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PRICE CHANGES AND COMPETITION BETWEEN FRENCH RETAILERS

El análisis de los cambios de precios es fundamental para la evaluación de diferentes as-
pectos de la macroeconomía y, en particular, para el diseño de políticas monetarias óptimas
[16]. En el contexto del mercado minorista, muchos estudios han analizado empíricamente la
frecuencia y la magnitud de los cambios de precios [1, 21, 6, 10, 16], mientras que diferentes
modelos han abordado teóricamente la dispersión y los ajustes de precios en ambientes com-
petitivos [18, 19, 22, 11]. No obstante, hay pocos estudios que aborden la competencia entre
cadenas de retail de manera empírica [3]. Por otro lado, la competencia y los cambios de
precio también se han estudiado en el mercado de opciones mediante modelos que estiman
empíricamente las componentes asociadas a dichos cambios [7, 13, 9, 14]. Inspirados en estas
ideas, el objetivo principal de esta tésis es estudiar la competencia entre cadenas de retail a
través de un modelo para analizar cómo las tiendas responden a eventos de cambio de precio
en función de la distancia geográfica entre ellas, mediante la descomposición del impacto de
un cambio en tres componentes: Init, Close y Far. La primera es percibida por las tiendas
que inician una competencia cambiando su precio de venta, mientras que las dos últimas
son percibidas por las tiendas cercanas y lejanas respectivamente. Para estimar estas com-
ponentes, analizamos empíricamente datos diarios de 1000 productos y más de 1000 tiendas
pertenecientes a 11 cadenas de retail diferentes en Francia. Nuestros resultados evidencian
que las tiendas de diferentes cadenas de retail tienden a competir más con tiendas ubicadas en
su cercanía que con tiendas ubicadas lejos de ellas. Además, analizamos a través de la misma
metodología otros atributos relacionados con cada tienda, como el número de diferentes ca-
denas de retail presentes en la zona, la concentración local del mercado y la cuota local del
mercado, así como también, el efecto del precio de los productos en la competencia. Descub-
rimos que estos atributos producen efectos competitivos análogos a aquellos encontrados al
comparar la competencia entre tiendas cercanas y lejanas.
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The analysis of price changes is crucial for the assessment of different issues in macroe-
conomics, and in particular for the design of optimal monetary policies [16]. In the context
of the retail market, many studies have analysed empirical data to study price changes’ fre-
quency and size [1, 21, 6, 10, 16], while different models have theoretically addressed price
dispersion and adjustments in competitive settings [18, 19, 22, 11]. Nonetheless, there is
little work addressing competition between retailers through empirical data [3]. On the other
hand, price changes and competition have also been addressed in the equity options market
by models that empirically estimate components of price changes [7, 13, 9, 14]. Inspired
by these ideas, the main purpose of this thesis is to study competition between retailers
through a novel model for analysing how stores respond to price change events based on the
geographical distance between them, by decomposing the price impact of a price change into
three components: Init, Close and Far. The first is perceived by initial stores that start a
competition by changing their selling price for a given product, while the last two are faced by
close and far stores respectively. To estimate these components, we analyse daily data from
1000 products and more than 1000 stores belonging to 11 different retail chains across France.
Our results provide evidence that stores from different retail chains tend to compete more
with stores situated in their proximity than with stores located far away. Furthermore, we
analyse through the same methodology other features related to each store, such as the local
number of different retails, the local market concentration and the local market share, and
also the effect of products’ prices. We find that these features produce analogous competitive
effects during price change events than those found between Close and Far stores.
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Ils disent que l’amour rend aveugle
Mais il t’a redonné la vue

Il t’as fait muer quand ta rage était sourde
Il a fait fredonner la rue

— Nekfeu
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Introduction

The analysis of price changes plays an important role for the assessment of different issues in
macroeconomics, such as the welfare consequences of business cycles, the behaviour of real
exchange rates, and optimal monetary policy [16]. In particular, sticky prices are an impor-
tant element of Keynesian economics [1], as they affect the short-term impact of nominal
interest rates on real activity and the response to inflation to monetary policy. Thus, many
economical models include nominal rigidity as a feature, assuming that companies are unable
to freely adjust their prices [5].

In the case of retailers, many studies have analysed empirical data to better understand
the nature of price changes’ frequency and size. Blinder et al. (1998) [1] found that the
median price in the United States changes once a year, being consistent with the work from
Taylor (1999) [21], and Druant et al. (2005) [6], who found the same result for the euro
area. However, evidence has suggested that considering sales and temporary promotions is
relevant when measuring the frequency of price changes. For example, Kehoe and Midrigan
(2007) [10] found that, when excluding sales, the duration of prices varies from four to five
months, compared to three weeks if sales are included. On the other hand, Nakamura and
Steinsson (2008) [16] found that the median duration of prices varies from eight to eleven
months when excluding sales. Other studies have focused on understanding the different
factors that affect price changes. For instance, evidence of the complexity of changing prices
has been provided by Levy et al. (1997) [12], showing that a supermarket with higher menu
costs changes prices two and a half less frequently than other chains. Moreover, evidence has
shown how retailers tend to change their prices as consequence of economical factors such as
taxes [17], inflation variability and regulation [2]. Nonetheless, internal features of the market
can also make prices change, as recent research has shown that prices tend to fluctuate more
as products become more homogeneous and more players enter into the industry. Therefore,
understanding the relationship between price rigidity, product homogeneity and competition
between retailers crucial for designing antitrust and monetary policies [20].

Particularly, competition has been theoretically addressed by several models of price dis-
persion and adjustment. For example, Salop and Stiglitz (1976) [18] formulated a spatial
price dispersion model, this is, a model in which several stores offer a same product simul-
taneously at a different price. In their model, heterogeneity of consumers rationality and
costly-information gathering makes firms that equilibrium of the market does not happen at
the perfectly competitive price, but for some configuration of parameters equilibrium is found
where some fraction of stores sell at the competitive price, while others sell at a higher price.
Moreover, Shilony et al. (1977)[19] proposed a game-theoretic approach in which consumers
can buy without extra cost from neighbourhood stores, but incur into a transportation cost
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if they decide to visit distant stores in search for lower prices. On the other hand, stores use
sales as a marketing device for stimulating consumers venture to their location. Shilony et al.
found no Nash equilibrium for the game in pure pricing strategies, however they demonstrated
the existence of an equilibrium mixed strategy, in which firms randomise their prices causing
temporal price dispersion. Following these ideas, Varian adressed in 1980 the question of sales
equilibria through a model that may be regarded as a combination of both models described
previously [22]. Another game-theoretical study was done by Lal and Matutes (1989) [11]. In
their setting, they analysed the effects of a multiproduct competition on prices and profits in
a static duopoly with complete information in equilibrium. The resulting price dispersion for
this equilibrium shows that stores collectively discriminate between two types of consumers:
the rich (who has high willingness to pay but with high opportunity cost of time) and the
poor (who has low willingness to pay but zero opportunity cost of time), providing a possible
explanation to the phenomenon of loss leaders, a special promotional activity widely used by
retailers.

Price changes and competition has also been addressed in the equity options market.
For example Madhavan and Smidt (1991) [13] proposed a model of intraday price formation
where market makers’ beliefs evolve following Bayes’ rule. In their work, they estimate the
model’s components empirically using a dataset from a New York Stock Exchange (NSYE)
specialist. Moreover, Huang and Stoll (1997) [9] constructed and estimated a basic trade
indicator model for identifying three components of the spread: order processing, adverse
information and inventory holding cost, finding that these components are a function of the
trade size. They used a dataset of all trades and quotes for 20 large NYSE stocks in 1992
for estimating these components. Later, Madhavan et al. (1997) [14] proposed an intraday
price formation model that incorporates both public information shocks and microstructure
effects in the security market. Their work helps to understand the sources of intraday price
volatility and the effect on information flows on stock prices over the day. They estimate
the components of their model using transaction level data for stocks listed on the NYSE.
Overall, these works present different methodologies for measuring empirically the different
components of price changes.

However, most of previous research focuses on studying the frequency of price changes
of retail products from monthly and weekly data, or addressing competition through game-
theoretic approaches that explain static and temporal price dispersion in equilibrium. In
this thesis, we study the competition between retailers through a novel model for analysing
how stores respond to competitive price changes based on competition effects depending on
the geographical distance between them. To do so, we introduce the concept of initial price
change events, which refers to the specific events in which the change of a product’s price
generates competitive responses among other stores. Explicitly, we address the following
questions:

• How does the distance between stores affects their responses to competitive price change
events?.

• Which other factors affect retailers’ responses to competitive price change events?.

Our model decomposes the price impact of a price change into three components: Init,
Close and Far. The first is perceived by initial stores that start a competition by changing
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their selling price for a given product, while the last two are faced by close and far stores
respectively, which receive instant information about the competitive price change event and
adjust their selling prices accordingly. In this work, our goal is to estimate these components
empirically for the retail market. By analysing daily data from 1000 products and more
than 1000 stores belonging to 11 different retail chains across France, our results provide
evidence that stores from different retail chains tend to compete more with stores situated in
their proximity than with stores located far away. Moreover, we examine how other features
related to the competitive environment of each store, such as the local number of different
retails and the market concentration affect the respective responses to initial price changes.
Finally, we analyse the local market share and the product price as features for the same
purpose.

This thesis is organised as following. In Chapter 1 we introduce the mathematical foun-
dations of our model. Subsequently, in Chapter 2 we present the main idea of our model and
we formalise initial price change events mathematically. Later, in Chapter 3 we explain how
we implemented our model for our particular dataset. Afterwards, in Chapter 4 we present
the results obtained by our model, and finally we conclude and discuss about our findings.
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Chapter 1

Background

The idea of this chapter is to introduce the mathematical concepts used in the development
of this theses. We start by reviewing the basic concepts of stochastic processes, describing
in particular the notion of Stopping Time. Next, we review the basic ideas of graph theory,
and particularly the notion of Connected Component of a graph.

1.1. Stochastic Processes
Definition 1.1 (Stochastic Process) Let (Ω,F ,P) be a probability space, and T a set.
A stochastic process indexed by T with values in a measurable space (S,Σ) is a collection of
random variables (Xt)t∈T defined in (Ω,F ,P) with values in (S,Σ).

Definition 1.2 (Filtration) A filtration of the probability space (Ω,F ,P) is an increasing
sequence (Ft)t∈T of sub sigma-algebras of F indexed by a totally ordered set T . In this case
(Ω,F , (Ft)t∈T ,P) is called a filtered probability space.

Definition 1.3 (Adapted Process) A process (Xt)t∈T defined on the probability space
(Ω,F ,P) with values in the measurable space (S,Σ) is adapted to the filtration (Ft)t∈T if
Xt is a (Ft,Σ)-measurable function for each t ∈ T . In that case, we say that (Xt)t∈T is a
(Ft)t∈T -adapted stochastic process.

Definition 1.4 (Stopping Time) A random variable τ defined on the filtered probability
space (Ω,F , (Ft)t∈T ,P) with values in N ∪ {+∞} is called a stopping time (with respect to
the filtration F = (Fn)n∈N, if {τ = n} ∈ Fn for all n.

1.2. Basics of Graph Theory
In this section we present we basic notions of graph theory that were used for this work.

In particular, the following definitions were closely followed from the book Graph Theory by
Reinhard Diestel [4].

Definition 1.5 (Graph) A graph is a pair G = (V,E) of sets such that E ⊆ V × V . The
elements of V are called the vertices of the graph G, while the elements of E are its edges.
Moreover, a graph with vertex set V is said to be a graph on V . V (G) denotes the vertex set
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of a graph G, and E(G) its edge set.

Definition 1.6 (Subgraph) Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. If V1 ⊆ V2
and E1 ⊆ E2, then G1 is a subgraph of G2 (and G2 a supergraph of G1), written as G1 ⊆ G2.

Definition 1.7 (Induced Subgraph) Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs.
If G1 ⊆ G2 and G1 contains all the edges xy ∈ E2 such that x, y ∈ V1, then G1 is an induced
subgraph of G. We say that V1 induces or spans G1 in G2, and write G1 =: G2[V1].

Definition 1.8 (Path) A path is a non-empty graph P = (V,E) of the form:

V = {x0, x1, ..., xk}

E = {x0x1, x1x2, ..., xk−1xk}

Given sets A,B of vertices, we call P = x0...xk an A-B path if V (P ) ∩ A = {x0} and
V (P ) ∩B = {xk}.

Definition 1.9 (Connectivity) A non-empty graph G is called connected if any two of its
vertices are linked by a path in G. If U ⊆ V (G) and G[U ] is connected, we also call U itself
connected (in G).

Definition 1.10 (Connected Component) Let G = (V,E) be a graph. A maximal con-
nected subgraph of G is called a connected component of G.
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Chapter 2

Price Changes and Competition

In this Chapter, we introduce our model of Price Changes and Competition between retailers
based on the mathematical notions described previously. First, we introduce the main idea
of our model through a case example. Afterwards, we explain the relationship of our model
with other works, and finally we formalise our model using the notions introduced in Chapter
1.

2.1. The Idea
This subsection explains the intuition behind the proposed model, while the next section

introduces it formally. Consider the following simplified framework. There are three com-
petitive stores belonging to (for simplicity) different retail chains that sell item i at a given
(for simplicity, equal) price at day t− 1. Imagine that one store, which we call store Init, at
day t increases the price of item i by ∆pInit

t :

∆pInit
t = pInit

t − pInit
t−1 (2.1)

Let’s assume that store Init does not change the price of item i again between days t and
t + dt, and therefore the price change in period dt, given by ∆

dt
pInit
t , is equal to ∆pInit

t . This
is:

∆pInit
t = ∆

dt
pInit
t := pInit

t+dt − pInit
t−1 (2.2)

Moreover, let’s call the other two stores respectively Close and Far, based on their graph-
ical distance with respect to store Init: store Close (Far) is closer to (far away from) store
Init. The other stores learn from the price change in store Init at time t. Thus, stores Close
and Far adjust their prices to reflect the new information in period dt by ∆

dt
pClose and ∆

dt
pFar

respectively:

∆
dt
pClose
t := pClose

t+dt − pClose
t−1 (2.3)

∆
dt
pFar
t := pFar

t+dt − pFar
t−1 (2.4)
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Figure 2.2 describes this setup graphically, while Figure 2.1 reflects price changes of the
stores over time.

Price

Time
t− 1 t t+ dt

Price Change Event

∆
dt
pInit
t

∆
dt
pClose
t

∆
dt
pFar
t

Figure 2.1: Price Changes of Init, Close and Far stores.

Init store

Close store

Far store

Price Change Event

∆
dt
pInit

∆
dt
pClose

∆
dt
pFar

Figure 2.2: Geographical configuration of stores Init, Close and Far.

Given this framework, our model allows the event of a price change to have a competitive
effect associated to the distance to the initial price change (α), after controlling for time,
retail and item fixed effects (FEt, FEr and FEi respectively), separating between positive
and negative price changes. This is, in the case of a positive initial price change:
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∆
dt
p

p

+Init

t,i

= α+Init + FEi + FEt + FEr + ε (2.5)

∆
dt
p

p

+Close

t,i

= α+Close + FEi + FEt + FEr + ε (2.6)

∆
dt
p

p

+Far

t,i

= α+Far + FEi + FEt + FEr + ε (2.7)

Where +Close and +Far are the close and far responses to a positive initial price change
(but not necessarily positives themselves). Symmetrically, in the case of a negative change
on prices, the model is: ∆

dt
p

p

−Init

t,i

= α−Init + FEi + FEt + FEr + ε (2.8)

∆
dt
p

p

−Close

t,i

= α−Close + FEi + FEt + FEr + ε (2.9)

∆
dt
p

p

−Far

t,i

= α−Far + FEi + FEt + FEr + ε (2.10)

Where −Close and −Far are the close and far responses to a negative initial price change
(but not necessarily negatives themselves). This example considers a single price change,
but, because individual price responses are very noisy, taking an average over a large number
of price changes is required to estimate the components. The same general framework can
be adapted to investigate competition between and even within retail chains, as well as het-
erogeneous effects resulting from producers’ market power or consumer biases (e.g. rational
inattention toward less often consumed items).

Note that the division between positive (price increases) and negative (price cuts) changes
is crucial for the analysis. Indeed, we expect that stores in the group Close should be more
competitive than stores in the group Far, and therefore, that |α−Close| > |α−Far|, meaning
that Close stores respond more aggressively to price cuts than stores in the group Far to
offer competitive prices. In addition, we expect that α+Close < α−Far, meaning that stores
in the group Close respond less aggressively to price increases than stores in the group Far
to offer competitive prices. This asymmetry in price change responses allows to measure
competitiveness and can be applied to other proxys of competition (see Section 2.3).

2.1.1. Relationship with other works
The work of Shilony et al. (1977) [19] was probably one of the first models in which the

physical distance between stores plays a key role in competition and price setting strategies.
As mentioned previously, in their model consumers incur into transportation costs when they
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decide to buy from distant stores, while stores use sales to attract consumers. However, in
their setting, this transportation cost is fixed and unique, which may differ from reality since
transportation efforts are bigger when distances are longer. In our model, we account for this
limitation explicitly by finding empirical evidence that Close and Far stores have different
pricing strategies in response to competitive price changes.

Concerning the price change dynamics, in many models for the equity options market (see
for example [15]), the event of a trade by a market-maker produces an impact on ask prices
of market makers. Thus, when a trade occurs at time t, both the market-maker responsible
of the trade and other market-makers are able to respond between time t and t + dt. In
contrast, in our model stores face an impact on their selling price due to the event of a price
change between time t−1 and t by a store Init of the competition. Therefore, since store Init
has already changed its selling price by time t, to set equal response periods for Init, Close
and Far stores, price responses are measured between time t − 1 and t + dt. In this way,
we capture both the price change of store Init between t− 1 and t, and the price changes of
stores Close and Far between t and t+dt. Moreover, if we admit some regularity of prices, we
make sure that store Init does not change its price again between t and t+dt (see subsection
3.1.2).

2.2. Mathematical Formulation
In this section we formalise the idea presented in section 2.1 mathematically. In our

model, stores’ selling prices are stochastic processes that change randomly over time. Thus,
competitive price change events will be captured by a stopping time process that will indicate
moments in which stores face competitive impacts on their prices. Moreover, distance between
stores determine which of them compete with each other. Finally, we use a fixed effects model
to estimate the different competitive components introduced previously. We start this section
with some preliminary definitions. Let:

• (Ω,A,P) be a probability space.

• S = {s1, ..., sN} be a finite set of stores.

• I = {i1, ..., iM} be a finite set of items sold in each store.

• T = {0, 1, 2, ..., T} be an index set corresponding to the discrete time interval from 0
to T .

• R be a partition of S, called the set of retail chains. For each store s, [s] denotes the
equivalence class of s under R (i.e. the retail chain of s).

• d : S × S → R+ be a distance function between stores such that ∀s1, s2, s3 ∈ S :
s2 6= s3 ⇒ d(s1, s2) 6= d(s1, s3). This means that for a given store s1, there are no two
distinct stores s2, s3 with equal distance to s1.

• Categories = {+Init,−Init,+Close,−Close,+Far,−Far} be the set of competitive cat-
egories.
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2.2.1. Price Process and Public Information
Definition 2.1 (Price Process and Price Changes) For each item i ∈ I and store
s ∈ S, let {pt,i,s}t∈T be a stochastic process on (Ω,A,P) with values in R+ and indexed by T ,
called the price process of item i at store s. For each 1 < t ≤ T , we define the (normalised)
price change at time t by: (

∆p
p

)
t,i,s

= pt,i,s − pt−1,i,s

pt−1,i,s
(2.11)

With the initial condition: (
∆p
p

)
0,i,s

= 0 (2.12)

In fact, to exclude price changes due to sales and inventory issues from the analysis, the
price change process {pt,i,s}t∈T can be replaced in this definition and every following definition
by the derived latent regular price process {rt,i,s}t∈T .

Definition 2.2 (Public Information) The public information at time t is defined as the
sigma algebra generated by the price processes of all items and stores until time t:

Ft = σ(pk,i,s : k ≤ t, i ∈ I, s ∈ S) (2.13)
Moreover, F := (Ft)t∈T is a filtration, which we call the filtration of public information.

Property 2.2.1.
{(

∆p
p

)
t,i,s

}
t∈T

is an F-adapted stochastic process.

2.2.2. Distance between stores
In this work, we argue that distance between stores plays an important roll in competition.

Thus, for each store s ∈ S, the idea is to separate its environment in two groups: Close and
Far stores. However, stores too far from s should not be considered (for instance, a store in
Paris does not compete with stores in Marseille). In this subsection we formalise these ideas
through the following definitions:

Definition 2.3 (Close and Far Stores) For each s ∈ S we define the close stores of s
as:

cs =
{
ŝ ∈ S : d(s, ŝ) ≤ δc

}
(2.14)

Where δc ∈ R+ is a fixed parameter. We define the far stores of s as:

fs =
{
ŝ ∈ S : δc < d(s, ŝ) ≤ δf

}
(2.15)

Where δf ∈ R+ is a fixed parameter such that δf > δc.

An important fact is that not every store in these sets should be considered in the com-
petition of s. Indeed, to avoid biases from global company policies of price changes across
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the country, we assume that competitive stores in Close and Far groups belong to different
retail chains with respect to s. Additionally, to avoid over-weighting bigger retail chains,
we consider only one store per retail chain. In case there are several stores belonging to
the same retail chain in the Close group, we keep only the closest from store s, and in case
there are several stores belonging to the same retail chain in the Far group, we keep only
the furthest one from store s. We reformulate the previous definitions by incorporating these
considerations, introducing Competitive Close and Far stores:

Definition 2.4 (Competitive Close and Far Stores) For each s ∈ S we define the
competitive close stores of s as:

Cs =
{
ŝ ∈ cs : ŝ /∈ [s] ∧ ŝ = arg min

s′∈cs∩[ŝ]
d(s, s′)

}
(2.16)

Where δc ∈ R+ is a fixed parameter. We define the competitive far stores of s as:

Fs =
{
ŝ ∈ fs : ŝ /∈ [s] ∧ ŝ = arg max

s′∈fs∩[ŝ]
d(s, s′)

}
(2.17)

Furthermore, we define the competitive perimeter of s as:

Bs = Cs ∪ Fs ∪ {s} (2.18)

Note that in the previous definition minimums and maximum are unique (if they exist)
since for each store s, there are no two distinct stores s2, s3 with equal distance to s. On the
other hand, Bs represents the set of stores that will produce competitive price changes from
s perspective. Figure 2.3 shows a visual example of a store s and its competitive perimeter.

δc

δf

s

Retail A

Retail B

Retail C

Cs

Fs

Figure 2.3: Example of a store s and its competitive perimeter. Colours (shapes) represent stores
from different retails. The closest stores from each retail within distance δc are marked with a
dotted circumference, representing the close stores of s. On the other hand, the furthest stores
from each retail between δc and δf are marked with a circumference, representing the far stores
of s.
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2.2.3. Initial Price Changes
In this section, our goal is to define the times τ ∈ T corresponding to price changes that

lead to competition effects, which we call initial price changes. One important fact is that
since stores have bounded competition perimeters (by parameter δf ), the distinction of initial
price change times is relative to each store. For this purpose we first define the sets of stores
in the competition perimeter of a store s that change their price at a given time t:

Definition 2.5 (Price Change stores) For each store s ∈ S, we define P+
t,i,s the positive

price change stores at time t of item i with respect to s as:

P+
t,i,s =

{
ŝ ∈ Bs :

(
∆p
p

)
t,i,ŝ

> 0
}

(2.19)

And the negative price change stores at time t of item i with respect to s as:

P−t,i,s =
{
ŝ ∈ Bs :

(
∆p
p

)
t,i,ŝ

< 0
}

(2.20)

Finally, the set of price change stores at time t of item i with respect to s is defined as:

Pt,i,s = P+
t,i,s ∪ P−t,i,s (2.21)

Note that the event {Pt,i,s 6= ∅} indicates that store s has perceived a price change for
item i within its competition perimeter at time t. In the following lines we explain our
procedure for determining which of these times are actually related to initial price changes.
Indeed, we assume that an initial price change should fulfil two requirements:

• Req. 1: An initial price change can only occur after (mininum) a response period dt
from the respective last initial price change.

• Req. 2: An initial price change can only occur after (mininum) a cool down period tc
from the last price change (not necessarly initial).

Intuitively, the first requirement implies that price changes that occur right after an initial
price change are responses to this change, which should be later classified in the Close or Far
categories. The second requirement indicates that initial price changes should not be close in
time to previous price changes. This allows to dismiss price changes that might be responses
to previous changes, rather than lead to new competitions. Figure 2.4 shows an example of
price changes for three different stores.
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∆p
p

Time

sA

in
it
ia
l

sB

re
sp
.

sC

re
sp
.

dt

tc

sB

tc

sA

tc

sC

in
it
ia
l

sB

re
sp
.

sA

re
sp
.

dt

Figure 2.4: Example of Initial Price Changes. We assume that the competitive perimeter of
store A is given by stores B and C. The classification is done from store A’s reference. Store A
(blue, thick) starts with an initial price change, and stores B (red, dashed) and C (violet, dotted)
respond within period dt, changing their price too. Afterwards, when period dt is over, store B
makes another price change, but it happens within the cool down time span tc of the last price
change, not fulfilling requirement 2. The same happens for the next price change done by store
A. Finally, store C makes a price change after the cool down period tc of the last price change,
so it is considered initial. Note that from stores A and B references, the classification of the
same price change events can be different depending on the stores belonging to their competitive
perimeter.

The previous ideas motivate the following definitions:

Definition 2.6 (Last Price Change Time) For each t ∈ T , we define Lt,i,s, the last
price change time of item i ∈ I with respect to store s ∈ S at time t as:

Lt,i,s = max
{
t̂ < t : Pt̂,i,s 6= ∅

}
(2.22)

Where max ∅ = −∞.

Property 2.2.2. For all t ∈ T , Lt,i,s is Ft-measurable.

Using this previous definition, we can now define initial price change times:

Definition 2.7 (Initial Price Change Times) For each 1 ≤ n ≤ T , we define τn,i,s, the
nth-initial price change time of item i ∈ I with respect to store s ∈ S as:

τn,i,s = min
{
t > τn−1,i,s + dt : t > Lt,i,s + tc ∧ Pt,i,s 6= ∅

}
(2.23)

Where min ∅ =∞ and the initial condition is set to τ0,i,s = −∞.

Note that the event {t > τn−1,i,s + dt} represents the first requirement (Req. 1), while
the event {t > Lt,i,s + tc} the second one (Req. 2). The following property assures that
stores are able to identify initial price changes within their competitive perimeter in real
time:

Property 2.2.3. For each 1 ≤ n ≤ T , τn,i,s is a stopping time with respect to F.
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Now that we have defined the initial price changes that a store s perceives, our goal is to
determine for each initial price change time τ whether s was the initiator (Init) of the price
change, or whether it was a Close or Far store responding to another store.

Definition 2.8 We define the set of finite initial price change times of item i ∈ I with
respect to store s ∈ S as:

Ti,s =
{
τk,i,s : k ≤ T, |τk,i,s| <∞

}
(2.24)

Definition 2.9 For each category cat ∈ Categories, we define the set of (cat)-price change
times of item i ∈ I with respect to store s ∈ S respectively as:

T +Init
i,s =

{
τ ∈ Ti,s : arg minŝ∈P+

τ,i,s
d(ŝ, s) = s

}
(2.25)

T +Close
i,s =

{
τ ∈ Ti,s : arg minŝ∈Pτ,i,sd(ŝ, s) ∈ Cs ∩ P+

τ,i,s

}
(2.26)

T +Far
i,s =

{
τ ∈ Ti,s : arg minŝ∈Pτ,i,sd(ŝ, s) ∈ Fs ∩ P+

τ,i,s

}
(2.27)

And in the case of negative price change times:

T −Init
i,s =

{
τ ∈ Ti,s : arg minŝ∈P−τ,i,sd(ŝ, s) = s

}
(2.28)

T −Close
i,s =

{
τ ∈ Ti,s : arg minŝ∈Pτ,i,sd(ŝ, s) ∈ Cs ∩ P−τ,i,s

}
(2.29)

T −Far
i,s =

{
τ ∈ Ti,s : arg minŝ∈Pτ,i,sd(ŝ, s) ∈ Fs ∩ P−τ,i,s

}
(2.30)

Note that:

• τ is an Init positive (negative) price change time for store s and item i, if τ is an initial
price change time and s increased (decreased) the price of i at time τ .

• τ is a Close positive (negative) price change time for store s and item i, if τ is an
initial price change time, and the closest store within the competitive perimeter of s
that changed the price of i at time τ belongs to the Competitive Close stores of s, and
it increased (decreased) the price of i.

• τ is a Far positive (negative) price change time for store s and item i, if τ is an initial
price change time, and the closest store within the competitive perimeter of s that
changed the price of i at time τ belongs to the Competitive Far stores of s, and it
increased (decreased) the price of i.

The intuition is that if two stores within the competitive perimeter of s change their price
at the same time, we consider that s responds to the closest one. Furthermore, note that
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being positive or negative price change times depends on the direction of the ’initiator’ of
the initial price change, and not on the direction of the response. Finally, the classification
and identification of initial price change events depends completely on the reference of each
store s.

Property 2.2.4. For all s ∈ S and i ∈ I,
{
T cat
i,s

}
cat∈Cat

is a partition of Ti,s.

The previous property assures that the classification of initial price change times is well
done, in the sense that every initial price change time belongs to one and only one of the
competitive categories.

Definition 2.10 For each category cat ∈ Categories, store s ∈ S and item i ∈ I, we define
the cat-price change process, of item i with respect to store s as:

{∆
dt
p

p


τ,i,s

}
τ∈T cat

i,s

(2.31)

Where for all τ such that τ + dt ≤ T :∆
dt
p

p


τ,i,s

= pτ+dt,i,s − pτ−1,i,s

pτ−1,i,s
(2.32)

And for τ such that τ + dt > T we carry forward the last price observation:∆
dt
p

p


τ,i,s

= pT,i,s − pτ−1,i,s

pτ−1,i,s
(2.33)

2.2.4. Competitive, Item, Time and Retail Effects
As explained previously in section 2.1, our model allows the event of a price change to

have a competitive effect, after controlling for time, item and retail fixed effects. For instance,
for each store s ∈ S, item i ∈ I and each competitive category cat ∈ Categories, we formulate
the following equation relating price changes and competitive effects:∆

dt
p

p


τ,i,s

= αcat + FEi + FEτ + FEr + ετ,i,s, ∀τ ∈ T cat
i,s (2.34)

Where the term αcat correspond to the competitive effect of category cat, FEi is an item
fixed effect associated with item i, and FEτ is a time fixed effect of time τ and FEr is a fixed
effect associated with r = [s], the retail chain of s. ετ,i,s is an error term reflecting the fact
that price responses may be affected by other factors.

2.2.5. Weak and Strong Response Conditions
While equation 2.34 holds for every competitive category, empirical evidence from our

data shows that stores in categories Close and Far are very unlikely to respond to initial
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price changes (see Table 3.3), which is consistent with the low degree of price change syn-
chronisation of retail products in the euro area [2]. This means that competitive, item, time
and retail effects can be underestimated by P((∆

dt
p/p)t,i,s 6= 0). Thus, we reformulate equation

(2.34) to account for this probability. We propose a weak conditional version, in which we
exclude cases in which responses are zero, and a strong conditional version in which we also
exclude cases in which responses do not follow the same direction as the initial price change.
The weak conditional formulation is then:

weak(T cat
i,s ) =

{
τ ∈ T cat

i,s :
∆

dt
p

p


τ,i,s

6= 0
}

(2.35)

While the strong conditional formulation is:

strong(T +Close
i,s ) =

{
τ ∈ T +Close

i,s :
∆

dt
p

p


τ,i,s

> 0
}

(2.36)

strong(T −Close
i,s ) =

{
τ ∈ T −Close

i,s :
∆

dt
p

p


τ,i,s

< 0
}

(2.37)

strong(T +Far
i,s ) =

{
τ ∈ T +Far

i,s :
∆

dt
p

p


τ,i,s

> 0
}

(2.38)

strong(T −Far
i,s ) =

{
τ ∈ T −Far

i,s :
∆

dt
p

p


τ,i,s

< 0
}

(2.39)

Model (2.34) is then reformulated as:∆
dt
p

p


τ,i,s

= αcat + FEi + FEτ + FEr + ετ,i,s, ∀τ ∈ weak(T cat
i,s ) (2.40)

2.3. Other Proxys of Competition
In this section we propose other proxys of competition between stores from different

retails. In particular, we define two additional features related to the store’s competitive
environment: local number of different retails (N Retail) and the local market concentration
(measured through the HHI ), one feature related to the store’s market power: the market
share (MS) measured in each store’s proximity, and one feature related to the product char-
acteristics: the product price (P). All of these features are considered proxys of competition,
in the sense that they allow to differentiate different pricing strategies based on their val-
ues (high or low), similarly to the differences found between Close and Far stores given by
distance. More details are presented in the following subsections:

16



2.3.1. N Retail
We propose the local number of different retails present in the proximity (N Retail) of

each store as a measure of competition. The idea behind is that the higher is the local
diversity of retail chains in the market, the higher is the competition between retailers in
that particular zone. Therefore, stores with high N Retail should respond more aggressively
to price cuts (and less aggressively to price increases) than stores with low N Retail. Note that
this measure is related to the competitive environment of each store and the characteristics
of the store’s location.

Definition 2.11 (Number of retail chains) For each store s ∈ S, we define the number
of retail chains of s as:

Ns =
∣∣∣Rs

∣∣∣ (2.41)

Where Rs :=
{

[ŝ] : ŝ ∈ cs} is the set of different retails present in the close stores of s.

Definition 2.12 (High and Low Retail stores) We define the set of High Retail stores
as:

Hretail =
{
s ∈ S : Ns ≥ qHigh

}
(2.42)

And the set of Low Retail stores as:

Lretail =
{
s ∈ S : Ns ≤ qLow

}
(2.43)

Where qHigh, qLow ∈ R such that qHigh > qLow.

We formulate the following model for analysing differences in Low and High Retail stores’
competitive pricing behaviour. For all s ∈ Hretail:∆

dt
p

p


τ,i,s

= αcat
Hretail

+ FEi + FEτ + FEr + ετ,i,s, ∀τ ∈ weak(T cat
i,s ) (2.44)

And for all s ∈ LRetail:∆
dt
p

p


τ,i,s

= αcat
Lretail

+ FEi + FEτ + FEr + ετ,i,s, ∀τ ∈ weak(T cat
i,s ) (2.45)

Where αcat
Hretail

and αcat
Lretail

are the competitive parameters associated with category cat ∈
{+Init,−Init,+Close,−Close} for High and Low Retail stores respectively, and fixed effects
FEi, FEτ and FEr are shared for equations 2.44 and 2.45.
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2.3.2. HHI
We use the HHI for measuring the local market concentration in the proximity of each

store, and thus, the level of competition of the store’s environment. Indeed, since there exist
an inverse relationship between market concentration and competition, stores in zones with
lower HHI should be more competitive than stores in zones with higher HHI, and thus, react
more aggressively to price cuts (and less aggressively to price increases). Note that similarly
to N Retail, this measure is related to the competitive environment of each store and the
characteristics of the store’s location.

Definition 2.13 (Herfindahl–Hirschman Index) For each store s ∈ S, we define the
number of Herfindahl–Hirschman Index (HHI) of s as:

HHIs =
∑
r∈Rs

|cs ∩ r|2

|cs|2
(2.46)

Note that cs ∩ r is the set of stores from retail r within the close stores of s, so that |cs∩r||cs|
is the market share of retail r in the close stores of s.

Definition 2.14 (High and Low HHI stores) We define the set of High HHI stores as:

HHHI =
{
s ∈ S : HHIs ≥ qHigh

}
(2.47)

And the set of Low HHI stores as:

LHHI =
{
s ∈ S : HHIs ≤ qLow

}
(2.48)

Where qHigh, qLow ∈ R such that qHigh > qLow.

We formulate the following model for analysing differences in Low and High HHI stores’
competitive pricing behaviour. For all s ∈ HHHI:∆

dt
p

p


τ,i,s

= αcat
HHHI

+ FEi + FEτ + FEr + ετ,i,s, ∀τ ∈ weak(T cat
i,s ) (2.49)

And for all s ∈ LHHI:∆
dt
p

p


τ,i,s

= αcat
LHHI

+ FEi + FEτ + FEr + ετ,i,s, ∀τ ∈ weak(T cat
i,s ) (2.50)

Where αcat
HHHI

and αcat
LHHI

are the competitive parameters associated with category cat ∈
{+Init,−Init,+Close,−Close} for High and Low HHI stores respectively, and fixed effects
FEi, FEτ and FEr are shared for equations 2.49 and 2.50.
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2.3.3. Market Share
We propose the local market share of each store (MS) as a measure of competition related

to the market power of the respective retail chain. Intuitively, retail chains that compete to
locally possess the market in certain geographical sectors, also compete to offer attractive
prices in those particular zones. Thus, stores from retail chains with high market share should
respond more aggressively to price cuts (and less aggressively to price increases) than stores
from retails with low market share.

Definition 2.15 (Market Share) For each store s ∈ S, we define market share of s as:

MSs = |cs ∩ [s]|
|cs|

(2.51)

Note that cs ∩ [s] is the set of stores from the same retail of s within the close stores of s.

Definition 2.16 (High and Low MS stores) We define the set of High MS stores as:

HMS =
{
s ∈ S : MSs ≥ qHigh

}
(2.52)

And the set of Low MS stores as:

LMS =
{
s ∈ S : MSs ≤ qLow

}
(2.53)

Where qHigh, qLow ∈ R such that qHigh > qLow.
We formulate the following model for analysing differences in Low and High MS stores’

competitive pricing behaviour.. For all s ∈ HMS:∆
dt
p

p


τ,i,s

= αcat
HMS

+ FEi + FEτ + FEr + ετ,i,s, ∀τ ∈ weak(T cat
i,s ) (2.54)

And for all s ∈ LMS:∆
dt
p

p


τ,i,s

= αcat
LMS

+ FEi + FEτ + FEr + ετ,i,s, ∀τ ∈ weak(T cat
i,s ) (2.55)

Where αcat
HMS

and αcat
HMS

are the competitive parameters associated with category cat ∈
{+Init,−Init,+Close,−Close}, and High and Low MS stores respectively, and fixed effects
FEi, FEτ and FEr are shared for equations 2.54 and 2.55.

2.3.4. Luxury Products
We propose the price of the products as a proxy for determining competition. Indeed, we

can think that stores compete more for regular daily products than for items with inelastic
demands, such as luxury products. Therefore, we expect that stores respond more aggres-
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sively to price cuts (and less aggressively to price increases) of low priced products than to
price cuts of expensive items.

Definition 2.17 (Mean Product Price) For each item i ∈ I, we define the mean product
price of i as:

Pi = 1
|T |

1
|S|

∑
t∈T

∑
s∈S

pt,i,s (2.56)

Definition 2.18 (High and Low Price Items) We define the set of High Price items as:

HP =
{
i ∈ I : Pi ≥ qHigh

}
(2.57)

And the set of Low Price items as:

LP =
{
i ∈ I : Pi ≤ qLow

}
(2.58)

Where qHigh, qLow ∈ R such that qHigh > qLow.

We formulate the following model for analysing differences in competitive pricing strate-
gies for Low and High Price items. For all i ∈ HP:∆

dt
p

p


τ,i,s

= αcat
HP

+ FEi + FEτ + FEr + ετ,i,s, ∀τ ∈ weak(T cat
i,s ) (2.59)

And for all i ∈ LP:∆
dt
p

p


τ,i,s

= αcat
LP

+ FEi + FEτ + FEr + ετ,i,s, ∀τ ∈ weak(T cat
i,s ) (2.60)

Where αcat
HP

and αcat
HP

are the competitive parameters associated with category cat ∈
{+Init,−Init,+Close,−Close}, and High and Low Price items respectively, and fixed effects
FEi, FEτ and FEr are shared for equations 2.59 and 2.60.
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Chapter 3

Data and Implementation

In this Chapter we explain the main features of our dataset, the price change frequencies,
and details of the implementation of our model presented in Chapter 2.

3.1. The Dataset
Our dataset consists of the daily prices of 1000 products of 1546 stores belonging to

11 different retail chains of the french territory between 2011 and 2012. This dataset was
provided by the Bank of France, and built by recurrently web-scrapping the prices of the
different products for all the shops considered for this study. Moreover, using the information
about the route-distances between shops we were able to reconstruct the distance function d
from Section 2.2. An important fact is that, since our data was obtained by recurrently web-
scrapping the daily prices of different products, price trajectories can posses missing values
for days in which prices were not web-scrapped (see Figure 3.1). Moreover, our dataset does
not contain information on weather a product was on sale. Thus, we used a transient price
filter (see subsection 3.1.2) to derive latent regular prices from price processes. Initial price
changes and responses were derived (see Figure 3.3) and filtered using the week conditional
formulation from subsection 2.2.5. Furthermore, extreme values were removed by discarding
observations below the 2nd and above 98th percentiles. Finally, items with less than 10
price changes were removed. Table 3.1 presents the summary statistics for the price changes
obtained in each category.

Table 3.1: Summary Statistics of Price Changes for each category. Price changes were obtained
using parameters δf = 60, δc = 20, dt = 7, tc = 0 and filtered using the week conditional
formulation from subsection 2.2.5. Observations below the 2nd and above 98th percentiles are
removed, as well as products with less than 10 price changes.

Price Change
Category N Mean Std. Skewness Kurtosis

+Init 586183 3.239 · 10−2 3.075 · 10−2 1.237 4.407
−Init 615445 −3.130 · 10−2 2.954 · 10−2 1.234 4.375

+Close 23370 2.111 · 10−3 4.445 · 10−2 1.955 · 10−2 3.824
−Close 21533 −1.149 · 10−3 4.364 · 10−2 1.438 · 10−1 3.919
+Far 27456 4.609 · 10−3 4.449 · 10−2 1.767 · 10−2 3.585
−Far 25686 −5.321 · 10−4 4.550 · 10−2 1.171 · 10−1 3.833
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Figure 3.1: Example of missing values for one product and four dif-
ferent stores in our dataset. Solid lines represent known prices, while
dotted lines represent missing values.

3.1.1. Price Change Frequency
To better comprehend the behaviour of price changes, we analysed their frequency when

including and excluding sales. Table 3.2 resumes the mean price change frequency for each
retail chain. Price change frequency ranges from 1.4% to 3.3%, so that price changes occur
each 30 to 71 days. Moreover, when using the transient price filter for excluding sales, price
change frequencies vary from 0.3% to 1.3%, implying a mean price duration that varies from
74 to 285 days.

Table 3.2: Missing days and mean price change frequencies. Results were obtained by computing
the change frequency for each product and retail chain on daily data, and then averaging by retail
chain.

Retail Chain Mean Price
Change Frequency

Mean Price Change
Frequency (w/o sales)

1 H 3.2% 1.09%
1 H/S 1.5% 0.6%
2 H 2.8% 0.6%

2 H/S 1.4% 0.3%
3 H 2.1% 0.4%

3 H/S 2.8% 0.5%
4 H 1.6 % 0.8%

4 H/S 1.5% 0.8%
4 S 1.4% 0.6%

5 H/S 3.3% 1.3%
6 H/S 2.1% 0.8%
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3.1.2. Regular Prices
The model presented in Chapter 2 allows us to identity competitive price changes by

analysing the price process of different products and shops. However, according to Naka-
mura and Steinsson (2008), different types of price adjustments have substantially different
macroeconomic implications [16]. In their work, authors distinguish three types of price
changes: (1) regular price changes, (2) temporary sales, and (3) price changes due to product
substitution. In this thesis, we assume that sales are observable and measurable in real time
due to sales flags that explicitly indicate them, so that all shops know at time t whether
pt,i,s is or not a regular price. However, since our dataset does not contain explicit infor-
mation about sales a transient price filter is proposed to avoid temporary price changes due
to inventory issues or fast sales, and correctly identify the latent regular price during these
events:

Definition 3.1 Let {pt,i,s}t∈T the price change process of item i at store s. We define the
transient filtered regular price process

{
rTransient
t,i,s

}
t∈T

as:

rTransient
0,i,s = p0,i,s (3.1)

And for all 0 < t ≤ T :

rTransient
t,i,s =

pt,i,s , if ∃k ≤ dt : ∀j ≤ dt : pt−k,i,s = pt−k+j,i,s

rTransient
t−1,i,s ∼

(3.2)

Intuitively, the transient price filter removes price changes that do not hold for a minimum
span time of dt. Thus, by using this filter we can ensure that ∆

dt
pInit
t is equal to ∆pInit

t . Our

model can be directly reformulated in terms of
{
rTransientt,i,s

}
t∈T

instead of {pt,i,s}t∈T . See Figure
3.2 for an example of the resulting latent regular prices derived from the price processes.
Figure 3.2 illustrates an example of how regular prices inferred from price trajectories behave
in comparison to the original prices. Solid lines represent the derived regular price processes
of four different stores for a particular product, while dotted lines represent the raw price
processes. Note that the red dotted line differs from the solid one, as the transient filter is
able to exclude both symmetric V-shaped patterns (i.e., prices that fully revert after a short
period of time) and asymmetric patterns (i.e., prices that partially revert after a short period
of time). See Figure I in Nakamura and Steinsson (2008) for reference [16].
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Figure 3.2: Example of latent regular prices derived from price trajec-
tories.

3.1.3. Initial Price Changes
The model presented in section 2.2 allows us to recognise initial price changes from price

trajectories and moreover to determine whether each shop behaved as an Init changer, or a
response belonging to the Close or Far groups. Figure 3.3 shows an example of how price
changes are derived from price trajectories and classified into the different categories.

Figure 3.3: Example of initial price changes
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3.1.4. Response Probability
We analysed the proportion of price changes that belonged to the weak and strong con-

ditional categories proposed in subsection 2.2.5. Thus, we calculated (before applying any
other filter) for each cat ∈ Categories the quantities:

pweak =
|weak(T cat

i,s )|
|T cat
i,s |

And

pstrong =
|strong(T cat

i,s )|
|T cat
i,s |

Table 3.3 resumes the response probabilities obtained for each category for a fixed set of
hyper-parameters. Note that pweak is quite low (less than 3%) for Close and Far categories,
which shows that stores are not likely to respond to price changes when they perceive them.
However, it is important to mention that Close stores are slightly more likely to respond
than Far stores. Finally, we can appreciate that in all cases pstrong ≈ pweak/2, meaning that
stores respond to a competitive price change by increasing or decreasing its selling price with
(almost) equal probability.

Table 3.3: Response probabilities for conditional categories. In this experiment δf = 60, δc = 20,
dt = 7, tc = 3. Note that values in the nweak column do not coincide with those in Table 3.1 since
extreme values and items are not filtered for this calculation.

Category n nweak nstrong pweak pstrong
+Init 618357 618357 618357 1 1
−Init 646302 646302 646302 1 1

+Close 828716 24472 13003 0.0295 0.0156
−Close 839121 22431 11779 0.0267 0.0140
+Far 1085140 28845 15850 0.0265 0.0146
−Far 1132195 26932 14149 0.0237 0.0124

3.2. Implementation
In this section we explain our procedure for chunking our dataset, deriving latent regular

prices and running our model across the whole dataset.

3.2.1. Chunking
To implement our model, we designed an algorithm able to analyse the dataset through

independent chunks of data. To do so, we run our model independently across two dimensions:
products, as we assumed that price changes in one product do not affect the competition in
other products, and distance, as we assumed that stores excesively far from each other do not
compete. Intuitively, this last point states that we can, for example, run our model on data
corresponding to the Parisian region’s stores first, and afterwards on data from Marseille’s
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stores. In order to identify groups of stores that correspond to independent geographical
clusters, we construct a distance graph, whose nodes correspond to the stores, and edges
correspond to pairs of stores within the distance threshold δf . Connected components of
this graph constitute the different and independent store clusters (see Figures 3.4 and 3.4 for
examples).

Definition 3.2 (Distance Graph) We define the distance graph as the undirected graph
G = (V,E), where V = S and E = {(s1, s2) ∈ S × S : d(s1, s2) ≤ δf}.

The following property assures that we can partition our dataset into indepent chunks
for computing price change times:

Property 3.2.1. Let C be the set of connected components of the distance graph G. Then,
∀c ∈ C, s ∈ c⇒ Bs ⊆ c.

Indeed, let D = {pi,t,s : i ∈ I, t ∈ T , s ∈ Bs} be our dataset, and D(c,i) = {pi,t,s :
t ∈ T , s ∈ c} the sub-part (chunk) of the dataset containing the price processes of item i
and stores of the connected component c. Since for each store s ∈ S and item i ∈ I the
competitive price change times Ti,s depend only on {pi,t,s : t ∈ T , s ∈ Bs}, it suffices to use
D(c,i) for calculating them.

Figure 3.4: Connected Components of the Distance Graph G using
δf = 20 and approximate borders of France.
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Figure 3.5: Connected Components of the Distance Graph G using
δf = 60 and approximate borders of France.

3.2.2. Pipeline
Our methodology for estimating the competition components consists of a six steps

pipeline illustrated in Figure 3.6. Each step is detailed below:

1. Obtain Distance Graph: Once the set hyper parameters is defined, we obtain the
distance graph G introduced in definition 3.2, as well as its connected components C.
Chunks with only one store are excluded since they induce no competition among other
stores.

2. Chunk the Dataset Using the set of connected components C, we partition our
dataset D into independent chunks D(c,i) corresponding to each component c ∈ C and
item i ∈ I.

3. Preprocessing: Each chunk D(c,i) is preprocessed separately before obtaining price
changes. This consists on deriving latent regular prices from price trajectories using the
transient price change filter described in subsection 3.1.2, and filtering price changes
with not enough previous observations. Explicitly, we remove price changes for which
the previous seven days are missing data.

4. Obtain Competitive Price Changes: Once every chunk D(c,i) is preprocessed, we
obtain the set of competitive price changes of each chunk P(c,i). Afterwards, we build
the dataset of competitive price changes (P ) by collecting the competitive price changes
derived from each chunk.
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5. Filter Price Changes: For estimating the coefficients of our model, we only keep price
changes satisfying the week conditional version presented in 2.2.5. Next, we exclude
the extreme values of ∆

dt
p/p in P . This is done by discarding observations below the

2nd and above the 98th percentiles. Moreover, we exclude all products for which we
find less than 10 observations to avoid the overfitting of the item fixed effect parameter
FEi.

6. Obtain Regression Coefficients: Finally, we obtain the coefficients of the model
described in equation 2.40 by fitting it to the set of all price changes remaining.

Shops’
Distances d

Distance Graph G

Dataset of
Prices D

Chunked
Dataset

Chunk D(c,i)

Preprocessed
Chunk

Chunk Price
Changes P(c,i)

For every chunk:

Dataset of
Price Changes P

Filtered Dataset
of Price Changes

Model
Coefficients

Figure 3.6: Pipeline describing each step for obtaining the final model
coefficients.
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Chapter 4

Results

4.1. Competitive Environment
In this section we present the results of models using features related to the competitive

environment of stores, such as the distance, the local number of different retails, and the
local market concentration.

4.1.1. Close and Far Effects
We run model (2.40) for analysing the competitive effects associated with close and far

stores responding to initial price changes for four different sets of parameters. Tables 4.1,
4.2, 4.3, and 4.4 show the values obtained by our model for the competitive effects, as well
as some summary statistics of the samples in each category. Note that in all tables:

• α+Close, α+Far > 0

• α−Close, α−Far < 0

• α+Close < α+Far (and significantly differents)

• |α−Close| > |α−Far| (and significantly differents)

• All α coefficients are significantly different from 0.

These results show that, even though stores in groups Close and Far do not always respond
in the same direction of the initiator (see pstrong in Table 3.3), competitive effects coefficients
do follow the direction of the initiator. Furthermore, stores in group Close increase less their
prices in response to price increases than stores in group Far. This can be interpreted as that,
on average, stores in group Close try to maintain low prices when competitive stores increase
the cost of a product. Moreover, when negative price changes occur, stores in group Close
react by decreasing their prices more than stores in group Far. Again, this can be interpreted
as that, on average, stores in group Close are more sensible to price cuts than stores in group
Close, evidencing a stronger competitive behaviour. The asymmetry in positive and negative
price responses reflects the competitiveness of Close stores with respect to Far stores, showing
that distance is an important feature for explaining price changes in competitive settings.
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Table 4.1: α coefficients of equation (2.40) and summary statistics for distance competitive effects
with parameters: δf = 60, δc = 20, dt = 7, tc = 0. ***, **, and * denote significance at 1%, 5%,
and 10%, respectively. aaa, aa, and a denote significance at 1%, 5%, and 20%, respectively, for
whether the coefficients from the panel Close are different from the respective coefficients in the
panel Far.

Init Close Far
α+ estimate
(Std. Error)

3.18 · 10−2 ∗∗∗

(1.503 · 10−4)
1.223 · 10−3 ∗∗∗,aaa

(2.506 · 10−4)
3.432 · 10−3 ∗∗∗,aaa

(2.381 · 10−4)
Mean obs. 3.239 · 10−2 2.111 · 10−3 4.609 · 10−3

Std. obs. 3.075 · 10−2 4.445 · 10−2 4.449 · 10−2

N obs. 586183 23370 27456
α− estimate
(Std. Error)

−3.276 · 10−2 ∗∗∗

(1.506 · 10−4)
−2.268 · 10−3 ∗∗∗,a

(2.572 · 10−4)
−1.848 · 10−3 ∗∗∗,a

(2.428 · 10−4)
Mean obs. −3.130 · 10−2 −1.149 · 10−3 −5.321 · 10−4

Std. obs. 2.954 · 10−2 4.364 · 10−2 4.550 · 10−2

N obs. 615445 21533 25686

Table 4.2: α coefficients of equation (2.40) and summary statistics for distance competitive effects
with parameters: δf = 60, δc = 20, dt = 7, tc = 3. ***, **, and * denote significance at 1%, 5%,
and 10%, respectively. aaa, aa, and a denote significance at 1%, 5%, and 20%, respectively, for
whether the coefficients from the panel Close are different from the respective coefficients in the
panel Far.

Init Close Far
α+ estimate
(Std. Error)

3.180 · 10−2 ∗∗∗

(1.504 · 10−4)
1.267 · 10−3 ∗∗∗,aaa

(2.509 · 10−4)
3.435 · 10−3 ∗∗∗,aaa

(2.382 · 10−4)
Mean obs. 3.239 · 10−2 2.167 · 10−3 4.625 · 10−3

Std. obs. 3.075 · 10−2 4.442 · 10−2 4.549 · 10−2

N obs. 584559 23337 27415
α− estimate
(Std. Error)

−3.270 · 10−2 ∗∗∗

(1.508 · 10−4)
−2.197 · 10−3 ∗∗∗,a

(2.574 · 10−4)
−1.740 · 10−3 ∗∗∗,a

(2.430 · 10−4)
Mean obs. −3.128 · 10−2 −1.152 · 10−3 −4.955 · 10−4

Std. obs. 2.954 · 10−2 4.365 · 10−2 4.451 · 10−2

N obs. 613156 21507 25642
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Table 4.3: α coefficients of equation (2.40) and summary statistics for distance competitive effects
with parameters: δf = 60, δc = 20, dt = 7, tc = 7. ***, **, and * denote significance at 1%, 5%,
and 10%, respectively. aaa, aa, and a denote significance at 1%, 5%, and 20%, respectively, for
whether the coefficients from the panel Close are different from the respective coefficients in the
panel Far.

Init Close Far
α+ estimate
(Std. Error)

3.178 · 10−2 ∗∗∗

(1.859 · 10−4)
1.310 · 10−3 ∗∗∗,aaa

(2.736 · 10−4)
3.353 · 10−3 ∗∗∗,aaa

(2.620 · 10−4)
Mean obs. 3.240 · 10−2 2.224 · 10−3 4.570 · 10−3

Std. obs. 3.076 · 10−2 4.442 · 10−2 4.546 · 10−2

N obs. 581827 23282 27377
α− estimate
(Std. Error)

−3.276 · 10−2 ∗∗∗

(1.861 · 10−4)
−2.323 · 10−3 ∗∗∗,a

(2.796 · 10−4)
−1.845 · 10−3 ∗∗∗,a

(2.666 · 10−4)
Mean obs. −3.126 · 10−2 −1.155 · 10−3 −4.864 · 10−4

Std. obs. 2.952 · 10−2 4.368 · 10−2 4.454 · 10−2

N obs. 608492 21401 25574

Table 4.4: α coefficients of equation (2.40) and summary statistics for distance competitive effects
with parameters: δf = 40, δc = 20, dt = 7, tc = 3. ***, **, and * denote significance at 1%, 5%,
and 10%, respectively. aaa, aa, and a denote significance at 1%, 5%, and 20%, respectively, for
whether the coefficients from the panel Close are different from the respective coefficients in the
panel Far.

Init Close Far
α+ estimate
(Std. Error)

3.192 · 10−2 ∗∗∗

(1.497 · 10−4)
1.585 · 10−3 ∗∗∗,aaa

(2.480 · 10−4)
2.602 · 10−3 ∗∗∗,aaa

(2.576 · 10−4)
Mean obs. 3.243 · 10−2 2.259 · 10−3 3.381 · 10−3

Std. obs. 3.076 · 10−2 4.456 · 10−2 4.489 · 10−2

N obs. 585856 23774 21298
α− estimate
(Std. Error)

−3.276 · 10−2 ∗∗∗

(1.501 · 10−4)
−2.003 · 10−3 ∗∗∗,aaa

(2.547 · 10−4)
−1.031 · 10−4 ∗∗∗,aaa

(2.633 · 10−4)
Mean obs. −3.129 · 10−2 −1.035 · 10−3 1.121 · 10−4

Std. obs. 2.953 · 10−2 4.381 · 10−2 4.478 · 10−2

N obs. 615515 21888 19954
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4.1.2. N Retail
Results in the previous subsection indicate that stores in group Close are more competitive

than stores in group Far. By focusing in the first group, in this subsection we present the
results of model (2.44) & (2.45). Using the price changes in categories ±Init and ±Close
derived with parameters δf = 60, δc = 20, dt = 7, tc = 0, we constructed Hretail and Lretail
store groups by taking values above/equal to and below the median of the number of retail
chains Ns in our dataset of price changes respectively (see Table 4.5). We also did this
taking values above/equal to the 3rd quartile and below/equal to the 1st quartile (see Table
4.6). In order to balance the observations, the median, 1st, and 3rd quartiles were calculated
independently for ±Init and ±Close categories, and groups were divided accordingly. Note
that in Tables 4.5 and 4.6:

• α+Close
Lretail

> 0 (and significantly different from 0)

• α−Close
Hretail

< 0 (and significantly different from 0)

• α+Close
Hretail

< α+Close
Lretail

(and significantly different)

• |α−Close
Hretail

| > |α−Close
Lretail

| (and significantly different)

Results show that most of the positive effect of α+Close is represented by Lretail stores,
while most of the negative part of α−Close is contributed by Hretail stores. Similarly to Close
and Far distance coefficients, we note that stores in group Hretail are more competitive when
responding to competitive price changes than stores in group Lretail, showing the same asym-
metry between positive and negative price change responses. Results illustrate that when
prices increase, stores with low N Retail respond less aggressively than stores with high N
Retail. In contrast, stores with high Retail respond more aggressively than stores with high
Retail when prices decrease. This reflects the fact that, the higher is the local diversity of
retail chains in the market, the higher is the competition between retailers in that particular
zone.
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Table 4.5: α coefficients of equations (2.44) & (2.45) and summary statistics for N Retail com-
petitive effects with parameters: δf = 60, δc = 20, dt = 7, tc = 0. Hretail and Lretail store
groups obtained using the median of Ns in our dataset of price changes. ***, **, and * denote
significance at 1%, 5%, and 10%, respectively. aaa, aa, and a denote significance at 1%, 5%, and
20%, respectively, for whether the coefficients from the left panel (Hretail) are different from the
respective coefficients in the right panel (Lretail)

Observations above the
50th percentile # retail chains

Observations below the
50th percentile # retail chains

α+Close estimate
(Std. Error)

−7.906 · 10−4 ∗,aaa

(3.079 · 10−4)
3.915 · 10−3 ∗∗∗,aaa

(3.268 · 10−4)
Mean obs. −1.213 · 10−4 4.722 · 10−3

Std. obs. 4.361 · 10−2 4.528 · 10−2

N obs. 12597 10773
α−Close estimate

(Std. Error)
−2.753 · 10−3 ∗∗∗,aa

(3.169 · 10−4)
−1.655 · 10−3 ∗∗∗,aa

(3.382 · 10−4)
Mean obs. −1.735 · 10−3 −4.571 · 10−4

Std. obs. 4.330 · 10−2 4.404 · 10−2

N obs. 11671 9862
α+Init estimate

(Std. Error)
3.224 · 10−2 ∗∗∗,aaa

(1.510 · 10−4)
3.146 · 10−2 ∗∗∗,aaa

(1.576 · 10−4)
Mean obs. 3.266 · 10−2 3.196 · 10−2

Std. obs. 3.078 · 10−2 3.069 · 10−2

N obs. 362334 223849
α−Init estimate

(Std. Error)
−3.284 · 10−2 ∗∗∗,

(1.512 · 10−4)
−3.271 · 10−2 ∗∗∗,

(1.574 · 10−4)
Mean obs. −3.147 · 10−2 −3.104 · 10−2

Std. obs. 2.964 · 10−2 2.938 · 10−2

N obs. 382860 232585
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Table 4.6: α coefficients of equations (2.44) & (2.45) and summary statistics for N Retail com-
petitive effects with parameters: δf = 60, δc = 20, dt = 7, tc = 0. Hretail and Lretail store groups
obtained using the 1st and 3rd quartiles of Ns in our dataset of price changes respectively. ***,
**, and * denote significance at 1%, 5%, and 10%, respectively. aaa, aa, and a denote significance
at 1%, 5%, and 20%, respectively, for whether the coefficients from the left panel (Hretail) are
different from the respective coefficients in the right panel (Lretail)

Observations above the
75th percentile # retail chains

Observations below the
25th percentile # retail chains

α+Close estimate
(Std. Error)

−4.111 · 10−4 ,aaa

(4.383 · 10−4)
7.000 · 10−3 ∗∗∗,aaa

(4.185 · 10−4)
Mean obs. −1.726 · 10−4 7.338 · 10−3

Std. obs 4.116 · 10−2 4.545 · 10−2

N obs. 6041 6538
α−Close estimate

(Std. Error)
−1.982 · 10−3 ∗∗∗,a

(4.570 · 10−4)
−1.139 · 10−3 ∗∗∗,a

(4.261 · 10−4)
Mean obs. −1.714 · 10−3 −2.790 · 10−4

Std. obs 4.153 · 10−2 4.466 · 10−2

N obs. 5413 6225
α+Init estimate

(Std. Error)
3.274 · 10−2 ∗∗∗,aaa

(1.991 · 10−4)
3.192 · 10−2 ∗∗∗,aaa

(1.990 · 10−4)
Mean obs. 3.280 · 10−2 3.196 · 10−2

Std. obs 3.053 · 10−2 3.069 · 10−2

N obs. 185911 223849
α−Init estimate

(Std. Error)
−3.288 · 10−2 ∗∗∗,aa

(1.995 · 10−4)
−3.226 · 10−2 ∗∗∗,aa

(1.990 · 10−4)
Mean obs. −3.194 · 10−2 −3.104 · 10−2

Std. obs 2.977 · 10−2 2.938 · 10−2

N obs. 193665 232585
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4.1.3. HHI
In this subsection we present the results of model (2.44) & (2.45). Using the price changes

derived with parameters δf = 60, δc = 20, dt = 7, tc = 0, we constructed HHHI and LHHI
store groups analogously to what is explained in subsection 4.1.2 . Note that in Tables 4.7
and 4.8:

• α+Close
HHHI

> 0 (and significantly different from 0)

• α−Close
LHHI

< 0 (and significantly different from 0)

• α+Close
LHHI

< α+Close
HHHI

(and significantly different)

• |α−Close
LHHI

| > |α−Close
HHHI

|

Particularly, coefficients in the last point are significantly different in Table 4.8. Results
show that most of the positive effect of α+Close is represented byHHHI stores, while most of the
negative part of α−Close is contributed by LHHI stores. Similarly to Close and Far distance
coefficients, we note that stores in group LHHI are more competitive when responding to
competitive price changes than stores in group HHHI, showing the same asymmetry between
positive and negative price change responses. In particular, when prices increase, stores with
low HHI respond less aggressively than stores with high HHI. On the other hand, when price
cuts happen, stores with high HHI respond more aggressively than stores with high HHI.
These results are intuitive and consistent since low HHI values correspond to lower market
concentration, and therefore to a more competitive market.
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Table 4.7: α coefficients of equations (2.44) & (2.45) and summary statistics for HHI competitive
effects with parameters: δf = 60, δc = 20, dt = 7, tc = 0. HHHI and LHHI store groups obtained
using the median of HHIs in our dataset of price changes respectively. ***, **, and * denote
significance at 1%, 5%, and 10%, respectively. aaa, aa, and a denote significance at 1%, 5%, and
20%, respectively, for whether the coefficients from the left panel (HHHI) are different from the
respective coefficients in the right panel (LHHI)

Observations above the
50th percentile HHI

Observations below the
50th percentile HHI

α+Close estimate
(Std. Error)

3.549 · 10−3 ∗∗∗,aaa

(3.159 · 10−4)
−7.954 · 10−4 ∗,aaa

(3.178 · 10−4)
Mean obs. 4.394 · 10−3 −1.841 · 10−4

Std. obs 4.499 · 10−2 4.379 · 10−2

N obs. 11716 11654
α−Close estimate

(Std. Error)
−2.182 · 10−3 ∗∗∗,

(3.266 · 10−4)
−2.311 · 10−3 ∗∗∗,

(3.271 · 10−4)
Mean obs. −9.749 · 10−4 −1.323 · 10−3

Std. obs 4.385 · 10−2 4.344 · 10−2

N obs. 10737 10796
α+Init estimate

(Std. Error)
3.196 · 10−2 ∗∗∗,

(1.543 · 10−4)
3.195 · 10−2 ∗∗∗,

(1.528 · 10−4)
Mean obs. 3.236 · 10−2 3.243 · 10−2

Std. obs 3.090 · 10−2 3.059 · 10−2

N obs. 298214 287969
α−Init estimate

(Std. Error)
−3.277 · 10−2 ∗∗∗,

(1.540 · 10−4)
−3.279 · 10−2 ∗∗∗,

(1.532 · 10−4)
Mean obs. −3.122 · 10−2 −3.139 · 10−2

Std. obs 2.956 · 10−2 2.953 · 10−2

N obs. 310052 305393
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Table 4.8: α coefficients of equations (2.44) & (2.45) and summary statistics for HHI competitive
effects with parameters: δf = 60, δc = 20, dt = 7, tc = 0. HHHI and LHHI store groups obtained
using the 1st and 3rd quartiles of HHIs in our dataset of price changes. ***, **, and * denote
significance at 1%, 5%, and 10%, respectively. aaa, aa, and a denote significance at 1%, 5%, and
20%, respectively, for whether the coefficients from the left panel (HHHI) are different from the
respective coefficients in the right panel (LHHI)

Observations above the
75th percentile HHI

Observations below the
25th percentile HHI

α+Close estimate
(Std. Error)

6.411 · 10−3 ∗∗∗,aaa

(4.576 · 10−4)
−1.017 · 10−3 ∗,aaa

(4.613 · 10−4)
Mean obs. 6.887 · 10−3 −8.776 · 10−4

Std. obs 4.505 · 10−2 4.456 · 10−2

N obs. 5752 5662
α−Close estimate

(Std. Error)
−1.501 · 10−3 ∗∗,aa

(4.648 · 10−4)
−2.887 · 10−3 ∗∗∗,aa

(4.636 · 10−4)
Mean obs. −4.856 · 10−4 −2.357 · 10−3

Std. obs 4.391 · 10−2 4.415 · 10−2

N obs. 5497 5573
α+Init estimate

(Std. Error)
3.206 · 10−2 ∗∗∗,aa

(2.316 · 10−4)
3.287 · 10−2 ∗∗∗,aa

(2.296 · 10−4)
Mean obs. 3.201 · 10−2 3.284 · 10−2

Std. obs 3.103 · 10−2 3.056 · 10−2

N obs. 169992 147139
α−Init estimate

(Std. Error)
−3.230 · 10−2 ∗∗∗,

(2.313 · 10−4)
−3.269 · 10−2 ∗∗∗,

(2.305 · 10−4)
Mean obs. −3.112 · 10−2 −3.188 · 10−2

Std. obs 2.958 · 10−2 2.972 · 10−2

N obs. 177746 153794

4.2. Market Power
In this section we present the results of model (2.54) & (2.55) related to the market

power of each store. Using the price changes derived with parameters δf = 60, δc = 20,
dt = 7, tc = 0, we constructed HMS and LMS store groups analogously to what is explained
in subsection 4.1.2. Note that in Tables 4.9 and 4.10:

• α+Close
LMS

> 0 (and significantly different from 0)

• α−Close
HMS

< 0 (and significantly different from 0)

• α+Close
HMS

< α+Close
LMS

(and significantly different)

• |α−Close
HMS

| > |α−Close
LMS

| (and significantly different)

Results show that most of the positive effect of α+Close is represented by LMS stores, while
most of the negative part of α−Close is contributed by HMS stores. Similarly to Close and Far
distance coefficients, we note that stores in group HMS are more competitive when responding
to competitive price changes than stores in group LMS, showing the same asymmetry between
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negative and positive price change responses. Particularly, note that when prices increase,
stores with low MS respond less aggressively than stores with high MS. In contrast, stores
with high MS respond more aggressively than stores with high MS when prices decrease.
This can be explained by thinking that retail chains that compete to locally possess the
market, also make efforts to offer competitive prices in those geographical zones.

Table 4.9: α coefficients of equations (2.54) & (2.55) and summary statistics for MS competitive
effects with parameters: δf = 60, δc = 20, dt = 7, tc = 0. HMS and LMS store groups obtained
using the median of MSs in our dataset of price changes. ***, **, and * denote significance at 1%,
5%, and 10%, respectively. aaa, aa, and a denote significance at 1%, 5%, and 20%, respectively,
for whether the coefficients from the left panel (HMS) are different from the respective coefficients
in the right panel (LMS)

Observations above the
50th percentile Market Share

Observations below the
50th percentile Market Share

α+Close estimate
(Std. Error)

−6.208 · 10−5 ,aaa

(3.056 · 10−4)
3.148 · 10−3 ∗∗∗,aaa

(3.277 · 10−4)
Mean obs. 6.478 · 10−4 3.912 · 10−3

Std. obs 4.363 · 10−2 4.539 · 10−2

N obs. 12893 10477
α−Close estimate

(Std. Error)
−2.636 · 10−3 ∗∗∗,a

(3.182 · 10−4)
−1.809 · 10−3 ∗∗∗,a

(3.364 · 10−4)
Mean obs. −1.631 · 10−3 −5.884 · 10−4

Std. obs 4.235 · 10−2 4.511 · 10−2

N obs. 11594 9939
α+Init estimate

(Std. Error)
3.192 · 10−2 ∗∗∗,

(1.544 · 10−4)
3.196 · 10−2 ∗∗∗,

(1.529 · 10−4)
Mean obs. 3.249 · 10−2 3.230 · 10−2

Std. obs 3.107 · 10−2 3.044 · 10−2

N obs. 288406 297777
α−Init estimate

(Std. Error)
−3.277 · 10−2 ∗∗∗,

(1.542 · 10−4)
−3.282 · 10−2 ∗∗∗,

(1.531 · 10−4)
Mean obs. −3.131 · 10−2 −3.130 · 10−2

Std. obs 2.960 · 10−2 2.949 · 10−2

N obs. 312488 302957
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Table 4.10: α coefficients of equations (2.54) & (2.55) and summary statistics for MS competitive
effects with parameters: δf = 60, δc = 20, dt = 7, tc = 0. HMS and LMS store groups obtained
using the 1st and 3rd quartiles of MSs in our dataset of price changes respectively. ***, **, and
* denote significance at 1%, 5%, and 10%, respectively. aaa, aa, and a denote significance at 1%,
5%, and 20%, respectively, for whether the coefficients from the left panel (HMS) are different
from the respective coefficients in the right panel (LMS)

Observations above the
75th percentile Market Share

Observations below the
25th percentile Market Share

α+Close estimate
(Std. Error)

−6.551 · 10−4 ,aaa

(4.269 · 10−4)
5.504 · 10−3 ∗∗∗,aaa

(4.235 · 10−4)
Mean obs. 3.042 · 10−4 5.945 · 10−3

Std. obs 4.399 · 10−2 4.516 · 10−2

N obs. 5810 5794
α−Close estimate

(Std. Error)
−4.307 · 10−3 ∗∗∗,aaa

(4.394 · 10−4)
−3.394 · 10−4 ,aaa

(4.275 · 10−4)
Mean obs. −2.848 · 10−3 7.139 · 10−4

Std. obs 4.302 · 10−2 4.604 · 10−2

N obs. 5419 5664
α+Init estimate

(Std. Error)
3.198 · 10−2 ∗∗∗,a

(1.667 · 10−4)
3.154 · 10−2 ∗∗∗,a

(1.607 · 10−4)
Mean obs. 3.265 · 10−2 3.189 · 10−2

Std. obs 3.146 · 10−2 3.021 · 10−2

N obs. 174982 243798
α−Init estimate

(Std. Error)
−3.331 · 10−2 ∗∗∗,aa

(1.661 · 10−4)
−3.272 · 10−2 ∗∗∗,aa

(1.608 · 10−4)
Mean obs. −3.156 · 10−2 −3.102 · 10−2

Std. obs 3.001 · 10−2 2.920 · 10−2

N obs. 188723 250122

4.3. Luxury Products
In this subsection we present the results of model (2.54) & (2.55). Using the price changes

derived with parameters δf = 60, δc = 20, dt = 7, tc = 0, we constructed HP and LP product
groups analogously to what is explained in subsection 4.1.2. Note that in Table 4.11:

• α+Close
HP

> 0 (and significantly different from 0)

• α−Close
LP

< 0 (and significantly different from 0)

• α+Close
LP

< α+Close
HP

(and significantly different)

• |α−Close
LP

| > |α−Close
HP

| (and significantly different)

Results show that most of the positive effect of α+Close is represented by HP stores, while
most of the negative part of α−Close is contributed by LP stores. Similarly to Close and
Far distance coefficients, we note that stores compete more for items in group LP than for
items in group HP, showing the same asymmetry between positive and negative price change
responses. Particularly, note that when prices increase, stores with respond less aggressively
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to expensive products than to cheaper products. In contrast, when prices decrease, stores
respond more aggressively to inexpensive items than to expensive ones. This can be explained
thinking that stores compete more for regular daily products than for items with inelastic
demands, such as luxury products. However, results from Table 4.12 are not consistent,
therefore, further analysis is needed to confirm this hypothesis, for example, by incorporating
product categories.

Table 4.11: α coefficients and summary statistics for P competitive effects with parameters:
δf = 60, δc = 20, dt = 7, tc = 0. HP and LP item groups obtained using the median of Pi in our
dataset of price changes. ***, **, and * denote significance at 1%, 5%, and 10%, respectively.
aaa, aa, and a denote significance at 1%, 5%, and 20%, respectively, for whether the coefficients
from the left panel (HP) are different from the respective coefficients in the right panel (LP)

Observations above the
50th percentile Product Price

Observations below the
50th percentile Product Price

α+Close estimate
(Std. Error)

4.000 · 10−3 ∗∗∗,aaa

(9.777 · 10−4)
−1.368 · 10−3 ,aaa

(9.851 · 10−4)
Mean obs. 2.707 · 10−3 1.424 · 10−3

Std. obs 4.365 · 10−2 4.536 · 10−2

N obs. 12522 10848
α−Close estimate

(Std. Error)
8.626 · 10−4 ,aaa

(9.835 · 10−4)
−5.453 · 10−3 ∗∗∗,aaa

(9.842 · 10−4)
Mean obs. −1.654 · 10−4 −2.141 · 10−3

Std. obs 4.298 · 10−2 4.428 · 10−2

N obs. 10805 10728
α+Init estimate

(Std. Error)
3.245 · 10−2 ∗∗∗,

(9.406 · 10−4)
3.147 · 10−2 ∗∗∗,

(9.427 · 10−4)
Mean obs. 3.074 · 10−2 3.411 · 10−2

Std. obs 3.078 · 10−2 3.063 · 10−2

N obs. 298798 287385
α−Init estimate

(Std. Error)
−2.908 · 10−2 ∗∗∗,aaa

(9.407 · 10−4)
−3.659 · 10−2 ∗∗∗,aaa

(9.417 · 10−4)
Mean obs. −2.969 · 10−2 −3.294 · 10−2

Std. obs 2.973 · 10−2 2.926 · 10−2

N obs. 309405 306040
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Table 4.12: α coefficients and summary statistics for P competitive effects with parameters:
δf = 60, δc = 20, dt = 7, tc = 0. HP and LP item groups obtained using the 1st and 3rd quartiles
of Pi in our dataset of price changes respectively. ***, **, and * denote significance at 1%, 5%,
and 10%, respectively. aaa, aa, and a denote significance at 1%, 5%, and 20%, respectively, for
whether the coefficients from the left panel (HP) are different from the respective coefficients in
the right panel (LP)

Observations above the
75th percentile Product Price

Observations below the
25th percentile Product Price

α+Close estimate
(Std. Error)

−5.917 · 10−4 ,aaa

(1.036 · 10−3)
4.378 · 10−3 ∗∗∗,aaa

(1.046 · 103)
Mean obs. 3.264 · 10−3 1.222 · 10−4

Std. obs 4.334 · 10−2 4.779 · 10−2

N obs. 6549 5636
α−Close estimate

(Std. Error)
−3.788 · 10−3 ∗∗∗,aa

(1.050 · 10−3)
−9.567 · 10−6 ,aa

(1.044 · 10−3)
Mean obs. 3.551 · 10−4 −2.618 · 10−3

Std. obs 4.108 · 10−2 4.626 · 10−2

N obs. 5380 5648
α+Init estimate

(Std. Error)
2.551 · 10−2 ∗∗∗,aaa

(9.674 · 10−4)
3.878 · 10−2 ∗∗∗,aaa

(9.674 · 10−4)
Mean obs. 2.905 · 10−2 3.563 · 10−2

Std. obs 3.077 · 10−2 3.110 · 10−2

N obs. 152147 143143
α−Init estimate

(Std. Error)
−3.202 · 10−2 ∗∗∗,

(9.675 · 10−4)
−3.215 · 10−2 ∗∗∗,

(9.675 · 10−4)
Mean obs. −2.754 · 10−2 −3.449 · 10−2

Std. obs 2.924 · 10−2 2.920 · 10−2

N obs. 155726 156521
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Conclusion

In this thesis, we have presented an empirical model for determining how the distance be-
tween stores affect competition in french retailers, formalising initial price change events, and
introducing a framework that allows us to analyse large amounts of data. By controlling by
item, time and retail fixed effects, we estimated competitive effects of close and far stores,
providing evidence that close stores adopt stronger competitive pricing strategies in response
to price changes than stores located far away from the competition. We further explored
other features related to the competitive environment of the stores, such as the number of
retailers present in their proximity, and the local market concentration of the retail, finding
similar competitive behaviours than those found for Close and Far stores. Indeed, stores
compete more in settings in which various retailers participate than in zones where the num-
ber of different retail chains present is rather low. Similarly, we found that stores are more
competitive when the market concentration of their environment is low rather than when it
is high. We also showed that other features, such as the local market share of each store
and the price of each product, produce analogous responses to initial price changes. Our
results demonstrate that stores from retail chains with high market share react more aggres-
sively to competitive price changes than stores from low market share retail chains, and that
competition is stronger for low priced products than for expensive ones.

Nonetheless, this work is not exempt of limitations. In fact, since the competitive price
change event classification relies on the price processes from surrounding stores to correctly
identify Init, Close and Far categories, our model requires consistent data from all the stores
present in the particular geographical zone under analysis. However, despite the fact that
missing information in our dataset may have introduced some noise in the model, the re-
sults presented in this thesis were consistent and coherent as we analysed huge amounts of
data, capturing on average the competitive effects between retailers. Other limitations are
related to the bias of the weak conditional formulation of our model, in which we selected
non-zero price change responses in order to estimate the coefficients of our model. Future
work considers extending this thesis by proposing other ways for measuring the impact of a
competitive price change event, including the fraction of stores that respond after each com-
petitive price change, and the speed of these responses. Furthermore, differentiating stores
that consistently respond from those that rarely respond to competitive price changes would
serve to correct bias from the weak conditional formulation, for instance, by using Heckman
correction [8].

Finally, we hope that this thesis contributes to the understanding of price changes and
competition between retail chains, and to promote the interest in models of competition
that incorporate features of the stores’ environment to analyse competitive price change
events.
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