity and confinement. A mixture of run-and-tumble particles with a distribution of self-
propulsion speeds is simulated in 1D. Particles can swap positions at rates proportional to their
relative self-propulsion speed. Without swapping, we find that the average cluster size Lc decreases
with diversity and follows a non-arithmetic power mean of the single-component Lc’s, unlike the
case of tumbling-rate diversity previously studied. Effectively, the mixture is thus equivalent to a
system of identical particles whose self-propulsion speed is the harmonic mean self-propulsion speed
of the mixture. With swapping, particles escape more quickly from clusters. As a consequence,
Lc decreases with swapping rates and depends less strongly on diversity. We derive a dynamical
equilibrium theory for the CSDs of binary and fully polydisperse systems. Similarly to the clustering
behaviour of one-component models, our qualitative results for mixtures are expected to be univer-
sal across active matter. Using literature experimental values for the self-propulsion speed diversity
of unicellular swimmers known as choanoflagellates, which naturally differentiate into slower and
faster cells, we predict that the error in estimating their Lc via one-component models which use
the conventional arithmetic mean self-propulsion speed is around 30%.

I. INTRODUCTION

A collection of self-propelled particles can spon-
taneously separate into dense and dilute re-
gions even without attractive forces. This pro-
cess, known as motility-induced phase separation
(MIPS) [1–4], occurs if the propulsion direction
is sufficiently persistent against stochasticity, in
which case there is enough time for the particles
to trap each other and form large clusters [5, 6].
For one-dimensional (1D) systems, such as fertiliz-
ing bacteria living in long narrow soil pores [7–10],
MIPS generates an exponentially decaying station-
ary cluster size distribution (CSD) as shown for
run-and-tumble (RT), active Brownian, and ac-
tive Ornstein-Uhlenbeck particles [11–19]. When
the self-propellers are sufficiently strong to push
each other, the clusters themselves can also move
persistently [19, 20], producing deviations from a
simple exponential CSD [13]. In two-dimensional
(2D) or quasi-two-dimensional systems, an expo-
nential CSD modulated by a power law arises as
observed in experiments with bacteria [21–24], in
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experiments and simulations with active colloids
[25, 26], and in lattice models [2]. The CSDs can
also be affected by solvent-mediated hydrodynamic
interactions between the particles [27].

In a typical bacteria population there is a broad
dispersion of motility parameters, i.e. the bacte-
ria are not identical swimmers [28–30]. However,
for simplicity, effects of motility diversity on CSDs
are usually overlooked [31]. For RT bacteria, one
can consider that the tumbling rate or the self-
propulsion speed (or both) is not the same for all
particles, that is, the system has a distribution
of motility parameters. The fact that in a pop-
ulation of bacteria different self-propulsion speeds
are found is a result of their different ages, re-
production stages, shapes, sizes, running modes,
etc [29, 32–34]. For both passive and active flu-
ids, ‘diversity’ of some particle attribute can fun-
damentally change phase behaviour [35–50]. In
Ref. [30], of which the present work can be re-
garded as a companion paper, we considered a
multi-component mixture of RT particles on a
1D discrete lattice (as a simple model for active
particles in narrow channels [9, 16, 51–64]) in-
teracting only via excluded volume, i.e. they do
not push each other. The distinct particle types
were characterized by their own tumbling rates
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as inspired by experimental observations with Es-
cherichia coli; these experiments show that the
tumbling rate of each bacterium changes stochas-
tically but slowly, leading approximately to a log-
normal distribution of constant tumbling rates for
the system [28, 65]. Particles moving directly to-
wards each other were allowed to cross at a con-
stant rate, therefore mimicking the effects of a
“soft” confinement where particles can swap their
positions along the quasi-1D channel. Interactions
via biochemical signalling were assumed negligi-
ble or absent. We observed an exponential CSD
with an average cluster size Lc that increases with
tumbling-rate diversity. This clustering amplifica-
tion phenomenon is induced solely by tumbling-
rate diversity as the global average tumbling rate
remains fixed in the analysis. On the other hand,
by relaxing the confinement, large cluster sizes are
reduced and tumbling-rate diversity becomes less
important. Furthermore, tumbling-rate diversity
generates an average cluster size Lc that is given
by an arithmetic average of the Lc’s that the single-
component systems would have at the same global
density.

The self-propulsion speeds in Ref. [30] were set
the same for all particles. The motility diversity
was therefore entirely encoded into the tumbling-
rate distribution. In the present work we exam-
ine the complementary and fundamentally distinct
case of self-propulsion speed diversity and its ef-
fects on the stationary cluster size distributions of
active particles in narrow environments: particles
differ only in their self-propulsion speed but are
assigned the same tumbling rate. To isolate the
effects of self-propulsion speed diversity, we con-
sider a distribution of self-propulsion speeds whose
system average is kept fixed while only its vari-
ance is tuned. We find that the average clus-
ter size decreases with the variance of the self-
propulsion speed distribution if one keeps every-
thing else fixed, including the distribution average;
see Fig. 1. Also, here we consider the clustering
effects of particle “overtaking”, that is, faster par-
ticles can overtake slower ones—if moving in the
same direction—with a rate proportional to their
relative self-propulsion speed.

Since in the monodisperse case (i.e., without di-
versity) Lc depends on the motility parameters
self-propulsion speed and tumbling rate (denoted
by v and α, respectively) as Lc ∼

√
v/α, one could

näıvely think that knowing Lc for tumbling-rate
diversity automatically provides a prescription for
obtaining Lc in the case of self-propulsion speed
diversity (hereafter referred to just as speed diver-
sity). We show here that this is not true. By
employing an arithmetic average of the Lc’s of the
single-component systems, one would still get the

correct qualitative result that Lc decreases with
speed diversity, but the simulation values for Lc
presented below are much lower than the arith-
metic average, implying that this type of average
is quantitatively inadequate to describe speed di-
versity.

FIG. 1. (a) Steady state of a monodisperse system
(top) of run-and-tumble particles on a 1D lattice com-
pared against its mixture counterpart with polydisper-
sity in the self-propulsion speeds (bottom); particles
cannot swap (ps = 0). Only 1000 of N = 104 sim-
ulated lattice sites are shown. Considering the entire
simulated system, the global concentration and the av-
erage self-propulsion speed in both cases are the same:
dimensionless concentration φ = 0.2, tumbling rate
α = 0.005, and average self-propulsion speed 〈v〉 = 1.
In the mixture case (bottom) the polydisperse distri-
bution parameter [see eqn (1)] is λ = 2. Time flows
downwards along the vertical axis for 300 time steps.
Positions are on the horizontal axis. Vacancies are in
white and particles in black. (b) Polydisperse distri-
bution of self-propulsion speeds, eqn (1), for three dif-
ferent distribution parameters λ at fixed average self-
propulsion speed 〈v〉 = v0 exp

{
(λ2/2)

}
= 1.

We notice that Ref. [66] considers off-lattice ac-
tive particles in 2D whose self-propulsion speeds
vary both in time and between particles, follow-
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ing a Gaussian colored noise. In a certain way,
this also corresponds to having diversity of self-
propulsion speeds, but not “quenched” in time as
we do below. Furthermore, the parameter used by
the authors of Ref. [66] to increase the variance
of the self-propulsion speed distribution also in-
creases the average self-propulsion speed, i.e., these
two distribution parameters cannot be decoupled
in their analysis. Finally, in Ref. [66] the clus-
ter sizes are not calculated. Similarly, we mention
that, for off-lattice 2D binary mixtures of fast and
slow active Brownian particles, motility-induced
stationary average cluster sizes have been briefly
discussed in Ref. [41]. In particular, the authors
showed numerically that by reducing the ratio be-
tween the slower and faster self-propulsion speeds,
the average cluster sizes decrease. This could be
regarded as a somewhat expected result since by
reducing any active speed of the problem without
increasing the rest of them, activity-induced clus-
tering should indeed be reduced. This is crucially
different from our work as here we decrease the
slower speeds by the same amount that we increase
the faster speeds. In our analysis we (i) consider
RT particles on a lattice, (ii) analytically calcu-
late cluster sizes, (iii) obtain new insights for con-
fined systems, and (iv) probe quantitatively how
clustering depends solely on self-propulsion speed
diversity.

This paper is organized as follows. In Section II
our lattice model is presented. Sections III and IV
contain our main numerical and analytical results,
respectively, for each model variant: (i) binary
mixture, (ii) binary mixture with particle swap-
ping, and (iii) fully polydisperse mixture. Sec-
tion V gives our conclusions and discussion.

II. MODEL

Let us review the RT model presented in Ref. [2],
where all particles are identical. Consider a 1D dis-
crete lattice with N sites and periodic boundary
conditions. The maximum occupancy per site is
one. Each particle has a propulsion director, which
can be left or right. The total number of particles
is M = φN , where φ is the dimensionless global
particle concentration. The initial positions are all
distinct and otherwise random. Each particle is
also given an initial random director. In each time
step, M individual particle updates are performed.
The update algorithm is as follows. A particle is
selected at random and a new director for this par-
ticle is chosen at random, with probability α (here-
after we refer to α either as a probability or as a
“rate”, leaving the multiplication by the fixed time
step implied, and similarly for the probabilities of

other elementary processes occurring at each time
step). Thus, the probability to have a different di-
rector is α/2. A tumble event occurs if the particle
changes its director. Otherwise, the particle pre-
serves its previous director. Next, if the propulsion
director points towards a neighbouring empty site,
then the particle moves to this new position. A
particle is then chosen anew. The updates are se-
quential. Our units are such that the lattice spac-
ing and the time step are fixed to unity. A parti-
cle can be chosen more than once in a single time
step, so that the swim speed (i.e. the free-space
speed acquired by the self-propelled particle in the
run mode) of the mobile particles fluctuates around
unity. To consider a nominal swim speed v 6= 1, all
one needs to do is to perform vM particle updates,
that is, an average of v updates per particle. In this
case, we divide α by v to prevent the tumbling
rate from scaling with the self-propulsion speed.
In this model, there is neither imposed Vicsek-like
velocity alignment [67] nor the spontaneous veloc-
ity alignment shown to arise due to interparticle
forces in off-lattice systems of active particles [68]
in narrow circular channels, where, for high persis-
tence, particles can start rotating collectively [56].
Also, although active particles in a channel may
push large clusters for long distances [69], it is not
completely clear to which extent this is reflected in
experimental CSDs [13, 21]. Such effects are not
considered here. Finally, a cluster is defined as a
contiguous group of occupied sites.

The above model is monodisperse: all particles
have the same motility properties, i.e. they have
identical swim speed and tumbling rate. Here we
consider a more realistic scenario where the par-
ticles have distinct swim speeds, while their tum-
bling rates continue to be monodisperse. To simu-
late a system of particles of different speeds, we
use the following approach. A selected particle
that has been assigned a fixed speed v will be up-
dated if v is larger than a random variable between
0 and vmax, a simulation cutoff parameter. Oth-
erwise, the selection is discarded. Once the to-
tal amount of individual particle updates is 〈v〉M ,
where 〈v〉 is the average particle speed in the sense
of an arithmetic average, the time step ends. By
using this procedure, the number of updates per
particle per time step is 〈v〉, and faster (slower)
particles are more (less) likely to be updated (and
therefore to move), proportionally to their nominal
speeds. Here, too, we divide α by the selected par-
ticle’s v so that the tumbling rate does not scale
up with the self-propulsion speed. For a binary
mixture, we consider half the particles with swim
speed vA = v0(1+δ) and the other half with speed
vB = v0(1 − δ). As we vary the degree of speed
diversity, δ, the average speed 〈v〉 = v0 remains
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fixed. We use specifically vmax = 2v0, as that is
the largest value the larger speed vA can have (for
δ = 1), and set v0 = 1. The speeds are assigned
so that the initial state is randomly homogeneous
and well-mixed. For simplicity, we do not present
simulation data for mixing proportions other than
50-50%. This is because the continuous distribu-
tion case described below already covers a more
general situation, although the binary theory in
Section IV was also validated via simulations with
different global proportions.

We also consider a fully polydisperse system,
i.e. with a continuous distribution of speeds. We
choose a log-normal distribution, which is ade-
quate for non-negative variables. Also, it corre-
sponds to the same shape as the distribution of
tumbling rates in E. coli bacteria[30] and is visu-
ally similar (see Fig. 1b) to the experimental speed
distributions of many swimming microorganisms,
E. coli included [29, 32–34]. Our normalized fully-
polydisperse distribution thus reads

f(v) = 1√
2πλv

exp
{(
− [log (v/v0)]2

2λ2

)}
, (1)

where v0 and λ are the distribution parameters.
We keep 〈v〉 ≡

∫∞
0 v f(v) dv = v0 exp

{
(λ2/2)

}
fixed while the polydispersity degree is changed by
varying λ. The monodisperse case corresponds to
the limit λ → 0. For the simulations, the cut-
off vmax = 4〈v〉 was found to be sufficiently large.
In any case, according to the theory in Section IV,
the particular functional form or parameters of the
speed distribution do not affect our main qualita-
tive results as described below.

To mimic the effects of a narrow channel whose
width allows for neighbouring bacteria to swap po-
sitions, we proceed as follows. Consider a parti-
cle of type i after it has potentially tumbled and
moved but before a new particle selection occurs.
At this stage of the algorithm, we allow for head-
to-head crossing, i.e. the particle will exchange po-
sitions with its neighbour with a probability ps
if, and only if, their directors point towards each
other. Here ps is a constant rate such that an in-
crease in channel width corresponds to an increase
in ps. With this algorithm, out of all possible head-
to-head crossing events involving particles of types
i and j within a given time step, a fraction ap-
proximately equal to ps(vi + vj) will indeed occur,
on average. The scaling with the speeds occurs
because the number of particle updates is propor-
tional to the speed. Here, we do not divide ps
by speed: it is physically reasonable that the effec-
tive swapping rates are proportional to the relative
speed since the self-propulsion forces of bacteria
are typically proportional to their self-propulsion

speeds. Similarly, we allow for overtaking, i.e. par-
ticle i will swap positions with its neighbouring
particle j with a probability proportional to vi−vj
if, and only if, their directors point in the same di-
rections and i is behind j with vi > vj . Since in
our algorithm the possibility of overtaking is con-
sidered only when the faster particle is selected,
we set the nominal overtaking swapping rate to
be ps(vi− vj)/vi: otherwise the effective swapping
rate would scale with the square of the speeds. In
summary, faster particles can overtake slower ones
at an effective rate proportional to their relative
speed.

III. SIMULATIONS

Our stationary numerical results were obtained
from simulations with periodic boundary condi-
tions and N = 2000 sites, except where a proper
sampling of the swim speed distribution requires a
larger system, in which case we used N = 104. For
visualization, we recorded snapshots of the steady-
state system for 300 successive time steps after
t = 107. The CSD and other similarly averaged
quantities were calculated from 9000 uncorrelated
configurations recorded every 104 time steps from
t = 107 onwards, within the same simulation.

A. Binary mixture

We start by analysing the binary mixture model
for 50-50% global composition with ps = 0, i.e.
no particle swapping. Fig. 2 shows snapshots of a
section of the 1D simulated system at successive
times within the stationary state for different de-
grees of bidispersity δ. From a homogeneous ini-
tial state, particles start to trap each other and
form clusters, reaching a steady state characterized
by the CSD. For δ = 0, all particles are identical
and thus have the same tendency to form clusters.
In this case, the average cluster size is given by
Lc ≈

√
2vφ/[α(1− φ)] and the CSD is propor-

tional to exp{(−l/Lc)} [2]. For δ > 0, there are
two groups of particles, each with a different ten-
dency to form clusters. Distinct typical slopes in
the space-time plot indicate distinct swim speeds.
Since particle swapping is not yet allowed, the ran-
dom sequence of particle types does not change in
time. The probability to have many particles of
the same type at successive positions is vanishingly
small, except for small clusters, which are domi-
nated by slower particles as they are more likely to
tumble before being absorbed by a cluster.

The CSD is defined as the average number of
clusters of size l and denoted by Fc(l). Fig. 3a
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FIG. 2. As Fig. 1a but for the steady state of a bi-
nary system of run-and-tumble particles on a 1D lat-
tice for different bidispersities δ. Only 500 of N = 2000
simulated sites are shown. The monodisperse case
(δ = 0) is shown for comparison. In the bidisperse
cases (δ > 0), particles with higher (lower) swim speed
are in red (blue). The global average speed, tumbling
rate, concentration, and composition of the entire sim-
ulated system are 〈v〉 = v0 = 1, α = 0.01, φ = 0.5, and
50-50%, respectively.

shows that as δ increases the CSD moves towards
smaller clusters, even though the global average
speed 〈v〉 = v0 is fixed. The exponential shape
of the CSD remains preserved (which allows us to
map onto a monodisperse system; see Section IV).
Fig. 3b shows that Lc indeed decreases with δ. The
inset of Fig. 3b has the ratio between the bidisperse
and monodisperse values of Lc. This ratio quan-
tifies the clustering reduction by speed diversity.

It does not depend on φ (for δ ≈ 1, a small de-
pendence on φ is found, indicating that additional
simulation statistics would be required). Similarly,
it does not depend on α (data not shown).

FIG. 3. (a) Cluster size distribution (log scale) from
simulations for various bidispersities δ, with 〈v〉 = 1,
α = 0.005, φ = 0.5, N = 2000, and ps = 0. Global
composition: 50-50%. The inset shows the cases
δ = 0.2 and δ = 0.8 (with the same plot markers as in
the main figure) compared against the corresponding
theoretical results [eqn (11)]. (b) Average cluster size
Lc versus bidispersity δ at fixed average swim speed,
with other parameters as in (a). The points show the
simulation results and the lines are the theoretical pre-
dictions from Section IV. The inset shows the ratio
to the corresponding monodisperse case, which is in-
dependent of φ. (c) Gas concentration φg vs. δ with
parameters as in (a). Points are the simulation results
and the solid line is the theory as obtained by identi-
fying an effective tumbling rate for the mixture.
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Notice that clusters of size l = 1 correspond to
isolated particles and therefore should, in princi-
ple, be considered as part of the “gas”, i.e., not
clusters. However, our theory in Section IV [2]
relies on integrating quantities across all positive
l. Thus, l = 1 is included in calculating Lc for a
more appropriate comparison. In any case, since
at low tumbling rates the gas density is typically
small, the contribution to Lc from isolated parti-
cles is likewise very small, as confirmed numeri-
cally. The gas concentration φg, which is defined
as the average particle concentration in the regions
containing only isolated particles (i.e., the regions
between clusters of size ≥ 2), increases with δ (see
Fig. 3c) since at higher speed diversity fewer par-
ticles participate in clusters of size l > 1, as seen
in Fig. 3a.

B. Binary mixture with particle swapping

With ps 6= 0, particles have a higher chance to
escape from clusters as now this can occur by either
tumbling or swapping, where the latter includes
both head-to-head crossing and overtaking. Thus,
the tumbling rate is effectively increased (see Sec-
tion IV) and therefore cluster formation is further
reduced. Fig. 4 shows snapshots for different ps
values. The higher the swapping rate, the more
the cluster sizes fluctuate in time. At high ps, the
clusters have been mostly destroyed.

With increasing ps the CSDs recede towards low
cluster sizes while approximately maintaining a
purely exponential functional form. Fig. 5a shows
Lc versus δ for various values of ps, whereas Fig. 5b
shows Lc versus ps for fixed values of δ. For high
ps, the cluster size dependence on δ is negligible. In
this scenario, the particles end up leaving the clus-
ter sooner by swapping than by tumbling. Since
tumbling is no longer important, the diversity in
the ratio of speed to tumbling rate becomes irrel-
evant. As a result, the clustering process becomes
controlled by swapping events. Fig. 5b shows that
if overtaking is turned off but head-to-head cross-
ing is kept on, one obtains higher values of Lc, but
the overall behaviour with ps is similar. The inset
of Fig. 5b shows that the difference between these
two swapping scenarios peaks at small values of
ps. This is because at high ps bidispersity becomes
irrelevant and therefore overtaking should not be
important since its rate is zero without diversity.

C. Fully polydisperse mixture

For the fully polydisperse distribution of swim
speeds in eqn (1), we keep ps = 0 as particle swap-

FIG. 4. As Fig. 2 but for fixed δ = 0.9 and swap-
ping rate ps > 0 as indicated, with both particle head-
to-head crossing and particle overtaking mechanisms
turned on.

ping effects are analogous to those in the binary
mixture. Fig. 6 shows the average cluster size. The
higher the λ, the smaller are the clusters, at fixed
〈v〉. The CSD maintains an approximately purely
exponential form becoming almost horizontal at
sufficiently high λ (data not shown). Additional
details for this case are discussed in Section IV.

IV. THEORY

This section is dedicated to deriving theoretical
expressions for the average cluster size Lc which
includes the effect of speed diversity and particle
swapping, to be compared to our numerical results
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FIG. 5. (a) Average cluster size Lc versus bidisper-
sity δ at fixed average speed for various particle swap-
ping rates ps, from simulations (points) and theoreti-
cal predictions for the CSD length scale Lc, eqn.(11)
(lines). (b) Same as in (a) but as a function of
ps ∈ {0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.3, 0.5} and com-
paring the cases with and without particle overtaking.
The inset shows the difference between the swapping
scenarios. Other parameters as in Fig. 3a.

presented in Section III. We start by reviewing
the developments of Ref. [2] (providing previously
omitted details) for a lattice model with identical
RT particles. We explicitly consider an arbitrary
self-propulsion speed v instead of the case v = 1
of the original derivation. By doing so, we will be
able to extend the results to speed-diverse systems.
We conclude the section by incorporating particle
swapping into the theory, considering both head-
to-head crossing and overtaking.

A. Monodisperse systems

Following Ref. [2], we assume that the positions
of the borders of a cluster, as well as the cluster it-
self, are independent random walkers, and that in-
teractions between clusters are weak. Within this
approximation (which corresponds to α/v � φ and
is used throughout the present work), the authors
of Ref. [2] have calculated the distributions of sizes

FIG. 6. Average cluster size Lc versus the polydisper-
sity parameter λ at fixed average speed 〈v〉 = 1 for
φ = 0.1 and φ = 0.2. The points show the simulation
results and the lines are the theoretical predictions for
the CSD length scale Lc as given in eqn (11). For
the simulations with λ > 2.5, the numerical results
no longer agree with the theory, as discussed in Sec-
tion IV. Other parameters: α = 2.5× 10−4, vmax = 4,
and N = 104.

for the clusters and gas regions, Fc(l) and Fg(l),
respectively, in the one-component case. (For the
purpose of calculating the distribution Fg(l), the
gas can be regarded as consisting of empty regions
since the concentration of isolated particles is pro-
portional to α; see below.) Such distributions were
obtained by considering that the clustering pro-
cess approaches a thermodynamic-like equilibrium
where Fc(l) maximizes an entropy for the number
of possible cluster configurations. The resulting
distributions follow an exponential decay with the
region size l:

Fc(l) = Ace
−l/Lc and Fg(l) = Age

−l/Lg . (2)

Ac,g and Lc,g are the parameters of the distribution
to be found, with Lc,g corresponding to the sta-
tionary average cluster or gas region size. To find
these parameters, we first invoke particle conser-
vation, which implies that gas and cluster regions
together cover the whole system, i.e.,∑

l

lFc(l) +
∑
l

lFg(l) = N. (3)

Then, since we consider periodic boundary condi-
tions, the number of gas regions must be equal to
the number of cluster regions, which leads to∑

l

Fc(l) =
∑
l

Fg(l). (4)

Moreover, since the the concentration of isolated
particles is φg = α/v as shown in Ref. [2], we as-
sume that for high persistence, i.e., high v/α, one
has φg ≈ 0. On the other hand, the particle con-
centration inside the cluster is φc = 1 by definition.
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Taking one typical cluster and one typical gas re-
gion, the total amount of particles reads

Lcφc + Lgφg = (Lc + Lg)φ, (5)

where, due to particle conservation, on the right
hand side the size of the cluster and gas region
taken together appears multiplied by the system’s
overall particle concentration φ.

We recall the assumption that cluster-cluster
interactions are weak; in fact, these interactions
are assumed to occur only through uncorrelated
emissions of particles into the gas, and absorp-
tions from there. This implies low tumbling rates
(α/v � φ), consistently with the previous steps.
In this regime, there are essentially no particles in
each gas region (φg ≈ 0), meaning that these re-
gions are almost empty. To close our system of
equilibrium equations, we assume detailed balance
(since the clustering process can be mapped onto a
thermodynamic-like equilibrium process) and cal-
culate the balance between production and evapo-
ration of dimers (i.e., clusters of size l = 2). Their
formation is controlled by emissions of particles at
each boundary of a gas region. In order to compute
the production rate of dimers, denoted by W+

2 ,
suppose that a particle at the right boundary of
a gas region of typical size Lg is emitted from a
cluster with velocity v. Such an emission occurs at
rate α/2. Because tumbling rates are small, we as-
sume that the emitted particle will keep its velocity
direction and reach the next cluster after a travel
time Lg/v. For a new dimer to be created, a par-
ticle from the left boundary of the gas region must
be emitted, also with probability α/2 at each time
step, before the first particle’s arrival. As for the
first particle, we assume that the second emitted
particle will move ballistically, i.e., without tum-
bling, until it encounters the first particle. That
is, if the second particle is emitted before the ar-
rival of the first particle, then the dimer will form.
For a particle to be emitted at a time τ , it must
not be emitted before that, i.e., until a time τ − 1.
This happens with probability (1− α/2)τ−1(α/2).
Therefore, the probability for a new dimer to form
is given by

P+ =
(α

2

)(α
2

) Lg/v∑
τ=0

(1− α/2)τ−1

 ,
≈
(α

2

) [
1− (1− α/2)Lg/v

]
, (6)

where the α/2 outside the square brackets accounts
for the emission of the first particle, whilst the
terms inside the square brackets ensures that the
second particle leaves its cluster before the travel
time Lg/v. Note that, in order to approximate

the expression, we used our assumption that α is
small. The global production rate of dimers is then
given by W+

2 = 2P+Ng, where Ng =
∑
l Fg(l) is

the total number of gas regions and the factor two
accounts for the spatially inverted case, where the
particle on the left is emitted first. Putting this
together yields

W+
2 = α

[
1− (1− α/2)Lg/v

]
Ng

≈ α2

2
Lg

v
Ng. (7)

On the other hand, the rate of evaporation of
dimers, W−2 , can be calculated as follows. First,
note that the only dimers that need to be consid-
ered are the ones composed of two particles facing
each other, as otherwise the dimer would either
have evaporated or be quickly absorbed by other
clusters (and so it would not be noticed as a dimer
in the steady-state statistics). That is, a dimer is
destroyed whenever one of its constituents tumbles
to a different direction, which occurs with proba-
bility P− = α/2 for each of them, leading to a to-
tal probability of evaporation equal to 2P−. Then,
the global rate of dimer evaporation is obtained by
multiplying this total tumbling probability of the
dimer by the total number of dimers Fc(l = 2),
i.e., W−2 = αAce

−2/Lc ≈ αAc, where we used
that 2/Lc ≈ 0. Therefore, the final equilibrium
condition used to close our system of equations,
W−2 = W+

2 , amounts to

Ac ≈
α

2
Lg

v
Ng. (8)

To solve the system of equations (3)-(8) analyti-
cally, we replace the summations by integrals from
l = 0 to ∞. The solution is

Ac ≈
Nα (1− φ)

2v and Lc ≈ lc(v, α, φ) ≡

√
2vφ

α(1− φ) ,

(9)
where, due to the small α limit (i.e., φg ≈ 0), all
instances of vφ − α and v − α have been replaced
by vφ and v, respectively.

B. Speed-diverse systems

To include speed diversity, let us consider a
multi-component system with an arbitrary num-
ber of particle types Q, which are characterized by
speeds vi and are present at global concentrations
φi with i = 1, . . . , Q and

∑
i φi = φ. In this case,

the size distributions of clusters and gas regions are
still given by exponentials. This fact can be veri-
fied either via simulations, as shown in Section III,
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or by noticing that the original derivation of the
CSD in Ref. [2] becomes specific to the case of
identical particles only after the exponential shape
is obtained. We thus have Fc(l) = Ace

−l/Lc with
new constants Ac and Lc to determine in the speed
diverse case. The only expression that requires
alteration is the one that explicitly involves self-
propulsion speed, that is, the rate of dimer cre-
ation. It can now be written as

W+
2 ≈

∑
ij

α
[
1− (1− α/2)Lg/vj

]
N ij

g , (10)

where the summation runs over particle types and
N ij

g is the total number of gas regions bounded
by particles of types i and j on the left and right
borders, respectively. (Since N ij

g is symmetric in
i and j, the term (1− α/2)Lg/vj does not need to
be symmetrized.) A cluster border will be occu-
pied by a particle of type i with a probability that
depends only on the global concentration φi and
α, independently of vi. As a result, the chance to
find a gas region simultaneously bounded by types
i and j obeys N ij

g ∼ φiφj , which is then normalized
so that

∑
ij N

ij
g gives the total number of gas re-

gions. On the other hand, W−2 remains unchanged
since it is speed-independent. The resulting CSD
parameters can be expressed, using the function lc
defined in (9), as

Ac ≈
Nα (1− φ)

2veff
and Lc ≈ lc(veff , α, φ),

with veff =
(∑

i

φi
φvi

)−1 (11)

a monodisperse effective speed which is found to be
the component-weighted harmonic mean speed of
the mixture. As such, veff encodes speed diversity
entirely and is the effective self-propulsion speed
in the monodisperse case that gives the same CSD
as in the speed-diverse case.

We briefly remind the reader that if a vehicle
travels a certain distance at speed v1 and returns
the same distance at speed v2, then its average
speed is the harmonic mean of v1 and v2, not the
arithmetic mean. The total travel time is the same
as if it had travelled the whole distance at that av-
erage speed. However, if the vehicle travels for a
certain amount of time at speed v1 and then the
same amount of time at a speed v2, then its average
speed is the arithmetic mean of v1 and v2. There-
fore, our result can be understood as follows. The
average cluster size is ultimately set by the time
that an arbitrary particle takes to cross a typi-
cal gas region. This time is an arithmetic average
over the times taken by each particle type, where
we consider that the chance of having a particle of

type i travelling in the gas is just proportional to
φi. Thus, the average speed at which such typical
fixed distance is covered is the harmonic average of
the speeds, as given in eqn (11), not the arithmetic
one.

For the 50-50% binary mixture, our derivation
leads to

Lbi
c ≈

√
2v0(1− δ2)φ
α(1− φ) , (12)

and, for the fully polydisperse mixtures, the result
is

Lpoly
c ≈

√
2v0φ

α(1− φ)e
−λ2

4 =

√
2〈v〉φ

α(1− φ)e
−λ2

2 ,

(13)
where we have recalled that in the fully polydis-
perse case 〈v〉 = v0 exp

{
(λ2/2)

}
. Expressions (12)

and (13) are in excellent agreement with the sim-
ulation results as presented in Section III. In par-
ticular, the theory predicts that the ratio between
the speed-diverse and monodisperse values of Lc
does not depend on φ or α as shown in the inset
of Fig. 3b.

The gas concentration, albeit small and taken
to be zero in the analytical derivation of Section
IV A, can be written using the monodisperse ef-
fective speed veff and extending the monodisperse
expression [2] to obtain φg = α/veff or, equiva-
lently, φg = αeff/〈v〉, where αeff ≡ α〈v〉/veff is the
effective tumbling rate in the monodisperse case
that gives the same CSD as in the speed-diverse
case. The resulting expression is highly accurate,
as shown in Fig. 3c. Our theory in (11) becomes
less accurate at high speed diversity as a large
number of very slow particles arise, in which case
the assumption α/v � φ is no longer valid.

C. Swapping

Particle swapping is taken into account by
adding appropriate terms to the monodisperse ef-
fective tumbling rate αeff. This is because parti-
cle swapping enables an additional mechanism for
cluster-border evaporation, other than tumbling.
For simplicity, we consider only the 50-50% binary
mixture as other cases are analogous. A satisfac-
tory approximation for head-to-head crossing ef-
fects is to consider αeff → αeff +κHCps, where κHC
is a parameter proportional to the fraction of pairs
susceptible to head-to-head crossing. In principle,
it depends on ps, too. But, to first order in ps,
it can be considered a constant. Because head-to-
head crossing rates are proportional to the relative
speed between the particle types, there should be a
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corresponding dependence on δ, but in the 50-50%
binary mixture this cancels out because the aver-
age of vi + vj across particle types is independent
of δ. By fitting data without overtaking for several
values of δ and ps, we find κHC ≈ 0.56.

Proceeding similarly for the case with both
head-to-head crossing and overtaking mechanisms,
we use

αeff → αeff + κHCps + κTpsδ, (14)

where κT is taken as a constant and the new term is
linear in δ since overtaking depends on the relative
speed only between the particles of faster-behind-
slower pairs. Fitting data from simulations with
overtaking, we obtain κT ≈ 1.97. As shown in
Fig. 5, this approach provides good results.

V. CONCLUSIONS AND DISCUSSION

In this work we showed how motility-induced
self-clustering in confined active matter can be re-
duced by diversity of self-propulsion speeds. Also,
cluster sizes are further reduced by confinement
relaxation. We used a minimal quasi-1D discrete
lattice model of run-and-tumble particles with a
distribution of self-propulsion speeds. Neighbour-
ing particles were allowed to perform head-to-head
crossing and overtaking at rates proportional to
their relative speeds, depending on whether they
are face-to-face oriented or there is a faster particle
behind a slower one. This mimics a narrow channel
whose width is large enough to allow for some posi-
tion swapping events. A binary mixture and a fully
polydisperse system were studied. Without swap-
ping, the average cluster size Lc decreases with di-
versity. This is equivalent to a system of iden-
tical particles whose speed is the harmonic mean
speed of the mixture. With swapping, particles can
escape from clusters more quickly. Consequently,
Lc decreases with swapping rates and depends less
strongly on diversity. At sufficiently high swap-
ping rates, clustering then becomes controlled by
head-to-head crossing and overtaking events and
thus speed diversity becomes irrelevant. We de-
rived an accurate dynamical equilibrium theory for
the CSDs and gas concentrations that is applicable
to all models studied here.

In order to calculate Lc for the mixture, at first
glance one could be tempted to insert the arith-
metic mean self-propulsion speed of the mixture
into one-component theories or even to take the
arithmetic mean of the one-component Lc’s. Here
we find that both ideas provide significantly wrong
results (more below). Unlike the case of tumbling-
rate diversity, we highlight that the above results

for speed diversity imply that the average clus-
ter size follows a non-arithmetic generalized power
mean of the one-component Lc’s. In fact, our aver-
age cluster size result in eqn (11) can be rewritten
as

Lc ≈

(∑
i

φi
φ
Lpi

)1/p

with Li =

√
2viφ

α(1− φ)
(15)

and the exponent p = −2. This is different from
the case of tumbling-rate diversity previously stud-
ied where we had p = 1, that is, the arithmetic
mean [30]. In fact, although for speed diversity an
arithmetic mean of the one-component Lc’s would
qualitatively capture a decrease in the mixture’s
Lc, it is quantitatively wrong. Also, notice that the
arithmetic mean result for tumbling-rate diversity
can in principle also be obtained by the analyti-
cal method described in Section IV, but in that
case we no longer have N ij

g ∼ φiφj as the number
of gas regions bounded by a certain particle type
depends non-trivially on that particle’s tumbling
rate (still, we have inserted numerical results for
N ij

g and obtained accurate values for Lc; data not
shown).

For the parameters investigated, our data do
not show strong “fractionation”, i.e., clusters with
compositions that differ from the global composi-
tion. For small clusters, however, we do observe
a systematic deviation: small clusters are typi-
cally richer in slower particles (data not shown).
This is because faster particles travel too fast be-
tween clusters to allow for the emission of another
particle that could meet it to form a dimer (and
then other small cluster sizes). Instead, the first
emitted particle is quickly reabsorbed by another
cluster before a second particle is emitted. Inves-
tigating exactly which parameters would generate
strong fractionation in 1D is beyond the scope of
our work. This question would be more relevant in
2D, where one might speculate, for instance, that
the faster particles would dominate the interior of
big clusters since they would be more likely to oc-
cupy newly available vacancies.

To estimate whether our qualitative clustering
behaviour is also valid for other models of ac-
tive particles that are not on-lattice or run-and-
tumble, one can look at the answer to this ques-
tion for monodisperse systems. For off-lattice mod-
els, simulations show that monodisperse systems
of run-and-tumble bacteria, active Brownian parti-
cles, and active Ornstein-Uhlenbeck particles, have
an average cluster size given by Lc ∼

√
ρu/ω,

where ρ is the off-lattice model global concentra-
tion, u is the active speed, and ω is an inverse
persistence time parameter [11]. This is precisely
the off-lattice version of the length scale expression
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(9). Consequently, our qualitative results for mix-
tures are indeed expected to be universal across
the most used models in 1D scalar active matter.

The clustering reduction effects presented here
can indeed be relevant in biological experimen-
tal situations. Consider the unicellular microor-
ganisms known as choanoflagellates. Although in-
dividually they are better described as smooth,
active Brownian swimmers, their clustering be-
haviour is expected to be equivalent to that of
run-and-tumble particles because of the equiva-
lence between these models with respect to col-
lective phenomena [70]. These cells naturally dif-
ferentiate into slower and faster particles with
a speed-diversity standard deviation that can be
obtained from literature experimental data as in
Ref. [33]. One can then calculate the error in
estimating their Lc via one-component models
that use the arithmetic mean speed instead of
the harmonic mean speed, leading to ∆Lc ≡
[lc (veff, α, φ)− lc (〈v〉, α, φ)] /lc (veff, α, φ) ≈ 30%.

In future work, it would be relevant to include
features such as propulsion mechanisms that are
so strong that the particles collectively move and
merge clusters. In this kind of scenario, one ex-
pects that, for less soft active particles, swapping
could become less frequent in narrow channels; at
the same time, pushing effects due to direct con-
tact would be enhanced. Also, one could consider
lattice models with rules to mimic hydrodynamic

interactions, which can substantially change clus-
ter escape times [27]. Another interesting future
avenue is the case of direction-dependent speeds
arising due to external forces.
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