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Luego de esto el camino no ha sido fácil. La pandemia de Covid-19 ha dificultado
la comunicación directa. No obstante, se ha continuado con las labores académicas
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RESUMEN
Sea C una curva projectiva, suave y geométricamente conexa definida sobre un
cuerpo finito F. Para cada punto cerrado P8 de C, sea R el anillo de funciones que
son regulares fuera de P8, y sea K la completacion en P8 del cuerpo de funciones
de C. Con el objetivo de estudiar grupos de la forma GL2pRq, Serre describe en
[Se80, Chapter II] el grafo cociente GL2pRqzt, donde t es el árbol de Bruhat-Tits
definido a partir de SL2pKq. En particular, Serre demuestra que GL2pRqzt es la
union de un grafo finito con un número finito de subgrafos con forma de rayo,
llamados cúspides. No es dificil ver que esta propiedad es heredada por subgrupos
de ı́ndice finito.

En este trabajo describimos el grafo cociente Hzt asociado a la acción sobre t del

grupo H “

!

ˆ

a b
c d

˙

P GL2pRq : c ” 0 pmod Iq

)

, donde I es un ideal de R. Más

espećıficamente, damos una fórmula expĺıcita para el número de cúspides de Hzt.
Luego, usando la teoŕıa de Bass-Serre, describimos la estructura combinatorial de
H. Estos grupos juegan, en el contexto de cuerpos de funciones, el mismo rol que
los subgrupos de congruencia de Hecke de SL2pZq. Los grupos estudiados por Serre
corresponden al caso donde el ideal I coincide con el anillo R.

ABSTRACT

Let C be a smooth, projective and geometrically connected curve defined over a
finite field F. For each closed point P8 of C, let R be the ring of functions that are
regular outside P8, and let K be the completion at P8 of the function field of C.
In order to study groups of the form GL2pRq, Serre describes in [Se80, Chapter II]
the quotient graph GL2pRqzt, where t is the Bruhat-Tits tree defined from SL2pKq.
In particular, Serre shows that GL2pRqzt is the union of a finite graph and a finite
number of ray shaped subgraphs, which are called cusps. It is not hard to see that
finite index subgroups inherit this property.

In this work we describe the associated quotient graph Hzt for the action on t

of the group H “

!

ˆ

a b
c d

˙

P GL2pRq : c ” 0 pmod Iq

)

, where I is an ideal of R.

More specifically, we give a explicit formula for the cusp number of Hzt. Then,
by using Bass-Serre Theory, we describe the combinatorial structure of H. These
groups play, in the function field context, the same role as the Hecke congruence
subgroups of SL2pZq. The groups studied by Serre correspond to the case where
the ideal I coincides with the ring R.
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1. Introduction

Group actions on symmetric spaces and Bass-Serre theory. Classically,
we study discrete subgroups Γ of a real Lie group G by their action on symmetric
spaces, that is homogeneous spaces of the form X “ KzG, where K is a maximal
compact subgroup of G. When G “ SL2pRq, there exists a well-known theory
that describes the action of Γ on the upper half-plane X “ SO2pRqzG by Moebius
transformations.

A program initiated by Bruhat and Tits establishes an analogy with the pre-
ceding case in the context of p-adic Lie groups. In this sense, Bruhat and Tits
introduce certain simplicial complexes called buildings which play the role of sym-
metric spaces for p-adic groups. For G “ SLnpQpq the building is a contractible
pn ´ 1q-dimensional complex, whose vertex set is parameterized by the quotient
SLnpZpqzG (cf. [AbB08, §6.9]). When n “ 2, this complex is in fact a tree, i.e. a
connected graph without cycles. In the literature, this graph is called the Bruhat-
Tits tree and it is extensively studied in Serre’s book [Se80]. In fact, it was Serre’s
observation that a discrete subgroup of SL2pQpq is torsion-free if and only if it acts
freely on a tree. This observation gives another proof of a theorem due to Ihara,
which states that any discrete torsion-free subgroup of SL2pQpq is free (cf. [Ih66,
Theorem 1]). This prompted Serre to develop a general theory of groups acting on
trees (cf. [Se80, Chapter I, §3]).

The goal of Bass-Serre theory (cf. [Se80, Chapter I, §5]) is to study the combina-
torial group theory with the tools and techniques of the theory of groups acting on
trees. In this sense, there exist two classical constructions in combinatorial group
theory that we can analyse from the point of view trees. One of these is the amalga-
mated product of two groups (cf. [Se80, Chapter I, §1.2]), and the other is the HNN
extension (cf. [Se80, Chapter I, §1.4]). Such tools arise in topology, for example, in
the description of the fundamental group of a 3-fold which splits along a connected
incompressible surface. Furthermore, in each of these two group-theoretical con-
structions there is a naturally defined tree t on which the group acts, so that the
quotient by the group action is respectively an edge or a loop. In the topological
setting, this simply imitates the action of the fundamental group on the universal
covering space.

By considering actions of more general groups on trees, one is naturally led to
the more complex notion of a graph of groups. By a graph of groups pΓ̃, Y q we mean

a graph Y together with assignments of groups v Ñ Γ̃v, e Ñ Γ̃e to the vertices and
edges of a graph Y subject to certain compatibility conditions stated in §9. In this
context Serre introduces the fundamental group π1pΓ̃, Y q associated to a graph of

groups pΓ̃, Y q. This group is an amalgamated product of the fundamental group

π1pY q with another group SpΓ̃q defined as the sum of the groups Γ̃v, amalgamated

along the groups Γ̃e. In this sense, amalgams of two groups and HNN extensions
correspond to the fundamental group of an edge and a loop respectively. As such,
these are the fundamental blocks with which the fundamental group is described.

Let Γ be a group acting on a tree t and let Y “ Γzt be the associated quotient
graph. Let T be a maximal tree in Y and let j : T Ñ t be a lift. Then, we can define
a graph of groups by setting Γ̃v as the stabilizer of the vertex jpvq, and defining
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Γ̃e by means of the edges. The main result of Bass-Serre theory is that, in this
context, Γ is isomorphic to the fundamental group π1pΓ̃, Y q. This general theorem
gives a method to systematically study the structure of many groups acting on
trees. However, this requires characterizing the quotient graph Y associated to the
action of Γ on t.

In [Se80, Chapter 2], Serre constructs the Bruhat-Tits tree t “ tpKq associated
to the group SL2pKq for a complete field K. The action of SL2pKq on t can actually
be extended to an action of GL2pKq. Later, Serre studies the group GL2pkq, where
k is the function field of a smooth projective curve. He also studies its subgroup
GL2pRq, where R is the coordinate ring of an affine open set of the curve with a
unique point P8 at infinity. This closed point gives rise to a discrete valuation ν on
k and hence we have an action of GL2pkq on the Bruhat-Tits tree associated to the
completionK of k at P8. In this situation, the author gives a reinterpretation of the
vertices of this tree as vector bundles of rank two over the curve which are trivial on
the affine part. Then, in order to study the structure of GL2pRq, Serre abundantly
studies the structure of the quotient graph GL2pRqzt. As a consequence, Serre gets
an amalgamated free product structure on GL2pRq. Moreover, by describing some
spectral sequences on homology, he gets some structural results on the homology
groups of GL2pRq and of its finite index subgroups.

There exists a very useful generalization of the Bass-Serre theory to the context
of buildings, due to Bridson and Haeflinger. This theory is written in terms of the
concept of small categories without loops (cf. [BH91, Chapter III.C]). In analogy
with the Bass-Serre theory, we can apply Bridson and Haeflinger’s construction in
order to study presentations of groups acting on buildings.

Statement of Serre’s results and further developments. In this section we
summarize some classical results about the quotient structure of buildings by the
action of certain groups of “arithmetic nature”. Then we discuss the structural
consequences for the groups themselves.

Let C be a smooth, projective, geometrically connected curve over a field F. For
each closed point P8 of C, let R be the coordinate ring of the affine curve obtained
by removing P8 from C. Let k be the function field of C. As we already recalled,
one of the first families of examples studied by describing their actions on trees has
been the family of arithmetic subgroups GpRq Ă Gpkq for G “ GL2. Indeed, in
order to study these arithmetic groups, Serre gave the following description of the
quotient graphs.

Theorem 1.1. [Se80, Chapter II, Theorem 9] Let t be the local Bruhat-Tits tree
defined by the group SL2 at the completion K associated to the valuation induced
by P8 (cf. §2). Then, the graph GpRqzt is combinatorially finite, i.e. is obtained
by attaching a finite number of infinite half lines, called cuspidal rays, to a certain
finite graph Y . The set of such cuspidal rays is indexed by the elements of the
Picard group PicpRq “ PicpCq{xP8y.

Then, using Bass-Serre Theory, Serre concludes the following structural result
for the groups GpRq defined above.

Theorem 1.2. [Se80, Chapter II, Theorem 10] There exists a finitely generated
group H, and a family tpIσ,Pσ,BσquσPPicpRq where:
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1. Iσ is an R-fractional ideal and Pσ “ pF˚ ˆ F˚q ˙ Iσ,
2. Bσ is a group with canonical injections Bσ Ñ H and Bσ Ñ Pσ,

such thatGpRq is isomorphic to the sum of Pσ, for σ P PicpRq, andH, amalgamated
along their common subgroups Bσ according to the above injections.

Moreover, Serre describes the structure of GpRq as an amalgamated sum in
certain cases, by explicitly describing the corresponding quotient graphs. This work
considers, for example, the cases C “ P1

F, for degpP8q P t1, 2, 3, 4u, or when C is a
curve of genus 0 without rational points and degpP8q “ 2. The case C “ P1

F, and
degpP8q “ 1 reduces to a classical result, now called Nagao’s Theorem (cf. [Na59]).
In this context the corresponding quotient graph is a ray. Also, Arenas-Carmona in
[A16] extends the study of Serre’s and Nagao’s explicit examples, by determining
the quotient graphs when the closed point P8 has degree 5 or 6, and giving a
method for further computations. In general, we can apply Theorem 1.2 to show
that GpRq is never finitely generated.

In order to prove Theorem 1.1, Serre makes an extensive use of the theory of
vector bundles of rank 2 over C. On the other hand, Mason in [Ma01] gives a more el-
ementary approach which involves substantially less algebraic geometry. This point
of view only requires the Riemann-Roch Theorem and some basic notions about
Dedekind rings. The price to pay for this simplicity is that one is not able to prove
the finiteness of the diameter of graph Y in Theorem 1.1. However, Mason applies
this result on quotient graphs in order to study the lowest index non-congruence
subgroups of GpRq.

In a more general context, let K be the completion of k at P8 and let G be
an arbitrary reductive algebraic k-group. We can define a poly-simplicial complex
X pG,Kq associated to the group G and the field K. This topological space is
called the building of GpKq and, as we said in the previous section, this notion
generalizes the definition of the Bruhat-Tits tree. When R “ Frts and G is split
over k, there exists a result that generalizes Nagao’s theorem, which describes the
structure of the quotient space X “ GpFrtsqzX associated to the action of GpFrtsq
on X “ X pG,Fppt´1qqq. This result is due to Soulé and described in [So77, Theorem
1]. Soulé shows that X is isomorphic to a sector Q0 Ă X , which is the analog of a
ray in the general building context. Then, in the same article, the author describes
GpFrtsq as an amalgam. This structural result can be extended to the context where
G is an isotrivial k-group, i.e. a reductive k-group that splits in the composite field
ℓ “ Lk, for a finite extension L of F. This problem has been developed by Margaux
in [Mar09]. Indeed, Margaux manages to prove the same result as Soulé, where
obviously he replaces the condition “split” by “isotrivial”.

In the particular case where F is a finite field, one of the strongest results about
the structure of quotient buildings that exists in the literature is due to Bux, Köhl
and Witzel in [BKW13]. This is written in terms of a certain thin subspace of X
that covers the quotient space.

Theorem 1.3. [BKW13, Proposition 13.6] Assume that F is finite. Let G be an
isotropic and non-commutative algebraic k-group and let X “ X pG,Kq be the
building associated to G and K. Let S be a finite set of places of k containing P8

and denote by OS the ring of S-integers of k. Choose a particular realization Greal

of G as an algebraic set of some affine space. Given this realization, we define G as
3



the group of OS -points of Greal. Then, there exists a constant L and finitely many
sectors Q1, ¨ ¨ ¨ , Qs such that

(1) The G-translates of the L-neighborhood of
Ťs

i“1Qi cover X .
(2) For i ‰ j, the G-orbits of Qi and Qj are disjoint.

The group G defined in the previous theorem is called an S-arithmetic subgroup
of G. Of course, the S-arithmetic group G depends on the chosen realization of
G. Indeed, for any two choices leading to S-arithmetic subgroups of G there is a
common subgroup of finite index in either. This phenomenon, in particular, implies
that the details of the conclusion in the previous result depend strongly on the
given realization. Fortunately, when G is split over k, there exists an intrinsic and
canonical way to define G which we can exploit in order to characterize the quotient
structures of buildings. In this case, the mathematical translation of Theorem 1.3
to the language of quotients of buildings, and its applications to the structure of
arithmetic groups, is work in progress with B. Loisel. On the other hand, with
L. Arenas-Carmona, B. Loisel and G. Lucchini Arteche, we extend Theorem 1.1 in
[ABLL] to the context of special unitary groups of split rank one, which are the
smallest quasi-split non-split reductive groups. In the future, we hope to combine
techniques developed in the preceding two projects in order to describe the quotients
of buildings by general groups of R-points of quasi-split groups, where R is as above.
We also hope that this will allow us to understand the combinatorial structure of the
aforementioned groups, as well as their homology and cohomology groups. Finally,
at the moment of presenting this thesis, with A. Hébert, D. Izquierdo and B. Loisel,
we are working on extensions of some of the these results to higher-dimensional local
fields.

On the main problem of this thesis. In this section we present the main goal
of this thesis, and state our main results in this direction.

Widely speaking, the goal of this work is to study a certain family of congruence
subgroups of GpRq, for G “ GL2 and F a finite field, through the analysis of the
associated group actions on trees. This objective is natural since this family is a
direct analog of the Hecke congruence subgroups of SL2pZq in the function field
context.

In order to introduce the family of groups that concern us, we use the same
definitions and notations as in the previous section. In particular, we denote by C
a smooth, projective, geometrically connected F-curve and by k its function field.
Since in the sequel we use the spinor genera theory in some proofs, and this theory is
set in the context where the ground field F is finite, we assume this throughout and
we denote its cardinality by q. Recall that a C-order D on the matrix algebra M2pkq

is a locally free sheaf of OC-algebras whose generic fiber is M2pkq. Analogously, an
R-order is a locally freeR-algebra. As we explain in §5, anyR-order can be extended
to a C-order by choosing an arbitrary local order at the point P8 P C. We say that
a C-order is maximal if its completions are maximal at all places of C. By definition,
a split maximal order is an order GL2pkq-conjugate to the sheaf

DD “

ˆ

OC LD

L´D OC

˙

,

where D is an arbitrary divisor on C, and where LD is the invertible sheaf defined
in every open set U Ď C by
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LDpUq “ tf P k : divpfq|U `D|U ě 0u .

In general, an Eichler C-order is a sheaf-theoretical intersection of two maximal
C-orders. We define a specific family of Eichler C-orders ED by taking

ED “ DD X D0,

where D is an effective divisor. Let U0 be the open set in C defined as the com-
plement of tP8u. We define HD as the group of invertible elements in EDpU0q. In
other words

(1.1) HD “

"ˆ

a b
c d

˙

P GL2pRq : c ” 0 pmod IDq

*

,

where ID is the R-ideal defined as ID “ L´DpU0q. Then, the family of groups H “

tHD : D effective divisoru plays the same role as the Hecke congruence subgroups
of SL2pZq in the function field context. At this point we can be more precise.
The objective of this work is to characterize the quotient graph associated to the
action of HD on the Bruhat-Tits tree t, to subsequently describe the combinatorial
structure of HD.

Note that HD naturally contains the kernel of GpRq Ñ GpR{IDq. This implies,
as we prove in Corollary 3.8 (which follows from a lemma by Serre in [Se70]),
that the quotient graph HDzt is combinatorially finite, and the number of cuspidal
rays of tD “ HDzt is equal to the number of HD-orbits in P1pkq. The previous
observation is useful in the context where D has small degree. In fact, an explicit
example can be written in the context where C “ P1

F, D is a closed point P and
degpP8q “ degpP q “ 1. Indeed, by using these hypotheses on C and D we can show
that t0,8u is a set of HD-orbits in P1pkq. Unfortunately, this set of HD-orbits is
really hard to characterize in the general case. Another obstruction for a direct
computation of tD is that HD is not a normal subgroup of GpRq. In particular,
GpRqzt is not always a quotient of HDzt.

In order to present our main result we introduce some additional notations. For
any divisor D on C, we denote by D its linear equivalence class. Also, we denote
by tau the largest integer not exceeding a P R. Observe that, when D “ 0, we
have HD “ GL2pRq. In particular, the next theorem can be considered as a partial
generalization of Serre’s result on the structure of quotient graphs.

Theorem 1.4. Let D be an effective divisor, which we write as D “
řr

i“1 niPi,
where the points P1, . . . , Pr, P8 are all different. Then, the graph tD “ HDzt is
obtained by attaching a finite number of rays, called cuspidal rays, to a certain
finite graph Y Ă tD. The cardinality cD of the set of such cuspidal rays satisfies
(1.2)

cD ď cpHDq :“ 2r|gp2q|

ˇ

ˇ

ˇ

ˇ

2PicpCq ` xP8y

xP8y

ˇ

ˇ

ˇ

ˇ

˜

1 `
1

q ´ 1

r
ź

i“1

´

qdegpPiqt
ni
2 u ´ 1

¯

¸

,

where gp2q is the maximal exponent-2 subgroup of PicpRq. Moreover, equality holds
when gp2q is trivial and each ni is odd.

Note that gp2q is trivial in various cases: for example, when C “ P1
F and P8

has odd degree, or when C is an elliptic curve with no non-trivial 2-torsion rational
points.

Let us assume C “ P1
F, and assume that P8 is the point at infinity, which

corresponds to the valuation induced by ν “ ´ deg on k “ Fptq. Let D0 “

5



řr
i“1 Pi ´ rP8 where P1, ¨ ¨ ¨Pr, P8 are different degree-one points on C, so that

degpD0q “ 0. In particular, we can assume that there exists a square free polyno-
mial N “

śn
i“1pt ´ λiq P Frts that generates the principal divisor D0. Note that

HD0 “ HD, where D “
řr

i“1 Pi as above. In this case, we can give a more explicit
description than Theorem 1.4 for the HD-action on t. In fact, we can characterize a
fundamental region rD Ď t containing precisely one vertex from each HD-orbit in t.
The description of the edge set of rD is however more involved, since we can have
loops in the quotient graph tD. See §8 for more details. In order to present our
result, we introduce some definitions. Two rays in t are called equivalent if they
contain a common subray. Then, by an end of t, also called a visual limit, we mean
an equivalence class of rays. Since we are assuming that C “ P1

F and P8 is the point
at infinity, the set of ends in t corresponds with P1

`

Fppt´1qq
˘

. For any collection c
of ends of t there exists a minimal subtree tc Ď t containing a set of representatives
of c. Indeed, tc is defined as the union of a suitable set of representatives of c.

Theorem 1.5. Let N “ pt´λ1q ¨ ¨ ¨ pt´λnq P Frts be a square-free polynomial with
all of its roots in F and let D “ divpNq. Let s be the smallest subtree containing
the ends 0, 8 and 1{M , for every proper monic nonconstant divisor M of N . Then
the congruence subgroup

HD “

#

ˆ

a b
c d

˙

P GL2pFrtsq

ˇ

ˇ

ˇ

ˇ

ˇ

c ” 0 pmod Nq

+

has a fundamental region rD of the form s Y f for a finite graph f.

The previous results give a more precise description than [Se70, §3.3, Lemma 8],
which in fact only says that the set of cuspidal rays is finite. Indeed, in Theorem
1.4, we have a control on the number of cusps, and, in the case where gp2q is trivial
and each ni is odd, we have an explicit expression to compute it. Moreover, by
using Theorem 1.5 we can characterize a set of representatives for all but finitely
many vertex classes. In particular, we get a set of representatives for the action of
HD on the ends of t. This is equivalent to describing the HD-orbits in P1pkq, which
can be difficult to compute directly when D has a large degree.

Now, by using Bass-Serre theory and Theorem 1.4 we can deduce the following
general result on the combinatorial structure of HD. This can be considered as
a partial generalization of Theorem 1.2, and as a more detailed description than
[Se70, §3.3, Lemma 8].

Theorem 1.6. In the notation of Theorem 1.4, assume that each ni is odd and
gp2q “ teu. Then, there exist a finitely generated group H, two sets of indices,
denoted by D and I, and a family tpIσ,Pσ,Bσq : σ P D \ Iu, where

1. CardpDq “ 2rr2PicpCq ` xP8y : xP8ys, and CardpIq “ cpHDq ´ CardpDq,
2. Iσ is an R-ideal contained in ID
3. Pσ “ pF˚ ˆ F˚q ˙ Iσ, for any σ P D, while Pσ “ F˚ ˆ Iσ, for any σ P I,
4. Bσ is a group with canonical injections Bσ Ñ H and Bσ Ñ Pσ, for any
σ P D \ I,

such that HD is isomorphic to the sum of Pσ, for σ P D \ I, and H, amalgameted
along their common subgroups Bσ according to the above injections.

In [Se70, Chapter II, §2.8] Serre gives a series of results that relate the homology
of congruence subgroups of GpRq with the structure of its quotient graphs. We can
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apply them to our context. In particular, the following result, which gives a more
precise description of the abelianization of HD, is a consequence of Theorem 1.4.

Theorem 1.7. With the same notation and hypotheses of Theorem 1.6, there
exists an homomorphism ϕ : pHDqab Ñ

À

σPDYIpPσqab whose kernel and cokernel
are finitely generated.
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2. Preliminaries on the Bruhat-Tits tree

2.1. Conventions and notations for graphs. We recall some basic definitions
on graphs and trees. We define a graph g as a pair of sets V “ Vpgq and E “ Epgq,
and three functions s, t : E Ñ V and r : E Ñ E satisfying the identities rpaq ‰ a,
r
`

rpaq
˘

“ a and s
`

rpaq
˘

“ tpaq, for every a P E. In all that follows V and E
are called vertex and edge set, respectively, and the functions s, t and r are called
respectively source, target and reverse. Our definition is chosen in a way that allows
the existence of multiple edges and loops. Two vertices v, w P V are neighbors if
there exists an edge e P E satisfying speq “ v and tpeq “ w. The valency of a vertex
v is the cardinality of its set of neighboring vertices. A simplicial map γ : g Ñ g1

between graphs is a pair of functions γV : Vpgq Ñ Vpg1q and γE : Epgq Ñ Epg1q

preserving the source, target and reverse functions. We say that a simplicial map
γ : g Ñ g1 is an isomorphism if there exists another simplicial map γ1 : g1 Ñ g such
that γV ˝ γ1

V “ idVpgq, γ
1
V ˝ γV “ idVpg1q, γE ˝ γ1

E “ idEpgq and γ1
E ˝ γE “ idEpg1q.

The group of automorphisms Autpgq of a graph g is the set of isomorphism from g
to g, with the composition as a group law.

We say that a group Γ acts on a graph g is there exists an homomorphism from
Γ to Autpgq. A group action of Γ on a graph g has no inversions if g ¨ a ‰ rpaq,
for every edge a and every element g P Γ. An action without inversions defines a
quotient graph in the usual sense. Indeed, if Γ acts on g without inversions, then
the vertex set of Γzg corresponds to ΓzV , and the edge set corresponds to ΓzE.

Let g be a graph. A finite line in g, usually denoted by p, is a subgraph whose
vertex and edge sets are Vppq “ tviu

n
i“0 and Eppq “ tei, rpeiqu

n´1
i“0 , where speiq “ vi

and tpeiq “ vi`1, for all index 0 ď i ď n ´ 1. The length of p is, by definition,
n “ CardpVppqq´1 “ CardpEppqq{2. We often emphasize the vertices v0, the initial
vertex of p, and vr, the final vertex of p, by saying “p is a path connecting v0 with
vr”. A graph g is connected if, given two vertices v, w P Vpgq, there exists finite
path p connecting them. We define a ray r in g by replacing n and n ´ 1 by 8 in
the definition of finite line. A cycle in g is a finite line with an additional pair of
edges connecting vn with v0. We define a tree as a connected graph without cycles.

A maximal path in g is a doubly infinite line, i.e. the union of two rays intersect-
ing only in one vertex. Let r1 and r2 be two rays whose vertex sets are respectively
denoted by V1 “ tvi : i P Zě0u and V2 “ tv1

i : i P Zě0u. We say that r1 and r2 are
equivalent if there exists t, i0 P Zě0 such that vi “ v1

i`t, for all i ě i0. In this case
we write r1 „ r2. We define the visual limit, also called the end set, B8pgq of g
as the set of equivalence classes of rays r in g. We denote the class of r by B8prq.
By a cuspidal ray in a graph g, we mean a ray such that every non-initial vertex
has valency two in g. A cusp in g is an equivalence class of cuspidal rays in g. We
denote the cusp set of g by B8pgq. We say that a graph is combinatorially finite if
it is the union of a finite graph and a finite number of cuspidal rays. In particular,
when a graph is combinatorially finite its visual limit is also finite.

2.2. The Bruhat-Tits tree. Let k be the function field of a smooth, projective,
geometrically connected curve C defined over a field F. Let K be the completion of
k with respect to a discrete valuation ν : k˚ Ñ Z, and let O be its ring of integers.
Recall that a tree is a connected graph without cycles.
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An example of tree is the Bruhat-Tits building t “ tpKq associated to the reduc-
tive group SL2 and the field K. In order to introduce this tree, we have to fix some
definitions concerning lattices. Let π P O be a fixed uniformizing parameter of K.
A lattice in a K-vector space V is a finitely generated O-submodule of V , which
generates V as a vector space. Assume that V is a two-dimensional K-vector space.
Then, every lattice on V is free of rank 2. The group K˚ acts on the set of lattices
by homothetic transformations. The vertex set of tpKq can be defined as the set of
homothetic classes of lattices in V . We adopt this convention. Let Λ and Λ1 be two
lattices in V . By the Invariant Factor Theorem of Algebraic Number Theory, there
is an O-basis te1, e2u of Λ and integers a, b such that tπae1, π

be2u is an O-basis
for Λ1. The set ta, bu does not depend on the choice of basis for Λ,Λ1. Moreover,
if we replace Λ by xΛ, and Λ1 by yΛ1, where x, y P K˚, then ta, bu changes into
ta`c, b`cu, where c “ νpy{xq. So, the integer |a´b| is called the distance between
the classes rΛs and rΛ1s. We define one pair of mutually reverse edges in tpKq for
each pair of lattice classes at distance one. This defines a graph, which can be
proved to be a tree (cf. [Se80, Chapter II, §1, Theorem 1]). The group GL2pKq

acts on t by g ¨ rΛs “ rgpΛqs, for any O-lattice Λ Ă K2 and any g P GL2pKq. This
induces an action of PGLpV q “ PGL2pKq on t.

An order inM2pKq is a lattice with a ring structure induced by the multiplication
of M2pKq. We say that an order is maximal when it fails to be contained in any
other order. One can reinterpret the Bruhat-Tits tree for SL2 in several ways. One
of these arises from the following remark. There exists a bijective map from the
vertex set of tpKq to the set of maximal orders in M2pKq. Indeed, this function
is defined by rΛs ÞÑ EndOpΛq, which is valid, since the endomorphism rings of Λ
and xΛ coincide for any x P K˚. Moreover, under this identification, two maximal
orders D and D1 are neighbors if the pair tD,D1u is GL2pKq-conjugate to the pair
!

ˆ

O O
O O

˙

,
ˆ

O π´1O
πO O

˙

)

.

Another reinterpretation of the Bruhat-Tits tree for SL2 comes from the topo-
logical structure of K, which is very useful in order to have a concrete represen-

tation of its visual limit. We denote by B
|r|
a the closed ball in K whose center

is a and radius is |πr|. Then, we can define the function Σ between the set of

closed balls and the set of maximal orders in M2pKq by B
|r|
a ÞÑ EndOpΛBq, where

ΛB “

A

`

a
1

˘

,
`

πr

0

˘

E

. It follows from [AAC18, §4] that Σ is bijective. Thus, this

induces a correspondence between the vertex set of t “ tpKq and the set of closed
balls in K. Moreover, if we say that two balls are neighbors whenever one is a
proper maximal sub-ball of the other, then Σ induces an isomorphism of graphs.
In other words, under the previous definition, we have that two balls B and B1 are
neighbors precisely when ΣpBq and ΣpB1q are neighbors. So, by using this reinter-
pretation of the Bruhat-Tits tree in terms of balls, it is straightforward that any

ray r in t satisfies either V prq “

!

B
|r`n|
a : n P Zě0

)

, for certain a P K and r P Z,

or V prq “

!

B
|r´n|

0 : n P Zě0

)

, for certain r P Z. In the first case, the visual limit

of r can be identified with a P K, and, in the second, we identify it with the point
at infinity 8. This brief remark shows that the visual limit of the Bruhat-Tits tree
t “ tpKq is in natural correspondence with the K-points of the projective line P1.
In all that follows, the equivalence classes of rays in B8ptq are called ends of t. This
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set of ends is acted on naturally by the group GL2pKq, via Moebius transforma-
tions with coefficients in K. In fact, this action is compatible with the previously
defined action of GL2pKq on lattices, or the subsequent action on balls induced by
the former (cf. [AAC18, §4]). It follows from the density of k in K, that for any
finite line p of t, there is a ray containing p whose end corresponds to a rational
element s P P1pkq Ă P1pKq.

It is shown in [Se80, Chapter II, §1.3] that there exists a bipartition of the
vertex set of the Bruhat-Tits tree that is respected by every subgroup Γ Ă GL2pKq

satisfying detpΓq Ď O˚K˚2. This implies that such subgroups act on t without
inversions. In particular, we can define a quotient graph for these groups. This
applies to every finite index subgroup Γ of GL2pRq.
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3. On combinatorially finite quotients of the Bruhat-Tits tree

We keep the notation from last section. Here we give a detailed description of
the quotient graphs of the Bruhat-Tits tree t by certain subgroups of GL2pkq. In
order to do this, we introduce the following notion.

Definition 3.1. Let H be a subgroup of GL2pkq. We say that H closes enough
umbrellas if there exists a finite family of rays RH “ triu

γ
i“1 Ă t, each with a

vertex set tvnpiqu8
ną0, where vnpiq and vn`1piq are neighbors, satisfying each of the

following statements:

(a) The set of ends of all rays in RH is a representative system of HzP1pkq.
(b) Hzt is obtained by attaching all the images ri Ď Hzt to a certain finite

graph YH .
(c) No ri contains a pair of vertices in the same H-orbit, and ri X rj “ H, for

each i ‰ j.
(d) For each index i and each n ą 0, we have StabHpvnpiqq Ď StabHpvn`1piqq.
(e) StabHpvnpiqq acts transitively on the set of neighboring vertices in t of vnpiq,

other than vn`1piq.

In particular, if H closes enough umbrellas, then Hzt is combinatorially finite.
Moreover, for any ray r Ă t whose visual limits belongs to P1pkq, there exists a
subray r1 Ď t satisfying conditions (d) and (e). Note that the notion of “closing
umbrellas” corresponds to these two statements, while (a), (b) and (c) convey the
idea of “closing enough umbrellas”, so as to have a good quotient graph.

We say that a subgroup H of GL2pkq is net when each element in H fails to
admit a root of unit different than one as an eigenvalue. It follows from [Se70,
Chapter II, §2.1- §2.3] that every net subgroup of GL2pkq closes enough umbrellas.
We say that two groups are commensurable if they have a common finite index
subgroup. The notion of “closing enough umbrellas” behaves well when we pass to
commensurable groups as is shown in the following results. This is probably known
to experts but, as far as we are aware, a precise reference does not exist.

Theorem 3.2. Let H be a discrete subgroup of GL2pkq. Let H 1 Ď GL2pkq be a
group that is commensurable with H. If H closes enough umbrellas, then H 1 also
closes enough umbrellas.

In order to prove this theorem, we analyze separately in the following two propo-
sition the cases of subgroups of H and of groups containing H.

Proposition 3.3. Let H be a subgroup of GL2pkq. Assume that H closes enough
umbrellas. Let H 1 Ă GL2pkq be a group containing H as a finite index normal
subgroup. Then, H 1 also closes enough umbrellas.

In order to prove the proposition, we need the following lemma.

Lemma 3.4. Let g be a combinatorially finite graph, and let G be a finite group
acting without inversions on this graph. Then, each cuspidal ray r in g has a finite
number of vertices in the same G-orbit. In particular, r has a subray whose image
in Gzg is a cuspidal ray, and hence Gzg is a combinatorially finite graph.
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Proof. By definition we have that there exists a set of rays R “ tr̃iu
γ
i“1 all contained

in g, such that g is obtained by attaching all r̃i to a certain finite graph Y . Let r̃
be a ray in R. Since G acts simplicially on g, for each g P G, the graph g ¨ r̃ is also
a ray in g. Then, since g is combinatorially finite, g ¨ r̃ has the same visual limit
as some ray in R. First assume that B8pr̃q “ B8pg ¨ r̃q. Then, r˝ :“ r̃ X pg ¨ r̃q is a
ray. Since each non-initial vertex of r̃ and g ¨ r̃ has valency two, we get r˝ “ r̃ or
r˝ “ g ¨ r̃. In other words, r̃ Ď g ¨ r̃ or r̃ Ě g ¨ r̃. Assume that r̃ Ď g ¨ r̃, then

r̃ Ď g ¨ r̃ Ď ¨ ¨ ¨ Ď gk ¨ r̃ Ď gk`1 ¨ r̃, for all k P Zě0.

Since G is finite, we get that r̃ “ g ¨ r̃. By an analogous argument we also prove
that r̃ “ g ¨ r̃, when r̃ Ě g ¨ r̃. We conclude that g fixes every vertex in this case.

Now, assume that the visual limit of g ¨ r̃ is not B8pr̃q. Then, r̃X pg ¨ r̃q is a finite
graph. So, for each index i, we define the ray r̃1

i as the unique unbounded connected
component of

r̃i ∖

¨

˚

˝

ď

hPG
B8pr̃iq‰B8ph¨r̃iq

r̃i X ph ¨ r̃iq

˛

‹

‚

.

By definition, and by the final statement in last paragraph, the ray r̃1
i does not

have two vertices in the same G-orbit. Since r̃i and r̃1
i differ by a finite graph, the

first assertion follows. In order to prove the last assertion, we say that r̃1
i and r̃1

j

are G-equivalent if B8pr̃1
iq “ B8pg ¨ r̃1

jq, for some g “ gpi, jq P G. So, we define

r2
i Ď Gzg as the intersection of the images by π : g Ñ Gzg of all rays r̃1

j in the

G-equivalence class of r̃1
i. We claim that r2

i is a cuspidal ray in Gzg. Indeed, any
element g P G sending B8pr̃1

iq to B8pr̃1
jq gives an injective simplicial correspondence

between the vertices in either ray, whose image contains a pre-image in g of r2
i .

This correspondence is independent on the choice of g, since a different choice g1

defines an element g1g´1 fixing every vertex in r̃1
i. This proves the claim. Finally,

let us define Y 2 as the union of πpY q with all πpr̃jq ∖ r2
i , for all pairs pi, jq whose

corresponding rays r̃1
i and r̃1

j are G-equivalent. Thus, Gzg is obtained by attaching

all r2
i to the finite graph Y 2. □

Proof of Proposition 3.3. By hypothesis there exists a family of rays RH “ trju
γ
j“1

satisfying (a), (b), (c), (d) and (e) in Definition 3.1. For all index j, we denote
by ξj the visual limit of rj , and by tvnpξjqu8

n“1 the vertex set of rj . So, we have
P1pkq “ H ¨ tξju

γ
j“1.

Let tωiu
δ
i“1 be a set of representatives of H 1zP1pkq. Then, each ωi can be written

as ωi “ h ¨ ξj for some suitable index j “ jpiq and some suitable element h “ hpiq P

H. Thus, we define pr1
i as the intersection of h ¨ rj with the unique ray in t joining

B
|0|

0 with ωi. Let us write Vppr1
iq “ tvnpωiqu8

n“1, where vnpωiq and vn`1pωiq are
neighbors. By definition, for each vertex vnpωiq, there exists m “ mpnq P Zą0 such
that vnpωiq “ h ¨ vmpξjq. Thus, we have StabHpvnpωiqq “ hStabHpvmpξjqqh´1,
where H Ď H 1. Hence, condition (e) follows.

Let G be the finite group H 1{H. Note that H 1zP1pkq “ GzpHzP1pkqq. Moreover,
note that the quotient graph H 1zt is the quotient of the combinatorially finite
graph Hzt by the finite group G. Then, it follows from Lemma 3.4 that H 1zt is
combinatorially finite, and that for each ray rj in Hzt there exists a subray r̃j

˝ not
containing two vertices in the same G-orbit.
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Let r˝
j Ď rj Ă t be a lift of r̃j

˝. So, for each index i, we define r1
i as the intersection

of pr1
i with hpiq ¨ r˝

j . We write Vpr1
iq “ tvnpωiqu8

n“Ni
, where Ni ą 0. Then, for each

n ě Ni ` 1, the vertices vn´1pωiq and vn`1pωiq are not in the same H 1-orbit. So,
since, by condition (e), all other neighbors are in the same StabH1 pvnpωiqq-orbit as
vn´1pωiq, we see that StabH1 pvnpωiqq stabilizes vn`1pωiq, i.e. condition (d) holds.

In order to check condition (c) on RH1 :“ tr1
iu

δ
i“1, we just have to prove the

projections r1
i and r1

l to H
1zt do not intersect when i ‰ l in t1, ¨ ¨ ¨ , δu. Indeed, it

follows from Lemma 3.4, and the construction of the rays r1
i, that r1

i X r1
l ‰ H if

and only if r1
i “ r1

l, and also if and only if their visual limits coincide. By definition,
the last assertion does not hold if i ‰ l. Finally, condition (b) is an immediate
consequence of Lemma 3.4, and condition (a) is immediate by construction. □

Proposition 3.5. Let H be a discrete subgroup of GL2pkq. Assume that H closes
enough umbrellas. Then, any finite index subgroup H0 of H closes enough umbrel-
las.

Proof. Since any finite index subgroup of H contains a normal subgroup, by Propo-
sition 3.3 we may assume that H0 is normal in H. By hypothesis there exists a
family of rays RH “ trju

γ
j“1 satisfying (a), (b), (c), (d) and (e) in Definition 3.1.

For all index j, we denote by ξj the visual limit of rj , and by tvnpξjqu8
n“1 the vertex

set of rj . So, we have P1pkq “ H ¨ tξju
γ
j“1.

Let tµiu
β
i“1 be a set of representatives of H0zP1pkq. Then, each µi can be written

as µi “ h ¨ ξj for some suitable index j “ jpiq and some suitable element h “ hpiq P

H. Thus, we define pri “ h ¨ rj , i.e. Vppriq “ tvnpµiqu8
n“1, where vnpµiq “ h ¨ vnpξjq.

So, we have
StabH0

pvnpµiqq “ H0 X hStabHpvnpξjqqh´1.

In particular, condition (d) for H0 follows immediately.
Now, we check condition (c) for H0. Indeed, assume that there exist v0 P Vpprkq,

w0 P Vpprlq and h0 P H0 such that h0 ¨v0 “ w0. Write v0 “ hpkq ¨v and w0 “ hplq ¨w,
with v P Vprjpkqq and w P Vprjplqq. Then h ¨ v “ w with h “ hplq´1h0hpkq P H,
which contradicts condition (c) for H. So, condition (c) for H0 follows.

Let G be the finite group H{H0. Let π : StabHpvnpµiqq Ñ G be the map
defined by composing the natural inclusion StabHpvnpµiqq Ñ H with the projection
H Ñ G. Since, for each n P Zě1 we have kerpπq “ StabH0

pvnpµiqq, we obtain from
condition (d) for H the chain of contentions

StabHpv1pµiqq{StabH0
pv1pµiqq Ď ¨ ¨ ¨ Ď StabHpvnpµiqq{StabH0

pvnpµiqq Ď ¨ ¨ ¨

Then, since G is a finite set, there exists t0 “ t0piq P Zě1 such that, for each n ě t0

(3.1) StabHpvnpµiqq{StabH0
pvnpµiqq “ StabHpvn`1pµiqq{StabH0

pvn`1pµiqq.

Recall that, since K is locally compact, we have that StabGL2pKqpvnpµiqq is com-
pact. Then, for each discrete subgroup D, for instance H or H0, we get that
StabDpvnpµiqq is finite. Then, Equation (3.1) implies that, for each n ą t0

|StabH0pvnpµiqq{StabH0pvn´1pµiqq| “ |StabHpvnpµiqq{StabHpvn´1pµiqq|.

In particular, the injective map

ψ : StabH0
pvnpµiqq{StabH0

pvn´1pµiqq Ñ StabHpvnpµiqq{StabHpvn´1pµiqq,

induced by the inclusion ι : StabH0
pvnpµiqq Ñ StabHpvnpµiqq, is a bijection. It

follows from condition (e) for H and the orbit-stabilizer relation that the set
13



StabHpvnpµiqq{StabHpvn´1pµiqq parametrizes all the neighboring vertices in t of
vnpµiq other than vn`1pµiq. So, since ψ is a bijection, we deduce that the set
StabH0pvnpµiqq{StabH0pvn´1pµiqq also parametrizes the aforementioned set of ver-
tices. In other words, up to replacing pri by the ray r1

i defined by the vertex set
tvnpµiqu8

i“t0`1, condition (e) follows for H0.
Now, note that the graph Hzt is the quotient of the graph H0zt by the finite

group G. In particular, the pre-image of the finite graph YH by the projection
H0zt Ñ Hzt is a finite graph. So, since pri ∖ r1

i is also a finite graph, we conclude
that condition (b) holds for H0. Condition (a) for H0 follows from definition. Thus,
we conclude the proof. □

Proof of Theorem 3.2. Let H0 be a common finite index subgroup containing in H
and H 1. By replacing H0 by a smaller subgroup if needed, we can assume that
H0 is normal in H 1. Then, it follows from Proposition 3.5 that H0 closes enough
umbrellas. By applying Proposition 3.3 to H0 and H 1, we conclude that H 1 also
closes enough umbrellas. □

As in §2.2, let k be the function field of a smooth, projective, geometrically
connected curve C defined over a field F. Let Q be a closed point in C, and set
U 1 “ C ∖ tQu. Denote by R1 the ring of regular functions on U 1. Let νQ be the
discrete valuation map defined from the closed point Q. Let us denote by kQ the
completion of k with respect to νQ. In the remaining of this section, we give a
detailed description of certain quotient of the Bruhat-Tits tree t “ tpkQq defined
from SL2 and kQ. In order to do this, let us introduce the following definition:

Definition 3.6. A C-order of maximal rank R is a locally free sheaf of OC-algebras
whose generic fiber is M2pkq. We say that a C-order D is maximal when it is
maximal with respect to inclusion. An Eichler C-order E is the sheaf-theoretical
intersection of two maximal C-orders.

Example 3.7. Let us denote byD0 the sheafD0 “ M2pOCq. ThenD0 is a maximal
C-order. Moreover D0pU 1q˚ “ GL2pR1q.

Corollary 3.8. Let H Ă GL2pkq be a group commensurable with GL2pR1q. Then
H closes enough umbrellas. In particular, for any Eichler C-order E, we have that
H̃ “ EpUq˚ and Γ̃ “ StabGL2pkqpEpUqq close enough umbrellas.

Proof. First, it follows from [Se80, Chapter II, §2.1- §2.3] that GL2pR1q closes
enough umbrellas. Then, it follows from Theorem 3.2 that any group H Ă GL2pkq

commensurable with GL2pR1q closes enough umbrellas.

Now, we claim that H̃ and Γ̃ are commensurable with GL2pR1q. Indeed, let

D be a maximal C-order containing E. Let us fix Γ̃0 “ StabGL2pkqpDpU 1qq. Note

that Γ̃0 and Γ̃ are commensurable, since they contain the respective finite index
subgroups H̃0 “ DpU 1q˚ and H̃, where H̃ is a finite index subgroup of H̃0 (cf. [A16,

Theorem 1.2]). Moreover, note that H̃0 belongs to the same commensurability class
as GL2pR1q, since DXD0 is a finite index Eichler C-order simultaneously contained
in D and D0. □

Remark 3.9. Theorem 3.2 and Corollary 3.8 can be easily extended to subgroups
of PGL2pkq.
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4. Preliminaries on divisors and vector bundles

Let C be a smooth, projective, geometrically connected curve over a finite field F.
By definition, a divisor on C is a formal finite linear combination n1P1 ` ¨ ¨ ¨ `nrPr

of distinct closed points P1, ¨ ¨ ¨ , Pr P C with integer coefficients n1, ¨ ¨ ¨ , nr P Z, for
some r P N. Obviously, the divisors on C form an abelian group under coefficient-
wise addition. We denote it by DivpCq. A divisor D “ n1P1 ` ¨ ¨ ¨ ` nrPr as above
is called effective, and written D ě 0, if each ni ě 0. If D1 and D2 are two divisors
such that D2 ´D1 is effective, then we write D2 ě D1 or D1 ď D2.

Each closed point P in C defines a discrete valuation νP on the global function
field k “ FpCq. Let kP be the completion of k at P , i.e. the completion of k
with respect to νP . Let OP be the ring of integers of kP , and fix a uniformizing
parameter πP P OP . Then, we define the degree of the point P as the degree of the
finite extension FpP q “ OP {πPOP of F. More generally, the degree of a divisor D “

n1P1 ` ¨ ¨ ¨ `nrPr as above is the integer degpDq :“ n1 degpP1q ` ¨ ¨ ¨nr degpPrq P Z.
Thus defined, the degree is a group homomorphism deg : DivpCq Ñ dZ, where d is
the gcd of degpQq with Q P C. Its kernel is denoted by Div0pCq. Moreover, every
element f P k˚ defines a divisor divpfq P Div0pCq. We define the Picard group
PicpCq as the quotient of DivpCq by the subgroup divpk˚q “ tdivpfq : f P k˚u.
Hence, one has the exact sequence:

(4.1) 0 Ñ JpFq Ñ PicpCq Ñ dZ Ñ 0,

where JpFq “ Div0pCq{divpk˚q, also denoted Pic0pCq, corresponds to the set of F-
points of the Jacobian variety of C (cf. [Se80, Chapter II, §2.2]). Since F is finite,
the group JpFq is also finite (cf. [Se80, Chapter II, §2.2]).

Let A be the affine line considered as an algebraic variety. A vector bundle on
C is a variety which “locally looks like a direct product of C with a vector space”.
Formally, a vector bundle of rank s over C is an algebraic variety B over F equipped
with a morphism π : B Ñ C such that there exists a covering C “

Ť

iPI Ui by Zariski
open sets satisfying

(a) For each i P I there exists an isomorphism ϕi : π
´1pUiq Ñ UiˆAs satisfying

that the composition π ˝ϕ´1
i : Ui ˆAs Ñ Ui is the projection onto the first

coordinate, and
(b) For each i, j P I there exists an psˆsq-matrix Aij , whose entries are regular

functions in Ui X Uj , satisfying that the composition

ϕij : ϕj ˝ ϕ´1
i |pUiXUjqˆAs : pUi X Ujq ˆ As Ñ pUi X Ujq ˆ As,

takes the form ϕijpx, vq “ px,Aijpxqvq.

We call the tuple pUi, ϕi, ϕijq a trivialization of the respective vector bundle. If
s “ 1, we say that pB, πq is a line bundle. Let pB, πq be a vector bundle of rank
s with trivialization pUi, ϕi, ϕijq. Define pB1, π1q, s1 and pU 1

i , ϕ
1
i, ϕ

1
ijq analogously.

A morphism of vector bundles f : B Ñ B1 is a C-morphism, i.e. such that the
following diagram commutes
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B

π
��

f // B1

π1

��
C

,

and satisfying that, for any i P I and i1 P I 1, the algebraic morphism π´1pUiXUi1 q Ñ

π´1pfpUi X U 1
iqq has the form id ˆ fij , for some linear map fij : As Ñ As.

For one-dimensional vector bundles, elements of the Picard group PicpCq corre-
spond to isomorphism classes of line bundles over C.

For one-dimensional vector bundles, elements of the Picard group PicpCq corre-
spond to isomorphism classes of line bundles over C. This bijection is induced by
the following map. Let D P DivpCq and let LD be the sheaf defined in every open
set U Ď C by

(4.2) LDpUq “ tf P k : divpfq|U `D|U ě 0u .

Then, we can show that LD is a locally free sheaf of rank one. Thus, it defines
a line bundle on C. If we define a group structure on the set of classes via tensor
products, then the previously defined map is actually a group isomorphism.

Naturally associated to a line bundle LD we can define the maximal C-order DD

(cf. Definition 3.6) as follows

(4.3) DD “ EndOC

ˆ

OC

L´D

˙

“

ˆ

OC LD

L´D OC

˙

.

In this thesis we will study a special family of intersections of two maximal orders
as above. This family consists in objects of the form

(4.4) ED “ D0 X DD.

More specifically, one of our main goals is to understand the quotient graph tD “

HDztpkP8
q, where HD “ EDpC ∖ tP8uq. See Theorems 1.4, 1.5, 1.6 and 1.7 for

more details.

4.1. An interpretation of the Riemann-Roch Theorem. Let D be a divisor
on C, and let U be a open affine set. The Rieman-Roch Theorem states that
dimFpLDpUqq is bounded by a constant depending on the degree of D and the genus
g of C (cf. [St93, §1, Theorem 1.5.17]). Indeed, we have the following statements:

‚ dimFpLDpUqq ě degpDq ` 1 ´ g, and
‚ if degpDq ě 2g ´ 1, then dimFpLDpUqq “ degpDq ` 1 ´ g.

Let P8 be a fixed closed point in C, and let R be the ring of functions that
are regular outside P8. Then R is a Dedekind domain whose quotient field is k.
Let ν : k Ñ Z Y t8u be the discrete valuation induced by P8. We recall some
elementary properties, which follow immediately from the product formula and the
hypothesis that C is geometrically connected (which implies that F is algebraically
closed in k):

‚ ν8pxq ď 0, for all x P R∖ t0u,
‚ for any x P R, we have ν8pxq “ 0 if and only if x P F˚, and
‚ R˚ “ F˚.
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Each closed point P P C other than P8 corresponds to a prime ideal IpP q “

tx P R : νP pxq ě 1u of R, and conversely. Furthermore, every non-zero fractional
R-ideal J has a decomposition J “

ś

P‰P8
IpP qnP , and an associated divisor

DJ “
ř

P‰P8
nPP . We define degpJq :“ degpDJq. For any m P N, we define

Jrms :“ L´DJ`mP8 pU0q “ tx P J : νpxq ě ´mu ,

where U0 “ SpecpRq “ C ∖ tP8u. We denote by g the genus of C. Then, by the
Riemann-Roch Theorem, the set Jrms is a finite-dimensional vector space over F,
and when degp´DJ `mP8q ě 2g ´ 1 we have

dimFpJrmsq “ degp´DJ `mP8q ` 1 ´ g.

It follows from a simple computation that

degp´DJ `mP8q “ ´ degpJq `m degpP8q,

whence we finally get,

(4.5) dimFpJrmsq “ ´degpJq `mdegpP8q ` 1 ´ g,

when mdegpP8q ě degpJq ` 2g ´ 1. In all that follows, by abuse of language, we
refer to Equation (4.5) as the Riemann-Roch Theorem.
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5. Spinor class fields

In this section we introduce the basic definitions and results about completions,
spinor genera and spinor class fields of orders. See [A12] for details.

We denote by |C| the set of closed points in the smooth projective geometrically
connected curve C, and we fix P8 P |C|. Let U0 be the affine open set C ∖ tP8u.
For every point P P |C|, we denote by kP the completion at P of the function field
k “ kpCq, and by OP the ring of integers of the former. For any open set U Ď C, we
define the adèle ring AU of U as the subring of

ś

PP|U | kP containing all elements

a “ paP qP for which all but a finite number of coordinates aP belong to OP . We
also define the idèle group IU as the group of invertible adèles A˚

U . We write A “ AC
and I “ IC .

A C-lattice or C-bundle in a finite dimensional k-vector space V is a locally free
subsheaf of the constant sheaf V . For any sheaf of groups Λ on C we denote by
ΛpUq its group of U -sections. In particular, this convention applies to C-lattices.
By definition, the completion at P of Λ, denoted ΛP , is the topological closure of
ΛpUq in VP :“ V bk kP for an arbitrary affine open subset U containing P . Thus
defined, ΛP is independent of the choice of U . Note that, for every affine open
subset U Ď C, the OCpUq-module ΛpUq is an OCpUq-lattice. The same property
holds for orders. As in the affine context, every C-lattice is determined by its local
completions ΛP , where P runs over the set of closed points |C|, in the following
sense:

(a) For any two lattices Λ and Λ1 in V , we have ΛP “ Λ1
P for almost all P ,

(b) if ΛP “ Λ1
P for all P , then Λ “ Λ1, and

(c) every family tΛ2pP quP of local lattices satisfying Λ2pP q “ ΛP for almost
all P is the family of completions of a global lattice Λ2 in V .

In particular, the same results hold for orders. We define the adelization WA of a
finite dimensional vector spaceW over k asWA “ W bkA. This is a k-vector space
isomorphic to AdimkW . In particular, this definition applies to W “ EndkpV q. We
also define the adelization of a lattice Λ by ΛA “

ś

PP|C| ΛP , which is an open and

compact subgroup of VA. For every C-lattice Λ and every element

a P EndApVAq “
`

EndkpV q
˘

A,

the adelic image L “ aΛ is the unique C-lattice satisfying LA “ aΛA. To each
C-lattice Λ in k2, we associate the C-order DΛ “ EndOX

pΛq in the matrix algebra
M2pkq, which is defined on every open set U Ď C by

DΛpUq “

!

a P M2pkq

ˇ

ˇ

ˇ
aΛpUq Ď ΛpUq

)

.

This is a maximal C-order in M2pkq (cf. Definition 3.6). Moreover, every maximal
C-order in the two-by-two matrix algebra equals DΛ, for some C-lattice Λ in k2. In
particular, if we fix a maximal C-order D, then any other maximal C-order in M2pkq

is equal to D1 “ aDa´1, for some a P GL2pAq. In general, if we fix an C-order D of
maximal rank, then we can define the genus genpDq of D as the set of all C-orders
aDa´1, for a P M2pAq˚. So, the previous statement is equivalent to the fact that
the set of maximal C-orders is a genus, which we denote by O0.
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Let D be a C-order of maximal rank, i.e. of rank 4. Let U be either an affine
open set of C or the full set C. We define the U -spinor class field of D as the field
corresponding, via class field theory, to the subgroup k˚HpD, Uq Ď I “ A˚, where

(5.1) HpD, Uq “

!

detpaq|a P M2pAq˚, aDpV qa´1 “ DpV q, @ V
˝
Ď U

)

.

The symbol
˝
Ď above denotes an open subset. This field depends only on the genus

O “ genpDq of D, and we denote it by ΣpO, Uq. When U “ C we simplify the
notation by using Σ “ ΣpOq. Let I Ñ GalpΣ{kq, t ÞÑ rt,Σ{ks be the Artin map
on the idèle group (cf. [Ne99, Chapter VI, §5, p. 387]). There exists a well-defined
distance map ρ : O ˆ O Ñ Gal

`

Σ{k
˘

, given by ρpD,D1q “ rdetpaq,Σ{ks, where

a P GL2pAq is any adelic element satisfying D1 “ aDa´1. The distance map has a
multiplicative property, in the sense that, for any tuple pD,D1,D2q P O3, it satisfies
ρpD,D2q “ ρpD,D1qρpD1,D2q. The kernel of ρ consists of the pairs pD,D1q such
thatDpUq andD1pUq are GL2pOCpUqq-conjugate for every affine open subset U Ď C.
In the case of maximal orders, the map defined above is ρ0 : O2

0 Ñ Gal
`

ΣpO0q{k
˘

,
and it can be characterized as follows: The image of ρ0 for a pair pD,D1q of maximal
orders is given by the formula ρ0pD,D1q “ rrDpD,D1q,ΣpO0q{kss, where D ÞÑ

rrD,ΣpO0q{kss is the Artin map on divisors and the divisor DpD,D1q is defined in
Equation (6.1).
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6. Eichler orders and grids

In this section notation is as in §5. In the local algebra M2pkP q, any two
OP -maximal orders are simultaneously GL2pkP q-conjugate to the orders DP “
ˆ

OP OP

OP OP

˙

and D1
P “

ˆ

OP πd
POP

π´d
P OP OP

˙

for some d P Zě0, where πP is a local

uniformizing parameter in kP . So, we define the local distance dP between max-
imal orders in M2pkP q by taking dppDP ,D

1
P q “ d, where d is as above. As we

introduce in Definition 3.6, an Eichler C-order, or simply an Eichler order, is the
intersection of two maximal C-orders. This is a local definition in the sense that
DP X D1

P “ pD X D1qP for every pair of orders. Moreover, locally, for any Eichler
order EP there exists a unique pair of maximal orders whose intersection is EP . The
level of a local Eichler order is, by definition, the distance between the maximal
orders defining it. Globally, there exists a well-defined distance map on the set of
maximal C-orders, whose image on a pair pD,D1q is the effective divisor

(6.1) D “ DpD,D1q “
ÿ

PP|C|

dP pDP ,D
1
P qP.

In particular, there exists a global level λpEΛ,Λ1 q defined, on an Eichler C-order
EΛ,Λ1 “ DΛ X DΛ1 , as the distance DpDΛ,DΛ1 q. A useful property of the level
function is that two local Eichler orders are GL2pkP q-conjugate if and only if their
local levels coincide. This property can be interpreted in terms of genera by saying
that two Eichler C-orders belong to the same genus precisely when they have the
same global level. So, for any effective divisor D, there exists a genus of Eichler
C-orders of level D, which is denoted by OD.

It follows, from the characterization of the Bruhat-Tits tree in terms of maximal
orders (cf. §2), that there exists a bijective map between the set of local Eichler
orders E of level κ and the set of finite lines p of length κ in the Bruhat-Tits tree.
Formally, a local Eichler order E corresponds to the finite line p “ spEq whose
vertices are the maximal orders containing E. Let E be an Eichler C-order of level
D “

ř

P αPP . Let us denote by SpEq the product of finite lines SpEq “
ś

P spEP q,
where P runs over the set of places at which αP ą 0. This is called the grid of
E. It follows from Property (c) in §5 that the set of maximal C-orders containing
E corresponds to the vertex set in SpEq. Moreover, it is easy to see that this
correspondence is compatible with the action of PGL2pkq on Eichler C-orders by
conjugation. To compare different orders, we fix an effective divisor D “

ř

P αPP ,
and a finite set of places T Ě SupppDq. Denote by EichpD,T q the set of Eichler C-
orders of level D satisfying EQ “ M2pOQq for Q R T . Then, the grid corresponding
to an Eichler C-order in EichpD,T q can be seen naturally as a subcomplex of the
product of Bruhat-Tits trees

ś

PPT tpkP q. Any grid of the form SpEq, for E P

EichpD,T q is called a concrete D-grid. Note that the group GT “ GL2pOCpC∖T qq

acts on the set of concrete D-grids by conjugation. Indeed, we can define this action
as the extension of the conjugacy action of GT on the set of maximal C-orders to
D-grids, which is valid since GT acts simplicially on each local tree. The orbits of
concrete D-grids by this action are called abstract D-grids. Any representative of
an abstract grid is called a concrete representative. Note that all these definitions
depend on the set T . This is why it is important to consider the following result.
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Proposition 6.1. [ABp, Proposition 3.1] Let D be an effective divisor. Then,
there exists a finite set of places T containing SupppDq such that every PGL2pkq-
conjugacy class of Eichler C-orders contains a representative in EichpD,T q.

Let Q be a closed point of C, and write D “ D1 ` αQQ, where D1 is supported
away from Q. Then, a concrete D-grid SpEq is a paralellotope having two concrete
D1-grids as opposite faces. These opposite faces are called the Q-faces of the D-grid
SpEq. We say that two concrete D1-grids S and S1 are Q-neighbors if there exists

a concrete D-grid S̃, with D “ D1 ` Q and Q R SupppD1q, such that S and S1 are

the Q-faces of S̃. Let D be a maximal C-order corresponding to a vertex v in S.
Then, there exists one and only one Q-neighbor v1 among the vertices of S1. We
call it the Q-neighbor of v in S̃.

As an intermediate step to prove Theorem 1.4, we characterize a quotient graph
of t other than tD “ HDzt. In order to introduce this quotient structure, fix D an
effective divisor, and let OD be the genus containing all Eichler C-orders of level
D. Let Q P |C| be a closed point not contained in SupppDq. Let V0 be the affine
open set C ∖ tQu. Then, any order in OD is maximal at Q, i.e. its completion
at Q is maximal. For any E P OD, we define the C-graph CQpEq “ Γzt, where
t “ tpkQq, and Γ is the stabilizer of EpV0q in PGL2pkq. Note that, it follows
from Corollary 3.8 that CQpDq is combinatorially finite. Two Eichler C-orders E
and E1 such that ρpE,E1q belongs to the group generated by rrQ,ΣpODq{kss define
isomorphic quotient graphs. Indeed, it follows from [A12, §2] that, if ρpE,E1q P

xrrQ,ΣpODq{kssy, then EpU0q and E1pU0q are GL2pkq-conjugate. In this case we
write E „ E1. We denote by SppOD, Qq the quotient set of OD by the previous
equivalence relation. The classifying graph CQpODq is the disjoint union of the
finitely many C-graphs corresponding to all elements in SppOD, Qq. In particular,
it is combinatorially finite.

All definitions and conventions introduced in §2 apply to CQpODq by adapting
them to the context of disjoint union of graphs. In particular, by the cusp set of
CQpODq we mean the disjoint union of the cusp sets of all connected components
of CQpODq. In the following section we study the combinatorial structure of the
classifying graphs of Eichler orders. With this in mind, we make frequent use of
the next result:

Proposition 6.2. [ABp, Proposition 3.2] Let D be an effective divisor supported
away from the placeQ. The vertices of the classifying graph CQpODq are in bijection
with the abstract D-grids, while its pairs of mutually reverse edges are in bijection
with the abstract pD ` Qq-grids. The endpoints of an edge are the vertices of
CQpODq corresponding to the Q-faces of the grid corresponding to that edge.

We finish this section by recalling some results about the spinor class field asso-
ciated to the genus of Eichler C-orders of level D. As in §1 and §5, let U0 “ CztP8u

be an affine open set. Let D be a divisor, which we write as D “
řr

i“1 niPi, where
Pi ‰ P8. The spinor class field ΣD “ ΣpODq (resp. ΣpOD, U0q), for Eichler C-
orders of level D, is the maximal subfield of Σ0 “ ΣpO0q (resp. ΣpO0, U0q) splitting
at every place Pi for which ni is odd. See [A13, Theorem 1.2] for more details.

Proposition 6.3. Let J “ ti : ni is oddu. The Galois group GalpΣD{kq is isomor-
phic to the abelian group PicpCq{p2PicpCq ` xPj : j P Jyq. Using the same notation,

GalpΣpOD, U0q{kq is isomorphic to PicpCq{p2PicpCq ` xP8y ` xPj : j P Jyq.
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Proof. Let L{F be a finite abelian extension (i.e. Galois with abelian Galois group)
of global fields. It follows from [Ne99, Chapter VI, §6, Theorem 6.1 and Corollary
6.6] that there exists an isomorphism from GalpL{F q to IF {F˚HpLq, where IF is
the idèle group of F , and HpLq :“ tNL{F paq : a P ILu is the kernel of the Artin
map, which satisfies the following properties:

(i) Q is unramified in L{F if and only if O˚
Q Ď F˚HpLq.

(ii) Q splits completely in L{F if and only if F˚
Q Ď F˚HpLq.

Apply this when F is the global function field k “ FpCq and L is ΣD. Recall that
HpΣ0q equals HpM2pOCq, Cq as in Equation (5.1). Then, since the localization of
M2pOCq at Q is M2pOQq, it is easy to see that k˚2

Q O˚
Q Ď HpΣ0q, for all closed points

Q P C. In particular, since ΣD Ď Σ0, we obtain k˚2
Q O˚

Q Ď HpΣ0q Ď HpΣDq. So,

if we write Ik,8 :“
ś

QPC O˚
Q, then I2kIk,8 is contained in k˚HpΣDq. And, since

Ik{k˚Ik,8 – PicpCq, the Galois group of ΣD{k is a quotient of PicpCq{2PicpCq.
Let us write epQq for the idèle whose coordinate at Q is πQ and any other

coordinate equals one. Since ΣD{k splits at Pj , with j P J , we deduce from (ii)
that all epPjq, with j P J , belong to k˚HpΣDq. In particular, we obtain the inclusion

k˚I2kIk,8xepPjq : j P Jy Ď k˚HpΣDq.

Furthermore, the maximality condition on ΣD implies equality. We conclude that

GalpΣD{kq –
Ik

k˚I2kIk,8xepPjq : j P Jy
–

PicpCq

2PicpCq ` xPj : j P Jy
.

Moreover, we can analogously prove that G “ GalpΣpOD, U0q{kq is isomorphic
to PicpCq{p2PicpCq ` xP8, Pj : j P Jyq, by noting that to compute G we no longer
need a condition at the place P8, so the corresponding local stabilizer must be
replaced by the full local group GL2pkP8

q. □

Moreover, it follows from [A16, Proposition 6.1] that the corresponding distance
function ρD on the genus of Eichler C-orders of level D is related to ρ0 through
restriction, i.e.

(6.2) ρDpEΛ,Λ1 ,EL,L1 q “ ρ0pDΛ,DLq

ˇ

ˇ

ˇ

ΣpDq
,

for any four C-lattices Λ,Λ1, L and L1 (cf. §5).
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7. On quotient graphs of Eichler groups

The objective of this section is to prove Theorem 1.4. To do so, we extensively
use the following remark. As we said in §2, every subgroup of GL2pkP8

q acts on
t via its image in PGL2pkP8

q. In particular, the topological space tD equals the
quotient of t “ tpkP8

q by the projective image PHD of

HD “

"ˆ

a b
c d

˙

P GL2pRq : c ” 0 pmod IDq

*

,

where ID is the R-ideal defined as ID “ L´DpU0q “ L´DpC ∖ tP8uq.

We start this section by presenting a proof of Theorem 1.4 assuming the following
result, which is implied by Proposition 7.24 below.

Proposition 7.1. The number of cusps of any connected component of CP8
pODq

is the same, and it equals

(7.1) cpDq “ αpDqr2PicpCq `
@

Pa1
, ¨ ¨ ¨ , Pau

, P8

D

: xP8ys,

where

αpDq “ 1 `
1

q ´ 1

r
ź

i“1

´

qdegpPiqt
ni
2 u ´ 1

¯

,

and Pa1 , ¨ ¨ ¨ , Pau are the closed points in C whose coefficients in D “
řr

i“1 niPi are
odd.

7.1. A proof of Theorem 1.4. As we just said, we can replace HD by its image
PHD in PGL2pkq to compute the cusp number of tD. First, we prove inequality
(1.2). Set Γ “ StabPGL2pkqpEDpU0qq. On one hand, it follows from Proposition 7.1
that the cusp number of Γzt is equal to cpDq. On the other hand, it follows from
[A16, Theorem 1.2] that

rΓ : PHDs “
2r|gp2q|

rΣpO0, U0q : ΣpOD, U0qs
,

where gp2q is the maximal exponent-2 subgroup of PicpRq. So, we obtain from
Proposition 6.3,

(7.2) rΓ : PHDs “
2r|gp2q|

r2PicpCq ` xPa1 , ¨ ¨ ¨ , Pau , P8y : 2PicpCq ` xP8ys
.

Recall now that, by Corollary 3.8, the set of cups of tD (resp. Γzt) is parametrized by
P1pkq{PHD (resp. P1pkq{Γ). Then, the cusp number of tD cannot exceed cpHDq “

cpDqrΓ : PHDs and inequality (1.2) follows. Now, we assume that each ni is odd
and gp2q is trivial. Then, we have to prove that the cusp number of tD is exactly
cpHDq. This is a consequence of the following lemma.

Lemma 7.2. Assume that each ni is odd and that gp2q is trivial. Then, there are
exactly rΓ : PHDs cusps in tD with the same image in Γzt.

Proof. Let Θ “ Θpηq be the set of cusps of tD whose image in Γzt is the cusp η.
Then, CardpΘq is strictly less than rΓ : PHDs precisely when there exists an element
g P Γ{PHD stabilizing an element of Θ. Since the set of cups of tD (resp. Γzt) is
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(A)

‚‚‚ ‚‚ ‚

‹

‹

‹

‹

‹

‹

‹

‹

(B)

‚ ‚DB

DB`P8 S`

‚ ‚

‚ ‚
S

‚ ‚

Figure 1. Figure (A) shows the Bruhat-Tits tree tpkPi
q, where

pi corresponds to the finite central line and where the middle edge
of pi is represented by a cursive edge. Figure (B) shows a concrete
pD ` P8q-grid, or equivalently two P8-neighboring D-grids.

parametrized by P1pkq{PHD (resp. P1pkq{Γ), if we prove that, for any s P P1pkq,
we have

(7.3) StabΓpsq Ă PHD,

then, the result follows. Let g P Γ and assume that g stabilizes some class of rays
corresponding to s P P1pkq. By definition, gEDpU0qg´1 “ EDpU0q. So, as we saw
in §6, g acts on the concrete D-grid SD associated to ED as an automorphism. In
particular, we have

(1) g P StabppD0qQq for every Q ‰ P1, ¨ ¨ ¨ , Pr, P8, and
(2) gpD0qPi

g´1 “ pDϵiDqPi
with ϵi P t0, 1u for any Pi in the support of D, i.e.,

g can either pointwise fix the line in tpkPi
q joining pD0qPi

with pDDqPi
, or

flip it.

If some ϵi “ 1, then g acts on ti “ tpkPi
q without fixing any point of the finite path

pi “ spEpU0qPiq whose length is odd. Let tdi be the topological space obtained from
ti by removing the central edge of pi. Then, the action of g on ti exchanges the two
connected components of tdi . See Figure 1(A). We conclude that g fixes no visual
limit in ti, whence it fixes no element in P1pkq, which contradicts the hypothesis on
g. On the other hand, if every ϵi “ 0, we have

g P Γ0 “ StabPGL2pkqpD0pU0qq X StabPGL2pkqpDDpU0qq “ StabPGL2pkqpEDpU0qq.

We claim that Γ0{PHD ãÑ gp2q, and since gp2q is trivial, we get g P PHD, which
concludes the proof.

To prove the claim, we follow [A16, Theorem 1.2]. For E P t0, Du we denote
by ΛE the OCpU0q-lattice satisfying DEpU0q “ EndOCpU0qpΛEq. Let h P Γ0 be
an arbitrary element, and fix h0 P GL2pkq a lift of h. Then, by definition, we
get h0 P StabGL2pkqpDEpU0qq, for E P t0, Du. Then, there exists bE P IU0 such
that h0ΛE “ bEΛE (recall §5). By taking determinant in the preceding equality,
we deduce that b2EOCpU0q “ detph0qOCpU0q, whence we deduce b :“ b0 “ bD,
since OCpU0q is a Dedekind domain. Recall that PicpAq is isomorphic to the ideal
class group IU0

{pk˚
ś

QP|U0| O˚
Qq. Moreover, note that the class rbs of b “ bph0q in

PicpAq only depends on the class h “ rh0s P PGL2pkq. Indeed, if we change the
representative h0 of h by λh0, then we obtain rbpλh0qs “ rbph0q ¨ divpλqs “ rbph0qs.
In all that follows we denote by rbs the class of any b “ bph0q, which only depends
on h. Let us define Ξ : Γ0 Ñ PicpAq as the function satisfying Ξphq “ rbs P PicpAq.
On one hand, note that 2Ξphq “ rb2s “ rdivpdetph0qqs “ 0. In particular, we have
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ImpΞq Ď gp2q. On the other hand, if Ξphq “ 0, then b “ divpλq, for some λ P k˚.
This implies that h0λ

´1 P AutpΛEq “ DEpU0q˚, for all E P t0, Du. Thus, we
get h0λ

´1 P EDpU0q˚, whence h P PHD. Hence, we conclude Γ0{PHD injects into
gp2q. □

This concludes the proof of Theorem 1.4. In the remainder of this section, we
prove Proposition 7.24, which is a stronger version of Proposition 7.1. In §7.2,
we study vertices in the classification graph CP8

pODq. To do so, we present the
concept of semi-decomposition datum of D-grids. Then, in §7.3, we analyze the
topological structure of the classification graph. Specifically, we define and charac-
terize a ramified covering CP8

pODq Ñ CP8
pO0q via the characterization of vertices

in CP8
pODq obtained in §7.2. Finally, we use what is known about the classifying

graph CP8
pO0q, which is summarized in the following result.

Theorem 7.3. [A14, Theorem 1.2] The classifying graph CP8
pO0q is combinato-

rially finite, and it has exactly PicpRq – PicpCq{xP y cuspidal rays. The vertices
corresponding to conjugacy classes of the form rDDs, for some divisor D on C, are
located in the cuspidal rays of CP8

pO0q. Conversely, almost every vertex in a cus-
pidal ray rσ of CP8

pO0q, with σ P PicpAq, corresponds to a GL2pkq-conjugacy class
of the form rDB`nP8

s, where B “ Bpσq depends only on σ.

In Theorem 7.3 and hereafter, by “almost every” we mean all but finitely many.

7.2. On the decomposition of grids. Here the main goal is to establish and
prove a “decomposition criterion” for grids, and subsequently for Eichler orders.

We fix the following notation for the rest of this section. Let D be an effective
divisor, and write D “

řr
i“1 niPi where the points P1, ¨ ¨ ¨ , Pr, P8 are all different.

Denote by dD the degree of D. Using Proposition 6.1 we fix a finite set of places
T such that every every GL2pkq-conjugacy class of Eichler C-orders contains a
representative in EichpD,T q.

For any pair of divisors pB,B1q such that B`B1 is effective, consider the Eichler
C-order

ErB,B1s :“
˜

OC L
´B1

L
´B OC

¸

,

whose level is B ` B1. Any GL2pkq-conjugate of such an order is called split. We
denote an abstract grid by S, and we often choose a representative of this class by
writing S P S, or any verbal analog.

Definition 7.4. For any basis β Ă k2 we denote by Apβq the matrix whose columns
are the vectors in β. A maximal C-order D is called β-split if ApβqDApβq´1 “ DE ,
for some divisor E. We say that a D-grid S is β-split if every vertex S is β-split as
an order. This is equivalent to

(7.4) ApβqSApβq´1 “ S pE rB,B `Dsq ,

for some divisor B. A corner of a D-grid S is a vertex of S having a unique P -
neighbor, for each P in the support of D. Let D1 ď D be an effective divisor. A
D1-corner of S is a D1-grid S1 Ă S containing a corner of S.

Definition 7.5. A semi-decomposition datum of S is a 3-tuple pβ,B,D1q, where:

(a) β is a basis of k2,
(b) B and D1 are two divisors on C satisfying 2D ě 2D1 ě D,
(c) there exists a corner of S of the form v0 “ Apβq´1DBApβq,
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(d) there is a β-split D1-corner ΠSD Ď S whose set of vertices is

VpΠSDq “
␣

Apβq´1DEApβq : B ď E ď B `D1
(

,

(e) no vertex outside ΠSD is β-split.

If D1 “ D, then pβ,B,D1q is called a total decomposition datum. The basis β is
called the semi-decomposition basis of S. The subgrid ΠSD is called the decomposed
subgrid of S associated to the datum. The degree of a semi-decomposition datum
pβ,B,D1q is the degree of B.

Example 7.6. Assume thatD is multiplicity free. Then, condition (b) in Definition
7.5 implies that any semi-decomposition datum of a concrete D-grid is a total
decomposition datum.

Note that the pair of divisors pB,D1q in the previous definition depends only on
the GL2pkq-conjugacy class ofD-grids. Indeed, if pβ,B,D1q is a semi-decomposition
datum of S, and S “ GS1G´1 with G P GL2pkq, then pβ1, B,D1q is a semi-
decomposition datum of S1, where β1 “ Gpβq. Furthermore, we have Apβ1q “

GApβq. This allows us to extend the definition of semi-decomposition data to ab-
stract D-grids. However, in order to (partially) extend the notion of degree, we
need the following result.

Lemma 7.7. Let S be a concrete D-grid. Let pβ,B,D1q and pβ˝, B˝, D˝
1

q be two
semi-decomposition data of S with positive degree. Then B and B˝ are linearly
equivalent.

Proof. Set A “ Apβq, A˝ “ Apβ˝q, and let G be the base change matrix from β
to β˝. We start by showing that we can restrict our proof to the context where
D is multiplicity free. Indeed, A˝SpA˝q´1 is the image of the concrete D-grid
ASA´1 by the conjugation map induced by G. Let us write D “

řr
i“1 niPi,

and let tPb1 , ¨ ¨ ¨ , Pbsu be the set of such points with an odd coefficient ni. Set
Dc “ Pb1 ` ¨ ¨ ¨ ` Pbs . Let ∆ be the subcomplex of S whose vertex set is

Vp∆q “
␣

A´1DEA : B0 ď E ď B0 `Dc

(

,

where B0 “ B `
řr

i“1tni

2 uPi. Note that the intersection of the maximal C-orders
corresponding to the vertex set of ∆ is an Eichler C-order of level Dc. Equivalently,
we get that ∆ is a concrete Dc-grid. Since PGL2pkq acts simplicially on each grid,
we get GA∆A´1G´1 “ A˝∆pA˝q´1. Moreover, we have that

Vp∆q “
␣

pA˝q´1DEA
˝ : B˝

0 ď E ď B˝
0 `Dc

(

,

where B˝
0 “ B˝ `

řr
i“1tni

2 uPi. Thus, we conclude that the Dc-grid ∆ has two in-
duced positive degree total-decomposition data pβ,B0, Dcq and pβ˝, B˝

0 , Dcq. Note
that if B0 and B˝

0 are linearly equivalent, then B and B˝ are also. Therefore, by
replacing S by ∆, we can assume that D is multiplicity free.

Now, assume that D is multiplicity free. In this case, every vertex in ASA´1

and A˝SpA˝q´1 correspond to a split maximal C-order (cf. Example 7.6). Set
DB2 “ GDBG

´1. Then one of the following holds:

(1) B2 is principal,

(2) L´B2

pCq “ t0u, or

(3) LB2

pCq “ t0u.
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If B2 is principal, then DB2 pCq “ M2pFq. On the other hand, since degpBq ą 0,

we obtain L´BpCq “ t0u. Thus, we conclude DBpCq “
ˆ

F˚ LB
pCq

0 F˚

˙

, which is not

a simple algebra. So, the first case is impossible.
Now, assume the second case, i.e. L´BpCq “ L´B2

pCq “ t0u. Then, it follows
from [A14, §4, Proposition 4.1] that one of the following conditions holds:

(a) G “
ˆ

x y
0 z

˙

and B ´B2 “ divpx´1zq, or

(b) G “
ˆ

0 x
z 0

˙

and B `B2 “ divpx´1zq.

In case (a), for any divisor 0 ď E ď D we have that

(7.5) GDB`EG
´1 Ď

˜

OC ´ yz
´1

L
´B´E

J

xz
´1

L
´B´E OC ` yz

´1
L

´B´E

¸

,

for some invertible sheaf J, where the other coefficients are optimal. Since

xz´1L´B´E “ L´B´divpxz´1
q´E “ L´B2

´E ,

and GDB`EG
´1 is a split maximal C-order, we deduce that GDB`EG

´1 “ DB2`E ,
for any divisor 0 ď E ď D. This implies that B2 “ B˝, and then B and B˝ are
linearly equivalent.

In case (b), for any divisor 0 ď E ď D we have that

(7.6) GDB`EG
´1 “

˜

OC xz
´1

L
´B´E

zx
´1

L
B`E OC

¸

.

Then, it follows directly from the previous equation that GDB`EG
´1 “ DB2´E ,

for any divisor 0 ď E ď D. Therefore B2 “ B˝ `D, whence B is linearly equivalent
to ´B˝ ´ D. But, the last condition contradicts the hypotheses of positive degree
on B and B˝. We conclude that only case (a) can hold.

Finally, if LB2

“ t0u we can replace B2 by ´B2 in the preceding argument. □

Definition 7.8. Let S be an abstract D-grid. A semi-decomposition datum of S
is a pair pB,D1q, where pβ,B,D1q is a semi-decomposition datum of some concrete
representative S P S. When D1 “ D, we say that pB,D1q is a total decomposition
datum of S. When degpBq ą 0, the degree of this datum is by definition degpBq,
which is well-defined by Lemma 7.7.

Let β “ te1, e2u be a basis of k2. We say that a two-dimensional vector bundle
L on C is β-split if L “ LBe1 ‘ LCe2, where B and C are divisors on C. Then, a
maximal C-order DΛ splits in the base β if and only if at least one (and therefore
every) vector bundle in the class rΛs is β-split. Moreover, either condition is equiv-

alent to
ˆ

1 0
0 0

˙

,
ˆ

0 0
0 1

˙

P DΛpCq. More generally, an Eichler C-order is split

precisely when it contains a non-trivial idempotent as a global section, or equiva-
lently, when the corresponding grid has a total-decomposition datum. In fact, we
have a more precise result that follows immediately from the current paragraph and
[ABp, Theorem 1.2]:

Proposition 7.9. Let E be an Eichler C-order of level D. Then the following
statements are equivalent:

(1) E is split,
(2) S “ SpEq has a total-decomposition datum,
(3) The ring of global sections EpCq Ď M2pkq contains a non trivial idempotent

matrix,
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(4) There exists a nontrivial idempotent matrix of M2pkq contained in the ring
of global sections DpCq for every maximal C-order D corresponding to a
vertex of S.

Assume moreover that D is multiplicity free. Then, for almost all conjugacy classes
in OD, the orders in this class are split.

Example 7.10. Assume that D “ 0. Let Q be a closed point on C, and set
R1 “ OCpC ∖ tQuq. Then, each concrete D-grid consists in precisely one vertex,
which represents a maximal C-order. According to Theorem 7.3, almost all abstract
0-grids admit a total decomposition datum, and these 0-grids correspond to vertices
located in a finite union of rays in CQpO0q, which are parametrized by PicpR1q –

PicpCq{xQy. Moreover, almost every vertex in a cuspidal ray rσ of CP8
pO0q, with

σ P PicpAq, corresponds to a GL2pkq-conjugacy class of the form rDB`nP8
s, where

B “ Bpσq depends only on σ. In particular, given a divisor D0, almost all classes
of maximal C-orders have a representative of the form DE with degpEq ą degpD0q.

The rest of this sub-section is exclusively devoted to proving the following propo-
sition, which generalizes the previous example.

Proposition 7.11. Let D be an effective divisor and dD “ degpDq. Then, for
almost every abstract D-grid S there exists a semi-decomposition datum pB,D1q of
degree d for S with d ą dD. Moreover, D1 is unique and the class of B in PicpCq is
unique. In particular, d is unique.

In order to prove Proposition 7.11 we extensively work with some subgrids de-
fined by a certain stratification, which we formalize in Definition 7.12 and Lemma
7.13.

Definition 7.12. Let S be a concrete D-grid.
We define the Pi-axis SpPiq Ď S as the finite line in S whose vertex set is

tvju
ni
j“0, where v0 is as in Definition 7.5, and where vj is Pi-neighbor of vj`1,

whenever 0 ď j ď ni´1.
Write D “ D0 ` nQ, with D0 supported away from Q and n ą 0. Then, the

vertex set of S can be naturally written as the disjoint union of the vertex sets of
n ` 1 different D0-grids, denoted by S0, ¨ ¨ ¨ , Sn. We do this in a way such that
S0 is a Q-face of S, and Si is a Q-neighbor of Si`1, for each i P t0, ¨ ¨ ¨ , n ´ 1u.
These D0-grids are called the Q-strata of S. See Figure 2(B). The numbering of
the strata can be inverted if necessary.

The sequence of strata tS0, ¨ ¨ ¨ , Snu defines a finite line in tpkQq of length n. The
following lemma characterizes, for almost every grid, the image of this line in the
classifying graph.

Lemma 7.13. Let us writeD “ D0`nQ as above. Then, for almost every abstract
D-grid S, there exists S P S such that the corresponding line cpSq in tpkQq is defined
by vertices z0, ¨ ¨ ¨ , zs, ζs`1, ¨ ¨ ¨ ζn P tpkQq satisfying:

(i) vertices in each pair pzi, zi`1q, pζi, ζi`1q, or pzs, ζs`1q are neighbors,
(ii) s ą tn`1

2 u,
(iii) z0, ¨ ¨ ¨ , zs are pairwise non-Γ-equivalent vertices,
(iv) z0, ¨ ¨ ¨ , zs are on the maximal path joining 8 with some ϵ P k, and
(v) ζs`i and zs´i are Γ-equivalent, for any i P t1, ¨ ¨ ¨ , su.
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In particular, the image cpSq of cpSq in CQpOD0
q is a line of length s contained in

a cuspidal ray.

Proof. Let S be an abstract D-grid, and let S P S be a concrete representative.
Let c “ cpSq be the finite line in tpkQq corresponding to S. The image cpSq of c in
CQpOD0

q is a line of length s ď n, which only depends on S by Proposition 6.2.
Now, as we noted in §6 (see the paragraphs before Proposition 6.2) the graph

CQpOD0q is combinatorially finite. Thus, there exist finitely many lines of length
at most n that are not contained in a cuspidal ray. Hence, we can assume that cpSq

is contained in a cuspidal ray r of CQpOD0
q. Let X “ ΓztpkQq be the connected

component in CQpOD0
q containing r. Let T be a maximal subtree of X, let j :

T Ñ tpkQq be a lift of T , and let π : tpkQq Ñ X be the canonical projection. By
Corollary 3.8 we may assume that the visual limit ϵ “ ϵprq of jprq belongs to P1pkq,
and, up to changing the lift, we can assume ϵ ‰ 8. Moreover, there exists a subray
r0 Ă jprq such that:

‚ Vpr0q “ twiu
8
i“0, where wi and wi`1 are adjacent,

‚ StabΓpwiq Ă StabΓpwi`1q, and
‚ StabΓpwiq acts transitively on the set of neighboring vertices of wi other
than wi`1.

Note that the last statement implies that all neighbors of wi, besides wi`1, are in
the same Γ-orbit. By induction on L ě 1, we can show that, for any i ě 0 and
for any vertex v at distance ď L of wi`L such that the line connecting v and wi`L

does not contain wi`L`1, v is in the same StabΓpwi`Lq-orbit than wi P V pr0q.
Define r1

0 as the subray of r0 with vertices are twiu
8
i“n. In particular, this last

statement applies to L ă n and every vertex in r1
0. Since r ∖ πpr1

0q is a finite line,
arguing as above, we may assume that πpcq is contained in πpr1

0q. This implies that
c is Γ-equivalent to a finite line that intersects r1

0 in a finite line of length s ď n
(recall that tpkQq is a tree), so we may assume that this is the case for c. Let us

write Vpcq “ tϖiu
n
i“0, where ϖi and ϖi`1 are adjacent, and VpcX r1

0q “ tϖiu
s`t`1
i“t ,

where ϖs`t`1 is the vertex that is the closest to ϵ. In particular, there exists k ą n
such that, for each i P tt, ¨ ¨ ¨ , s` t`1u, the vertex ϖi equals wi`k. Since t ă n and
wk and ϖ0 are both at distance t from ϖt “ wt`k, we see that wk is StabΓpϖtq-
equivalent to ϖ0. Then, up to replacing c by a Γ-equivalent line, we may assume
that t “ 0.

We claim that we can assume that s ` 1 ě tn`1
2 u. Indeed, if s ` 1 ă tn`1

2 u we
argue as follows. Since n´ s´ 1 ă n and w2s`2´n`k and ϖn are both at distance
n´ s´ 1 from ϖs`1 “ ws`1`k, we note that w2s`2´n`k is StabΓpϖs`1q-equivalent
to ϖn. Equivalently, there exists γ P Γ such that γ ¨ tϖiu

n
i“s`1 Ă r1

0, and we may
replace c by γ ¨ c.

Write V pcq “ tz0, ¨ ¨ ¨ , zs, ζs`1, ¨ ¨ ¨ ζnu, which satisfies conditions (i), (ii) in Lemma
7.13. Condition (iii) follows from the fact that the image of πpcq “ cpSq belongs
to a cuspidal ray. Condition (iv) is immediate since we can always extend a ray
to a maximal path reaching infinity. Finally, condition (v) follows by the same
argument used above. □

We prove the existence of semi-decomposition data by induction on r. In order
to be able to use the inductive hypothesis we need the following result.
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Figure 2. Figure (A) shows the finite line cpSq as in Lemma
7.13, while Figure (B) shows the strata of a concrete D-grid. In
the latter, vertical neighbors are P1-neighbors.

Lemma 7.14. Let D be an effective divisor, and write D “ D0 `nQ, where D0 is
supported away from Q and n ą 0. Let S0 be an abstract D0-grid. Then the set of
abstract D-grids S such that there exist S0 P S0 and S P S with S0 Ă S, is finite.

Proof. Let q1 be the cardinality of the residue field of kQ. First we claim that any
concrete D0-grid is contained in finitely many concrete D-grids. In order to prove
the claim, let us fix an Eichler C-order E0 of level D0. Let E be an Eichler C-order
of level D contained in E0. Since, for each P ‰ Q, the P -coefficient of D and D0

is the same, we have pE0qP “ pEqP , for all P ‰ Q. Moreover, we have that pE0qQ

is a maximal order, while pEqQ is a local Eichler order of level n. Denote by v0 the
vertex in tpkQq corresponding to pE0qQ. Then pEqQ corresponds to the intersection
of all maximal orders in a finite line of length n in tpkQq containing v0. Moreover, it
follows from the local-global principles (b) and (c) in §5 that there exists a bijective
map between the set of Eichler C-orders E of level D contained in E0, and the set of
finite lines of length n in tpkQq containing v0. In particular, there are finitely many
Eichler C-orders E of level D contained in E0. Since there exists a bijective map
between the set of concrete D-grids containing S0 “ SpE0q, and the set of Eichler
C-orders E of level D contained in E0 (cf. §6), the claim follows.

Let us define W as the set of abstract D-grids S such that there exist S0 P S0
and S P S with S0 Ď S. Fix a concrete representative S˝

0 P S0. We define W as
the set of concrete D-grids containing S˝

0 . Then, it follows from the previous claim
that W is finite. Now, we claim that the map ϕ : W Ñ W, defined by ϕpSq “ rSs,
is surjective. Indeed, let S P W. Then, by definition, there exist S1

0 P S0 and S1 P S
with S1

0 Ď S1. Since S˝
0 and S1

0 belong to S0, there exists γ P GL2pkq such that
S˝
0 “ γ ¨ S1

0. Thus, the D-grid S “ γ ¨ S1 contains S˝
0 . This implies that S P W ,

and, by definition, we have ϕpSq “ rγ ¨ S1s “ rS1s “ S. So, the claim follows. In
particular, since ϕ is surjective, we conclude that W is finite, which completes the
proof. □

We are now ready to prove Proposition 7.11.

Proof of Proposition 7.11. Recall that D “
řr

i“1 niPi. We prove the existence of
semi-decomposition data by induction on r P N. Note that, if r “ 0, then D is
trivial, and, in such case, the result follows from Example 7.10. Now we prove the
result for r ą 0. We may assume that P1 has minimal degree in the support of D.
Set U 1 “ C∖tP1u. Then, we can write D “ n1P1`D0, where D0 is supported in U 1.
Let S be an abstractD-grid, and fix a concrete representative S P S. Let S0, ¨ ¨ ¨ , Sn1
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be the D0-grids in the P1-strata of S. See Definition 7.12 and Figure 2(B). These
define a line cpSq in tpkP1q, and we may assume that it satisfies statements (i), (ii),
(iii), (iv) and (v) in Lemma 7.13, and that its image cpSq is contained in a cuspidal
ray of CP1

pOD0
q. Moreover, we can enumerate the strata of S in a way such that

Si corresponds to zi P V
`

tpkP1
q
˘

, for each i P t0, ¨ ¨ ¨ , su. Now, by the inductive
hypothesis and Lemma 7.14, we may assume that there exists a semi-decomposition
datum pβ,B,D1

0q of degree degpBq ą dD ą dD0 for S0. We claim that pβ,B, sP1 `

D1
0q is a semi-decomposition datum for S. Let A “ Apβq be the base change matrix,

as defined in Definition 7.5. Then, by definition of a semi-decomposition datum,
VpS0q contains the vertex set VpΠpS0qq “

␣

ADEA
´1 : B ď E ď B `D1

0

(

. We
already know that the vertex πV pziq corresponding to the class Si of Si has valency
two in CP1

pOD0
q. Denote by S´1 ‰ S1 the other P1-neighbor of S0. Then, we

can describe a decomposed subgrid of some concrete representatives of S1 and S´1.
Indeed, we know that the D1

0-grid ΠpS0q is P1-neighbor to the D1
0-grids ∇´1,∇1,

whose vertex sets are respectively

Vp∇´1q “ tA´1DEA : B ´ P1 ď E ď B ´ P1 `D1
0u,

and
Vp∇1q “ tA´1DEA : B ` P1 ď E ď B ` P1 `D1

0u.

Then, we can complete ∇´1,∇1 in order to obtain two D0-grids, denoted re-
spectively by S´1 and S1, which are P1-neighbors to S0. We claim that S1 and
S´1 belong to different abstract D0-grids. Indeed, if S1 and S´1 define the same
abstract D0-grid, then each concrete D0-grid in the class has two positive degree
semi-decomposition data of the form pβ1, B ´ P1, D

1
0q and pβ2, B ` P1, D

1
0q. Note

that degpBq ą degpP1q by hypothesis, whence degpB`P1q ą 0 and degpB´P1q ą 0.
Thus, by Lemma 7.7 we deduce that B`P1 is linearly equivalent to B´P1, which
is impossible. So, the claim follows.

Now, we claim that S1 P S1 and S´1 P S´1. In order to prove this, let E1
0 and

E1
´1 be the Eichler C-orders defined as the intersection of all the maximal orders

corresponding to vertices of the respective grids S0 and S´1. Since S0 and S´1 are
D0-grids, the level of E1

0 and E1
´1 is D0. In particular, these Eichler C-orders are

maximal at P1. By definition ΠpS0q Ď S0 and ∇´1 Ď S´1. This implies that

E1
0 Ď

č

BďEďB`D1
0

A´1DEA, and E1
´1 Ď

č

B´P1ďEďB´P1`D1
0

A´1DEA.

Thus, if m is the coefficient of P1 in B, then pE1
0qP1 Ď A´1pDmP1qP1A and pE1

1qP1 Ď

A´1pDpm´1qP1
qP1

A. Moreover, since pE1
0qP1

and pE1
´1qP1

are maximal, we get that

pE1
0qP1 “ A´1pDmP1qP1A and pE1

´1qP1 “ A´1pDpm´1qP1
qP1A. Since the vertex v´1

in tpkP1q corresponding to S´1 is the projection of some (any) maximal C-order in
VpS´1q by localizing at P1, it coincides with A

´1pDpm´1qP1
qP1

A. This implies that
v´1 is the unique vertex in the maximal path joining the ends ϵ and 8 that is further
from ϵ than z0. Thus, we deduce that S´1 P S´1, whence we also obtain S1 P S1.
We conclude from this that pβ,B`P1, D

1
0q is a semi-decomposition datum of degree

dD0 of S1. So, by an inductive argument, we can show that, for each i P t0, ¨ ¨ ¨ , n1u,
we have that pβ,B ` iP1, D

1
0q is a semi-decomposition datum of degree dD0

for Si.
Therefore, pβ,B, sP1 `D1

0q is a semi-decomposition datum for S.
We are only left to prove the condition degpBq ą dD. Let S be an abstract

D-grid as above, and set S P S. Let us denote by vS P VpCP8
pODqq the vertex

corresponding to S. Then we know that almost every vertex vS belongs to a cuspidal
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pB,D1
q

pB`P8,D1
q

pB`2P8,D1
q

‚ ‚ ‚

Figure 3. A cuspidal ray r Ď CP8
pODq. Each vertex in Vprq

represents an abstract D-grid with a semi-decomposition datum of
the form pB ` nP8, D

1q.

ray r Ă CP8
pODq. In particular, almost every vertex vS has exactly two P8-

neighbors. Let v`
S be the neighbor of vS that is closest to the end of r. Then,

the argument here above shows that, for almost every abstract D-grid S, with a
semi-decomposition datum pB,D1q, the abstract grid corresponding to v`

S has the
semi-decomposition datum pB ` P8, D

1q. See Figure 3. Recalling that there are
finitely many cuspidal rays in CP8

pODq, we see that, up to increasing n P Z at the
divisor B ` nP8, for almost every abstract grid, and any concrete representative,
there is a semi-decomposition datum of degree ą dD.

We prove now the uniqueness of semi-decomposition data. Let S be an abstract
D-grid as above, and set S P S be a concrete representative. In particular, S has a
semi-decomposition datum pβ,B,D1q of degree ą dD. Write D1 “

řr
i“1 siPi, where

si ď tni`1
2 u. We can characterize the isomorphism class of non-β-split vertices

in VpSq, i.e. the vertices in VpSq ∖ VpΠSDq. Indeed, condition (v) in Lemma
7.13 implies that any non-β-split maximal C-order in VpSq is isomorphic to a split
maximal C-order in ΠSD. Then, the vertex set tvju

ni
j“0 of the Pi-axis of S satisfies

that vj – DB`jPi
, if j ď si, and vj – DB`p2si´jqPi

, if j ě si. On the other
hand, by hypothesis we have degpBq ą dD ě 0. Then, Lemma 7.7 implies that
DB`p2si´jqPi

is not isomorphic to DB`jPi
, for any j ě si. This implies that the

integers tsiu
r
i“1 are unique, and then D1 is unique. The uniqueness of the class of

B follows from Lemma 7.7. □

An immediate corollary of the end of the preceding proof is the following state-
ment, which we state here for further reference.

Corollary 7.15. Let S be an abstract D-grid corresponding to a vertex in a cus-
pidal ray in CP8

pODq. Let pB,D1q be a semi-decomposition datum of S of degree
ą dD. Let S` be the abstract D-grid corresponding to the unique neighbor in
CP8

pODq that is closer to the end of the cuspidal ray. Then pB ` P8, D
1q is a

semi-decomposition datum of S`.

Remark 7.16. Any semi-decomposed grid with a sufficiently negative degree da-
tum is totally decomposed. Indeed, let S be a D-grid, and let pβ,B,D1q be a
semi-decomposition datum for S. Replacing S by another representative in the
same class if needed, we can assume that β is the canonical basis, or equivalently
that Apβq “ Id. Let us write D “

řr
i“1 niPi and D1 “

řr
i“1 siPi. For each

i P t1, ¨ ¨ ¨ , ru, we denote by SpPiq Ă tpkPi
q the Pi-axis of S. Note that SpPiq is a

length-ni line. Moreover, if we write VpSpPiqq “ tvju
ni
j“0, then, for any 0 ď j ď si,

the vertex vj corresponds to the local maximal order pDB`jPiqPi . Thus, all vertices
in tvju

si
j“0 are located on the maximal path fp0,8q joining the the visual limits 0

and 8 in B8ptpkPiqq “ P1pkPiq. Let E be the Eichler C-order corresponding to
S, i.e., assume that S “ rSpEqs. Set Ui “ C ∖ tPiu and Γ “ StabPGL2pkqpEpUiqq.
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Arguing as in the proof of Lemma 7.13 we can prove that, for each si ` 1 ď j ď ni,
vj is Γ-equivalent to a vertex in fp0,8q not in tvlu

j´1
l“0 . Thus, we get that si “ ni,

and hence any semi-decomposition datum pβ,B,D1q of S is a total decomposition
datum.

Finally, note that, if I “
ˆ

0 1
1 0

˙

, then S is in the same class as IApβqSApβq´1I,

whose total-decomposition datum pβ0, D ´B,Dq has a positive degree.

7.3. On the combinatorial structure of the classifying graph. Here the main
goal is to compute the cusp number of the classifying graph CP8

pODq, which cor-
responds to Proposition 7.1. Actually, we prove a more precise result stated in
Proposition 7.24 below. To do this, we use the existence and uniqueness of semi-
decomposition data of almost every abstract D-grid proved in the previous sec-
tion. More specifically, using Proposition 7.11 we define a natural simplicial map
d̃ : CP8

pODq∖Y Ñ CP8
pO0q, where Y is a finite subgraph, which is a regular cover

on the cuspidal rays of CP8
pO0q. Then, we compute the number of pre-images of a

given cuspidal ray and we apply Theorem 7.3 in order to obtain the desired result.

Definition 7.17. Let S be a concrete D-grid with a semi-decompostion datum
pβ,B,D1q of positive degree. We denote by δpSq the PGL2pkq-conjugacy class of
the maximal C-order DB . Let S be an abstract D-grid. Assume that S has a semi-
decomposition datum pB,D1q with positive degree. We define the principal corner
of S as dpSq :“ δpSq, where S P S.

It follows from Lemma 7.7 that, if S, S˝ P S have respective semi-decomposition
data pβ,B,D1q and pβ˝, B˝, D1˝

q with positive degree, thenDB is GL2pkq-conjugate
to DB˝ . Hence the previous definition is valid.

Definition 7.18. Let S be an abstract D-grid with a semi-decomposition datum
pB,D1q. Let us write D “

řr
i“1 niPi and D1 “

řr
i“1 siPi. We define the semi-

decomposition vector associated to the previous datum as l “ lpSq :“ ps1, ¨ ¨ ¨ , srq.
Note that pB,D1q is a total decomposition datum exactly when l “ pn1, ¨ ¨ ¨ , nrq.

Now, it follows from Proposition 7.11 that there exists a finite graph Y Ă

CP8
pODq such that, for each vertex v P VpCP8

pODq ∖ Y q, the corresponding ab-
stract D-grid S “ Spvq has a representative with a semi-decomposition datum of

degree ą degpDq. Then, d induces a well-defined function rd : VpCP8
pODq ∖ Y q Ñ

VpCP8
pO0qq. Let S be an abstractD-grid with a semi-decomposition datum pB,D1q

of degree ą degpDq. Let S` be the abstract D-grid corresponding to the unique
neighbor v`

S of vS in CP8
pODq that is closer to the end of the cuspidal ray contain-

ing vS. By Corollary 7.15, pB ` P8, D
1q is a semi-decomposition datum of S`. In

this case, we get dpS`q “ rDB`P8
s. See Figure 1(B). In particular, this implies

that the function rd sends neighboring vertices into neighboring vertices. So, we can
extend rd to a simplicial map from CP8

pODq∖Y to CP8
pO0q, which we also denote

by rd. The following proposition describes the fibers of rd.

Proposition 7.19. Let D “ DB be a split maximal C-order satisfying degpBq ą

degpDq. Assume that rDs ‰ dpSq for S corresponding to a vertex in Y . Then,
rd´1prDsq contains

(1) Exactly one totally decomposed D-grid, and
(2) Exactly 1

q´1

ś

si‰ni
pqdegpPiq ´1qqdegpPiqpni´si´1q semi-decomposed D-grids

whose semi-decomposed vector is ps1, ¨ ¨ ¨ , srq ‰ pn1, ¨ ¨ ¨ , nrq.
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In order to prove this proposition we have to use the following lemma.

Lemma 7.20. Let S and S˝ two D-grids with semi-decomposition data of degree
ą degpDq such that dpSq “ dpS˝q and lpSq “ lpS˝q. Then there exists concrete
D-grids S P S and S˝ P S˝ such that their respective decomposed subgrids ΠSD and
Π˝

SD are equal.

Proof. Let S and S˝ be two abstract D-grids such that dpSq “ dpS˝q. Set S0 P S and
S˝
0 P S˝, and let pβ,B,D1q and pβ˝, B˝, D1q be their respective semi-decomposition

data. Let ΠSD Ă S0 and Π˝
SD Ă S˝

0 be the respective decomposed subgrids, and
write A “ Apβq and A˝ “ Apβ˝q. By hypothesis dpSq “ dpS˝q, whence we have
that δpS0q “ DB is GL2pkq-conjugate to δpS˝

0q “ DB˝ . Moreover, by hypothesis,
degpBq,degpB˝q ą degpDq ě 0. So, by [A14, §4, Proposition 4.1], there exists

f P k˚ such that B´B˝ “ divpfq. Set G “
ˆ

f 0
0 1

˙

P GL2pkq so that GDB˝G´1 “

DB . We claim that S :“ pGAqS0pGAq´1 P S and S˝ :“ pA˝qS˝
0pA˝q´1 P S˝ have

the same decomposed subgrids. Indeed, for any divisor E, satisfying 0 ď E ď D1,
we have

GDB˝`EG
´1 “

˜

OC f
´1

L
´B˝´E

fL
B˝`E OC

¸

“ DB`E .

In particular, we obtain that pGAqΠSDpGAq´1 “ pA˝qΠ˝
SDpA˝q´1, i.e. the decom-

posed subgrid of S and S˝ are equal. □

Proof of Proposition 7.19. Let S and S˝ be two abstract D-grids such that dpSq “

dpS˝q “ rDBs, where degpBq ą degpBq. It follows from Lemma 7.20 that there
exist S P S and S˝ P S˝ with the same decomposed subgrid ΠSD. So, if all si “ ni,
then S “ S1, whence S “ S˝. On the other hand, we can always consider the totally
decomposed D-grid whose vertices are DB`E , where 0 ď E ď D. Thus (1) follows.
More generally, S “ S˝ if and only if there exists g P GL2pkq such that

(1D) gΠSDg
´1 “ ΠSD, and

(2D) gpS ∖ΠSDqg´1 “ S˝ ∖ΠSD,

where we recall that no vertex in S∖ΠSD and S˝∖ΠSD is split in the canonical basis.

As ΠSD is totally decomposed, by [A14, §4, Proposition 4.1], we have g “
ˆ

x y
0 z

˙

,

where divpx´1zq “ 0, i.e. x´1z P F˚. Let mi be the multiplicity of Pi in B. Then,
Condition (1D) is equivalent to the following statement: For every i P t1, ¨ ¨ ¨ , ru,
the action of g P GL2pkq on the tree ti “ tpkPi

q point-wisely stabilizes the finite path
ci whose vertex set is

(7.7)

"

˜

OPi
π

´mi´t

i OPi

π
mi`t

i OPi
OPi

¸

: t P t0, ¨ ¨ ¨ , siu

*

,

where πi P OPi
is a local uniformizing parameter. Moreover, this condition is

equivalent to νPi
pyq ě ´mi. On the other hand, when si ‰ ni, the localizations

at Pi of orders in S that are different from the localizations of vertices in ΠSD,
correspond to the vertices of a line ppi of length pni ´ si ´ 1q in tpkPiq, which does
not intersect the maximal path joining 0 and 8. See Figure 2(A). Hence, vertices
in ppi are in correspondence with the local rings of endomorphisms of the lattices

(7.8)

ˆ

a

1

˙

OPi `

ˆ

π´mi´si´j
i

0

˙

OPi ,

where a “ a1π
´mi´si`1
i ` ¨ ¨ ¨ ` ajπ

´mi´si`j
i , and where, for any k ą 1, we have

ak P FpPiq “ OPi
{πiOPi

, while a1 P FpPiq
˚. The same characterization holds for
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the localizations at Pi of orders in S
˝, by replacing ai by a

˝
i P FpPiq. Since νPi

pyq ě

´mi, Condition (2D) is equivalent to aj “ a˝
j px´1zq, for each j P t1, ¨ ¨ ¨ , ni ´ siu.

Since two D-grids are equal if and only if all their Pi-projections coincide, it follows
that Cardpd̃´1rDBsq equals the number of F˚-homothety classes in

ź

si‰ni

`

FpPiq
˚ ˆ FpPiq

ni´si´1
˘

,

which is 1
q´1

ś

si‰ni
pqdegpPiq ´ 1qqdegpPiqpni´si´1q. □

Let us denote by αpDq the positive integer

αpDq “ 1 `
1

q ´ 1

r
ź

i“1

´

qdegpPiqt
ni
2 u ´ 1

¯

.

Lemma 7.21. Let B be a divisor, whose degree is greater than degpDq, and assume
that rDBs ‰ dpSq for S corresponding to a vertex in Y . Then, d̃´1prDBsq has αpDq

elements. In particular, there are αpDq different cuspidal rays in CP8
pODq whose

initial vertex corresponds to an abstract D-grid S satisfying that dpSq “ rDBs.

Proof. It follows directly from Proposition 7.19 that d̃´1prDBsq contains one and
only one split abstract D-grid, and, for each possible semi-decomposition vector l “

ps1, ¨ ¨ ¨ , srq ‰ pn1, ¨ ¨ ¨ , nrq, there are precisely 1
q´1

śr
i“1pqdegpPiq´1qqdegpPiqpni´si´1q

non-split abstract D-grids whose semi-decomposition vector is l. By definition of
semi-decomposition data we know that l P Υ “ tps1, ¨ ¨ ¨ , srq : ni ě si ě tni`1

2 uu.

Then, d̃´1prDBsq contains

1 `
ÿ

Υ1

1

q ´ 1

ź

si‰ni

pqdegpPiq ´ 1qqdegpPiqpni´si´1q “ 1 `
1

q ´ 1

ź

´

qdegpPiqt
ni
2 u ´ 1

¯

different abstract D-grids, where Υ1 :“ Υ ∖ tpn1, ¨ ¨ ¨ , nrqu. Hence, the first claim
is proved. Now, recall that, by Corollary 7.15, if S and S˝ are two P8-neighboring
D-grids satisfying dpSq “ rDBs and dpS˝q “ rDB˝ s, then pB,D1q and pB ` P8, D

1q

are respective semi-decomposition data of S and S˝. So, it follows that S and S˝

have the same semi-decomposition vectors. Thus, the second claim follows. □

Recall that, by definition, the number of cusps of a disjoint finite union of graphs
is the sum of the number of cusps in each of its connected components.

Proposition 7.22. The number of cusps of CP8
pODq equals CardpPicpRqqαpDq.

Proof. It follows from Theorem 7.3 that the vertices of CP8
pO0q corresponding to

the GL2pkq-classes of split maximal C-orders DB are located in a finite disjoint
union of infinite lines or half lines in CP8

pO0q. If we assume that a infinite line
is the union of two half lines, then the number of such half lines is equal to the
number of cusps of CP8

pO0q, which coincide with PicpRq.
Recall that we can remove a finite set of vertices in the classifying graphs in or-

der to simplify some arguments. Thus, we can consider only vertices associated to
abstract D-grids with a semi-decomposition datum of degree ą degpDq (cf. Propo-
sition 7.11). Recall also that d̃ is a simplicial map from the disjoint union of a set
of cuspidal rays in CP8

pODq, representing all classes of cuspidal rays, to an analog
set in CP8

pO0q. In particular, the image of a cuspidal ray of the former set under
d̃ is also a cuspidal ray. So, d̃ can be seen as a function between such cusps. In
particular, to compute the cusp number in CP8

pODq it suffices to compute the
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number of pre-images of each cusp in CP8
pO0q. Moreover, this can be reduced to

computing the number of pre-images of any vertex in a cuspidal ray of CP8
pO0q.

Hence, the proposition follows from Lemma 7.21. □

We say that a cusp η P B8pCP8
pODqq is split if it is represented by a cuspidal ray

formed only by vertices corresponding to totally decomposed D-grids. In any other
case we say that the cusp is non-split. Note that the arguments given in the proof
above imply that rd induces a natural function rd8 : B8pCP8

pODqq Ñ B8pCP8
pO0qq

between the respective cusp sets of CP8
pODq and CP8

pO0q. Then, Lemma 7.19.(1)
and Lemma 7.21 imply that for each η P B8pCP8

pO0qq there exists a unique split

cusp in prd8q´1pηq, and αpDq ´ 1 non split cusps.

Remark 7.23. We can characterize the unique split cusp in prd8q´1pηq. Indeed,
let η1

B P B8pCP8
pODqq be the class of the cuspidal ray rB,D Ď CP8

pODq, whose
vertices correspond to the PGL2pkq-classes of decomposable Eichler C-orders EB,n

(equiv. the totally-decomposable abstract D-grids S “ rSpEB,nqs) defined by

(7.9) EB,n “

˜

OC L
B`nP8

L
´B´nP8`D OC

¸

, n ě 0.

Then, the image by rd8 of η1
B is the class ηB P B8pCP8

pO0qq of the cuspidal ray
rB Ď CP8

pO0q, whose vertices correspond to trDB`nP8
s : n ě 0u. This is the

unique split cusp in prd8q´1pηq. Moreover, it follows from Theorem 7.3 that, if
we fix a representative set ∆R Ă DivpCq of PicpRq, then tηB : B P ∆Ru is a
representative set of B8pCP8

pO0qq.

We are finally ready to prove Proposition 7.1 as an immediate consequence of
the following result, which concludes the proof of Theorem 1.4.

Proposition 7.24. The number of cusps of any connected component of CP8
pODq

is the same, and it equals

(7.10) cpDq “ αpDqr2PicpCq `
@

Pa1
, ¨ ¨ ¨ , Pau

, P8

D

: xP8ys,

where Pa1
, ¨ ¨ ¨ , Pau

are the closed points in SupppDq Ď C whose coefficients are
odd. Moreover, there are cpDq{αpDq split cusps in any connected component of
CP8

pODq.

Proof. We will use the bijection between the set of abstract D-grids and the set
of Eichler C-orders of level D (cf. Proposition 6.1). In particular, we will assign
to any Eichler C-order of level D a vertex in CP8

pODq. Let E and E1 be two split
Eichler C-orders associated to two vertices v, v1 in the same connected component of
CP8

pODq. We denote by S and S1 be the respective abstract D-grids corresponding
to E and E1. Assume that dpSq “ rDBs, dpS1q “ rDB1 s, and degpBq,degpB1q ą

degpDq. Let ΣD “ ΣpODq be the spinor class field of Eichler C-orders of level D. By
definition of CP8

pODq, the vertices v and v1 are in the same connected component
if and only if ρpE,E1q P tidΣD

, rrP8,ΣD{kssu. It follows from the Equation (6.2)
that ρpE,E1q “ ρpDB ,DB1 q “ rrB ´ B1,ΣD{kss. Hence, by Proposition 6.3, v
and v1 are in the same connected component precisely when B ´B1 P 2PicpCq `
@

Pa1
, ¨ ¨ ¨ , Pau

, P8

D

.
Moreover, since the cuspidal ray r Ď CP8

pODq containing v consists of ver-

tices corresponding to rDB`nP8
s (cf. Corollary 7.15), we see that B ` xP8y de-

termines the image in CP8
pO0q of r. This tells us that there are r2PicpCq `
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@

Pa1
, ¨ ¨ ¨ , Pau

, P8

D

: xP8ys possible images via rd8 for a cusp in a given connected
component of CP8

pODq. Since by Lemma 7.21 there are αpDq non equivalent cus-
pidal rays in CP8

pODq covering each cuspidal ray in CP8
pO0q, we get that there

are cpDq different cusps in any connected component of CP8
pODq. This proves the

first statement.
For the last statement, it follows from Lemma 7.19.(1) that there exists only one

split cuspidal ray in each fiber of rd8. Thus, it suffices to count the number of cusps
in the image of rd8 in any given connected component. As we proved above, this
number is precisely cpDq{αpDq. □
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8. On some explicit examples

In the current section, the main goal is to prove Theorem 1.5, and to subsequently
present some explicit computations of quotient graphs tD associated to the action
of Eichler groups HD, for small values of degpDq. We deduce from Theorem 1.4 that
the computation of the number of cusps gets more involved as degpDq, degpP8q,
or the genus of C increases. Naturally, we expect the same behavior from the
finite graphs Y Ă tD (cf. Theorem 1.4). For these reasons, in this section we
work in the most elementary non-trivial context possible. In other words, we set
C “ P1

F and P8 to be the point at infinity. In all that follows we denote by
P ris the degree-one closed point corresponding to i P F Y t8u. In particular,
we have that divpt ´ iq “ P ris ´ P r8s and P8 “ P r8s, whence R “ Frts, and
K “ kP8

“ Fppt´1qq. In this context OP8
“ Frrt´1ss is the ring of integers of K,

ν “ νP8
“ ´deg and π “ 1{t is a uniformizing parameter. We also consistently fix

the absolute value x ÞÑ |x| “ |x|P8
. In all that follows, we identify the Bruhat-Tits

tree for SL2pKq (cf. §2) with the tree b “ bpKq, whose vertices are the closed balls
in K, and two of them are neighbors if one is a proper sub-ball of the other.

8.1. Conventions on fundamental regions. It follows from [Se80, §3 and §4]
that in order to define quotient graphs in full generality, i.e., in the context where a
group acts with some edge inversions, it is convenient to work with the barycentric
subdivision. Here, in order to define the fundamental domains associated to non-
simply connected quotient graphs, we adopt this convention. Then, in order to
define a fundamental domain in the Bruhat-Tits tree, we begin by performing a
finite number of “surgeries” on the quotient graph q to turn it into a tree. See
Figures 4(A) and 4 (B). By a surgery we mean the process of replacing an edge by a
pair of half edges, provided that the resulting graph is still connected. After surgery,
we get a tree q1, we fix a vertex v P Vpq1q that corresponds to a “real” vertex in q, and
then we choose a pre-image ṽ in the Bruhat-Tits tree. Successively, we consistently
lift the path from v to any vertex or non-vertex, where a non-vertex is the lift
in a half edge in q1. The union of the images of such liftings is the fundamental
domain under consideration. See Figure 4(C). Note that any structural result on
a quotient graph can be translated into a result on its corresponding fundamental
region. Moreover, this correspondence is perfect, in the sense that the quotient
graph can be recovered from the fundamental domain and the pairs of corresponding
non-vertices. Indeed, this is done by gluing the latter in an obvious manner. In
particular, any combinatorial or topological result on the fundamental region can
be also interpreted in terms of the corresponding quotient graph. We can define
the ends of a fundamental region as the visual limit of its rays. This point of view
allows us to explicitly describe the ends of the fundamental regions or quotient
graphs in terms of representatives of the HD-orbits in P1pkq.

8.2. A Proof of Theorem 1.5. Let N “ pt ´ λ1q ¨ ¨ ¨ pt ´ λnq. We can write
divpt ´ λiq “ P rλis ´ P r8s, where P rjs is a degree-one closed point on P1

F. Let
D “

řr
i“1 P rλis be the corresponding multiplicity free divisor on C. Then, since

n1 “ ¨ ¨ ¨ “ nr “ 1 and degpP r8sq “ degpP rλ1sq “ ¨ ¨ ¨ “ degpP rλrsq “ 1, it
follows from Theorem 1.4 that the quotient graph tD as exactly 2n cusps. Thus, in
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Figure 4. In the Figure, (A) represents a quotient graph, (B)
shows the tree obtained from the previous graph by the process of
surgery, and finally (C) represents the corresponding choice of a
fundamental domain.

order to prove Theorem 1.5, it suffices to prove that the restriction of the canonical
projection π : tpKq – bpKq Ñ tD to the tree s is an injection. Consequently, the
result follows from next lemma, which we prove following the techniques in [Ma01]:

Lemma 8.1. The vertices in s are in different HD-orbits.

Proof. Note that, when N “ 1, the lemma reduces to Nagao’s Theorem (cf. [Na59]).

So, we assume throughout that n ě 1. As in §2 we write B
|t|
x for the ball of radius

|π|t centered at x P K, where π “ πP8
is a uniformizing parameter. This ball

corresponds to the local maximal order EndOP8
pΛBq, where ΛB “

A

`

a
1

˘

,
`

πr

0

˘

E

. In

particular, B0 :“ B
|0|

0 corresponds to the local maximal order M2pOP8
q.

Let B1 “ B
|r1|
x1 and B2 “ B

|r2|
x2 be two vertices in tD, where each center is

either 0 or the multiplicative inverse of a proper monic nonconstant divisor of

N “
śn

i“1pt ´ λiq. Assume that there exists a matrix g “
ˆ

a b
Nc d

˙

P HD

satisfying g ¨ B1 “ B2. We must prove that B1 “ B2. Set h1 “
ˆ

x1 πr1

1 0

˙

and h2 “
ˆ

x2 πr2

1 0

˙

, so that we have both B1 “ h1 ¨ B0 and B2 “ h2 ¨ B0.

Since K˚GL2pOP8
q is the stabilizer of B0 in GL2pKq, we must have h´1

2 gh1 P

λGL2pOP8
q, for some λ P K˚. By taking determinants, we get 2νpλq “ r1 ´ r2,

where ν is the valuation corresponding to P8. Hence, r1 ´r2 is an even integer and

π
r2´r1

2 h´1
2 gh1 P GL2pOP8

q. After a simple computation we have π
r2´r1

2 h´1
2 gh1

equals

(8.1)

˜

π
r2´r1

2 pd`Ncx1q π
r2`r1

2 Nc

π
´r1´r2

2 pax1 ´ dx2 ` b´Ncx1x2q π
r1´r2

2 pa´Ncx2q

¸

.

We conclude that π
r1´r2

2 pa´Ncx2q, π
r2´r1

2 pd`Ncx1q P OP8
. On the other hand,

the polynomials a´Ncx2 and d`Ncx1 either vanish or have non-positive valuations.
This leaves us three alternatives:

(i) r :“ r1 “ r2, and νpa´Ncx2q “ νpd`Ncx1q “ 0,
(ii) a “ Ncx2 or
(iii) d “ ´Ncx1.

The last two alternatives imply detpgq R F˚, so (i) must hold. The result follows if
x1 “ x2, as this implies B1 “ B2. The same holds if r ď 0 since νpx1q, νpx2q ą 0
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and hence B1 “ B
|r|

0 “ B2. We assume in the sequel that x1 ‰ x2 and r ą 0. In
particular, one of the x1, x2 is not zero. From Equation (8.1) and (i) we deduce
the following facts:

(a) a´Ncx2 “: a0 P F˚,
(b) d`Ncx1 “: d0 P F˚,
(c) Nc P π´rOP8

, or equivalently degpNcq ď r, and
(d) a0x1 ´ d0x2 ` b`Ncx1x2 “ ax1 ´ dx2 ` b´Ncx1x2 P πrOP8

.

Firstly assume that either νpNcx1x2q ą 0 or x1x2 “ 0, then the dominant term on
the left hand side of identity (d) is b P Frts, unless it vanishes. As r ą 0 we must

conclude the latter. It follows that g “
ˆ

a 0
Nc d

˙

, in particular a, d P F˚. Then,

it follows from (a) and (b) that Ncx2, Ncx1 P F, and then c “ 0, as at least one
element in tx1, x2u is the inverse of a nonconstant proper monic divisor of N . From

the preceding considerations, we get the identity B
|r|
x2 “ B2 “ g ¨B1 “ B

|r|

ax1{d. This

implies that dx2 ´ ax1 P πrOP8
. Note that if νpx1q ě r, then 0 P B1, whence we

can assume that x1 “ 0. This implies that dx2 P πrOP8
, i.e. νpx2q ě r. Thus, we

conclude B1 “ B
|r|

0 “ B2. In any other case νpx1q, νpx2q ă νpNq ă r, whence we
deduce νpx1q “ νpx2q and a “ d. We conclude x1 ´ x2 P πrOP8

, hence B1 “ B2.
Finally, assume that both x1, x2 ‰ 0 and νpNcx1x2q ď 0. We can assume

r ą max tνpx1q, νpx2qu since other case we could redefine x1 or x2 as 0 and return
to the preceding case. Let

(8.2) ϵ “ b`Ncx1x2 P ´a0x1 ` d0x2 ` πrOP8
Ď πOP8

.

By a simple computation, we get detpgq “ a0d0 ´ ξ P F˚, where ξ “ Ncpa0x1 ´

d0x2 ` ϵq P F. If ξ “ 0, we have that c “ 0 or

(8.3) Nc` bx´1
1 x´1

2 “ ϵpx1x2q´1 “ d0x
´1
1 ´ a0x

´1
2 .

If c “ 0, then b P πOP8
by (8.2), so that b “ 0 and we argue as in the previous

paragraph. Otherwise, Equation (8.3) and conditions (a) and (b) imply that x´1
1

divides x´1
2 and conversely, as each divides N , whence B1 “ B2.

Assume now that ξ ‰ 0, so by applying, in the given order, (c), the definition of
ξ, the definition of ϵ, and (d), we prove the following chain of inequalities:

r ě ´νpNcq “ νpa0x1 ´ d0x2 ` ϵq “ νpa0x1 ´ d0x2 ` b`Ncx1x2q ě r,

whence νpa0x1 ´ d0x2 ` ϵq “ ´νpNcq “ r. In this case we have

r “ νpa0x1 ´ d0x2 ` ϵq “ νpx1x2q ` νpa0x
´1
2 ´ d0x

´1
1 ` ϵpx1x2q´1q ď νpx1x2q,

as the second term is a polynomial. On the other hand, the hypothesis νpNcx1x2q ď

0 implies νpx1x2q “ νpNcx1x2q ´ νpNcq ď r. Thus, r “ νpx1x2q and

σ :“ a0x
´1
2 ´ d0x

´1
1 ` ϵpx1x2q´1 “ a0x

´1
2 ´ d0x

´1
1 ` bpx1x2q´1 `Nc,

is a nonzero constant polynomial. But σ is divisible by gcdpx´1
1 , x´1

2 q, and therefore
gcdpx´1

1 , x´1
2 q “ 1. If ϵ ‰ 0 we conclude that bpx1x2q´1 ` Nc is a multiple of

px1x2q´1. By the strong triangular inequality, νpσq “ 0 implies

νpa0x
´1
1 ´ d0x

´1
2 q “ νpbpx1x2q´1 `Ncq ď νppx1x2q´1q.

By conditions (a) and (b), the preceding inequality is impossible by a degree argu-
ment. To finish the proof we consider ϵ “ 0, in which case νpa0x

´1
1 ´ d0x

´1
2 q “ 0.

As the polynomials 1{x1 and 1{x2 are monic, this is only possible when a0 “ d0.
Then condition (d) implies νpx1 ´ x2q ě r. We conclude that B1 “ B2. □
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Figure 5. In (A) continuous line represents the double ray p0,8,
which is a fundamental region for the action of HD on bpKq, when
D “ P r0s|U0

. On the other hand, Figure (B) shows a fundamental
region for the action of HD on bpKq, when D “ pP r0s ` P r1sq|U0

.

8.3. Small Examples. Here we compute some examples of fundamental regions
(or equivalently, quotient graphs) in the context where C “ P1

F, P8 “ P r8s and
degpDq is small.

Example 8.2. Assume that N “ t, or equivalently assume that D “ divptq|U0
“

P r0s|U0
. We denote by pa,b Ă bpKq the double ray joining two different elements

a, b P P1pkq. Then, Theorem 1.5 implies that the union of p0,8 with a finite graph
is a fundamental region for the action of HD on bpKq. More precisely, we claim
that p0,8 alone is a fundamental region in this case. See Figure 5(A). In order to
prove this claim, we introduce the following algorithm. For each f P R, let us write:

τf “
ˆ

1 ´f
0 1

˙

, I “
ˆ

0 1
1 0

˙

, and σf “
ˆ

1 0
´tf 1

˙

“ I ¨ τtf ¨ I.

Note that τf , σf P HD, for any f P R. Let s P k be a finite rational element, and

let B “ B
|r|
s be any vertex in the double infinity ray ps,8. We claim that B is in

the HD-orbit of some vertex of p0,8. So, first note that, if νpsq ě r or s “ 0, then

B “ B
|r|

0 , whence the claim holds immediately. Thus, assume that s ‰ 0 and that
νpsq ă r. In all that follows we extensively use the fact that for any p P Z and any
pair x, s P k we have that

τx ¨B|p|
s “ B

|p|

s´x, I ¨B
|p|

0 “ B
|´p|

0 , and I ¨B|p|
s “ B

|p´2νpsq|

1{s , if 0 R B|p|
s .

Fix the uniformizing parameter 1{t P OP8
. Assume that νpsq ď 0. Then, we can

write s “ f0 ` ϵ0, where f0 P R “ Frts and νpϵ0q ě 1. Let us define c0 as the

unique finite path in bpKq joining B
|νpsq`1|
s with B

|νpϵ0q|
s , when ϵ0 ‰ 0, and define

it as the ray joining B
|νpsq`1|
s with the end s, in the remaining case. Note that,

since νpsq ă νpϵ0q, the path c0 is non-trivial in any case. Moreover, note that

τf0 ¨ B
|p|
s “ B

|p|
ϵ0 belongs to vertpp0,8q if and only if νpϵ0q ě p. In particular, we

obtain τf0 ¨ c0 Ă p0,8, i.e., each vertex in c0 is in the HD-orbit of a vertex in p0,8. If
B R vertpc0q, we have not proven that B P HD ¨p0,8, but we have proven that there

exist vertices satisfying this condition in the path joining B
|νpsq`1|
s to B. Since

τf0 ¨ps,8 “ pϵ0,8, where νpϵ0q ě 1, in the latter case we replace B by τf0 ¨B “ B
|r|
ϵ0 ,

which leads us to the last case.
41



Now, assume that νpsq ě 1. Then, 1{s “ tf0 ` ϵ0, where f0 P R and νpϵ0q ě 1.
So, in analogy with the previous case, let c1

0 be the unique finite path in bpKq

joining B
|νpsq`1|
s with B

|2νpsq`νpϵ0q|
s , when ϵ0 ‰ 0, and define it as the ray joining

B
|νpsq`1|
s with s, in the remaining case. Assuming p ą νpsq, we get

σf0 ¨B|p|
s “ pI ¨ τtf0 ¨ Iq ¨B|p|

s “ pI ¨ τtf0q ¨B
|p´2νpsq|

1{s “ I ¨B|p´2νpsq|
ϵ0 .

So, since I ¨ p0,8 “ p0,8, we conclude that σf0 ¨ B
|p|
s P vertpp0,8q precisely when

B
|p´2νpsq|
ϵ0 P vertpp0,8q, or equivalently, when νpϵ0q ` 2νpsq ě p. Thus, we get that

σf0 ¨ c1
0 Ă p0,8. Again, if B R vertpc1

0q, we have not yet proven that B P HD ¨ p0,8.
But, as in the first case, we have proven that there exist vertices in the path joining

B
|νpsq`1|
s to B, which satisfy this condition. This shows that σ ¨ B is closer to

p0,8 than B. In particular, we can keep applying either case until B belongs to
p0,8, and we are done, i.e., we have shown that the each HD-orbit of vertices has a
representative in vertpp0,8q. Moreover, Theorem 1.5 shows that p0,8 does not have
vertices in the same HD-orbit. Since HD acts without inversions, we conclude that
tD is isomorphic to p0,8, whence it is a fundamental region for the corresponding
group action.

Remark 8.3. A similar method allows us to give another proof of Nagao’s Theorem
(cf. [Na59]).

Remark 8.4. We define a continued fraction with coefficient sets S Ď K and
T Ď K˚ as a sequence psnq8

n“1, satisfying

sn “ f0 `
b1

f1 ` b2

fn´1`

... bn
fn

,

where each fn P S, bn P T . When this sequence converges in K we say that its limit
has an expression as an infinite continued fraction. In [Pau02] Paulin interprets the
existence of continued fractions with coefficient in S “ Frts and T “ t1u, in terms
of the action of H0 “ Gl2pFrtsq on the tree tpKq. These continued fractions express
any element in K. Moreover, it is well-known that the elements sn in the sequence
are the best rational Diophantine approximations of elements in K. In our setting,
we can use a generalization of the previously introduced algorithm in order to
extend Paulin’s results. More specifically, with Arenas-Carmona we have shown
(unpublished) the existence of continued fractions approximating all elements in
K, associated to the action of certain arithmetical subgroups of GL2pKq whose
action in tpKq has a small fundamental region. In particular, this applies to the
case where the arithmetical subgroup is HD with D “ P r0s|U0

.

Example 8.5. Here we exhibit a fundamental region for the action of HD, when
D “ divptpt ´ 1qq|U0

“ pP r0s ` P r1sq|U0
and F “ F2. In order to achieve this,

we introduce a different method from the one introduced in the previous example.
Indeed, the key step in this example is compute the valency of the image in tD of
some vertices in bpKq.

Fix a vertex x P vertpsq, where s Ă tpKq is the smallest subtree containing all
ends in t8, 0, 1{t, 1{pt´ 1qu, as in Theorem 1.5. We denote by v1pxq the star of x,
i.e, the full subgraph of tpKq whose vertices are precisely x and its neighbors. In
order to prove that s is a fundamental region, we just need to show that every edge
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in v1pxq is in the same HD-orbit as some edge in s. Fix s P t0, 1{t, 1{pt ´ 1qu, and

assume x “ xn for some n P Z, where xi “ B
|i|
s P ps,8. Furthermore, assume that

n ą νpsq when s ‰ 0, and make no assumption on n when s “ 0. Note that every
vertex in s is accounted for in this way. Let rn be the edge connecting xn to xn`1.

We begin our analysis by assuming that s “ 0 and ´n “ m ě 0. In this
case we claim that the image of x has valency two in tD. First recall that τ “
ˆ

a b
c d

˙

P HD precisely when a, b, d P Frts, c P tpt ´ 1qFrts and ad ´ bc P F˚.

On the other hand, τ stabilizes x if and only if νpaq, νpdq ě 0, νpcq ě m and
νpbq ě ´m. Since the valuation of a non-constant polynomial is strictly negative,
the two previous conditions imply that τ P StabHD

pxnq precisely when a, d P F,
c “ 0 and b P Frtsm :“ tf P Frts : degpfq ď mu. In other words

StabHD
“

ˆ

F˚ Frtsm
0 F˚

˙

:“
!

ˆ

a b
0 d

˙

: a, d P F˚, b P Frtsm

)

.

So, the set of unipotent elements in StabHD
pxnq equals

Um :“
ˆ

1 Frtsm
0 1

˙

:“
!

ˆ

1 b
0 1

˙

: b P Frtsm

)

.

For each i P Zě0, let us introduce the group

∆i “

!

ˆ

1 z
0 1

˙

: z P π´iOP8

)

.

It follows from [ABp, §5.1] that ∆m acts transitively on the set of edges in v1pxq

other than rn. Moreover, ∆m´1 acts trivially on this set. Note that Um covers
∆m{∆m´1, since π

´mOP8
{π1´mOP8

– FpP8q “ F. Therefore, Um acts transi-
tively on the set of edges in v1pxq other than rn, whence the claim follows.

Now, assume that either s “ 0 and n ą 0 or s ‰ 0 and n ą νpsq “ 1. In this
case, we extend the previous arguments in order to show that the image of x in tD
has valency two, except when s “ 0 and n “ 1, or s P t1{t, 1{pt ´ 1qu and n “ 2.
Indeed, let us fix

gs “
ˆ

s 1
1 0

˙

.

Then, we obtain x “ gs ¨ yn, where yi :“ B
|´i|
0 . Thus, to prove the preceding state-

ment, we just need to show that the set of unipotent elements in g´1
s StabHD

pxq gs
covers ∆n{∆n´1. We compute these stabilizer subgroups next.

Indeed, note that τ P g´1
s StabHD

pxq gs precisely when τ P g´1
s HDgs and τ P

StabGL2pKq pynq. Let us write τ “ g´1
s ggs, where g “

ˆ

a b
c d

˙

P HD. Then

τ P g´1
s HDgs if and only if

τ “
ˆ

d ` cs c

pa ´ dqs ´ cs
2

` b a ´ cs

˙

P StabGL2pKq pynq .

Equivalently, we have that νpd ` csq, νpa ´ csq ě 0, νpcq ě ´n and νppa ´ dqs ´

cs2 ` bq ě n. If s “ 0, then these previous conditions hold precisely when a, d P F˚,
b “ 0 and c P tpt´ 1qFrtsn´2. So, we get

g´1
s StabHD

pxq gs “

!

ˆ

a c
0 d

˙

: a, d P F˚, c P tpt´ 1qFrtsn´2

)

.

In particular, the set of unipotent elements in g´1
s StabHD

pxq gs is exactly

Unp0q :“
!

ˆ

1 c
0 1

˙

: c P tpt´ 1qFrtsn´2

)

.
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Thus, the image of x “ B
|n|

0 , n ě 2 by the canonical projection has valency two in
tD, since tpt´ 1qFrtsn´2 covers π´nO{π1´nO – FpP8q “ F

Now, assume s P t1{t, 1{pt´1qu and n ě 3. Note that cs P Frts in either case. So,
we have that a0 “ a ´ cs and d0 “ d ` cs are two polynomials with non-negative
valuations, whence a0, d0 P F. Moreover, we have that pa0 ´ d0qs ` cs2 ` b “

pa ´ dqs ´ cs2 ` b P πnO. Since νpsq “ 1, we conclude that the polynomial
pa0 ´ d0qs´1 ` c ` bs´2 belongs πn´2O, whence it is zero. So, we can write pa0 ´

d0q ` cs` bs´1 “ 0. Thus, since F “ F2, we have a0 “ d0 “ 1, whence we conclude
c “ bs´2 P tpt´ 1qFrts. We deduce that:

g´1
s StabHD

pxq gs “

!

ˆ

1 tpt ´ 1qs
´1

f
0 1

˙

: f P Frtsn´3

)

.

In particular, any element g´1
s StabHD

pxnq gs is unipotent, whence it covers ∆n{∆n´1,
since tpt´ 1qs´1Frtsn´3 covers π´nO{π1´nO – FpP8q “ F.

It now follows from Theorem 1.5 that s is contained in a fundamental region for
the action of HD on tpKq. Moreover, the previous analysis shows that s contains a

fundamental region, since the valency of B
|1|

0 and B
|2|

1{t are both exactly three, since

F “ F2. We conclude that s is a fundamental region.

Remark 8.6. In Example 8.5, we can check that when F ‰ F2, the group
!

ˆ

1 tpt ´ 1qs
´1

f
0 1

˙

: f P Frtsn´3

)

,

is also contained in g´1
s StabHD

pxqgs. In particular x has valency two again. Thus,
the only part where the property F “ F2 is actually used is in the final paragraph,

where the equality allows us to prove that there are no edges coming out from B
|1|

0

or B
|2|

1{t that are not contained in s.

We can refine the above method to explicitly compute more complex quotient
graphs up to certain degree. To do so, the key step is to properly use the Riemann-
Roch equality (4.5). There exist several published computations employing this
technique for D “ 0. See [A14] and [Ma01] for more details.

Remark 8.7. Note that Examples 8.2 and 8.5 show simply connected quotient
graphs. In [MS13, §6], Mason and Schweizer proposed the question:

When is the quotient graph GL2pRqztpKq a tree ?

They indicated that the theory of Drinfeld modular curves provides a complete
answer when F is finite (cf. [MS03]). An interesting question is if the same theory
can be properly used in order to extend these results to the Hecke congruence
subgroups HD. This can be eventually studied in order to give some complementary
results to Theorem 1.4, 1.6 and 1.5.
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9. Stabilizers and amalgams

In this section we analyze the structure of HD as an amalgam. More specifically,
the main goal of this section is to prove Theorems 1.6 and 1.7. For this reason, in
all that follows we assume that gp2q is trivial and that each ni is an odd positive
integer. We also assume that SupppDq ‰ H, since any other case can be reduced
to Serre’s result. In order to prove the aforementioned results we extensively use
Bass-Serre theory (cf. [Se80, Chapter I, §5]).

Let C be a set indexing all the cusps in tD. It follows from Theorem 1.4 that tD
is the union of a finite graph Y with a finite number of cuspidal rays, namely rpσq,
for σ P C. Moreover, the same results implies the following identity:

CardpCq “ cpHDq “ 2r|gp2q|

ˇ

ˇ

ˇ

ˇ

2PicpCq ` xP8y

xP8y

ˇ

ˇ

ˇ

ˇ

˜

1 `
1

q ´ 1

r
ź

i“1

´

qdegpPiqt
ni
2 u ´ 1

¯

¸

.

Now, we choose a maximal tree T of tD and a lift j : T Ñ t “ tpKq. Note that
each cuspidal ray rpσq of tD is contained in T , whence jprpσqq is a ray of t. More
explicitly, we can fix a tree T by taking the union of the cuspidal rays rpσq with a
maximal tree in the finite graph Y Ď tD.

9.1. Review of Bass-Serre Theory. Let us recall some definitions from §2. Let
ps, t, rq and ps̃, t̃, r̃q be the triplets indicating source, target and reverse maps for
the graphs t or tD respectively. An orientation on tD is a subset O of EptDq such
that EptDq is the disjoint union of O and r̃pOq. In order to simplify some of the
subsequent definitions, let us fix an orientation O for tD, and set opyq “ 0, if y P O,
while opyq “ 1, if y R O, i.e., if r̃pyq P O.

We extend j to a function j : EptDq Ñ Eptq satisfying the relation

(9.1) jpr̃pyqq “ rpjpyqq,

as follows: For each y P O ∖ EpT q, we choose jpyq so that spjpyqq P VpjpT qq.
For the remaining edges we define jpyq by the relation (9.1). Note that we have
spjpyqq “ jps̃pyqq, for all y P O. In general, however, the corresponding relation for
the target does not hold. Next, for each y P O∖EpT q we choose gy P HD satisfying
tpjpyqq “ gy ¨ jpt̃pyqq. This is always possible since tpjpyqq and jpt̃pyqq have the
same image t̃pyq in the quotient set VptDq. Now, we extend the map y ÞÑ gy to
all edges in tD by setting gy “ id, for all y P EpT q, and for all remaining edges
grpyq “ g´1

y . Note that the latter relation holds for each pair of reverse edges.

Therefore, for each edge y in the quotient graph, we get spjpyqq “ g
´opyq
y jps̃pyqq

and tpjpyqq “ g
1´opyq
y jpt̃pyqq.

For each vertex v P VptDq, we define StabHD
pvq as the stabilizer in HD of the

lift jpvq. An analogous convention applies to an edge y. Thus, for each pair pv, yq

where v “ t̃pyq, we have a morphism fy : StabHD
pyq Ñ StabHD

pvq defined by

g ÞÑ g
opyq´1
y gg

1´opyq
y . This function is well defined since

gopyq´1
y StabHD

`

jpyq
˘

g1´opyq
y Ď StabHD

´

j
`

t̃pyq
˘

¯

.

Thus, the data presented above allow us to define the graph of groups phD, tDq “

phD, T, tDq associated to the action of HD on t (cf. [Se80, Chapter I, §4.4]).
45



Now, we can define the fundamental group associated to this graph of groups.
Indeed, let F phD, tDq be the group generated by all StabHD

pvq, where v P VptDq,
and elements ay, for each y P EptDq, subject to the relations

ar̃pyq “ a´1
y , and ayfypbqa´1

y “ fr̃pyqpbq, @y P EptDq, @b P StabHD
pyq.

The fundamental group π1phDq “ π1phD, tDq is, by definition, the quotient of
F phD, tDq by the normal subgroup generated by the elements ay for y P EpT q.
In other words, if we denote by hy the image of ay in π1phD, tDq, then the group
π1phD, tDq is generated by all StabHD

pvq, where v P VptDq, and the elements hy,
for y P EptDq, subject to the relations

hr̃pyq “ h´1
y , hyfypbqh´1

y “ fr̃pyqpbq, and hz “ id,

for all pz, yq P EpT q ˆ EptDq and for all b P StabHD
pyq. It can be proven that the

group π1 is independent, up to isomorphism, of the choice of the graph of groups
hD, and in particular of the tree T Ă tD.

As mentioned in §1, Bass-Serre Theory implies that all subgroups of GL2pKq

can be described from their actions on tpKq (cf. [Se80, Chapter I, §5.4]). More
specifically, they are isomorphic to their corresponding fundamental groups, as
defined above (cf. [Se80, Chapter I, §5, Theorem 13]). In our case, HD isomorphic
to the fundamental group π1phDq “ π1phD, tDq.

Let rpσq be a cuspidal ray in tD. We denote by Pσ the fundamental group
π1phD|rpσqq of the restriction of hD to rpσq. Analogously, we define H “ π1phD|Y q,
for Y as in Theorem 1.4. For each σ as above, let Bσ be the vertex stabilizer in
HD of the unique vertex in Y X rpσq. We have canonical injections Bσ Ñ Pσ and
Bσ Ñ H. Now, as Serre points out in [Se80, Chapter II, §2.5, Theorem 10], if
we have a graph of groups h, which is obtained by “gluing” two graphs of groups
h1 and h2 by a tree of groups h12, then there exist two injections ι1 : h12 Ñ h1
and ι2 : h12 Ñ h2, such that π1phq is isomorphic to the sum of π1ph1q and π1ph2q,
amalgamated along π1ph12q according to ι1 and ι2. In our context, we conclude
that HD is isomorphic to the sum of Pσ, for all σ, and H, amalgamated along their
common subgroups Bσ according to the above injections. Since rpσq Ď T , each Pσ

coincides with the direct limit of the vertex stabilizers defined by all v P Vprpσqq.
In all that follows, we exploit this property of the groups Pσ, in order to describe
them in more detail.

We start with some comments on the previous choice that simplify our work.
Note that, in our context, each vertex stabilizer is finite, since it is the intersection
of a compact set with a discrete subgroup of GL2pkq. So, replacing rpσq by another
equivalent cuspidal ray has no effect in the statements in Theorem 1.6. Hence, to
prove the aforementioned theorem, we only need to describe the groups Pσ for a
suitable set of cusp rays. We describe a convenient choice in what follows.

9.2. On vertex stabilizers. For any closed point Q in C, any s P k and any n P Z,
let Dps, n,Qq be the OQ-maximal order defined by

(9.2) Dps, n,Qq “
ˆ

1 0
s π

n
Q

˙

M2pOQq
ˆ

1 0
s π

n
Q

˙´1
.

We denote byO the ring of local integers at P8, and we fix a uniformizing parameter
π P O. We define vnpsq P Vptq as the vertex corresponding to the O-maximal order
Dps, n, P8q. For any s P P1pkq, we define the R-ideal Qs by Qs “ RXs´1RXs´2R,
when s P k˚, and by Qs “ R, when s P t0,8u. Let us write Rpnq “ ta P R :
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νpaq ě ´nu. Recall that ID denotes the R-ideal L´DpU0q, where U0 “ C ∖ tP8u

(cf. Equation (1.1)). So, the next lemma follows immediately from [Ma01, Lemma
3.2] and [Ma01, Lemma 3.4].

Lemma 9.1. Assume first that s “ 0 and n ă 0. Then

(9.3) StabHD
pvnp0qq “

!

ˆ

α c
0 β

˙

: α, β P F˚ and c P Rp´nq

)

.

On the other hand, if s “ 0 and n ě 1, then

(9.4) StabHD
pvnp0qq “

!

ˆ

α 0
c β

˙

: α, β P F˚ and c P Rpnq X ID

)

.

Finally, if s P k∖F and ndegpP8q ą degpQsq, then the element g P GL2pkq belongs
to StabHD

pvnpsqq if and only if it has the form
(9.5)

g “ Apα, β, cq “
ˆ

β ´ sc pα ´ βqs ` s
2
c

´c α ` sc

˙

“
ˆ

0 ´1
1 ´s

˙´1ˆ
α c
0 β

˙ˆ

0 ´1
1 ´s

˙

,

where

(a) α, β P F˚, and
(b) c P Rpnq X ID XRs´1 X ppβ ´ αqs´1 `Rs´2q.

In all cases, the stabilizer group StabHD
pvnpsqq contains triangularizable matrices

only. Moreover, in (9.4) and (9.5), the matrix group

Sbspnq :“ tApα, α, cq : α P F˚, c P ID XRpnq X Qsu,

which is always isomorphic to F˚ ˆpRpnqXQsXIDq, is contained in StabHD
pvnpsqq.

Let C be a set indexing all the cusps in tD. For each σ P C, let rpσq be a
cuspidal ray in tD representing the corresponding cusp, and let jprpσqq be its lift
to t. We can assume that its visual limit ξ “ ξσ is in P1pkq by Corollary 3.8,
and we assume moreover that one of them is 8. It follows from the previous
lemma that there exists a ray r1pσq, equivalent to rpσq, with a vertex set tvi :
i “ 1, ¨ ¨ ¨ ,8u, where any pair of neighboring vertices pvi, vi`1q has the property
StabHD

pjpviqq Ă StabHD
pjpvi`1qq. Then, up to changing the representing cuspidal

ray for each class, we can assume that the previous inclusion holds for each rpσq

in tD. In particular, in this case, the direct limit Pσ coincides with the increasing
union

Ť8

i“1 StabHD
pviq. Thus, in order to describe Pσ, we only need to study the

stabilizers of some unbounded subset tvαpiqu8
i“1 Ď Vpjprpσqqq. So, let rp8q Ď tD

be the cuspidal ray at infinity, i.e., the projection on tD of a ray whose vertex set
is tv´np0q : n ě N0u, for certain suitable integer N0. Then, Lemma 9.1 directly
shows that P8 is isomorphic to pF˚ ˆ F˚q ˙R.

When rpσq is different from rp8q we have to work with other tools. We do this
in what follows. Let us fix a cuspidal ray rpσq different from rp8q. Then, the vertex
set of jprpσqq equals tvnpξq : n ě N0u, where ξ and N0 depend on σ. It follows
from Lemma 9.1 that the maximal unipotent subgroup of each StabHD

pvnpξqq is
isomorphic to the intersection of Rpnq with the R-ideal Qξ X ID. Therefore, since
Ť

nąN0
Rpnq “ R, it follows that the maximal unipotent subgroup of Pσ is isomor-

phic to the R-ideal Qξ X ID. Thus, by Equation (9.5), in order to describe Pσ, we
only need to characterize the eigenvalues of some elements in StabHD

pvnpξqq.
We start by recalling some relevant definitions from §6. As before, Γ Ă PGL2pkq

denotes the stabilizer of EDpU0q, where ED is the Eichler C-order defined in (4.4).
So, for each v P Vptq, its image v P VpΓztq represents one and only one C-Eichler
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order of level D, or equivalently one abstract D-grid. Next, we make explicit this
correspondence for any vertex v “ vnpξq. It follows from condition (c) in §5 that,
given the family of local orders tEpP q : P P |C|u defined by

(E1) EpPiq “ Dp0, 0, Piq X Dp0, ni, Piq, for any i P t1, ¨ ¨ ¨ , nu,
(E2) EpP8q “ Dpξ, n, P8q, and
(E3) EpQq “ Dp0, 0, Qq, for any Q ‰ P1, ¨ ¨ ¨ , Pn, P8,

there exists an Eichler C-order E “ Ervs such that EP “ EpP q, for all P P |C|.
Then, the abstract D-grid corresponding to v is Spvq “

“

SpErvsq
‰

. Observe that

the level of E is equal to D “
řn

i“1 niPi.
Now, by definition, g P StabHD

pvnpξqq if and only if g P HD “ EDpU0q˚ and
g P StabGL2pkqpvnpξqq. Observe that g P EDpU0q˚ is equivalent to g P EDpU0q and
detpgq P R˚ “ F˚. The following result describes the normalizer of local maximal
orders. See [A16, §3] for details.

Lemma 9.2. For any closed point Q, the normalizer in GL2pkQq of a local maximal
order Dps, n,Qq is k˚

QDps, n,Qq˚.

Proof. Since any OQ-maximal order is the ring of endomorphisms of an OQ-lattice,
we can write Dps, n,Qq “ EndOQ

pΛq, for some lattice Λ “ Λps, n,Qq of kQ ˆ kQ.
Then g P GL2pkQq normalizes Dps, n,Qq if and only if EndOQ

pΛq “ EndOQ
pgpΛqq.

So, since two lattices have the same endomorphism rings precisely when they belong
to the same homothety class, we have that EndOQ

pΛq “ EndOQ
pgpΛqq precisely

when gpΛq “ λΛ, for some λ P k˚
Q, i.e. λ

´1g P EndOQ
pΛq˚ “ Dps, n,Qq˚. □

We deduce from the preceding lemma that g P EDpU0q˚ if and only if the fol-
lowing conditions hold:

‚ detpgq P F˚,
‚ g normalizes Dp0,m, Piq, for each Pi P SupppDq and m P t0, ¨ ¨ ¨ , niu, and
‚ g normalizes Dp0, 0, Qq, for every Q ‰ P1, ¨ ¨ ¨ , Pr, P8.

Thus, we conclude that g belongs to StabHD
pvnpξqq precisely when it satisfies con-

ditions pA1q ´ pA4q below:

(A1) detpgq P F˚,
(A2) g normalizes Dp0,m, Piq, for each Pi P SupppDq and m P t0, ¨ ¨ ¨ , niu,
(A3) g normalizes Dp0, 0, Qq, for every Q ‰ P1, ¨ ¨ ¨ , Pr, P8, and
(A4) g normalizes Dpξ, n, P8q.

Recall that we only have to describe the vertex stabilizers for an arbitrary un-
bounded set of vertex of jprpσqq. Then, by changing vnpξq to vn`1pξq if needed,
we can assume without loss of generality that the type of vnpξq coincides with the
type of v0p0q. Thus, there exists hP8

P SL2pkP8
q such that hP8

¨ vnpξq “ v0p0q,
i.e., hP8

Dpσ, n, P8qh´1
P8

“ Dp0, 0, P8q. Now, it follow from Lemma 9.2 that the
GL2pkQq-normalizer of local maximal orders DQ are open. So, by the Strong Ap-
proximation Theorem applied on the open set C∖SupppDq, there exists h “ hpvq P

SL2pkq satisfying hDpσ, n, P8qh´1 “ Dp0, 0, P8q and normalizing each Dp0, 0, Qq,
for Q ‰ P1, ¨ ¨ ¨ , Pr, P8. For each Pi P SupppDq, let si be the finite line in tpkPi

q

whose vertex set is th´1Dp0,m, Piqh : m P t0, ¨ ¨ ¨ , niuu. We define S “ Spvq as the
concrete D-grid S “

śn
i“1 si. Note that S “ hSpErvsqh´1 is another representa-

tive of S “ Spvq. Thus, we deduce from conditions pA1q ´ pA4q that, g belongs to
StabHD

pvnpξqq if and only if rg “ hgh´1 P GL2pkq satisfies the following:

(B1) detprgq P F˚,
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(B2) rg normalizes each maximal C-order in the vertex set of S, and
(B3) rg normalizes each local maximal order Dp0, 0, Qq, where Q ‰ P1, ¨ ¨ ¨ , Pr.

Let vn`2pξq be the vertex at distance two from vnpξq towards ξ. Since CP8
pODq

is combinatorially finite, for n " 1, we have vnpξq ‰ vn`2pξq. Moreover, it follows
from Proposition 7.11 and Corollary 7.15 that there exists a suitable integer Nσ

such that for all n ą Nσ the actual D-grid S “ Spvnpσqq has a semi-decomposition
datum with positive degree.

First, assume that S has a total-decomposition datum pβ,B, pniq
r
i“1q. Let A “

Apβq be be the base change matrix from the canonical basis to β, and let E “

A´1ErB,B ` DsA be the split Eichler C-order, defined as the intersection of all
maximal orders in the vertex set of S. Then, it follows from Proposition 7.9, that
there exists a global idempotent matrix ϵ1 P EpCq. Since T :“ F˚ϵ1 ` F˚pid ´ ϵ1q

is contined in EpCq˚, any matrix in T normalizes the Eichler C-order E. In other
words, any matrix g P T satisfies the properties pB1q, pB2q and pB3q. Thus, for any
pair of elements a, b P F˚ there is a matrix ga,b P StabHD

pvnpξqq whose eigenvalues
are a and b. Then, since the group generated by tga,b : a, b P F˚u and the maximal
unipotent subgroup of StabHD

pvnpξqq equals

tApα, β, cq : α, β P F˚, c P Rpnq X Qξ X IDu,

we conclude from Lemma 9.1 that

(9.6) StabHD
pvnpξqq – pF˚ ˆ F˚q ˙ pRpnq XQξ X IDq.

Now, assume that S has a non total semi-decomposition datum pβ,B, psiq
r
i“1q, and

let A “ Apβq as before. Then A´1
rgA normalizes each maximal C-order in the

vertex set of A´1SA. In particular, the matrix A´1
rgA fixes DB , with degpBq ą 0,

whence A´1
rgA “

ˆ

x y
0 z

˙

with x´1z P F˚ (cf. [A14, §4, Proposition 4.1]). So,

by taking S˝ “ S in the proof of Proposition 7.19, we deduce that x “ z. Thus,
the eigenvalues of rg are equal. The same holds for g. Therefore, we conclude from
Lemma 9.1 that StabHD

pvnpξqq “ Sbξpnq in this case. In particular, we have that

(9.7) StabHD
pvnpξqq – F˚ ˆ pRpnq XQξ X IDq.

9.3. End of proof of Theorem 1.6 and 1.7. Note that, it follows from Corol-
lary 7.15 that we can assume that the semi-decomposition vectors of Spvnpξqq and
Spvn`2pξqq are equal. Then, by the arguments presented above, we deduce that:

‚ StabHD
pvn`2pξqq – pF˚ ˆ F˚q ˙ pRpn` 2q XQξq, if Spvn`2pξqq is split, and

‚ StabHD
pvn`2pξqq – F˚ ˆ pRpn` 2q XQξq, if not.

An inductive argument shows that, for each t P Zě0, StabHD
pvn`2tpξqq is isomorphic

to

‚ pF˚ ˆ F˚q ˙ pRpn` 2tq XQξ X IDq, if Spvn`2tpξqq is split, and
‚ F˚ ˆ pRpn` 2tq XQξ X IDq, if not.

Now, we say that rpσq is split when it only contains vertices corresponding to
split abstract grids. Since we can assume that Spvnpξqq and Spvn`tpξqq correspond
to vertices at distance t ą 0 in the same cuspidal ray of CP8

pODq, we get from
Corollary 7.15 that they have the same semi-decomposition vectors. In particular,
if rpσq is not split, then every vertex in rpσq corresponds to a nonsplit abstract grid.
Thus, we conclude

(9.8) Pσ –

"

pF˚ ˆ F˚q ˙ pQξ X IDq if rpσq is split,
F˚ ˆ pQξ X IDq if not.
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Since each ni is odd by hypothesis, it follows from Proposition 7.24 that there are

cpDq{αpDq “ r2PicpCq `
@

P1, ¨ ¨ ¨ , Pr, P8

D

: xP8ys,

split cusps in Γzt. Moreover, it follows from Lemma 7.2 that there are exactly
rΓ : PHDs cusps of tD with the same image in Γzt. Thus, we conclude from
Equation (7.2) that there are 2rr2PicpCq ` xP8y : xP8ys elements σ P C such that
rpσq is split. Then, Theorem 1.6 follows. Furthermore, Theorem 1.7 is an immediate
application of [Se80, Chapter II, Proposition 14, Corollary 1] in this context.

Example 9.3. Let C “ P1
F, R “ Frts, and let D be the principal divisor of t, as

in Example 8.2. In this case tD is isomorphic to the double ray in t whose vertex
set is tvnp0q : n P Zu. See Example 8.2 for more details. Let Frtsn be the set of
polynomials whose degree is less or equal than n. Then, it follows from Lemma 9.1
that

‚ StabHD
pvnp0qq “

ˆ

F˚ Frts´n

0 F˚

˙

, if n ă 0,

‚ StabHD
pvnp0qq “

ˆ

F˚ 0
0 F˚

˙

, if n “ 0,

‚ StabHD
pvnp0qq “

ˆ

F˚ 0
tFrtsn´1 F˚

˙

, if n ą 0.

We conclude that HD is isomorphic to the sum of
ˆ

F˚ Frts
0 F˚

˙

and
ˆ

F˚ 0
tFrts F˚

˙

amalgamated along the diagonal group F˚ ˆ F˚

Example 9.4. Assume that C “ P1
F, F “ F2, R “ Frts, and let D be the principal

divisor of tpt`1q, as in Example 8.5. So, it is not hard to see from the computations
in Example 8.5:

‚ StabHD
pvnp0qq “

ˆ

F˚ Frts´n

0 F˚

˙

, if n ă 0,

‚ StabHD
pvnp0qq “

ˆ

F˚ 0
0 F˚

˙

, if n “ 0, 1,

‚ StabHD
pvnp0qq “

ˆ

F˚ 0
tpt` 1qFrtsn F˚

˙

, if n ą 1,

‚ StabHD
pv2p1{tqq “ tidu, and

‚ StabHD
pvnpsqq “ id ` Frtsn´3

ˆ

s´1
c s´1 ´s´1

c

s´1
c s´2 ´s´1

c s´1

˙

, for each rational

s P t1{t, 1{pt` 1qu, sc P t1{t, 1{pt` 1qu ∖ tsu and n ą 2.

So, let us define:

‚ P8 “

ˆ

F˚ Frts
0 F˚

˙

,

‚ P0 “

ˆ

F˚ 0
tpt` 1qFrts F˚

˙

, and

‚ P1{t “ id ` Frts

ˆ

tpt` 1q ´pt` 1q

t2pt` 1q ´tpt` 1q

˙

, and

‚ P1{pt`1q “ id ` Frts

ˆ

tpt` 1q ´t
tpt` 1q2 ´tpt` 1q

˙

.

Then, since F˚ “ t1u, we conclude that HD is isomorphic to the free product of
groups Pσ, where σ P t0,8, 1{t, 1{pt` 1qu.

50



References

[AbB08] P. Abramenko and K. S. Brown, Buildings: Theory and applications, Graduate Texts
in Mathematics 248, Springer, New York, 2008.

[A12] L. Arenas-Carmona, Representation fields for commutative orders, Ann. Inst. Fourier

(Grenoble) 62 (2012), 807-819.
[A13] L. Arenas-Carmona, Eichler orders, trees and representation fields, Int. J. Number The-

ory 9 (2013), no. 7, 1725-1741.

[A14] L. Arenas-Carmona, Computing quaternion quotient graphs via representation of orders,
J. Algebra 402 (2014), 258-279.

[A16] L. Arenas-Carmona, Spinor class fields for generalized Eichler orders, J. Théor. Nombres
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