
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

IMPLEMENTING SECURE REPORTING OF SEXUAL MISCONDUCT

TESIS PARA OPTAR AL GRADO DE MAGÍSTER EN CIENCIAS MENCIÓN
COMPUTACIÓN

MEMORIA PARA OPTAR AL TÍTULO DE INGENIERA CIVIL EN COMPUTACIÓN

ILANA MERGUDICH THAL

PROFESOR GUÍA:
ALEJANDRO HEVIA ANGULO

MIEMBROS DE LA COMISIÓN:
JÉRÉMY BARBAY

TOMÁS BARROS ARANCIBIA
PATRICIO GALDAMES SEPÚLVEDA

Este trabajo ha sido parcialmente financiado por ANID - Subdirección de Capital
Humano/Magíster Nacional/2020

SANTIAGO DE CHILE
2021

Resumen

RESUMEN DE LA TESIS PARA OPTAR AL
TÍTULO DE: Ingeniera Civil en Computación
y grado de Magíster en Ciencias mención Com-
putación
POR: Ilana Mergudich Thal
FECHA: 1/12/21
PROFESOR GUÍA: Alejandro Hevia Angulo

Reportar acoso sexual es extremadamente complejo. A pesar de que más víctimas repor-
tan cada año, existe un importante porcentaje de personas que no hace acusaciones formales
[50]. Estudios han mostrado que la mayoría de los episodios de acoso sexual ocurren por parte
de personas que han acosado previamente y muestran que las víctimas están más dispuestas
a reportar si saben que existen otras víctimas del mismo agresor [19]. Recientemente, Kuyk-
endall, Krawczyk y Rabin [43] propusieron WhoToo, un sistema en que las identidades de
quien acusa y quien es acusado son protegidas hasta que un número preestablecido (quórum)
de personas reportan al mismo acosador. En esta tesis, revisamos el protocolo desde una per-
spectiva de implementación, elucidando clarificaciones necesarias y optimizaciones posibles.

Primero identificamos diversas operaciones clave en que la implementación no era clara
en la propuesta original. En uno de los casos, si la operación se hubiese implementado de
manera directa mediante el uso de otras herramientas de WhoToo se hubiese comprometido
el anonimato. La solución para otro caso fue simple pero requirió una nueva (aunque directa)
demostración de seguridad. Estas soluciones, a pesar de ser pequeñas, eran fundamentales
para un systema cuyo diseño enfatizaba practicidad y operaciones rápidas.

Luego revisamos la eficiencia de WhoToo. Usando una función pseudo aleatoria de input
distribuido y una variante de encriptación robusta y anónima basada en identidad, mejoramos
la eficiencia de la detección de duplicados y acusaciones coincidentes. Dadas N acusaciones,
nuestra solución requiere O(1) operaciones distribuidas (la primitiva más costosa en WhoToo)
para detectar duplicados y acusaciones coincidentes una vez alcanzado el quórum.

Adicionalmente, entrevistamos a expertos y realizamos focus groups con potenciales usuar-
ios, lo que llevó a una discusión sobre nuevos requerimientos.

Nuestros resultados dan pie a WhoToo+, una variante práctica y más eficiente de WhoToo
que preserva las garantías de seguridad originales. Más aún, implementamos un prototipo de
WhoToo+ y analizamos su eficiencia teórica y experimental.

i

Abstract

Reporting sexual assault or harassment is notoriously difficult, and even though more vic-
tims are coming forward every year, a significant percentage of victims do not formally report
it [50]. Studies have shown that most sexual assault episodes occur by repeat perpetrators
and that people are more likely to report if they know that other victims of the same aggressor
exist [19]. Recently, Kuykendall, Krawczyk and Rabin [43] proposed WhoToo, a system in
which the identities of the accuser and the accused are protected until a certain pre-specified
number (quorum) of victims reports the same perpetrator. In this thesis, we revisit this
protocol from an implementation perspective, shedding light on necessary clarifications and
optimizations.

We first identified several key operations whose implementation was left unclear in the
original proposal. One of such operations, if implemented in a straightforward fashion by
using other WhoToo subroutines would compromise anonymity. Fixes for another were simple
but required a new (but straightforward) security proof. Such fixes, although rather minor,
were important for a system whose design emphasizes practicality and fast operations.

We then revisited WhoToo’s efficiency. Using a Distributed Input PRF and a variant
of Robust Anonymous IBE Encryption, we improved detection of duplicated and matching
accusations. Given N accusations, our solution requires O(1) instead of O(N) distributed
operations (the most expensive primitive in WhoToo) to detect duplicates and matching
accusations once the quorum is reached.

Additionally, we interviewed experts and conducted focus groups with potential users
which lead to a discussion of new requirements.

Our results yield WhoToo+, a practical and more efficient variant of WhoToo that preserves
the original security guarantees. Moreover, we implemented a prototype of WhoToo+and
analyzed its theoretical and experimental efficiency.

ii

iii

A las mujeres de mi familia.
A las que están cerca, las que están lejos y las que ya no están.

Su pasión por lo que hacen es contagiosa y me inspira todos los días.

iv

v

Agradecimientos

A mi mamá, que me transimitió su pasión por aprender desde muy chica, me apoyó y acom-
pañó siempre. Saber que siempre vas a estar ahí para apoyarme me hace sentir que soy
capaz de cualquier cosa. Gracias por tu cariño infinito, no tengo palabras para expresar lo
agradecida que estoy, pero todos mis logros son gracias a ti.

A mi papá, por su cariño incondicional y por mostrarme la importancia de disfrutar el
proceso. Gracias por regalonearme, gracias por tu compañía en todos esos trayectos y gracias
por estar siempre cerca a pesar de la distancia.

A mi hermana, por ser mi modelo a seguir, por empujarme a ser y hacer lo mejor posible.
Gracias por ser mi compañera de vida, gracias por tu cariño y apoyo todos los días de mi
vida.

A Max, por estar siempre ahí para mi, por escucharme, apoyarme, abrazarme y acom-
pañarme cada vez que lo necesité. Gracias por enseñarme que a veces necesito parar y
dejarme querer, nunca hubiese podido terminar esta tesis sin ese descubrimiento.

A mi tía Karen, mi tío Lucho, mi prima Tamara, mi tía Ety y toda mi familia por estar
tan presentes en cada detalle de mi vida.

A mis amigas Clau, Dani S, Dani P y Dani C, que fueron mi todo para mi proceso en la
universidad. No se imaginan lo importante que fueron y son para mi. Gracias por su cariño,
sus risas, sus abrazos, sus preguntas, gracias por ser parte de mi vida, por estar siempre
ahí, por escucharme, por enseñarme y acompañarme todos estos años. Las quiero infinito y
agradezco todos los días habernos encontrado.

A la Coni, la Cata, Felipe y Seba, por creer en mi desde siempre. Gracias Coni por
inspirarme y por impulsarme a perseguir propósitos inalcanzables.

A Lambda, mi compañero de todos los días, por entregarme amor y alegría infinita.

A todas las mujeres de mi vida, por inspirarme y mostrarme la importancia de trabajar
en esto.

vi

A mi profesor guía Alejandro Hevia, porque me dio espacio para explorar y me ayudó
a encontrar un tema que realmente me hiciera sentido. No sólo me enseñó a investigar y
colaborar en el ámbito académico, sino que se preocupó por mi formación como persona en
un sentido mucho más amplio.

De verdad muchas gracias.

vii

Contents

List of Tables x

List of Figures xii

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Problem . 2
1.3 Hypothesis . 4
1.4 Objectives . 4

1.4.1 General objective . 4
1.4.2 Specific objectives . 4

1.5 Methodology . 5
1.6 Contributions . 6
1.7 Related Work . 7

1.7.1 Callisto . 7
1.7.2 Who Too . 7
1.7.3 Secure Allegations Escrow (SAE) . 8

1.8 Structure . 8

2 Cryptographic Tools 9
2.1 Preliminaries . 9

2.1.1 Notation . 9
2.1.2 Probabilistic Polynomial Time (PPT) Algorithm 9
2.1.3 Bilinear pairings . 10
2.1.4 Computational Assumptions . 10
2.1.5 Communication channels . 11
2.1.6 Security Requirements and Threat Model 11

2.2 Building Blocks . 12
2.2.1 Pseudo-Random Functions: . 12
2.2.2 Hash Function . 12
2.2.3 Message Authentication Code (MAC) 13
2.2.4 ElGamal Encryption . 14
2.2.5 Zero-knowledge proofs . 16
2.2.6 Threshold Operations . 17
2.2.7 Distributed Group Signatures . 19
2.2.8 Privacy-Preserving Multisets . 20

viii

3 A First Review of WhoToo 22
3.1 Protocol Overviews . 22

3.1.1 WhoToo: An Introduction . 22
3.1.2 WhoToo+ Overview . 24

3.2 Two Issues in WhoToo . 25
3.2.1 Securely Evaluating Quorum in WhoToo 25
3.2.2 Identifying Duplicated Accusations 27

4 Improving WhoToo 29
4.1 Duplicate Revision . 29

4.1.1 Distributed Input Pseudorandom Functions (DIPRF): 29
4.1.2 Avoiding mismatched accusations: . 32

4.2 Matching accusations . 32

5 Variants and Extensions 37
5.1 Discarded ideas . 37
5.2 Flexible quorum . 38
5.3 Role . 39
5.4 Unknown perpetrator . 39
5.5 Additional Public Information . 39

5.5.1 Contact for further investigation . 39
5.5.2 Repetition counter . 40

5.6 Updates . 40

6 Description and Security of the New Protocol 41
6.1 WhoToo+ Description . 41
6.2 Security Analysis . 45

7 Implementation and Efficiency 52
7.1 Prototype . 52
7.2 Efficiency Analysis and Discussion . 53

7.2.1 Theoretical Efficiency . 53
7.2.2 Experimental Efficiency . 55

8 Concluding Remarks and Future Work 62
8.1 Concluding Remarks . 62
8.2 Future Work . 62

9 Bibliography 64

10 Appendix 69
10.1 Focus Groups’ Guideline . 69

ix

List of Tables

7.1 Efficiency comparison given a total number N of accusations, m valid users, a
maximum number k of accusations per user and quorum q. 55

x

xi

List of Figures

1.1 Intuitive comparison between existing sexual assault reporting protocols. . . 3

2.1 Multiplication with shared exponents . 19

3.1 Randomized Decryption . 26
3.2 Modification in Set.Quorum and PrivatePoly.ZeroTest for consistency with

PrivatePoly.Multiply. d stands for the degree of the polynomial. Operations
involving shares use arguments with braces (eg. {x}) as described in Sect. 2.2.6. 26

3.3 Ideal Functionality for PrivatePoly.ZeroTest. 27

4.1 Distributed Input PRF and MAC. Operations involving shares use arguments
with braces (eg. {x}) as described in Sect. 2.2.6. 30

4.2 Strongly Robust Distributed IBE. Operations involving shares use arguments
with braces (eg. {x}) as described in Sect. 2.2.6. 35

5.1 Zero-knowledge proof of equality of ElGamal encodings 40

6.1 The WhoToo+ Protocol . 44
6.2 FWhoToo+ : Ideal Functionality for WhoToo+ . 45
6.3 FDR: Ideal Functionality for duplicate revision 49
6.4 FMA: Ideal Functionality for matching accusations 49

7.1 Efficiency comparison for RD and MA Online Operations 55
7.2 Comparison of Total Online Operations . 56
7.3 Initialization Time for Different Numbers of Users 57
7.4 Initialization Time for Different Numbers of MACs per User 57
7.5 Online Time for Submission of New Accusations in WhoToo+ 58
7.6 Online Time for Submission of New Accusations that Don’t Reach the Quorum 59
7.7 Online Time for Submission of New Accusations that Reach the Quorum . . 60
7.8 Comparison of Online Time for Submission of New Accusations 61

xii

xiii

Chapter 1

Introduction

1.1 Background and Motivation

Sexual assault accusations have become more frequent every year, nevertheless, there is still
a significant percentage of victims that do not come forward. The issue of sexual assault
is specially prevalent in educational settings. A recent study by the Pontificia Universidad
Católica de Chile has shown that, in one of the biggest universities in the country, 39,9%
of students declare that they have been victims of sexual harassment, yet 65% of them did
not formally report it [46]. Similar numbers have been reported for female undergraduate
students at other universities [39, 21], showing that a significant number of victims never
report it. On the other hand, research has shown that people are more likely to report
sexual assault if they know other victims of the same perpetrator exist [19]. Furthermore,
an overwhelming majority of sexual misconduct episodes are caused by offenders who have
committed sexual assault before [19].

Project Callisto [56] was the first to address this problem considering all these factors.
They proposed a protocol in which the identity of the accuser and the accused remained
hidden until two victims accused the same perpetrator. Even though it has been shown
that the identities are not entirely protected in this protocol, it has been implemented in
13 universities across the United States of America (USA). In only three years, the average
time taken to report a sexual assault episode since the moment it occurred has decreased
from 11 to 4 months [55], which shows that this is a successful approach to the sexual assault
reporting problem.

Since then, two other protocols based on the same premise have been proposed: WhoToo
[43] and Secure Allegation Escrows (SAE) [5]. Both of these protocols receive accusations in a
distributed setting and define a quorum q so that accusations are revealed only when q accu-
sations against a certain person are submitted. The first provides strong security guarantees,
however, it can become increasingly inefficient as the number of unopened accusations in the
system grows. SAE is significantly more efficient than WhoToo and even though its secu-
rity guarantees are stronger than Callisto, it reveals information about matching accusations
(accusing the same perpetrator) before the quorum is reached.

1

Consequently, it is natural to ask which security properties should be guaranteed by a
protocol of this kind and if it is possible to design a protocol with such properties. This
thesis’s original motivation was to define the necessary requisites for a protocol for sexual
assault reporting, design a protocol that distributively receives accusations and reveals them
only when a specific quorum is reached and prove that this protocol actually guarantees the
defined requisites.

1.2 Problem

Considering this problem and the existing solutions, we identify the need for a distributed
protocol (i.e, accusations are received in a distributed setting) that does not reveal any
partial information about the accusations until a specific quorum is reached, is secure under
the simulations model [44] and is efficient enough to be implemented in a university context.
Both WhoToo and SAE achieve most of these properties, yet WhoToo becomes increasingly
inefficient when there is a backlog of unopened accusations and SAE reveals meta-information
about accusation matches before the quorum is reached. Furthermore, we uncovered two
gaps in the specification of key aspects of WhoToo (these gaps were not trivial, as they could
possibly compromise the protocol security).

Therefore, the problem we aim to solve is to design a protocol that guarantees at least
the same security properties as SAE, yet does not allow any server to obtain information
or meta-data about the accusations and the relationships between them until the quorum is
reached. The protocol should be efficient enough to be implemented in a university context,
being at least more efficient than WhoToo.

This can be intuitively represented in Fig 1.1. On one hand, WhoToo (represented in pink)
is a protocol that claims to have strong security guarantees, yet adding a new accusation
requires O(N) distributed operations. On the other hand, SAE (represented in blue) is not
as secure because it reveals meta-information about matching accusations, however, adding
a new accusation requires only O(1) distributed operations. We aim to design a protocol in
the green area. Our first approach was to start from the SAE protocol and try to improve
its security guarantees, this is, go along the blue arrow, willing to sacrifice efficiency in order
to achieve this, as long as it was at least more efficient than WhoToo. We later realized
that there where key elements in WhoToo that could be replaced to make it more efficient,
and because its security guarantees were already stronger, it was better to start from the
WhoToo protocol and improve its efficiency, moving along the pink arrow.

Consequently, the problem we aim to solve is to design a protocol that guarantees the
following:

1. Secrecy: All information about a submitted accusation is protected until the quorum
is reached.

2. Anonymity: The identities of the accuser and the accused are protected until the
quorum is reached.

3. Accountability: The identity of the accuser is bound to a real world identity.
4. Meta-data hiding (MDH): Other than the total number of accusations, no partial in-

2

Figure 1.1: Intuitive comparison between existing sexual assault reporting protocols.

formation about the accusations and its matches is leaked.
5. Distributed threshold authority: All information is distributed among N servers. While

at least t+ 1 out of N servers are honest, the protocol guarantees secrecy, anonymity,
accountability and MDH.

6. Efficiency: The protocol is more efficient than WhoToo.

We aim to fix the gaps in the WhoToo description and to improve its efficiency. We
identified specific components of this protocol that could be modified or replaced in a more
efficient manner. When receiving a new accusation, WhoToo must compare it with every el-
ement of a list of unopened accusations, in order to achieve two goals: preventing duplicated
accusations (those involving the same pair accuser-accused), and identifying all existent ac-
cusations for a given accused, when the quorum has been reached. The protocol’s strategy
to deal with these two tasks becomes increasingly inefficient as the number of unopened ac-
cusations grows: it takes O(N) interactive distributed operations to review a total number
of N unopened accusations in the system, for both of the abovementioned goals.

Research Questions

We address this problem through the following research questions:

1. Is it possible to fix the gaps in the specification of WhoToo, guaranteeing the protocol’s
security properties?

2. Is it possible to improve the efficiency of the WhoToo protocol while preserving secrecy,
anonymity, accountability and MDH?

3. Is there an alternative to the duplicate revision process of WhoToo that is more efficient

3

and does not leak partial information about the accusations?
4. Is there an alternative to the process of finding matching accusations against a specific

person proposed by WhoToo that is more efficient and does not leak any information
about non-matching accusations?

1.3 Hypothesis

The use of a Distributed Input PRFs (DIPRF) and a variant of strongly robust Identity
Based Encryption (IBE) together with threshold cryptography tools allows to fix the gaps and
design alternatives to the duplicate revision and matching accusations processes, decreasing
the number of distributed operations from O(N) to O(1) while preserving WhoToo’s security
guarantees. It is possible to formally demonstrate that the modified protocol achieves the
abovementioned security properties.

Note that the original hypothesis was the following:

The use of zero-knowledge sets and its variants such as accumulators, oblivious PRFs
together and threshold cryptography tools allows to design an alternative to the matching
process in SAE to build a protocol that preserves SAE’s security guarantees, is more efficient
than WhoToo and guarantees meta-data hiding. It is possible to formally demonstrate that
the modified protocol achieves the abovementioned security properties.

As mentioned before, we realized that we could obtain better results by improving the
efficiency of WhoToo rather than adding meta-data hiding to SAE. Instead of modifying
SAE’s matching process, we introduced changes in WhoToo’s duplicate revision and matching
process. Therefore, the tools used to achieve these changed, but the main objective remains
the same.

1.4 Objectives

1.4.1 General objective

Design an efficient and secure (with provable security guarantees) protocol that receives and
records sexual assault accusations in a distributed manner and does not leak any information
about the accusations or the relations between them until the quorum is reached.

1.4.2 Specific objectives

1. Fix the gaps in the WhoToo protocol description.
2. Design an alternative to the WhoToo duplicate revision process that is more efficient

and preserves the protocol’s security properties.
3. Design an alternative to the WhoToo accusation matching process that is more efficient

and preserves the protocol’s security properties.
4. Prove that the modified protocol guarantees secrecy, anonymity, accountability and

4

MDH1.
5. Formally compare the efficiency of the protocol in a university context with previous

solutions.
6. Study and propose a threshold version of strongly robust IBE as a possible alternative

to the accusation matching process.
7. Study and evaluate under which conditions users would want to define a variable quo-

rum, this is, each user would define the quorum for their accusation.
8. Study and evaluate under which conditions users would want to define an expiring date

for their accusations.
9. Study and evaluate under which conditions users would want to categorize their ac-

cusations so that these are only revealed if the quorum is reached within a certain
category.

10. Study and evaluate which information should be public under which conditions. For
example: The total amount of accusations, the total amount in a specific department,
among others.

11. Study and evaluate the need for different matching factors, such as a physical descrip-
tion or partial information about the accused.

The original objectives were 4, 5, 7 and 8. Objectives 1-3, 6 and 9-11 were added during
the process of developing this thesis. The first four new objectives were a direct consequence
of the decision of improving WhoToo’s efficiency rather than adding MDH to SAE. The last
three objectives arose during conversations with experts and possible users of such a protocol.

Furthermore, the following specific objectives were included in the original proposal but
where not achieved, as they where replaced by the ones mentioned above.

1. Design an alternative to SAE’s matching process that achieves MDH.
This was replaced by objectives 1, 2 and 3.

2. Study and propose an extension to zero-knowledge sets or accumulators in a distributed
context as a possible solution by using tools from distributed zero-knowledge proofs.
This was replaced by objective 6. Following the previous change, the tools used to
achieve this also changed.

1.5 Methodology
In order to achieve these objectives, we followed these steps:

1. Bibliography revision: Study Multi Party Computation (MPC) tools, anonymous com-
munications, previous solutions to this problem, distributed input Pseudo-Random
Functions (PRFs) and strongly robust Identity Based Encryption (IBE).

2. Interview experts in sexual assault accusations and possible users of the protocol in
order to identify and define the protocol’s requirements (both functional and in terms
of efficiency).

1In the original proposal, we proposed proving these under the UC Security[20] model, however, we decided
to make the security analysis as a sequence of games because the original proof for the WhoToo protocol was
under this model.

5

3. Using the information from previous solutions together with everything learned in the
previous step, define the protocol’s characteristics, specifying which information can be
revealed under which circumstances. For example, if there are multiple accusations in
a specific department of the university, should this fact be revealed even if the quorum
has not been reached? Then, the security, privacy and efficiency properties the protocol
aims to achieve must be precised.

4. Identify inconsistencies and gaps in the WhoToo protocol description and fix them,
providing the necessary security proofs for the modified protocol.

5. Study and propose a distributed version of Strongly Robust IBE in order to replace
the accusation matching process of WhoToo with a more efficient alternative, while
preserving its security guarantees.

6. Prove that the new protocol achieves secrecy, anonymity, accountability and MDH.

7. Prove that the new protocol is more efficient than WhoToo.

8. Design and implement a functional prototype.

1.6 Contributions

This thesis presents the following results:

1. We identify an inconsistency in a key element of WhoToo used to evaluate whether
the quorum has been reached. A straightforward modification fixes the issue, yet it
requires a new security proof which we provide.

2. We identify another operation of WhoToo whose specification leaves an implementation
gap. In this case, the solution is not as simple, as a straightforward clarification would
compromise either the anonymity of the accuser or the anonymity of the accused.
Instead of concocting a local fix for the issue, we take a step back and re-examine the
particular phase where it arises. Our solution then solves this issue while carrying a
positive side effect: an improved efficiency.

3. Inspired by SAE [5], we propose an alternative to the duplicate revision process re-
quiring only a constant number of (interactive distributed) operations, by employing a
distributed input PRF (DIPRF) in a new way.

4. By relying on a different technique – a variant of strongly robust identity based en-
cryption (IBE) – we reduce the number of interactive distributed operations required
for the accusations matching process from O(N) to a constant number too. This tech-
nique has applications to other server-based privacy-preserving protocols and may be
of independent interest.

5. We interview experts and conduct focus groups with potential users, which leads to a
valuable discussion about the protocol’s requirements, which we present.

6. We provide security proofs for our modified protocol WhoToo+.

7. We design and implement a functional prototype.

6

1.7 Related Work
In this section we briefly describe three previous protocols that have been proposed as solu-
tions to the sexual assault reporting problem.

1.7.1 Callisto

The first protocol specifically designed for privacy-preserving sexual assault accusations was
Callisto [56]. Its design criteria was explicitly motivated by the fact that “those who experience
unwanted sexual contact may be more willing to report it if they know that others have spoken
up as well” [56] attempting to privately preserve the names of accusers and accused so they
can be compared with those of new reports. Using cryptographic tools, Callisto hides the
identity of the accuser and the accused until a second accusation is made against the same
perpetrator. Using an Oblivous Pseudo-Random Function, the protocol computes a pseudo-
random value from the accused person’s identifier, and then it stores the value in a database.
Finding reports against the same perpetrator simply amounts to searching for repeated values.
The accuser’s information is also encrypted with a key that is secret shared [59] so that it
can only be decrypted if there are at least 2 accusations against the same person.

Kuykendall, Krawczyk, and Rabin [43] described three attacks against Callisto, showing
that there is no binding between the accuser’s identity and the accusation, and that the
identities of neither the accusers and the accused are entirely protected.

Furthermore, the OPRF server learns the accuser’s identity, therefore, the security of the
protocol is completely compromised if that server is corrupted[5].

1.7.2 Who Too

Following Callisto’s principles, Kuykendall, Krawczyk and Rabin [43] propose WhoToo, a
distributed protocol that provides stronger binding between the accuser’s identity and their
accusation, based on stronger security definitions that protect the identities of the accusers
and accused. Furthermore, WhoToo works for any fixed quorum q, in contrast to Callisto
where the quorum was fixed to 2. Below, we present a brief summary of WhoToo. A more
complete picture is described in the next sections as WhoToo is indeed the base of our
proposed protocol.

The protocol relies on threshold cryptography, so t + 1 out of n servers need to agree
in order to reveal any information, for some fixed 1 ≤ t ≤ n. Accusations are stored in
privacy-preserving multisets, represented as (encrypted) polynomials whose roots are the
accused people’s identifiers. Therefore, in order to add an accusation, it suffices that the
servers multiply the existing set (polynomial) by (x−s), where s represents the perpetrator’s
identifier. Checking if the quorum has been reached is simply done by checking if the (q−1)th-
derivative of the polynomial evaluated at s is zero. Multiset confidentiality and robustness
follows from the servers computing over encrypted polynomials using verifiable secret sharing.

WhoToo seeks to protect all identities and avoid leaking information while at most t
servers are corrupt. The protocol relies on a clever combination of ElGamal encryption [29],
verifiable secret sharing [54] and group signatures [43] based on signatures of knowledge [17].

7

Despite the strong foundations of WhoToo, our analysis put forward some shortcomings
(which can be avoided, as explained in this work later). First, WhoToo includes two small
but potentially serious gaps between theory and implementation, which we deal with in Sect.
3. A more serious issue is WhoToo (in)efficiency under a backlog of N unopened accusations,
as the process of checking for duplicates and finding matching accusations once the quorum
has been reached becomes increasingly inefficient, requiring O(N) interactive distributed
operations.

1.7.3 Secure Allegations Escrow (SAE)

Secure Allegation Escrows (SAE) [5] is a distributed protocol for anonymous allegations
that is based in the same quorum principles as Callisto and WhoToo. It provides accusation
confidentiality, accuser anonymity, accountability and scalability as long as there is an honest
majority. Adding a new accusations requires O(1) distributed operations. Arun, Kate and
Garg [5] introduce a Distributed input Verifiable pseudo-Random Function (DVRF), which
is computed over a distributed input and key. They describe a bucketing algorithm for
accusation matching, where each server locally checks if there are enough repeated DVRF
values. Even though this achieves a matching algorithm that needs no distributed operations,
it comes at a price: servers get to know if there are repeated values before the quorum is
reached. This information leak could be used for potential attacks by a malicious user and
an honest but curious server. A corrupted user, for example, could make a false accusation
against a specific identifier and an honest but curious escrow server could recover the number
of accusations (with equal or lower quorum) made against that identifier.

1.8 Structure
The rest of this thesis is organized as follows. First, in Chapter 2, we present the crypto-
graphic tools needed to understand both the original WhoToo protocol [43] and our extension.
In Chapter 3 we present an introduction to the WhoToo protocol and an overview of WhoToo+.
Then, we identify and correct two operations that where left unclear in the WhoToo protocol,
adding a new security proof for the modified protocol. Afterwards, in Chapter 4, we present
the optimizations that WhoToo+ provides, introducing the new schemes and describing the
necessary modifications. In Chapter 5 we discuss variants and extensions that arise from the
interviews with experts and focus groups. In Chapter 6, we present the full description of
the WhoToo+protocol, followed by the security analysis. Finally, in Chapter 7 we describe the
prototype design and an analysis on the theoretical and experimental efficiency of WhoToo+.
Chapter 8 presents concluding remarks and future work.

Part of this work was published in the paper "Implementing Secure Reporting of Sexual
Misconduct - Revisiting WhoToo" in LATINCRYPT 2021 [37], including reduced contents
of Chapters 1, 2, 3, 4, 6, 7 and 8.

8

Chapter 2

Cryptographic Tools

In this chapter we present the main concepts and tools needed to understand the WhoToo+

protocol.

2.1 Preliminaries

This section presents some preliminaries needed to understand WhoToo and introduce WhoToo+.
Both protocols rely on a distributed authority (DA) formed by n servers. In order to compute
or reveal any private information, t+ 1 server must agree or cooperate.

2.1.1 Notation

In what follows, we write [n] to denote { 1, . . . , n } for n ∈ Z. If S is a set, x R← S denotes
picking x uniformly at random from the elements in S. If V is an algorithm, running V and
assigning its output to variable a is denoted by a← V . When describing distributed protocols
which share values among the players or servers, we use the notation {xi} or simply {x} to
denote that x is a shared value among servers and xi to denote the share of x corresponding
to the i-th server.

2.1.2 Probabilistic Polynomial Time (PPT) Algorithm

In this work, we say the adversary is a Probabilistic Polynomial Time (PPT) algorithm. This
means that we represent our adversary as probabilistic algorithm that runs in polynomial
time in the security parameter λ. This security parameter is chosen during initialization and
is known by the adversary [41].

We say an algorithm has oracle access if it can query an oracle, which is another machine
that provides only the result of the query and no additional information. Each query is
considered as one computational step [57].

9

2.1.3 Bilinear pairings

Let G1,G2,GT be groups for the operator ·. We say e : G1 ×G2 → GT is a bilinear pairing
if it satisfies the following:

1. e is bilinear, this is, e(g · g′, h) = e(g, h) · e(g′, h) and e(h, g · g′) = e(h, g) · e(h, g′).
2. e is non-degenerate, this is, ∃g1 ∈ G1, g2 ∈ G2 with g1 6= 1, g2 6= 1 where e(g1, g2) = 1

3. There exists a probabilistic polynomial time (PPT) algorithm to compute e.

Furthermore, we classify bilinear pairings in three types:

1. Type-1: G1 = G2

2. Type-2: G1 6= G2 and there is a known isomorphism ϕ : G1 → G2 that is efficiently
computable.

3. Type-3: G1 6= G2 and there is no known isomorphism ϕ : G1 → G2 that is efficiently
computable.

In what follows, let (G1,G2,GT , e, g1, g2) be a Type-3 bilinear pairing with prime order
p, where g1 and g2 are generators of G1 and G2 respectively. We suggest using the curves
BLS12-381 [18] or BN254 [8] following the original WhoToo protocol [43].

2.1.4 Computational Assumptions

The protocols presented in this work rely on a variety of standard Diffie-Hellman assumptions
which are described in this section.

Decisional Diffie-Hellman (DDH): Set a R← Zp and g, h, h′
R← G1. The distributions of

(g, h, ga, ha) and (g, h, ga, h′) are computationally indistinguishable for any PPT algorithm.

Strong computational Diffie-Hellman (sCDH): Set g, h R← G1 and a R← Zp. Given
ga, the probability of computing ha is negligible for any PPT oracle algorithm [1].

k-strong Diffie-Hellman (sDHk): Fix k ∈ Z. Set g2 ∈ G2, g1 ← ψ(g2) and γ ∈ Z∗p
where ψ is an isomorphism from G2 to G1. Given g1, g

γ
2 , ..., g

γk

2 , the probability of finding a
pair (x, g

1/(γ+x)
1) is negligible for any PPT oracle algorithm [16].

q-Decisional Bilinear Diffie Hellman Inversion (q−DBDHI) Set g1 ∈ G1, g2 ∈ G2

and x R← Z∗p. Given (g1, g
x
1 , ..., g

xq

1 , g2, g
x
2 , ..., g

xq

2), the probability of computing e(g1, g2)1/x is
negligible for any PPT algorithm [15].

Truncated decisional augmented bilinear Diffie-Hellman exponent (q-ABDHE)
over Type-3 Pairings: Set g1, g

′
1
R← G1 and g2, g

′
2
R← G2, α

R← Zp and Z
R← GT . The distri-

butions of (g′1, g
′
2, g
′αq+2

1 , g′α
q+2

2 , g1, g
α
1 , ..., g

αq

1 , g2, g
α
2 , ..., g

αq

2 , e(gα
q+1

1 , g′2)) and ((g′1, g
′
2, g
′αq+2

1 , g′α
q+2

2 ,
g1, g

α
1 , ..., g

αq

1 , g2, g
α
2 , ..., g

αq

2 , Z) are are computationally indistinguishable for any PPT algo-
rithm [53].

10

The original WhoToo protocol is defined over Type-2 Pairings. In order to guarantee that
the security properties hold with Type-3 pairings, we assume adversaries with oracle access
to ϕ : G1 ×G2 → GT such that ϕ(g1) = g2 still have negligible advantage [43].

2.1.5 Communication channels

For this protocol, we require three characterizations for communication channels. Note that
these characterizations are not exclusive.

Lets say a channel allows communication from sender A to receiver B.

1. Authenticated channel: The input of this channel can only be accessed by a specific
sender A, which is known by the receiver B [49]. The adversary can only read, forward
or delete messages from A [25].

2. Confidential channel : The output of this channel can only be accessed by a specific
receiver B, which is known by the sender A [49]. The adversary only learns the length
of the messages and can inject new messages [25].

3. Anonymous channel : Formal definitions for different types of anonymous channels can
be found in the work by Hevia and Miccciancio [38]. For this protocol, we need Strong
Sender Anonymity, where the identity of the sender is protected and all information
about the number and value of the sent messages is hidden. The only information
leaked to the adversary is the number of messages received by B.

2.1.6 Security Requirements and Threat Model

Security requirements: As mentioned in the previous chapter, WhoToo+guarantees se-
crecy, anonymity, accountability and meta-data hiding.

Network model: Assume all communication between servers and users during initializa-
tion occurs over an authenticated and confidential channel. This guarantees that users are
given their corresponding keys and MACs, but they are hidden from everyone else. Accusa-
tions are submitted over an anonymous and confidential channel, ensuring that the accuser’s
identity is protected and that only each corresponding server sees their share of the accusa-
tion.

Adversary: The adversary is a PPT algorithm, with respect to a chosen security parameter
λ. It is interested in revealing the identities of the accusers or the accused, as well as leaking
information about matching accusations, before the quorum is reached. It can control any
number of users and at most t out of n servers. Assume a static model in which the corrupted
users and servers are chosen and fixed before initialization.

Excluded attacks: Protecting against false allegations is outside the scope of this proto-
col. Nevertheless, the accountability property of WhoToo+ helps to discourage this behavior.
Furthermore, studies have shown that false sexual assault allegations are extremely rare [52].

11

2.2 Building Blocks
This section describes the components used in the WhoToo+ construction. We follow the
original WhoToo presentation.

2.2.1 Pseudo-Random Functions:

A pseudo-random function (PRF) is a deterministic function which, given a key sk and input
x, returns a value that is indistinguishable from a random value for anyone who does not
know the secret key sk [41].

We provide the formal definition exactly as presented by Katz and Lindell [41].

Definition 1 (Pseudo-Random Function) Let F : {0, 1}∗×{0, 1}∗ → {0, 1}∗ be an efficient,
length-preserving, keyed function. F is a pseudo-random function if for all probabilistic
polynomial-time distinguishers D, there is a negligible function negl such that:

|Pr
[
DFk(·)(1n) = 1

]
− Pr

[
Df(·)(1n) = 1

]
≤ negl(n),

where the first probability is taken over uniform choice of k ∈ {0, 1}n and the randomness of
D, and the second probability is taken over uniform choice of f ∈ Funcn and the randomness
of D.

2.2.2 Hash Function

A hash function H : A → B is a function that compresses its input to a fixed length |B|.
We say a hash function is secure if it is collision resistant, this is, if the probability of finding
two distinct inputs with the same output is negligible [41].

We now present the formal definitions of hash functions, the collision finding experiment
and collision resistant hash functions exactly as presented in [41].

Definition 2 (Hash Function) A hash function (with output length `) is a pair of proba-
bilistic polynomial-time algorithms (Gen,H) satisfying the following:

• Gen is a probabilistic algorithm which takes as input a security parameter 1n and
outputs a key s. We assume that 1n is implicit in s.

• H takes as input a key s and a string x ∈ {0, 1}∗ and outputs a string Hs(x) ∈ {0, 1}`(n)

(where n is the value of the security parameter implicit in s).

Definition 3 (The collision finding experiment Hash-collA,Π(n))

1. A key s is generated by running Gen(1n).
2. The adversary A is given s and outputs x, x′ ∈ {0, 1}`(n).
3. The output of the experiment is defined to be 1 if and only if x 6= x′ andHs(x) = Hs(x′).

In such case we sat that A has found a collision.

12

Definition 4 (Collision Resistant Hash Function) A hash function Π = (Gen,H) is collision
resistant if for all probabilistic polynomial-time adversaries A there is a negligible function
negl such that:

|Pr [Hash-collA,Π(n) = 1] ≤ negl(n).

We will regularly use hash functions with codomain B = Zp. In this work, we treat all
hash functions as random oracles (as a black box that outputs uniformly random values in
B) for the security proofs.

2.2.3 Message Authentication Code (MAC)

A MAC is a code t that is sent together with a message m so that the receiver can verify
that m was not modified in transit. If A wants to send m to B, they share a key k and A
computes a tag t← MACk(m) and sends (m, t). When B receives (m, t) it can use the key
k to verify that t is a valid tag. This is done with a verification algorithm that receives k
and t and outputs a boolean indicating if the tag was correctly verified or not [41].

We present formal definitions based on [11] and [41].

Definition 5 (MAC) A MAC is a pair of polynomial algorithms (Gen, Tag, V er) satisfying
the following:

• Gen is a probabilistic algorithm which takes as input a security parameter 1n and
outputs a key k with |k| ≥ n

• Tag can be either a probabilistic or deterministic algorithm. It takes as input a key k
and a string m ∈ {0, 1}∗ and produces a tag t← Tagk(m).

• V er is a deterministic algorithm that takes as input a key k, string m ∈ {0, 1}∗ and
tag t ∈ {0, 1}∗ and outputs 1 if and only if Tagk(m) = t

The following experiment captures the property of strong unforegability under chosen
message attack, which guarantees that an adversary has negligible probability of generating
a valid tag t for a message m without knowing the key k.

Definition 6 (Strong Unforgeability under Chosen Message Attack Experiment SUF-CMAA,MAC)
Consider a MAC = (Gen, Tag, V er), adversary A, and value n for the security parameter.

1. A key k is generated by running Gen(1n).
2. The adversary A is given input 1n and oracle access to Tagk(·) and V erk(·, ·).
3. The output of the experiment is defined to be 1 if and only if A made V erk query (m, t)

such that the oracle returned 1 and A did not make the query m to the Tagk oracle.

Definition 7 (SUF-CMA Secure MAC) A MAC = (Tag, V er) is SUF-CMA secure if for
all probabilistic polynomial-time adversaries A there is a neglegible function negl such that:

Pr [SUF-CMAA,MAC = 1] ≤ negl(n).

13

2.2.4 ElGamal Encryption

ElGamal encryption is a public key encryption scheme [29]. This means there is a public
key pk = (g, h) that can be used to encrypt any message and a secret key sk = x needed
to decrypt. This scheme is multiplicatively homomorphic, meaning that the product of two
ciphertexts is the encryption of the product of the corresponding plaintexts.

WhoToo and WhoToo+ use three variants of ElGamal encryption. The first one is the
(standard) multiplicatively homomorphic ElGamal, which allows encryption of group ele-
ments, using the following primitives:

ElGamal.Setup: Choose x R← Zp and h
R← G1, and set g ← h1/x. Output sk ← x and

pk ← (g, h).

ElGamal.Enc(pk,m): Choose a R← Zp and output (c1, c2)← (ga, ham).

ElGamal.Dec(sk, (c1, c2)): Output c2/c
x
1 .

The second one is an extension of ElGamal to encrypt strings [1] which uses a symmet-
ric key authenticated encryption scheme1 (AuthEnc,AuthDec) with keyspace K and a hash
function HK with codomain K:

ElGamal.EncString(pk,m): Choose a
R← Zp and output (c1, c2) ← (ga,

AuthEnc(HK(ha),m)).

ElGamal.DecString(sk, (c1, c2)): Output AuthDec(HK(cx1), c2).

Finally, in our setting, the secret key sk = {x} for the ElGamal scheme must be secret
shared (we explain what this means in the following section) among the servers, so we use a
variant that adds distributed decryption to the previous ElGamal extension:

ElGamal.DistDec(c1, c2, {x}): Compute d ← SecShare.Exp(c1, {x}) and output c2/d. Here
SecShare.Exp is the distributed exponentiation protocol described later in the following sec-
tions.

ElGamal.DistDecString(c1, c2, {x}): Compute d ← SecShare.Exp(c1, {x}) and output
AuthDec(H(d), c2).

In order to understand the security achieved by these schemes, we introduce definitions for
indistinguishability under chosen plaintext attack (IND-CPA) and indistinguishability under
chosen ciphertext attack (IND-CCA), as presented in [41] verbatim.

Definition 8 (CPA Indistinguishability Experiment IND-CPAA,Π) Consider an encryption
scheme Gen,Enc,Dec, adversary A, and value n for the security parameter.

1A symmetric key encryption scheme relies on a unique key k shared by the sender and reciever which
is used to encypt and decrypt. An authenticated encryption scheme guarantees authenticity (the message
actually comes from the sender) and integrity (the message was not modified during transit).

14

1. A key k is generated by running Gen(1n).
2. The adversary A is given input 1n and oracle access to Enck(·), and outputs a pair of

messages m0,m1 of the same length.
3. A uniform bit b ∈ {0, 1} is chosen, and then a ciphertext c ← Enck(mb) is computed

and given to A.
4. The adversary A continues to have oracle access to Enck(·), and outputs b′.
5. The output of the experiment is defined to be 1 if b = b′ and 0 otherwise.

Definition 9 (IND-CPA Secure Scheme) An encryption scheme Π = (Gen,Enc,Dec) is
IND-CPA secure if for all probabilistic polynomial-time adversaries A the is a negligible
function negl such that:

Pr [IND-CPAA,Π = 1] ≤ 1

2
+ negl(n),

where the probability is taken over the randomness used by A, as well as the randomness
used in the experiment.

Definition 10 (CCA Indistinguishability Experiment IND-CCAA,Π) Consider an encryption
scheme Gen,Enc,Dec, adversary A, and value n for the security parameter.

1. A key k is generated by running Gen(1n).
2. The adversary A is given input 1n and oracle access to Enck(·) and Deck(·). It outputs

a pair of messages m0,m1 of the same length.
3. A uniform bit b ∈ {0, 1} is chosen, and then a ciphertext c ← Enck(mb) is computed

and given to A. We call c the challenge ciphertext.
4. The adversary A continues to have oracle access to Enck(·) and Deck(·), but is not

allowed to query the latter on the challenge ciphertext itself. Eventually, A outputs a
bit b′.

5. The output of the experiment is defined to be 1 if b = b′ and 0 otherwise.

Definition 11 (IND-CCA Secure Scheme) An encryption scheme Π = (Gen,Enc,Dec) is
IND-CCA secure if for all probabilistic polynomial-time adversaries A the is a negligible
function negl such that:

Pr [IND-CCAA,Π = 1] ≤ 1

2
+ negl(n),

where the probability is taken over the randomness used by A, as well as the randomness
used in the experiment.

Intuitively, IND-CPA means that it is very difficult to determine if a ciphertext c∗ is an
encryption of m0 or m1. IND-CCA is a stronger guarantee as the adversary is also given

15

access to a decryption oracle, which means it can decrypt any c 6= c∗ in order to determine
which plaintext is encoded in c∗.

The first and third ElGamal variants are CPA-secure under the Decisional Diffie-Hellman
assumption. The extension to strings is CCA-secure under the strong computational Diffie-
Hellman assumption if HK is a random oracle [1].

2.2.5 Zero-knowledge proofs

A zero-knowledge proof is a way to prove a statement without revealing any additional
information [47]. We say a prover P wants to prove to a verifier V that statement x is true.
In order to convince V , P must prove that it knows the witness w to the statement x, namely,
it must output w such that (x,w) ∈ R. Formally, we define a knowledge extractor K and say
that “a prover P ∗ knows the witness to a statement x if KP ∗(·)(x) outputs w s.t (x,w) ∈ R
whenever P ∗ convinces V of x” [45].

Zero knowledge proofs guarantee completeness, knowledge soundness and
zero-knowledge(ness). Completeness guarantees that an honest prover will always be able to
produce a proof that is accepted by an honest verifier. Knowledge soundness means that any
adversary has negligible probability of producing a valid proof for a false statement, namely,
it guarantees that the prover knows the witness. The following is the formal definition of
knowledge soundness by Lindell [45] verbatim.

Definition 12 (Knowledge Soundness) A proof system has knowledge soundness with error
κ if there exists a PPT K s.t for every prover P ∗, if P ∗ convinces V of x with probability
ε > κ, then KP ∗(·)(x) outputs w s.t (x,w) ∈ R with probability at least ε(|x|)− κ(|x|).

Therefore, if a protocol has knowledge soundness, we can always extract the witness of a
valid proof.

Finally, zero-knowledge ensures that the verifier does not learn anything other than
whether the proof is accepted or not [6, 45]. Zero-knowledge guarantees that there exists
a simulator S that can produce proofs for true statements without knowing the witness, such
that the view is indistinguishable from the real protocol [36].

In this protocol, we will use zero-knowledge proofs to prove that c is an ElGamal encryption
of plaintext m with randomness a, without revealing anything about m or a.

We require proofs of plaintext knowledge to detect when users submit malformed accu-
sations [43]. These proofs are standard, based on the Schnorr’s protocol [58], applying the
Fiat-Shamir heuristic [31] to make it non-interactive.

ElGamal.Prove(c, a, ρ): Given c, en ElGamal encryption of m with randomness a, output
π, a non interactive proof of knowledge of m. Here ρ is the value used to derive the random
oracle challenge.

ElGamal.Verify(pk, π, c, ρ): Check if π is a valid zero-knowledge proof for the plaintext

16

encoded in c.

In this case, the witness is the plaintext m encoded in c.

2.2.6 Threshold Operations

Threshold operations are those which are computed by a group of n servers and require at
least t+1 servers to agree or cooperate. Both WhoToo and WhoToo+ strongly rely on threshold
cryptography, and in particular, on the following threshold operations. They require a group
G with generators g and h. In WhoToo+, G = G1 and g = g1 unless stated otherwise.

Verifiable Secret Sharing (VSS): All threshold operations are based on VSS which
requires Shamir Secret Sharing [59]. In Shamir’s protocol, in order to share a value x ∈ Zp,
a random polynomial P of degree t ≤ n is chosen such that P (0) = x, and then shares
xi = P (i) are sent to the i-th server. This way, a collusion of t or less servers cannot recover
x, but any greater number of servers can recover the secret by pooling their information.
Recovery is done simply by publishing the xi’s and using Lagrange interpolation. Pedersen
VSS [54] introduced share verification by asking the party that wants to share x to compute
both the sharing of x and the sharing of a random value r ∈ Zp. At the same time, it must
compute verification values vi ← gaihbi , for i = 0, ..., t, where ai and bi are the coefficients of
the polynomials used for secret sharing x and r respectively. Observe that x = a0 and r = b0.
When each server DAi receives its shares, it verifies them by checking if gxihri =

∏t
j=0 v

ij

j

were xi and ri are the shares of DAi for x and r respectively. We use the convention that if
the operation outputs shares, they are output locally to the servers themselves (each server
obtaining their own single share), as opposed to the case it outputs values, which are publicly
revealed. This functionality is captured in the following three operations:

SecShare.Encode(x): output2 {ω} = ({x}, {r}), v, e0 and r, where r is the random value
used for Pedersen VSS, v are the Pedersen verification values and e0 ← gr.

SecShare.Verify(wi, v): Compute Pedersen verification, as described above. Output False
if verification fails and True otherwise [24].

SecShare.Reconstruct({x}): Reconstruct the secret x from its shares.

Many other operations can be build on top of Pedersen VSS such as reconstructing gx
without reconstructing x, or operating on the shares to compute shares for a given function
of x.

We use several of them, enumerated below:

SecShare.Encode(x): output {ω} = ({x}, {r}), v, e0 and r, where r is the random value
used for Pedersen VSS, v are the Pedersen verification values and e0 ← gr.

SecShare.Verify(wi, v): Compute Pedersen verification, as described above. Output false if
verification fails and true otherwise [24].

2For this work, we slightly modify the semantics for the function SecShare.Encode(x) so all shares {w} are
received by the party who invokes the function.

17

SecShare.Reconstruct({x}): Reconstruct the secret x from its shares.

SecShare.Verify(wi, v): Compute Pedersen verification, as described above. Output False
if verification fails and True otherwise [24].

SecShare.Reconstruct({x}): Reconstruct the secret x from its shares.

SecShare.Gen(): Generates a shared secret {x} in a distributed manner so x ∈R Zp is
unknown to t servers or less [33].

SecShare.Add({x}, {y}): Output {z} where z = x+ y.

SecShare.Mult({x}, {y}): Output {z} where z = x · y [13, 34].

SecShare.Invert({x}): Outputs {x−1} [7].

SecShare.Exp(b,{x}): Reconstruct bx from the shares {x} directly by releasing bxi and
performing interpolation on the exponent, namely computing bx =

∏
(bxi)λi , for Lagrange

coefficients λi [43].

SecShare.ExpLocal(b, {x}, U): Output the pair (bxi , πi) privately to user U , where πi and
a zero-knowledge proof of equality of discrete logarithm for bxi and gxi . This operation is
called PublicExponenciate in [5].

SecShare.CheckConsistent({ω}, e0): Extract ({s}, {r}) ← {ω} and output True if e0 =
SecShare.Exp(g, {r}) and False otherwise [43].

For conciseness’ sake, we sometimes use a simpler notation, where secret share addition,
multiplication, share inversion, and exponentiation are written in infix notation. For example,
given shares {x} and {y}, their addition is denoted by {x} + {y}, their multiplication by
{x} · {y}, inverting {x} by {x}−1, and exponentiation of b ∈ G by b{x}. By {x} R← G we will
also denote running SecShare.Gen(), and share reconstruction by x← {x}.

The following operations can be easily implemented from the previous operations, but we
name them to make the presentation easier:

SecShare.Gen(g): Given a generator g of G, generates a shared secret {x} in a distributed
manner for x ∈R Zp, and outputs a public value gx ∈ G [33].

SecShare.GenInv(g): Given a generator g of G, generate a random shared secret {x} in a
distributed manner and output a public value g1/x [32]. This is equivalent to computing g{y}

where {x} R← G, {y} ← {x}−1.

SecShare.ExpRR((e0, e1), {x}): Given (e0, e1) an ElGamal encryption of gm, output an
encryption of gmx [43].

SecShare.MultExp(b1, b2, {x}, {y}): Reconstructs bx1 · b
y
2 without exposing bx1 nor by2. The

procedure is new, needed for WhoToo+. It is described in Figure 2.1. We use the simpler
notation {z} ← b

{x}
1 · b{y}2 .

18

SecShare.MultExp(b1, b2, {α}, {β}):
1. {t} ← Zp
2. {t−1} ← {t}−1

3. {α′} ← {α} · {t}
4. {β′} ← {β} · {t}

5. bα
′

1 ← b
{α′}
1

6. bβ
′

2 ← b
{β′}
2

7. bα1 b
β
2 ← (bα

′
1 bβ

′

2){t
−1}

8. Output bα1 b
β
2

Figure 2.1: Multiplication with shared exponents

All of these operations are secure multiparty computations and therefore the view of the
honest servers can be computationally simulated using only public outputs (the verification
values), a fact we use in the security proofs. Indeed, with the exception of SecShare.ExpLocal,
the operations that a shared value {x} and produce (the shares of) a new shared value
{y} (e.g. {y−1} = SecShare.Invert({x})) mentioned above, they also publicly output new
verification values. To keep things simple, we do not include these values in the notation.
These operations also provide correctness, meaning that the reconstruction does actually
recover the secret shared value.

2.2.7 Distributed Group Signatures

A signature scheme allows a party A to sign a message with their secret key sk, so that
anyone who knows A’s public key pk can verify the signature. A group signature scheme
allows any member of set of participants to sign a message on behalf of a group without
disclosing their identity unless a special participant, the group manager, wishes to trace and
expose the signer. In [43] building on [14], Kuykendall et al. present a distributed variant
of the Boneh, Boyen, Shacham group signature [17] where the manager is distributed among
the servers. This scheme is used to validate an accuser’s identity and reveal it once their
accusation has reached the quorum. BBS signatures provide a signature of knowledge of
a private key α together with an ElGamal Encryption of R. To prevent disclosure of the
identity of the signer, the private key to decrypt the second value is distributed among the
servers.

The distributed operations we need for both WhoToo and WhoToo+ are the following:

DistBBS.Setup(g1, g2): The servers compute secret keys {x} and {γ}, h ← gx, w ← gγ2 ,
and publish public keys pkeg ← (g1, h, w).

DistBBS.UserKeyIssueU({γ}): The servers compute the private key {α} for user U and
send them their shares so that U can reconstruct α. They also compute the public key
R← g

1/(α+γ)
1 .

BBS.Sign(pk, skU ,m): Compute cR ← ElGamal.Enc(pkeg,R) and σ, the signature of
knowledge of skU . Output (cr, σ).

BBS.Verify(pk,m, c, σ): Verify that σ is a valid signature of knowledge.

19

DistBBS.Trace(cR, {x}): Output ElGamal.DistDec(cR, {x}).

The implementation of these functions is detailed in the WhoToo paper [43].

Under the security notions defined by Bellare, Micciancio andWarinschi [10], this scheme is
correct, fully anonymous and fully traceable under the k-strong Diffie Hellman assumption in
G1, as long as the secret sharing operations are secure. Correctness guarantees that a correct
signature by an honest user is accepted and the signer is correctly identified. Anonymity
ensures that an adversary has negligible probability of distinguishing between the signatures
of two different parties (before tracing them). Finally, traceability means that an adversary
has negligible probability of producing either a valid signature whose origin can not be
identified by an honest opener, or a signature whose origin can be identified yet can not be
validated [12].

2.2.8 Privacy-Preserving Multisets

One of the innovative aspects of WhoToo was the efficient use of new privacy-preserving data
structures. One of them is the multisets proposed by Kissner and Song [42], constructed
from encoded polynomials. In this solution, sets are represented by a polynomial F (x) and
elements in multisets are represented as the roots of F (x). Adding a new element s then
is simply multiplying F (x) by (x − s), and checking if the quorum has been reached after
adding a value s is done by calculating F (q)(x), the (q−1)th-derivate of F (x), and verifying if
F (q)(s) = 0. We follow the description and notation from [43], and use eF = (eF0 , eF1 , ..., eFd

)
to represent the encoded coefficients of polynomial F (x) = F0 +F1x+ ...+Fdx

d, where eFi
is

an ElGamal encryption of gFi . Thus, given an ElGamal encryption scheme, any polynomial
F can be represented by an encoded polynomial eF .

Next, we describe the supported operations for polynomials we require, following [43].

PrivatePoly.Subtract(eF , eG): Output eH where H = F −G.

Private.Poly.Differentiate(eF , n): Output eG where G is the nth-derivate of F .

PrivatePoly.Multiply(eF , R): Given an encoded polynomial F and a polynomial R in the
clear, output eG where G = F ·R.

PrivatePoly.MultiplyLinear(eF , {s}): Output eG where G = F · (x− s).

PrivatePoly.ZeroTest(eF , {s}): Output true if F (s) = 0, false otherwise.

For a detailed description of these operations, see [43]. Using these operations over poly-
nomials, Kuykendall et al. define the following privacy-preserving multiset operations:

Set.Init(): Output eg0 . This creates the set.

Set.Add(eF , {s}): Output PrivatePoly.MultiplyLinear(eF , s). Adding a value s to F is simply
multiply F by (x− s).

Set.Quorum(eF , {s}): Output true if (x− s)q divides F and false otherwise. Value q is the

20

pre-specified quorum for the protocol.

In terms of security notions, we say the data structure is correct if all operations over
the multiset (additions, and evaluating if any element has multiplicity q) properly correlates
to the above operations over the polynomials. Also, the structure achieves (computational)
hiding if any PPT adversary with limited interaction with the data structure (A gets to
choose some elements to add, sees some of the other additions but does not get to see all
added elements) does not obtain any information other than the size of the set and what it can
infer from the multiplicity tests (see the work by Kissner and Song [42] for formal definitions).
The WhoToo protocol [43] required that these operations achieve perfect completeness and
computational hiding of the elements of the set. The only information revealed should be
the size of the set, e.g, the degree of the polynomial.

21

Chapter 3

A First Review of WhoToo

In this chapter we present overviews of both the original WhoToo protocol and our new
WhoToo+protocol. We provide high level descriptions of each of its components, emphasizing
the differences between them (Section 3.1). Then, we identify and fix two gaps found in the
original protocol (Section 3.2).

3.1 Protocol Overviews

3.1.1 WhoToo: An Introduction

This section provides an informal description of the WhoToo Protocol [43]. At a high level,
each accuser can submit an accusation against a certain person and the identities of the
accuser and the accused remain hidden until the quorum is reached, namely, until a pre-
specified number of accusers file accusations against the same person.

Participating parties: The protocol strongly relies on threshold cryptography, where in
order to compute or reveal any information that could reveal private values, t + 1 of the n
servers need to agree or cooperate. This group of servers is called the Distributed Authority
(DA). The cooperation guarantees that as long as no more than t servers are corrupted, all
operations are performed correctly and no server learns private values.

Accusers can be any user U of the system which are identified with a public key R com-
puted by the DA during registration. The identity of the accused is represented by an
arbitrary string D: a name, e-mail or any unique identifier. For simplicity, we assume this
value is unique but in practice the accuser can file different accusations for every identity
under which the accused is known [43].

Registration: WhoToo assumes there exists an external registration authority which ver-
ifies the identities of the potential accusers. All registered users are valid accusers. We
envision the system used in a community where all members may submit accusations.

For every user U in this list, the DA computes a public key R and registers that the key

22

R corresponds to user U . It also computes a private key α which is only obtained by U .

Submitting accusations: In order to submit an accusation against D from a user with
identifier R, the user needs to provide encodings cD and cR of these values. These values are
intrinsically linked to D and R respectively, yet reveal no useful information about D and R
unless t+1 DA servers cooperate. Moreover, the DA needs to be able to make computations
on the encoded values in order to know if there are a certain number of accusations against
the same D without revealing anything about D.

To achieve this, two main tools are used. First, using verifiable secret sharing [54], the
user distributes shares of D to every server so if t + 1 or more of them cooperate they can
recover the secret, yet t or less servers learn nothing about it. A linear secret sharing scheme
allows efficient computation of some operations from the shared values without revealing D.
Additionally, R and D are encoded using a threshold public key encryption scheme. Any
user can encrypt using the public key while cooperation is needed in order to recover the
plaintext as the secret key is distributed among the DA servers. Both of these schemes
preserve anonymity of the accuser and the accused as long as at most t servers are corrupted.

Finally, the user also signs these encodings with their private key α, guaranteeing account-
ability. It also provides zero-knowledge proofs for the encoded values so that the DA can
verify that there are no malformed accusations while preserving anonymity.

Discarding malformed and duplicated accusations: Once the DA receives an ac-
cusation from a user, it verifies the signature and zero-knowledge proofs, and discards any
malformed accusations. Then, it must verify that it is not a duplicated accusation, namely,
that there is not already an accusation from the same R to the same D in the system. This
is non-trivial as the check must not reveal anything about R or D other than if both are
equal to a previous accusation. In order to do this, WhoToo introduces a distributed equality
testing described in Section 3.2.2 that verifies if two ciphertexts encode the same plaintext.
They use this to compare the new accusation to every other cR and cD in the system.

Finding matching accusations: Accusations are stored in privacy-preserving multisets,
represented as polynomials where the roots are the accused people’s identifiers. In order
to add an accusation, the servers multiply the existing set by (x − D) and checking if the
quorum has been reached is done by verifying if the (q − 1)th-derivative of the polynomial
evaluated at D is zero.

The polynomial coefficients are encrypted using threshold public key encryption that is
multiplicatively homomorphic. This allows to efficiently implement the required set opera-
tions (adding a new element and checking if the quorum has been reached) described above.
The DA servers use their shares of D to multiply the existing encoded polynomial by (x−D)
when adding a new accusation.

Once the quorum is reached, theDA needs to identify the individual matching accusations.
WhoToo uses the same equality testing used to discard duplicated accusations to compare
cD of the last submitted accusation to every other accusation in the system.

23

Once the matching accusations and its respective accusers are identified, this information
is given to the corresponding authority. The way in which this information is used is beyond
the scope of this protocol.

3.1.2 WhoToo+ Overview

In WhoToo+, we provide additional steps during registration and accusation submission, which
together with significant changes during the verification, duplicate revision and finding match-
ing accusations phases, allow us to correct some inconsistencies found in WhoToo and to im-
prove efficiency. Consequently, WhoToo+ achieves scalability, making it practical for real world
implementation, even under a significant backlog of unopened accusations. An overview of
these changes is next.

Registration: The DA servers calculate k tokens for each valid user R using a distributed
message authentication scheme (MAC), and privately send the shares to each user who re-
constructs the tokens. No one else learns the value of these tokens.

Submitting accusations: The user also provides a sharing of the secret R. The user must
submit one of the tokens from the registration which the DA uses to validate the correctness
of the sharing.

Discarding malformed and duplicated accusations: In order to check for dupli-
cated accusations, instead of using the distributed equality testing proposed in WhoToo, we
use the additively preserving structure of the secret sharing scheme to produce a combined
distributed input x = f(R,D) with an injective f . The DA computes a distributed input
PRF on input x which then each server locally compares with previous submissions to detect
duplicates.

Finding matching accusations: During this phase, we also propose an alternative to
the equality testing used in the original protocol.

Using a threshold variant of Robust Anonymous IBE, the DAs can distributively compute
a valid encoding for a specific identity D starting from only the shares of D.

When an accusation is received, the DA servers use their shares of D to compute an
encoding ρD, without learning anything about D. Once the quorum is reached and D is
revealed, the servers compute and publish skD. Each server can attempt to decrypt ρD′
using skD for every other accusation (other than the one which triggered the quorum being
reached); if successful, then it is a matching accusation. Since the IBE scheme is strongly
robust (meaning ciphertexts do not reveal the intended recipient even when valid secret keys
of different recipients are known), the privacy of not matching accusations is preserved.

24

3.2 Two Issues in WhoToo

In this section, we discuss two key aspects of the WhoToo protocol that (we believe) require
some clarifications before a secure and working version of the protocol can be properly im-
plemented. Although they are arguably small, finding a secure working solution seems to
require, in one case, revisiting the security proof of a key component of the protocol and,
in the other case, coming up with a secure yet not obvious subprotocol to compare four
encrypted values in a pairwise fashion.

3.2.1 Securely Evaluating Quorum in WhoToo

There is an inconsistency between functions PrivatePoly.Multiply and Set.Quorum as stated in
the published version of [43]. The first function takes two arguments: an encoded polynomial
eF and a polynomial R in the clear. Yet, in the WhoToo paper [43, Fig. 5], Set.Quorum in-
vokes PrivatePoly.Multiply with two encoded polynomials. (The syntax is consistent with this
interpretation as SecShare.Gen returns an encoding of the shared value when implementing
with Pedersen VSS, as suggested in the paper.)

Of course, at first glance, the most reasonable explanation is a typo. Indeed, it seems we
may simply take R (the second and random polynomial) in the clear. This solution, however,
requires revisiting Lemma 6.5 [43, page 423] because this version of the Set.Quorum protocol
does not hide all information on the set. We notice that since R is “in the clear”, taking the
derivative of the encoding of (F · R)′ and then evaluating it on s (say obtaining a value s∗)
reveals some information, as that last value only depends on (the actual, non-encoded) F and
publicly known polynomial R. Moreover, we found a successful attack by a corrupted user
and an honest but curious server. Consider the WhoToo protocol with quorum 2. Observe
the moment when there is only one accusation in the system against s1. Consider a corrupted
user who makes 2 accusations against s2 and s3 and an honest but curious server who will
learn the answers of Set.Quorum. Then F (x) = (x − s1)(x − s2)(x − s3). When running
Set.Quorum, the servers will choose a random polynomial R(x) = ax3 + bx3 + cx + d and
compute (F ·R)′′(s3). Let (F ·R)′′(s3) = s∗, then we can isolate s1 obtaining

s1 = s∗ − s∗ − 2(s3 − s2)(as3
3 + bs2

3 + cs3 + d)

2(s3 − s2)(3as2
3 + 2bs3 + c) + 2(as3

3 + bs2
3 + cs3 + d)

Because all coefficients a, b, c are known, if the corrupted user and honest but curious server
cooperate, they can use the values of s2, s3 and s∗ to learn the value of s1.

To prevent this attack, we decided to put forward a simple but robust modification of
PrivatePoly.ZeroTest so value s∗ is randomized if not null before being publicly exposed.

This randomization is done using protocol MsgRand [43], described in Figure 3.1. Figure
3.2 shows the algorithm modified accordingly, with changes shown in blue.

Lemma 3.2.1 The modified PrivatePoly.ZeroTest does not reveal more information other
than if the shared value s is a root of the encrypted polynomial eF .

25

MsgRand(c = (c1, c2)):
1. Each DAi does the following:

(a) ri ←R Zp
(b) ai ← (c

ri
1 , c

ri
2)

(c) πi ← Provec1,c2 (ai, ri)

(d) Publish ai, πi
2. For each DAj , each DAi does the following:

(a) if not Verifyc1,c2 (πj , a
j): aj ← (1, 1)

3. c′ ← (
∏n

i=1 a
i
1,
∏n

i=1 a
i
2)

4. output m′ ← ElGamal.DistDec(c′)

Provec1,c2 (a = (a1, a2), r):
1. k ∈R Zp
2. bi ← cki
3. α← H(a1, a2, b1, b2, c1, c2)

4. β ← αk + r

5. output π ← (β, b1, b2)
Verifyc1,c2 (πi, a

i):
1. (β, b1, b2)← πi

2. α← H(a1, a2, b1, b2, c1, c2)

3. output cβi = aib
α
i

Figure 3.1: Randomized Decryption

Set.Quorum(eF , {s}):
Distributively generate q random
values:

1. for i ∈ [q]

(a) {Ri}
R← Zp

(b) Ri ← {Ri}
2. R← (R0, ..., Rq−1)

Multiply by R, Differentiate q − 1
times and Test if (F ·R)(s) = 0:

3. eG ← PrivatePoly.Multiply(eF , R)
4. eH ← PrivatePoly.Differentiate(eG, q − 1)
5. output PrivatePoly.ZeroTest(eH , {s})

PrivatePoly.ZeroTest(eF , {s}):
1. {r1}

R← Zp
2. {t} ← {r1}−1

3. for i ∈ [2, ..., d]

(a) {ri} ← {ri−1} · {r1}
4. {x} ← {t} · {s}
5. x← {x}
6. cy ← eF0

7. for i ∈ [1, ..., d]

(a) {si} ← xi · {ri}

(b) cyi ← e
{si}
Fi

(c) cy ← cycyi

8. output MsgRand(cy) = g0

Figure 3.2: Modification in Set.Quorum and PrivatePoly.ZeroTest for consistency with Pri-
vatePoly.Multiply. d stands for the degree of the polynomial. Operations involving shares
use arguments with braces (eg. {x}) as described in Sect. 2.2.6.

Proof. (sketch) Consider the protocol PrivatePoly.ZeroTest from Fig. 3.2 and the correspond-
ing ideal functionality FFZeroTest in Fig. 3.3. We argue that the view of the adversary can be
simulated. This is easy for lines 1-4, as they only output random values or shares of random
values. Due to the secrecy property of secret sharing, all SecShare.Operations can be simu-
lated. Even the reconstructed values can be simulated, as they follow a uniform distribution,
independent from the previous values. In fact, it suffices to notice that the result of the dis-
tributed decryption in MsgRand can be adjusted by the simulator depending on the output
from FZeroT est, given the honest majority for the servers.

Lemma 3.2.2 The modified Set.Quorum hides all elements of the set, revealing only its size
and whether or not the multiplicity of a shared value s is above of a fixed threshold.

Proof. Given a random polynomial R, both protocols PrivatePoly.Multiply and
PrivatePoly.Differentiate can be publicly computed (by any server), so having R in the clear

26

FFZeroTest:
1. Upon creation, initialize S ← ∅.
2. Upon receiving a message (Add, s, P) from party P , add

s to multiset S, and then send (Element-Added) to the
adversary. Then receive and ignore the adversary’s
reply.

3. Upon receiving a message (Multiplicity, s, P) from
party P , reply with message b equals true if F (s) = 0,
and false otherwise.

Figure 3.3: Ideal Functionality for PrivatePoly.ZeroTest.

does not give the servers any more information than they already had. Lemma 4.1 tells us
that PrivatePoly.ZeroTest reveals only the multiplicity of a given element s and no additional
information, so the result follows.

3.2.2 Identifying Duplicated Accusations

In WhoToo, in order to validate accusations, servers need to remove duplicate accusations.
They are those that identify the same pair of accused D and accuser R. To eliminate
them, servers must check whether a given pair (s = H(D), R) has already appeared in some
previous valid accusations, on the list Accusations of unopened accusations. The protocol
uses s = H(D) ∈ Zp as the identifier for the accused so that it can be secret shared. To
guarantee privacy, values s and R are both encoded (encrypted) using a multiplicatively
homomorphic ElGamal, as es = (grs , gshrs) and cR = (grR , R · hrR) where rs and rR are
random values used for the encryption of s and R respectively.

Let es′ and cR′ be encodings associated to an existing (valid) accusation in the set
Accusations, say the i-th accusation on the list. The WhoToo protocol provides Equal,
a distributed equality testing operation that, given two encodings, divides, randomized, and
decrypts the result, so the only exposed value is 1 if the plaintexts are equal, and a uniformly
random value if not. We could certainly use Equal(es, es′) to compare whether two encodings
es and es′ have equal plaintexts s and s′. Protocol Equal indeed works perfectly and does
not reveal additional information when two encodings are compared. However, it does not
suffice in order to identify duplicate accusations, as we need to do more: we must compare
es and cR from two different accusations, simultaneously.

The original description for this step (Whotoo.VerifyAcc, line 4) calls for Equal on inputs
(es, cR), (es′ , cR′). The meaning of such call is confusing, at least, as the input comprises
four ciphertexts, not two. No description nor explanation is given about how this equality
test must be computed with four ciphertexts. At this point, the most natural solution is to
compare them sequentially, say first (es, es′) and then (cR, cR′). This approach, unfortunately,
compromises the anonymity of the accuser. Consider the case that s = s′ but R 6= R′. If
we apply the above strategy, everyone learns that there are two accusations against s, and
since later we learn that R 6= R′, the accusations are not duplicated, thus valid. If the
comparison is made starting with (cR, cR′), it is easy to see that the anonymity of the accuser
may be compromised this time. Even though no individual value for the “unequal” plaintext
is computed, learning that there are other accusations in the system with the same identities
would clearly compromise anonymity.

27

It is not trivial to adapt Equal for multiple inputs. The fact that it is unclear and left
open for the protocol implementer to decide, could potentially compromise the security of
the entire protocol.

In the following chapter we provide an alternative to this process which preserves anonymity
and, in fact, is more efficient.

28

Chapter 4

Improving WhoToo

This chapter describes the efficiency improvements presented in WhoToo+. We introduce
modifications in two components, significantly reducing the number of online interactive
operations in each one.

WhoToo uses the distributed equality testing mentioned in the previous section in two
different components of the protocol: to identify repeated accusations (same pair accuser,
accused, the case above) and to identify accusations for the same accused, in order to identify
the accusations that triggered the quorum. In each of these components, the test is used to
compare a specific accusation to all other unopened accusations. Therefore, the DA must
compute as many distributed operations as there are unopened accusations. If there is a big
backlog of accusations that have not reached the quorum, this becomes very inefficient. We
propose alternatives to each of these components where the DA only needs to compute a
constant number of distributed operations to obtain the same information.

4.1 Duplicate Revision

As mentioned in the previous section, this component aims to check whether a new accusation
has already been submitted, by detecting if the same accuser R has already submitted an
accusation against the same s = H(D). Instead of following the (rather problematic) WhoToo
approach, we propose an alternative inspired upon the SAE protocol. We use a distributed
input pseudorandom function (DIPRF) introduced in SAE [5]. This DIPRF is a distributed
variant of the distributed verifiable PRF from [27].

4.1.1 Distributed Input Pseudorandom Functions (DIPRF):

A DIPRF is a pseudo-random function where the key and input are secret shared among the
computing parties. It outputs a sharing of the calculated pseudo-random value, which can
be sent directly to a user U or simply reconstructed by the servers. The DIPRF introduced
in SAE [5] can be securely and efficiently computed among the servers. Their function is also
verifiable, but we ignore that feature. Indeed, we use the following result from Dodis and
Yampolskiy [27]:

29

DIPRF.Setup():
1. g ∈R G
2. ({skd}, pkd = gskd)← SecShare.Gen(g)
3. Publish pkd

DIPRF.Calculate({skd}, {x}, recipients):
1. {t} ← {skd}+ {x}
2. {exp} ← {t}−1

3. if recipients = all_DAs:
(a) output e(g, g){exp}

4. else if : recipients = U :
(a) {res} ← SecShare.ExpLocal

(e(g, g), {exp}, U)
Shares of {res} are sent to user U

5. else if recipients = none:
(a) {res} ← e(g, g){exp}

DIMAC.Setup():
1. (pkm, {skm})← DIPRF.Setup()

2. V = ∅

DIMAC.Tag({skm}, τ, U):
1. {j} R← Zp
2. {pj} ←DIPRF.Calculate({skm}, {j}, none)
3. {x} ← τ + {pj}
4. {dj} ← DIPRF.Calculate({skm}, {x}, U)
5. Send shares of j and dj to user U .

DIMAC.Verify({sk}, {τ}, dj , j):
1. if (dj , j) ∈ V : output False

2. {pj} ← DIPRF.Calculate({skm}, j, none)
3. {x} ← {τ}+ {pj}
4. d′j ← DIPRF.Calculate({skm}, {x}, all_DAs)

5. V ← V ∪ {(d′j , j)}

6. output dj = d′j

Figure 4.1: Distributed Input PRF and MAC. Operations involving shares use arguments
with braces (eg. {x}) as described in Sect. 2.2.6.

Proposition 4.1.1 Given a bilinear group G with generator g where a q-Decisional Bi-
linear Diffie Hellman Inversion assumption holds, with sk ∈R Zq and pk = gsk, Fsk(x) =
e(g, g)(1/(x+sk)) is a PRF.

A slight modification gives us a DIPRF over Type-III pairings, namely
Fsk(x) = e(g1, g2)1/(x+sk). We further extend it, based on a similar construction in [5], to
obtain a distributed-input PRF variant whose sk is secret shared. It is shown in Fig. 4.1.

To define distributed input PRF, we follow the definition given by Naor, Pinkas, and
Reingold [51], adapted and simplified for the shared input setting [5]. A distributed input
PRF (DIPRF) is composed of three distributed protocols DIPRF.Setup, DIPRF.ShareInput,
and DIPRF.Calculate. DIPRF.Setup is joinly computed by the servers on input the security
parameter λ to compute ({sk}, pk) where {sk} are the local shares associated to the secret
key sk, and pk is the corresponding public key. We stress that each share ski is locally output
to server i while pk is publicly computed. Protocol DIPRF.ShareInput is joinly run by the
servers and a user, and on input x, provided by the user, outputs local shares of {x} for
the servers. Protocol DIPRF.Calculate is run by the servers given a set of recipients, pk and
two secret shared inputs {sk} and {x}. The output is a value y ← Fsk(x), where F is a
pseudo-random function, and y is privately received by a pre-specified the set of receivers (or
made public, if the receivers is set to all_DAs).

In terms of security, we extend the two main properties Consistency and Pseudorandomness
proposed by Naor, Pinkas and Reingold [51] adapting them to our setting with secret
shared inputs. A DIPRF is consistent even under a static adversary corrupting a minor-
ity of servers and possibly any user, if the output of DIPRF.Calculate equals Fsk(x) where
{sk} is the secret key privately output by DIPRF.Setup and {x} is secret shared defined by

30

computing DIPRF.ShareInput. A DIPRF is pseudorandom if the distributed evaluation of
DIPRF.Calculate on secret key sk (output by DIPRF.Setup) and adversarially chosen input
x is computationally indistinguishable from a random value even under the presence of an
adversary A controlling a minority of the servers and any number of users such that (1) A
initially obtains shares ski for any server i controlled by the adversary, and (2) A has oracle
access to DIPRF.Calculate under secret key {sk} and inputs of A’s choosing but different from
x.

We use a variant of a construction proposed in [5] (which was adapted to from the one
in [27]), where F : Zq × Zq → G is defined over a bilinear group G. property. Protocol
DIPRF.ShareInput is simply SecShare.Encode. Both protocol DIPRF.Setup and DIPRF.Calculate
rely on SecShare operations (namely Gen,add, Inv,ExpLocal, and Exp). Since the execution of
them all under a threshold static adversary are verifiable (robust) and simulatable under an
ideal adversary given only the public values, the following result holds.

Lemma 4.1.2 Assuming the q-Decisional Bilinear Diffie-Hellman Inversion assumption holds
on group G, the scheme DIPRF (as specified in Fig. 4.1) is consistent and pseudorandom under
any PPT adversary statically corrupting a minority of servers and any number of users.

Our solution: The intuition for our solution is the following. We create an input that
non-malleably combines the values R and s, and let the servers jointly compute the DIPRF
on that input. Upon receiving a valid accusation, each server gets and locally stores the
associated DIPRF value. Then for every new accusation the servers only need to compute
this value once and compare it with the previously stored ones. If a majority of servers
agree that the new DIPRF value has not been calculated before, then the accusation is not
duplicated.

Since we can not use R directly, we define τ = H ′(R). When the accusation is prepared,
the user must provide a secret sharing of τ . The combined input for the DIPRF will be
{x} = {s} + {τ}. Under the random oracle model, the value s + τ uniquely identify a
valid pair of accused and accuser, except with negligible probability. This is captured by the
following lemma.

Lemma 4.1.3 Let H,H ′ be two distinct, collision resistant, cryptographic hash functions
into Zp. Consider random values a0, a

′
1 ∈ Zp and set R0 ← ga01 , R1 ← ga11 , τ0 ← H ′(R0),

τ1 ← H ′(R1). In the random oracle model, for any PPT adversary A,

Pr [(D0, D1)← A(R0, R1) : D0 6= D1, H(D0) + τ0 = H(D1) + τ1]

is negligible.

Proof. Let s0 ← H(D0), s1 ← H(D1). We model H and H ′ as two distinct, independent
random oracles. First, if a0 = a1 finding D0 and D1 that satisfy the condition implies that
A is finding collisions in H. Now, if a1 and a2 are chosen uniformly and independently at
random under a1 6= a2, then R1 and R2 are also uniform and independent in G1 subject to

31

R1 6= R2. Moreover, under the random oracle model, τ0 and τ1 are selected uniformly and
independently in Zp which implies r = τ1 − τ0 6= 0 with overwhelming probability. So,

Pr [s0 + τ0 = s1 + τ1] = Pr [s1 − s0 = r]

This last probability must be 1/p, thus negligible in the security parameter.

4.1.2 Avoiding mismatched accusations:

If we only use the DIPRF in this way, a corrupted user could send shares of τ that do not
match R, namely τ 6= H ′(R). In order to ensure that there is no mismatch between R and
τ , we build a Distributed Input MAC using the DIPRF in a somewhat standard way. The
resulting DIMAC scheme is described in Figure 4.1.

Using the DIMAC scheme, we modify the protocol so that the DA computes τ during
initialization and then calculates k values T = DIMAC({sk}, τ), sending the shares of each
T directly to the user, so that no servers learn any of the values of the DIMACs. Each value
T is a pair (dj, j), where j is a random value added to the DIPRF input. Our protocol uses
k random j’s to prevent reusing τ ’s and to prevent a malicious user from sending another
user’s τ and a random (dj′ , j

′), which even though would fail verification, would reveal and
invalidate (spend) a real user’s DIMAC.

When making a new accusation, a user U sends their shares of τ with any unused dj and
the corresponding j to the DA. To ensure the shares of τ correspond to the value given
during initialization, the DA verifies (recomputes) the DIMAC. As a consequence of this
approach, our protocol only allows each user to submit at most k different accusations. We
believe this is a reasonable tradeoff.

4.2 Matching accusations
Once Set.Quorum returns true, all accusations against the same perpetrator must be opened.
In order to find the matching accusations, WhoToo performs a linear scan, distributively
comparing each es in the Accusations set to the last accusation. If N = |Accusations|, this
means that every time the quorum is reached, N interactive distributed operations must be
computed.

A naive approach to reduce this number is to generate public and private keys (pks, sks)
for every possible s and encrypt every sks with the servers’ public key. When making an
accusation against s, the user could include an encryption of some value (say 1) with pks. Let
ρs = Encpks(1). Then, once the quorum is reached for a certain s, the servers could cooperate
to obtain sks and each server could locally try to decrypt every ρs in the Accusations set.
If the decrypted value is 1, then it is a matching accusation. This approach would require
only one distributed operation, nevertheless, it has two significant issues: (1) generating and
encrypting keys for every possible s is extremely inefficient and (2) we need to ensure that no
information about accusations that do not match is revealed, which would require a robust
encryption scheme that can guarantee Decsks(Encpks′ (1)) 6= 1 for every s 6= s′.

32

We propose a distributed variant of a Strongly-Robust Identity-Based encryption scheme,
which allows to have a similar approach solving both issues.

Strongly Robust Distributed IBE:

An Identity-Based Encryption is a public key encryption scheme in which any user can use
public parameters and a specific identifier ID to compute a public key for that ID [35].
The corresponding secret key is computed by a centralized trusted authority using a master
secret key, public parameters and the given ID. Notice that secret keys to decrypt messages
encrypted with public keys can be created after the message is encrypted.

Going back to our problem, we first notice that using IBE encryption solves the first issue
above, as secret keys can be computed when needed instead of pre-computing them for all
possible identities. To solve the second issue, we need a new property for our (IBE) encryption
scheme: Strong Robustness [3]. Strongly robust IBE guarantees thatDecskID(EncskID′ (m)) =
⊥ for all m and for all ID = ID′. Indeed, this ensures that no information is revealed when
trying to decrypt a message encrypted for a specific identity with a (valid) secret key that
does not match that identity. This security notion is formalized as SROB [3].

From IBE to Distributed IBE: In our setting, however, we do not have a centralized
trusted authority, so we create a variant with a distributed authority. To achieve our goal, the
servers operate as a distributed key center, providing secret keys to decrypt IBE encrypted
messages to any identity. Indeed, they first compute a shared master private key and publish
public parameters that anyone can use to encrypt for any identifier ID. Furthermore, the
servers (not the users) compute all IBE encryptions. Interestingly, our solution does not need
to encrypt any message (the empty message suffices), it simply must provide an identity-based
proof that the ciphertext was generated for the correct ID.

To describe our solution, we present the scheme we use as starting point, and how we
modify it to make it distributed.

IBE Syntax: More formally, an identity-based encryption scheme is a 4-tuple (Setup,KeyGen,
Enc, Dec) where Setup, on input λ (the security parameter), creates public parameters params
and a master private key msk, KeyGen, on input params and a given ID, creates the cor-
responding secret key skID, Enc, on input message M , encrypts it under a given ID using
params, and Dec, on input ciphertext C and a secret key skID returns the corresponding
plaintext M .

Security Notions: Consider an IBE scheme GE = (Setup, KeyGen, Enc, Dec). GE is
ANON-ID-CPA secure if any adversary has negligible probability of deciding whether a ci-
phertext C was encrypted for identity ID or ID′. The adversary has access to GetEK,
GetDK and LR oracles. The first two, given an identity, provide the encryption and decryp-
tion keys respectively. The LR oracle receives two different identities that have not been
asked to the GetDK oracle and returns an encryption for one of those. The adversary can
make multiple queries to every oracle and it breaks ANON-ID-CPA security if it can guess
with high probability which identities are being encrypted by the LR oracle. This is a di-
rect simplification of the ANON-IND-ID-CPA definition of [3], which combines data privacy

33

(IND-CPA) and anonymity (ANON-CPA). We do not need IND-CPA as our scheme does not
encrypt a message. GE achieves strong robustness (SROB) if any adversary has negligible
probability of providing a ciphertext C and identities ID and ID′ with ID 6= ID′ where
Dec(skID, C) 6= ⊥ and Dec(skID′ , C) 6= ⊥ [3].

We start from an identity-based encryption scheme proposed by Gentry [35] which was
later modified to work with Type-3 bilinear groups and to achieve strongly robust ANON-
IND-ID-CCA security by Okano et al. [53]. To obtain a strongly robust scheme (SROB),
Okano et al. apply the transform proposed by Abdalla, Bellare and Neven [3]. Since our
threat model is weaker (the servers will generate the IBE ciphertext, so no chosen-ciphertext
is needed), we can simply use the original IBE scheme with the modifications for Type-3
pairings, which is ANON-IND-ID-CPA secure as long as the truncated decision q-ABDHE
assumption holds for (G,GT , e) [35]. In the modified version, we require the truncated
decision q-ABDHE assumption to hold for (G1,G2,GT , e). Furthermore, since we do not
encrypt any message, we do not need IND-CPA security, therefore, we aim to construct a
strongly robust ANON-ID-CPA secure scheme.

The basic scheme: Consider a bilinear group (G1,G2,GT , e, g1, g2) with no efficient known
isomorphism between G1 and G2 of prime order p where g1 and g2 are generators of G1 and
G2 respectively. Let H : {0, 1}∗ → Zp be a universal one-way hash function. The following
scheme IBE is a straightforward simplification of the scheme by Okano et al. [53].

IBE.Setup(): The authority chooses random g′, h′ ∈ GT and h ∈ G2. Then, it chooses a
random value msk from Zp as master private key, and a public key g′1 ← gmsk1 . The private
output is msk and the public output is params = (g′, h′, g1, g

′
1, g2, h) and msk.

IBE.KeyGen(params, {msk}, ID): The authority computes a random rID ∈ Zp and hID ←
(h · g−rID2)1/(msk−ID). The output is the private key skID = (rID, hID = (h · g−rID2)1/(msk−ID)).

IBE.Enc(params, {ID}): The authority chooses random values dec, s ∈ Zp and computes
com ← g′IDh′dec, C1 ← g′s1 g

−sID
1 , C2 ← e(g1, g2)s, and C3 ← h′dece(g1, h)−s. It outputs

ciphertext C ← (com,C1, C2, C3).

IBE.Dec(params, skID, C, ID): Given skID, it computes h′dec ← e(C1, hID) ·CrID
2 ·C3 and

outputs true if com=g′IDh′dec otherwise it outputs false.

The following lemma holds [53].

Lemma 4.2.1 Scheme IBE is ANON-ID-CPA secure and strongly robust (SROB) under the
q-ABDHE assumption for (G1,G2,GT , e).

The Decentralized scheme: The scheme above can be adapted for a distributed trusted
central authority. The scheme, called DistIBE, is in Fig. 4.2. We remark that, despite the
name, DistIBE.Dec is not distributed since skID is known by everyone, so this operation is
simply performed locally by each server.

34

DistIBE.Setup():
1. g′, h′ ←R GT
2. ({αi}t,n, g′1 = gα1)← SecShare.Gen(g1)
3. h←R G2

4. params ← (g′, h′, g1, g′1, g2, h,H)

5. {msk} ← {α}
6. output params, {msk}

DistIBE.KeyGen(params, {msk}, ID):
1. {γ} ← {msk} − ID
2. {γInv} ← {γ}−1

3. rID
R← Zp

4. hID ← (hg
−rID
2){γInv}

5. skID ← (ID, rID, hID)
6. output skID

DistIBE.Enc(params, {ID}):
1. {dec} R← Zp
2. com← g′{ID} · h′{dec}

3. {s} R← Zp

4. {t} R← Zp
5. {tInv} ← {t}−1

6. {x} ← {t} · {ID}

7. a← g
′{t}
1 · (g−1

1){x}

8. {y} ← {s} · {tInv}
9. C1 ← a{y}

10. C2 ← e(g1, g2){s}

11. C3 ← h′{dec} · (e(g1, h)−1){s}

12. C ← (com,C1, C2, C3)

13. output C

DistIBE.Dec(params, skID, C, ID):
1. h′dec ← e(C1, hID)C

rID
2 C3

2. output com = g′IDh′dec

Figure 4.2: Strongly Robust Distributed IBE. Operations involving shares use arguments
with braces (eg. {x}) as described in Sect. 2.2.6.

In terms of security notions, we adapt both ANON-ID-CPA and SROB to the distributed
setting in the obvious way.

Lemma 4.2.2 DistIBE is ANON-ID-CPA secure and strongly robust (SROB) under the
q-ABDHE assumption for (G1,G2,GT , e) in the distributed setting.

Proof. We show that any attack against the distributed IBE scheme can be translated into an
attack against the original Gentry IBE [35]. Fix a group of corrupted servers for an adversary
A against which the secret sharing primitives are secure. Note that it is not necessary to fix
a set of corrupted users because the distributed IBE scheme is only used by the servers. The
users only provide shares of ID, which are verified by other components of the protocol. In
order to simulate the view of the adversary, we can replace the distributed protocols with
the original ones. Because of the correctness property of the secret sharing scheme and
associated operations, we know that the outputs from DistIBE.Setup, DistIBE.KeyGen and
DistIBE.Enc are indistinguishable from the outputs of IBE.Setup, IBE.KeyGen and IBE.Enc
on the same inputs. We simulate all shares for corrupted servers with random values which
are indistinguishable from the distributed IBE shares because of the secrecy property of the
secret sharing scheme. These together with the public parameters g′, h′, g1, g

′
1, g2, h,H allows

to completely simulate the view of the adversary. In this way, we can create an adversary B
against the original IBE scheme which has the same advantage as the adversary A.

DistIBE is based on the IBE Scheme by Gentry [35], which is proven to be ANON-IND-ID-
CPA secure. Abdalla, Bellare and Neven [3] prove that adding a binding and hiding commit-
ment during encryption and verifying the commitment during decryption to an ANON-IND-

35

ID-CPA scheme results in a strongly robust ANON-IND-ID-CPA scheme. We use Pedersen
commitment scheme [54] which is proven to be binding and hiding. From Lemma 5.1 we know
that distributing operations during setup, key generation and encryption preserve ANON-
IND-ID-CPA security. Therefore, just by applying Abdalla’s Theorem we conclude our IBE
scheme is strongly robust.

Our solution: When an accusation is received, the servers encrypt a message with ID=s,
which they obtain as a shared secret from the user in WhoToo.Accuse, and add it to Accusa-
tions. We will call this value ρs. Similarly to the naive approach, once the quorum is reached
and s is revealed, the servers jointly compute the private key for ID = s and then locally
try to decrypt every ρs in Accusations with that key. If the value can be decrypted with that
key, then it is an accusation against s.

Because it is a strongly robust scheme, the main result is a test of whether the message
can be decrypted by that key, a test that anyone who knows the secret key for identity ID
can perform. We can think of this scheme as an instance of searchable encryption [2], where
the keywords that can be searched for are the identities.

36

Chapter 5

Variants and Extensions

In order to define the functional and efficiency requirements of the protocol, we interviewed
experts who worked at Universidad de Chile with victims of sexual assault, as well as people
who work in non-profit organizations which provide support to victims. We conducted four
focus groups, which were characterized as follows:

1. Female students at the Law School Faculty of Universidad de Chile who had suffered
and reported sexual assault at the university.

2. Female students at Faculty of Physical and Mathematical Sciences (FCFM) of Univer-
sidad de Chile who had suffered and reported sexual assault at the university.

3. Female students at Faculty of Physical and Mathematical Sciences (FCFM) of Univer-
sidad de Chile who had suffered sexual assault at the university, yet did not report
it.

4. Female students at Faculty of Physical and Mathematical Sciences (FCFM) of Univer-
sidad de Chile who had never suffered sexual assault.

The focus groups had 3-6 participants each. We tried to reach people from other estates
(academics or officials), however there were no volunteers. We also tried to conduct focus
groups with male students, however, there were not enough volunteers to form a group.

The interviews were specific to each interviewees’ profile. The focus groups guideline was
constructed with the help of a psychologist who has worked directing focus groups for over
20 years, it can be found in Appendix 10.1. The focus groups were conducted in Spanish,
therefore the guideline is also in Spanish.

After all of these interviews and conversations, we came to the following conclusions:

5.1 Discarded ideas
We believe it is important to describe and explain why we made the decision to discard the
following ideas as it might be useful for future designs of this type of protocols.

We had the idea of giving users the option of categorizing accusations (for example, the

37

universities’ regulation has the following categories: sexual assault, gender discrimination,
gender violence, workplace harassment and arbitrary discrimination) but concluded this was
not a good idea. People felt it might be hard to categorize a difficult experience and not
knowing how to categorize it would lead to not making the accusation. We had also considered
having different levels of accusations so that accusers could choose if they wanted the quorum
to be reached within their category or any categories equal or higher. If it is hard to categorize
an accusation, it is even harder to put it in a scale, so we discarded this idea as a whole.

We also thought about giving accusations an expiration date that could be either fixed for
all accusations or chosen by each user. People where unanimously against this idea. However,
they expressed that they would like to not be contacted about it after a certain amount of
time. We delve into this idea in the following subsections.

We also discussed the idea of having different ways of matching accusations in case people
did not know the name of the person they wanted to accuse. For example, they could state the
faculty they study at, some social media handle or other information and if a certain amount
of values match, then the accusations would be matched. This factor could be separated into
primary and secondary, where primary are more "defining" (like social media handle) and
then require less matching fields if those where primary. Nevertheless, we realized that in the
context of the university, in almost every case people know the identity of the person so this
would not be necessary. Additionally, people felt this could cause mistrust in the system for
fear of errors in matching. Thanks to one of the interviews with experts in sexual assault at
the university, we came up with an alternative that could help people who do not know the
perpetrator’s identity, which will also be discussed in the following sections.

5.2 Flexible quorum

One important difference between SAE and WhoToo is that SAE has a flexible quorum,
meaning each user can choose the quorum they want for their accusation to be revealed.
One of the main things we learned from the interviews and focus groups is that having more
options and functionalities is not necessarily better. In a similar way to the categorization
idea, having to select an option and not being sure which one to choose might cause the
person to not submit the accusation. Reporting sexual assault is a very hard process and
anything that makes it harder can lead to giving up on it.

However, some people expressed they would like to be able to choose their quorum. So
after discussing this topic we came to the conclusion that if the quorum can be chosen, it
should be from a very limited amount of options (for example, 2-5) and there should be a
default value (for example 3).

In order to add a flexible quorum to WhoToo, the servers would need to have multiple
privacy preserving polynomials P2, ..., Pγ where Pi is the polynomial for quorum i. When a
user makes a new accusation with quorum q, it should be added to polynomials Pj for all
j ≥ q. This extension is simple and we are not certain it would benefit the system, therefore
we do not include it in the WhoToo+description, however, it can be easily added.

38

5.3 Role

People felt it was important to have statistics indicating the role of the perpetrator. To
achieve this, victims could optionally mark their accusations indicating their relationship
with the perpetrator. There could be different ways to inform the relationship between the
accuser and the accused (for example: classmate, teaching assistant, boss, among others).
This value could be included as plaintext in the Accusations set which will be described in
the next chapter. Defining the possible roles and scenarios is out of the scope of this thesis,
so we describe the interest in this characteristic together with a simple way to add it to
WhoToo, yet we do not include it in the WhoToo+description.

5.4 Unknown perpetrator

People who do not know their perpetrator should be able to submit accusations that will not
add to the quorum but will count for the accusations total. Experts agree that it is important
to give everyone space to make their accusation and be heard and offered psychological
help. These accusations are not really submitted to the WhoToo+ protocol, but if there was
eventually a platform to submit accusations, people in this category should be given space
to write their story if they want to.

People who want to continue with further investigation should not have to write their
story because they will need to write it again together with lawyers and having them retell
or rewrite their stories might be revictimizing.

5.5 Additional Public Information

One of the main discussions we had in all focus groups was determining which information
should be publicly revealed even if the quorum has not been reached. We concluded that
there are two kinds of information revealing:

1. Once the quorum is reached, the identities of the accusers and the accused should
be revealed to the corresponding authority (for example, the Gender Division at the
university). This information should not be public unless the accusers decide they want
it to be.

2. Some specific statistics (like total number of accusations) should be public and should
be informed to the community once every certain period of time (for example, every 6
months). This information is not protected by the protocol and can be accessed by any
corrupted server. In this section, we describe the data that should be in this category.

5.5.1 Contact for further investigation

The process of reporting sexual assault is very difficult and potentially revictimizing and
therefore victims would like to have the option of not being contacted. Some people would
like to add to the quorum because they want others to know they have not been the only
ones but do not wish to go further with a formal investigation. Therefore we have decided to

39

ElGamal.ProveEquality(cR, c′R):
1. x = α − β //α and β are the randomness for cR

and c′R respectively

2. r
R← Zq

3. a← (a1, a2) = (gr, hr)

4. c = H(g, gx, a)

5. ϕ← r + cx

6. θ ← (a, c, ϕ)

7. output θ

ElGamal.VerifyEquality(cR, c′R, θ):
1. (a, c, ϕ)← θ

2. (a1, a2)← a

3. (y, z)← cR/c
′
R

4. if any of the following fail: halt

(a) gϕ = a1yc

(b) hϕ = a2zc

5. output True

Figure 5.1: Zero-knowledge proof of equality of ElGamal encodings

add a bit to the accusation that indicates if the victim wishes to be contacted for a further
investigation. Nevertheless, all victims should be offered psychological help.

Accusers will be able to change this bit if they wish in case they change their minds.

5.5.2 Repetition counter

Even though duplicate accusations should not be accepted and should not add to the quorum,
it should be possible to express a new assault by the same perpetrator. Therefore, we add a
counter for each accusation which indicates the number of sexual assault episodes. Users can
update this counter as many times as they want. This information will be public (in order
to know the total amount of sexual assault episodes) but it will not add to the quorum.

5.6 Updates
As mentioned in the previous section, the contact bit and repetition counter can be updated
so we need a way to update accusations. In order to do this, we will use the DIMAC dj as
an accusation id. At any time the user can use this id and their private key to update the
accusation. If user U wants to update an accusation with a specific id, they have to send
(id, c′R, info-to-change, θ) where c′R is a new encryption of the user’s public key R with the
servers’ private key, info-to-change is either contact-bit or counter and θ proves that
cR (sent when submitting the accusation) and c′R are encodings of the same value.

For the purpose of providing a zero-knowledge proof of equality of cR and c′R, we use the
zero-knowledge proof of discrete logarithm proposed by Chaum and Pedersen [23] as shown
in Figure 5.1.

In this way, when the servers, receive (id, c′R, info-to-change, θ), they verify θ and update
the contact bit (changing it) or counter (adding 1) of the accusation with that id accordingly.

40

Chapter 6

Description and Security of the New
Protocol

In this chapter, we present the full version of WhoToo+, including the fixes described in
Chapter 3, the efficiency improvements introduced in Chapter 4 and the extensions presented
in Chapter 5. We provide a detailed description together with the all the necessary algorithms
(Section 6.1). Then, we sketch the security argument for WhoToo+, following the outline of
the original WhoToo proof as a sequence of games (Section 6.2).

6.1 WhoToo+ Description

Fig. 6.1 presents a full description of WhoToo+, including the modifications needed to use
DIPRF for duplicate revision and DistIBE for finding matched accusations. Changes are
shown in blue. We also provide a detailed description of the new protocol.

Initialization: During WhoToo+.Initialize, the DA gets a list of valid users. Then, it runs
the setup algorithms for DistBBS, DIPRF and DistIBE, obtaining the public and private keys
(pk,msk), (pkd, skd), and (params,mskIBE) respectively. All private keys are distributed
among the DA servers. It initializes an identity map and generates public and private keys
(R, skU) for every user, recording that key R corresponds to user U in the identity map. skU
is obtained as a shared secret and each server sends its share to user U , who reconstructs
it. The DA also computes τ = H ′(R), where H ′ is a one-way hash function. As mentioned
in the previous section, the servers compute k authentication values (dj, j) for each user.
Finally, it initializes the privacy-preserving multiset S and the Accusations and UniqueAccs
sets.

Submitting accusations: The process of submitting accusations is captured by
WhoToo+.Accuse and it consists of five main steps. First, user U prepares an accusation
en sends (acc)i to each DAi with its shares of the accusation. Then, the servers verify
the accusation, ensuring it is not malformed or a duplicate. This steps are captured in
WhoToo+.PrepareAcc and WhoToo+.VerifyAcc and will be described in detail in what follows.

41

If the accusation is verified, the servers compute ρs by using the distributed IBE scheme to
encrypt for identity s, which they received as a shared secret in the first step. After, the
DA adds the new accusation to the privacy-preseving multiset and to the Accusations set.
Only s is added to the privacy-preseving multiset, while id = dj, cR, ρs, cD, b and c are saved
in the Accusations set. If the quorum is reached, cR will be used to reveal the accuser’s
identity and both ρs and cD will be needed to find the matching accusations. b is the contact
bit and c is a public repetition counter, which is set to 1 for new accusations. Finally, the
servers use Set.Quorum to verify if the quorum has been reached for identity s, in which case
they run WhoToo+.OpenAccusations.

Preparing accusations If user U with public key R wants to make an accusation against
D, it first needs to calculate s = H(D) and compute a secret sharing of s and τ = H ′(R)
(received during initialization) with randomness rs and rτ respectively. From this process,
the accuser obtains {ω} = ({s}, {rs}), v = (v0, ..., vt) (the Pedersen VSS verification values),
e0 = grs1 and {ωτ}, vτ , e0τ , rτ . s, τ ∈ Zp are used during the protocol as the identities of the
accuser and the accused, they are parallel to D and R. The user will also encode D with
randomness rD using ElGamal.EncString, obtaining cD. For each DA server, U sets mi ←
cD||ωi||v||e0 and signs mi with the private key skU received during initialization, producing
cR and σ. The accuser also has to provide proofs of knowledge of s and D, so it computes
π0 and π1 using ElGamal.Prove with encodings es, cD and randomness rs, rD respectively. In
order to prove that the shares of τ match the value received during initialization, U has to
choose one of the unused dj values received during initialization and add dj and j to the
accusation. At last, the user sends acci = (cR, cD, ωi, v, vτ , e0, e0τ , σ, π0, π1, dj, j, b) to DAi,
where b is the contact bit.

Verifying accusations: Once each server receives its part acci of an accusation, they
must verify that the accusation is valid and not duplicate. In order to do so, they each verify
the proofs π0 and π1 using the ElGamal public key computed during initialization (as one
of the outputs of DistBBS.Setup). Then, they locally verify the signature σ and their shares
ωi using the verification values v. After, they all cooperate to verify that the shares ω are
consistent with e0 and that the MAC (dj, j) is valid for ωτ .

Once all these verifications are done, the DA proceeds to corroborate that the new accu-
sation is not a duplicate from a previous one, namely, that there is not already an accusation
from R to D in the system. Therefore, it computes the DIPRF with input {s}+ {τ} making
the result available to all servers. In this way, each DAi can locally verify if the resulting
value p is in the set UniqueAccs. If p ∈ UniqueAccs, the accusation is duplicated and should
be discarded. Otherwise, they add p to UniqueAccs.

If none of these verifications fail, WhoToo+.Verify outputs True.

Finding matching accusations: Once the quorum has been reached with a new accu-
sation (cR, ρs, cD), the servers run WhoToo+.OpenAccusations to find all accusations against
the same s. First, the DA reconstructs s and generates the distributed IBE key sks for
identity s running DistIBE.KeyGen. For each element (cR′ , ρs′ , cD′ , b, c) in Accusations, each
server locally tries to decrypt ρs′ with key skd. If they can, it means the accusation was also

42

against s, so they distributively decrypt cR and find the corresponding user U in the identity
map. Then they decrypt cD′ , if s = H(D′), they set D ← D′. Once they find all matching
accusations, they run Investigate(D, Accusers), where Accusers is the set of all users U who
submitted an accusation against D and its respective repetition counters and contact bits.
Only accusers with b = 1 should be contacted for further investigation.

Updating accusations: If a user U wants to update an accusation, it must prepare the up-
date with WhoToo+.RequestUpdate. The user sets m ←
(id, contact-bit) or m ← (t, counter) depending on what they want to update. Then,
the user signs the update, computing c′R and σ. It also needs to compute θ to prove that c′R
encrypts the same value as cR corresponding to Accusations[id]. If the counter is updated it
always adds 1, while the contact bit is changed, so it is not necessary to provide additional
information. Then, each DA server locally verifies the update by verifying the signature and
using θ to verify that cR and c′R match. If these verifications are successful, the DA up-
dates the element in Accusations[id] by updating the contact bit or increasing the repetition
counter.

43

WhoToo+.Initialize():
1. ValidAccuser← GetUsers()
2. (pk, {msk})← DistBBS.Setup()
3. (pkd, {skd})← DIPRF.Setup()
4. (pkm, {skm})← DIMAC.Setup()
5. (params, {mskIBE)} ← DistIBE.Setup()
6. IdentityMap ← ∅
7. for each U ∈ ValidAccusers:

(a) R← DistBBS.UserKeyIssueU ({msk})
(b) τ ← H′(R)

(c) IdentityMap[R]← U

(d) for i ∈ [k]:
i. dj , j ← DIMAC.Tag({skm}, τ, U)

8. S ← Set.Init()
9. Accusations← ∅

10. UniqueAccs ← ∅

WhoToo+.Accuse():
1. U :

(a) (acci)i∈[n] ← WhoToo.PrepareAcc(D)
(b) Send acci to server i of the DA over anonymous

confidential channel
2. DAi : if not WhoToo.VerifyAcc(acci): halt
3. ρs ← DistIBE.Enc(params, {s})
4. S ← Set.Union(S, {s})
5. Accusations ← Accusations ∪
{(id = dj , cR, ρs, cD, b, c = 1)}

6. if Set.Quorum(S, {s})
(a) Run WhoToo.OpenAccusations(ρs, {s}, cD)

WhoToo+.OpenAccusations(id, ρs, {s}, cD, b, c):
1. Accusers ← ∅
2. s← {s}
3. D ← Null
4. skID ← DistIBE.KeyGen

(params, {mskIBE}, {s})
5. for each (id, cR′ , ρs′ , cD′ , b, c) ∈ Accusations
6. if DistIBE.Dec(params, skID, ρs′)
7. R′ ← ElGamal.DistDec(skeg, cR′)
8. U ← IdentityMap[R′]
9. Accusers ← Accusers∪{(U, c)}

10. D′ ← ElGamal.DistDec({skeg}, cD′)
11. if H(D′) = s: D ← D′

12. if D =Null: halt
13. Run Investigate(D, Accusers)

WhoToo+.UpdateAcc:()
1. U :

(a) u←WhoToo+.RequestUpdate

(b) Send u to the DA
2. DA: WhoToo+.ReceiveUpdate()

WhoToo+.PrepareAcc(D):
1. s← H(D)

2. {ω}, v, e0, rs ← SecShare.Encode(s)
3. es ← (e0, v0)

4. rD
R← Zp

5. cD ← ElGamal.EncString(pkeg,D, rD)
6. {ωτ}, vτ , e0τ , rτ ← SecShare.Encode(τ)
7. for each i ∈ [n]

(a) mi ← cD||ωi||v||e0;
(b) (cR, σ)← BBS.Sign(mi, skU)
(c) π0 ← ElGamal.Prove(es, rs, cR||σ)
(d) π1 ← ElGamal.Prove(cD, rD, cR||σ)
(e) acci ← (cR, cD, ωi, ωτi , v, vτ , e0,

e0τ , σ, π0, π1, dj , j, b)

8. output (acci)i∈[n]

WhoToo+.VerifyAcc(cR, cD, ωi, ωτi , v, vτ ,
e0, e0τ , σ, π0, π1, dj , j):

1. es ← (e0, v0)

2. mi ← cD||ωi||v||e0
3. (si, ri)← ωi

4. τi, rτi ← ωτi

5. if any of the following fail: output False
(a) DIMAC.Verify({skm}, {ωτ}, dj , j)
(b) ElGamal.Verify(pkeg, π0, es, cR||σ)
(c) ElGamal.VerifyString(pkeg, π1,

cD, cR||σ)
(d) DistBBS.Verify(pk,mi, cR, σ)
(e) SecShare.Verify(ωi, v)
(f) SecShare.Verify(ωτi , vτ)
(g) SecShare.CheckConsistent({rs}, v, e0)
(h) SecShare.CheckConsistent({rτ}, vτ , e0τ)

6. {x} ← {s}+ {τ}
7. p← DIPRF.Calculate({skd}, {x}, all_DAs)
8. if p in UniqueAccs: output False
9. UniqueAccs ← UniqueAccs∪{p}

10. output true

WhoToo+.RequestUpdate()
1. m← (id, info-to-change)

2. (c′R, σ)← DistBBS.Sign(m, skU)

3. θ ← ElGamal.ProveEquality(cR, c′R)

4. output (m, c′R, σ, θ)

WhoToo+.ReceiveUpdate(m, c′R, σ, θ)
1. (id, info-to-change)← m

2. cR ← Accusations[id].cR
3. if any of the following fail: halt

(a) ElGamal.VerifyEquality(cR, c′R, θ)
(b) DistBBS.Verify(pk,m, c′R, σ)

4. if info-to-change = counter: Accusations[id].c += 1
5. else: Accusations[id].b = not Accusations[id].b

Figure 6.1: The WhoToo+ Protocol

44

6.2 Security Analysis
In this section, we provide a security argument for the WhoToo+ protocol, which follows the
outline of the proof for WhoToo [43] adjusted to consider the new primitives we require.
For the proof, we assume composable notions of security of its components hold under ad-
versaries corrupting a minority of the servers. In particular, this includes the anonymously-
robust identity-based threshold encryption DistIBE from Sect. 4.2, and the privacy-preserving
multisets Private.Poly from Sect. 2.2.8. Indeed, to obtain composability under threshold ad-
versaries, we heavily rely on the fact that the secret sharing operations SecShare used to
implement the above distributed operations are verifiable, robust, and simulatable (given
the appropriate ideal functionality) from only public outputs under a static adversary that
corrupts up to t < n/2 servers, under the discrete logarithm assumption [34]. We also need
to assume the security of the distributed group signature DistBBS from Sect. 2.2.7, and the
distributed input pseudo-random function DIPRF from Section 4.1.1. Finally, we assume the
security of the threshold ElGamal encryption scheme ElGamal (and its associated extractable
proofs of knowledge) from Sec. 2.2.6. In our proof, we show that WhoToo+ implements the
ideal functionality from Fig. 6.2 [43].

Theorem 6.2.1 Let A be a real world adversary attacking WhoToo+ protocol and corrupting
up to t servers and any number of users. Under the assumption stated above, the execution of
WhoToo+ protocol underA can be simulated by an ideal adversary given the ideal functionality
FWhoToo+ .

Initialize:
1. ValidAccusers ← GetUsers()
2. Accusers ← ∅
3. UniqueAccs ← ∅

Accuse:
1. ValidAccusers ← GetUsers()
2. Receive D from user U
3. if U 6∈ ValidAccusers: halt
4. else if (D,U) ∈ UniqueAccs: halt
5. else:

(a) Accusers[D] ← Accusers[D]∪{U}
(b) UniqueAccs ← UniqueAccs ∪{(D,U)}
(c) if |Accusers[D]| ≥ q:

i. Run Investigate(D, Accusers[D])

Figure 6.2: FWhoToo+ : Ideal Functionality for WhoToo+

As mentioned above, under the discrete logarithm assumption, each secret sharing oper-
ation SecShare from Sec. 2.2.6 is secure (as multiparty protocol) against a PPT adversary
that statically corrupts a minority of the servers and any number of users. This follows from
[34] which also relies on Pedersen VSS [54]. This result implies that the execution of each
operation under such an adversary can be robustly computed, and the view of all parties can
be simulated from public outputs alone.

For the DIPRF scheme, we assume it is consistent and pseudorandom (as in Section
4.1.1). The security of our DIMAC protocol (unforgeability under chosen message attacks,
UF-CMA) easily follows as the latter is simply the canonical usage of DIPRF.

45

For the security of the distributed group signature, we rely on Lemma 5.1 from [43]
which states that, assuming SecShare is secure, any threshold adversary attacking the con-
struction DistBBS in the distributed setting can translated to an adversary to the original
non-distributed BBS scheme (as defined in [43, Sect. 3.5]). This will suffice for our proof.

We now sketch the proof. Let A be a PPT adversary that statically corrupts up to t out
of the n >= 2t + 1 servers and an arbitrary number of users. Our argument will proceed in
steps, considering a sequence of games G1, . . . , G`, where G1 is the WhoToo+ in real world
under the real world adversary A1 = A, and G` is the ideal world with functionality FWhoToo+

and ideal adversary A`. In each game Gi for i = 2, . . . , `, we show how adversary Ai−1 can be
replaced by a new adversary Ai in such a way that the view for all players and adversary Ai−1

in game G1 is computationally indistinguishable from the view for all players and adversary
Ai. This will prove the theorem.

Game G1: This game is the execution of the WhoToo+ protocol under adversary A1 = A.

Game G2: (Make DistBBS and ElGamal centralized). In this game, we replace each dis-
tributed SecShare operation in DistBBS and ElGamal with their corresponding ideal function-
ality. Let WhoToo+

2 be an augmented version of WhoToo+ where all secret shared operations in
DistBBS and ElGamal are executed by a trusted third party that runs the corresponding oper-
ation. Under the discrete log assumption, all SecShare operations are robust and simulatable
from the public values. It immediately implies that the view for all players and adversary
A1 can be simulated by an ideal adversary A2 only from the public values computed by the
trusted third party.

Game G3: (Make DIPRF and DIMAC centralized). In this game, adversary A2 is attacking
protocol WhoToo+

2. Let WhoToo+
3 be the same protocol where we replaced the secret share

SecShare operations in DIPRF and DIMAC with their corresponding ideal functionality exe-
cuted in a trusted-third party. As distributed protocol DIPRF relies on the DKG protocol
from Gennaro et al. [33], one can simulate the key generation so skd and skm are known to
the simulator. For DIPRF (when invoked as part of DIMAC as well by itself), however, we go
further, using an ideal functionality that chooses random values as output (and remembers
them). Prop. 4.1.1 guarantees that this approach is sound: no adversary can distinguish
Fsk(x) from values chosen uniformly at random, where F is the PRF function behind DIPRF.
Then, under the q-Decisional Bilinear Diffie Hellman Inversion, it is possible to simulate the
view of the adversary in both protocols given those random outputs (except with negligible
probability). We let A3 be the adversary that works like A2 but, instead of running the
SecShare operations, performs the simulation as described. We conclude that the execution
of protocol WhoToo+

2 under A2 is computationally indistinguishable from the execution of
protocol WhoToo+

3 under adversary A3.

Game G4: (Make DistIBE centralized). Our goal is to replace each distributed SecShare
operation in DistIBE with their corresponding ideal functionality. In this game, adversary
A3 is attacking protocol WhoToo+

3. Let WhoToo+
4 be the same protocol where we replaced

the secret share SecShare operations in DistIBE with their corresponding ideal functionality
(namely the IBE scheme) executed in a trusted-third party. Under a similar argument to the

46

one used in previous games, we argue that there is an adversary A4 whose interaction with
protocol WhoToo+

4 is indistinguishable.

Game G5: (Replace the remaining secret share operations for their ideal functionality).
Protocol WhoToo+

4 still includes two calls to SecShare.Encode (in WhoToo+.PrepareAcc), and
two to SecShare.Encode and SecShare.CheckConsistent (both in WhoToo+.VerifyAcc). Each
one of these operations can be substituted by a call to their natural ideal functionality (see
[28]) in a simulatable way. Let WhoToo+

5 be WhoToo+
4 with those substitutions. If we let

A5 be as adversary A4 with the extra code to simulate the calls to the ideal functionalities,
then, under the discrete log assumption, the execution of WhoToo+

4 under adversary A4 is
computationally indistinguishable from that of WhoToo+

5 under adversary A5.

Game G6: (Make PrivatePoly centralized). Using an argument analogous to the one used
in previous games, we argue we can replace the secret share SecShare operations in Pri-
vatePoly.MultiplyLinear and PrivatePoly.ZeroTest with their corresponding ideal functionalities.
This yields protocol WhoToo+

6 and adversary A6.

Game G7: (From encrypted polynomials to Set Operations). In this game, our goal is
to replace the (centralized) PrivatePoly operations (namely Substract, Differentiate, Multiply,
Multiplylinear, and ZeroTest) with (centralized) versions of Set.Init, Set.Add, and Set.Quorum
in G6. To simplify the proof, we assume stronger abstractions of the Set operations: Set.Init,
Set.Add and Set.ZeroTest do not output encrypted polynomials but only output the size of
the resulting set after performing the operation. Additionally, Set.ZeroTest returns the test
result. We call WhoToo+

7 the resulting protocol.

Recall that, in this game, adversary A6 is interacting with WhoToo+
6. In this protocol, all

players (servers, users, and adversary A6) have access to the encrypted polynomials given as
inputs and returned as outputs during the execution of the PrivatePoly operations. They do
not have access, however, to any individual element value s used as input to MultiplyLinear,
and ZeroTest as such values are privately sent from the participant to the trusted third-party
running those operations.

It is easy to see that, under DDH assumption over G1, all the encrypted polynomials are
simulatable from the output of the Set operations under the stronger abstraction mentioned
before. We call such an adversary A7. Computational indistinguishability between the ex-
ecution of WhoToo+

7 under A7 and WhoToo+
6 under A6 follows from [43, Lemma 6.4] which

shows that set operations achieve perfect completeness and computational hiding, even under
adversarially chosen inputs, as well as lemma 3.2.1.

Game G8: (Removing mismatched accusations). We now show that A7 can be reduced to an
adversary A8 who always instructs any corrupted player R to submit accusations with correct
τ , that is, τ = H ′(R). The protocol for the game remains the same, so WhoToo+

8 = WhoToo+
7.

Let τ = SecShare.Reconstruct({ωτ}) and R = ElGamal.Dec(cR) such that τ 6= H ′(R)
for a given accusation. We call this a mismatched accusation. (Notice that mismatched
accusations can only come from corrupted users.) There are two possible cases:

47

1. τ 6∈ {H ′(Ri) |Ri ∈ IdentityMap}. In this case, for the accusation to be valid, the
adversary must also present a valid credential, namely a valid MAC tag (d, j) for mes-
sage τ , such that d is the value returned by DIPRF.Calculate on input τ + y where
y = DIPRF.Calculate(j) associated to a randomly chosen j. We first observe that, dur-
ing the execution, the adversary only sees valid credentials: during initialization, those
obtained by corrupted users, namely (τi, (di, ji)) for some valid (yet corrupted) Ri ∈
IdentityMap, so τi = H ′(Ri), and, from previous (non mismatched) accusations, those
submitted by honest users: (τ ′, (d′, j′)) where τ ′ = H ′(R′) for some valid R′. There-
fore, any success on producing a new credential (τ, (d, j)) must occur with negligible
probability as it involve guessing a random value (recall that DIMAC is computed with
an ideal version of DIPRF.Calculate which returns consistent random values). In con-
sequence, the accusation will be discarded with high probability. This interaction can
be easily simulated from public values, so A7’s interaction with the protocol is indis-
tinguishable from the interaction with an adversary A8 whose corrupted users do not
submit mismatched accusations.

2. τ = H ′(R′), where R′ is the public key for another user. We have two scenarios:

(a) The user associated to R′ is corrupted, so the adversary knows valid credentials
(τ, (d, j)): In this case, the adversary is able to submit two accusations against
some D, one from (R, τ = H ′(R′)) and another one from (R, τR = H ′(R)). But
this is done at a cost: now R′ cannot lodge (another) accusation against the same
D because such accusation would be discarded as duplicated, as it would also
come with τ = H ′(R′). Even though R′ could use now a τ from another corrupted
user, since used credentials are “burned” upon validation (stored in a list V of
used credentials), it is easy to see that this approach is doomed to failure: the
number of accusations the adversary can submit against certainD is no larger than
the number of accusation corrupted users can submit as a group. Furthermore,
even in this case where two accusations are submitted under the same R’s but two
different τ ’s, servers get shares for the submitted τ ’s. When opening an accusation,
servers can reconstruct both sharings and recover both identities. Consequently,
the adversary’s effect could be emulated by submitting two separated accusations
from each corrupted user: one accusation from (R, τR = H ′(R)) and another from
(R′, τ = H ′(R′)), namely, by submitting no mismatched accusations.

(b) The user associated to identity R′ is honest: Just like the case (1) before, pro-
ducing valid credentials (τ, (dj, j)) only happens with negligible probability as
DIMAC.Tag returns a a uniformly-chosen random value (with overwhelming prob-
ability). Reusing previously used credentials by honest R′ is not possible as valid
used credentials are blacklisted (stored in list V during DIMAC.Verify) once vali-
dated.

We conclude that adversary A7 can be reduced to another adversary A8 who works the
same except that never submits mismatched accusations.

Game G9: (Removing invalid accusations). In this game, we want to show that any adversary
A8 can be reduced to another adversary who never submits invalid accusations. The protocol
is unchanged, so WhoToo+

9=WhoToo+
8.

48

First, we say an accusation acc is invalid if WhoToo+.VerifyAcc(acc) in step 5 returns false.
For step 5 to return false, one of the following operations must return false: DIMAC.Verify,
ElGamal.Verify, ElGamal.VerifyString, BBS.Verify, SecShare.Verify, or SecShare.CheckConsistent.
Clearly, except for DIMAC.Verify, none of these operations change the state of the system
when false is returned. Moreover, ElGamal.Verify, ElGamal.VerifyString, and BBS.Verify are
executed with public parameters as inputs (other than the accusation) so they are simulat-
able. In addition, SecShare.Verify, and SecShare.CheckConsistent are already executed in a
centralized fashion (since game G5) so simulation is trivial.

It remains to prove that DIMAC.Verify can be simulatable if the accusation is invalid. In-
deed, we argue that is always simulatable, not only when the accusation is invalid, as follows.
Our idealized version of DIMAC.Verify returns false except if the provided credentials are
among the set of credentials returned by DIMAC.Tag during initialization. Since adversary
A8 gets to see the credentials obtained by corrupted users, a good strategy for a new ad-
versary A9 is to return false unless the provided credentials are among the set of values
returned by DIMAC.Tag to all users. In consequence, if DIMAC.Verify returns true, it must
be that R’s credentials are valid and, moreover, they must have been those obtained by some
user during initialization. If that user was corrupted, some of the other checks must fail
for the accusation to be invalid – which is simulatable as mentioned before. The case when
R’s credentials belong to some honest user cannot happen except with negligible probability
because credentials are transmitted to honest users via private channels.

We thus conclude that, with high probability, A8 can be reduced to a new adversary A9

who never submits invalid accusations.

FDR.Initialize:
1. UniqueAccs ← ∅

FDR.CheckDuplicate:
1. Receive D from user U
2. if (D,U) ∈ UniqueAccs:

(a) output True
3. else:

(a) UniqueAccs ∪{(D,U)}
(b) output False

Figure 6.3: FDR: Ideal Functionality for duplicate revision

FMA.Initialize:
1. Accusers ← ∅

FMA.AddAccusation:
1. Receive D from user U
2. Accusers[D] ← Accusers[D]∪{U}

FMA.OpenAccusations:
1. Receive D
2. output Accusers[D]

Figure 6.4: FMA: Ideal Functionality for matching accusations

Game G10: (Discarding duplicate accusations using DIPRF can be simulated with access to

49

FDR). First, let WhoToo+
10 be as WhoToo+

9 but where steps 6 through 10 are replaced by a
call to FDR.CheckDuplicate.

Consider the functionality FDR in Figure 6.3. We show that there exists an adversary
A10 with access to ideal functionality FDR such that the execution of WhoToo+

9 under A9 is
computationally indistinguishable from A10 interacting with WhoToo+

10.

For the simulation, we remember our strategy in game G3: instead of simulating the
execution of DIPRF operations by an adversary who can select skd (as in [33]), we proceed by
simply returning random values whenever DIPRF.Calculate is invoked with the same value.
This approach, however, does not work here as the input to DIPRF.Calculate is secret shared
and unknown to the simulator. To make it work, it suffices to consider that no honest user
will ever submit duplicated accusations (same pair (D,R)). So, the (centralized) operation
DIPRF.Calculate returns a random value each time is invoked in line 7 of WhoToo+.VerifyAcc
with an accusation by an honest user. If invoked by a corrupted user, the simulator has access
to (s, τ) so DIPRF.Calculate can distinguish whether it was invoked with a new accusation (ie.
new pair (s, τ)) or an existant accusation (ie. a pair (s, τ) already queried to DIPRF.Calculate).
This strategy suffices to simulate WhoToo+ when FDR is called instead of lines 6 through 10.

At this point, we have shown that A9 interacting with WhoToo+
9 can be computationally

simulated by A10 interacting with WhoToo+
10.

Game G11: (Identifying matching accusations using DistIBE can be simulated with access
to FMA). Let WhoToo+

11 be WhoToo+
10 where the DistIBE operations are replaced by calls to

FMA (Figure 6.4) as follows:

• DistIBE.Setup in WhoToo+.Accuse, line 5, is replaced by and FMA.Initialize,

• DistIBE.Enc in WhoToo+.Accuse, line 3, is replaced by and FMA.AddAccusation,

• DistIBE.KeyGen in WhoToo+.OpenAccusations, line 3, and

• DistIBE.Dec in WhoToo+.OpenAccusations, line 6.

We argue that the A10 on WhoToo+
10 can be simulated by a new adversary on WhoToo+

11.

It suffices to show the following: (1) IBE.setup can be simulated by an adversary with
oracle access to FMA.Initialize, (2) DistIBE.Enc can be simulated (computed) from already
shared values, (3) IBE.KeyGen correctly compute the secret key from {s}, and (4) IBE.Dec
does not reveal any information on any ciphertext except those encrypted under identity s.
All of them are direct, except (4) which follows from the ANON-IND-ID-CPA property for
IBE.

Game G12: (Simulate accusations (by both honest and corrupted users)).

Let WhoToo+
12be as WhoToo+

11but where accusations by honest and corrupted users are
simulated.

Let acc be an accusation made by an honest user. ElGamal encodings cD, es, cR are
simulatable because they are indistinguishable from encodings of random values. σ can be

50

simulated by signing with any identity from the group, following the anonymity of BBS
signatures. Shares ω, ωτ are also indistinguishable from shares of random values. Finally, j
and dj are also indistinguishable from random values given that j is chosen at random and dj
is the result of a PRF. The resulting shares of DIMAC.Verify can be produced by the honest
majority of servers so that they reconstruct to the required value so it can be verified.

Let acc be an accusation made by a dishonest user. At this point we know that there are
no malformed accusations, as we have removed invalid accusations. Therefore, considering
there is an honest majority of servers, the simulator controls all shared secret keys. Following
the traceability property of group signatures, R can be obtained from cR. Furthermore, given
that π1 is a zero-knowledge proof of cD, D can be extracted. Then, the simulator can map R
to U and send (D,U) to FWhoToo+ . If the quorum is reached, the simulator can adapt the shares
of honest servers in order to obtain the matching accusations output by FWhoToo+ . Because
there is an honest majority, the simulator controls the ElGamal, BBS, DIPRF, DIMAC and
DistIBE secret keys and therefore this is simulatable. We conclude that the execution of
WhoToo+

12under A12is indistinguishable from the execution of WhoToo+
11under A11.

Game G13: We argue this is the ideal world with the ideal adversary interacting with the
ideal WhoToo+ functionality. This concludes the proof.

51

Chapter 7

Implementation and Efficiency

In this chapter we describe the WhoToo+ prototype, explaining its main components (Section
7.1). Using this prototype we provide an experimental efficiency analysis, comparing the time
taken to setup the system and to make new accusations in WhoToo and WhoToo+(Section
7.2.2). We also present a theoretical efficiency analysis, describing the changes in numbers
of offline and online distributed operations (Section 7.2.1).

7.1 Prototype

We built our prototype in Python using the charm-crypto framework [22] for all bilinear
group operations. We use the 254-bit BN254 Barreto-Naehrig curve [8] implemented in
the PBC library [48]. The prototype is open source, and it can be accessed on https:
//github.com/ilanamt/WhoTooPlus.

We modeled servers and users by creating a Server and a User class. They all had
public attributes that could be accessed by other servers in order to receive information.
For example, each user has a public attribute da_shares which the DA servers update with
shares they need to send the user.

In order to model operations that servers could compute locally in parallel, we use threads
provided by the tqdm library [26]. Because of the Python Global Interpreter Lock (GIL) [4],
threads can not really be executed simultaneously. Nevertheless, most operations where
actually executed faster when using threads. Even tough some were slower, we used threads
for consistency. A possible solution would have been to use multiprocessing, however, the
overhead of creating processes was greater than the time gained by using multiprocessing.
When all servers have to compute the same value and agree, the computation is only done
once.

The prototype consists of classes ElGamal, SecShare, DistBBS, DistIBE, DIMAC,
PrivatePoly, WTSet (Privacy-Preserving Multisets), which provide all functionalities de-
scribed in Chapter 2, together with the class WhoToo which implements all algorithms de-
scribed in Figure 6.1 (without updates).

52

https://github.com/ilanamt/WhoTooPlus
https://github.com/ilanamt/WhoTooPlus

During distributed operations, if any verification fails, an exception is raised indicating
the id’s of the verifier and the server that sent that verification value.

In order to increase efficiency, we implement SecShare.Mult using Beaver triples [9]. This
means the prototype pre-computes and secret shares triples ({a}, {b}, {c}) where a and b are
chosen uniformly and independently in Zp and c = a · b. Then, given shared values {x} and
{y}, the shares of z = x · y can be calculated almost without interaction.

Let DAi hold shares xi, yi, ai, bi and ci. In order to obtain zi, it computes the following:

1. di ← xi − a
2. ei ← yi − b
3. Publish (di, ei)

4. d← {d}
5. e← {e}
6. zi ← ci + xi · e + yi · d− e · d

These triples are computed during initialization, together with a set number of sharings of
random values and IBE values (C2, C3, {dec}, {t}, {s ∗ t−1}). Calculating this values during
initializations allows the process of submitting new accusations to be more efficient.

In main.py we show an example of use. Additionally, we provide unit tests for each
component of the prototype.

7.2 Efficiency Analysis and Discussion

7.2.1 Theoretical Efficiency

This section analyzes the differences in efficiency between the original protocol and WhoToo+.
We argue that if there is a backlog of at least 5 unopened accusations, WhoToo+ is significantly
more efficient than WhoToo.

Let N be the total number of accusations in the system and m the total number of valid
users. Notice that all generations of random values can be pre-computed.

Duplicate Revision

In the original protocol, the user did not need to compute any values specifically for this
purpose. During verification, the servers had to run Equal N times. This equality testing
requires 3 interactive operations. Then, the duplicate revision had a cost of 3N online
distributed operations. This is the cost of comparing one encoded value per accusation,
however, if we assume this process had to be computed for es and cR, the total would
increase to 6N distributed operations.

The WhoToo+ alternative adds distributed operations to the initialization, but it requires
only a constant amount of online distributed operations. In WhoToo+.Initialize, the DA must
generate a public and distributed private key, which requires 2 distributed operations, and

53

compute k DIMACs for each user. Running DIMAC.Tag requires six threshold operations.
This means we added 5mk + 3 distributed operations to initialization. However, all of these
values can be pre-computed. During verification, the servers need to compute one DIPRF
and a DIMAC verification. Each of those requires four distributed operations (where one can
be pre-computed). The addition of shares is performed locally. This means that verification
requires 2 offline and 6 online distributed operations.

Matching accusations

Just as in the duplicate revision, the original protocol did not need to compute any distributed
operations for matching accusations, yet run Equal N times during WhoToo.OpenAccusations,
resulting in 3N online threshold operations.

On the other hand, similarly to the duplicate revision, WhoToo+ proposes an alternative
that increases the number of interactive operations during initialization and accusation sub-
mission, but requires only a constant number of online distributed operations.

During initialization, the DA servers have to run DistIBE.Setup to create a public and
distributed private key, which requires 2 offline interactive operations.

For the following analysis, observe that SecShare.MultExp requires 2 offline and 4 online in-
teractive operations which entails that DistIBE.Enc requires 9 offline and 13 online distributed
operations. Furthermore, DistIBE.KeyGen requires 1 online and 1 offline operation.

Consequently, during WhoToo+.Accuse the servers perform 9 offline and 13 online opera-
tions when they encrypt for identity s and during the execution of WhoToo+.OpenAccusations
they compute 1 online and 1 offline operation to generate the key for identity s.

Set.Quorum

Even though Set.Quorum was modified, the number of distributed operations does not change
for this component. In both WhoToo and WhoToo+ the servers compute n+ q+ 5 offline and
n+2 online interactive operations. The offline operations come from random generations and
computations of random values. Online operations come from the n exponentiations needed
to evaluate the polynomial (F ·R)(q) on s together with the multiplication of s by a random
t and the reconstruction of that product.

General Results

Table 7.1 presents the main results, showing the total number of distributed operations
required for duplicate revision (DR) and matching accusations (MA) in both WhoToo and
WhoToo+.

Even though there is a big increase in the number of offline distributed operations, they can
be pre-computed and do not affect scalability. If there is a backlog of at least 3 unopened
accusations, WhoToo+ is more efficient than WhoToo. At the same time, if we consider
only online operations for MA, we can see that if there is a backlog of at least 5 unopened
accusations, WhoToo+ is more efficient, while RD is more efficient with a backlog of 2 unopened
operations.

54

RD
Offline

RD
Online

MA
Offline

MA
Online

Quorum
Offline

Quorum
Online

Total
Offline

Total
Online

WhoToo 0 6N 0 3N N + q + 5 N + 2 N + 2 10N + 2

WhoToo+ 5(mk + 1) 6 12 14 N + q + 5 N + 2
5mk +N
+q + 22

N + 22

Table 7.1: Efficiency comparison given a total number N of accusations, m valid users, a
maximum number k of accusations per user and quorum q.

In Figure 7.1, we can see the comparison for the number of online interactive operations
for finding matching accusations (MA) and duplicate revision (RD) in the original protocol
and in WhoToo+. Using distributed IBE and DIPRF as described in Chapter 5 results in
having a constant number (20) online distributed operations, whereas WhoToo required 9N
online distributed operations for this processes.

Figure 7.1: Efficiency comparison for RD and MA Online Operations

Figure 7.2 shows the theoretical difference of the total number of required online opera-
tions. Notice that even though both protocols are proportional to the number of unopened
accusations, WhoToo becomes significantly more inefficient as the backlog increases.

7.2.2 Experimental Efficiency

In this section we show results for the experimental efficiency measured using the prototype
described in Section 7.1 on an Intel Core i9 CPU and 32 GB of RAM. All of the following
data is run for fixed quorum q = 2.

55

Figure 7.2: Comparison of Total Online Operations

Offline Operations

We measured initialization time, which includes the pre-computation of all MAC values,
|ValidAccusers|/4 random values and |ValidAccusers|/4 IBE values, this is, shares of dec, t
and s · t−1 as well as C2 and C3.

Figure 7.3 shows the initialization time for different numbers of users with fixed number
of MACs per user k = 3. As expected, the measured time is proportional to the number of
users. This is consistent with the theoretical efficiency shown in Table 7.1.

For all following experiments, we fix the number of users (|ValidAccusers|) to 100. We also
measured initialization time depending on the number of MACs per user. This results are
shown in Figure 7.4. Again, as expected, initialization time is proportional to the number of
MACs per user (k), which define the maximum number of accusations each user can make.

Although initialization takes time, it only need to be run once. At the Faculty of Physical
and Mathematical Sciences (FCFM) of Universidad de Chile, there are approximately 5000
students. If we follow the linear interpolation of Figure 7.3, we can predict that initialization
for FCFM for would take approximately 3.5 hours. We believe this is a reasonable amount
of time for a practical solution.

Online Operations

We now present experimental results of efficiency for online operations. We measure the
time taken to submit and process a new accusation. Figure 7.5 shows the measured time for
accusations that reach the quorum and those who do not reach it. Both results depend on
the number of accusations in the system as expected. Accusations that reach the quorum

56

Figure 7.3: Initialization Time for Different Numbers of Users

Figure 7.4: Initialization Time for Different Numbers of MACs per User

57

take longer because the servers need to find which accusations are the ones that match
(MA). Even though WhoToo+ requires a constant number of online distributed operations,
we observe that both lines are not parallel, which means that MA takes longer if there
is a bigger backlog of unopened accusations. This is probably due to the fact that even
though servers can locally decrypt IBE values to find matching accusations (and therefore
do it in parallel), there are still more values to decrypt if there are more accusations in the
system. Moreover, as explained in Section 7.1, our prototype is not really able to run all
local operations simultaneously. Nevertheless, the difference in slope is not significant when
compared to the original WhoToo protocol, which will be argued in what follows.

Figure 7.5: Online Time for Submission of New Accusations in WhoToo+

In order to compare the efficiency of WhoToo+ with WhoToo, we simulated the efficiency
of the original protocol by removing the DIPRF, DIMAC and IBE schemes and adding N
distributed decryptions when adding a new accusation and N distributed decryptions when
the quorum was reached, where N is the number of accusations in the system. Therefore,
the times measured for the WhoToo protocol are not exact but the data shown can be
considered a lower bound for WhoToo efficiency, as we are not running the full protocol, yet
all computations would be required in an implementation of WhoToo.

In Figure 7.6 we can observe the difference in time taken to submit a new accusation
when that accusation does not reach the quorum depending on the number of accusations in
the system. The slope of WhoToo is sigificantly greater than the one of WhoToo+, which re-
flects the efficiency gained by using the DIPRF for duplicate revision. When there is a small
number of accusations, WhoToo is more efficient because comparing the new accusation to
all previous ones is still faster than verifying the DIMAC and computing the DIPRF. If the
backlog of unopened accusations is 10 or greater, WhoToo+ is more efficient and the difference
increases with the number of accusations in the system. This confirms our theoretical effi-
ciency analysis with a slight difference. In the previous section, we argued that our protocol

58

is more efficient with only 5 unopened accusations (instead of 10), however, the prototype
does not pre-compute all possible values, it only calculates random values and IBE values
during initialization, which could explain this difference.

Figure 7.6: Online Time for Submission of New Accusations that Don’t Reach the Quorum

59

Figure 7.7 shows the differences when the new accusations reach the quorum. This results
reflect the efficiency gained by both of our improvements: DIPRF for duplicate revision and
IBE for finding matching accusations. This results are very similar to the case of accusations
that do not reach the quorum, but with a greater difference between the slopes. This makes
sense because having both improvements causes a greater efficiency improvement.

Figure 7.7: Online Time for Submission of New Accusations that Reach the Quorum

Finally, Figure 7.8 shows times measured for new accusations in both cases for each
protocol. Notice that the pink and yellow lines, which represent WhoToo+ accusations for
each case, are almost parallel. Their slopes are appreciably more similar than the green and
blue lines, which represent WhoToo accusations. This reflects the fact that using IBE for
finding matching accusations requires a constant number of distributed operations, whereas
WhoToo requires O(N). Even though the time needed for a new accusation depends on the
number of accusations in the system for both WhoToo and WhoToo+, the second protocol is
significantly more efficient for all kinds of accusations. We believe that the approximately
30 seconds taken to process the 100th accusation is a reasonable amount of time for a real
world implementation.

60

Figure 7.8: Comparison of Online Time for Submission of New Accusations

61

Chapter 8

Concluding Remarks and Future Work

8.1 Concluding Remarks
The design of a protocol for sexual assault reporting needs to have its users in mind. The
process of reporting is extremely difficult and it is much easier to address the problem only
from an engineering perspective, adding as many functionalities and options as possible.
However, a protocol that does not consider the opinions of experts and potential users might
not be a solution at all.

We concluded that a protocol of this kind needs to be distributed and to guarantee secrecy,
anonymity, accountability and meta-data hiding. Furthermore, victims have to be able to
choose if they want to be contacted for further investigation and they need to be able to
change their minds.

People will only use a system they can trust. We realized that trust comes not only from
hiding private information, but also from publishing periodic statistics that do not reveal
sensitive data.

We designed WhoToo+ with all of these ideas in mind. We fixed the gaps in the original
WhoToo description and improved its efficiency. Using a sequence of games, we proved that
this protocol does not reveal any more information than its ideal functionality.

Finally, we built an open source prototype, which can be used as a starting point for a
real life implementation of WhoToo+.

8.2 Future Work
As discussed in Section 5.1 having different matching criteria could be useful in contexts
where victims do not necessarily know the identity of the person they are accusing. There
could be different matching criteria depending on the information victims can provide.

Additionally, it would be beneficial to propose an extension of WhoToo+ that allows to
specify the quorum for each accusation (within a limited range, as discussed in Section 5.2)

62

without the need for a separate polynomial for each quorum.

An important contribution of future work would be to fully implement and apply WhoToo+.
As mentioned in Section 7.1, it is necessary to implement secure channels for real Servers
and Users. A real world implementation should also add verifiability to all implemented
threshold operations. Most of these verifications are included in the prototype, however,
operations like multiplication and inversion should use the verification values of the original
shares to provide verification for the resulting shares. In the prototype, if some verification
fails, the protocol halts. In a real world implementation, if a majority of servers agree that
some specific server is not behaving as it should, they should be able to remove that server
and continue with the rest of the protocol. Finally, opened accusations should be removed
from the Accusations set (not from the polynomial), so that they can be directly compared
to new open accusations without repeating the distributed decryption process.

63

Chapter 9

Bibliography

[1] M. Abdalla, M. Bellare, and P. Rogaway. The Oracle Diffie–Hellman Assumptions and
an Analysis of DHIES. In CT-RSA 2001, page 143–158. Springer, 2001.

[2] Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno, Tanja
Lange, John Malone-Lee, Gregory Neven, Pascal Paillier, and Haixia Shi. Searchable
Encryption Revisited: Consistency Properties, Relation to Anonymous IBE, and Exten-
sions. In CRYPTO 2005, pages 205–222. Springer, 2005.

[3] Michel Abdalla, Mihir Bellare, and Gregory Neven. Robust Encryption. Journal of
Cryptology, 31(2):307–350, 2018.

[4] Abhinav Ajitsaria. What is the python global interpreter lock (gil)? Last accessed 11
June 2021.

[5] Venkat Arun, Aniket Kate, Deepak Garg, Peter Druschel, and Bobby Bhattacharjee.
Finding Safety in Numbers with Secure Allegation Escrows. In NDSS 2020. The Internet
Society, 2020.

[6] Karim Baghery. CO6GC: Introduction to Zero-Knowledge Proofs (Part 1). In Cosic
Guide To Crypto, KU Leuven, 2020.

[7] J. Bar-Ilan and D. Beaver. Non-Cryptographic Fault-Tolerant Computing in Constant
Number of Rounds of Interaction. In PODC’89, page 201–209. ACM, 1989.

[8] Paulo S. L. M. Barreto and Michael Naehrig. Pairing-Friendly Elliptic Curves of Prime
Order. In SAC’05, page 319–331. Springer, 2005.

[9] Donald Beaver. Efficient multiparty protocols using circuit randomization. In Joan
Feigenbaum, editor, Advances in Cryptology — CRYPTO ’91, pages 420–432, Berlin,
Heidelberg, 1992. Springer Berlin Heidelberg.

[10] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of Group Sig-
natures: Formal Definitions, Simplified Requirements, and a Construction Based on

64

General Assumptions. In EUROCRYPT 2003, LNCS, pages 614–629. Springer, 2003.

[11] Mihir Bellare and Phillip Rogaway. Introduction to Modern Cryptography. In UCSD
CSE 207 Course Notes, page 207, 2005.

[12] Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of Group Signatures: The
Case of Dynamic Groups. In CT-RSA, 2004.

[13] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness Theorems for
Non-Cryptographic Fault-Tolerant Distributed Computation. In STOC’88, page 1–10.
ACM, 1988.

[14] Johannes Blömer, Jakob Juhnke, and Nils Löken. Short Group Signatures with Dis-
tributed Traceability. In the 6th International Conference on Mathematical Aspects of
Computer and Information Sciences, volume 9582, page 166–180. Springer, 2015.

[15] Dan Boneh and Xavier Boyen. Efficient Selective-ID Secure Identity-Based Encryption
Without Random Oracles. In EUROCRYPT 2004, pages 223–238. Springer, 2004.

[16] Dan Boneh and Xavier Boyen. Short Signatures Without Random Oracles. In Advances
in Cryptology - EUROCRYPT 2004, pages 56–73. Springer, 2004.

[17] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short Group Signatures. In CRYPTO
2004, pages 41–55. Springer, 2004.

[18] Sean Bowe. BLS12-381: New zk-SNARK Elliptic Curve Construction, 2018. https:
//z.cash/blog/new-snark-curve.

[19] Callisto Homepage. https://www.mycallisto.org/. Last accessed 10 Mar 2021.

[20] Ran Canetti. Universally Composable Security. J. ACM, 67(5), September 2020.

[21] D. Cantor, B. Fischer, S. Chibnall, S. Harps, R. Townsend, G. Thomas, H. Lee, V. Kranz,
R. Herbision, and K. Madden. Report on the AAU Campus Climate Survey on Sexual
Assault and Misconduct. Westat for the Association of American Universities (AAU),
2020.

[22] Charm: A tool for rapid cryptographic prototyping. http://charm-crypto.io/. Last
accessed 15 Mar 2021.

[23] David Chaum and Torben Pryds Pedersen. Wallet databases with observers. In Ernest F.
Brickell, editor, Advances in Cryptology — CRYPTO’ 92, pages 89–105, Berlin, Heidel-
berg, 1993. Springer Berlin Heidelberg.

[24] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. Verifiable Secret
Sharing and Achieving Simultaneity in the Presence of Faults (Extended Abstract). In
FOCS, pages 383–395. IEEE Computer Society, 1985.

[25] Sandro Coretti, Ueli Maurer, and Björn Tackmann. Constructing Confidential Channels

65

https://z.cash/blog/new-snark-curve
https://z.cash/blog/new-snark-curve
https://www.mycallisto.org/
http://charm-crypto.io/

from Authenticated Channels—Public-Key Encryption revisited. In Kazue Sako and
Palash Sarkar, editors, Advances in Cryptology—ASIACRYPT 2013, volume 8269 of
LNCS, pages 134–153. Springer, 12 2013.

[26] Casper da Costa-Luis, Stephen Karl Larroque, Kyle Altendorf, Hadrien Mary, richard-
sheridan, Mikhail Korobov, Noam Yorav-Raphael, Ivan Ivanov, Marcel Bargull, Nis-
hant Rodrigues, Guangshuo CHEN, Antony Lee, Charles Newey, James, Joshua Coales,
Martin Zugnoni, Matthew D. Pagel, mjstevens777, Mikhail Dektyarev, Alex Rothberg,
Alexander, Daniel Panteleit, Fabian Dill, FichteFoll, Gregor Sturm, HeoHeo, Hugo van
Kemenade, Jack McCracken, Max Nordlund, and Nikolay Nechaev. tqdm: A fast, Ex-
tensible Progress Bar for Python and CLI, June 2021.

[27] Yevgeniy Dodis and Aleksandr Yampolskiy. A Verifiable Random Function with Short
Proofs and Keys. In Serge Vaudenay, editor, PKC 2005, pages 416–431. Springer, 2005.

[28] Rafael Dowsley, Jörn Müller-Quade, Akira Otsuka, Goichiro Hanaoka, Hideki Imai, and
Anderson Nascimento. Universally composable and statistically secure verifiable secret
sharing scheme based on pre-distributed data. IEICE Transactions, 94-A:725–734, 01
2011.

[29] Taher ElGamal. A Public Key Cryptosystem and a Signature Scheme based on Discrete
Logarithms. IEEE Transactions on Information Theory, 31(4):469–472, 1985.

[30] Taher ElGamal. A Public Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms. In George Robert Blakley and David Chaum, editors, CRYPTO 1985, pages
10–18. Springer, 1985.

[31] Amos Fiat and Adi Shamir. How To Prove Yourself: Practical Solutions to Identification
and Signature Problems. In CRYPTO’ 86, pages 186–194. Springer, 1987.

[32] Rosario Gennaro, Stanisław Jarecki, Hugo Krawczyk, and Tal Rabin. Robust Threshold
DSS Signatures. In EUROCRYPT ’96, pages 354–371. Springer, 1996.

[33] Rosario Gennaro, Stanisław Jarecki, Hugo Krawczyk, and Tal Rabin. Secure Distributed
Key Generation for Discrete-Log Based Cryptosystems. J. of Cryptology, 20:51–83, 2006.

[34] Rosario Gennaro, Michael O. Rabin, and Tal Rabin. Simplified VSS and Fast-Track
Multiparty Computations with Applications to Threshold Cryptography. In PODC ’98,
pages 101–111. ACM, 1998.

[35] Craig Gentry. Practical Identity-Based Encryption Without Random Oracles. In
EUROCRYPT 2006, pages 445–464. Springer, 2006.

[36] Jens Groth. Short Non-interactive Zero-Knowledge Proofs. In Advances in Cryptology
- ASIACRYPT 2010 - 16th International Conference on the Theory and Application of
Cryptology and Information Security, volume 6477 of LNCS, pages 341–358. Springer,
2010.

[37] Alejandro Hevia and Ilana Mergudich-Thal. Implementing Secure Reporting of Sexual

66

Misconduct - Revisiting WhoToo. In Patrick Longa and Carla Ràfols, editors, Progress
in Cryptology - LATINCRYPT 2021 - 7th International Conference on Cryptology
and Information Security in Latin America, Bogotá, Colombia, October 6-8, 2021,
Proceedings, volume 12912 of LNCS, pages 341–362. Springer, 2021.

[38] Alejandro Hevia and Daniele Micciancio. An Indistinguishability-Based Characterization
of Anonymous Channels. In Proceedings of the 8th International Symposium on Privacy
Enhancing Technologies, PETS ’08, page 24–43. Springer, 2008.

[39] María Jesús Ibáñez. Universidad de Chile presenta primeros resultados
de estudio de acoso sexual. https://www.uchile.cl/noticias/124410/
u-de-chile-presenta-primeros-resultados-de-estudio-de-acoso-sexual.
Last accessed 18 May 2020.

[40] Markus Jakobsson and Ari Juels. Mix and Match: Secure Function Evaluation via
Ciphertexts. In Tatsuaki Okamoto, editor, Advances in Cryptology — ASIACRYPT
2000, pages 162–177. Springer, 2000.

[41] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography, Second
Edition. Chapman & Hall/CRC, 2nd edition, 2014.

[42] Lea Kissner and Dawn Song. Privacy-Preserving Set Operations. In CRYPTO 2005,
pages 241–257. Springer, 2005.

[43] Benjamin Kuykendall, Hugo Krawczyk, and Tal Rabin. Cryptography for #MeToo.
POPETS, 2019(3):409–429, 2019.

[44] Yehuda Lindell. How to Simulate It – A Tutorial on the Simulation Proof Technique,
pages 277–346. Springer International Publishing, Cham, 2017.

[45] Yehuda Lindell. Zero-knowledge proofs of knowledge slides, 2018. Center for Research
in Applied Cryptography and Cyber-Security, Bar-Ilan University.

[46] A. Lizama-Lefno and A. Hurtado-Quiñones. Acoso Sexual en el Contexto Universi-
tario: Estudio Diagnóstico Proyectivo de la Situación de Género en la Universidad de
Santiago de Chile 2019. Pensamiento Educativo. Revista de Investigación Educacional
Latinoamericana, pages 1–14, 2019.

[47] Ben Lynn. Notes: Zero knowledge proofs. https://crypto.stanford.edu/pbc/notes/
crypto/zk.html. Last accessed 13 June 2021.

[48] Lynn, B. PBC Library. https://crypto.stanford.edu/pbc/, Last accessed May 2021.

[49] Ueli Maurer and Pierre Schmid. A Calculus for Security Bootstrapping in Distributed
Systems. Journal of Computer Security, 4(1):55–80, 1996.

[50] R. E. Morgan and B. A. Oudekerk. Criminal Victimization, 2018. Bureau of Justice
Statistics, U.S. Department of Justice, 2019.

67

https://www.uchile.cl/noticias/124410/u-de-chile-presenta-primeros-resultados-de-estudio-de-acoso-sexual
https://www.uchile.cl/noticias/124410/u-de-chile-presenta-primeros-resultados-de-estudio-de-acoso-sexual
https://crypto.stanford.edu/pbc/notes/crypto/zk.html
https://crypto.stanford.edu/pbc/notes/crypto/zk.html
https://crypto.stanford.edu/pbc/

[51] Moni Naor, Benny Pinkas, and Omer Reingold. Distributed Pseudo-random Functions
and KDCs. In EUROCRYPT ’99, pages 327–346. Springer, 1999.

[52] National Sexual Violence Resource Center. False Reporting. Last accessed 17 May 2021.

[53] H. Okano, K. Emura, T. Ishibashi, Ohigashi, T., and T. Suzuki. Implementation of
a Strongly Robust Identity-Based Encryption Scheme over Type-3 Pairings. IJNC,
10(2):174–188, 2020.

[54] T. P. Pedersen. Non-Interactive and Information-Theoretic Secure Verifiable Secret
Sharing. In Advances in Cryptology — CRYPTO ’91, pages 129–140. Springer, 1992.

[55] Project Callisto 2017-2018 Year Report. Last accessed 18 May 2020.

[56] A. Rajan, L. Qin, D. W. Archer, D. Boneh, T. Lepoint, and M. Varia. Callisto: A Cryp-
tographic Approach to Detecting Serial Perpetrators of Sexual Misconduct. COMPASS,
2018:1–4, 2018.

[57] Burton Rosenberg. Probabilistic Polynomial Time Algorithms and Cryptography, 2021.
University of Miami CSC507/609-B: Cryptography Course Notes, https://www.cs.
miami.edu/home/burt/learning/csc609.221/.

[58] C. P. Schnorr. Efficient Signature Generation by Smart Cards. J. Cryptol., 4(3):161–174,
1991.

[59] Adi Shamir. How to Share a Secret. Comm. of the ACM, 22(11):612–613, 1979.

68

https://www.cs.miami.edu/home/burt/learning/csc609.221/
https://www.cs.miami.edu/home/burt/learning/csc609.221/

Chapter 10

Appendix

10.1 Focus Groups’ Guideline

We now present the guidline used for the Focus Groups with different groups of students at
Universidad de Chile.

1. Introducción y explicaciones generales
(a) Bienvenida, agradecimiento por su tiempo

“Me ayudan muchísimo con el tiempo que me están dando”
(b) Presentarme brevemente

“Ilana, haciendo mi tesis en magíster DCC, en ese marco voy a hacer estar re-
uniones para que me puedan ayudar con algunos inputs para mi tesis, después les
voy a explicar mas en detalle.”

(c) Definir reglas
“Algunas cosas importantes”
i. Información es confidencial, sólo será usada para definir ciertas cosas de mi

tesis
ii. Es importante que todas opinen

“La idea es que todas puedan dar su opinión, es super importante la opinión
de todas. Típicamente hay gente más buena para hablar y otra no tanto, ojalá
las que son mejores para hablar hagan un esfuerzo por darle un espacio a las
demás y las que les cuesta más, ojalá hagan un esfuerzo por ir opinando, para
que yo pueda saber que piensa cada una.”

iii. No hay respuestas correctas ni incorrectas
“La opinión personal y experiencia de cada una es super importante para mi
así que siéntanse super libres de decir lo que sientan lo que quieran lo que
opinan. A mi me ayudan mucho más si son lo más honestas posibles. A mi
no me va a ir mejor ni peor en mi tesis porque a ustedes les gusten las cosas
que yo propongo, al contrario, lo que yo necesito es de verdad saber si les
parece o no les parece de la manera mas honesta posible, es la mejor manera
de ayudarme.”

69

iv. Preguntar por grabación
“El tema que vamos a hablar es delicado y en ese sentido les agradezco un
montón la apertura de estar acá y quería preguntarles, a mi me ayudaría
muchísimo si pudiera grabara esta reunión porque sino tendría que acordarme
o tomar apuntes y eso hace que las pueda escuchar con menos atención. De
repente no grabar el zoom pero grabar el puro audio con mi celular, y les
prometo que después solo lo voy a usar para tomar apuntes y después lo voy
a borrar. Si prefieren que no, no lo voy a grabar. Díganme pero si no les
importa me harían demasiado mas fácil la pega. Les parece que grabe o no?
Voy a grabar entonces desde ahora, desde este minuto”

v. Abrir espacio para preguntas
(d) Presentaciones

“Para partir vamos a pedir que nos presentemos, cada una con su nombre, en que
están en la u, con quien viven si quieren, cosas que les gustan, lo que quieran
contar, pero cortito. Partamos con x. Para terminar yo soy Ilana como les dije,
estoy en 6to año del DCC trabajando en mi tesis, vivo con mi mamá y con mi
hermana y con mi perro que amo que se llama Lambda y anda por aquí y amo la
computación o bla. Ya, estamos listas entonces, vamos a partir.”

2. Acoso en la Universidad
(a) Asosiación espontánea

• Vamos a partir con una especie de juego ya? Yo voy a decir una palabra
y ustedes me van a decir todo todo lo que se les venga a la mente cuando
yo digo esa palabra. Pueden ser otras palabras, frases, colores, emociones,
sensaciones, ideas, lo que sea ya?

• Todas hablen nomas, aquí no hay que pedir la palabra
• Ya, todo lo que se les viene a la mente cuando digo sol
• Super, lo hicieron super bien
• Ahora vamos a hacer lo mismo, todo lo que se les viene a la mente cuando yo

digo acoso en la universidad
– En que sentido esto, en que sentido lo otro
– Lo que estoy entendiendo es x, les pido que me corrijan si me equivoco

(b) Experiencias Experiencias de ellas o personas cercanas
• ¿Han denunciado o no?
• ¿Por qué han denunciado o no?
• ¿Por qué a veces si y a veces no?
• ¿Cuales son las barreras para denunciar?
• ¿Como tiene que ser el espacio, que condiciones tienen que cumplirse para que

uno denuncie?
3. Temas específicos

• Explicar mi idea, contarles de Callisto
• Quórum

– ¿Les hace sentido?
– ¿Fijo o variable?

70

– Si fijo, ¿cuánto?
– Si variable, ¿se puede modificar después?

• Expiración de denuncias
– ¿Les hace sentido?
– ¿Fijo o variable?
– Si fijo, ¿cuánto?
– Si variable, ¿se puede modificar después?

• Categorías de denuncias
– Ejemplo: comentarios machistas/inapropiados, acoso sexual, abuso sexual
– En protocolo de la UChile: acoso sexual, violencia de genero, acoso laboral,

discriminación arbitraria
– ¿Les hace sentido tener categorías?
– ¿Cómo/cuáles deberían ser estas categorías?
– ¿Les hacen sentido las categorías del protoolo UChile?
– ¿Les gustaría poder elegir si el quórum debe juntarse con puras personas de

su misma categoría? ¿O esa y "mayores"?
– ¿Quién define categorías y orden de gravedad? ¿Autoridad universitaria?
– ¿Que pasa con denuncias anteriores si categorías cambian o orden de gravedad

cambia?
• Meta información

– ¿Qué información debería ocultarse y qué información no?
– Total de denuncias
– Total de denuncias por carrera, por departamento
– Promedio de quórum escogido
– Si hay mas de n denuncias contra alguien (¿quórum máximo? ¿en ese caso

solo revelar denunciado?)
– Cantidad de matches parciales

• Factores de matching
– ¿En su experiencia o la de personas cercanas, que información conocen la

persona a la que denunciarían?
– ¿Qué les parecería la siguiente propuesta?

∗ Match con nombre completo, rut, mail o usuario de redes sociales
∗ Match si calzan al menos 3 factores "secundarios" (nombre de pila, apodo,

carrera/especialidad, año de ingreso a la universidad)
• Sistema distribuido: ¿Les da mas confianza que el sistema sea distribuido (ej: un
servidor en el cec, uno el DCC, uno en el DSTI)

• Otros: ¿A alguien se le ocurre cualquier otra cosa de la que no hayamos hablado
y pueda servir?

4. Agradecimientos y Cierre

71

	List of Tables
	List of Figures
	Introduction
	Background and Motivation
	Problem
	Hypothesis
	Objectives
	General objective
	Specific objectives

	Methodology
	Contributions
	Related Work
	Callisto
	Who Too
	Secure Allegations Escrow (SAE)

	Structure

	Cryptographic Tools
	Preliminaries
	Notation
	Probabilistic Polynomial Time (PPT) Algorithm
	Bilinear pairings
	Computational Assumptions
	Communication channels
	Security Requirements and Threat Model

	Building Blocks
	Pseudo-Random Functions:
	Hash Function
	Message Authentication Code (MAC)
	ElGamal Encryption
	Zero-knowledge proofs
	Threshold Operations
	Distributed Group Signatures
	Privacy-Preserving Multisets

	A First Review of WhoToo
	Protocol Overviews
	WhoToo: An Introduction
	WhoToo+ Overview

	Two Issues in WhoToo
	Securely Evaluating Quorum in WhoToo
	Identifying Duplicated Accusations

	Improving WhoToo
	Duplicate Revision
	Distributed Input Pseudorandom Functions (DIPRF):
	Avoiding mismatched accusations:

	Matching accusations

	Variants and Extensions
	Discarded ideas
	Flexible quorum
	Role
	Unknown perpetrator
	Additional Public Information
	Contact for further investigation
	Repetition counter

	Updates

	Description and Security of the New Protocol
	WhoToo+ Description
	Security Analysis

	Implementation and Efficiency
	Prototype
	Efficiency Analysis and Discussion
	Theoretical Efficiency
	Experimental Efficiency

	Concluding Remarks and Future Work
	Concluding Remarks
	Future Work

	Bibliography
	Appendix
	Focus Groups' Guideline

