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RESUMEN DE LA TESIS PARA OPTAR AL GRADO DE
MAGÍSTER EN CIENCIAS DE LA INGENIERÍA ELÉCTRICA
Y AL TÍTULO DE INGENIERO CIVIL ELÉCTRICO
POR: MIGUEL IGNACIO VIDELA ARAYA
FECHA: 2021
PROF. GUÍA: JORGE SILVA SÁNCHEZ PROF. CO-GUÍA: RENÉ MÉNDEZ BUSSARD

INFERENCIA BAYESIANA EN SISTEMAS ESTELARES
JERÁRQUICOS

Se presenta una metodología para la inferencia bayesiana en sistemas estelares binarios basada
en el algoritmo Markov chain Monte Carlo No-U-Turn sampler, que proporciona una estimación
precisa y eficiente de la distribución posterior conjunta de los parámetros orbitales. La metodología
bayesiana permite incorporar directamente información previa sobre el sistema para restringir la
solución y estimar parámetros orbitales que no se pueden determinar por falta de observaciones o
mediciones imprecisas. La incorporación de información previa del paralaje y la masa del objeto
primario se estudia extensamente para determinar las masas individuales de los componentes de
sistemas binarios espectroscópicos visuales de una sola línea. Este estudio se realiza analizando las
distribuciones posteriores y su respectiva proyección en los espacios de observación. La metodología
se extiende para la inferencia bayesiana en sistemas estelares jerárquicos de cualquier multiplicidad,
arquitectura y falta de fuentes de observación. Finalmente, se propone una metodología para
determinar el tiempo óptimo de medición en sistemas binarios y jerárquicos basado en el criterio
de muestreo de máxima entropía. Esta metodología hace uso directo de la distribución posterior
estimada para proporcionar una caracterización temporal de la información obtenida de nuevas
observaciones del sistema y estima una distribución de probabilidad del tiempo de medición óptimo.

i



RESUMEN DE LA TESIS PARA OPTAR AL GRADO DE
MAGÍSTER EN CIENCIAS DE LA INGENIERÍA ELÉCTRICA
Y AL TÍTULO DE INGENIERO CIVIL ELÉCTRICO
POR: MIGUEL IGNACIO VIDELA ARAYA
FECHA: 2021
PROF. GUÍA: JORGE SILVA SÁNCHEZ PROF. CO-GUÍA: RENÉ MÉNDEZ BUSSARD

BAYESIAN INFERENCE IN HIERARCHICAL STELLAR
SYSTEMS

A methodology for Bayesian inference in binary stellar systems based on the No-U-Turn sampler
Markov chain Monte Carlo algorithm is presented, providing a precise and efficient estimation of the
joint posterior distribution of the orbital parameters. The Bayesian methodology allows to directly
incorporate prior information about the system to constrain the solution and estimate orbital
parameters that cannot be determined due to lack of observations or imprecise measurements.
The incorporation of prior information of the parallax and the primary object mass is extensively
studied to determine the individual masses of the components of single-lined visual-spectroscopic
binary systems. This study is made by analyzing the posterior distributions and their respective
projection in the observation spaces. The methodology is extended for the Bayesian inference
in hierarchical stellar systems of any multiplicity, architecture, and lack of observation sources.
Finally, a methodology to determine the optimal measurements time in binary and hierarchical
systems is proposed based on the maximum entropy sampling criterion. This methodology makes
direct use of the estimated posterior distribution to provide a temporal characterization of the
information gain of new observations of the system and estimates a probability distribution of the
optimal measurement time.
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Chapter 1

Introduction

1.1 Motivation

Mass is the most critical parameter in determining the structure and evolution of stars. In bi-
nary stellar systems, the masses of their individual components (stars) can be directly calculated
through the orbital parameters. These can be determined through Kepler’s laws using astromet-
ric and spectroscopic observations. In some spectroscopic binary systems, the spectral lines of
both components are visible (double-line spectroscopic binaries). However, in most cases, only
one component can be seen in the spectra (single-lined spectroscopic binaries). In the absence of
companion star spectra, the mass ratio of the stellar binary system can not be determined. This
lack of information limits the astrophysical study of these abundant stellar systems.

A similar problem occurs in the case of hierarchical stellar systems, where the system is de-
coupled into multiple binary subsystems that interact with each other gravitationally, forming
different stellar architectures. The binary subsystems can be very different in size, period, and
brightness of their components depending on the hierarchical system. In addition, only some of
the subsystems can be observed through observational tools with acceptable precision. In prac-
tice, the observations are available only for some binary subsystems that conforms the hierarchical
system, making the joint estimation of the orbital parameters of the whole system intractable.
Fortunately, the joint estimation can be performed, in both the single-lined spectroscopic binary
and the hierarchical systems, if some suitable external information about the system is provided.

The present work introduces a Bayesian methodology based on the No-U-Turn sampler inference
tool to address the orbital parameters estimation problem in two scenarios: the individual masses
determination on single-lined spectroscopic binaries and the joint orbital parameters estimation
on hierarchical systems of any multiplicity, architecture, and lack of observation sources. This
methodology provides a precise characterization of the uncertainty of the estimates in the form
of the joint posterior distribution of the orbital parameters addressing the lack of observation
sources by incorporating suitable prior distributions on some critical parameters of the system.
The methodology is evaluated on several systems, providing an exhaustive analysis of the obtained
results. For this, a comparison of the posterior distribution is performed by applying different
priors and the corresponding projected posterior distributions on the observational space.
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In order to highlight the relevance of the posterior distribution characterization provided by
the proposed methodology, the current works additionally introduce a Bayesian-based framework
for the determination of the optimal time of measurement in binary systems. The optimal time of
measurement is implemented using the maximum entropy sampling principle. This information-
driven principle allows characterizing the measurement uncertainty in a dense range of time with a
low computationally cost, providing an estimation of the probability distribution of time of optimal
measurement. This work also shows that the proposed sampling methodology is indeed optimal
in the Bayesian sense.

1.2 Hypotheses

All the developed work is based on the following hypotheses:

• No other force besides the two bodies’ mutual gravitational interaction perturbs the system
in the binary stellar systems. Both bodies present symmetric spherical geometry that allows
to treat them as point masses.

• The dynamics of the multiple stellar systems studied in this work (hierarchical stellar sys-
tems) can be approximated by decomposing the system into subgroups of stars that form
multiple binary systems.

• The whole set of possible new measurements presents the same uncertainty in the Bayesian-
based methodology for estimating the optimal measurement time.

• All the algorithms used in this work (for optimization, sampling, and estimation) are efficient,
in the sense that few iterations are required to reach accurate solutions.

1.3 Objectives

1.3.1 Main Objectives

The main objectives of this work are the following:

• The implementation of an efficient and precise Bayesian inference framework to estimate the
orbital parameters of binary and hierarchical stellar systems.

• The mathematical formalization, development and implementation of a Bayesian-based method-
ology to estimate the optimal measurement time in binary and hierarchical stellar systems.

1.3.2 Specific Objectives

The specific objectives of this work are the following:

• Analyze the estimated posterior distributions provided by the proposed Bayesian inference
framework (in the parameters and observational spaces) using astrometric and radial veloc-
ities observations of several binary and hierarchical stellar systems.

• Analyze and evaluate the performance of the proposed Bayesian inference framework for
the estimation of the individual masses of single-lined visual-spectroscopic binary systems,
providing an extensive study of the effect of the incorporation of prior information on the
parallax and the mass of the primary component of the system.

2



• Formulate succinct analytic expressions of the kinematic equations of hierarchical stellar
systems that generalize to any architecture and multiplicity of these systems.

• Analyze and evaluate the performance of the proposed Bayesian inference framework for
the estimation of the orbital parameters in hierarchical stellar systems with different ar-
chitectures, multiplicities, and sources of available observations, studying the effect of the
incorporation of suitable prior information on the system.

• Analyze and validate the proposed methodology for estimating the optimal measurement
time in binary and hierarchical stellar systems, contrasting the results obtained on some
binary and hierarchical stellar systems with the mathematical theory that supports it.

1.4 Structure

The structure of the document is as follows:

• Section 2 describes the Keplerian orbital models used to characterize the binary and hierar-
chical stellar systems.

• Section 3 presents the fundamental concepts related to the Bayesian inference, as well as a
theoretical review on the Markov chain Monte Carlo sampling method for Bayesian inference.
This section also presents the most relevant Markov chain Monte Carlo algorithms, including
the No-U-Turn sampler used in this work.

• Section 4 presents a brief chronological review of some of the most relevant works that
addressed the problem of orbital parameters estimation on binary stellar systems.

• Section 5 addresses the problem of the individual masses estimation on single-lined spec-
troscopic binaries, describing the Bayesian model considered in this work and exploring two
sources of prior information: the parallax and the mass of the primary object. This section
also provides an extensive experimental evaluation by comparing the posterior distributions
obtained and their projection on the observational space, ending with applying the method-
ology on previously unresolved single-lined spectroscopic binaries.

• Section 6 addresses the problem of the estimation of the orbital parameters on hierarchical
stellar systems, describing the Bayesian model considered and evaluating the methodology on
several hierarchical systems of different multiplicities, architectures, and lack of observational
sources.

• Section 7 presents a direct application of the Bayesian inference tool developed in this work
by introducing a Bayesian-based optimal measurement time strategy for binary systems.
This section covers the theoretical guarantees and capacity of the proposed method. It
also introduces an experimental framework to evaluate the method on some binary and
hierarchical systems within an exhaustive analysis of the obtained results.

• Section 8 presents the main conclusions of the developed work and provides some guidelines
on future extensions and new applications of the proposed methodologies.
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Chapter 2

Stellar System Model

2.1 Binary Star System

A binary star system is defined as a stellar system composed of two stars that are bounded by
their mutual gravitational attraction [Heintz, 1975].

Assuming there is no other force besides the mutual gravitational interaction of the two bodies
perturbing the system1 and both bodies present symmetric spherical geometry that allows to treat
them as point masses, the mechanics of the system can be simplified to a two-body problem. Let
m1, r1 and m2, r2 be the mass and position vector of each body. Newton’s third law implies that
the force experimented by each body is determined by:

m1~̈r1 =
Gm1m2

r2
r̂,

m2~̈r2 = −Gm1m2

r2
r̂.

(2.1)

Considering the position of the primary object 1 relative to its companion 2, i.e., ~r = ~r2 − ~r1, the
force experimented by the relative position is:

~̈r = ~̈r2 − ~̈r1 = −G(m1 +m2)

r2
r̂, (2.2)

which solution is a Keplerian elliptical orbit determined by:

r(ν) =
a(1− e2)

1 + e cos ν
. (2.3)

In (2.3), a determines the semi-major axis of the orbit, e the eccentricity of the orbit and ν the
true anomaly defined as the angle between the current position of the companion object in the
orbit and the periapsis (point of closest distance between both bodies in the orbit).

Depending on the source of observational data, the binary system is classified as:
1Neglecting the effects of gravitational interaction with external objects, mass transference, and complex rela-

tivistic phenomena, among others.
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• Visual binary system, if positional observations are available.
• Spectroscopic binary system, if radial velocities observations are available.
• Spectroscopic-binary or combined system, if both sources of observations are available.

Different formulations are developed to describe the observational data depending on the case.

2.1.1 Visual Binary System

A visual binary (or visual double system) corresponds to a binary system in which the relative
position of both components is observable. The positional or astrometric observations in binary
systems measure the position of the fainter companion object relative to the brighter primary
object. Depending on the technique used to obtain the astrometric observations, these can be
classified into micrometric, interferometric or photographic position observations.

The solution of the differential equation of the motion (Eq. (2.2)) is described by the Kepler
laws, wherein the case of binary stars, it corresponds to an elliptical orbit where the primary star
is in the focus and the area swept by the radius vector is constant per unit of time. This elliptical
orbit, denoted as real orbit, is characterized by four orbital parameters:

• Period (P ): The revolution period in years.
• Time of periastron passage (T ): One epoch of passage through periastron (minimum

true distance between the components) in years and fractions.
• Semimajor axis (a): The major semiaxis of the elliptical true orbit in seconds of arc.
• Eccentricity (e): The numerical eccentricity.

The astrometric observations are position measurements of the projection of the real orbit in
the plane of the sky relative to the observer (plane of reference), denoted as apparent orbit. Three
additional parameters are necessary to project the real orbit into the apparent orbit:

• Longitude of the ascending node (Ω): The position angle from a reference direction to
the ascending node2 in the plane of reference (ranging from 0° to 360°).

• Argument of periapsis (ω): The angle from the node to the periastron in the real orbit,
following the direction of motion (ranging from 0° to 360°).

• Inclination (i): The angle between the plane of projection and that of the true orbit
(ranging from 0° to 180°).

An illustration of the angular parameters of the apparent orbit is presented in Figure 2.1.

It is worth pointing out that two values for the longitude of the ascending node (Ω and Ω + π)
result in identical apparent orbits. Therefore, the ascending node cannot be identified by positional
observations. By convention in astronomy, if the ascending node is undetermined, the value of Ω
is ranged from 0° to 180°.

On the specifics, the position on the apparent orbit (ρ, θ) at a certain time t (the ephemerides
formulae) involves the determination of the position in the real orbit and its projection to the
apparent orbit. The position on the real orbit involves the determination of the three orbital

2Point where the real orbit of the object passes through the plane of reference.
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Figure 2.1: Angular parameters of the apparent orbit (https://commons.wikimedia.org/wiki/
File:Orbit1.svg).

anomalies: the true anomaly ν(t), the eccentric anomaly E(t) and the mean anomaly M(t), in
terms of the orbital parameters P , T , a and e.

The true anomaly ν(t) is defined as the angle between the periapsis and the current position of
the companion object in the orbit, seen from its main focus (the position of the primary object).
The following geometrical identity can determine this angular parameter:

tan
ν(t)

2
=

√
1 + e

1− e
tan

E(t)

2
. (2.4)

where E(t) is the eccentric anomaly. The eccentric anomaly is defined as the angle between the
periapsis and the intersection of a perpendicular line to the semi-major axis of the orbit and the
position of the companion object in the orbit, seen from it central point. This angular parameter
can be determined by the numerical resolution of the Kepler equation3:

M(t) =
2π(t− T )

P
= E(t)− e sinE(t), (2.5)

whereM(t) is the mean anomaly of the orbit. The mean anomaly represents the angular movement
of the companion object in the orbit (similar to the true anomaly) but at a uniform rate. The
uniform rate of movement is represent by a circle circumscribed to the orbit. Therefore, the mean
anomaly is defined as the angle between the periapsis and the point in the circle circumscribed to
the orbit. It seems from its central point, which covers the same area as the true anomaly. This
angular parameter corresponds to the revolution period of the companion object in the orbit, i.e.,
M(t) = 2π(t− T )/P . An illustration of the orbital anomalies is presented in Figure 2.2.

Finally, the position on the real orbit is projected to the apparent orbit through the angular
parameters ω, Ω, and i:

tan(θ(t)− Ω) = tan(ν(t) + ω) cos(i),

ρ(t) = r(t) cos(ν(t) + ω) sec(θ(t) + Ω),
(2.6)

3The Kepler equation is commonly resolved using the Newton-Raphson method [Ypma, 1995].
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Figure 2.2: Orbital anomalies (https://commons.wikimedia.org/wiki/File:Mean_Anomaly.
svg). In blue the elliptical orbit and in red the circumscribed circle. In the figure: θ is the
true anomaly (ν in this work); E is the eccentric anomaly; M is the mean anomaly, C is the center
of the orbit; S is the main focus of the orbit (the position of the primary object) and P is the
position of the companion object on the orbit.

with r(t) = a(1− e2)/(1 + e cos(ν(t))) the radius vector.

The procedure to compute the position on the apparent orbit in rectangular coordinates (x, y)
at a certain time t involves determining the normalized rectangular coordinates in the true orbit
X, Y :

X(t) = cosE(t)− e,
Y (t) =

√
1− e2 sinE(t),

(2.7)

with E(t) the eccentric anomaly determined in (2.5). Therefore, the position on the true orbit is
computed by ponderation of the normalized coordinates:

x(t) = AX(t) + FY (t),

y(t) = BX(t) +GY (t),
(2.8)

with A,B, F and G the Thiele-Innes elements defined as:

A = a(cosω cos Ω− sinω sin Ω cos i),

B = a(cosω sin Ω + sinω cos Ω cos i),

F = a(− sinω cos Ω− cosω sin Ω cos i),

G = a(− sinω sin Ω + cosω cos Ω cos i).

(2.9)

The terms (A/a,B/a) and (F/a,G/a) are interpreted as the direction cosines of the major and
minor axis, respectively, of the orbit in the rectangular coordinate system formed by the tangential
plane and the North direction. The Thiele-Innes elements form a one-to-one correspondence with
the elements a,Ω, ω, i.

2.1.2 Spectroscopic Binary System

A spectroscopic binary system corresponds to a binary system in which the spectral lines of the
light emitted by its components are observable. The movement of the stars in the orbit produces
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variations on the spectral lines observed due to the Doppler’s effect: Blue or red spectra are
perceived, respectively, when the stars move towards or away from the observer. The Doppler
shift of the components’ spectral lines measured through a spectrometer result in radial velocities
observation of the objects.

The radial velocity V at a certain time t can be calculated as the sum of the radial velocity
of the system center of mass VCoM (a constant) and the radial part of the orbital velocity of the
observed component relative to the center of mass ż = dz/dt:

V (t) = V0 + ż(t). (2.10)

Following the resolution of the two-body problem, the radial component of the system can be
expressed as:

z(t) = r sin(ν(t) + ω) sin(i), (2.11)

and therefore, by taking the first temporal derivative, we have that:

ż(t) =
2πa sin(i)

P
√

1− e2
[e cosω + cos(ν(t) + ω)]. (2.12)

Denoting K = 2πa sin i/(P
√

1− e2) as the semi-amplitude of the radial velocity curve, the
above expression becomes:

V (t) = V0 +K[e cosω + cos(ν(t) + ω)]. (2.13)

Therefore, the radial velocity V (t) is characterized by six orbital parameters:

• Period (P ): The revolution period in days.
• Time of periastron passage (T ): One epoch of passage through periastron in Julian Date

(J.D.).
• Eccentricity (e): The numerical eccentricity.
• Argument of periapsis (ω): The periastron longitude, counted from the maximum of the

radial velocity curve.
• Semi-amplitude (K): The semi-amplitude of the radial velocity curve in km/s.
• Velocity of center of mass (V0): The radial velocity of the center of mas of the system

in km/s.

Although the parameters P and T do not appear directly in the expression of the radial velocity
(2.13), they are implicit in the determination of the true anomaly ν (2.4). According to the
convention for the units of the orbital parameters involved, the semi-amplitude K is measured
in km/s, whereby a sin(i) must be measured in km and P must be converted to seconds through
P [s] = 86400 · P [days].

The expression (2.13) is derived with respect to the relative orbit ~r = ~r2−~r1, however, the radial
velocity observations are relative to the center of mass of the system. To correct this discrepancy,
the semi-major axis a of the relative orbit must be replaced by their counterparts a1 and a2 of the
components relative to the center of mass of the system.
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By the definition of the center of mass of a system composed of two particles of mass m1 and
m2, the following relation is directly obtained:

m1a1 = m2a2, (2.14)

and noticing that a = a1 + a2, the following expressions for a1 and a2 are obtained:

a1 = a · m2

m1 +m2

= a · q

1 + q
,

a2 = a · m1

m1 +m2

= a · 1

1 + q
,

(2.15)

where q = m2/m1 is defined as the mass ratio. Consequently, the semi-amplitude of each compo-
nent becomes:

K1 =
1

86400

2πa1 sin(i)

P
√

(1− e2)
,

K2 =
1

86400

2πa2 sin(i)

P
√

(1− e2)
.

(2.16)

Finally, noting that the argument of periapsis of the primary ω1 and companion ω2 components
of the system differs by 180°, we have that ω = ω1 = ω2 +π, the expression for the radial velocities
of each component of the binary system becomes:

V1(t) = V0 +K1[e cos(ω) + cos(ν(t) + ω)],

V2(t) = V0 −K2[e cos(ω) + cos(ν(t) + ω)].
(2.17)

It is important to note that the terms a1 sin(i) and a2 sin(i) in the definition of the semi-amplitudes
(2.16) can not be separated through radial velocities observations.

When the spectra of both components are distinguishable, i.e., the radial velocities of the pri-
mary and the companion object are observable, the system is denoted as double-lined spectro-
scopic binary (SB2). It is characterized by the set of orbital parameters ϑSB2 = {P, T, e,K1, K2, V0}.
However, this is an infrequent case since most of the spectroscopic binary systems observations are
only from the primary (brighter) object (∼ 80%). When the primary object spectra is the only ob-
servable, the system is denoted as single-lined spectroscopic binary (SB1) and is characterized
by the set of orbital parameters ϑSB2 = {P, T, e,K1, V0}, since the parameter K2 is undetermined.

2.1.3 Visual-Spectroscopic Binary System

The visual-spectroscopic binary system corresponds to a binary system in which the relative po-
sition and the radial velocities of its components are observable. Since four orbital parameters
P, T, e, ω are common in the visual and spectroscopic binary systems, the schemes are dependent,
and joint modeling that describes both sources of information (positional and radial velocity ob-
servations) allows to determine the ambiguities and indeterminacy of each scheme. Furthermore,
the joint modeling allows to determine the individual masses of the system.

The radial velocities observations allow solving the indeterminacy of the longitude of the as-
cending node Ω in the visual binary case since the maximum/minimum of the radial velocity curve
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of each component is reached in the ascending/descending node. Conversely, the positional ob-
servations allow decoupling the term a sin(i) in the spectroscopic binary case since it allows to
determine the inclination i of the orbit.

The individual masses of a binary system can be computed by determining the total mass of
the system m1 + m2 and the mass ratio q = m2/m1. According to the Third Law of Kepler, the
total mass of the system can be obtained through the following expression:

m1 +m2 =
a[AU ]3

P 2
, (2.18)

where a[AU] is the relative semi-major axis of the system (in astronomical units), P the period of
the system (in seconds) and m1,m2 the mass of the primary and the companion object (in solar
masses), respectively. Since the positional observations allow to determine the semi-major axis a in
angular distance units (seconds of arc), the conversion to linear distance units (AU) is determined
by the following expression:

a[AU ] =
a[′′]

π
, (2.19)

where π is the system parallax (in seconds of arc), an additional orbital parameter required to
determine the individual masses.

For the computation of the mass ratio q, the combination of positional and radial velocities
observations are required. Considering that the radial velocity observations can determine the
terms a1 sin(i) and a2 sin(i) and the positional observations can determine the inclination i, both
sources of observations allow to determine the individual semi-major axis of each component (a1

and a2) and the mass ratio q = a1/a2 (2.14).

Considering the equation (2.19), the radial velocity expression in (2.17) becomes4:

V1(t) = V0 +
2πa1 sin i

P
√

1− e2
[cos(ω + ν(t)) + e cosω],

V2(t) = V0 −
2πa2 sin i

P
√

1− e2
[cos(ω + ν(t)) + e cosω],

(2.20)

with a1 = a′′/π · q/(1 + q), a2 = a′′/π · 1/(1 + q) and a′′ the semi-major axis in arcseconds.

If the radial velocity observations of each component (V1(t) and V2(t)) are available (SB2 case),
the combined model that describes the positional and radial velocities observations is characterized
by the set of orbital parameters ϑV B+SB2 = {P, T, e, a, ω,Ω, i, V0, π, q}. However, if the radial
velocity observations of only one component are available (SB1 case), the parameters q and π
cannot be simultaneously determined.

2.2 Hierarchical System

A stellar system composed of more than two stars is called a multiple stellar system. The dynamics
of a multiple stellar system composed of n > 2 stars can be modeled as a n-body problem. However,

4The units conversion between the common orbital parameters of Section 2.1.1 and Section 2.1.2 is omitted for
simplicity.
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unlike the 2-body problem model for binary stars systems, no general closed-form solution exists
for its dynamics, as the resulting system is chaotic for most initial conditions. Thereby, numerical
approximations of the solution are required. Unfortunately, the high computation time involved
in solving this problem is prohibitive. To avoid such difficulties, the multiple stellar system can be
modeled as an hierarchical system, which dynamic is a particular case of the n-body problem.

The hierarchical system approximation successively decomposes the system into two subgroups
of stars whose dynamics follow the solution of the two-body problem. This results in a hierarchical
structure of binary subsystems. As a consequence of the little interaction imposed by the hierar-
chical structure, the dynamics of each component follows an approximately stable Keplerian orbit
around the center of mass of the system.

2.2.1 Triple Hierarchical System

The simpler hierarchical system is composed of three stars or components. Two different hierar-
chical structures composed of two binary systems are possible: An outer object orbiting an inner
binary system and an outer binary system orbiting an inner object. An illustration of the two
possible triple hierarchical system configurations is presented in Figure 2.3.

Figure 2.3: Left: Outer object B orbiting an inner binary system AaAb. Right: Outer binary
system BaBb orbiting an inner object A. Reprinted from [Villegas et al., 2021].

2.2.1.1 Visual Hierarchical System

Following the hierarchical approximation mentioned above, two binary systems compose a triple
system: an inner and an outer system. The positional observations of both binaries are relative to
the most massive and brighter component. However, in some cases, the inner system can not be
resolved, i.e., it is not possible to identify each of its components. Two different derivations must
be done for each case to adequately describe the available positional observations: the resolved
inner binary case and the unresolved inner binary case. These are described next.

2.2.1.1.1 Resolved Inner Binary

Considering the first hierarchical structure: let Aa and Ab be the components of the inner binary
system (AaAb). The motion of the third component is described by a Keplerian orbit around the
center of mass of the inner system A, forming the outer binary system AB.

According to the 2-body problem approximation, the force experimented by the companion
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object Ab relative to the primary object Aa is given by:

~̈rAaAb
= ~̈rAb

− ~̈rAa = −G(mAa +mAb
)

r2
AaAb

r̂AaAb
. (2.21)

In the same manner, the force experimented by the relative position of the external object B
relative to the center of mass of the binary system AaAb is given by:

~̈rAB = ~̈rB − ~̈rA = −G(mA +mB)

r2
AB

r̂AB. (2.22)

As explained in Section 2.1.1, the solution of equations (2.21) and (2.22) are Keplerian elliptical
orbits characterized by the set of orbital parameters {PAaAb

, TAaAb
, eAaAb

, aAaAb
, ωAaAb

,ΩAaAb
, iAaAb

}
and {PAB, TAB, eAB, aAB, ωAB,ΩAB, iAB}, respectively. The procedure to determine the position
in those orbits at a certain time t follows the ephemerides formuale described in equations (2.6)
for polar coordinates and in (2.7) for rectangular coordinates.

The observations of the inner and outer binary systems are generally measured relative to the
brighter and most massive component of the system Aa (principal component). Hence, as the
solution of the inner system ~rAaAb

is already relative to Aa, it is necessary to characterize the
position vector ~rAaB to describe the observations of the outer binary system.

The vector ~rAaB can be expressed as:

~rAaB = ~rAaA + ~rAB. (2.23)

Decomposing the vector ~rAaA into its components and noting that ~rA is the position of the center
of mass of the inner binary system, we have that:

~rAaA = ~rA − ~rAa

=
mAa~rAa +mAb

~rAb

mAa +mAb

− ~rAa

= (~rAb
− ~rAa)

mAb

mAa +mAb

= ~rAaAb

(
qAaAb

1 + qAaAb

)
,

(2.24)

with qAaAb
= mAb

/mAa denoting the mass ratio of the inner system. By replacing (2.24) into
(2.23), the position of the outer object relative to the system principal component becomes:

~rAaB = ~rAB + ~rAaAb

(
qAaAb

1 + qAaAb

)
, (2.25)

and therefore, the observations of the outer component relative to the principal component of the in-
ner system is characterized by the set of orbital parameters {PAaAb

, TAaAb
, eAaAb

, aAaAb
, ωAaAb

,ΩAaAb
,

iAaAb
} ∪ {qAaAb

} ∪ {PAB, TAB, eAB, aAB, ωAB,ΩAB, iAB}. It is important to note that while the po-
sitional vectors ~rAaAb

and ~rAB follow a Keplerian orbit (since they are the solution of the 2-body
problem of the binary systems AaAb and AB, respectively), the positional vector ~rAaB does not,
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being a non-closed orbit. A relevant derived orbital parameter that characterizes the interaction
between the inner and outer system, denoted as the mutual inclination Φ, is defined as follows:

cos(Φ) = cos(iAaAb
) · cos(iAB) + sin(iAaAb

) · sin(iAB) · cos(ΩAB − ΩAaAb
). (2.26)

Now considering the alternative hierarchical structure: let A be the principal component and
Ba, Bb be the components of the outer binary system. The motion of the center of mass of the
outer system B is described by a Keplerian orbit around the inner component A, forming the inner
binary system AB.

Then, an analogous procedure can be developed to express the outer binary system observations
in terms of positional vectors that are the solution of the 2-body problem characterized by its
respective orbital parameters. Therefore, the positional vector that describes the outer system
observations ~rABa can be expressed as:

~rABa = ~rAB + ~rBBa

= ~rAB − ~rBaB

= ~rAB − ~rBaBb

(
qBaBb

1 + qBaBb

)
,

(2.27)

where the last equality follows the result shown in (2.24).

2.2.1.1.2 Unresolved Inner Binary

If the inner binary AaAb is unresolved, the individual components Aa and Ab are not identifiable.
Thus, the observations of the outer object B are relative to the photocenter of the inner binary
system A∗.

The photocenter of the inner binary system can be expressed analogously to the center of mass
by:

~rA∗ =
LAa~rAa + LAb

~rAb

LAa + LAb

, (2.28)

with LAa and LAb
being the luminosity of the components Aa and Ab, respectively. Repeating the

procedure of developed in Section 2.2.1.1.1, the vector ~rA∗B can be expressed as:

~rA∗B = ~rA∗A + ~rAB, (2.29)

while the vector ~rA∗A can be decomposed as:

~rA∗A = ~rA − ~rA∗

=
mAa~rAa +mAb

~rAb

mAa +mAb

− LAa~rAa + LAb
~rAb

LAa + LAb

= (~rAb
− ~rAa)

mAb
LAa −mAaLAb

(mAa +mAb
)(LAa + LAb

)

= ~rAaAb

qAaAb
L−1
AaAb

− 1

(1 + qAaAb
)(L−1

AaAb
+ 1)

= ~rAaAb

qAaAb
− LAaAb

(1 + qAaAb
)(1 + LAaAb

)
,

(2.30)
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with qAaAb
= mAb

/mAb
and LAaAb

= LAb
/LAa being the mass and luminosity ratios of the inner

binary system, respectively. By replacing (2.30) into (2.29), the position of the outer object relative
to the inner system photocenter becomes:

~rA∗B = ~rAB + ~rAaAb

qAaAb
− LAaAb

(1 + qAaAb
)(1 + LAaAb

)
. (2.31)

The solution of equations (2.21) and (2.22) are Keplerian elliptical orbits which position at a certain
time t can be determined following the ephemerides formulae described in equations (2.6) for polar
coordinates and (2.7) for rectangular coordinates. Therefore, the observations of the outer com-
ponent relative to the inner system photocenter are characterized by the set of orbital parameters
{PAaAb

, TAaAb
, eAaAb

, aAaAb
, ωAaAb

,ΩAaAb
, iAaAb

}∪{qAaAb
}∪{LAaAb

}∪{PAB, TAB, eAB, aAB, ωAB,ΩAB, iAB}.

2.2.1.2 Spectroscopic Hierarchical System

Considering a hierarchical triple system structure composed of an inner binary system AaAb and
an outer binary system AB, as described in Section 2.2, the radial velocities of the inner system
AaAb relative to its center of mass A can be expressed as:

VAa(t) = VA(t) +KAa [eAaAb
cosωAaAb

+ cos(νAaAb
(t) + ωAaAb

)],

VAb
(t) = VA(t)−KAb

[eAaAb
cosωAaAb

+ cos(νAaAb
(t) + ωAaAb

)].
(2.32)

In a similar manner, the radial velocities of the inner system AB relative to its center of mass
can be expressed as:

VA(t) = V0 +KA[eAB cosωAB + cos(νAB(t) + ωAB)],

VB(t) = V0 −KB[eAB cosωAB + cos(νAB(t) + ωAB)].
(2.33)

The center of mass of the outer system AB is equal to the center of mass of the whole system,
and therefore, the corresponding radial velocity is denoted as V0 in (2.33). This is considered as
an orbital parameter (constant) that characterizes the spectroscopic hierarchical system. Finally,
the radial velocities of the inner system relative to its center of mass A becomes:

VAa(t) = V0 +KA[eAB cosωAB + cos(νAB(t) + ωAB)] +KAa [eAaAb
cosωAaAb

+ cos(νAaAb
(t) + ωAaAb

)],

VAb
(t) = V0 +KA[eAB cosωAB + cos(νAB(t) + ωAB)]−KAb

[eAaAb
cosωAaAb

+ cos(νAaAb
(t) + ωAaAb

)].

(2.34)

Although a closed expression for the determination of VA is provided in (2.33), this component
is fictional because it corresponds to the center of mass of the real components of the inner system
Aa and Ab, and therefore, no radial velocity observations of the component A are available.

Now considering the alternative hierarchical structure, i.e., an inner binary system BaBb that
orbits a primary object A, the radial velocities of the inner system BaBb relative to its center of
mass B can be expressed as:

VBa(t) = VB(t) +KBa [eBaBb
cosωBaBb

+ cos(νBaBb
(t) + ωBaBb

)],

VBb
(t) = VB(t)−KBb

[eBaBb
cosωBaBb

+ cos(νBaBb
(t) + ωBaBb

)],
(2.35)

where VB(t) is defined identically as in (2.33).
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Figure 2.4: Mobile diagram of a 6-hierarchical stellar system. In this case WDS07346+3153 (=),
from Tokovinin´s "Multiple Star Catalogue" (http://www.ctio.noao.edu/~atokovin/stars/).

2.2.2 Higher Multiplicities

The number of possible configurations of an hierarchical stellar systems increases with its multiplic-
ity. To avoid confusions with the specific configuration of an hierarchical system, the architecture
is specified in a mobile diagram.

The mobile diagram is a binary tree structure where each leaf (in cyan) represents a star of the
hierarchical system, and the nodes (in green) represents the center of mass of the subsequent leafs,
where the root of the tree represents the center of mass of the complete system. The dynamics
of two child nodes rooted from the same parent node are described by the solution of the 2-body
problem, i.e., composes a binary system. The most massive component of a binary system is always
a left child node and vice-versa. An example of a mobile diagram that illustrates the configuration
of a hierarchical stellar system is presented in Figure 2.4.
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Chapter 3

Bayesian Inference

3.1 Bayesian Statistics

Bayesian statistics is a theory that interprets probability as a degree of belief of an event based on
prior knowledge or personal belief of that event and treats all the modeling phenomena as random
variables.

Let x ∈ X the observations of a phenomenon to be modeled and θ ∈ Θ the parameters that
characterize that model. The Bayesian inference is the procedure to characterize the probability
distribution of a model conditioned to the observations, i.e., p(θ|x). According to the Bayes’
theorem, the probability p(θ|x) can be expressed as:

p(θ|x) =
p(x|θ)p(θ)
p(x)

∝ p(x|θ)p(θ). (3.1)

In the above expression we have that:

• p(θ) is the prior knowledge or prior belief of the model, denoted as prior distribution.
• p(θ|x) is the probability of the model after an observation is provided, denoted as posterior
distribution.

• p(x|θ) is the probability law of the model (θ) fits the observations, denoted as the likelihood
or goodness of fit of the model.

• p(x) =
∫

Θ
p(x|θ)p(θ)dθ is the probability of the observations, denoted as the marginal likeli-

hood or evidence

The marginal likelihood p(x) does not depends on a specific election of θ, and therefore, it can be
treated as a normalization constant of the likelihood times prior, and hence, p(θ|x) ∝ p(x|θ)p(x).

The posterior distribution can be used to perform a Bayesian prediction of new samples x̃ ∈ X
through the determination of the probability distribution p(x̃|x) as follows:

p(x̃|x) =

∫
Θ

p(x̃|θ)p(θ|x)dθ, (3.2)

which is denoted as the posterior predictive distribution.
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One of the main characteristics of the Bayesian modeling is that it allows incorporating all
the sources of uncertainty: the epistemic uncertainty, which represents the inability to determine
the true model that explains the observations and the aleatoric uncertainty, which represents the
inherent variability of the model. The epistemic uncertainty is encapsulated by the prior p(x), and
it can be reduced through the addition of observational data of the modeled phenomena, while the
aleatoric uncertainty is encapsulated by the likelihood p(x|θ) and is irreducible.

The determination of the posterior distribution p(θ|x) involves the computation of the prior
distribution p(θ), which is given by expert knowledge, the likelihood p(x|θ), which is given by
the observation evaluated in the model, and the evidence p(x), which involves to compute the
intractable integral p(x) =

∫
Θ
p(x|θ)p(θ)dθ, being the mayor difficulty of the Bayesian inference

procedure.

There are two main approaches to perform the Bayesian inference: the Variational Inference
methods, which avoids the intractable computation of the marginal likelihood by a proposal
tractable distribution, minimizing its discrepancy concerning the intractable target distribution
through an optimization procedure, and the Monte Carlo Sampling methods, which performs ran-
dom realizations of the tractable part of the posterior target distribution (likelihood times prior)
normalizing them. In general, the Monte Carlo sampling methods are more computationally ex-
pensive than the variational inference methods. However, they provide guarantees of asymptotic
convergence to the target true distribution, while the variational inference methods do not.

Due to its theoretical guarantees, the present work focuses on Monte Carlo sampling methods
for Bayesian inference, particularly in the Markov Chain Monte Carlo methods.

3.2 Markov Chain Monte Carlo

The Markov Chain Monte Carlo (MCMC) algorithms are sampling methods (based on the construc-
tion of a Markov chain) that offer an empirical distribution that converges to a target distribution.
The samples are obtained by recording the chain states.

3.2.1 Markov Chain

To understand the theory beneath MCMC algorithms, some basic definitions and theorems on
Markov Chains [Ross et al., 1996, Norris, 1998] must be introduced.

Definition 3.1 (Markov Chain) A stochastic process X = (Xn)n≥0 that takes values in a discrete
space state I is defined as a Markov chain if it satisfies the Markov property:

p(Xn+1 = in+1|X0 = i0, X1 = i1, ..., Xn = in) = p(Xn+1 = in+1|Xn = in), ∀i0, ..., in ∈ I. (3.3)

The definition of a Markov chain implies that the stochastic process is memoryless, i.e., given
the present, the future does not depend on the past.

A Markov chain is characterized by an initial distribution µ and a transition matrix T .
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Definition 3.2 (Initial Distribution) The initial distribution of a Markov chain X is the probability
vector µ over the space state I defined by µi = p(X0 = i).

Definition 3.3 (Homogeneity and Transition Matrix) A Markov chain X is homogeneous if:

p(Xm+1 = j|Xm = i) = p(Xn+1 = j|Xn = i), ∀m,n ≥ 0, i, j ∈ I. (3.4)

In this case, the matrix T = (Tij)i,j∈I , with Tij = p(X1 = j|X0 = i) is defined as the transition
matrix of X.

The homogeneity implies that the transition probabilities between the states are invariant to
any n ≥ 0. It is easy to prove that the transitions matrix T is stochastic, i.e., ∀i ∈ I, Tij ≥ 0 and∑

j∈I Tji = 1.

Some important properties of the Markov chains are the notion of irreducibility, aperiodicity
and recurrence.

Definition 3.4 (Irreducibility) A Markov chain X is irreducible if:

∀i, j ∈ I,∃n ≥ 0 : p(Xn = j|X0 = i) > 0. (3.5)

Definition 3.5 (Aperiodicity) A Markov chain X is aperiodic if:

∀i ∈ I,∃n∗ ≥ 0,∀n ≥ n∗ : p(Xn = i|X0 = i) > 0. (3.6)

Definition 3.6 (Recurrence) A state i ∈ I of a Markov chain is recurrent if:

p(X0 = i, τi <∞) = 1, (3.7)

where τi is the return time of the state i defined as:

τi , inf{n ≥ 1 : Xn = i}. (3.8)

The irreducibility of a Markov chain implies that every state of the chain is connected, and the
aperiodicity implies that for any state of the chain, there is a positive probability of returning to
the same state in an arbitrary number of steps. The recurrence of a state i implies that the chain
returns to the same state with probability one. A recurrent state can be classified into a positive
recurrent or a null recurrent state.

Definition 3.7 (Positive/Null Recurrence) A recurrent state i ∈ I is said positive recurrent if the
expected return time is finite, i.e., Ei(τi) <∞. Otherwise, it is said to be null recurrent.

A fundamental requirement of MCMC algorithms that allows sampling from a target distribu-
tion is that the corresponding Markov chain converges to a unique stationary distribution.
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Definition 3.8 (Stationary Measure/Distribution) The probability vector µ is a stationary mea-
sure over a transition matrix T if: ∑

i

µiTij = µj, ∀j ∈ I. (3.9)

If the stationary measure µ additionally satisfies that:∑
j

µi = 1, ∀j ∈ I, (3.10)

then is denoted as a stationary distribution π.

Theorem 3.9 (Existence of Stationary Distribution) Let X be an irreducible Markov chain. The
following statements are equivalent:

1. A recurrent positive state exists.
2. All the states are recurrent positives.
3. A stationary distribution π exists. Moreover, the stationary distribution is determined by:

π(i) =
1

Ei(τi)
(3.11)

Theorem 3.10 (Unicity of Stationary Distribution) Let X be an irreducible Markov chain. If
X has a stationary distribution, all the stationary measures are multiples of it; therefore, the
stationary distribution is unique.

Theorems (3.9) and (3.10) ensure the existence and unicity of a stationary distribution π of
a irreducible Markov chain with a recurrent positive state. However, a result that ensures the
convergence of the Markov chain to that stationary distribution is required.

Theorem 3.11 (Ergodicity of Markov Chains) Let X be an irreducible and aperiodic Markov
chain with a stationary distribution π. Therefore, for any initial distribution µ, the chain satisfies
that:

lim
n→∞

pµ(Xn = i) = π(i), ∀i ∈ I. (3.12)

Moreover, if the states space I is finite, ∃c > 0, ∃α ∈ (0, 1) that:

sup
i,j∈I
|p(Xn = j|X0 = i)− π(j)| ≤ cαn. (3.13)

Therefore, the irreducibility, aperiodicity, and the existence of a recurrent positive state ensure
that a Markov chain converges to a unique stationary distribution.

Although Theorem (3.9) provides an expression for the stationary distribution π, the involved
calculus is generally a non-trivial task. The following condition can help to find the stationary
distribution of a Markov chain.
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Theorem 3.12 (Detailed Balance) A measure λ and a stochastic matrix T = (pij)i,j∈I satisfies
the detailed balance condition if:

λiTij = λjTji. (3.14)

It is easy to prove that if λ satisfies the detailed balance condition for T , then λ is a stationary
measure of T , and using the Theorem (3.10), the stationary distribution π can be founded (if it
exists). The detailed balance is a sufficient but not a necessary condition for stationary measures.

All the definitions and theorems presented in the discrete state space I directly extend for the
continuous state space case, where the transition matrix T becomes an integral kernel K.

3.2.2 MCMC Algorithms

Although there is a wide variety of Markov chain Monte Carlo methods, the current section covers
the four most popular algorithms.

3.2.2.1 Metropolis-Hastings

The Metropolis-Hastings algorithm [Metropolis et al., 1953, Hastings, 1970] aims to sample from
a target distribution P by designing a Markov chain that converges to an unique stationary dis-
tribution equals to P .

The design of the Markov chain involves defining the transition probabilities that fulfill the
desired conditions. Let X be a homogeneous Markov chain that takes values in a space state I
characterized by a transition matrix T = (Tij)i,j∈I and Q an arbitrary proposal distribution. The
transition probabilities of X are defined as follows:

Tij = Q(j|i)A(i, j) + 1i=j
∑
k 6=i

Q(i|k) · (1−A(i, k))︸ ︷︷ ︸
r(i)

, (3.15)

where A(i, j) , min
{

1, P (j)Q(i|j)
P (i)Q(j|i)

}
is the acceptance probability of transitioning from i to j and r(i)

is the probability of rejecting the transition. If Q is symmetric, i.e., Q(j|i) = Q(i|j), the acceptance
probability reduces to A(i, j) = min{1, P (j)/P (i)}. Note that the transition probabilities Tij
requires to compute the probability ratio P (j)/P (i), and hence, any distribution equals to the
target distribution up to a constant is feasible.

It is clear that the Markov chain X satisfies the Markov property, is irreducible if supp(P ) ⊆
supp(Q) and is aperiodic since Tij always allows rejection. Moreover, the designed Markov chain
satisfies the detailed balance condition (Theorem 3.12) for λ = P :

P (i)Tij = P (i)Q(j|i) min

{
1,
P (j)Q(i|j)
P (i)Q(j|i)

}
= min {P (i)Q(j|i), P (j)Q(i|j)}

= P (j)Q(i|j) min

{
P (i)Q(j|i)
P (j)Q(i|j)

, 1

}
= P (j)Tji.

(3.16)

20



Therefore, P is a stationary measure of X, and since X is irreducible, p is the unique stationary
distribution of X. Finally, the Theorem 3.11 allows to conclude that X converges to the stationary
distribution P . The complete Metropolis-Hastings sampling procedure is described in Algorithm
1.

Algorithm 1: Metropolis-Hastings.
Parameters: N
Initialize x(0)

for 0 ≤ i < N do
Sample u ∼ U [0, 1]
Sample x∗ ∼ q(x∗|x(i))

if u < A(x(i), x∗) = min
{

p(x∗)q(x(i)|x∗)
p(x(i))q(x∗|x(i))

}
then

x(i+1) = x∗

else
x(i+1) = x(i)

3.2.2.2 Gibbs Sampler

Since the Metropolis-Hastings allows sampling from a target distribution P by evaluating a version
of it up to a constant, this is generally difficult to compute in a multivariate scenario. However,
the evaluation of the joint distribution up to a constant can be avoided if its marginal distributions
are known.

The Gibbs sampler [Geman and Geman, 1984] aims to obtain samples from a multivariate target
distribution P (x1, ..., xd) by sampling from its marginal distributions P (xj|x1, ..., xj−1, xj+1, ..., xd).
Let X an homogeneous Markov chain that takes values in a state space I ∈ Rd characterized
by a transition matrix T = (Txy)x,y∈I and x ∼j y an equivalence relation which states that
xi = yi,∀i 6= j. The transition probabilities of X are defined as follows:

Txy = 1x∼jy ·
1

d
· P (y)∑

z∼jx
P (z)

. (3.17)

By transitivity of the equivalence relation x ∼j y, the designed Markov chain satisfies the
detailed balance condition for λ = P :

P (x)Txy = 1x∼jy ·
1

d
· P (x)P (y)∑

z∼jx
P (z)

= 1y∼jx ·
1

d
· P (y)P (x)∑

z∼jy
P (z)

= P (y)Tyx.

(3.18)

The Markov chain X is also irreducible and aperiodic, and therefore, it converges to the stationary
distribution P .

By considering that the marginal distribution of P (x) can be expressed as:

P (xj|x1, ..., xj−1, xj+1, ..., xd) =
P (x1, ..., xd)

P (x1, ..., xj−1, xj+1, ..., xd)
, (3.19)
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the definition of the transition probabilities Txy implies that the samples of P (x) can be obtained
by sampling from the marginal distributions P (xj|x1, ..., xj−1, xj+1, ..., xd), picking j ∈ {1, ..., d}
at random. The Gibbs sampler can be viewed as an special of the Metropolis-Hastings algorithm
with a proposal distribution Q(y|x) = 1x∼jyP (xj|x1, ..., xj−1, xj+1, ..., xd). In that case, the accep-
tance probability is always A(x,y) = 1. The complete Gibbs sampling procedure is described in
Algorithm 2.

Algorithm 2: Gibbs sampler.
Parameters: N
Initialize x(0)

for 0 ≤ i < N do
x(i+1)

1 ∼ p(x1|x(i)
2 , x

(i)
3 , ..., x

(i)
d )

x(i+1)
2 ∼ p(x2|x(i+1)

1 , x
(i)
3 , ..., x

(i)
d )

...
x(i+1)
j ∼ p(xj|x(i+1)

1 , ..., x
(i+1)
j−1 , x

(i)
j+1, ..., x

(i)
d )

...
x(i+1)
d ∼ p(xd|x(i+1)

1 , x
(i+1)
2 , ..., x

(i+1)
d−1 )

3.2.2.3 Hamiltonian Monte Carlo

The Hamiltonian Monte Carlo [Neal et al., 2011], also known as Hybrid Monte Carlo, is an instance
of the Metropolis-Hastings algorithm that makes use of the geometry of the target probability dis-
tribution to guide the transitions of the Markov chain. This allows performing the sampling
efficiently, avoiding random walk behaviors and sensitivity to correlated parameters. These fea-
tures allow convergence to high-dimensional target distributions much more quickly than simpler
methods like the random walk Metropolis-Hastings or the Gibbs sampler.

The core of the Hamiltonian Monte Carlo method is to sample from the zone of the parameter
space that highly contributes to the computation of the exception of a target distribution P (x)
given a parametrization (denoted by f) of the parameter space X :

EP (f) =

∫
X
P (x)f(x)dx, (3.20)

denoted as the typical set.

For that purpose, the transitions of the Markov chain must be guided by a vector field in the
direction of the typical set by exploiting the differential structure of the target distribution. Hence,
the vector field is generated by using the gradient of the target distribution and auxiliary momen-
tum parameters that compensate the attractive force of the gradient to the target distribution
mode, preserving a dynamical equilibrium that allows aligning the generated vector field with the
typical set.

A conservative dynamic in physical systems requires that any compression or expansion in the
position space be compensated with a respective expansion or compression in the momentum space,
preserving the volume in the joint space of position and momentum. To ensure the conservative
dynamic behavior, the transition probabilities of the chain follow the Hamiltonian dynamics. The
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Hamiltonian dynamical system is described by a function over the position x and momentum p
variables, known as the Hamiltonian function H(x, p).

Let xn ∈ Rd the vector of parameters of the space state and P (x) the target distribution, each
dimension of the space state is complemented by a fictitious momentum variable x:

xn → (xn, pn), (3.21)

where pn ∈ Rd. The combined space of the parameters (xn, pn) ∈ R2d is denoted as the phase
space and the respective induced distribution P (x, p) is denoted as the canonical distribution.

To mimic the conservative dynamic behavior of the space variables and the momentum variables,
the canonical distribution is written in terms of the Hamiltonian function1:

P (x, p) = e−H(x,p), (3.22)

which implies that:
H(x, p) = − logP (x, p), (3.23)

Hence, the Hamiltonian function captures the probabilistic structure of the phase space, and
consequently, the geometry of its typical set.

Marginalization of the canonical distribution P (x, p) in terms of the state variable p induces
the following decomposition of the Hamiltonian function H(x, p):

H(x, p) = − logP (p|x)− logP (x)

≡ K(p, x) + V (x).
(3.24)

The decomposition can be interpreted as a kinetic energy K(p, x) function, dependent on both
space and momentum variables, and potential energy function V (x), dependent on the momentum
variables only. The potential function is simply the negative logarithm of the target distribution,
while kinetic energy is usually expressed as a quadratic term on p:

K(p) =
1

2
pT ·M−1 · p, (3.25)

where M is a symmetric, positive-definite matrix denoted as mass-matrix. The mass matrix is
typically a scalar multiple of the identity matrix but can explicitly depends on x as in (3.24).

Therefore, the vector field oriented in the direction of the typical set can be defined through
the Hamiltonian equations:

dx

dt
= +

∂H

∂p
=
∂K

∂p
dp

dt
= −∂H

∂x
= −∂K

∂x
− ∂V

∂x
.

(3.26)

Following the vector field (determined by the Hamiltonian equations for a time t) generate
trajectories φt(x, p) that moves along the typical set. To compute these trajectories, the solution

1It follows the Boltzmann canonical distribution P (x) = z−1e−E(x)/t, with z a normalization constant and t the
temperature variable fixed to one.
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of (3.26) is obtained by numerical methods. In particular, the trajectory φT (x, p) of a variable i
can be approximated by the leap-frog integration method iterating the following expressions:

pi(t+ ε/2) = pi(t)−
ε

2

∂V

∂xi
(xi(t))

xi(t+ ε) = xi(t) +
ε

mi

pi(t+ ε/2)

pi(t+ ε) = pi(t+ ε/2)− ε

2

∂V

∂xi
(xi(t+ ε)), ∀i ∈ 1, ..., L.

(3.27)

L is the number of steps, ε ∈ R is the step size, and T = bL/εc the integration time. The adequate
selection of the algorithm hyper-parameter ε and L is crucial for a good sampling performance.

In summary, the Markov chain that samples from the target distribution P (x) will follow
the Metropolis-Hastings algorithm defined on the phase space (x, p) with transition probabilities
T(x0,p0),(xL,pL) determined by the solution of the Hamiltonian equations. Its computation follows
the leap-frog integration method for a fixed number of steps L and a step size ε. The momentum
variables are sampled from a proposal marginal distribution P (p|x), and the final samples of P (x)
are obtained by projecting the samples of the phase space on the state space (x, p) → x, i.e.,
ignoring the momentum variables.

The transition probabilities of the current Markov Chain must be modified since the transition
ratio in the Metropolis-Hastings acceptance probability T(xL,pL),(x0,p0)/T(x0,p0),(xL,pL) = 0/1 = 0,
because the leap-frog integration does not allow reverse trajectories. Thus, the transition proba-
bilities are modified to be reversible by augmenting the numerical integration with a negation step
that flips the sign of momentum (x, p) → (x,−p). Thereby, the Metropolis-Hastings acceptance
rate is:

A((xL,−pL), (x0, pp)) = min

{
1,
T(xL,−pL),(x0,p0)P (xL,−pL)

T(x0,p0),(xL,−pL)P (x0, p0)

}
= min

{
1,
δ(xL − xL)δ(−pl + pL)P (xL,−pL)

δ(x0 − x0)δ(p0 − p0)P (x0, p0)

}
= min

{
1,
P (xL,−pL)

P (x0, p0)

}
= min

{
1, e−H(xL,−pL)+H(x0,p0)

}
.

(3.28)

The complete Hamiltonian Monte Carlo sampling procedure is described in Algorithm 3.
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Algorithm 3: Hamiltonian Monte Carlo.
Parameters: N, ε, T,M
Initialise x(0)

for 0 ≤ i < N do
Sample u ∼ U([0, 1]), p ∼ N (0,M)
x0 ← x(i), p0 ← p, L← bT

ε
c

for 0 ≤ l < L do
pl+ 1

2
← pl − ε

2
∂V
∂x

(xl)
xl+1 ← xl + εpl+ 1

2

pl+1 ← pl+ 1
2
− ε

2
∂V
∂x

(xl)

if u < min
(
1, e−H(xL,−pL)+H(x0,p0)

)
then

x(i+1) ← xL
else

x(i+1) ← x(i)

3.2.2.4 No-U-Turn Sampler

The No-U-Turn Sampler algorithm [Hoffman et al., 2014] is an extension of the Hamiltonian Monte
Carlo algorithm that adaptively sets the number of steps L of the trajectories. This adaptive
selection facilitates the use of the sampling tool by avoiding a low-performance selection of the
Hamiltonian Monte Carlo user-defined hyper-parameters. The selection of the number of steps
L follows the computation of the Hamiltonian Monte Carlo algorithm’s forward and backward
exploration trajectories until an end condition is met. A new sample is obtained by a random
selection of the generated trajectories.

To generate the exploration trajectories, a binary tree is constructed iteratively. Let (xn(0), pn(0))
be an initial particle composed by the a position and a momentum of the n-th iteration of the
Markov chain, (x+

n , p
+
n ) be a forward in time particle and (x−n , p

−
n ) be a backward in time particle.

In each iteration j, the binary tree selects, in a uniform random way, to move the (j−1)-particle for-
ward or backward in time, with 2j leap-frog integration steps. Figure 3.1 illustrates the No-U-turn
sampler trajectories construction, where an initial particle (in black) is moved forward-backward-
backward-forward in time, respectively.

The iterative procedure continues until the following condition (namely the U-Turn condition)
is met:

(x+
n − x−n ) · p−n < 0 ∨ (x+

n − x−n ) · p+
n < 0, (3.29)

or when the Hamiltonian trajectory generated by the leap-frog integration becomes imprecise in
the sense that:

e−H(x+n ,p
+
n )+∆max < Un ∨ e−H(x−n ,p

−
n )+∆max < Un, (3.30)

where Un ∼ U
(
0, e−H(qn(0),pn(0))

)
is a slice random variable sample and ∆max is a maximum energy

hyper-parameter. The idea behind the No-U-Turn condition is to avoid the generation of redundant
trajectories by stopping the exploration when the trajectory begins to turn back to previously
explored zones.

Finally, the new sample (xn+1, pn+1) is selected by an uniform sampling of the generated trajec-
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Figure 3.1: Illustration of No-U-Turn sampler trajectories construction procedure. Reprinted from
[Hoffman et al., 2014].

tory that satisfies the precision condition Un < e−H(xn+1,pn+1). The complete No-U-Turn sampler
sampling procedure is described in Algorithm 4.
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Algorithm 4: No-U-Turn-Sampler.
Parameters: x0, ε,L,M ; // L = logP
for m = 1 to M do

Sample p0 ∼ N (0, I), u ∼ U([0, exp (L(xm−1 − 1
2
p0 · p0))])

Initialise x− = xm−1, x+ = xm−1, p− = p0, p+ = p0, xm = xm−1

Initialise j = 1, n = 1, s = 1
while s=1 do

Sample vj ∼ U({−1, 1})
if vj = −1 then

x−, p−,−,−, x′, n′, s′ ← BuildTree(x−, p−, u, vj, j, ε)
else
−,−, x+, p+, x′, n′, s′ ← BuildTree(x+, p+, u, vj, j, ε)

if s′ = 1 then
With probability min

(
1, n

′

n

)
: xm ← x′

n← n+ n′, s← s′I[(x+ − x−) · p− ≥ 0]I[(x+ − x−) · p+ ≥ 0], j ← j + 1

BuildTree(x, p, u, v, j, ε):
if j = 0 then

x′ ← x+ ε(p+ 1
2
ε∇xL(x))

p′ ← p′ + 1
2
ε∇xL(x′)

n′ ← I[u ≤ exp{L(x′)− 1
2
p′ · p′}]

s′ ← I[u < exp{∆max + L(x′)− 1
2
p′ · p′}]

return x′, p′, x′, p′, x′, n′, s′

else
x−, p−, x+, p+, x′, n′, s′ ← BuildTree(x, p, u, v, j − 1, ε)
if s′ = 1 then

if v = −1 then
x−, p−,−,−, x′′, n′′, s′′ ← BuildTree(x−, p−, u, v, j − 1, ε)

else
−,−, x+, p+, x′′, n′′, s′′ ← BuildTree(x+, p+, u, v, j − 1, ε)

With probability n′′

n′+n′′
: x′ ← x′′

s′ ← s′′I[(x+ − x−) · p− ≥ 0]I[(x+ − x−) · p+ ≥ 0]
n′ ← n′ + n′′

return x−, p−, x+, p+, x′, n′, s′
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Chapter 4

Related Work

This chapter exposes a brief review of some of the work on orbital parameters estimation of
binary and hierarchical stellar systems, encompassing both optimization-based and Bayesian-based
techniques. This section also mentions recent papers related to the application of Bayesian tools
on similar celestial objects.

4.1 Optimization-Based Orbital Parameters Estimation

The problem of estimating the orbital parameters of binary stellar systems is nothing new. The first
proposed method that solved the problem of astrometric orbital fitting on visual binaries consists
of analytical formulations (from physical models). This requires a set of three complete and highly
precise observations of relative position on the apparent orbit, of the form (t, ρ, θ), and a double
areal constant obtained from additional data [Thiele, 1883], an additional incomplete observation
of the form (t, θ) [Cid Palacios, 1958] or an auxiliary angular variable that maps a set of feasible
apparent orbits [Docobo, 1985]. All of these methods require highly precise observations, ignoring
the different levels of precision and uncertainties of the measurements.

To obtain robust solutions to the orbital fitting problem considering multiple observations
(with different levels of precision), the optimization-based approach was proposed. Some of these
optimization-based methods minimize a sum of weighted square errors between the physical model
estimates and the observations by using the Levenberg-Marquardt algorithm [Tokovinin, 1992],
simulated annealing [Pourbaix, 1994], or the downhill simplex method [MacKnight and Horch, 2004],
among others. All the works mentioned above focus on fitting positional observations of the orbit,
completely ignoring another important source of information obtained through spectroscopy: the
radial velocities of each system component.

The first attempts to solve the orbital parameters using positional and radial velocities obser-
vations of its components were made by fitting each source of information separately, using the
estimates obtained by fitting one of the sources of observations to fix some orbital parameters. The
determination of the remaining orbital parameters was made through the fitting of the other source
of observations [Docobo et al., 1992, Hummel et al., 1994]. Unfortunately, the separate fitting of
the astrometric and spectroscopic sources of observations yields a sub-optimal determination of the
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complete set of orbital parameters. Indeed, there is no guarantee that the solutions obtained by
both fittings were consistent. To avoid this issue, [Morbey, 1975] address the problem of determin-
ing the orbital parameters of a visual-spectroscopic binary system by fitting each source of observa-
tions jointly. They use a maximum likelihood estimation and Lagrange multipliers method. Lately,
the methods developed for the fitting of astrometric observations were extended to fit both the
astrometric and radial velocities observations simultaneously [Pourbaix, 1998]. Similar approaches
were performed to the estimation of the individual masses in single-lined spectroscopic binaries.
In this context, a well-determined supplementary observation of the system parallax (using other
techniques besides relative astrometry of the binary pair and spectroscopy for radial velocity) are
used as a fixed value within the estimation of the orbital parameters [Docobo et al., 2018] or a
supplementary parallax observation is used as an additional observation to perform the estimation
in a joint manner [Muterspaugh et al., 2010].

The same guidelines were followed for the estimation of the orbital parameter of multiple stellar
systems. By using the hierarchical approximation, the system is decomposed into separate interde-
pendent binaries. Hence, the orbital parameters of the whole system can be determined by fitting
each binary’s astrometric and spectroscopic observations. Some works perform the estimation of
the orbital parameters of hierarchical systems by determining the orbital parameters of each bi-
nary separately (using the estimates of one binary as fixed parameters for the estimation of the
orbital parameters of the other [Docobo et al., 2008, Köhler et al., 2012]). In contrast, other work
performs the estimation of the orbital parameter of the whole system jointly. On this last family,
[Tokovinin and Latham, 2017] proposed to perform the joint estimation in hierarchical triple sys-
tem by minimizing the sum of weighted square errors of the observations, alternating between the
fitting of the astrometric and spectroscopic observations from the inner and outer binary systems,
considering that, often, some observations are more reliable than others (e.g., the radial velocity
of the inner system over its astrometry, and vice-versa for the outer pair).

4.2 Bayesian-Based Orbital Parameters Estimation

One of the main drawbacks of the optimization-based methods presented in Section 4.1 is that ob-
tained solution is entirely deterministic. This strategy does not provide a reliable characterization
of the estimation uncertainty. In contrast, the Bayesian-based methods are a suitable alternative
to characterize the uncertainty of the estimations.

The Bayesian approach was widely used in exoplanet orbit estimation, characterizing the pos-
terior distribution of the orbital parameters through Markov Chain Monte Carlo (MCMC) sam-
pling. Many variants of the MCMC algorithm have been explored for the characterization of
the estimates uncertainty in exoplanets, such as the Metropolis-Hastings within Gibbs sampler
[Ford, 2005], the Parallel Tempering sampler [Gregory, 2005, Gregory, 2011], the Affine Invariant
MCMC Ensemble sampler [Hou et al., 2012], the Differential Evolution Markov Chain sampler
[Nelson et al., 2013] and the Hamiltonian Monte Carlo [Hajian, 2007], among others. One of
the most popular MCMC samplers in the statistical community, due to its efficiency on high-
dimensional and complex-correlated scenarios, the No-U-Turn sampler, was explored into the ex-
oplanets context [Ji et al., 2017, Shabram et al., 2020].

The Bayesian approach was later adapted to the astrometric orbital estimation in visual binaries
[Burgasser et al., 2012, Sahlmann et al., 2013, Lucy, 2014], providing a robust estimation of orbital
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parameters. The Bayesian estimation of orbital parameters considering both the positional and
the radial velocities sources of observations jointly was later addressed by [Mendez et al., 2017]
uses the Metropolis-Hastings within Gibbs sampler method. This method provides the posterior
distribution of double-lined visual-spectroscopic binaries. A similar Bayesian-based approach for
the joint orbital parameters estimation on these types of binary system was also developed by
[Lucy, 2018], and the geometric-based Hamiltonian Monte Carlo was used for the determination
of the orbital parameters in binary neutron star [Bouffanais and Porter, 2019]. However, to our
knowledge, the Bayesian approach has not been explored in single-lined spectroscopic binaries to
estimate the individual masses of the system. In this context, the incorporation of suitable priors
on specific parameters of the system has the potential to characterize the posterior distributions of
the individual masses and all the orbital parameters of the system. These priors could significantly
enrich the analysis of those types of stellar systems.

Recently, the Bayesian-based inference approach was also applied in the context of hierarchical
triple stellar systems. For example, [Czekala et al., 2017] proposed the Affine Invariant Markov
chain Monte Carlo Ensemble sampler method to compute the posterior distribution of a hierarchical
triple system. [Villegas et al., 2021] adapted the alternating fitting approach between the inner
and outer astrometric and spectroscopic observations of hierarchical triple systems, proposed by
[Tokovinin and Latham, 2017], into the Bayesian framework by proposing a Bayesian hierarchical
modeling using the Metropolis-Hastings within Gibbs sampler. Importantly, none of the previously
mentioned approaches were used in the context of estimating the parameters of hierarchical systems
with higher multiplicities. This is a high-dimensional problem, where the diversity of possible
architectures and the lack of sources of observations make the estimation problem very challenging.

In the following chapters, we apply the Bayesian sampling technique No-U-Turn sampler to
perform an inference on the orbital parameters of single-lined spectroscopic binaries with a visual
orbit (Chapter 5), hierarchical stellar systems (Chapter 6), and to propose a novel methodology
to estimate the optimal time of measurement in binary systems (Chapter 7).
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Chapter 5

Bayesian Inference in Single-lined
Spectroscopic Binaries with a Visual Orbit

The double-lined spectroscopic binaries with a visual orbit are the best observational cases since
observations of position and radial velocities of both components are available. This information
allows determining the individual masses of the systems. The mass of a star is the most crucial
orbital parameter since it allows studying its composition and evolution. Unfortunately, in most
binaries, only the spectral lines of the brighter component are visible, and therefore, the observa-
tions of the radial velocities of the companion object are absent. This partial information scenario
prevents the estimation of the individual masses.

The current chapter introduces a Bayesian modeling for the inference of orbital parameters in
single-lined spectroscopic binary systems. Section 5.1 presents an empirical study over the qual-
ity of the inference in this type of system by comparing the estimated posterior distribution and
its projection on the observation space with the full-information scenario, i.e., the double-lined
spectroscopic binaries counterpart. Section 5.2 addresses the problem of the determination of the
individual masses in the Bayesian inference through the incorporation of additional information
of the system, and Section 5.3 applies the methodology on twelve new single-lined spectroscopic
binaries with a visual orbit, providing a complete characterization of the uncertainty of the esti-
mates.

5.1 Quality of the Inference

The proposed Bayesian inference strategy for double and single-lined spectroscopic binaries with
a visual orbit is introduced, including the sampling tool and the re-parametrizations of the model
used for an efficiency improvement of the inference routine.

On the experimental side, the inference of eight double and single-lined spectroscopic binaries
with a visual orbit is performed. We compare the estimated posterior distributions and their
projection on the observations space, providing analysis and quantification of the uncertainty gain
due to the absence of radial velocities of the companion object.
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5.1.1 Bayesian Model

The Bayesian model used to perform the inference in double-lined spectroscopic binary systems,
denoted as SB2 hereinafter, and single-lined spectroscopic binary systems, denoted as SB1 here-
inafter, it is nothing more than a suitable re-parametrization of the Keplerian orbital model intro-
duced in Section 2.1.3. For the determination of positional and radial velocities observations, we
assume that the observations follow a Gaussian distribution and consider uniform priors for the
model’s parameters.

Let {ti, Xi, Yi}ni=1 a set of n positional observations of the companion star relative to the primary
star of a binary stellar system in rectangular coordinates and {ti, V1i}n1

i=1, {ti, V2i}n2
i=1 a sets of n1 and

n2 radial velocity observations of the primary and companion stars, respectively. Each observation
distributes as an independent normal distribution centered in the model estimate with standard
deviation equal to the observational error σi:

Xi ∼ N (X̂θ(ti), σ
2
i ), Yi ∼ N (Ŷθ(ti), σ

2
i ), V1i ∼ N (V̂1θ(ti), σ

2
i ), V2i ∼ N (V̂2θ(ti), σ

2
i ), (5.1)

where (X̂θ(ti), Ŷθ(ti)) is the estimated position in the orbit at a time ti, which follows the equation
(2.7), and V̂1θ(ti), V̂2θ(ti) is the estimated radial velocities of each star at a time ti, which follows
the equations (2.17).

The positional and radial velocities estimates are determined through the visual-spectroscopic
binary system model presented in Section 2.1.3. Therefore, the set of orbital parameters that
characterizes the estimates is ϑSB2 = {P, T, e, a, ω,Ω, i, V0, π, q} for the double-lined spectroscopic
binaries with a visual orbit, and ϑSB1 = {P, T, e, a, ω,Ω, i, V0, f/π} for the single-lined spectro-
scopic binaries with a visual orbit, where f is the so called fractional-mass of the system. For
this last system, the parameter f/π = q/(1 + q) · 1/π condenses the pair of parameters π, q in
(2.17), since they are not determinable due to the absence of {V2i}n2

i=1 observations. The auxiliary
parameter f/π has units of parsecs since it is inversely proportional to the parallax π which has
units of seconds of arc. The range of f/π is (0, dmax/2], considering that q ∈ (0, 1] and π > 0, with
dmax the maximum distance of observation determined by the measurement instrument.

Denoting the set of all observations as D = {ti, Xi, Yi}ni=1 ∪ {ti, V1i}n1
i=1 ∪ {ti, V2i}n2

i=1, the log-
likelihood is expressed as:

log p(D|θ) =
n∑
i=1

logN (Xi|X̂θ(ti), σ
2
i ) +

n∑
i=1

logN (Yi|Ŷθ(ti), σ2
i )

+

n1∑
i=1

logN (V1i|V̂1θ(ti), σ
2
i ) +

n2∑
i=1

logN (V2i|V̂2θ(ti), σ
2
i ).

(5.2)

The prior distribution of each orbital parameter is modeled as independent uniform priors on their
valid physical range (defined in Section 2.1). Therefore, the prior distribution of the complete set
of orbital parameters is expressed as:

log p(θ) =

|θ|∑
i=1

logU(min Θi,max Θi), (5.3)

with θi ∈ Θi,∀i ∈ {1, ..., |θ|} and Θi the valid physical range of the orbital parameter θi.
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According to the Bayes theorem (3.1), the posterior distribution is proportional to the likelihood
times the prior, i.e., p(θ|D) ∝ p(D|θ)p(θ), and therefore, the complete posterior distribution can
be obtained through any sampling technique. In the following, we compute the posterior distribu-
tion using the No-U-Turn sampler algorithm introduced in Section 3.2.2.4. This is a state-of-art
Markov chain Monte Carlo (MCMC) method widely adopted by the statistical community in recent
years due to its computational efficiency, effectiveness in high-dimensional problems, and theoret-
ical guarantees [Hoffman et al., 2014]. The implementation details of the probabilistic model are
presented in Appendix A.

Only the reparametrization of the time of periastron passage T proposed by [Lucy, 2014] is
adopted in this work. The author suggests to sample from T ′ = (T − t0)/P instead of T , since it
is beneficial to sample from a well-constrained parameter space, restricting the range of the time
of periastron passage to [0, 1). Reparametrizations that involves a dimensionality reduction of the
parameters space (e.g. [Mendez et al., 2017]) or transformations of well-constrained parameters
(e.g. [Ford, 2005]) were avoided since it is shown to have a negative impact on the correlation
of the parameters space, considerably hindering the exploration of the parameters space through
first-order gradient information. This increases the computational cost of the gradient calculation
required by the No-U-Turn sampling routine.

Finally, as the orbital parameter space of binary stellar systems (and especially in hierarchi-
cal stellar systems) is highly correlated, many authors recommend choosing a starting point that
lies in the typical set of the parameter space (defined in (3.20)), to avoid miss-convergence is-
sues of the sampling process. This work uses the quasi-Newton optimization method L-BFGS
[Liu and Nocedal, 1989] to find a good starting point that alleviates convergence issues of the
Bayesian inference since it allows to perform the optimization using any prior distribution on the
parameters. In contrast, other commonly used optimization methods in the astronomical field
are restricted to least-squares problems (e.g. the Levenberg-Marquardt algorithm [Moré, 1978]),
restricting considerably the family of prior distributions that can be used.

5.1.2 Experiments

The inference of eight double-lined spectroscopic binaries with a visual orbit is compared with its
single-lined counterpart by omitting the radial velocity observations of the companion object. The
obtained estimates and their uncertainties are compared in the parameters space by visualizing the
posterior marginal distributions. We also observe the posterior distribution on the observations
space through the projection of 1000 randomly selected samples of the posterior distribution on the
observation space, drawing trajectories from the first observation time t0 to the first completion of
the orbit t0 +P . The maximum a posteriori MAP (the most probable sample of the posterior dis-
tribution) and the 95% high posterior density interval HPDI (the narrowest interval that contains
the 95% of the posterior distribution, including the mode) are summarized in Table 5.1.

The inference process is performed by simulating 10000 samples of the respective posterior
distributions (discarding the first half for warm-up) on 4 independent Markov chains using the
No-U-Turn sampler algorithm. Each chain starts from an initial point determined by the results
of the quasi-Newton optimization method L−BFGS.

To avoid any redundancy in the analysis, we select three of the eight most representative systems:
CHR111, YSC132AaAb, and HIP117186.
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5.1.2.1 CHR111

The system CHR111 (HIP111170) is a SB2 binary presented and solved in [Mendez et al., 2017].
The available data consists of astrometric observations mainly concentrated in apoastron passage
with few observations of the rest of the orbit but abundant observations of both components’ radial
velocities. The observations and their uncertainties are visualized in Figure 5.2.

The estimated posterior distribution presented in Figure 5.1 has a Gaussian shape with almost
no differences in mean value and dispersion between the SB2 and SB1 cases. The SB2 case is
slightly more constrained than the SB1. This reflects the expected precision gain due to incorpo-
rating both radial velocities observations instead of only the primary object radial velocities.

Figure 5.1: Marginal posterior distributions and MAP estimates of the orbital parameters of the
CHR111 binary system for the SB2 and SB1 cases.

The projection of the estimated posterior distribution in the observation space is presented in
Figure 5.2. The first column presents the MAP estimate in the observation space. The second and
third columns show the projection of 1000 uniformly selected samples of the posterior distribution
of SB2 and SB1 cases, respectively. A slight difference is observed between the MAP orbit of
the SB2 and SB1 cases, but it is almost negligible. There is no difference between the MAP
posterior projections in the radial velocities space between both cases. The posterior projection
in the orbit space of the SB2 case shows less uncertainty in the apoastron, which is the zone
that has more samples. Similar uncertainty is observed in the opposite zone -the periastron-
where only two observations are available. The zones of the orbit with a higher uncertainty are
between the periastron and the apoastron, which coincides with the lack of observations. The
posterior projection in the radial velocities space of the SB2 case shows almost no uncertainty,
attributed to the higher number of samples of radial velocities of both components. However, a
slight uncertainty increase of the radial velocity curves of both components is observed in their
maximum and minimum points. The projected posterior distributions of the SB1 case in both
the orbit and radial velocities spaces present no appreciable differences compared to the SB2 case,
which coincides with the coincidences of their respective posterior distributions.

5.1.2.2 YSC132AaAb

The system YSC132AaAb (HIP89000) is a SB2 binary presented and solved in [Mendez et al., 2017].
The available data consists of low and precise astrometric observations mainly concentrated in the
apoastron passage but with abundant and precise observations of radial velocities of both compo-
nents. The observations and their uncertainties are visualized in Figure 5.4.
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Figure 5.2: Estimated orbits and radial velocity curves of the CHR111 binary system. First column:
MAP point estimate projection of the posterior distribution for the SB2 and SB1 cases. Second
column: Projected posterior distribution of the SB2 case. Third column: Projected posterior
distribution of the SB1 case.

The estimated posterior distribution presented in Figure 5.3 shows that almost all the posterior
marginal distribution presents a Gaussian shape. The exception to this rule is the parameters
i, f/π,m1, whose distributions show a high positive skew. Slight differences in the mean values
and significant differences in the dispersions of the posterior distribution are observed between the
SB2 and the SB1 case. As expected, the SB2 case offers less posterior uncertainty than the SB1
case in all the orbital parameters, reflecting the significant impact of incorporating observations of
both radial velocities instead of only the primary object radial velocities.

Figure 5.3: Marginal posterior distributions and MAP estimates of the orbital parameters of the
YSC132AaAb binary system for the SB2 and SB1 cases.

The projection of the estimated posterior distribution in the observation space is presented in
Figure 5.4. The first column presents the MAP estimate in the observation space. The second and
third columns show the projection of 1000 uniformly selected samples of the posterior distribution
of SB2 and SB1 cases, respectively. A slight difference is observed between MAP projection on
the orbit between the SB2 and SB1 cases. There is no difference between the MAP posterior
projection in the radial velocities space between both cases. The posterior projection in the orbit
space of the SB2 case shows less uncertainty in the apoastron, which is the zone that has more
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samples. Similar uncertainty is observed in the opposite zone -the periastron- even considering that
the periastron presents only two observations. The zones of the orbit with a higher uncertainty
are between the periastron and the apoastron, which coincides with the lack of observations. The
posterior projection in the radial velocities space of the SB2 case presents almost no uncertainty
along all the curves, which coincides with the higher number of samples of radial velocities of both
components. The projected posterior distribution of the SB1 case in the radial velocities space
presents no differences compared to the SB2 case. However, the posterior distribution projection
on the orbit space is higher for the SB1 case than the SB2 case, coinciding with the appreciable
differences in their respective posterior distributions.

Figure 5.4: Estimated orbits and radial velocity curves of the YSC132AaAb binary system. First
column: MAP point estimate projection of the posterior distribution for the SB2 and SB1 cases.
Second column: Projected posterior distribution of the SB2 case. Third column: Projected pos-
terior distribution of the SB1 case.

5.1.2.3 HIP117186

The system HIP117186 is a SB2 binary presented and solved in [Halbwachs et al., 2016]. The
available data consists of highly precise astrometric observations dispersed along all the orbit with
abundant and precise observations of radial velocities of both components. The observations and
their uncertainties are visualized in Figure 5.6.

The estimated posterior distribution presented in Figure 5.5 shows that almost all the posterior
marginal distribution presents a Gaussian shape, where slight differences in the mean values and
significant differences in the dispersions of the posterior distribution are observed between the
SB2 and the SB1 case. As expected, the SB2 case offers less posterior uncertainty than the SB1
case in almost all the orbital parameters. The exception to this rule are the angular parameters
Ω and i (usually mostly constrained by astrometric observations on visual binaries), where the
dispersion between both cases is almost the same. The evident differences in the dispersion of the
posterior distribution between the SB2 and SB1 cases reflect the impact on the uncertainty of the
estimates of the incorporation of observations of both radial velocities instead of only using the
primary object radial velocities.
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Figure 5.5: Marginal posterior distributions and MAP estimates of the orbital parameters of the
HIP117186 binary system for the SB2 and SB1 cases.

The projection of the estimated posterior distribution in the observation space is presented
in Figure 5.6. The first column presents the MAP estimate in the observation space, and the
second and third columns show the projection of 1000 uniformly selected samples of the posterior
distribution of SB2 and SB1 cases, respectively. A slight difference is observed between MAP
projection on the orbit between the SB2 and SB1 cases. There is no difference between the
MAP posterior projection of the MAP in the radial velocities space between both cases. The
posterior projection in the orbit space of the SB2 case shows almost no uncertainty in the zones
with observations and a slight increase of uncertainty in the other zones. The uncertainty in all
the orbit space is almost negligible, attributed to the extremely high precision of the positional
observations, even considering that only seven observations were taken. The posterior projection in
the radial velocities space of the SB2 case shows almost no uncertainty along all the curves, which
coincides with the higher number of samples of radial velocities of both components. Finally, the
projected posterior distribution in the observations space of the SB1 case presents no appreciable
differences compared to the SB2 case.

Figure 5.6: Estimated orbits and radial velocity curves of the HIP117186 binary system. First
column: MAP point estimate projection of the posterior distribution for the SB2 and SB1 cases.
Second column: Projected posterior distribution of the SB2 case. Third column: Projected pos-
terior distribution of the SB1 case.
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Table 5.1: MAP estimates and 95% HDPIs of the marginal posterior distributions of the orbital
parameters incorporating priors of m1 and π of SB2 binary systems, considering the SB2 and
SB1 cases.
System Case Author P [yr] T [yr] e a [′′] Ω [°] ω [°] i [°] V0 [km/s] π [mas] f/π [pc] m1 [M�] q
CHR111 SB2 (a) 1.731 1,965.475 0.367 0.066 172.100 261.393 67.141 -9.573 35.542 9.842 1.389 0.538

SB2 (b) 1.731 1,965.471 0.366 0.068 172.194 261.648 67.581 -9.590 36.665 9.572 1.368 0.541
[1.73, 1.732] [1965.452, 1965.488] [0.348, 0.386] [0.066, 0.069] [168.423, 175.407] [260.027, 263.951] [62.243, 70.742] [-9.742, -9.377] [33.559, 38.62] [9.214, 10.242] [1.132, 1.739] [0.493, 0.584]

SB1 (b) 1.731 1,965.477 0.365 0.067 173.312 261.302 66.750 -9.518 - 9.664 - -
[1.73, 1.732] [1965.453, 1965.492] [0.346, 0.387] [0.066, 0.069] [168.692, 176.002] [259.93, 263.951] [62.154, 70.758] [-9.711, -9.341] - [9.213, 10.262] - -

YSC132AaAb SB2 (a) 0.546 1,990.675 0.302 0.019 86.650 51.189 146.167 -14.131 21.308 22.938 1.214 0.956
SB2 (b) 0.546 1,990.675 0.301 0.020 86.775 49.638 143.278 -14.129 23.858 20.484 1.041 0.956

[0.546, 0.547] [1990.673, 1990.677] [0.297, 0.307] [0.017, 0.023] [85.787, 87.484] [45.879, 53.981] [133.337, 157.681] [-14.173, -14.09] [13.194, 33.457] [13.426, 34.668] [0.495, 3.494] [0.949, 0.963]
SB1 (b) 0.546 1,990.677 0.303 0.021 86.381 54.636 142.729 -14.155 - 19.753 - -

[0.546, 0.547] [1990.674, 1990.68] [0.294, 0.311] [0.016, 0.022] [84.949, 88.248] [47.403, 60.572] [135.808, 173.393] [-14.247, -14.077] - [13.071, 89.385] - -
HIP14157 SB2 (a) 0.119 1,999.844 0.759 0.006 174.690 19.141 92.240 30.743 19.557 24.193 0.982 0.898

SB2 (b) 0.119 1,993.795 0.761 0.006 175.114 19.437 91.532 30.682 19.436 24.367 1.003 0.900
[0.119, 0.119] [1993.795, 1993.796] [0.758, 0.763] [0.006, 0.006] [174.829, 175.564] [19.092, 19.924] [90.104, 92.968] [30.573, 30.78] [19.279, 19.604] [24.145, 24.616] [0.982, 1.018] [0.891, 0.91]

SB1 (b) 0.119 1,993.795 0.761 0.006 175.044 19.530 91.454 30.695 - 24.401 - -
[0.119, 0.119] [1993.795, 1993.796] [0.758, 0.765] [0.006, 0.006] [174.479, 175.503] [19.089, 19.905] [90.131, 92.966] [30.569, 30.841] - [24.146, 24.652] - -

HIP20601 SB2 (a) 0.428 2,013.942 0.851 0.011 202.026 340.526 103.138 41.623 16.702 25.486 0.980 0.741
SB2 (b) 0.428 1,971.983 0.852 0.011 -157.740 340.812 103.636 42.097 16.710 25.677 0.984 0.752

[0.428, 0.428] [1971.983, 1971.983] [0.849, 0.854] [0.011, 0.012] [-158.465, -156.891] [339.649, 341.814] [101.114, 105.151] [41.94, 42.251] [16.429, 16.991] [25.178, 26.099] [0.947, 1.013] [0.742, 0.759]
SB1 (b) 0.428 1,971.983 0.852 0.011 -157.572 340.506 102.627 42.225 - 25.623 - -

[0.428, 0.428] [1971.983, 1971.983] [0.849, 0.855] [0.011, 0.012] [-158.361, -156.482] [339.57, 341.959] [100.916, 105.761] [41.922, 42.433] - [25.163, 26.184] - -
HIP117186 SB2 (a) 0.235 2,013.301 0.327 0.005 176.070 16.928 88.054 -19.890 8.445 53.509 1.686 0.824

SB2 (b) 0.235 1,987.923 0.323 0.005 175.150 16.956 87.974 -19.783 8.470 53.043 1.722 0.816
[0.235, 0.235] [1987.922, 1987.924] [0.32, 0.327] [0.005, 0.005] [174.106, 175.971] [16.5, 17.415] [87.683, 88.42] [-19.903, -19.632] [8.366, 8.58] [51.939, 54.212] [1.69, 1.765] [0.799, 0.833]

SB1 (b) 0.235 1,987.924 0.325 0.005 177.074 16.979 87.999 -20.250 - 53.953 - -
[0.235, 0.235] [1987.922, 1987.927] [0.317, 0.333] [0.005, 0.005] [-179.152, 179.999] [16.446, 17.354] [87.717, 88.459] [-20.83, -19.843] - [52.613, 55.459] - -

HD6840 SB2 (a) 7.454 2,002.952 0.743 0.083 215.600 151.300 50.900 -9.570 16.400 29.048 1.222 0.910
SB2 (b) 7.455 1,995.494 0.744 0.082 -144.994 152.001 50.669 -9.526 16.201 29.379 1.244 0.908

[7.45, 7.458] [1995.49, 1995.502] [0.741, 0.746] [0.082, 0.083] [-145.468, -144.197] [151.314, 152.497] [49.926, 51.606] [-9.596, -9.477] [15.952, 16.572] [28.751, 29.857] [1.176, 1.294] [0.894, 0.925]
SB1 (b) 7.454 1,995.495 0.743 0.083 -145.022 152.032 50.782 -9.500 - 29.345 - -

[7.45, 7.458] [1995.488, 1995.5] [0.741, 0.746] [0.082, 0.083] [-145.95, -144.551] [151.58, 152.828] [49.865, 51.528] [-9.551, -9.417] - [28.914, 30.048] - -
HIP108917 SB2 (a) 2.241 1,970.992 0.496 0.080 92.870 268.341 74.479 -10.743 32.170 8.246 2.246 0.361

SB2 (b) 2.245 1,968.750 0.463 0.072 90.343 273.135 67.582 -10.796 37.243 7.239 1.043 0.369
[2.245, 2.246] [1968.744, 1968.756] [0.452, 0.469] [0.071, 0.072] [89.919, 90.644] [272.559, 273.573] [67.044, 67.983] [-11.394, -10.035] [34.622, 40.09] [6.073, 8.181] [0.807, 1.266] [0.3, 0.425]

SB1 (b) 2.245 1,968.751 0.461 0.072 90.306 273.266 67.505 -10.791 - 7.130 - -
[2.245, 2.246] [1968.745, 1968.759] [0.452, 0.468] [0.071, 0.072] [89.94, 90.695] [272.696, 273.69] [67.005, 67.956] [-11.745, -10.193] - [6.002, 8.091] - -

HIP677 SB2 (a) 0.265 1,988.583 0.535 0.024 79 104.400 105.600 -11 33.620 10.023 3.441 0.508
SB2 (b) 0.265 1,988.847 0.535 0.024 78.339 104.952 106.172 -12.465 32.796 10.500 3.697 0.525

[0.265, 0.265] [1988.842, 1988.851] [0.47, 0.589] [0.022, 0.025] [73.74, 81.112] [101.653, 108.823] [102.45, 109.408] [-14.043, -9.567] [29.447, 35.93] [9.113, 12.139] [2.983, 4.461] [0.449, 0.6]
SB1 (b) 0.265 1,988.848 0.529 0.024 77.504 104.112 106.075 -10.194 - 10.952 - -

[0.264, 0.265] [1988.843, 1988.852] [0.461, 0.599] [0.022, 0.026] [73.201, 81.426] [100.809, 108.109] [102.329, 109.601] [-13.237, -7.576] - [9.117, 12.265] - -

(a) Results reported by other authors. (b) Results obtained in this work.

5.1.3 Concluding Remarks
The experiments presented in this section show an uncertainty reduction of the estimated posterior distri-
butions when radial velocities observations of both components are available instead of only one component,
as well as a slight shift on the MAP value of the posterior distributions in some orbital parameters. The
orientation and magnitude of the shift between the posterior distribution of the SB1 and SB2 cases and
the magnitude of the uncertainty reduction do not follow an evident tendency along the dimensions of the
posterior distribution, neither along the different systems studied. The shift and dispersion magnitudes
differences between the posterior distribution of SB2 and SB1 cases depend on the system itself and the
quality and quantity of the observations available. All the studied systems present an almost negligible
difference in the MAP values distance and dispersion magnitude of the posterior distribution of both cases.
Finally, the MAP estimates of both the SB2 and SB1 cases in all the systems studied were very similar
to the estimations reported by other authors using different methodologies.

The projected uncertainty in the observations space is lower in the zone with observations and higher in
the zones without observations. The joint estimation of the orbit and radial velocity curves allows sharing
the knowledge provided by both sources of information, reducing the uncertainty of the estimates in the
observations space significantly even if one source of information is highly uncertain. This was observed
in the system HIP108917 where the projected radial velocity curves are lowly uncertain even when the
respective observations are highly uncertain. The projected orbits and radial velocity curves of the SB2 and
SB1 cases show almost no differences in all the studied systems and the MAP point estimate projections
of the posterior distributions. The only appreciable difference between the uncertainty projection on the
observations space was in the orbit of the YSC132AaAb system, where the SB1 case was slightly higher
uncertain than the SB2 counterpart case. This is attributed due to the higher uncertainty of its positional
observations compared to the other studied systems.

As all the studied systems are well determined through abundant and precise observations, the differ-
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ences between the posterior distributions and their projections on the observations space was negligible,
meaning that the information provided by the radial velocity observations of the companion object is re-
dundant, being irrelevant in the inference process, and hence, in the estimation of the orbital parameters.
However, when the observations are not abundant or precise, the use of the radial velocity observations of
both components visibly reduces the posterior uncertainty instead of using only one of them.

5.2 Determining the Mass Ratio

The single-lined spectroscopic binary with a visual orbit is an abundant observational object. Unfortu-
nately, the lack of observations of the radial velocity of the companion object does not allow estimating the
mass ratio of the system and its individual masses. This limits the use of this type of data in astronomical
studies. However, suitable additional information about the system can be incorporated to determine the
individual masses, such as the system parallax and the mass of the primary object.

This section presents a Bayesian modeling that incorporates information of the parallax and the primary
object mass of the system in the sampling routine. This allows performing a joint Bayesian inference on
all the orbital parameters, including the mass ratio, which allows determining the individual masses of the
system. A comparative study of the estimated posterior distribution of single-lined visual-spectroscopic
binary systems is presented for three cases: incorporating prior information on the parallax, incorporating
prior information on the mass of the primary object and incorporating prior information on both the
parallax and the mass of the primary object. These results are also compared to the inference of single-
lined spectroscopic binary systems without incorporating additional information on the system. The
experiments are performed on the same eight binary systems previously studied in Section 5.1.

5.2.1 Bayesian Model
As presented in Section 5.1, the Bayesian model for the single-lined spectroscopic binary systems SB1 is
characterized by the set of orbital parameters ϑSB1 = {P, T, e, a, ω,Ω, i, V0, f/π}, where the parameter
f/π replaces the individual parameters π and q, since they are non-identifiable in absence of radial veloc-
ities observations of the companion object, i.e., exists different values of π, q that maps on the same value
on the posterior distribution, preventing to determine their values. The non-identifiability of the mass
ratio implies that the individual masses of this type of binary system can neither be determined. As the
individual masses are relevant for studying these systems, many authors address the non-identifiability
problem on SB1 systems by incorporating information about the parallax parameter from external mea-
surements (independent from positional and radial velocities observations). This information is added in a
posteriori manner, i.e., once the initial set of orbital parameters ϑSB1 is estimated from the observations.
An essential disadvantage of this approach is that it ignores the influence of the external information on the
estimation, which leads to a sub-optimal solution. Moreover, if the additional information about parallax
is highly uncertain or biased, the estimated mass ratio given the previously estimated orbital parameters
and the parallax can be out of the valid physical range q ∈ (0, 1].

In order to alleviate the non-identifiability problem of the parameter q in this setting, two different
approaches are presented: one based on the incorporation of prior information about the parallax p(π)
and the other based on the incorporation of an additional observation about the primary object mass in
the likelihood p(m1|θ).

The first proposed approach makes use of the SB2 orbital model described in Section 2.1.3, char-
acterized by the set of parameters ϑSB2 = {P, T, e, a, ω,Ω, i, V0, π, q}, with the incorporation of an
informative prior distribution on the parallax p(π). Specifically, p(π) is modeled as a normal distri-
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bution with mean and standard deviation determined respectively by the measurement πobs and er-
ror σπ of the astronomical parallax. These are precisely determined for most of the observed systems
[Wenger et al., 2000, Prusti et al., 2016, Brown et al., 2018]. The addition of the prior p(π) = N (πobs, σ

2
π)

makes the model soft-identifiable, i.e., the indeterminable parameters turns determinable through the
incorporation of suitable priors. This allow the determination the mass ratio q of the system.

Alternatively, since only the spectral line of the primary object of the SB1 system is visible, these
observations can be used to estimate the mass of the primary object m1 through empirical relations
[Habets and Heintze, 1981, Straižys and Kuriliene, 1981, Aller et al., 1996], providing additional external
information that allows alleviating the non-identifiability problem of the mass ratio as well. In fact, the
primary object mass m1 relates to the set of orbital parameters of ϑSB2 through the third law of Kepler:

m̂1 =
(a
π

)3
· 1

P 2(1 + q)
. (5.4)

Therefore, by setting that the m1 observation is independent from the other system observations and
that distributes as Gaussian with it mean and standard deviation determined respectively by m̂1 and
the measurement error σm1 , the distribution p(m1|θ) = N (m̂1, σ

2
m1

) can be directly incorporated in the
likelihood term in (5.2).

Finally, those two approaches can be incorporated simultaneously in the inference routine, i.e., incor-
porating a prior p(π) and adding the term p(m1|θ) in the likelihood computation.

5.2.2 Experiments

The inference of eight well-determined double-lined spectroscopic binaries with a visual orbit (performed
in Section 5.1) is compared with its counterpart omitting the radial velocity observations of the com-
panion object. For this comparison we use the three mentioned different approaches to determine the
mass ratio: the incorporation of a prior distribution on the parallax p(π), denoted as SB1 + p(π) here-
inafter, the incorporation of an observation of the primary object mass in the likelihood term p(m1|θ),
denoted as SB1 + p(m1|θ) hereinafter, and incorporating both sources of additional information, denoted
as SB1+p(π)+p(m1|θ) hereinafter. The estimates and their uncertainties are compared in the parameters
space through visualization of the posterior marginal distributions and the observations space through the
projection of 1000 randomly selected samples of the posterior distribution on the observation space. For
the last analysis, we draw trajectories from the first observation time t0 to the first completion of the orbit
t0 + P . The maximum a posteriori estimation (MAP) and the 95% confidence interval around the MAP
solution are summarized in Table 5.2. The MAP estimation error, high densities intervals lengths and
estimated Kullback-Leibler divergence (a measure of similarity between probability distributions) between
the marginal posterior distributions of the mass ratio q between the full-information SB2 case and the
SB1 cases with additional information SB1 + p(π), SB1 + p(m1|θ) and SB1 + p(π) + p(m1|θ) are pre-
sented in Table 5.3. The Kullback-Leibler divergence is estimated through the k-nearest neighbor method
[Wang et al., 2009].

The inference process is performed through the simulation of 10000 samples of the respective posterior
distributions (discarding the first half for warm-up) on 4 independent Markov chains using the No-U-Turn
sampler algorithm as presented in Section 5.1.

For clarity, the analysis is focused only on three of the eight systems: CHR111, YSC132AaAb, and
HIP117186.
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5.2.2.1 CHR111

Figure 5.7 shows that the posterior distribution are almost equal for all the orbital parameters except of
the parameters π, m1 and q, which are identified through the incorporation of the additional information
p(π) or p(m1|θ). It is noted that, for these last trio of parameters, their distributions are shifted with
respect to the distributions of the case SB2, i.e., they show a slight discrepancy with respect to the full
information scenario SB2. For the SB1 + p(π) case, the posterior distribution of π is equal to the prior
p(π), while for the SB1 + p(m1|θ) case, the uncertainty of the posterior distribution of m1 is equal to the
likelihood p(m1|θ), which follows the soft-identifiability of both models on the corresponding parameters.
All the cases with additional information offer a significant reduction on the uncertainty of the posterior
distribution of π,m1, q relative to the full-information scenario SB2. The mean values of the posterior
distribution of π,m1, q is almost the same for the cases with additional information, but are slightly biased
with respect to the full information scenario SB2. The mixed case SB1+p(π)+p(m1|θ) presents the lowest
uncertainty on π,m1, q, followed by the SB1+p(m1|θ) and SB1+p(π) cases. SB1+p(π)+p(m1|θ) is the
only case that presents a variation on mean and variance of the posterior distribution of the semi-major
axis a with respect to all other cases. Finally, it can be observed that in the mixed case the posterior
distribution of π is in between the posterior distributions of the SB1+p(π) and SB1+p(m1|θ) cases, and
the posterior distributions of m1 and q are almost equal to the posterior distribution of the SB1+p(m1|θ)
and different to the SB1 + p(π) case.

Figure 5.7: Marginal posterior distributions and MAP estimates of the orbital parameters of the
CHR111 binary system for the SB1, SB1 + p(π), SB1 + p(m1|θ) and SB1 + p(π) + p(m1|θ) cases.

The projection of the estimated posterior distributions in the observation space is presented in Figure
5.8, where no significant differences are observed in the MAP and uncertainties projections between all
the four cases.

5.2.2.2 YSC132AaAb

Figure 5.9 shows that the posterior distributions of the cases with additional information are almost equal
except of the parameters π, m1 and q, which are identified through the incorporation of the additional
information p(π) or p(m1|θ), and the orbital parameters a and i. The posterior distribution of the other
orbital parameters are equal to the posterior distributions of the SB1 case presented in the previous
section. For the SB1 + p(π) case, the posterior distribution of π is equal to the prior p(π), while for the
SB1 + p(m1|θ) case, the uncertainty of the posterior distribution of m1 is equal to the likelihood p(m1|θ).
All the cases with additional information present a significant reduction on the uncertainty of the posterior
distribution of π,m1, a, i with respect to the full-information scenario SB2. In contrast, they show an
increase of the uncertainty of the posterior distribution of q. The mixed case SB1+p(π)+p(m1|θ) presents
the lowest uncertainty on π,m1, q, followed by the SB1 + p(m1|θ) and SB1 + p(π) cases. The posterior
distribution of the angular parameters a, i of the SB1 + p(π) and SB1 + p(m1|θ) cases are pretty similar
but significantly different to the mixed case SB1 + p(π) + p(m1|θ). It can be observed that, in the mixed
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Figure 5.8: Estimated orbits and radial velocity curves of the CHR111 binary system. First
column: MAP point estimate projection of the posterior distribution for the SB2, SB1 + p(π),
SB1+p(m1|θ) and SB1+p(π)+p(m1|θ) cases. Second column: Projected posterior distribution of
the SB2 case. Third column: Projected posterior distribution of SB1+p(π) case. Fourth column:
Projected posterior distribution of the SB1 + p(m1|θ) case. Fifth column: Projected posterior
distribution of the SB1 + p(π) + p(m1|θ) case.

case, the posterior distribution of π is almost equal to the posterior distributions of the SB1 + p(π) case,
the posterior distribution of m1 is almost equal to the posterior distributions of the SB1 + p(m1|θ) case
and the posterior distribution of q is significantly different to all other cases.

Figure 5.9: Marginal posterior distributions and MAP estimates of the orbital parameters of the
YSC132AaAb binary system for the SB1, SB1 + p(π), SB1 + p(m1|θ) and SB1 + p(π) + p(m1|θ)
cases.

The projection of the posterior distributions on the observation space is presented in Figure 5.10. The
trajectories of the MAP estimators in the orbit space presents evident differences between all the cases.
The SB1 + p(π) and SB1 + p(m1|θ) cases presents a slight reduction of the projected uncertainty in the
orbit space with respect to the SB2 case, while the mixed case SB1+p(π)+p(m1|θ) presents a significant
uncertainty reduction. The orbital uncertainty projection of the mixed case also presents a different orbital
shape compared to all other cases, with a worst fitting on the most precise observations (in rectangular
coordinates X = −15, Y = 15). This reflects that the low standard deviations of the incorporated
additional information play a major role in the inference procedure to the detriment of fitting the other
positional observations. No significant differences are observed for the MAP and uncertainties projections
in the radial velocities space between all four cases.
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Figure 5.10: Estimated orbits and radial velocity curves of the YSC132AaAb binary system. First
column: MAP point estimate projection of the posterior distribution for the SB2, SB1 + p(π),
SB1+p(m1|θ) and SB1+p(π)+p(m1|θ) cases. Second column: Projected posterior distribution of
the SB2 case. Third column: Projected posterior distribution of SB1+p(π) case. Fourth column:
Projected posterior distribution of the SB1 + p(m1|θ) case. Fifth column: Projected posterior
distribution of the SB1 + p(π) + p(m1|θ) case.

5.2.2.3 HIP117186

Figure 5.11 shows that the posterior distributions of the SB1 + p(π) and SB1 + p(m1|θ) cases are almost
equal except of the parameters π,m1 and q, which are identified through the incorporation of the additional
information p(π) or p(m1|θ). The posterior distribution of the other orbital parameters are equal to the
posterior distributions of the SB1 case presented in the previous section. For the SB1 + p(π) case, the
posterior distribution of π is equal to the prior p(π), while for the SB1 + p(m1|θ) case, the uncertainty of
the posterior distribution of m1 is equal to the likelihood p(m1|θ). All the studied cases with additional
information presents a significant increase on the uncertainty of the posterior distribution of all the orbital
parameters (with the exception of the angular parameters Ω and i) with respect to the full-information
scenario SB2. The mixed case SB1 + p(π) + p(m1|θ) presents the lowest uncertainty on π,m1, q, closely
followed by the SB1 + p(m1|θ) and SB1 + p(π) cases. The posterior distribution of the mixed case
SB1 + p(π) + p(m1|θ) presents a slight bias in all the orbital parameters except the angular parameters Ω
and i, with respect to the SB1 case, and therefore, with respect to the SB1+p(π) and SB1+p(m1|θ) cases.
It can be observed that, in the mixed case, the posterior distribution of π is in between the SB1 + p(π)
and SB1 + p(m1|θ) but nearest to the first one. On the other hand, the posterior distribution of m1 is in
between the SB1 + p(π) and SB1 + p(m1|θ) distributions with a similar distance between them, and the
posterior distribution of q is in between the SB1 +p(π) and SB1 +p(m1|θ) but nearest to the second one.

Finally, the projection of the estimated posterior distributions in the observation space is presented
in Figure 5.12, where no significant differences are observed in the MAP and uncertainties projections
between all the four cases.

5.2.3 Concluding Remarks
The developed experiments show an uncertainty reduction of the estimated posterior distributions con-
cerning the SB1 case when additional information on the parallax or mass of the primary object is
incorporated. In general, we observe that the more information is available, the less the uncertainty ob-
tained in the estimates. Consequently, the case that incorporates both sources of additional information
SB1 + p(π) + p(m1|θ) presents the lower uncertainty. Due to the non-identifiability of the parameters π,
m1 and q in the single-lined binary system with a visual orbit model, the prior information p(π) results
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Figure 5.11: Marginal posterior distributions and MAP estimates of the orbital parameters of the
HIP117186 binary system for the SB1, SB1 + p(π), SB1 + p(m1|θ) and SB1 + p(π) + p(m1|θ)
cases.

Figure 5.12: Estimated orbits and radial velocity curves of the HIP117186 binary system. First
column: MAP point estimate projection of the posterior distribution for the SB2, SB1 + p(π),
SB1+p(m1|θ) and SB1+p(π)+p(m1|θ) cases. Second column: Projected posterior distribution of
the SB2 case. Third column: Projected posterior distribution of SB1+p(π) case. Fourth column:
Projected posterior distribution of the SB1 + p(m1|θ) case. Fifth column: Projected posterior
distribution of the SB1 + p(π) + p(m1|θ) case.

equal to the marginal posterior distribution of π and the likelihood term p(m1|θ) results equal to the
marginal posterior distribution of m1. The major differences observed in the posterior distributions of the
cases with additional information are in the trio of orbital parameters π,m1, q. The marginal posterior
distribution of those trio of parameters of the mixed case SB1+p(π)+p(m1|θ) is in between the posterior
distributions of the SB1 + p(π) and SB1 + p(m1|θ) cases. These distributions can be equidistant to the
SB1 + p(π) and SB1 + p(m1|θ) cases, if both sources of information are equally likely according to the
model, or can be near to one of them if one source of information is more likely than the other. The
similarity of the posterior distribution observed with the SB1 + p(π) + p(m1|θ) scenario to one of the
simple cases, SB1 + p(π) and SB1 + p(m1|θ), allows determining the most reliable source of additional
information according to the model and the observations. For example, if the posterior distributions (in
the trio of parameters π,m1, q) of the mixed case are nearest to the distribution of the SB1+p(m1|θ) than
the SB1 + p(π), then the primary object mass additional observation is more reliable than the additional
parallax observation since the last one results negligible for the inference process in the mixed scenario.

The joint estimation of the orbital and radial velocities observations and the incorporation of additional
information have an impact on the estimated posterior distribution of some of the identifiable orbital pa-
rameters. This impact depends on the identifiable parameters depends on the uncertainty of the additional
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Table 5.2: MAP estimates and 95% HDPIs of the marginal posterior distributions of the orbital
parameters incorporating priors of m1 and π of SB2 binary systems, considering the SB2, SB1 +
p(π), SB1 + p(m1|θ), and SB1 + p(π) + p(m1|θ) cases.
System Case P [yr] T [yr] e a [′′] Ω [°] ω [ °] i [°] V0 [km/s] π [mas] f/π [pc] m1 [M�] q
CHR111 SB2 1.731 1,965.471 0.366 0.068 172.194 261.648 67.581 -9.590 36.665 9.572 1.368 0.541

[1.73, 1.732] [1965.452, 1965.488] [0.348, 0.386] [0.066, 0.069] [168.423, 175.407] [260.027, 263.951] [62.243, 70.742] [-9.742, -9.377] [33.559, 38.62] [9.214, 10.242] [1.132, 1.739] [0.493, 0.584]
SB1 + p(π) 1.731 1,965.468 0.362 0.068 171.085 262.168 67.380 -9.531 39.113 9.600 1.077 0.601

[1.73, 1.732] [1965.454, 1965.492] [0.346, 0.386] [0.066, 0.069] [168.731, 176.15] [259.96, 263.976] [61.975, 70.685] [-9.713, -9.336] [37.957, 40.408] [9.207, 10.27] [0.884, 1.211] [0.556, 0.681]
SB1 + p(m1|θ) 1.731 1,965.471 0.364 0.068 172.181 261.729 66.418 -9.566 39.094 9.588 1.092 0.600

[1.73, 1.732] [1965.452, 1965.491] [0.345, 0.386] [0.066, 0.069] [168.497, 175.902] [260.019, 263.988] [62.114, 70.835] [-9.713, -9.349] [37.47, 39.923] [9.203, 10.243] [1.046, 1.143] [0.569, 0.641]
SB1 + p(π) + p(m1|θ) 1.731 1,965.475 0.364 0.068 172.577 261.601 67.535 -9.551 39.171 9.482 1.102 0.591

[1.73, 1.732] [1965.453, 1965.491] [0.344, 0.383] [0.066, 0.069] [168.539, 175.718] [259.927, 263.912] [62.458, 70.829] [-9.723, -9.345] [38.068, 39.817] [9.229, 10.106] [1.046, 1.14] [0.568, 0.637]
YSC132AaAb SB2 0.546 1,990.675 0.301 0.020 86.775 49.638 143.278 -14.129 23.858 20.484 1.041 0.956

[0.546, 0.547] [1990.673, 1990.677] [0.297, 0.307] [0.017, 0.023] [85.787, 87.484] [45.879, 53.981] [133.337, 157.681] [-14.173, -14.09] [13.194, 33.457] [13.426, 34.668] [0.495, 3.494] [0.949, 0.963]
SB1 + p(π) 0.546 1,990.677 0.303 0.021 86.567 55.714 140.938 -14.178 21.410 18.555 1.950 0.659

[0.546, 0.547] [1990.673, 1990.68] [0.294, 0.311] [0.019, 0.022] [85.092, 88.254] [47.554, 61.296] [136.198, 147.662] [-14.241, -14.075] [21.271, 21.636] [15.978, 23.353] [1.182, 2.524] [0.524, 1.0]
SB1 + p(m1|θ) 0.546 1,990.677 0.301 0.021 86.895 54.417 141.071 -14.159 24.405 18.717 1.171 0.841

[0.546, 0.547] [1990.673, 1990.68] [0.294, 0.311] [0.019, 0.023] [84.988, 88.268] [47.335, 61.069] [135.668, 146.27] [-14.24, -14.077] [21.731, 27.054] [15.412, 22.656] [1.1, 1.236] [0.727, 1.0]
SB1 + p(π) + p(m1|θ) 0.546 1,990.676 0.305 0.019 86.573 52.000 145.730 -14.155 21.529 22.908 1.206 0.973

[0.546, 0.547] [1990.673, 1990.68] [0.296, 0.312] [0.019, 0.019] [85.116, 88.296] [46.786, 59.727] [144.563, 146.826] [-14.243, -14.078] [21.296, 21.66] [22.432, 23.417] [1.141, 1.26] [0.935, 1.0]
HIP14157 SB2 0.119 1,993.795 0.761 0.006 175.114 19.437 91.532 30.682 19.436 24.367 1.003 0.900

[0.119, 0.119] [1993.795, 1993.796] [0.758, 0.763] [0.006, 0.006] [174.829, 175.564] [19.092, 19.924] [90.104, 92.968] [30.573, 30.78] [19.279, 19.604] [24.145, 24.616] [0.982, 1.018] [0.891, 0.91]
SB1 + p(π) 0.119 1,993.795 0.762 0.006 174.912 19.532 91.432 30.692 19.524 24.333 0.985 0.905

[0.119, 0.119] [1993.795, 1993.796] [0.758, 0.765] [0.006, 0.006] [174.469, 175.445] [19.092, 19.937] [89.917, 92.89] [30.581, 30.844] [19.425, 19.64] [24.138, 24.645] [0.947, 1.009] [0.891, 0.932]
SB1 + p(m1|θ) 0.119 1,993.795 0.761 0.006 174.952 19.445 91.272 30.705 20.064 24.379 0.882 0.957

[0.119, 0.119] [1993.795, 1993.796] [0.758, 0.765] [0.006, 0.006] [174.476, 175.429] [19.093, 19.925] [90.098, 92.977] [30.573, 30.837] [19.798, 20.543] [24.146, 24.639] [0.81, 0.924] [0.937, 0.998]
SB1 + p(π) + p(m1|θ) 0.119 1,993.795 0.762 0.006 175.002 19.527 91.349 30.703 19.610 24.505 0.954 0.925

[0.119, 0.119] [1993.795, 1993.796] [0.758, 0.765] [0.006, 0.006] [174.532, 175.496] [19.08, 19.94] [89.958, 92.911] [30.579, 30.841] [19.47, 19.677] [24.233, 24.722] [0.932, 0.99] [0.9, 0.939]
HIP20601 SB2 0.428 1,971.983 0.852 0.011 -157.740 340.812 103.636 42.097 16.710 25.677 0.984 0.752

[0.428, 0.428] [1971.983, 1971.983] [0.849, 0.854] [0.011, 0.012] [-158.465, -156.891] [339.649, 341.814] [101.114, 105.151] [41.94, 42.251] [16.429, 16.991] [25.178, 26.099] [0.947, 1.013] [0.742, 0.759]
SB1 + p(π) 0.428 1,971.983 0.852 0.011 -157.370 340.619 102.796 42.311 17.347 25.712 0.849 0.805

[0.428, 0.428] [1971.983, 1971.983] [0.849, 0.855] [0.011, 0.012] [-158.309, -156.275] [339.625, 341.903] [100.728, 105.558] [41.92, 42.486] [17.072, 17.577] [25.184, 26.188] [0.797, 0.924] [0.768, 0.836]
SB1 + p(m1|θ) 0.428 1,971.983 0.852 0.011 -157.447 340.930 103.282 42.262 17.044 25.667 0.916 0.778

[0.428, 0.428] [1971.983, 1971.983] [0.849, 0.855] [0.011, 0.012] [-158.335, -156.458] [339.542, 341.811] [100.685, 105.232] [41.913, 42.476] [16.746, 17.346] [25.171, 26.113] [0.873, 0.954] [0.755, 0.797]
SB1 + p(π) + p(m1|θ) 0.428 1,971.983 0.852 0.011 -156.987 340.443 102.590 42.255 17.186 25.450 0.905 0.777

[0.428, 0.428] [1971.983, 1971.983] [0.849, 0.855] [0.011, 0.012] [-158.211, -156.252] [339.572, 341.98] [100.697, 105.291] [41.93, 42.498] [17.031, 17.421] [25.069, 25.976] [0.865, 0.934] [0.761, 0.806]
HIP117186 SB2 0.235 1,987.923 0.323 0.005 175.150 16.956 87.974 -19.783 8.470 53.043 1.722 0.816

[0.235, 0.235] [1987.922, 1987.924] [0.32, 0.327] [0.005, 0.005] [174.106, 175.971] [16.5, 17.415] [87.683, 88.42] [-19.903, -19.632] [8.366, 8.58] [51.939, 54.212] [1.69, 1.765] [0.799, 0.833]
SB1 + p(π) 0.235 1,987.925 0.324 0.005 178.492 16.836 88.161 -20.233 8.223 54.017 1.859 0.799

[0.235, 0.235] [1987.922, 1987.926] [0.318, 0.334] [0.005, 0.005] [-178.896, 180.0] [16.451, 17.332] [87.722, 88.457] [-20.812, -19.847] [8.131, 8.299] [52.632, 55.526] [1.747, 1.968] [0.759, 0.841]
SB1 + p(m1|θ) 0.235 1,987.925 0.324 0.005 178.207 16.806 88.138 -20.397 8.961 53.847 1.340 0.932

[0.235, 0.235] [1987.922, 1987.927] [0.317, 0.334] [0.005, 0.005] [-179.186, 179.995] [16.406, 17.32] [87.693, 88.451] [-20.797, -19.828] [8.735, 9.127] [52.571, 55.49] [1.251, 1.439] [0.892, 0.98]
SB1 + p(π) + p(m1|θ) 0.235 1,987.923 0.335 0.005 175.004 16.925 88.014 -20.580 8.343 56.626 1.595 0.896

[0.235, 0.235] [1987.921, 1987.925] [0.328, 0.344] [0.005, 0.005] [172.09, 178.279] [16.46, 17.383] [87.595, 88.392] [-21.03, -20.051] [8.271, 8.421] [55.163, 57.942] [1.53, 1.669] [0.854, 0.933]
HD6840 SB2 7.455 1,995.494 0.744 0.082 -144.994 152.001 50.669 -9.526 16.201 29.379 1.244 0.908

[7.45, 7.458] [1995.49, 1995.502] [0.741, 0.746] [0.082, 0.083] [-145.468, -144.197] [151.314, 152.497] [49.926, 51.606] [-9.596, -9.477] [15.952, 16.572] [28.751, 29.857] [1.176, 1.294] [0.894, 0.925]
SB1 + p(π) 7.454 1,995.495 0.744 0.083 -145.217 152.208 50.819 -9.481 16.435 29.390 1.179 0.934

[7.45, 7.458] [1995.488, 1995.5] [0.741, 0.746] [0.082, 0.083] [-145.946, -144.548] [151.574, 152.808] [49.962, 51.529] [-9.55, -9.418] [16.247, 16.987] [28.909, 29.962] [1.029, 1.223] [0.915, 1.0]
SB1 + p(m1|θ) 7.455 1,995.494 0.744 0.083 -145.236 152.228 51.032 -9.474 16.910 29.275 1.057 0.980

[7.45, 7.458] [1995.488, 1995.501] [0.741, 0.746] [0.082, 0.083] [-145.91, -144.531] [151.622, 152.848] [50.093, 51.629] [-9.553, -9.418] [16.636, 17.138] [28.853, 29.855] [1.015, 1.098] [0.965, 1.0]
SB1 + p(π) + p(m1|θ) 7.454 1,995.493 0.744 0.082 -145.403 152.306 50.849 -9.490 16.806 29.429 1.074 0.979

[7.45, 7.458] [1995.489, 1995.501] [0.741, 0.746] [0.082, 0.083] [-145.955, -144.571] [151.589, 152.832] [50.006, 51.444] [-9.553, -9.419] [16.619, 17.041] [28.983, 29.899] [1.027, 1.102] [0.963, 1.0]
HIP108917 SB2 2.245 1,968.750 0.463 0.072 90.343 273.135 67.582 -10.796 37.243 7.239 1.043 0.369

[2.245, 2.246] [1968.744, 1968.756] [0.452, 0.469] [0.071, 0.072] [89.919, 90.644] [272.559, 273.573] [67.044, 67.983] [-11.394, -10.035] [34.622, 40.09] [6.073, 8.181] [0.807, 1.266] [0.3, 0.425]
SB1 + p(π) 2.245 1,968.752 0.459 0.072 90.308 273.234 67.377 -11.090 31.858 7.116 1.749 0.293

[2.245, 2.246] [1968.745, 1968.758] [0.452, 0.468] [0.071, 0.072] [89.925, 90.659] [272.691, 273.706] [67.005, 67.944] [-11.747, -10.181] [30.99, 33.415] [6.027, 8.186] [1.473, 1.93] [0.241, 0.361]
SB1 + p(m1|θ) 2.245 1,968.753 0.459 0.072 90.297 273.152 67.455 -10.889 32.096 6.936 1.722 0.286

[2.245, 2.246] [1968.745, 1968.758] [0.452, 0.468] [0.071, 0.072] [89.944, 90.665] [272.676, 273.707] [66.985, 67.941] [-11.743, -10.158] [30.969, 32.948] [6.107, 8.256] [1.593, 1.893] [0.242, 0.348]
SB1 + p(π) + p(m1|θ) 2.245 1,968.751 0.460 0.072 90.354 272.995 67.447 -10.901 31.982 7.217 1.721 0.300

[2.245, 2.246] [1968.746, 1968.758] [0.452, 0.469] [0.071, 0.072] [89.936, 90.669] [272.694, 273.697] [67.004, 67.955] [-11.76, -10.195] [31.284, 32.814] [6.003, 8.099] [1.601, 1.855] [0.24, 0.346]
HIP677 SB2 0.265 1,988.847 0.535 0.024 78.339 104.952 106.172 -12.465 32.796 10.500 3.697 0.525

[0.265, 0.265] [1988.842, 1988.851] [0.47, 0.589] [0.022, 0.025] [73.74, 81.112] [101.653, 108.823] [102.45, 109.408] [-14.043, -9.567] [29.447, 35.93] [9.113, 12.139] [2.983, 4.461] [0.449, 0.6]
SB1 + p(π) 0.265 1,988.847 0.520 0.023 77.123 105.402 106.471 -10.481 33.732 10.922 3.031 0.583

[0.264, 0.265] [1988.843, 1988.852] [0.459, 0.594] [0.022, 0.025] [73.047, 81.221] [100.932, 108.246] [102.514, 109.817] [-13.177, -7.438] [32.956, 34.333] [9.367, 12.515] [2.408, 4.17] [0.453, 0.718]
SB1 + p(m1|θ) 0.265 1,988.848 0.523 0.024 78.617 105.264 106.524 -10.154 34.209 10.857 3.063 0.591

[0.264, 0.265] [1988.843, 1988.852] [0.462, 0.596] [0.022, 0.026] [72.973, 81.262] [100.708, 108.133] [102.46, 109.76] [-13.267, -7.524] [30.839, 38.681] [9.255, 12.434] [2.032, 3.879] [0.477, 0.734]
SB1 + p(π) + p(m1|θ) 0.265 1,988.848 0.530 0.024 77.903 103.764 105.992 -9.832 33.724 10.897 3.223 0.581

[0.264, 0.265] [1988.843, 1988.851] [0.461, 0.582] [0.022, 0.025] [73.038, 80.879] [100.862, 108.126] [102.974, 109.822] [-13.25, -7.476] [32.968, 34.315] [9.693, 12.377] [2.548, 3.737] [0.478, 0.704]

(a) Results reported by other authors. (b) Results obtained in this work.

information sources compared with the uncertainty quality of the other observations. For example, the
binary system YSC132AaAb shows the impact of the additional information on the posterior distribution
of the identifiable orbital parameters a and i. In contrast, the binary system HIP108917 has a null impact
on the marginal distributions of the identifiable orbital parameters when adding additional information.

The projections of the estimated posterior distribution and the MAP estimates on the observation
space presents no appreciable differences between all the studied cases (SB2, SB1 + p(π), SB1 + p(m1|θ)
and SB1 + p(π) + p(m1|θ)). The only significant difference is observed in the orbit of the YSC132AaAb
system where the mixed case SB1 + p(π) + p(m1|θ) presents the lower uncertainty, even lower than the
full-information case SB2, but at the cost of a slight worst fitting of some of the orbital observations.

Focusing on the mass ratio q estimation, the posterior distribution of the SB1 + p(π), SB1 + p(m1|θ)
and SB1 + p(π) + p(m1|θ) cases that offers the highest similarity to the full information scenario SB2,
according to the Kullback-Leibler divergence measure, is the SB1 + p(π) case, followed by the mixed case
SB1 + p(π) + p(m1|θ) and the SB1 + p(m1|θ) case. However, the lowest mean absolute error between
the MAP estimates is reached by the SB1 + p(π) + p(m1|θ) case (4.92%), followed by the SB1 + p(π)
(7.41%) and SB1+p(m1|θ) (7.44%) cases, as well as the high posterior density interval range as discussed
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Table 5.3: Comparison of the marginal posterior distribution of the mass ratio q between the SB1
with additional information cases and the full-information SB2 case.

MAP estimate absolute error [%] HPDI length KL-Divergence
System SB1 + p(π) SB1 + p(m1|θ) SB1 + p(π) + p(m1|θ) SB1 + p(π) SB1 + p(m1|θ) SB1 + p(π) + p(m1|θ) SB1 + p(π) SB1 + p(m1|θ) SB1 + p(π) + p(m1|θ)
CHR111 6.05 5.88 5.02 0.125 0.072 0.069 3.804 5.778 5.647
YSC132AaAb 29.67 11.49 1.73 0.476 0.273 0.065 3.533 3.014 2.146
HIP14157 0.54 5.78 2.55 0.041 0.061 0.039 0.826 7.038 2.346
HIP20601 5.36 2.62 2.58 0.068 0.042 0.045 4.723 3.471 4.76
HIP117186 1.66 11.67 7.98 0.082 0.088 0.079 0.772 9.201 7.285
HD6840 2.6 7.21 7.03 0.085 0.035 0.037 2.507 8.844 8.821
HIP108917 7.6 8.28 6.91 0.12 0.106 0.106 2.064 2.856 2.932
HIP677 5.81 6.57 5.58 0.265 0.257 0.226 0.485 0.834 0.728
mean 7.41 7.44 4.92 0.158 0.117 0.083 2.339 5.129 4.333
std 8.72 2.83 2.22 0.136 0.088 0.058 1.481 2.857 2.609

previously. The obtained results indicate that the closest estimation to the full-information scenario is
obtained by incorporating prior information on the parallax π. However, the most robust point estimates
are obtained by incorporating both sources of additional information, correcting the estimation through
p(m1|θ) when p(π) is incorrect. This is illustrated in the YSC132AaAb system, at the cost of a slight
increase in the average estimation error. According to all the comparison metrics, the lowest performance
is achieved by the SB1 + p(m1|θ) case. This is attributed to the fact that the additional information on
m1 comes from a rough and older empirical rule (that relates the mass with the object’s spectral type).
In contrast, the additional information on π was recently updated with a high precision instrument.

5.3 Application to Unresolved Single-lined Spectroscopic Bi-
naries with a Visual Orbit

The inference of twelve single-lined spectroscopic binaries with a visual orbit using the approaches SB1,
SB1+p(π), SB1+p(m1|θ) and SB1+p(π)+p(m1|θ) is performed. The estimates and their uncertainties
are compared in the parameters space through visualization of the posterior marginal distributions, as well
as in the observations space, by projecting 1000 randomly selected samples of the posterior distribution
on the observation space, drawing trajectories from the time of the first observation time t0 to the first
completion of the orbit t0 + P . The MAP estimators and their respective 95% high posterior density
interval estimates are summarized in Table 5.4.

To avoid redundancy, the analysis is focused only on three of the twelve systems resolved: HIP3504,
HIP99675, and HIP109951.

5.3.1 HIP3504
The available data consists of few and imprecise astrometric observations, which only cover three distant
points of the orbit. Very few and imprecise radial velocity observations of the primary object are also
available. The observations and it uncertainties are visualized in Figure 5.14.

Figure 5.13 shows the posterior distributions of the three cases with additional information as well as
the reference case without additional information. These distributions are considerably different in their
MAP values and dispersion compared to the SB1 case. The most significant difference is presented in
the period P , where the posterior distribution of the SB1 case presents an extremely high uncertainty
with a MAP of 31.15 [yr], while the posterior distribution of all the cases with additional information
presents a much less uncertainty with a MAP of 2.48 [yr]. The uncertainty of the orbital parameters
T, e, ω, i is higher in the cases with additional information than the SB1 case, while the uncertainty of
the orbital parameters P, a,Ω, V0, f/π is lower than the SB1 case. The marginal posterior distribution of
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the mass ratio q shows that the uncertainty of the SB1 + p(π) case is the highest, while the uncertainty
of SB1 + p(m1|θ) and SB1 + p(π) + p(m1|θ) are almost identical.

Figure 5.13: Marginal posterior distributions and MAP estimates of the orbital parameters of the
HIP3504 binary system for the SB1, SB1 + p(π), SB1 + p(m1|θ) and SB1 + p(π) + p(m1|θ) cases.

The projection of the posterior distributions on the observation space is presented in Figure 5.14. The
MAP estimates in the orbit space of the cases with additional information are almost identical but very
different than the SB1 case. This is consistent with the important difference of the posterior distributions
of the period P . The orbital uncertainty of the SB1 case is very high in this analysis, projecting a dense
cloud of possible orbits. In contrast, the orbital uncertainty with additional information SB1 + p(π),
SB1 + p(m1|θ) and SB1 + p(π) + p(m1|θ) are confined to a delimited ring of possible orbits. All those
solutions are less uncertain than the SB1. The projected uncertainty in the orbit space of the SB1 +p(π)
and SB1 + p(m1|θ) cases are very similar, while the mixed case SB1 + p(π) + p(m1|θ) presents a slight
lower uncertainty. Similarly, the uncertainty in the radial velocity projection of the SB1 case is reduced
in the times with observations but extremely higher in the times far from the observations. In contrast,
the radial velocity uncertainty of the cases with additional information presents no variation between the
times with and without the observations, preserving the uncertainty than the SB1 case in the times with
observations. No significant differences in the radial velocity curve’s uncertainty are observed between
the cases with additional information. Another relevant difference between the cases with and without
additional information is that the period of the radial velocity curve in the SB1 + p(π), SB1 + p(m1|θ),
SB1+p(π)+p(m1|θ) cases presents a visible lower period than the SB1 case. The period of the first ones
is visible in the figure’s time window, while the period of the last case is much higher and is not visible
in the figure’s time window. This behavior coincides with the dramatic differences between the marginal
posterior distributions of the period in the cases with and without additional information presented in
Figure 5.13.

The tremendous differences observed between the cases with and without additional information show
the crucial relevance of the prior information in determining some orbital parameters, the orbit, and the
radial velocity curves of binary systems that have not enough observations available.

5.3.2 HIP99675
This object’s data consists of few and highly imprecise astrometric observations in two extreme zones
of the orbit and abundant and highly precise radial velocity observations of the primary object. The
observations and it uncertainties are visualized in Figure 5.16.

Figure 5.15 shows that the posterior distributions of all the cases are identical for almost all the orbital
parameters, with the exception of a, i, π, f/π,m1, q, where the most significant differences are observed on
the parameters π,m1, q. The marginal posterior distribution π of the mixed case SB1 + p(π) + p(m1|θ)
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Figure 5.14: Estimated orbits and radial velocity curves of the HIP3504 binary system. First
column: MAP point estimate projection of the posterior distribution for the SB1, SB1 + p(π),
SB1 + p(m1|θ) and SB1 + p(π) + p(m1|θ) cases. Second column: Projected posterior distribution
of the SB1 case. Third column: Projected posterior distribution of the SB1 + p(π) case. Fourth
column: Projected posterior distribution of the SB1 + p(m1|θ) case. Fifth column: Projected
posterior distribution of the SB1 + p(π) + p(m1|θ) case.

is in between the SB1 + p(π) and SB1 + p(m1|θ) cases presenting the lowest uncertainty, where its
MAP estimation is almost equidistant to the other cases. The marginal posterior distribution m1 of the
mixed case is almost equal to the obtained with the SB1 + p(m1|θ) case, but the MAP estimate is very
different than the one obtained with the SB1 +p(π) case, which has the lowest uncertainty. The posterior
distributions of the mass ratio q of the SB1 + p(π) + p(m1|θ) and SB1 + p(m1|θ) are very similar, but
quite different to the SB1 + p(π) case. The SB1 + p(π) offers the posterior distribution with the less
uncertainty, followed by the SB1 + p(π) + p(m1|θ) and SB1 + p(m1|θ) cases.

Figure 5.15: Marginal posterior distributions and MAP estimates of the orbital parameters of the
HIP99675 binary system for the SB1, SB1+p(π), SB1+p(m1|θ) and SB1+p(π)+p(m1|θ) cases.

The obtained posterior distributions in the observation space are presented in Figure 5.16. The MAP
estimates in the orbit space of all the cases are significantly different, and none of them fit the positional
observations adequately. The orbit uncertainty obtained from those distributions is extremely high in all
the cases, expressed as a dense cloud of possible orbits. The SB1 case presents the higher uncertainty in
the orbit space, followed by the SB1 + p(m1|θ) and SB1 + p(π) + p(m1|θ) cases, being the SB1 + p(π)
the less uncertain case. The MAP estimates in the radial velocity space of all the cases are identical, with
almost no projected uncertainty.
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Figure 5.16: Estimated orbits and radial velocity curves of the HIP99675 binary system. First
column: MAP point estimate projection of the posterior distribution for the SB1, SB1 + p(π),
SB1 + p(m1|θ) and SB1 + p(π) + p(m1|θ) cases. Second column: Projected posterior distribution
of the SB1 case. Third column: Projected posterior distribution of the SB1 + p(π) case. Fourth
column: Projected posterior distribution of the SB1 + p(m1|θ) case. Fifth column: Projected
posterior distribution of the SB1 + p(π) + p(m1|θ) case.

5.3.3 HIP109951
The available data consists of abundant and precise astrometric observations covering less than a half of
the orbit with only one less precise observation in the other half. There are abundant and highly imprecise
radial velocity observations of the primary object, mostly concentrated in a small segment of the phase
near the periastron. The observations and it uncertainties are visualized in Figure 5.18.

Figure 5.17 shows the posterior distributions of all the cases are similar in almost all the orbital
parameters, with the exception of the parameters i, π, f/π,m1, q. The most significant differences are
observed in the parameters π,m1, q. The marginal posterior distribution π of the mixed case SB1 +
p(π) + p(m1|θ) is in between the SB1 + p(π) and SB1 + p(m1|θ) cases presenting the lowest uncertainty,
where its MAP estimation is almost equidistant to the other cases. The marginal posterior distribution m1

of the mixed case is almost equal to the SB1+p(m1|θ) case, but very different in its MAP estimates to the
SB1 + p(π) case, which has the lowest uncertainty. The posterior distribution of the mass ratio q of the
SB1+p(π) and SB1+p(m1|θ) cases are very similar, but they are quite different to the SB1+p(π)+p(m1|θ)
case, where the mixed case SB1 + p(π) + p(m1|θ) presents the lowest uncertainty, distantly followed by
the SB1 + p(m1|θ) and SB1 + p(π) cases. In all the cases, the uncertainty of the period P is very high.
This is reflected in a wide dispersion of the corresponding marginal posterior distributions.

The obtained posterior distributions in the observation space are presented in Figure 5.18. The MAP
estimates in the orbit and radial velocity spaces show slight but almost negligible differences between all
the cases. The orbit uncertainty (obtained from the posterior distribution) is high in the orbit segment
with no observations but almost null in the orbit segment with observations. The SB1 case presents the
highest uncertainty in the orbit space, followed by the SB1+p(m1|θ) and SB1+p(π) cases, and concluding
with the SB1 + p(π) + p(m1|θ) case. This last case has considerably lower uncertainty when compared
to all the other cases. The uncertainty in the radial velocity is low in the zones with observations but
high in the zones with no observations. Unlike all the other studied systems, the uncertainty in the radial
velocity increases with time. This behavior is attributed to the high uncertainty of the orbital period P , as
all the positional and radial velocity observations are constrained to the same period. This fact does not
allow determining an accurate estimation of the orbital period. The lack of a good determination of the
period causes that the possible radial velocity trajectories to get out of phase, increasing the uncertainty
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Figure 5.17: Marginal posterior distributions and MAP estimates of the orbital parameters of the
HIP109951 binary system for the SB1, SB1 + p(π), SB1 + p(m1|θ) and SB1 + p(π) + p(m1|θ)
cases.

along the time. Similarly to the results obtained in the orbit space, the SB1 case presents the higher
posterior uncertainty in the radial velocity space, followed by the results obtained in the SB1 + p(m1|θ)
and SB1 + p(π) cases. In this scenario, the mixed case SB1 + p(π) + p(m1|θ) has the lowest uncertainty,
being considerably lower compared to the uncertainties in the radial velocity space of all the other cases.

Figure 5.18: Estimated orbits and radial velocity curves of the HIP109951 binary system. First
column: MAP point estimate projection of the posterior distribution for the SB1, SB1 + p(π),
SB1 + p(m1|θ) and SB1 + p(π) + p(m1|θ) cases. Second column: Projected posterior distribution
of the SB1 case. Third column: Projected posterior distribution of the SB1 + p(π) case. Fourth
column: Projected posterior distribution of the SB1 + p(m1|θ) case. Fifth column: Projected
posterior distribution of the SB1 + p(π) + p(m1|θ) case.

5.4 Concluding Remarks

The experimental results show the efficacy of the proposed Bayesian inference methodology to characterize
and visualize the uncertainty of single-lined visual-spectroscopic binary systems.

Interesting results are obtained in some of the binary systems evaluated. For example, the HIP3504
shows an extremely high uncertainty on its orbit and its radial velocity curve due to the few observations
available. However, incorporating the priors radically reduces the uncertainty of the estimates, reaching
completely different solutions to the ones obtained without the prior incorporation. This is reflected in
smaller orbits and a radial velocity curve with a lower period. The results obtained in the system HIP99675
show that the prior incorporation’s effect is mostly concentrated in the trio of soft-identifiable parameters
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π, m1 and q, slightly affecting the other orbital parameters. This behavior expresses the robustness of the
estimation when abundant and precise observations are available. On the soft-identifiable parameters, we
observe that the posterior distributions of the SB1 + p(m1|θ) and the mixed case SB1 + p(π) + p(m1|θ)
are similar, but very different to the case SB1 + p(π). This behavior can be interpreted as the prior
information of the primary object mass p(m1|θ) is more reliable to the prior on the parallax p(π) for
this system. Finally, the results obtained in the system HIP109951 reflect the value of providing a good
characterization of the uncertainty. In this case, we observe that the uncertainty in the half of the orbit
with no observations is considerably higher than the other half, but most importantly, the uncertainty of
the radial velocity curve visibly increases with time. This behavior is attributed to the high uncertainty of
the system’s period, making the trajectories of the radial velocity get out of phase with time. On the prior
information incorporated, we observe that the posterior distribution of the cases SB1 + p(π) and p(m1|θ)
are very similar to the one obtained in the SB1 case. However, the mixed case SB1+p(π)+p(m1|θ) shows
a visible uncertainty reduction in all the orbital parameters with a very similar MAP value. Regarding
the posterior distribution of the mass ratio q, we observe that the cases SB1 + p(π) and p(m1|θ) provide
a poor estimation, reflected in a very high uncertainty. However, the mixed case SB1 + p(π) + p(m1|θ)
provides a much more constrained posterior distribution than the other cases, considerably differing in
their MAP estimates. It is important to note that, as the posterior distribution on the mass ratio q of the
SB1 + p(π) and p(m1|θ) cases presents a very high uncertainty (with the shape of uniform distributions),
it corresponding MAP estimate are not very reliable, but the mixed case SB1 + p(π) + p(m1|θ) it does.
This last result shows the relevance of incorporating both sources of prior information to obtain more
accurate estimates.
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Table 5.4: MAP estimates and 95% HDPIs of the marginal posterior distributions of the orbital
parameters incorporating priors of m1 and π of unresolved SB1 binary systems, considering the
SB1, SB1 + p(π), SB1 + p(m1|θ), and SB1 + p(π) + p(m1|θ) cases.
System Case P [yr] T [yr] e a [′′] Ω [°] ω [ °] i [°] V0 [km/s] π [mas] f/π [pc] m1 [M�] q
DSG7AaAb SB1 0.619 1,987.813 0.308 0.016 20.562 164.346 121.321 -51.301 34.312 - - -

[0.618, 0.619] [1987.806, 1987.82] [0.294, 0.328] [0.014, 0.018] [16.955, 24.04] [154.169, 170.929] [112.756, 129.763] [-51.626, -51.017] [28.861, 42.885] - - -
SB1 + p(π) 0.619 1,987.813 0.307 0.017 20.168 163.589 119.719 -51.282 14.711 32.186 2.013 0.899

[0.618, 0.619] [1987.807, 1987.82] [0.292, 0.326] [0.015, 0.019] [17.231, 24.235] [153.245, 169.21] [111.265, 125.124] [-51.613, -51.014] [11.902, 17.697] [27.04, 37.262] [1.301, 3.435] [0.694, 1.0]
SB1 + p(m1|θ) 0.619 1,987.815 0.309 0.017 21.384 160.222 117.032 -51.347 15.443 31.238 1.715 0.932

[0.618, 0.619] [1987.807, 1987.82] [0.293, 0.328] [0.014, 0.018] [17.416, 24.365] [152.776, 168.884] [111.111, 123.22] [-51.626, -51.02] [13.11, 17.639] [27.642, 37.226] [1.339, 2.034] [0.884, 1.0]
SB1 + p(π) + p(m1|θ) 0.619 1,987.816 0.312 0.017 21.639 159.469 114.537 -51.325 16.572 29.431 1.532 0.952

[0.618, 0.619] [1987.808, 1987.821] [0.292, 0.326] [0.015, 0.019] [17.61, 24.454] [152.635, 168.411] [110.206, 121.517] [-51.627, -51.024] [14.033, 18.374] [26.549, 34.804] [1.303, 1.898] [0.893, 1.0]
HIP171 SB1 26.607 1,882.987 0.357 0.817 -80.847 109.296 49.751 -36.288 5.654 - - -

[26.589, 26.628] [1882.89, 1883.063] [0.354, 0.36] [0.814, 0.82] [-81.216, -80.591] [108.951, 109.669] [49.48, 50.062] [-36.325, -36.249] [5.564, 5.757] - - -
SB1 + p(π) 26.602 1,883.001 0.357 0.818 -80.922 109.322 49.835 -36.291 79.079 5.652 0.864 0.808

[26.589, 26.628] [1882.893, 1883.064] [0.355, 0.36] [0.814, 0.82] [-81.213, -80.599] [108.975, 109.685] [49.482, 50.061] [-36.325, -36.249] [78.013, 80.163] [5.569, 5.76] [0.811, 0.91] [0.779, 0.843]
SB1 + p(m1|θ) 26.610 1,882.968 0.357 0.817 -80.930 109.336 49.752 -36.293 77.207 5.650 0.944 0.774

[26.589, 26.627] [1882.891, 1883.062] [0.354, 0.36] [0.814, 0.82] [-81.207, -80.585] [108.956, 109.668] [49.491, 50.064] [-36.325, -36.251] [76.208, 77.7] [5.569, 5.761] [0.926, 0.984] [0.753, 0.793]
SB1 + p(π) + p(m1|θ) 26.601 1,883.006 0.358 0.819 -80.928 109.294 49.947 -36.297 77.790 5.610 0.929 0.774

[26.587, 26.626] [1882.897, 1883.068] [0.355, 0.36] [0.816, 0.822] [-81.259, -80.633] [108.981, 109.707] [49.593, 50.152] [-36.333, -36.257] [77.008, 78.305] [5.528, 5.713] [0.907, 0.96] [0.755, 0.797]
HIP3504 SB1 31.199 1,975.236 0.809 0.105 1.898 57.719 102.241 -44.998 180.352 - - -

[30.878, 31.406] [1974.988, 1975.333] [0.79, 0.842] [0.073, 0.133] [-24.568, 10.92] [14.701, 98.393] [89.906, 113.391] [-50.265, -31.248] [128.634, 199.98] - - -
SB1 + p(π) 2.485 1,975.308 0.153 0.020 15.070 273.213 104.978 -15.102 4.603 93.073 7.434 0.750

[2.471, 2.498] [1974.915, 1975.75] [0.029, 0.261] [0.016, 0.025] [-44.073, 83.271] [248.11, 299.545] [91.98, 125.174] [-16.976, -13.357] [3.807, 5.436] [70.569, 117.562] [2.857, 16.251] [0.52, 1.0]
SB1 + p(m1|θ) 2.484 1,975.434 0.147 0.021 34.461 271.723 108.288 -14.685 5.349 83.650 5.689 0.810

[2.471, 2.498] [1974.903, 1975.78] [0.025, 0.261] [0.013, 0.026] [-48.982, 84.83] [247.578, 299.215] [92.736, 125.822] [-17.063, -13.458] [3.232, 6.598] [63.383, 136.914] [3.788, 7.761] [0.698, 1.0]
SB1 + p(π) + p(m1|θ) 2.486 1,975.371 0.133 0.019 25.676 268.836 111.311 -15.069 4.649 96.647 5.912 0.816

[2.471, 2.497] [1974.903, 1975.794] [0.012, 0.254] [0.016, 0.022] [-44.991, 89.803] [248.867, 299.28] [92.33, 124.997] [-17.054, -13.455] [3.985, 5.492] [79.424, 118.919] [3.831, 7.687] [0.696, 1.0]
HIP6564 SB1 16.082 1,924.566 0.934 0.197 169.555 208.995 120.905 99.037 28.652 - - -

[16.07, 16.104] [1924.499, 1924.602] [0.926, 0.94] [0.195, 0.198] [167.549, 172.737] [207.729, 210.742] [118.652, 122.969] [92.996, 105.86] [24.411, 34.134] - - -
SB1 + p(π) 16.084 1,924.558 0.941 0.196 168.334 208.062 122.587 91.730 20.839 23.186 1.663 0.935

[16.065, 16.096] [1924.523, 1924.616] [0.936, 0.945] [0.195, 0.198] [165.541, 170.235] [206.383, 209.228] [120.515, 124.465] [89.08, 94.431] [19.848, 22.102] [21.443, 24.79] [1.364, 1.939] [0.85, 1.0]
SB1 + p(m1|θ) 16.077 1,924.578 0.939 0.196 168.461 208.256 121.999 93.101 19.835 24.283 1.945 0.929

[16.065, 16.098] [1924.516, 1924.612] [0.933, 0.944] [0.195, 0.198] [166.001, 171.036] [206.683, 209.712] [119.964, 124.115] [89.723, 98.066] [17.447, 21.821] [21.766, 27.746] [1.379, 2.792] [0.837, 1.0]
SB1 + p(π) + p(m1|θ) 16.079 1,924.574 0.941 0.196 167.476 207.638 122.240 91.327 21.333 22.826 1.548 0.949

[16.065, 16.095] [1924.524, 1924.616] [0.936, 0.945] [0.195, 0.198] [165.257, 170.025] [206.272, 209.15] [120.555, 124.59] [88.976, 94.209] [19.961, 22.187] [21.435, 24.661] [1.366, 1.917] [0.854, 1.0]
HIP7918 SB1 19.731 1,996.964 0.439 0.607 -158.428 208.520 97.638 3.319 2.932 - - -

[19.701, 19.76] [1996.911, 1997.005] [0.434, 0.444] [0.603, 0.613] [-159.474, -157.442] [208.046, 208.815] [97.04, 98.016] [3.306, 3.332] [2.893, 2.964] - - -
SB1 + p(π) 19.736 1,996.966 0.439 0.608 -158.395 208.375 97.473 3.320 76.457 2.940 0.998 0.290

[19.702, 19.761] [1996.91, 1997.005] [0.434, 0.444] [0.603, 0.613] [-159.487, -157.437] [208.04, 208.806] [97.044, 98.013] [3.305, 3.331] [76.104, 76.95] [2.894, 2.965] [0.967, 1.031] [0.284, 0.294]
SB1 + p(m1|θ) 19.733 1,996.954 0.439 0.608 -158.593 208.326 97.485 3.321 76.113 2.931 1.016 0.287

[19.7, 19.76] [1996.914, 1997.008] [0.434, 0.444] [0.603, 0.613] [-159.498, -157.464] [208.028, 208.81] [97.031, 98.013] [3.305, 3.331] [74.781, 77.181] [2.895, 2.967] [0.978, 1.069] [0.281, 0.292]
SB1 + p(π) + p(m1|θ) 19.736 1,996.974 0.439 0.610 -158.210 208.420 97.530 3.318 76.439 2.917 1.013 0.287

[19.703, 19.761] [1996.914, 1997.009] [0.434, 0.443] [0.604, 0.613] [-159.462, -157.405] [208.03, 208.797] [97.012, 97.982] [3.306, 3.331] [76.055, 76.864] [2.891, 2.956] [0.98, 1.034] [0.283, 0.292]
HIP65982 SB1 3.232 1,984.708 0.519 0.099 6.536 302.129 24.603 -51.178 5.901 - - -

[3.229, 3.237] [1984.666, 1984.734] [0.503, 0.537] [0.096, 0.101] [-0.428, 12.052] [297.343, 308.595] [16.08, 29.728] [-51.298, -51.028] [4.506, 8.741] - - -
SB1 + p(π) 3.232 1,984.704 0.517 0.099 6.389 302.747 25.116 -51.155 37.519 5.566 1.397 0.264

[3.229, 3.237] [1984.667, 1984.733] [0.503, 0.536] [0.096, 0.101] [-0.369, 12.046] [297.143, 308.285] [16.281, 29.594] [-51.296, -51.021] [36.603, 39.054] [4.54, 8.769] [1.027, 1.562] [0.198, 0.486]
SB1 + p(m1|θ) 3.232 1,984.699 0.519 0.099 5.493 303.220 24.894 -51.183 42.272 5.747 0.921 0.321

[3.229, 3.236] [1984.665, 1984.732] [0.503, 0.537] [0.096, 0.101] [-0.763, 11.87] [297.351, 308.72] [15.84, 29.851] [-51.3, -51.025] [39.346, 44.395] [4.365, 8.733] [0.873, 0.95] [0.239, 0.527]
SB1 + p(π) + p(m1|θ) 3.233 1,984.700 0.535 0.096 6.149 302.863 14.636 -51.166 38.329 10.059 0.924 0.627

[3.229, 3.237] [1984.672, 1984.736] [0.523, 0.547] [0.095, 0.097] [0.401, 12.521] [296.444, 308.151] [11.343, 17.272] [-51.301, -51.028] [36.84, 39.36] [8.526, 12.468] [0.875, 0.955] [0.498, 0.851]
HIP69962 SB1 18.818 1,984.953 0.305 0.350 72.448 285.221 107.667 11.571 7.199 - - -

[18.7, 18.924] [1984.786, 1985.072] [0.29, 0.313] [0.345, 0.352] [70.498, 73.54] [284.721, 285.867] [107.304, 108.436] [11.384, 11.737] [6.617, 7.678] - - -
SB1 + p(π) 18.767 1,984.971 0.303 0.348 71.781 285.351 107.942 11.579 44.139 7.158 0.949 0.462

[18.705, 18.927] [1984.789, 1985.07] [0.29, 0.313] [0.345, 0.352] [70.466, 73.535] [284.734, 285.886] [107.311, 108.442] [11.378, 11.737] [42.918, 45.902] [6.591, 7.683] [0.819, 1.056] [0.409, 0.521]
SB1 + p(m1|θ) 18.797 1,984.931 0.302 0.349 71.887 285.489 107.837 11.571 49.275 7.110 0.652 0.539

[18.705, 18.926] [1984.786, 1985.063] [0.29, 0.313] [0.345, 0.352] [70.53, 73.537] [284.718, 285.883] [107.331, 108.45] [11.38, 11.738] [47.659, 51.386] [6.597, 7.671] [0.566, 0.724] [0.486, 0.608]
SB1 + p(π) + p(m1|θ) 18.813 1,984.902 0.299 0.348 71.599 285.228 108.026 11.556 46.853 7.273 0.761 0.517

[18.716, 18.936] [1984.759, 1985.033] [0.288, 0.31] [0.344, 0.351] [70.174, 73.252] [284.75, 285.911] [107.439, 108.564] [11.392, 11.755] [45.673, 47.729] [6.952, 8.024] [0.697, 0.813] [0.481, 0.596]
HIP78401 SB1 10.808 1,979.079 0.939 0.099 -179.128 353.834 31.992 -6.466 56.608 - - -

[10.807, 10.809] [1979.075, 1979.082] [0.938, 0.94] [0.099, 0.099] [-179.999, 179.87] [353.096, 355.043] [31.271, 33.056] [-7.175, -5.705] [54.489, 58.405] - - -
SB1 + p(π) 10.809 1,979.072 0.935 0.099 173.325 0.037 35.083 -5.945 6.485 53.135 20.132 0.526

[10.807, 10.81] [1979.069, 1979.076] [0.934, 0.936] [0.099, 0.099] [173.24, 173.42] [0.0, 0.074] [34.439, 35.999] [-6.609, -5.106] [5.233, 8.643] [51.425, 54.781] [5.715, 37.566] [0.361, 0.823]
SB1 + p(m1|θ) 10.808 1,979.079 0.939 0.099 -179.362 354.018 32.093 -6.580 6.243 56.182 22.199 0.540

[10.807, 10.809] [1979.075, 1979.082] [0.938, 0.94] [0.099, 0.099] [-179.999, 179.876] [353.112, 355.062] [31.262, 33.094] [-7.133, -5.65] [5.597, 8.479] [54.357, 58.246] [5.915, 29.157] [0.442, 0.894]
SB1 + p(π) + p(m1|θ) 10.808 1,979.079 0.939 0.099 -179.323 353.986 31.943 -6.607 6.446 56.402 19.762 0.571

[10.807, 10.809] [1979.075, 1979.082] [0.938, 0.94] [0.099, 0.099] [-180.0, 179.865] [353.071, 355.035] [31.285, 33.07] [-7.182, -5.7] [5.668, 7.741] [54.315, 58.225] [8.639, 28.756] [0.458, 0.767]
HIP79101 SB1 1.545 1,966.733 0.465 0.033 -7.311 186.279 24.931 -16.719 7.867 - - -

[1.544, 1.547] [1966.718, 1966.748] [0.447, 0.487] [0.031, 0.035] [-11.795, -2.96] [180.631, 192.371] [0.929, 35.108] [-16.768, -16.647] [4.325, 141.128] - - -
SB1 + p(π) 1.545 1,966.731 0.464 0.034 -8.159 187.152 28.483 -16.692 15.118 6.814 4.347 0.115

[1.544, 1.547] [1966.719, 1966.748] [0.445, 0.487] [0.032, 0.035] [-11.56, -2.804] [180.686, 192.096] [5.485, 35.469] [-16.767, -16.648] [14.153, 15.698] [4.868, 30.797] [2.177, 5.203] [0.069, 0.841]
SB1 + p(m1|θ) 1.545 1,966.735 0.471 0.034 -7.039 185.636 21.705 -16.713 17.597 8.931 2.449 0.186

[1.544, 1.546] [1966.718, 1966.748] [0.446, 0.488] [0.032, 0.035] [-11.521, -2.708] [180.37, 192.054] [5.324, 35.809] [-16.764, -16.647] [14.182, 19.957] [4.717, 30.313] [1.733, 3.286] [0.087, 0.812]
SB1 + p(π) + p(m1|θ) 1.545 1,966.737 0.469 0.033 -6.511 186.223 8.417 -16.709 15.189 23.156 2.736 0.543

[1.544, 1.546] [1966.718, 1966.748] [0.449, 0.489] [0.031, 0.034] [-11.883, -2.89] [180.923, 192.778] [5.389, 13.403] [-16.761, -16.642] [14.267, 15.779] [14.335, 34.332] [2.106, 3.332] [0.293, 0.999]
HIP99675 SB1 10.300 1,950.523 0.203 0.032 -160.963 306.392 109.643 -6.364 155.926 - - -

[10.263, 10.331] [1950.376, 1950.68] [0.195, 0.21] [0.025, 0.036] [-163.437, -158.66] [294.404, 317.684] [80.399, 133.173] [-6.47, -6.285] [142.134, 199.951] - - -
SB1 + p(π) 10.309 1,950.479 0.204 0.037 -161.315 305.268 100.073 -6.375 3.727 131.027 4.686 0.954

[10.266, 10.334] [1950.367, 1950.676] [0.195, 0.21] [0.032, 0.041] [-163.532, -158.776] [296.412, 317.427] [79.396, 115.39] [-6.473, -6.285] [3.093, 4.084] [117.144, 152.989] [4.024, 6.894] [0.814, 1.0]
SB1 + p(m1|θ) 10.297 1,950.535 0.201 0.029 -160.958 304.857 116.110 -6.360 2.353 184.152 9.871 0.765

[10.266, 10.332] [1950.378, 1950.677] [0.195, 0.21] [0.025, 0.036] [-163.391, -158.676] [294.217, 317.669] [82.309, 133.486] [-6.472, -6.288] [1.977, 2.982] [135.573, 226.945] [8.562, 11.368] [0.629, 0.973]
SB1 + p(π) + p(m1|θ) 10.301 1,950.514 0.203 0.040 -161.350 306.934 102.004 -6.383 3.353 121.954 9.437 0.692

[10.266, 10.333] [1950.375, 1950.678] [0.195, 0.21] [0.033, 0.043] [-163.343, -158.71] [295.453, 316.188] [82.462, 128.976] [-6.469, -6.285] [2.758, 3.595] [111.512, 158.606] [8.033, 10.914] [0.63, 0.895]
HIP109951 SB1 58.309 1,990.498 0.391 0.321 62.426 262.000 32.115 -22.847 19.402 - - -

[48.269, 61.633] [1989.425, 1990.908] [0.372, 0.465] [0.275, 0.335] [38.049, 69.562] [256.403, 267.143] [2.498, 35.157] [-23.179, -22.73] [13.987, 140.695] - - -
SB1 + p(π) 56.369 1,990.203 0.400 0.311 58.320 261.506 28.946 -22.871 14.899 20.748 1.986 0.447

[50.086, 62.173] [1989.552, 1990.979] [0.37, 0.446] [0.283, 0.337] [42.264, 70.681] [257.095, 267.473] [15.397, 36.152] [-23.149, -22.715] [14.115, 16.223] [16.554, 32.343] [1.179, 2.36] [0.321, 0.934]
SB1 + p(m1|θ) 56.941 1,990.286 0.392 0.314 57.656 263.599 30.022 -22.919 18.445 20.313 0.952 0.599

[50.63, 63.167] [1989.571, 1991.056] [0.366, 0.441] [0.286, 0.342] [43.646, 72.714] [257.021, 267.45] [17.793, 37.547] [-23.137, -22.7] [16.816, 19.264] [16.618, 29.321] [0.926, 0.983] [0.46, 0.968]
SB1 + p(π) + p(m1|θ) 52.515 1,989.840 0.430 0.291 49.172 261.551 19.005 -23.031 16.905 28.513 0.957 0.931

[50.437, 55.072] [1989.473, 1990.164] [0.405, 0.449] [0.284, 0.301] [41.478, 56.262] [256.624, 267.574] [15.233, 23.905] [-23.153, -22.809] [16.507, 17.27] [26.722, 30.285] [0.935, 0.992] [0.854, 1.0]
HIP115126 SB1 6.325 1,980.741 0.160 0.191 -146.961 341.392 50.015 -1.608 8.650 - - -

[6.322, 6.328] [1980.724, 1980.755] [0.158, 0.163] [0.189, 0.193] [-147.419, -146.405] [340.75, 341.798] [48.775, 50.709] [-1.623, -1.595] [8.507, 8.862] - - -
SB1 + p(π) 6.326 1,980.738 0.161 0.191 -146.777 341.275 49.632 -1.608 45.134 8.702 1.144 0.647

[6.322, 6.328] [1980.724, 1980.754] [0.158, 0.163] [0.189, 0.192] [-147.437, -146.421] [340.773, 341.808] [48.849, 50.751] [-1.623, -1.595] [43.862, 46.023] [8.506, 8.847] [1.06, 1.281] [0.608, 0.673]
SB1 + p(m1|θ) 6.325 1,980.741 0.160 0.191 -146.900 341.256 50.010 -1.611 44.152 8.653 1.246 0.618

[6.322, 6.328] [1980.723, 1980.754] [0.158, 0.163] [0.189, 0.193] [-147.452, -146.431] [340.753, 341.795] [48.801, 50.734] [-1.623, -1.595] [42.976, 46.613] [8.505, 8.855] [1.027, 1.364] [0.595, 0.679]
SB1 + p(π) + p(m1|θ) 6.326 1,980.737 0.160 0.191 -146.774 341.189 49.866 -1.609 44.806 8.663 1.183 0.634

[6.322, 6.328] [1980.723, 1980.754] [0.158, 0.163] [0.189, 0.193] [-147.424, -146.402] [340.802, 341.814] [48.83, 50.773] [-1.623, -1.596] [43.965, 45.8] [8.501, 8.848] [1.086, 1.273] [0.608, 0.665]

(a) Results reported by other authors. (b) Results obtained in this work.
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Chapter 6

Bayesian Inference in Hierarchical Stellar
Systems

The vast advances in observational astronomy and the numerous resources destined for the construction of
highly precise telescopes allow detecting subtle details of the dynamics and discovering new components
of stellar systems once undetectable. The new resources increase the interest for the analysis of multiple
stellar systems of various architectures.

This chapter introduces a Bayesian inference methodology for orbital parameters estimation in mul-
tiple stellar systems using the hierarchical approximation. The developed methodology provides a joint
estimation of the posterior distribution of the orbital parameters of hierarchical stellar systems with any
architecture and multiplicity. Section 6.1 introduces a Bayesian model for hierarchical stellar systems and
discusses the possibilities and limitations for the estimation of the orbital parameters. Section 6.2 presents
the evaluation of the proposed methodology on several hierarchical systems with different architectures,
multiplicities, and sources of observations, analyzing and discussing the obtained results.

6.1 Bayesian Model

The Bayesian statistical model used to perform the inference in hierarchical stellar systems is the Keplerian
orbital model introduced in Section 2.1.3. This model is adapted to determine the position observations and
the radial velocities observations simultaneously applied to each of the binary sub-systems that compose
it. Following the Bayesian modeling presented in Section 5.1 for binary stellar systems, our model assumes
that the observations are independent and follow a Gaussian distribution with uniform priors distributions
on the parameters space (considering it physical valid ranges described in Section 2.1).

The expressions for the determination of the position and radial velocities for a 3-hierarchical stellar
system presented in Section 2.2.1 directly extends to n-hierarchical scenario, where we identify the same
three important cases: positional observation formulae when the inner binary system is resolved; positional
observation formulae when the inner binary system is unresolved and radial velocities observation formulae.

Let {Si}ni=1 be the n-stars or components of an hierarchical stellar system, Ck =
⋃k
i=1{Si} be the

subgroups or clusters of stars that satisfies C1 ⊂ C2 ⊂ ... ⊂ Cn, ~rSk
and ~rCk

the position vector of the
star Sk and be the center of mass of the cluster Ck, respectively. The position vector of a component Sn
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relative to principal component of the system S1 can be expressed as follows:

~rS1Sn =

n−2∑
i=1

~rCiCi+1 + ~rCn−1Sn =
n−2∑
i=1

~rCiSi+1

(
qCiSi+1

1 + qCiSi+1

)
+ ~rCn−1Sn . (6.1)

The hierarchical structure of the orbital model imposes that the position vectors
{
~rCiSi+1

}n−1

i=1
describes

independent binary systems, consequently, the position vector ~rS1Sn is characterized by the set orbital
parameters

⋃n−1
i=1 {PCiSi+1 , TCiSi+1 , eCiSi+1 , aCiSi+1 , ωCiSi+1 ,ΩCiSi+1 , iCiSi+1 , qCiSi+1} \ {qCn−1Sn}.

If the inner binary systems are unresolved up to a binary system ~rCm−1,Sm and denoting ~rC∗m the position
vector of the photocenter of the cluster Cm, the relative position vector of a component Sn relative to the
photocenter of Cm, can be expressed as follows:

~rC∗mSn = ~rC∗mCm +
n−2∑
i=m

~rCiCi+1 + ~rCn−1Sn = ~rC∗mCm +
n−2∑
i=m

~rCiSi+1

(
qCiSi+1

1 + qCiSi+1

)
+ ~rCn−1Sn , (6.2)

with ~rC∗mCm = ~rCm − ~rC∗m a combinatorial term that involves the orbital parameters {m1, ...mm} ∪
{L1, ..., Lm}.

Considering VSj and VCj the radial velocities of the component Sj and center of mass of the cluster
Cj , respectively, they can be described as:

VCj (t) =V0 +
n−1∑
i=1

KSi+1 [eCiSi+1 cosωCiSi+1 + cos(νCiSi+1(t) + ωCiSi+1)], ∀j ∈ {1, ..., n− 1},

VSj (t) =VCj−1(t)−KSj [eCj−1Sj cosωCj−1Sj + cos(νCj−1Sj (t) + ωCj−1Sj )], ∀j ∈ {2, ..., n}.

(6.3)

Finally, we have to impose an additional restriction on the mass of the binary systems, such as they
respect the hierarchical approximation. Thereby, as ~rCiSi+1 , ∀i ∈ {1, ..., n− 1} describes a binary systems
with a primary object Ci and a companion object Si+1, respectively, it total mass must be equal to the
primary object mass of the subsequent binary systems ~rCi+1Si+2 , i.e., mCi +mSi+1 =! mCi+1 . According to
(2.18) and assuming that πCiSi+1 = πCi+1Si+2 ,∀i ∈ {1, ..., n − 1} (the parallax is the same for the whole
hierarchical system), the additional restriction on the mass can be reduced to the following expression:

aCiSi+1 = aCi+1Si+2 ·
3

√(
PCiSi+1

PCi+1Si+2

)2

· 1

1 + qCi+1Si+2

. (6.4)

The mass restriction (6.4) implies that the semi-major axis parameter of all the binary systems aCiSi+1 ,∀i ∈
{1, ..., n−2} with the exception of the most outer system aCn−1Sn are deterministically determined by the
orbital model, substantially reducing the parameters space of the inference. Note that (6.4) still satisfying
the physical valid range of the semi-major axis a ∈ (0,+∞), since all the parameters involved are greater
than zero. Analogously, the mass restriction in (6.4) can be restated in terms of the period P of the binary
systems instead of the semi-major axis a, still satisfying it physical valid range P ∈ (0,+∞). However,
(6.4) cannot be restated in terms of the mass ratio q, since the obtained deterministic expression does not
satisfy the physical valid range of that parameter q ∈ (0, 1].

The main advantage of the joint estimation of the set of orbital parameters (of all the binaries that
compose the hierarchical system) is the information shared by the different observation sources. This
strategy infers the orbital parameters that are non-identifiable under the separate binary modeling setting.
For example, the mass ratio of a visual triple stellar system can be estimated only through the positional
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observations of the inner and the outer binaries, not requiring observations of the radial velocities or
additional information about the system.

Another great advantage of the Bayesian methodology in hierarchical stellar systems is the flexibility
for incorporating prior information. Depending on the multiplicity, architecture, sources, and precision
of the observations of the stellar system, some of the orbital parameters can be identifiable, but others
do not. In many cases, the coverage of the observations of many outer systems is poor due to the high
periods of revolution involved. In addition, many inner systems present no positional observations due to
their high tightness, where the precision of the observational instruments is insufficient to identify both
components of the inner binary. When the absence or the low quality of the observational sources indicates
that some parameters are not identifiable, suitable informative priors can be used to constrain the orbital
solution of the whole system, allowing to determine some orbital parameters that cannot be determined
with the available observations. In this context, we say that a parameter is weak-identifiable if it becomes
identifiable by incorporating an informative prior.

6.2 Experiments

This section performs the inference of the six hierarchical stellar systems through the proposed Bayesian
inference methodology, considering systems of different multiplicities, architectures, and available ob-
servational sources. The estimates and the uncertainty in the parameters space are analyzed through
visualization of the posterior marginal distributions. The posterior distribution is also computed in the
observations space by projecting 1000 randomly selected samples of the posterior distribution, drawing
trajectories from the first observation time t0 to the first completion of the orbit t0 +P . The maximum a
posteriori (MAP) estimate and the 95% high posterior density interval estimates are summarized in Table
6.1.

The inference process is performed through the simulation of 10000 samples of the respective posterior
distributions following the sampling method described in Section 5.1.

For the sake of space, the analysis is presented only on four of the eight systems: LHS1070, HIP110960,
KUI99M and HIP51966.

6.2.1 LHS1070

The LHS1070 (GJ2005) is a triple hierarchical system composed of a tighter inner pair Ba, Bb that orbits a
brighter primary componentA. This system’s data consists of numerous and precise positional observations
of the inner pair BaBb that cover the entire orbit and precise observations of the primary component of the
inner pair Ba relative to the brighter component A. No radial velocity observations are available for any of
the system components. The observations and it uncertainties are visualized in Figure 6.2. The LHS1070
hierarchical system was previously studied by [Köhler et al., 2012, Tokovinin, 2018, Villegas et al., 2021].

The available sources of information make the set of astrometric orbital parameters of the inner Ba, Bb
and the outer A,B systems, as well as the mass ratio of the inner system qBaBb

identifiable. Consequently,
no informative priors on the parameters of the system are used for the inference process.

The posterior distributions presented in Figure 6.1 shows that the orbital parameters of the inner pair
Ba, Bb are well determined (being Gaussian distributions with low dispersion), which is attributed to the
abundance, high precision, and high orbit coverage of the positional observations. However, the marginal
posterior distribution of the orbital parameters of the outer pair A,B presents a significant dispersion and
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skewness on PAB, TAB, eAB, aAB, ωAB, which is attributed to the reduced orbit coverage of the respective
positional observations. In particular, the high uncertainty of the period PAB is an expected result since
the corresponding positional observations do not cover the same zones of the orbit in different periods.
This is a consequence of the prohibitive time scale of observation (hundred of years). It is important to
notice that, even with the low orbit coverage of the positional observation of the outer pair A,B, the
inclination iAB is determined with good precision due to the distribution of the observations in the orbital
space and the information-sharing between the well determined inner orbit Ba, Bb and the outer orbit
A,B. Finally, the marginal posterior distribution of the mass ratio qBaBb

is well determined, presenting a
reduced uncertainty but a high skewness to its maximum possible value (q = 1).

Figure 6.1: Marginal posterior distributions and MAP estimates of the orbital parameters of the
hierarchical system LHS1070.

The posterior distributions in the observation space are presented in Figure 6.2. No uncertainty is
observed in the posterior distribution of the inner orbit Ba, Bb, which perfectly fits the corresponding
observations. Similar behavior is observed in the segments of the outer orbit populated by the positional
observations. The upper orbital lobe, which has observations along all the curve, presents no observable
uncertainty. In contrast, the subsequent lobe, populated with precise observation only on the initial small
portion of the curve, presents a slight but visible uncertainty increase. All the other segments of the orbit
with no observations present a considerable increase of the uncertainty, presenting three or four additional
possible lobes. The observed indeterminacy of the outer orbit shape of the LHS1070 system is a clear
example of the advantages of the Bayesian inference approach over the deterministic estimation approach
(commonly used in the literature), offering more complete inference perspective of this stellar system.

6.2.2 HIP110960
The HIP110960 is a triple hierarchical system composed of a tighter inner pair Aa, Ab orbited by a fainter
companion object component B. The available data consists of five positional observations of the inner
pair AaAb (distributed along all the orbit), numerous and imprecise positional observations of the outer
component B relative to the center of light of the inner system A∗ (that covers less than a half of the
orbit), and few but precise recent positional observation of the outer component B relative to the primary
component of the inner system Aa. No radial velocity observations are available for any of the system com-
ponents. The observations and its uncertainties are visualized in Figure 6.4. The HIP110960 hierarchical
system was previously studied by [Heintz, 1984, Tokovinin, 2016].
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Figure 6.2: Estimated orbits of the hierarchical system LHS1070.

The available sources of information make the set of astrometric orbital parameters of the inner Aa, Ab
and the outer Aa, B systems, as well as the mass ratio of the inner system qAaAb

and the luminosity ratio
LAaAb

identifiable. Therefore, no informative priors on the parameters are used for the inference process.

The posterior distributions presented in Figure 6.3 shows that the orbital parameters PAaAb
and TAaAb

of the inner pair are well determined, (being Gaussian distributions with low dispersion), while the pos-
terior distribution of the orbital parameters eAaAb

and aAaAb
presents a slight increase of skewness and

dispersion. The angular parameters ωAaAb
,ΩAaAb

, iAaAb
are highly uncertain presenting a considerably

higher dispersion on the respective posterior distributions. This distribution looks like uniform distribu-
tions with a pronounced mode on one bound of the respective parameter space. The irregular shape of
the angular parameters posterior distribution of the inner pair is attributed to the lack of orbit coverage
of the positional observations, which are only distributed on a quarter of the whole orbit. The orbital
parameters posterior distributions of the outer orbit A,B presents all a very high dispersion and with
a high skewness on the parameters PAB, TAB and eAB. The high uncertainty of the outer orbit orbital
parameters is also attributed to the low orbit coverage of the respective positional observations. As there
are positional observations from A∗B and AaB simultaneously, the mass and light ratios qAaAb

and LAaAb

can be determinate without the incorporation of additional information in the form of informative priors.
The mass ratio qAaAb

posterior distribution has a Gaussian shape centered in the center value of the valid
physical range (q ∈ (0, 1]) with a moderate dispersion. On the other hand, the light ratio LAaAb

posterior
distribution has a moderate skewness to its range lower bound with low uncertainty.

Figure 6.3: Marginal posterior distributions and MAP estimates of the orbital parameters of the
hierarchical system HIP110960.
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The posterior distributions in the observation space are presented in Figure 6.4. A low uncertainty
is observed in the inner orbit Ba, Bb in the segment populated with observations, presenting an almost
perfect fitting. The uncertainty slightly increases in the zones of the orbit without observations. Similar
behavior is observed in the sections of the outer orbit populated with the positional observations. However,
the projected uncertainty of the orbit increases dramatically in the areas far from the observations (which
extends further from the plot limits). A significant uncertainty reduction is observed at the end of the
periods PAB of the orbits, which is restricted to a well-determined narrow range.

Figure 6.4: Estimated orbits of the hierarchical system HIP110960.

6.2.3 KUI99M

The KUI99M (HIP111805) is a triple hierarchical system composed of a tighter inner pair Aa, Ab orbited by
a fainter companion object component B. The available data consists of numerous and precise positional
observations of the inner AaAb and the outer pair Aa, B distributed along both orbits. In addition, there are
precise and abundant radial velocity observations of the primary object Aa relative to the center of mass of
the whole system and scarce and imprecise radial velocity observations of the companion object Ab relative
also to the center of mass of the whole system. No radial velocity observations of the outer component
B are available. The observations and their uncertainties are visualized in Figure 6.6. The KUI99M
hierarchical system was previously studied by [Tokovinin and Latham, 2017, Villegas et al., 2021].

The available sources of observations make the set of astrometric and spectroscopic orbital parameters
of the inner Aa, Ab and the outer Aa, B systems, as well as the mass ratio of the inner system qAaAb

identifiable. Consequently, no informative priors on the parameters are used for the inference process.

The posterior distributions presented in Figure 6.5 show that the astrometric and spectroscopic orbital
parameters of the inner Aa, Ab, and outer A.B pairs are well determined, presenting a Gaussian shape
with low dispersion. It is important to note that the mass ratio parameter qAaAb

is determined through
the positional and radial velocities of the inner system Aa, Ab, as well as the gravitational interaction
between the inner Aa, Ab and outer A,B orbits. Therefore, there is information sharing between the two
sources of information that allows a low uncertainty estimate of qAaAb

. As the same parameter of parallax
π is assumed for the inner and outer systems, the positional observations of the inner and outer orbit
and the radial velocities observations of both bodies of the inner orbit allows to estimate the mass ratio
of the outer system qAB with low uncertainty. This is attributed to the information-sharing between all
the sources of information, even in absence of explicit radial velocity observations of the outer companion
object VB.

The posterior distributions in the observation space are presented in Figure 6.6. No uncertainty is
observed in the posterior distribution of the inner Aa, Ab and outer orbits A,B, perfectly fitting the
corresponding observations. The same behavior is observed in the radial velocity curve of the primary
component of the inner orbit VAa . However, the radial velocity curve of the companion object VAb

does
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Figure 6.5: Marginal posterior distributions and MAP estimates of the orbital parameters of the
hierarchical system KUI99M.

not reach the observations, failing to fit them adequately. The fitting of the VAb
observations is displaced

by the information provided by the other sources of information as the positional observations and the
gravitational interaction between the inner and outer orbits, providing an estimate with almost no uncer-
tainty even if it does not reach the corresponding observations. The radial velocity observations VAa and
VAb

allows to provide a confident estimate of the radial velocity curve of the outer object VA and, due to
the information sharing between all the sources of information, the radial velocity curve of the companion
object of the outer orbit VB is also determined, but with a slight but visible increase of uncertainty in the
peak and trough of the curve.

6.2.4 HIP51966
The HIP51966 is a quadruple hierarchical system composed of a tighter inner pair Aa1, Aa2 that is orbited
by a fainter object Ab, forming an inner triple system that is in turn orbited by an outer object B. The
available data consists of numerous and noisy positional observations of the component Ab relative to the
light center of the inner system A∗ (distributed along all the orbit) and few but precise observations of
the outer component B (relative to the light center of the inner system A∗a). No positional observations
of the inner pair are available, i.e., the inner system is unresolved. However, numerous and highly precise
radial velocity observations of the primary component of the inner pair Aa (relative to the center of mass
of the whole system) are available. No radial velocity observations for the other system components are
available. The observations and their uncertainties are visualized in Figure 6.8. The HIP51966 hierarchical
system was previously studied by [Tokovinin et al., 2015].

As only radial velocity observations of the inner orbit Aa1, Aa2 are available, only its spectroscopic
orbital parameters are identifiable. To identify the astrometric orbital parameters of the inner orbit
as well as the mass ratio qAa1Aa2 , an informative Gaussian prior is imposed on the system parallax
π ∼ N

(
26.3 · 10−3, (0.401 · 10−3)2

)
as reported in [Brown et al., 2018]. The weak-identifiability of the

astrometric orbital parameter of the inner systems makes the astrometric orbital parameters of the middle
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Figure 6.6: Estimated orbits and radial velocity curves of the hierarchical system KUI99M.

AaAb and the outer AB systems also identifiable. The positional observations A∗aAb are not sufficiently
precise to capture the subtle wobble movement of the companion object Ab due to gravitational interac-
tion with the inner no-observable component Aa1. For address this issue, [Tokovinin et al., 2015] proposes
fixing the values of the inclination iAa1Aa2 and the longitude of the ascending node ΩAa1Aa2 . In contrast,
we avoid using informative priors on those parameters to study the full-expressiveness of the available
positional data of the pair Aa, Ab on the determination of the inner orbit Aa1Aa2.

The obtained posterior distributions presented in Figure 6.7 show that the spectroscopic parameters of
the inner pair are determined with low uncertainty. This is attributed to the available precise radial velocity
observations of the primary component Aa1. It is observed that the posterior distribution of the weak-
identifiable parameters presents evident differences compared to the prior distributions used. The posterior
distribution of the parallax π is slightly shifted to higher values compared to the assumed prior, but with
a similar dispersion. The posterior distribution of the light ratio LAa1Aa2 presents a higher skewness to
the zero value compared to the assumed prior and lower dispersion. Surprisingly, the angular astrometric
parameters ΩAa1Aa2 , iAa1Aa2 , are well determined, even considering that no positional data of the inner
system Aa1, Aa2 is available. This is attributed to the information provided by the informative priors on
π assumed and the information sharing between the inner orbit (with no positional observations) and the
middle orbit (with positional observations). It is important to remark that the mass ratio qAa1Aa2 and the
semimajor axis aAa1Aa2 of the inner orbit are both identifiable: aAa1Aa2 is deterministically determined
(eq. (6.4)) as a function of PAa1Aa2 (determined through the radial velocities observations of Aa1), PAaAb

(determined through the available positional observations of A∗a, Ab) and qAaAb
(determined through the

positional observations of A∗a, B), allowing qAa1Aa2 to be identified through the interaction between the
inner and the middle orbit. Compared to the orbital estimation in [Tokovinin et al., 2015], it is important
to remark that [Tokovinin et al., 2015] completely ignores the angular parameter ΩAa1Aa2 in his estimation
due to the absence of positional observation of the inner orbit. In contrast, this work incorporates that
parameter in the inference, showing a surprisingly not very high uncertainty, with a 95% HPDI of [53.17,
90.01]. Additionally, the estimated inclination of the inner orbit iAa1Aa2 (∼127°) obtained in this work
strongly differs from the fixed value assumed by [Tokovinin et al., 2015] (57°), questioning his assumption
of co-planarity between the inner and middle orbits. Well-determined estimations are obtained in the
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majority of the inner orbit orbital parameters. However, the posterior distribution of the mass ratio
qAa1Aa2 presents a somewhat high uncertainty, where the corresponding posterior distribution covers all
the valid range [0,1] but is concentrated in it first half [0,0.5]. This uncertainty is attributed to the
absence of positional observations of the inner orbit. Finally, the orbital parameters of the middle system
Aa, Ab are all well-determined, presenting a lower uncertainty, including the mass ratio qAaAb

. However,
all the orbital parameters of the outer system A,B present an extremely high uncertainty. The respective
posterior distributions have wide dispersion and irregular shapes, attributed to the low orbital coverage
of the available positional observations.

Figure 6.7: Marginal posterior distributions and MAP estimates of the orbital parameters of the
hierarchical system HIP51966.

The obtained posterior distributions in the observation space are presented in Figure 6.8. A high
uncertainty is observed in the inner orbit Aa1, Aa2, showing a diffuse cloud of possible orbits attributed
to the somewhat high uncertainty obtained in the angular parameters ΩAa1Aa2 and iAa1Aa2 (due to the
absence of positional observations in Aa1, Aa2), but the size of the orbit is invariant in all the projected
orbits even in the absence of positional observations (due to the precise estimations of eAa1Aa2 and aAa1Aa2).
This is attributed to the prior information on the parallax π and information provided by the radial
velocities observations and the positional observations of the middle orbit. The projection of the radial
velocity curves VAa1 shows no uncertainty, which is expected considering the quantity and quality of the
corresponding observations. Low uncertainty is observed in the middle orbit A∗a, Ab with a good fitting of
the available positional observations. High uncertainty is observed in the zones with no observation of the
outer orbit A∗a, B. However, almost no uncertainty is observed in the orbit zone populated with positional
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observations, with perfect observations fitting.

Figure 6.8: Estimated orbits and radial velocity curves of the hierarchical system HIP51966.

6.3 Concluding Remarks

The experimental results show the efficacy and precision of the proposed Bayesian inference methodology
on several hierarchical stellar systems of different multiplicities, architectures, and sources of observations
available.

Interesting results are shown in some of the hierarchical systems evaluated. For example, in the
systems LHS1070 and HIP110960, the posterior distributions in the orbits space show an extremely high
uncertainty in the zones of the outer orbits far from the observations. These high uncertainties translate
into multiple probable orbits of very different shapes and periods, being an interesting insight to the
analysis of these objects, since the majority of the related works in the hierarchical systems field base
its analysis in a single deterministic orbit, completely ignoring the diversity of other possible orbits. In
the case of the KUI99M system, the results show a posterior distribution with low dispersion in all the
parameters, which is translated into orbits and radial velocities curves with almost no uncertainty that
adequately fits the available data in both the inner and the outer binary system. This result shows the
efficacy of the Bayesian methodology in performing a precise inference when multiple sources of data are
available. The most interesting result is presented in the case of the quadruple system HIP51966, which
has multiple missing sources of observations (positional and radial velocities observations of the binaries
that compose the hierarchical system). However, the information-sharing between the different sources of
observations and the prior information incorporated allowed a good estimation of the orbital parameters.
The obtained results were similar to those reported by other authors but without fixing some of the orbital
parameters involved. Specifically, we impose an informative prior only on the parallax of the system, while
the other work needs to fix three of the orbital parameters of the inner orbit to perform a good estimation.
This capability of the proposed method allows a better expressiveness of the data in the results, avoiding
inducing strong biases to the estimation procedure (due to the parameter fixing).
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Table 6.1: MAP estimates and 95% HDPIs of the marginal posterior distributions of the orbital
parameters of several hierarchical stellar systems.
System Subsystem Author P [yr] T [yr] e a [] ω [°] Ω [°] i [°] K1 [km/s] K2 [km/s] V0 [km/s] π [mas] q L Φ [°]
LHS1070 inner (a) 17.247 2,006.440 0.017 0.460 202.530 14.820 62.040 - - - - 0.957 - 0.935

(b) 17.272 2,005.232 0.015 0.463 177.450 14.531 63.010 - - - - 0.989 - 2.819
[17.261, 17.289] [2004.756, 2005.758] [0.013, 0.016] [0.462, 0.464] [167.449, 188.341] [14.396, 14.837] [62.839, 63.201] - - - - [0.979, 1.0] - [1.6, 3.965]

outer (a) 77.620 2,049.670 0.039 1.528 210.700 13.900 62.500 - - - - - - -
(b) 103.505 2,000.592 0.157 1.863 346.935 12.923 65.429 - - - - - - -

[87.322, 126.559] [1995.358, 2003.946] [0.065, 0.27] [1.65, 2.142] [323.963, 359.872] [12.314, 14.177] [63.768, 66.919] - - - - - - -
HIP111805 inner (a) 1.501 1,986.093 0.022 0.038 232.900 334.500 87.400 13.130 19.210 - - 0.493 - 175.673

(b) 1.501 1,900.962 0.012 0.034 337.938 336.213 83.368 12.909 15.829 - - 0.816 - 171.294
[1.501, 1.502] [1900.93, 1901.045] [0.0, 0.03] [0.033, 0.034] [328.072, 359.929] [333.41, 339.84] [79.489, 85.321] [12.634, 13.132] [14.74, 16.518] - - [0.772, 0.879] - [167.43, 173.123]

outer (a) 30.127 2,010.179 0.324 0.336 84.920 154.250 88.280 6.057 8.600 -22.580 - 0.705 - -
(b) 29.979 1,920.049 0.324 0.332 84.436 154.164 88.170 6.239 8.903 -22.547 23.011 0.701 - -

[29.926, 30.045] [1919.857, 1920.217] [0.319, 0.333] [0.331, 0.334] [84.039, 84.987] [154.019, 154.361] [88.051, 88.353] [5.947, 6.468] [8.424, 9.227] [-22.735, -22.409] [22.499, 23.906] [0.658, 0.75] - -
KUI99M inner (a) 2.510 2,000.518 0.617 0.124 109.700 147.100 24.100 3.270 6.930 - - 0.840 - 64.791

(b) 2.508 1,977.955 0.605 0.121 114.896 142.642 19.255 3.336 4.100 - - 0.814 - 68.909
[2.507, 2.509] [1977.95, 1977.966] [0.6, 0.611] [0.12, 0.121] [113.399, 117.952] [139.507, 144.003] [18.419, 20.296] [3.251, 3.412] [3.912, 4.284] - - [0.782, 0.845] - [67.839, 69.667]

outer (a) 38.679 2,016.110 0.118 0.855 233.400 127.600 87.400 2.660 - -41.110 - 0.445 - -
(b) 38.786 2,015.527 0.106 0.852 227.540 127.520 87.462 2.625 5.608 -40.845 79.871 0.468 - -

[38.718, 38.866] [2015.193, 2015.685] [0.1, 0.109] [0.849, 0.855] [224.161, 229.193] [127.394, 127.697] [87.365, 87.548] [2.498, 2.72] [5.255, 5.903] [-40.909, -40.744] [76.356, 84.316] [0.441, 0.493] - -
HIP110960 inner (a) 25.950 2,006.520 0.872 0.110 100.900 293.700 11.800 - - - - -1.400 - 153.045

(b) 25.540 1,980.598 0.857 0.379 347.974 42.835 34.179 - - - - 0.518 0.049 92.626
[24.817, 26.223] [1980.115, 1981.512] [0.834, 0.911] [0.368, 0.407] [228.529, 359.948] [33.731, 167.391] [0.009, 43.094] - - - - [0.415, 0.704] [0.0, 0.097] [85.144, 147.367]

outer (a) 540 1,981.500 0.419 3.496 269.300 131.300 142.000 - - - - - - -
(b) 141.286 2,096.983 0.700 2.777 108.773 96.376 114.919 - - - - - - -

[95.625, 1989.406] [2037.897, 3962.022] [0.191, 0.916] [2.152, 8.665] [101.679, 232.78] [63.201, 120.781] [113.521, 154.486] - - - - - - -
HIP113726 inner (a) - - - - - - - - - - - - - -

(b) 5.623 1,975.722 0.245 0.056 217.376 95.406 161.201 - - - - 0.532 0.539 71.296
[5.592, 5.709] [1975.631, 1975.754] [0.155, 0.289] [0.05, 0.062] [127.395, 295.975] [12.716, 179.923] [147.549, 179.995] - - - - [0.111, 1.0] [0.111, 1.0] [51.413, 96.908]

outer (a) - - - - - - - - - - - - - -
(b) 154.907 2,006.496 0.429 0.337 121.398 4.347 110.161 - - - - - - -

[115.884, 190.946] [2004.709, 2009.122] [0.328, 0.502] [0.299, 0.374] [109.922, 136.957] [3.262, 5.566] [108.095, 111.684] - - - - - - -
HIP51966 inner (a) 0.466 2,003.292 0.135 0.018 297.600 - 57 8.080 - - - - - -

(b) 0.466 1,994.433 0.137 0.018 297.169 64.843 127.031 8.005 25.393 - - 0.315 0.040 72.720
[0.466, 0.466] [1994.428, 1994.437] [0.128, 0.148] [0.018, 0.018] [293.368, 300.198] [53.17, 90.01] [110.428, 157.258] [7.93, 8.098] [8.222, 31.467] - - [0.232, 0.813] [0.0, 0.376] [58.533, 103.593]

middle (a) 8.846 2,009.816 0.125 0.150 263.900 50.400 56.600 4.710 - - - - - 10.797
(b) 8.770 2,001.059 0.136 0.146 265.954 48.415 55.938 4.697 10.102 - - 0.465 - 17.365

[8.738, 8.792] [2000.998, 2001.178] [0.125, 0.144] [0.144, 0.148] [263.281, 269.416] [47.779, 49.721] [55.089, 57.073] [4.618, 4.833] [9.713, 10.595] - - [0.441, 0.489] - [2.725, 47.036]
outer (a) 205 2,048.600 0.301 1.334 219.700 63.200 54.200 0.210 - 21.160 - - - -

(b) 185.192 2,042.073 0.139 1.125 203.640 60.313 40.976 0.140 4.147 21.210 27.946 0.034 - -
[118.646, 350.193] [2023.037, 2102.572] [0.047, 0.435] [0.836, 1.716] [177.163, 308.672] [43.035, 110.905] [28.276, 49.543] [0.0, 0.329] [3.619, 4.403] [21.013, 21.381] [27.14, 28.461] [0.0, 0.08] - -

(a) Results reported by other authors. (b) Results obtained in this work.

All the mentioned capabilities make our Bayesian inference method an interesting analysis tool that
could enhance the study of multiple stellar systems and simplify the estimation process. The mentioned
simplification refers to the capacity of the method to be applied on hierarchical systems of any multiplicity
and architecture, also allowing to incorporate any prior information to constrain the orbital estimation
straightforwardly.
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Chapter 7

An Application: Optimal Measurement
Time

The technological advances in observational astronomy have allowed the discovery of an enormous number
of new celestial objects of great interest to the astronomical community, motivating numerous observation
campaigns to collect data for its study. Unfortunately, the number of celestial objects of study exceeds the
observational capacity due to the limited high precision observational instruments. This limitation causes
fierce competition among astronomers for precious observational time, limiting the number of observations
that can be made. In that context, it is crucial to determine the adequate observational times to define
observational planning that adapts to the time constraints and, at the same time, that allows characterizing
the object of study as best as possible.

The current chapter introduces a methodology for the determination of optimal times of measurement in
hierarchical stellar systems based on the Maximum Entropy Sampling [Shewry and Wynn, 1987] criterion.
The proposed method uses the estimated posterior distribution of hierarchical stellar systems to generate a
probability distribution of the time of measurement that provides the highest information about the system
parameters. Section 7.1 introduces the maximum entropy sampling criterion and discuss its connections
with the classical Bayesian optimal design problem; Section 7.2 presents the methodology of application of
the maximum entropy sampling criterion on the hierarchical stellar system model, and Section 7.3 evaluates
the optimal sampling methodology on three stellar systems with exhaustive analysis and discussion of the
obtained results.

7.1 Maximum Entropy Sampling

The Maximum Entropy Sampling [Shewry and Wynn, 1987] is an information theoretic-based criterion
that proposes to select experiments or samples that maximizes the gain in information for prediction at
unsampled sites.

The concept of information is defined in terms of the entropy [Cover, 1999], which is a measure of
uncertainty or average level of information of a random variable. Let X be a discrete random variable
with alphabet X and probability mass function p(x) = P(X = x), x ∈ X , the entropy of X is formally
defined as follows:

H(X) =
∑
x∈X
−p(x) log p(x). (7.1)

64



The analogous concept of entropy for continuous random variables is the differential entropy. Let X a
continuous random variable with support on X and probability density function f(x), the differential
entropy of X is defined as follows:

h(X) = E{− log f(x)} = −
∫
X
f(x) log f(x)dx. (7.2)

In the information-theoretic language, the Maximum Entropy Sampling criterion attempts to choose
an experiment or sample that minimizes the uncertainty or entropy of a system conditioned to it. Let
S = [1, ..., N ] be a finite system described by a random vector Γi, with i ∈ S the observation site. Let
s, s̄ two partitions of S, i.e, S = s∪̇s̄, where Γi, i ∈ s are the observations or samples of the process. The
objective of the problem is to interpolate the unobserved sites of the system Γi, i ∈ s̄ from the observed
portion of the system Γi, i ∈ s. By the chain rule property of the entropy on ΓS , the following expression
is obtained:

H(ΓS) = H(Γs) + EΓS
{H(Γs̄|Γs)}. (7.3)

The maximisation of the information on the unsampled sites conditioned to the samples is achieved by
minimizing the term EΓS

{H(Γs|Γs̄)} in (7.3), but as H(ΓS) is fixed and assuming it is finite, the problem
reduces to the maximization of H(Γs), i.e., to select the samples s∗ = arg maxs⊆S H(Γs) with the highest
observed uncertainty.

The maximum entropy sampling criterion is philosophically different from other classical optimal de-
sign approaches. The proposed criterion wishes to absorb the maximum amount of variability into the
sample so that conditionally on the sample, the unsampled population has minimum variability. In
particular, the maximum entropy sampling criterion is different from the classical Bayesian optimal ex-
perimental design, where the figure of merit is the minimization of the posterior entropy. However,
[Sebastiani and Wynn, 2000] showed that both problems are dual if an additional condition is satisfied.
Following the Bayesian experimental framework presented in Section 3.1, let y ∈ Y the observations of a
system, θ ∈ Θ its parameters and ξ ∈ Ξ an experiment. By choosing Γs ≡ Y |ξ and Γs̄ ≡ Θ in (7.3), the
following expression is obtained:

H(Y,Θ|ξ) = H(Y |ξ) + EY {H(Θ|Y, ξ)}. (7.4)

If H(Y,Θ|ξ) is fixed in the sense that is independent of any experiment ξ ∈ Ξ and all the terms in (7.4)
are finite, the maximization of EY {H(θ|Y, ξ)} is achieved by minimizing H(Y |ξ). In other words, the
maximum entropy sampling criteria is equivalent to the Bayesian optimal design criterion if the joint
distribution of (Y,Θ) is not functionally dependent on the experiment ξ. By interchanging the role of Y
and Θ in (7.4), it can be showed that if EΘ{H(Y |θ, ξ)} does not depend on the design of t, then the term
H(Y,Θ|ξ) neither. This reformulation is an easy way to check the assumption that allows the duality
between the maximum entropy sampling criterion and the Bayesian optimal experiment design.

It is relevant to mention that the maximum entropy sampling criterion is widely used by the machine
learning community for supervised learning tasks, under the name of Uncertainty Sampling [Lewis and Catlett, 1994,
Zhu et al., 2008, Yang et al., 2015, Sharma and Bilgic, 2017, Nguyen et al., 2019].

7.2 Application to Hierarchical Stellar Systems

The present section introduces the methodology for determining a probability distribution of the optimal
measurement time of a stellar system based on the maximum entropy sampling criterion.
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Following the classical Bayesian experimental framework: Let y ∈ Y and θ ∈ Θ be the observations and
parameters of a system, respectively. The Bayesian optimal design problem is to find the experiment ξ ∈ Ξ
that minimizes the average entropy of the posterior distribution EY {H(Θ|Y, ξ)}. The same framework can
be used for determining the optimal measurement time in a hierarchical stellar system. Considering Y is
the observation space, Θ is the orbital parameters space (that characterize the stellar system), and ξ is
the time of measurement of the system (denoted as t hereinafter). Thereby, the optimal Bayesian design
problem is to find the time of measurement t from a finite set S that maximizes the information of the
system orbital parameters, or equivalently, that minimizes the posterior entropy EY {H(Θ|Y, t)}.

According to the Bayesian modeling of binary stellar systems introduced in Section 5, it is assumed that
each of the observations distributes as a Gaussian with its mean determined by the Keplerian orbital model
at a determined time t and its variance determined by the observation error. Therefore, let Y = (Y1, ..., Yn)
be a finite set of new observations of the stellar system that satisfies that:

Yi|(θ, ti) = f(θ, ti) + εi, (7.5)

where εi ∼ N (0, σ2
i ), σi is the observation error and f(·) is the function that maps the times ti into the

observation space Yi given the stellar system orbital parameters θ (according to the ephemerides formuale
of the orbital Keplerian model).

It is additionally assumed that the random variables ε are independent of f(θ, ti) and σi = σ, ∀i ∈
[1, ..., n]. Then, it is satisfied that H(Y |θ, t) = H(ε), i.e., H(Y |θ, t) is functionally independent from the
choice of the measurement time t. The fulfillment of the additional hypothesis is a sufficient condition
to prove the duality between the optimal Bayesian design problem and the maximum entropy sampling
criterion [Sebastiani and Wynn, 2000] as discussed in Section 7.1. Therefore, using the equation (7.4)
and noting that the assumption makes the term H(Y,Θ|t) fixed for any t, the time of measurement that
maximizes the information of the orbital parameters of the hierarchical stellar system is the time t∗ ∈ S
that maximizes the entropy in the observation space:

t∗ = arg max
t∈S

H(Y |t). (7.6)

As each orbital parameter configuration θ ∈ Θ induces orbits in the observational space with different
periods P , a suitable selection of the set of measurement times S must be defined to ensure a full exploration
of each system θ. In that manner, it is proposed to determine the optimal normalized time of measurement
or phase τ = (t − t0)/P using the maximum entropy sampling criteria on the first period of each orbital
parameter configuration θ, instead of applying it directly on the original time of measurement t. t0 is a
fixed initial time of evaluation. Therefore, the problem reduces to:

τ∗ = arg min
τ∈[0,1]

EY {H(Θ|Y, τ)} = arg max
τ∈[0,1]

H(Y |τ), (7.7)

which induces a probability distribution on the time of optimal measurement t∗:

t∗ = τ∗P + t0. (7.8)

The proposed time of measurement methodology based on the maximum entropy sampling criterion
(instead of using the classical Bayesian optimal design approach) has three main advantages in the context
of hierarchical stellar systems:

• The maximum entropy sampling criterion reduces the optimal measurement time estimation problem
to compute the entropy in the observation space Y . This computation is at most 4-dimensional
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(considering the 2-dimensional positional observations and the radial velocities observation of both
the main and the companion object of the binary system) instead of computing the entropy in the
orbital parameters space Θ that has tens of dimensions. This last space increases with the system
multiplicity in hierarchical stellar systems. This simplification reduces the computational cost of
the estimation of the entropy drastically.

• The reduction of the computational cost of the entropy estimation also allows to perform the algo-
rithm in a dense array of normalized times τ ∈ [0, 1], allowing to determine the normalized time of
maximum entropy in the observational space τ∗ with high precision.

• The classical Bayesian optimal design approach requires estimating the posterior distribution incor-
porating virtual sampĺes at each of the evaluated times τi, i ∈ [0, 1]. This approach limits the set of
times to evaluate to a few due to the high computational costs involved in the Bayesian inference
procedure. In contrast, the maximum entropy sampling approach requires only one computation of
the posterior distribution to compute the entropy of the projected posterior distribution into the
observation space Y given the available observations D of the stellar system.

7.3 Experiments

The proposed methodology for determining the optimal measurement time based on the maximum entropy
sampling criterion is performed on three binary systems studied in the previous chapters: the double-
lined visual spectroscopic binary system YSC132AaAb, the single-lined visual spectroscopic binary system
HIP99675, and the visual triple system LHS1070.

The entropy of the projection in the positional observation space (the orbit space X,Y ) of 1000 ran-
domly selected samples θ of the posterior distribution p(Θ|D) given the set of available observations of
the stellar system D, is computed along the valid range of the normalized time τ ∈ [0, 1], using the
k-nearest neighbour entropy estimation method [Kozachenko and Leonenko, 1987]. Five representative
normalized times τi, i ∈ [1, 2, 3, 4, 5] of the curve of estimated entropies of the observational space are
selected, comparing the entropy values H(X,Y |D, τi) with the observed projection of the posterior dis-
tribution at those times. To verify the duality between the maximum entropy sampling criterion and
the Bayesian optimal design problem, new Bayesian inferences are performed to estimate the posterior
distributions p(Θ|D ∪ {dτi}), i ∈ [1, 2, 3, 4, 5], with dτi ∼ N (f(θMAP , τi), σ

2) a virtual observation deter-
mined by the Keplerian model on the times τi with fixed variance σ2 for each of the times, considering
the maximum a posteriori estimate of the posterior distribution θMAP . The virtual posterior distributions
and its projection on the observation space are compared, and the estimated entropies of the virtual pos-
terior distributions H(Θ|D ∪ {dτi}) are compared with the respective entropies of the observation space
H(X,Y |D, τi). Finally, the normalized time of highest observation entropy is selected to generate the
posterior distribution of the time of optimal measurement t∗.

7.3.1 YSC132AaAb
The computed posterior distribution in the observation space of the system YSC132AaAb and the corre-
sponding estimated entropy curve H(X,Y |D, τ) along the normalized times τ ∈ [0, 1], with t0 equals to
latest available observation in D, are presented in Figure 7.1.

The estimated entropy curve shows two local maximum values with an accentuated local minimum in
between and two minimum values at the beginning τ = 0 and the end τ = 1 of the curve. The behavior of
the estimated entropy curve coincides with the observed dispersion of the posterior distribution projected
in the observation space, where the times of minimum entropy are the corresponding zones in the orbit

67



populated with high precision observations (τ = 0), presenting a narrow band of the projected orbits.
The entropy increase with τ as well as the dispersion of the projected orbits as no precise observations
are presented in that zone of the orbital space (τ1). This behavior persists until reaching the first local
maximum of the entropy, where the dispersion of the projected orbits is highest (τ2) due to the scarce and
low precise observations in that zone of the orbit. The entropy starts to decrease as well as the dispersion
of the projected orbits until reaching a local minimum value (τ3). It is interesting to note that the
projected orbits become narrower (with lower uncertainty) even in the absence of positional observations
near that zone, attributed to underlying uncertainty reduction of some of the orbital parameters through
the observations in other zones of the orbit. The posterior entropy in that zone (τ3) is higher than the
beginning of the curve (τ = 0). However, the projected orbit is narrower. This last phenomenon is
attributed to the fact that the uncertainty of the projected orbit (τ3) is not reflected in the width of
the orbit but along the orbit, due to the uncertainty on the period P of the system. The estimated
entropy curves increase again until reaching a second local maximum (τ4), which is slightly higher than
the previous local maximum (τ2). The projected orbits reach the higher dispersion due to the total
absence of observations in that orbital zone. Finally, the entropy curve starts to decrease at the end of
the observational period (τ = 1) reaching a similar minimum as the beginning of the curve (τ = 0) due to
the periodicity of the orbit.

Figure 7.1: Optimal measurement time analysis on the stellar system YSC132AaAb. Left: Esti-
mated entropy curve of the observation space H(X, Y |D, τ) and estimated posterior distribution
entropiesH(Θ|D∪{dτi}) incorporating different virtual observations dτi at five representative times
τi, i ∈ [1, 2, 3, 4, 5]. Middle: Projection of the posterior distribution p(X, Y |D) along τ ∈ [0, 1],
highlighting the projection at the representative times τi, i ∈ [1, 2, 3, 4, 5]. Right: Optimal time
measurement distribution induced by the normalized time of highest entropy in the observation
space τ ∗ = arg maxτ∈[0,1]H(X, Y |D, τ).

The posterior distribution is updated through the incorporation of virtual observations dτi to the set of
available observations D. Each virtual observation is generated by means of the projection of the maximum
a posterior estimate of the posterior distribution θMAP in the observation space at the normalized times τi,
with a fixed identically distributed stochastic uncertainty εi ∼ N (0, σ2), i.e., considering that the virtual
observations distributes as dτi ∼ N (f(θMAP , τi), σ

2), with f(·) a deterministic mapping determined by the
Keplerian orbital model. The marginal updated posterior distribution by the incorporation of each sample
dτi are presented in Figure 7.2 and the corresponding projections on the observation space are presented
in Figure 7.3. The comparison of the marginal distributions shows different magnitudes of the orbital
parameters uncertainty, where the virtual observations dτi that reaches the highest uncertainty reduction
in orbital parameters space are the observation in which the corresponding entropy H(X,Y |D, τi) is higher
and viceversa. This (opposite) behavior is clearly reflected in the comparison between the estimated values
ofH(X,Y |D, τi) andH(Θ|D∪{dτi}) presented in the middle panel of the Figure 7.1, confirming the duality
between the maximum entropy sampling criterion and the Bayesian optimal design problem. The projected
updated posterior distributions show a considerable uncertainty reduction when the virtual measurement
is taken in the highest uncertainty zones. On the other hand, the uncertainty reduction is negligible
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when the virtual measurement was taken in the zones of lower uncertainty, satisfying the objective of the
maximum entropy sampling principle.

Figure 7.2: Marginal posterior distributions of the stellar system YSC132AaAb incorporating the
virtual observations dτi ∼ N (f(θMAP , τi), σ

2), with σ2 fixed to the minimum variance of the system
available observations D.

Figure 7.3: Projection of the posterior distribution of the stellar system YSC132AaAb in the
observation space.

Finally, the distribution of the optimal times of measurement t∗ at the normalized time of maximum
uncertainty of the observation space (τ4) is presented in the right panel of Figure 7.1. The estimated
distribution has a clear defined Gaussian shape with extremely low dispersion. This result reflects that
the period P of the stellar system is well determined due to the presence of abundant and precise radial
velocities observations.

7.3.2 HIP99675
The computed posterior distribution in the observation space of the system HIP99675 and the correspond-
ing estimated entropy curve H(X,Y |D, τ) along the normalized times τ ∈ [0, 1], with t0 equals to latest
available observation in D, are presented in Figure 7.4.

The estimated entropy curve has a symmetrical behavior around the point of minimum entropy (τ3),
where the entropy increases as far from that point (τ < τ3 and τ > τ3) in a wavy manner, presenting
multiple local minimums and maximums but permanently preserving it average increasing behavior. The
behavior of the estimated entropy curve apparently does not relate to the observed posterior orbits that
form a diffuse cloud of lines with no clearly defined regions due to the scarce and low precise available
positional observations. However, the projection of the posterior distribution at the five normalized times
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selected from the estimated entropy curve τi, i ∈ [1, 2, 3, 4, 5] shows that the uncertainties are perpendicu-
larly distributed with respect to the well-defined orbits, and the overlap of these orbits forms the previously
not interpretable diffuse cloud. The zone in the orbit space with the lowest entropy (τ3) coincides with
most of the available positional observations being near that zone. In contrast, the opposite zone in the
orbit presents the highest entropy (τ1, τ5). The wavy behavior of the entropy curve is reflected in the shape
of the projection of the posterior distribution in the orbit space, where local minimums correspond to long
but narrower projections (τ4) and local maximums corresponds to slightly shorter but wider projections
(τ2).

Figure 7.4: Optimal measurement time analysis on the stellar system HIP99675. Left: Estimated
entropy curve of the observation space H(X, Y |D, τ) and estimated posterior distribution en-
tropies H(Θ|D ∪ {dτi}) incorporating different virtual observations dτi at five representative times
τi, i ∈ [1, 2, 3, 4, 5]. Middle: Projection of the posterior distribution p(X, Y |D) along τ ∈ [0, 1],
highlighting the projection at the representative times τi, i ∈ [1, 2, 3, 4, 5]. Right: Optimal time
measurement distribution induced by the normalized time of highest entropy in the observation
space τ ∗ = arg maxτ∈[0,1] H(X, Y |D, τ).

Then, the posterior distribution is updated through the incorporation of virtual observations dτi to
the set of available observations D. Each virtual observation is generated by means of the projection
of the maximum a posterior estimate of the posterior distribution θMAP in the observation space at the
normalized times τi, with a fixed identically distributed stochastic uncertainty εi ∼ N (0, σ2), i.e., con-
sidering that the virtual observations distributes as dτi ∼ N (f(θMAP , τi), σ

2), with f(·) a deterministic
mapping determined by the Keplerian orbital model. The marginal (updated) posterior distributions ob-
tained by incorporating each sample dτi are presented in Figure 7.5 an the corresponding projections on
the observation space are presented in Figure 7.6. The posterior distribution updated with the virtual
observation generated through the normalized time of lowest entropy (dτ3) presents an uncertainty reduc-
tion on some of the marginal distributions of the parameters (a,Ω), but a considerable increase of the
uncertainty in other orbital parameters (i). The same trade-off between the uncertainty reduction and
increase between some of the orbital parameters is observed in each case, inducing different projected
orbits of the updated posterior distributions. We observe that the virtual observations incorporated re-
duce the projected uncertainty in zones of the orbit space near the measurements. For example, the dτ3
observations highly reduce the uncertainty on the length of the orbit, coinciding with a reduction of the
uncertainty of the updated marginal posterior distributions of a and Ω. However, this virtual observation
does not provide any information about the inclination of the orbit, expressed by a high increase on the
updated marginal posterior distributions of i. The computed entropy of the updated posterior distribution
H(Θ|D ∪ {dτi}) takes into account the mentioned trade-off between the increase and reduction of uncer-
tainty of the posterior distribution along its different dimensions. Indeed, the comparison between the
entropies H(X,Y |D, τi) and H(Θ|D ∪ {dτi}) presented in the middle panel of the Figure 7.4 shows that
the duality between the maximum entropy sampling criterion and the Bayesian optimal design problem is
preserved, as expected. However, an unexpected result that disagrees with the dual principle is observed
in the pair (τ3, τ4), where H(Θ|D ∪ {dτ3}) should been greater than H(Θ|D ∪ {dτ4}), since H(X,Y |D, τ3)
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is lower than H(X,Y |D, τ4). This result is attributed to the estimation error of H(Θ|D∪{dτi}) due to the
high dimension of the parameter space Θ. Nevertheless, the observed discrepancy is minimal in magnitude,
and all the other normalized observation times chosen satisfy the aforementioned duality principle.

Figure 7.5: Marginal posterior distributions of the stellar system HIP99675 incorporating the
virtual observations dτi ∼ N (f(θMAP , τi), σ

2), with σ2 fixed to 0.1 times the minimum variance of
the system available observations D.

The distribution of the optimal times of measurement t∗ at the normalized time of maximum uncertainty
of the observation space (τ1) is presented in the right panel of Figure 7.4. The estimated distribution has
a clearly defined Gaussian shape with an extremely low dispersion, which reflects that the period P of the
stellar system is well determined due to the presence of abundant and precise radial velocities observations
as in the system studied previously.

Figure 7.6: Projection of the posterior distribution of the stellar system HIP99675 in the observa-
tion space.

7.3.3 LHS1070
The computed posterior distribution in the observation space of the system HIP99675 and the corre-
sponding estimated entropy curve H(X,Y |D, τ) along the normalized times τ ∈ [0, 1], with t0 equals
to latest available observation in D, are presented in Figure 7.7. Five representative normalized times
τi, i ∈ [1, 2, 3, 4, 5] of the estimated entropy curve were selected for the analysis.

The estimated entropy curve presents a global minimum at the beginning τ = 0, which coincides with
the zone in the orbit populated with abundant and precise positional observations. The entropy curve
increases steeply from the positional observations in the orbit space until reaching a maximum value at τ3.
The rest of the curve presents a constant value with a slight decrease in τ4. The entropy curve presents
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a clearly defined wavy behavior along all the normalized times τ evaluated. This behavior coincides with
the lobes of the projected orbits in the observation space. The projection of the posterior distribution in
the orbit space at the normalized times τi, i ∈ [1, 2, 3, 4, 5] shows that the posterior distributions increase
its dispersion in zones far from the available observations, forming wavy patterns. This pattern can be
attributed to the shift increase between the projected orbits due to the high uncertainty on the period P
orbital parameter of the purely astrometric hierarchical system (without radial velocities observations).

Figure 7.7: Optimal measurement time analysis on the stellar system LHS1070. Left: Estimated
entropy curve of the observation space H(X, Y |D, τ) and estimated posterior distribution en-
tropies H(Θ|D ∪ {dτi}) incorporating different virtual observations dτi at five representative times
τi, i ∈ [1, 2, 3, 4, 5]. Middle: Projection of the posterior distribution p(X, Y |D) along τ ∈ [0, 1],
highlighting the projection at the representative times τi, i ∈ [1, 2, 3, 4, 5]. Right: Optimal time
measurement distribution induced by the normalized time of highest entropy in the observation
space τ ∗ = arg maxτ∈[0,1] H(X, Y |D, τ).

The posterior distribution is updated through the incorporation of virtual observations dτi to the set of
original observations D. Each virtual observation is generated utilizing the maximum a posteriori estimate
of the posterior distribution, i.e., θMAP , in the observation space at the normalized times τi, with a fixed
identically distributed stochastic uncertainty εi ∼ N (0, σ2). More precisely, we consider that the virtual
observations distributes as dτi ∼ N (f(θMAP , τi), σ

2), with f(·) a deterministic mapping determined by
the Keplerian orbital model. The updated posterior distribution (by incorporating the samples dτi) is
presented in Figure 7.8. The corresponding projections on the observation space are presented in Figure
7.9. The comparison of these marginal distributions shows different magnitudes of uncertainty of the
orbital parameters of the outer orbit AB, where the virtual observations dτi that reaches the highest
uncertainty reduction in the orbital parameters space are the observations in which the corresponding
entropy H(X,Y |D, τi) is the highest and viceversa. This opposite behavior is clearly reflected in the
comparison between the estimated values of H(X,Y |D, τi) and H(Θ|D ∪ {dτi}) presented in the middle
panel of the Figure 7.1, which verifies the duality between the maximum entropy sampling criterion and
the Bayesian optimal design problem. The updated posterior distributions show a considerable uncertainty
reduction in the zones where the virtual measurement was taken in the zones of highest uncertainty. On
the other hand, the uncertainty reduction is negligible when the virtual measurement was taken in the
zones of lower uncertainty, satisfying the objective of the maximum entropy sampling principle.

The distribution of the optimal times of measurement t∗ at the normalized time of maximum uncertainty
of the observation space (τ3) is presented in the right panel of the Figure 7.7. Unlike the previously studied
cases, the estimated distribution presents a high dispersion, which incorporates the high uncertainty on
the period P of the outer system AB due to the low coverage of positional observation in the orbit space
and the absence of radial velocities observations.
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Figure 7.8: Marginal posterior distributions of the stellar system LHS1070 incorporating the virtual
observations dτi ∼ N (f(θMAP , τi), σ

2), with σ2 fixed to the minimum variance of the system
available observations D.

Figure 7.9: Projection of the posterior distribution of the stellar system LHS1070 in the observation
space.

73



Chapter 8

Conclusions and Future Work

The proposed Bayesian methodology for the inference of the orbital parameters in binary and hierarchical
stellar systems allows providing a computationally efficient, robust, and precise estimation of the corre-
sponding joint posterior distribution. This inference is implemented by the No-U-Turn sampler Markov
chain Monte Carlo algorithm, which allows the incorporation of prior information of the stellar system
to constrain the inference in scenarios with inaccurate or missing data. The flexibility of this sampling
scheme to add prior information was beneficial for the estimation of the individual masses in single-lined
visual-spectroscopic binaries and the estimation of hierarchical stellar systems of any multiplicity and
architecture.

An exhaustive experimental analysis was considered for the validation of the proposed methodology in
single-lined visual-spectroscopic binaries. We study the quality of the obtained inference by comparing
the estimated posterior distribution of well-determined double-lined visual-spectroscopic binaries with its
single-lined visual spectroscopic counterpart by omitting the radial velocities observations of the compan-
ion object. Our results show a negligible difference between the estimated posterior distributions of the
orbital parameters (and their uncertainties) compared to the benchmark case in which the radial velocities
of both components are considered. The incorporation of prior information of the system (the parallax
and the primary object mass) to estimate its individual masses was also studied. The empirical results
show that the posterior distribution of the mass ratio of the system, and hence its individual masses,
can be estimated with good precision. The incorporation of prior distributions makes those parameters
identifiable, where the obtained estimations —position, dispersion and shape of the marginal posterior
distribution— strongly depend on the prior chosen. This prior knowledge also has an influence on the
estimated posterior distribution of the other orbital parameters. The impact of incorporating priors on
the inference of previous-identifiable orbital parameters (that are already identifiable without the incor-
poration of the priors) directly depends on the abundance, precision, and orbital coverage of the available
observations. In particular, it is observed that if the system is precisely determined, the impact of the
prior on the estimation of those set of parameters is negligible.

On the specifics, the numerical results show that the lowest estimation error (from the average MAP
of all the systems analyzed) on the system’s mass ratio, compared to the full-information scenario (with
both radial velocities observations), was achieved by the mixed prior case that incorporates a parallax
and a primary object mass priors simultaneously (4.92%) and the highest error was obtained by the
incorporation of a prior on only the primary object mass (7.44%), achieving a percentage error lower than
8%. However, it is shown that the greatest similitude of the marginal posterior distribution to the full-
information scenario —in the KL-divergence sense— was achieved by incorporating a prior on the system
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parallax alone. However, the lowest similitude was obtained by incorporating a prior on the primary
object mass alone, which is attributed to the fact that the parallax prior information is more recent and
precise than the primary object mass prior. The incorporation of both priors was even more beneficial to
the accuracy of the MAP estimates where, as more information is provided, a better estimation can be
obtained. The differences between the estimated posterior distributions in all the studied cases were also
analyzed in the corresponding observations space, providing a better understanding of the effect of the
different sources of information on the shape and uncertainty of the orbit and radial velocity curves of the
stellar systems.

An analogous experimental setting was developed for the evaluation of the Bayesian inference in hier-
archical stellar systems. Here, the flexibility for incorporating prior information of the system was crucial
for the identifiability of the orbital parameters. The inherent complexity, diversity, and lack of informa-
tion sources make this estimation task very challenging. As the phenomenological interaction between
the orbital parameters of the hierarchical stellar system is much more complex than the binary case, the
obtained posterior distributions present complex and diverse shapes. This is also observed on the observa-
tions space, where a wide variety of orbits of diverse shapes, sizes, and periods are probable, showing the
relevance of the proposed Bayesian tool for a deeper analysis of those types of stellar systems, in contrast
to the deterministic estimation of the orbital parameters widely used by the astronomical community.

A direct application of the estimated posterior distribution of the orbital parameters of the stellar
systems was also explored: the determination of optimal time of observation, i.e., the time that mostly
reduces the uncertainty of the orbital parameters that characterize the stellar system. The proposed
Bayesian methodology allows to provide a temporal characterization of the uncertainty of the system.
Then, the determination of the time ranges that provide the highest and lowest information about the
system through the incorporation of a new observation can be addressed and provide a probability dis-
tribution of the optimal time of measurement. The theoretical foundations and practical advantages of
the proposed methodology were extensively discussed in this thesis, showing that the method, based on
the maximum entropy sampling principle, effectively solves the Bayesian optimal design problem, as well
as showing its computational efficiency compared to a naive approach to solve the problem, allowing to
compute an information gain curve in a continuous range of time that effectively characterizes the vari-
ability of the system. The proposed framework was validated in three different stellar systems, showing
the suitability and capabilities of the method for the determination of the optimal time of measurement.
We also show that the generated information gain curve of the stellar systems allows performing a deeper
analysis on the uncertainty of the orbits and radial velocity curves of binary systems.

The present work addresses the orbital parameters estimation of binary and hierarchical stellar systems
through a Bayesian perspective, emphasizing the importance of providing a complete posterior distribution
characterization of the orbital parameters. This approach not only allows to provide an uncertainty quan-
tification (as many classical optimization-based methods roughly provide), but it also allows to visualize
the uncertainty of the system in the observation space. This last information is a relevant input for other
statistical methods, such as the proposed optimal measurement time methodology. However, many other
statistical-based applications of interest for the astronomical community can also be developed. In this
context, a possible future work could be the formulation of a statistical hypothesis test for determining
which object of a binary system is effectively the main object and which is the companion object, which
is roughly determined by the astronomer without further foundation, as well as to explore other novel
statistical applications that makes use of the posterior distribution of the orbital parameters of binary
and hierarchical stellar systems. Another interesting future work could be the extension of the Bayesian
methodology developed for hierarchical stellar systems to triple stellar systems without imposing any sim-
plification of its dynamics, working directly on the solution of the 3-body problem. This approach could
be helpful in the study of the multiple system’s stability under the Bayesian approach.
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Appendix A

Implementation Details

A.1 Gradient Computation

The implementation of the proposed Bayesian inference methodology based on the No-U-Turn sampler
algorithm requires computing the gradient of the posterior function, which can be analytically derived
from the Keplerian model formulae presented in Section 2.1 by taking the partial derivatives relative to
each orbital parameter that characterizes the binary/hierarchical stellar system. A special consideration
must be taken with the partial derivatives of the eccentric anomaly E, since it is not analytically calculated
but numerically approximated. The non-zero partial derivatives of the eccentric anomaly can be expressed
as a function of the variable itself as follows:

∂E

∂e
=

sin(E)

1− e cos(E)
,

∂E

∂T
= −2π

P
· 1

1− e cos(E)
,

∂E

∂P
= −2π(t− T )

P 2
· 1

1− e cos(E)
,

(A.1)

with the value of E previously approximated by any numerical method (such as the Newton-Raphson
method [Ypma, 1995]).

A.2 Programming Language and Code

Many probabilistic programming languages already implement the No-U-Turn sampler algorithm [Tran et al., 2016,
Salvatier et al., 2016, Abadi et al., 2016, Bingham et al., 2019], but the probabilistic programming lan-
guage used in the current work for the implementation of the proposed Bayesian inference methodology in
binary and hierarchical stellar systems was the Stan language [Carpenter et al., 2017], since implements
the No-U-Turn sampler algorithm efficiently through automatic differentiation, only requiring to specify
the probabilistic model on which the inference it is made.

The implementation of the probabilistic models in Stan language of the double-lined visual-spectroscopic
binary system, single-lined visual-spectroscopic binary system and triple hierarchical system used in the
current work are presented respectively in Listing A.1, Listing A.2 and Listing A.3, while the Kepler
equation implementation within its analytical partial derivatives are presented in Listing A.4.
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f unc t i on s {
r e a l k ep l e r ( r e a l M, r e a l e ) ;
vec tor [ ] o r b i t ( i n t N, vec tor t , r e a l T, r e a l P, r e a l e , r e a l a , r e a l w, r e a l Omega , r e a l i ) {

// Var iab l e s d e c l a r a t i on
r e a l M; r e a l A; r e a l B; r e a l F ; r e a l G;
vec tor [N] E; vector [N] x ; vec tor [N] y ; vec tor [N] pos [ 2 ] ;
// I t e r a t e over epochs
f o r ( j in 1 :N) {

// Mean anomaly
M = 2 ∗ pi ( ) ∗ ( t [ j ] − T) / P;
// Eccent r i c anomaly
E[ j ] = kep l e r (M, e ) ;

}
// Aux i l i a ry normal ized coo rd ina t e s
x = cos (E) − e ;
y = s in (E) ∗ sq r t (1 − e ^2) ;
// Thiele−Innes constants
A = a ∗ ( cos (w) ∗ cos (Omega) − s i n (w) ∗ s i n (Omega) ∗ cos ( i ) ) ;
B = a ∗ ( cos (w) ∗ s i n (Omega) + s in (w) ∗ cos (Omega) ∗ cos ( i ) ) ;
F = a ∗ (− s i n (w) ∗ cos (Omega) − cos (w) ∗ s i n (Omega) ∗ cos ( i ) ) ;
G = a ∗ (− s i n (w) ∗ s i n (Omega) + cos (w) ∗ cos (Omega) ∗ cos ( i ) ) ;
// Apparent o rb i t
pos [ 1 ] = A ∗ x + F ∗ y ;
pos [ 2 ] = B ∗ x + G ∗ y ;
re turn pos ;

}
vec tor r ad i a l_ve l o c i t y ( i n t N, vec tor t , r e a l T, r e a l P, r e a l e , r e a l a , r e a l w, r e a l i , r e a l V0 , r e a l plx ,

r e a l q , i n t primary ) {
// Var iab l e s d e c l a r a t i on
r e a l M; r e a l K; vec tor [N] E; vec tor [N] nu ; vec tor [N] V;
r e a l convCoeff = 149597870.660 / (365 .25 ∗ 86400 . 0 ) ; // [AU] to [ a r c s e c ]
// I t e r a t e over epochs
f o r ( j in 1 :N) {

// Mean anomaly
M = 2 ∗ pi ( ) ∗ ( t [ j ] − T) / P;
// Eccent r i c anomaly
E[ j ] = kep l e r (M, e ) ;

}
// True anomaly
nu = 2 ∗ atan ( sq r t ( (1 + e ) / (1 − e ) ) ∗ tan (E / 2 ) ) ;
// Primary ob j e c t r a d i a l v e l o c i t y
i f ( primary ) {

// Amplitude
K = 2 ∗ pi ( ) ∗ ( a / plx ) ∗ ( q / (1+q ) ) ∗ convCoef f ∗ s i n ( i ) / (P ∗ sq r t (1 − e ^2) ) ;
// Radial v e l o c i t y
V = V0 + K ∗ ( cos (w + nu) + e ∗ cos (w) ) ;

}
// Companion ob j e c t r a d i a l v e l o c i t y
e l s e {

// Amplitude
K = 2 ∗ pi ( ) ∗ ( a / plx ) ∗ (1 / (1+q ) ) ∗ convCoef f ∗ s i n ( i ) / (P ∗ sq r t (1 − e ^2) ) ;
// Radial v e l o c i t y
V = V0 − K ∗ ( cos (w + nu) + e ∗ cos (w) ) ;

}
re turn V;

}
}
data {

int<lower=0> N; // number o f samples
int<lower=0> N1 ; // number o f samples
int<lower=0> N2 ; // number o f samples
vec tor [N] t_as ; // epochs ( years )
vec tor [N1 ] t_rv1 ; // rv1 epochs ( years )
vec tor [N2 ] t_rv2 ; // rv2 epochs ( years )
vec tor [N] x_obs ; // x coord inate obse rvat ion
vector [N] y_obs ; // y coord inate obse rvat ion
vector [N] pos_err ; // obse rvat ion un c e r t a i n t i e s
vec tor [N1 ] rv1_obs ; // rv1 obse rva t i on s
vec tor [N1 ] rv1_err ; // rv1 obse rvat ion un c e r t a i n t i e s
vec tor [N2 ] rv2_obs ; // rv2 obse rva t i on s
vec tor [N2 ] rv2_err ; // rv2 obse rvat ion un c e r t a i n t i e s

}
transformed data {

r e a l min_t = fmin (min ( t_as ) , fmin (min ( t_rv1 ) , min ( t_rv2 ) ) ) ; // f i r s t epoch
vector [N] t0 = t_as − min_t ; // normal ized rv1 epochs
vector [N1 ] t10 = t_rv1 − min_t ; // normal ized rv1 epochs
vector [N2 ] t20 = t_rv2 − min_t ; // normal ized rv2 epochs

}
parameters {

rea l <lower=0, upper=1> T0 ; // normal ized time o f p e r i a s t r on passage (T − t0 ) / P
r e a l log_P ; // ln ( per iod )
rea l <lower=0, upper=1> e ; // e c c e n t r i c i t y
rea l <lower=0> a ; // semimajor ax i s ( secods o f arc )
r ea l <lower=0, upper=2∗pi ()> w; // argument o f p e r i a p s i s ( rad )
rea l <lower=0, upper=2∗pi ()> Omega ; // l ong i tude o f the ascending node ( rad )
rea l <lower=0, upper=pi ()> i ; // i n c l i n a t i o n ( rad )
r e a l V0 ; // v e l o c i t y o f c ente r o f mass (km/ s )
rea l <lower=0> plx ; // pa ra l l ax ( seconds o f arc )
r ea l <lower=0, upper=1> q ; // mass r a t i o

}
transformed parameters {

r e a l P = exp ( log_P ) ; // per iod
}
model {

// Var iab l e s d e c l a r a t i on
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r e a l T; vec tor [N] pos [ 2 ] ; vec tor [N1 ] V1 ; vec tor [N2 ] V2 ;
// Period
T = T0 ∗ P;
// Orbit
pos = o rb i t (N, t0 , T, P, e , a , w, Omega , i ) ;
x_obs ~ normal ( pos [ 1 ] , pos_err ) ;
y_obs ~ normal ( pos [ 2 ] , pos_err ) ;
// Primary ob j e c t r a d i a l v e l o c i t y
V1 = rad i a l_ve l o c i t y (N1 , t10 , T, P, e , a , w, i , V0 , plx , q , 1 ) ;
rv1_obs ~ normal (V1 , rv1_err ) ;
// Companion ob j e c t r a d i a l v e l o c i t y
V2 = rad i a l_ve l o c i t y (N2 , t20 , T, P, e , a , w, i , V0 , plx , q , 0 ) ;
rv2_obs ~ normal (V2 , rv2_err ) ;

}
generated quan t i t i e s {

r e a l w_deg = w ∗ 180 / pi ( ) ; // argument o f p e r i a p s i s ( degree s )
r e a l Omega_deg = Omega ∗ 180 / pi ( ) ; // l ong i tude o f the ascending node ( degrees )
r e a l i_deg = i ∗ 180 / pi ( ) ; // i n c l i n a t i o n ( degree s )
r e a l T = T0 ∗ P + min_t ; // unnormalized time o f p e r i a s t r on passage
r e a l m1 = (a / plx )^3 ∗ 1 / (P^2 ∗ (1 + q ) ) ; // primary ob j e c t mass ( s o l a r masses )
r e a l m2 = q ∗ m1; // companion ob j e c t mass ( s o l a r masses )
r e a l plx_mas = plx ∗ 1000 ; // pa ra l l ax ( mi l i s e conds o f arc )
r e a l alpha = (1 / plx ) ∗ q / (1 + q ) ;

}

Listing A.1: Double-lined visual-spectroscopic binary probabilistic model in Stan.

f unc t i on s {
r e a l k ep l e r ( r e a l M, r e a l e ) ;
vec tor [ ] o r b i t ( i n t N, vec tor t , r e a l T, r e a l P, r e a l e , r e a l a , r e a l w, r e a l Omega , r e a l i ) {

// Var iab l e s d e c l a r a t i on
r e a l M; r e a l A; r e a l B; r e a l F ; r e a l G;
vec tor [N] E; vector [N] x ; vec tor [N] y ; vec tor [N] pos [ 2 ] ;
// I t e r a t e over epochs
f o r ( j in 1 :N) {

// Mean anomaly
M = 2 ∗ pi ( ) ∗ ( t [ j ] − T) / P;
// Eccent r i c anomaly
E[ j ] = kep l e r (M, e ) ;

}
// Aux i l i a ry normal ized coo rd ina t e s
x = cos (E) − e ;
y = s in (E) ∗ sq r t (1 − e ^2) ;
// Thiele−Innes constants
A = a ∗ ( cos (w) ∗ cos (Omega) − s i n (w) ∗ s i n (Omega) ∗ cos ( i ) ) ;
B = a ∗ ( cos (w) ∗ s i n (Omega) + s in (w) ∗ cos (Omega) ∗ cos ( i ) ) ;
F = a ∗ (− s i n (w) ∗ cos (Omega) − cos (w) ∗ s i n (Omega) ∗ cos ( i ) ) ;
G = a ∗ (− s i n (w) ∗ s i n (Omega) + cos (w) ∗ cos (Omega) ∗ cos ( i ) ) ;
// Apparent o rb i t
pos [ 1 ] = A ∗ x + F ∗ y ;
pos [ 2 ] = B ∗ x + G ∗ y ;
re turn pos ;

}
vec tor r ad i a l_ve l o c i t y ( i n t N, vec tor t , r e a l T, r e a l P, r e a l e , r e a l a , r e a l w, r e a l i , r e a l V0 , r e a l alpha ) {

// Var iab l e s d e c l a r a t i on
r e a l M; r e a l K; vec tor [N] E; vec tor [N] nu ; vec tor [N] V;
r e a l convCoeff = 149597870.660 / (365 .25 ∗ 86400 . 0 ) ; // [AU/yr ] to [km/ s ]
// I t e r a t e over epochs
f o r ( j in 1 :N) {

// Mean anomaly
M = 2 ∗ pi ( ) ∗ ( t [ j ] − T) / P;
// Eccent r i c anomaly
E[ j ] = kep l e r (M, e ) ;

}
// True anomaly
nu = 2 ∗ atan ( sq r t ( (1 + e ) / (1 − e ) ) ∗ tan (E / 2 ) ) ;
// Amplitude
K = 2 ∗ pi ( ) ∗ a ∗ alpha ∗ convCoef f ∗ s i n ( i ) / (P ∗ sq r t (1 − e ^2) ) ;
// Radial v e l o c i t y
V = V0 + K ∗ ( cos (w + nu) + e ∗ cos (w) ) ;
re turn V;

}
}
data {

int<lower=0> N; // number o f samples
int<lower=0> N1 ; // number o f samples
vec tor [N] t_as ; // epochs ( years )
vec tor [N1 ] t_rv1 ; // epochs ( years )
vec tor [N] x_obs ; // x coord inate obse rvat ion
vector [N] y_obs ; // y coord inate obse rvat ion
vector [N] pos_err ; // obse rvat ion un c e r t a i n t i e s
vec tor [N1 ] rv1_obs ; // rv obse rva t i on s
vec tor [N1 ] rv1_err ; // rv obse rvat ion un c e r t a i n t i e s
r ea l <lower=0> plx_obs ; // pa ra l l ax obse rvat ion
rea l <lower=0> plx_err ; // pa ra l l ax obse rvat ion uncer ta in ty
rea l <lower=0> m1_obs ; // m1 obse rvat ion
rea l <lower=0> m1_err ; // m1 obse rvat ion uncer ta in ty

}
transformed data {

r e a l min_t = fmin (min ( t_as ) , min ( t_rv1 ) ) ; // f i r s t epoch
vector [N] t0 = t_as − min_t ; // normal ized as epochs
vector [N1 ] t10 = t_rv1 − min_t ; // normal ized rv1 epochs

}
parameters {
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r ea l <lower=0, upper=1> T0 ; // normal ized time o f p e r i a s t r on passage (T − t0 ) / P
r e a l log_P ; // ln ( per iod )
rea l <lower=0, upper=1> e ; // e c c e n t r i c i t y
rea l <lower=0> a ; // semimajor ax i s ( secods o f arc )
r ea l <lower=0, upper=2∗pi ()> w; // argument o f p e r i a p s i s ( rad )
rea l <lower=0, upper=2∗pi ()> Omega ; // l ong i tude o f the ascending node ( rad )
rea l <lower=0, upper=pi ()> i ; // i n c l i n a t i o n ( rad )
r e a l V0 ; // v e l o c i t y o f c ente r o f mass (km/ s )
rea l <lower=0, upper=1> q ; // mass r a t i o
rea l <lower=0, upper=200> alpha ; // −−−

}
transformed parameters {

r e a l P = exp ( log_P ) ; // per iod ( years )
r e a l plx = q / (1 + q) ∗ 1 / alpha ; // pa ra l l ax ( seconds o f arc )
r e a l m1 = (a / plx )^3 ∗ 1 / (P^2 ∗ (1 + q ) ) ; // primary ob j e c t mass ( s o l a r masses )

}
model {

// Var iab l e s d e c l a r a t i on
r e a l T; vec tor [N] pos [ 2 ] ; vec tor [N1 ] V1 ;
// Period
T = T0 ∗ P;
// Orbit
pos = o rb i t (N, t0 , T, P, e , a , w, Omega , i ) ;
x_obs ~ normal ( pos [ 1 ] , pos_err ) ;
y_obs ~ normal ( pos [ 2 ] , pos_err ) ;
// Primary ob j e c t r a d i a l v e l o c i t y
V1 = rad i a l_ve l o c i t y (N1 , t10 , T, P, e , a , w, i , V0 , alpha ) ;
rv1_obs ~ normal (V1 , rv1_err ) ;
// Para l l ax p r i o r
i f ( plx_obs > 0) {

plx_obs ~ normal ( plx , plx_err ) ;
}
// Primary ob j e c t mass p r i o r
i f (m1_obs > 0) {

m1_obs ~ normal (m1, m1_err ) ;
}

}
generated quan t i t i e s {

r e a l w_deg = w ∗ 180 / pi ( ) ; // argument o f p e r i a p s i s ( degrees )
r e a l Omega_deg = Omega ∗ 180 / pi ( ) ; // l ong i tude o f the ascending node ( degree s )
r e a l i_deg = i ∗ 180 / pi ( ) ; // i n c l i n a t i o n ( degree s )
r e a l T = T0 ∗ P + min_t ; // unnormalized time o f p e r i a s t r on passage
r e a l m2 = q ∗ m1; // companion ob j e c t mass ( s o l a r masses )
r e a l plx_mas = plx ∗ 1000 ; // pa ra l l ax ( mi l i s e conds o f arc )

}

Listing A.2: Single-lined visual-spectroscopic binary probabilistic model in Stan.

f unc t i on s {
r e a l k ep l e r ( r e a l M, r e a l e ) ;

vec tor [ ] o r b i t ( i n t N, vec tor t , r e a l T, r e a l P, r e a l e , r e a l a , r e a l w, r e a l Omega , r e a l i ) {
// Var iab l e s d e c l a r a t i on
r e a l M; r e a l A; r e a l B; r e a l F ; r e a l G;
vec tor [N] E; vector [N] x ; vec tor [N] y ; vec tor [N] pos [ 2 ] ;
// I t e r a t e over epochs
f o r ( j in 1 :N) {

// Mean anomaly
M = 2 ∗ pi ( ) ∗ ( t [ j ] − T) / P;
// Eccent r i c anomaly
E[ j ] = kep l e r (M, e ) ;

}
// Aux i l i a ry normal ized coo rd ina t e s
x = cos (E) − e ;
y = s in (E) ∗ sq r t (1 − e ^2) ;
// Thiele−Innes constants
A = a ∗ ( cos (w) ∗ cos (Omega) − s i n (w) ∗ s i n (Omega) ∗ cos ( i ) ) ;
B = a ∗ ( cos (w) ∗ s i n (Omega) + s in (w) ∗ cos (Omega) ∗ cos ( i ) ) ;
F = a ∗ (− s i n (w) ∗ cos (Omega) − cos (w) ∗ s i n (Omega) ∗ cos ( i ) ) ;
G = a ∗ (− s i n (w) ∗ s i n (Omega) + cos (w) ∗ cos (Omega) ∗ cos ( i ) ) ;
// Apparent o rb i t
pos [ 1 ] = A ∗ x + F ∗ y ;
pos [ 2 ] = B ∗ x + G ∗ y ;
re turn pos ;

}

vec tor r ad i a l_ve l o c i t y ( i n t N, vec tor t , r e a l T, r e a l P, r e a l e , r e a l a , r e a l w, r e a l i , r e a l V0 , r e a l plx ,
r e a l q , i n t primary ) {

// Var iab l e s d e c l a r a t i on
r e a l M; r e a l K; vec tor [N] E; vec tor [N] nu ; vec tor [N] V;
r e a l convCoeff = 149597870.660 / (365 .25 ∗ 86400 . 0 ) ; // [AU] to [ a r c s e c ]
// I t e r a t e over epochs
f o r ( j in 1 :N) {

// Mean anomaly
M = 2 ∗ pi ( ) ∗ ( t [ j ] − T) / P;
// Eccent r i c anomaly
E[ j ] = kep l e r (M, e ) ;

}
// True anomaly
nu = 2 ∗ atan ( sq r t ( (1 + e ) / (1 − e ) ) ∗ tan (E / 2 ) ) ;
// Primary ob j e c t r a d i a l v e l o c i t y
i f ( primary == 1) {

// Amplitude
K = 2 ∗ pi ( ) ∗ ( a / plx ) ∗ ( q / (1+q ) ) ∗ convCoef f ∗ s i n ( i ) / (P ∗ sq r t (1 − e ^2) ) ;
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// Radial v e l o c i t y
V = V0 + K ∗ ( cos (w + nu) + e ∗ cos (w) ) ;

}
// Companion ob j e c t r a d i a l v e l o c i t y
e l s e {

// Amplitude
K = 2 ∗ pi ( ) ∗ ( a / plx ) ∗ (1 / (1+q ) ) ∗ convCoef f ∗ s i n ( i ) / (P ∗ sq r t (1 − e ^2) ) ;
// Radial v e l o c i t y
V = V0 − K ∗ ( cos (w + nu) + e ∗ cos (w) ) ;

}
re turn V;

}
}
data {

int<lower=0> N_A; // number o f samples
int<lower=0> Nv_Aa; // number o f samples
int<lower=0> Nv_Ab; // number o f samples
int<lower=0> N_B; // number o f samples
int<lower=0> Nv_B; // number o f samples

vec tor [N_A] t_A; // epochs ( years )
vec tor [Nv_Aa] t_rv_Aa ; // epochs ( years )
vec tor [Nv_Ab] t_rv_Ab ; // epochs ( years )
vec tor [N_B] t_B ; // epochs ( years )
vec tor [Nv_B] t_rv_B ; // epochs ( years )

vec tor [N_A] x_obs_A ; // x coord inate obse rvat ion
vector [N_A] y_obs_A ; // y coord inate obse rvat ion
vector [N_A] pos_err_A ; // obse rvat ion un c e r t a i n t i e s
vec tor [N_B] x_obs_B ; // x coord inate obse rvat ion
vector [N_B] y_obs_B ; // y coord inate obse rvat ion
vector [N_B] pos_err_B ; // obse rvat ion un c e r t a i n t i e s

vec tor [Nv_Aa] rv_obs_Aa ; // rv obse rva t i on s
vec tor [Nv_Aa] rv_err_Aa ; // rv obse rva t i on s un c e r t a i n t i e s
vec tor [Nv_Ab] rv_obs_Ab ; // rv obse rvat ion
vector [Nv_Ab] rv_err_Ab ; // rv obse rvat ion un c e r t a i n t i e s
vec tor [Nv_B] rv_obs_B ; // rv obse rva t i on s
vec tor [Nv_B] rv_err_B ; // rv obse rvat ion un c e r t a i n t i e s

int<lower=−1, upper=1> sgn ; // system con f i gu r a t i on ( sgn=1: AaAb & AaB | sgn=−1: BaBb & ABa)
}
transformed data {

r e a l min_t = fmin (min (t_A) , fmin (min (t_B) , fmin (min (t_rv_B) , fmin (min (t_rv_Aa) , min (t_rv_Ab ) ) ) ) ) ;
vec tor [N_A] t_A0 = t_A − min_t ; // normal ized i n e r po s i t i o n epochs
vector [Nv_Aa] t_rv_Aa0 = t_rv_Aa − min_t ; // normal ized inner rv1 epochs
vector [Nv_Ab] t_rv_Ab0 = t_rv_Ab − min_t ; // normal ized inner rv2 epochs
vector [N_B] t_B0 = t_B − min_t ; // normal ized outer po s i t i o n epochs
vector [Nv_B] t_rv_B0 = t_rv_B − min_t ; // normal ized outer rv2 epochs

}
parameters {

rea l <lower=0, upper=1> T0_A; // normal ized time o f p e r i a s t r on passage (T − t0 ) / P
r e a l log_P_A ; // ln ( per iod )
rea l <lower=0, upper=1> e_A; // e c c e n t r i c i t y
rea l <lower=0> a_A; // semimajor ax i s ( secods o f arc )
r ea l <lower=0, upper=2∗pi ()> w_A; // argument o f p e r i a p s i s ( rad )
rea l <lower=0, upper=2∗pi ()> Omega_A; // long i tude o f the ascending node ( rad )
rea l <lower=0, upper=pi ()> i_A ; // i n c l i n a t i o n ( rad )
rea l <lower=0, upper=1> q_A; // mass r a t i o
rea l <lower=0, upper=1> L_A; // l i g h t r a t i o

rea l <lower=0, upper=1> T0_B; // normal ized time o f p e r i a s t r on passage (T − t0 ) / P
r e a l log_P_B ; // ln ( per iod )
rea l <lower=0, upper=1> e_B; // e c c e n t r i c i t y
rea l <lower=0, upper=2∗pi ()> w_B; // argument o f p e r i a p s i s ( rad )
rea l <lower=0, upper=2∗pi ()> Omega_B; // long i tude o f the ascending node ( rad )
rea l <lower=0, upper=pi ()> i_B ; // i n c l i n a t i o n ( rad )
rea l <lower=0, upper=1> q_B; // mass r a t i o

rea l <lower=0> plx ; // pa ra l l ax ( seconds o f arc )
r e a l V0 ; // v e l o c i t y o f c ente r o f mass (km/ s )

}
transformed parameters {

r e a l a_B; // Outer semimajor ax i s ( secods o f arc )
r e a l P_A = exp (log_P_A ) ; // per iod
r e a l P_B = exp (log_P_B ) ; // per iod
i f ( sgn == 1) {

a_B = ((a_A^3 / P_A^2) ∗ P_B^2 ∗ (1 + q_B) )^ ( 1 . 0 / 3 . 0 ) ;
}
e l s e {

a_B = ((a_A^3 / P_A^2) ∗ P_B^2 ∗ (1 + q_B) / q_B)^ ( 1 . 0 / 3 . 0 ) ;
}

}
model {

// Var iab l e s d e c l a r a t i on
r e a l T_A; r e a l T_B;
vector [N_A] pos_A [ 2 ] ; vec tor [N_B] pos_BA [ 2 ] ; vec tor [N_B] pos_B [ 2 ] ;
vec tor [Nv_Aa] V_Aa; vector [Nv_Aa] V_AaB;
vector [Nv_Ab] V_Ab; vector [Nv_Ab] V_AbB;
vector [Nv_B] V_B;
// Period
T_A = T0_A ∗ P_A;
T_B = T0_B ∗ P_B;
// Orbit inner
i f (N_A > 0) {

pos_A = orb i t (N_A, t_A0 , T_A, P_A, e_A, a_A, w_A, Omega_A, i_A ) ;
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x_obs_A ~ normal (pos_A [ 1 ] , pos_err_A ) ;
y_obs_A ~ normal (pos_A [ 2 ] , pos_err_A ) ;

}
// Orbit outer
i f (N_B > 0) {

pos_BA = orb i t (N_B, t_B0 , T_A, P_A, e_A, a_A, w_A, Omega_A, i_A ) ;
pos_B = orb i t (N_B, t_B0 , T_B, P_B, e_B, a_B, w_B, Omega_B, i_B ) ;
pos_B [ 1 ] = pos_B [ 1 ] + sgn ∗ ( (q_A − L_A) / ((1 + q_A) ∗ (1 + L_A) ) ) ∗ pos_BA [ 1 ] ;
pos_B [ 2 ] = pos_B [ 2 ] + sgn ∗ ( (q_A − L_A) / ((1 + q_A) ∗ (1 + L_A) ) ) ∗ pos_BA [ 2 ] ;
x_obs_B ~ normal (pos_B [ 1 ] , pos_err_B ) ;
y_obs_B ~ normal (pos_B [ 2 ] , pos_err_B ) ;

}
// Radial v e l o c i t y outer
i f (Nv_B > 0) {

V_B = rad i a l_ve l o c i t y (Nv_B, t_rv_B0 , T_B, P_B, e_B, a_B, w_B, i_B , V0 , plx , q_B, sgn ∗ −1);
rv_obs_B ~ normal (V_B, rv_err_B ) ;

}
// Radial v e l o c i t i e s inner
i f (Nv_Aa > 0) {

V_AaB = rad i a l_ve l o c i t y (Nv_Aa, t_rv_Aa0 , T_B, P_B, e_B, a_B, w_B, i_B , V0 , plx , q_B, sgn ) ;
V_Aa = rad i a l_ve l o c i t y (Nv_Aa, t_rv_Aa0 , T_A, P_A, e_A, a_A, w_A, i_A , 0 , plx , q_A, 1 ) ;
V_Aa += V_AaB;
rv_obs_Aa ~ normal (V_Aa, rv_err_Aa ) ;

}
i f (Nv_Ab > 0) {

V_AbB = rad i a l_ve l o c i t y (Nv_Ab, t_rv_Ab0 , T_B, P_B, e_B, a_B, w_B, i_B , V0 , plx , q_B, sgn ) ;
V_Ab = rad i a l_ve l o c i t y (Nv_Ab, t_rv_Ab0 , T_A, P_A, e_A, a_A, w_A, i_A , 0 , plx , q_A, 0 ) ;
V_Ab += V_AbB;
rv_obs_Ab ~ normal (V_Ab, rv_err_Ab ) ;

}
}
generated quan t i t i e s {

r e a l w_A_deg = w_A ∗ 180 / pi ( ) ; // argument o f p e r i a p s i s ( degree s )
r e a l Omega_A_deg = Omega_A ∗ 180 / pi ( ) ; // l ong i tude o f the ascending node ( degree s )
r e a l i_A_deg = i_A ∗ 180 / pi ( ) ; // i n c l i n a t i o n ( degree s )
r e a l T_A = T0_A ∗ P_A + min_t ; // unnormalized time o f p e r i a s t r on passage
r e a l m1_A = (a_A / plx )^3 ∗ 1 / (P_A^2 ∗ (1 + q_A) ) ; // primary ob j e c t mass ( s o l a r masses )
r e a l m2_A = q_A ∗ m1_A; // companion ob j e c t mass ( s o l a r masses )
r e a l plx_mas = plx ∗ 1000 ; // pa ra l l ax ( mi l i s e conds o f arc )
r e a l w_B_deg = w_B ∗ 180 / pi ( ) ; // argument o f p e r i a p s i s ( degree s )
r e a l Omega_B_deg = Omega_B ∗ 180 / pi ( ) ; // l ong i tude o f the ascending node ( degree s )
r e a l i_B_deg = i_B ∗ 180 / pi ( ) ; // i n c l i n a t i o n ( degree s )
r e a l T_B = T0_B ∗ P_B + min_t ; // unnormalized time o f p e r i a s t r on passage
r e a l m1_B = (a_B / plx )^3 ∗ 1 / (P_B^2 ∗ (1 + q_B) ) ; // primary ob j e c t mass ( s o l a r masses )
r e a l m2_B = q_B ∗ m1_B; // companion ob j e c t mass ( s o l a r masses )
r e a l phi = cos (i_A) ∗ cos ( i_B) + s in (i_A) ∗ s i n ( i_B) ∗ cos (Omega_B − Omega_A) ; // Mutual i n c l i n i a t i o n
r e a l phi_deg = phi ∗ 180 / pi ( ) ; // Mutual i n c l i n a t i o n ( degrees )

}

Listing A.3: Triple hierarchical system probabilistic model in Stan.

i n l i n e double kep l e r ( double M, double e , std : : ostream∗ pstream ) {
double E0 = M;
double E = M;
double g , gp ;
f o r ( i n t i = 0 ; i < 200 ; ++i ) {

g = E0 − e ∗ s i n (E0) − M;
gp = 1.0 − e ∗ cos (E0 ) ;
E = E0 − g / gp ;
// Check f o r convergence .
i f ( f abs ( (E − E0) / E) <= 1.234 e−10) {

return E;
}
E0 = E;

}
// I f we get here , we didn ’ t converge , but return the best es t imate .
re turn E;

}

i n l i n e var kep l e r ( const var& M_var , const var& e_var , std : : ostream∗ pstream ) {
// Fi r s t , compute the value o f E at the cur rent va lues o f M and e
double M = M_var . va l ( ) ,

e = e_var . va l ( ) ,
E = kep l e r (M, e , pstream ) ;

// Then compute the p a r t i a l d e r i v a t i v e s :
double dE_dM = 1.0 / ( 1 . 0 − e ∗ cos (E) ) ,

dE_de = s in (E) ∗ dE_dM;

// Construct the au t od i f f wrapper :
re turn var (new precomp_vv_vari (

E, // The _value_ of the output
M_var . vi_ , // The input grad i ent wrt M
e_var . vi_ , // The input grad i ent wrt e
dE_dM, // The p a r t i a l introduced by t h i s func t i on wrt M
dE_de // The p a r t i a l introduced by t h i s func t i on wrt e

) ) ;
}

i n l i n e var kep l e r ( double M, const var& e_var , std : : ostream∗ pstream ) {
double e = e_var . va l ( ) ,

E = kep l e r (M, e , pstream ) ,
dE_de = s in (E) / ( 1 . 0 − e ∗ cos (E ) ) ;

r e turn var (new precomp_v_vari (E, e_var . vi_ , dE_de ) ) ;
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}

i n l i n e var kep l e r ( const var& M_var , double e , std : : ostream∗ pstream ) {
double M = M_var . va l ( ) ,

E = kep l e r (M, e , pstream ) ,
dE_dM = 1.0 / ( 1 . 0 − e ∗ cos (E ) ) ;

r e turn var (new precomp_v_vari (E, M_var . vi_ , dE_dM) ) ;
}

Listing A.4: Kepler equation implementation.
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