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SEMINORMS FOR MULTIPLE AVERAGES ALONG POLYNOMIALS AND
APPLICATIONS TO JOINT ERGODICITY

SEBASTIAN DONOSO, ANDREAS KOUTSOGIANNIS AND WENBO SUN

ABsSTRACT. Exploiting the recent work of Tao and Ziegler on the concatenation theorem on
factors, we find explicit characteristic factors for multiple averages along polynomials on sys-
tems with commuting transformations, and use them to study the criteria of joint ergodicity for
sequences of the form (Tfl’j<n) e ng"j(n))nez, 1 < j <k, where T1,...,T; are commuting
measure preserving transformations on a probability measure space and p; ; are integer poly-
nomials. To be more precise, we provide a sufficient condition for such sequences to be jointly
ergodic. We also give a characterization for sequences of the form (Tf(">)ngz,1 < i< dtobe
jointly ergodic, answering a question due to Bergelson.

1. INTRODUCTION

1.1. Characteristic factors for multiple averages. Let X = (X, B, u,T) be a measure pre-
serving Z—systemH When T is ergodic (i.e., the measure of any T-invariant set is 0 or 1), the von
Neumann ergodic theorem (see for example [10, Theorem 2.21]) asserts that for all f € L%(y),
N-1
1
the LQ(,u) limit of the “time average” N Z T" f equals to the “natural” one, namely the “space

n=0
limit” / fdp.
X

In the past decades, the L2-limit behavior of the “multiple averages” became a central topic in
ergodic theory. Several authors have studied averages for a single transformation T, as

| V-1
(1) v Z TP e g
n=0

averages for several (usually commuting) 7;’s, as

N-1
1
(2) N Z Tinl(n)fl A T/fk(n)fk
n=0
and even more general averages as
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1 By this we mean that (X, B, ) is a probability space and T is an invertible measure preserving transformation,
i.e., (T~ A) = p(A) for all A € B. We also denote such a system as (X, B, 1, (Sy)gez) later in this paper, where
Sp =T", i.e., the composition of T with itself n times.
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2 SEBASTIAN DONOSO, ANDREAS KOUTSOGIANNIS AND WENBO SUN

N—1 m -
(3) % Z HTipi,l(n)fl e HTszk(n)fk
n=0i=t i=1

for some m, k € N*, integer valued sequences (p;(n))neny and f; € L(u), 1 < i < k. Fruitful
results has been obtained, which include, but are not limited to [1, [4} 6], 8 9, T4 [15] 16}, 17, 18,
19, 211, 23] 25, 27]. In particular, it was proved by Walsh [25] (following the ideas of Tao [23])
that the multiple (uniform) averages, as in , converge in the L? sense for any integer valued
polynomials p; when 71, ..., T, span a nilpotent group. However, the result in [25] does not give
any description or information about the limit. In general, very little is known about the limit
of multiple averages.

The existing results employ the idea of characteristic factors, which intends to reduce the
average under study to a more tractable one. For a single transformation 7" and for linear
pi’s, the main content of [I6] is the introduction of some seminorms that control the behavior
of the average and are characterized by nilsystems. These seminorms were also used by
Leibman (in [20]) to bound the limit of for polynomial p;’s (always in the context of a
single transformation). For several commuting transformations, Host (in [15]) introduced similar
seminorms to bound the limit of for linear p;’s but in that case there was still no clear
connection to nilsystems (see also [22] 24] for slight generalizations of these seminorms). When
considering non linear polynomials p;’s, even less is known and even simple cases can be very
intricate. For instance, Austin in [2] [3] found precise characteristic factors for some specific cases
of quadratic polynomials for £ = 2 (and linear polynomials for k& = 3).

In this paper, under a further development of a recent result by Tao and Ziegler ([24]) on
concatenation (intersection) of factors, we provide an upper bound for the limit of for any
m, k € N* and polynomials p; ; taking integer values at integers by using some seminorms on the
system (generically called Host-Kra seminorms), which to the best of our knowledge, has never
been studied before in this generality. We state here a simplified more aesthetic one-parameter
version of our main result, and refer the readers to Theorem [5.1] below for the result in its full
generality:

Theorem 1.1 (Bounding multiple averages along polynomials by seminorms). Let d, k, K € N*

and pr,...,pr: Z — Z% be a family of polynomials of degrees at most K such that p;,p; — D)

are not constant for all 1 < i,5 < k, i # j, where pj(n) = Z biyn" for some b;, € Q.
0<v<K

Denote the set of the coefficients and pairwise differences of the coefficients (excluding 0) of the

polynomials with

R= |J {biwbiw—birn: 1 <i," <E}\{0}.
O<v<K

Let (X, B, i1, (Ty) gez4) be a 74 -system (see Sectionfor the definition). If the Host-Kra semi-
norm || filliaryx},en (s€€ Section@for definitions) of fi equals to 0 for some 1 < i <k, then

N-1
. 1
Nflll\}n—N)o N-M Z Tpymyfr - Ty fr = 0.

n=
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Remark. Unlike the conventional “finite-step” Host-Kra seminorms, the seminorms we use such
as || - [l{a(ryx>1, 5 are “infinite-step” ones. It is an interesting question to ask whether one can
replace the “infinite-step” seminorms in the main theorems of this paper by “finite-step” ones.

1.2. The joint ergodicity property. An interesting application of Theorem[I.I]and its stronger
version Theorem is that they can be used to study joint ergodicity problems, also allowing
us to answer a question due to Bergelson. Back to the description of the limit of , there are
interesting cases where the limit has a “simple” description. In [6], Bergelson showed that if
(X, B, i1, T) is a weakly mixing system (meaning that 7' x T is ergodic for p x p) E| and p1, ...,k
are polynomials such that p;, p; — p; are non-constant for all 1 <<¢,5 < k,% # j, then the L2(,u)

k

limit of 1) is the “expected” one, namely the “multiple space limit” H / fi d,u One can think
)X
=1

of this result as a strong independence property of the sequences (Tpi(”))nez,l < i < k in the
weakly mixing case. This naturally leads to the following definition of joint ergodicity, in which
we demand the average to converge to the expected limit.

Definition. Let d,k,L € N*, p1,...,ps: Z* — Z% be functions, and (X, B, i1, (Ty) yeza) be a
Z%-system. We say that the tuple (Tpl(n), e ,Tpk(n))nezL is jointly ergodic for p if for every
fi,s-oy fr € L(u) and every Folner sequence (Iy)nen of ZL we have that

!
@ ngno<>lfz\f\n;;V Tosm 1o T i = /X frdp.. /ka: dp,

where the limit is taken in L?(x). When k = 1, we also say that (T, (n)Inezr is ergodic for p
instead [l

For d,L € N*, we say that ¢: Z¥ — Z% is an integer-valued polynomial if ¢ = (q15---,G4d),
where each ¢; is an integer polynomial (meaning that it takes integer values at integers) of L
variables. The polynomial ¢ is non-constant if some ¢; is non-constant. A family of polynomials
p1, .. pe: ZF — 74 is non-degenerate if they are essentially non-constant (meaning that each
pi is not a constant polynomial) and essentially distinct (meaning that p; — p; is essentially
non-constant for all 1 < 4,5 < k,i # j).ﬁ Using this new language, it follows from [6] that
if T is weakly mixing and p1,...,pr: Z — Z is a non-degenerate family of polynomials, then
(Tpl("), .. 7Tp’“(”))nez is jointly ergodic for p. Later, it was proved by Frantzikinakis and Kra
(in [14]) that if p1,...,px: Z — Z is an independent family of polynomials (i.e., every linear
combination along integers of the p;’s is non-constant) and T is totally ergodic (i.e., T" is ergodic

2 In this case we also say that T is a weakly mixing transformation.

3 This result was previously obtained by Furstenberg (in [I1]]) in the special case where p;(n) =in,i=1,...,k.

4 A sequence of finite subsets (In)nen of Z" with the property Nlim [In|"" - |(g+In)AIn| = 0 for all g € Z",
—00

is called Fglner sequence in 7t

5 The main reason we change from single-variable p;’s to multi-variable ones and give the definition in this
generality is technical. More specifically, we will deal with multi-variable integer valued polynomials, since
our arguments, even for single-variable polynomials, naturally lead to multi-variable ones (for details, see the
“dimension-increment” method, explained before Proposition .

6 Throughout this paper, when we write “a polynomial p: Z"~ — Zd”, we implicitly assume that p is integer-
valued, hence, in general, p has rational coefficients.
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for all n € Z\{0}), then the tuple (77" ... TP+ 7 is jointly ergodic for  (for integer part
of real valued strongly independent polynomials, see [I8]). By combining existing results, we
have the following proposition:

Proposition 1.2. Let d,k,L € N* and p1,...,pp: Z* — Z% be a non-degenerate family of
polynomials. Let (X, B, u, (Ty) eza) be a Z%-system such that:

(i) Ty is ergodic for p for all g € 2%\ {0}; and
(i) (Tpyn) X = X Ty, (n))nezt 1s ergodic for ,u®kE|
Then (Tpl("), . Tpk(n))nezl, is jointly ergodic for p.

Proposition [1.2]is a direct corollary of Proposition 2.10 of [17], Theorem 10.1 of [16] (see also
Theorem [2.6| below), and Theorem B of [20] (see also Theorem [2.9) below). We leave the details
of the proof to the interested readers.

We remark that in all the aforementioned results, one needs to make rather strong assumptions
for the system, more specifically that either the transformation is weakly mixing or that infinitely
many transformations T} are ergodic. It is then natural to ask if one can obtain joint ergodicity
results under weaker conditions, e.g., assuming that only finitely many transformations (or se-
quences of transformations with specific iterates) are ergodic, and finally, if there are any cases
in which the sufficient condition is also necessary. In this direction, it is worth mentioning two
results related to our study.

Let d € N* and (X, B, u,T1,...,Ty) be a measure preserving system with commuting trans-
formationsﬂ It was proved by Berend and Bergelson (in [4]) that the tuple (T7",..., T4 )nez
is jointly ergodic for p if and only if TiTj_1 is ergodic for p for all 1 < 4,5 < d,i # j and
Ty x - x Ty is ergodic for u®?. Recently, it was proved by Bergelson, Leibman and Son (in
[8]) that if p1,...,pq: Z — Z are generalized linear functions (i.e., functions of the form p(n) =
[a1n + ag], [as[ain + az]], ete., where [-] denotes the integer part, or floor, function), then the

tuple (77" (n), . ,Tf;d(n))nez is jointly ergodic for p if and only if the sequence (ﬂpi(n)T;pj (n))nez

is ergodic for p for all 1 < 4,5 < d,i # j, and the sequence (Tfl(n) X e X ng(n))nez is ergodic
for u®d. Note that both results, while being characterizations, hold under only the ergodicity
assumption for finitely many transformations and sequences of transformations.

In this paper, we study joint ergodicity properties for sequences of transformations with poly-
nomial iterates. The following is our first application of Theorems [I.1] and [5.1}

Theorem 1.3. Let d,k, K,L € N* and p1,...,ps: ZF¢ — 7% be a non-degenerate family o
polynomials of degrees at most K. Suppose that p;(n) = Z b yn" for some b, € Q¢
veNL |v|<K
Denote the set of the coefficients and pairwise differences of the coefficients (excluding 0) of the
polynomials with
R=|J A{biwbiv —birp: 1 <i,i’ <E}\{0}.
0<v|<K

7 u®k is the product measure y ® - -- ® u on X",

8 Here, as in the expression , (X,B,u,T1,...,T4) can be understood as an abbreviation for the Zd—system
(X, B, 1, (Sg)geza), where Tt = S1.0,....0), T2 = S(0,1,0,...,0» - - - » Ta = S(o,...,0,1)-

For n = (ni,...,nr) € Z" and v = (v1,...,v) € N*, n¥ denotes the quantity n?' - ...-n%", and |v| =

v1+ -+ UL
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Let (X, B, i, (Ty) yeza) be a Z4-system such that:

(i) For all r € R, denoting G(r) := spang{r} N 74 (see also the relation (@) in the corre-
sponding definition in Subsection , the action (Ty)4ec(r) is ergodic for M’H and
(i) (Tyyn) X = X Ty (n))nezt is ergodic for u®k.

Then (Ty, (n)s - - - Tpy(n) ezt s jointly ergodic for .

We remark that Theorem is stronger than Proposition [1.2] since we only require finitely
many Ty’s to be ergodic, i.e., those g’s belonging to R, and the set R has an explicit expression.

Example 1. Let (X, B, u, T1,T») be a system with two commuting transformations and assume
that (T1"2+” X T;z)nez is ergodic for u x p. Then Theorem implies that if 17, 1o, T1T2_1 are
ergodic for p, then (T1”2+", T;z)nez is jointly ergodic for p.

Conversely, the joint ergodicity of (T1"2+”,T Z"Q)nez implies the ergodicity of (T1"2+”)nez and
(T Q”Z)nez for p, which in turn implies the ergodicity of T7 and T5 for p. However, the fact that
(T1”2+",T2”2)nez is jointly ergodic for p does not necessarily imply that 777 Lis ergodic (take
for instance 71 = Ty = T where T is a weakly mixing transformation).

Throughout this paper, Example [I| will be our main example via which we demonstrate how
our method works. Note that annoyingly enough, the expression of the limit of the average of
the sequence T1"2+" f1- T2”2 fo for bounded f7 and fo cannot be immediately found from known
results, despite the fact that the polynomials p(n) = n? + n and py(n) = n? are essentially
distinct.

The second application of Theorems and is the following theorem, which provides
necessary and sufficient conditions for joint ergodicity of the polynomial sequences Tip (n), 1< <
d. This generalizes the result from [4] and answers a question due to Bergelsonﬂ

Theorem 1.4. Let d,L € N*, p: ZY' — Z be a polynomial and (X,B,pu, Ty, ..., Ty) be a system
with commuting transformations. Then (Tf(n), e ,Tg(n))nezL 18 jointly ergodic for w if and only
if both of the following conditions are satisfied:
i Tinl is ergodic for u for all1 <i,7 <d, i +# j; and
J g f j<d,i#j;
(ii) ((Ty x -+ x Td)p(n))nEzL is ergodic for u®?.

As an immediate example, for a system (X, B, u, T1, T5) with two commuting transformations,
the sequence (T1”2,T2"2)nez is jointly ergodic for p if and only if TyT, ' is ergodic for p and
(TI"2 X TQ”Q)neZ is ergodic for p x p.

One might wonder if there are better descriptions of condition (ii) of Theorem In Section
we provide several criteria and equivalent conditions of (ii), related to the eigenvalues of the
system.

Based on the work of [4, 8] and the main results of this paper, we have a natural conjecture:

10 For a subgroup H of Z, (Tg)gea(ry is ergodic for p if every A € B which is invariant under Ty for all
g € G(r) is of p-measure 0 or 1.
Personal communication.
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Conjecture 1.5. Let d,k,L € N*, py,...,pp: Z* — Z% be polynomials and (X, B, 1, (Ty) geza)

be a Z%-system. Then (Toi(n), -+ T,

pr(n) InezL 18 jointly ergodic for p if and only if both of the
following conditions are satisfied:

D) (L () —ps(n L 1s ergodic for p for all 1 <i,j <k, i# j; and
pi(n)=p;(n)/nez
(i) (Tp,n) ¥ = X Ty (n))nezt s ergodic for u®k.

1.3. Method and Organization. Section[2]contains all the background material and Section 3]
the conditions equivalent to (ii) of Theorem [L.4] (see Proposition [3.2)).

In order to prove the joint ergodicity results of this paper, we introduce a characterization
theorem (Theorem , the stronger version of Theorem in Section , which allows us to study
joint ergodicity properties under the assumption that all the functions f1,..., fi are measurable
with respect to certain Host-Kra characteristic factors (see Section [2| for definitions). Once
Theorem is proven, a standard argument using results from [16, 2I] (or via Theorems
and — see below) yields the main results of this paper. The proofs of Theorems and
under the assumption of the validity of Theorem [5.1] are enclosed in Section [5] as well. In
the same section, we also introduce the two main ingredients for proving Theorem [5.1} namely
Propositions (which we prove in Section @ and (which we prove in Section .

To obtain the characterization theorem (Theorem [5.1]), we employ the by now classical “PET
induction” (first introduced in [6]), which allows us to convert the average in to a special
case where every p;(n) is a linear function by repeatedly applying the van der Corput lemma
(Lemmal[2.2)). Adaptations of this method have been extensively studied in the past in [9, 17, 21]
too. We explain it in detail in Section [4] tailored for our purposes.

There are two major difficulties to carry out the PET induction in proving Theorem [5.I]though.
The first is that although PET induction variations used in the past allow us to eventually reduce
the left hand side of to an expression with linear iterates, they provide no information on
the coefficients of these iterates, which is a crucial detail in describing the set R defined in
Theorem [I.3] To overcome this difficulty, we introduce a new alteration of this technique in
Section |§| (see the proof of Proposition which allows us to keep track of the coefficients of
the polynomials when we iteratively apply van der Corput (vdC) operations.

The second, and perhaps the most important problem is how to bound the left hand side
of by some Host-Kra-type seminorm of each function f;. It turns out that for a general
non-degenerate family of polynomials pi, ..., pp: ZF — Z%, we can use the PET induction to
bound the left hand side of by an averaged Host-Kra seminorm, as the righthand sides of
and (see Section . The problem-goal now is to bound such an averaged seminorm
effectively by a single one. In the past, in analogous situations, issues like these were resolved
under additional restrictions, such as the assumption that d = 1 ([6]), that all T,’s are ergodic
([14L [17]), or that p1, ..., px have different (and positive) degrees ([9]). In this paper, we address
this difficulty in Section [7| (see the proof of Proposition in its full generality. Our method is
based on the recent work of Tao and Ziegler on the concatenation theorem ([24]).

Acknowledgements. We thank Vitaly Bergelson for bringing the problem that we are ad-
dressing in Theorem to our attention, and also for providing useful advices. The second
author thanks the hospitality of the Center for Mathematical Modeling (CMM) of the Univer-
sity of Chile, where this work started. The first author thanks the hospitality of the Ohio State
University, where this work was finished.
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1.4. Definitions and notations. We denote with N*, N, Z, Q@ and R the set of positive integers,
non-negative integers, integers, rational numbers and real numbers, respectively. If X is a set,
and d € N*, X denotes the Cartesian product X x --- x X of d copies of X.

We say that a tuple (X, B, u, (Ty) jeza) is a Z%-measure preserving system (or a Z%-system) if
(X, B, ) is a probability space and T,;: X — X are measurable, measure preserving transforma-
tions on X such that T(g . o) = id and Ty o T}, = Ty, for all g,h € Z%. The system is ergodic if
for any A € B such that T,A = A for all g € Z¢, we have that u(A) € {0,1}.

We say that (Y, D, v, (Sg)4ez4) is a factor of (X, B, u, (Ty),eza) if there exists a measurable
map 7: (X, B, i) — (Y, D,v) such that u(r ' (A)) = v(A) for all A € D, and that 70T, = Syon
for all g € Z%. A factor (Y,D,v, (Sg)geza) of (X, B, i, (Ty),eza) can be identified as a sub-o-
algebra B’ of B or a subspace V of L?(u) by setting B :== 7~ (D) or V = L*(v) o 7. Given two
o-algebras B and By, their joining B1 V Bs is the o-algebra generated by B N Bs for all By € By
and By € By, i.e., the smallest o-algebra containing both B; and By. This definition extends to

o0

a countable collection of g-algebras B;, i € N and we denote it by \/ B;.

We will denote with e; the vector which has 1 as its ith coordinate and 0’s elsewhere. We use
in general lower-case letters to symbolize both numbers and vectors but bold letters to symbolize
vectors of vectors to highlight this exact fact, in order to make the content more reader-friendly.
The only exception to this convention is the vector 0 (i.e., the vector with coordinates only 0’s)
which we always symbolize in bold.

1.4.1. Notation on averaging. Throughout this article, we use the following notations about
averages. Let (a(n)),czr be a sequence of real numbers, or a sequence of measurable functions
on a probability space (X, B, i1). Denote

1
Encaa(n) = A Z a(n), where A is a finite subset of Z,
neA
7D —_
Enezra(n) = A}gnoo Enel-n N]La(n)a@
E,czra(n) = (ISI)lp lim E,er,a(n),
Fcii\rrlejlyggq.

0 T . .. .
E,czra(n) = J\}féo E,ci-n,njra(n) (provided that the limit exists),
E,czra(n) = A}im Enerya(n) (provided that the limit exists for all Fglner sequences (In)nen).
—00

We also consider iterated averages. Let (a(hy,...,hs))p, . p.ezt be a multi-parameter sequence.
We denote

Ehh...,hSEZLa’(hl? ceey hs) = Ehlell‘ ‘e EhsezLCL(hl, .- ,hs)
.. . =0 O
and adopt similar conventions for By, 5 czr, Ep 5 cpr and B heezr-

Convention. Throughout this paper, all the limits of measurable functions on a measure pre-
serving system are taken in L> (unless otherwise stated). Even though all the expressions with

12 We use the symbol O to highlight the fact that the average is along the boxes [—N, N]L.
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polynomial iterates that we will encounter converge (in L?) by [25], we don’t a priori postulate
any existence of such limits throughout the whole article.

2. BACKGROUND MATERIAL

2.1. The van der Corput lemma. The main tool in reducing the complexity of polynomial
families and running the PET induction is the van der Corput lemma (and its variations), whose
original proof can be found in [6]. We state a convenient for us version that can be easily deduced
from the one in [6].

Lemma 2.1 ([6]). Let H be a Hilbert space, a: Z* — H be a sequence bounded by 1, and (In)nen
be a Folner sequence in Z%. Then

— 2 =0 .
J\}E)noo HEng[NCL(TL)H < 4EheZL ]\}gnoo |En€fzv <a(n + h)v a(”)) ’
We also need the following variation of Lemma 2.1}

Lemma 2.2. Let H be a Hilbert space, (a(n; hy, . .. ,hs))(n;hl,.“’hs)e(zL)s+1H be a sequence bounded
by 1 in M, and (In)nen be a Folner sequence in Z*. Then for k € N,

-0 N
Ep,.oheze  sup  Im [[Enerya(n;ha, ... k)l
IN)NeN e
Fyglner seq.
7D —_—

<AEp ponepaeze  sup o lim [Epepy (a(n + hsiasha, .o hs) a(ng b, )|

(IN)NeN N—o00

Fyglner seq.

Proof. For fixed hi,...,hs, we apply Lemma [2.1] for a(n) = a(n;hi, ..., hs) and h = hsi1. By
Jensen’s inequality, we have

sup m HEnEINa(n; h17--~7hs)H2H
(In)nen N7
Fglner seq.
7D —_ k
< 4" sup <Ehs+1EZL lim |EnEIN <a(n—|—hs+1;h1,.. . ,hs),a(n;hl,...,hs)>|>
(IN)Nen N—oo
Fglner seq.
7D —_
<4" sup B, ez lim [Enery (@(n+ hsi1; b, hs) a(ng e, k)|
(IN)Nen N=oo
Fglner seq.
7D —_
<A"Ey ezr sup lim [Epery (a(n+ hsiasha, ..o hs), a(n; hi,...,hs))|".
IN)Nen V70
Fglner seq.
The conclusion follows by taking the limsup of the averages over hg, ..., h. O

13 We use this unorthodox notation to separate the variable n from the h;’s. The variable n plays a different
role later.
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2.2. Host-Kra characteristic factors. The use of Host-Kra characteristic factors is a funda-
mental tool in studying problems related to multiple averages. They were first introduced in [16]
for ergodic Z-systems (see also [27]) and later for Z%-systems in [I5]. In this paper, we need to
use a slightly more general version of Host-Kra characteristic factors, which is similar to the one
used in [22].

For a Z%measure preserving system X = (X, B, , (Ty)geza) and a subgroup H of z, Z(H)
denotes the sub-o-algebra of (T},)pep-invariant sets, i.e., sets A € B such that T,A = A for
all h € H. Let A be an invariant sub-o-algebra of B, the measure p X 4 1 denotes the relative
independent product of u with itself over A. That is, u X 4 p is the measure defined on the
product space X x X as

/ F®gduxam= / E(f|A)E(g|A)dy
XxX X

for all f,g € L>(p).
Let Hy, ..., Hy be subgroups of Z%. Define

HHy = B XZ(H) B
and for k > 1,
KHy,...H, = MHq,....Hp_1 XI(H,E’“”) MHy,....Hy_1>

where H,Ekil] denotes the subgroup of (Z‘i)2k—1 consisting of all the elements of the form hj x

<o X hy (2}“*1 copies of hy) for some hy, € Hy. Define the characteristic factor Zg, . g, (X) (or
ZH,,....H, When there is no confusion) to be the sub-o-algebra of B such that

. . k k
B\ i) = 0 8 and only i 111 = [P d i, =

where f®2k =f®  @fand XM =X x--.x X (2% copies of f and X respectively). Similar to

the proof of Lemma 4 of [I5] (or Lemma 4.3 of [16]), one can show that Zpy, g, is well defined.

Note that when k =1, Zy, = Z(H1). When we have k copies of H, we write Zyxr = Zy,. H,
o

and ZHXoo = \/ Zka.
k=1

Convention. For convenience, we adopt a flexible way to write the Host-Kra characteristic
factors combining the aforementioned notation. For example, if A = {H;, Ha}, then the notation

oo
14
ZA,H3,HIZ,(HZ~)¢:5,6 refers to Zy, H,, s, Ha, Hy,Hs, Hg» 20d ZHthxoojH;oo refers to \/ ZHl’HQXIc’H‘;k
k=1
We adopt a similar flexibility for the subscripts of the seminorms.

When each H; is generated by a single element g;, we write || - ||g1,...9; = || - | Hy,...,r, and
Zgy,..gq = ZH,,..,H, in short.

For the rest of the section, X = (X, B, i1, (Ty) 4ez4) will denote, as usual, a Z%-system.

oo 0o

14 Or, equivalently \/ \/ ZH1 Xkl Xk -
JHy L H
k1=1ko=1
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Let H be a subgroup of Z% and (a(g))ger be a sequence on a Hilbert space. If for all Fglner
sequences (In)nyen of H, the limit A}im Egerya(g) exists, we then use Egepra(g) to denote this
— 00
limitﬁ The following theorem is classical (see for example [I0, Theorem 8.13]):

Theorem 2.3 (Mean ergodic theorem for Zd—actions). For every f € L2(,u) and every subgroup
H of 7%, the limit ByeyT,f exists in L*(u) and equals to E(f|Z(H)) (or B(f|Zw)).

The following are some basic properties of the Host-Kra seminorms:

Lemma 2.4. Let Hy,..., Hy, H' be subgroups of Z* and f € L ().
(1) For every permutation o: {1,...,k} — {1,...,k}, we have that

ZHl,...,Hk (X) = ZH(T(I)"'WHU(’C) (X)

(ii) IfI(Hj) = I(H/), then ZH17~--,Hj»~~~,Hk (X) = ZHL---ij—l7H/7Hj+17---7Hk(X)
(iii) For k > 2 we have that

2k—1

f‘Tgf

2k _
||Jc||1t[1,...7];[]C - EQGHIC Hl,...,kal’

while for k=1,
16, = By [ 5Tyt dn
(iv) Let k > 2. If H' < H; is of finite index, then
ZH1,---7Hj7---7Hk (X> = ZHI7--~7Hj—1aHlij+1w-7Hk (X).
(v) If H' < Hj, then Zu,...1;,..10,(X) € Zoy b, 1 Hy e 1 (X
(vi) Fork >1, ”fHHl,mkal < HfHlenka—lka and thus ZHl:"'7Hk71(X) - ZH17~-~7Hk717Hk(X)'
(vil) For k > 1, if H},...,H}, are subgroups of Z%, then Zu, . m, (X)V Zyy,..m (X) C
2wy, i (X
Proof. (i) and (ii) follow from [22] Lemma 2.2| (for (i), see also [15]).
To show (iii), if £ > 2, then

ok 2k
(a5 T— 2% dumy,.
X [k]

-----

kol k-1 k—1
B /X[k—l] f®2 ' E(f®2 ’I(HIE; ])) d:U’H1,...,Hk,1

— @21 ®2k—1
= By [ 5T @D s
ok—1

f'Tgf

where we invoke the mean ergodic theorem (Theorem in the third equality. Similarly, for
k=1,

= EQGHk

X,Hi,ooHy 1

60 = [ £ Fdun = [ BT du=Eyen, [ 5T, d

15 The fact that the limit exists for all Folner sequences actually implies that the limit is the same for all of
them.
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We now prove (iv). By (i), we may assume without loss of generality that j = k. Suppose
that Hy = I_IézlgiH' for some [ > 0 and ¢; € Z%,1 < i < 1. We may assume that ¢; = eg. Let
(In)nen be any Fglner sequence on H'. We claim that (In-{g1,...,9})nen is a Fglner sequence
in Hj. Indeed, by the elementary inclusion (AU B)AC C (AAC) U (BAC) it follows that E

(In {91, gD Ag(In {19 € | IngidgIngi= | gin2gigln,

1<i,j<l 1<i,j<l

and since |In|™" - [g:INAgjgIn| = [In| 71 - [INO(g; 'gj9)In| — 0 as N — oo, the claim follows.
By (iii), we have that

i gk—1
||f||%{11---7Hk—17Hk = Eger f Tgf Hy,...,Hj_1
1 l
= lim —— H T
N lIn| Z Z / Hy,..,Hy_y
(5)
>
- N—>oo l‘IN’ Z Hf Hy,....Hp 1

*HfllHl, SHy 1 H

On the other hand, since I(H,Ekil]) is a sub o-algebra of I(H'[kfl]), by the Cauchy-Schwarz
inequality,

k
12 = /X o dug
k-1 k-1 k—1
/ f®2 : E(f®2 |I(H/[ ])) d,UJHh.--,HkA

_ _ 2
E(f®2k 1|I(Hl[k 1]))‘ d,LLHl,,Hk—l

_ 2
)| dpny

2k71

®2k—1 2k—1 k—1
/X R duy,
2k
- /X[k] e Ay ... Hy o Hy = ||f||H1, WHy 1, Hy"
Therefore, HfHHl GHy o Hy =0 & HfHHl,...,Hk_hH/ = 0, and the conclusion follows.

(v) Since HfHH1 He o Hy S HfHH1 He_yH' DY @ whenever H' is a subgroup of Hy, we have
that Zg, . wm, . m0.(X) C Zw,,. 1, ,,5(X). So (v) follows from (i).

16 We use multiplicative notation for convenience.
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(vi) Similarly to (iii), and by Jensen inequality we have

2k 2k:
Ve, = / e dum,.,.
X (k]

77777

k=1 k—1
e /)([k_l] E(f®2 ‘I(H]E, ]))2 d/Jth_“’Hk71

®2k-1 [k—1] 2
> ([ B )

k-1 2
- (/X[kl] 1 dp... H‘“‘l)

k
= ||f||%‘[1,A..,Hk,1’

from where the conclusion follows.
(vii) Applying (vi) several times, we get that both Zp, . g, (X) andZy; g (X) are sub-o-
algebras of ZHiw--,H]/C,Hl,m,Hk(X)’ hence so is their joining.
O

Remark. We caution the reader that Lemmal[2.4] (iii) is not valid for k£ = 1. In fact, for an ergodic
Z-system X = (X, B, u, T) where T? is not ergodic, we have Zz(X) = I(Z) # I(27) = Zyz(X).
The reason that (iii) fails for £ = 1 is that the inequality in is no longer valid since the term

2](}71
T
Hf sig ] X, Hy,oo s Hy 1

As an immediate corollary of Lemma (ii), we have:

is replaced by / f - T4,9f dp, which might be negative.
X

Corollary 2.5. Let Hy, ..., Hy be subgroups of Z%. If the Hj-action (Tg)gen, is ergodic on X
for all 1 <i <k, then Zn, .. 1, (X) = Zzay<r(X).

2.3. Structure theorem and nilsystems. Let X = N/T', where N is a (k-step) nilpotent Lie
group and I is a discrete cocompact subgroup of N. Let B be the Borel g-algebra of X, u the Haar
measure on X, and for g € Z%, let T,: X — X with Tyx = by -  for some group homomorphism
g+ by from Z4 to N. We say that X = (X, B, (Ty)geza) is a (k-step) 74 -nilsystem.

An important reason which makes the Host-Kra characteristic factors powerful is their con-
nection with nilsystems. The following is a slight generalization of [26, Theorem 3.7| (see [22,
Theorem 3.7|), which is a higher dimensional version of Host-Kra structure theorem (|16]).

Theorem 2.6 (Structure theorem). Let X be an ergodic Z4-system. Then Zgay<x(X) is an
inverse limit of (k — 1)-step Z%-nilsystems.

The 1-step Host-Kra nilfactor is the Kronecker factor, which is intimately related to the
spectrum of the system [I6]. We say that a non-p-a.e. constant function f € L°(u) is an
eigenfunction of the Z-system X = (X, B, u, (Ty)geza) ETyf = Agf forall g € 74, where g — )\,
is a group homomorphism from Z¢ to S'. For each g € Z%, we say that Ag is an eigenvalue of
X. If (X,B,u,T) is a Z-system, we say that a non-u-a.e. constant function f € L*(u) is an
eigenfunction of T if Tf = \f for some A € S!, and we say that A is an eigenvalue of T

The Kronecker factor K(X) of the Z-system X = (X, B, p, (Ty) geza) is the sub-o-algebra of
B that corresponds to the algebra of functions spanned by the eigenfunctions of X in L2(,u). As
a special case of Theorem [2.6] we have:
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Lemma 2.7. For an ergodic Z3-system X, we have that K(X) = Zya 74(X).

An application of the Kronecker factor is to characterize single averages along polynomials
(for a proof of this result, see Section 2 in [5]):

Proposition 2.8. Let L € N*, p: Z¥ — 7 be a non-constant polynomialX = (X, B, 1, (Ty)gez)
be a Z-system, and f € L*>(p). If E(f|Z72(X)) =0, then
E, ez Ty f = 0.

We provide an alternative proof of Proposition [2.8] in Section [ using the language of this
paper.

We conclude this subsection with the following theorem from [20], a consequence of [20, The-
orem B|, which we state in a convenient form.
Theorem 2.9 (Leibman, [20]). Let (X = N/T,B,u,(Ty)sez4) be a nilsystem, x € X and
pi: ZF — 7%, 1 < i < k be polynomials. Then the following are equivalent:

(i) For some x € X, the sequence (Tp, ()7, - -, T, (n)T)pezr is dense in xk.
(ii) The sequence (T, (n)Y1,- - - Tpy(n)Yk)nezrL 1s dense in X* for allyr,...,ys € X.
(iif) For any Folner sequence (In)nen in ZE, the average Enery, J1(T ) - fi(Tpp ) )

k
converges (in L? and p-a.e.) to H/fl-d,u as N — oo.
i=1

(iv) The sequence (Tp, (n), - - - Ly (n))nezt is ergodic for k.

2.4. Concatenation theorem. An essential ingredient in our approach is the concatenation

theorem established by Tao and Ziegler (in [24]), which studies the properties of intersections of
different characteristic factors:

Theorem 2.10 (Concatenation theorem, [24, Theorem 1.15]). Let X be a Z%-system, k, k' € N*
and Hy,...,Hy, Hy, ..., Hy, subgroups ond. Then
ZHy,.Hy ZH{?M:H,Q/ < Z(Hi+H£/)1§i§k,1§i/§k"
As an immediate corollary, we have:
Corollary 2.11. Let X be a Zd—system, s,di,...,ds € N and H; j,1 < i < s,1 < j < d;
subgroups of Z%. Then

s

ﬂ ZHi,l:Hi,Qv---aHi,di - Z(Hl,nl+H2,n2+"'+Hs,n5)1§ni§di,1§i§8'
=1

2.5. Range of polynomials. In this subsection we state and prove two elementary lemmas
regarding the range of polynomials.

Definition. For b = (by,...,b1) € (QH)%,b; € Q?, we define
(7) G(b) = spang{by,...,br} N Z°.

Note that G(b) can either be seen as a subgroup or a subspace (over Z) of Z%; we freely use
both.

17 We warn the reader that this result is only valid for p: Z* — 7% with d equal to 1.
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Lemma 2.12. Let c: (ZY)* — (QY)E be a polynomial and let V be a subspace of Z¢ over Z.
Then the set
{(h1,...,hs) € (Z")*: G(c(h, ..., hs)) TV}

is either (ZL)® or of (upper) Banach density 0.
Proof. For convenience, denote

W= {(hy,...,hs) € (Z*)*: G(c(hy,..., hs)) TV},
where one views c as the matrix:
cii(hi, .. hs) ... cip(hi, ... hy)
c(hi,... hs) = : : :
cai(hi,....hs) ... car(hi,..., hs)

for some polynomials ¢; ; (ZF) - Q,1<i<d,1<j<L.
We start with the case V' = {0}. Let W;; be the set of (h1,...,hs) € (Z*)* such that
d L
¢ij(h1,...,hs) = 0. Then W = ﬂ ﬂ W; ; and so it suffices to show that either each W; ; is
i=14=1
(ZL )° or that some W ; is of density 0. By relabelling the variables, we may assume that L =1
(and change s to Ls). Hence, it suffices to show that for a polynomial ¢: Z* — Z, the set

W ={(h1,...,hs) € (Z)*: c(h1,...,hs) =0}
is either Z°® or of density 0.

If s = 1, then either ¢ = 0 or ¢(z) = 0 has finitely many roots. So W is either Z or of
upper Banach density 0. Suppose now that the conclusion holds for some s > 1, and assume

K
that c(hy,...,hst1) = Z%‘(hz, e h5+1)h§ for some K € N and polynomials ¢;: Z° — Q for
i=0

all 0 <i < K. Let
W,:{(hg,...,herl) cZ®: qi(hz,...,h5+1):0,0§i§K}.

By induction hypothesis, either W' = Z® or W' is of upper Banach density 0. If W/ = Z°,
then ¢ = 0 and so W = Z*TL. If W’ is of upper Banach density 0, then W C W; U Wy, where
Wi =ZxW and Wy = {(h1,...,hst1) € Z°T: (ha, ... hey1) € W c(ha, ..., hsy1) = 0}. Since
W' is of upper Banach density 0, so is Wj. On the other hand, for any (hs,...,hsi1) ¢ W/,
c(+, ha, ..., hsy1) is not constant 0 and so has at most K roots. This implies that W5 is of upper
Banach density 0, so W is of density 0, completing the induction.

Now assume that V' # {0}. Since V is a subspace of Z% over Z, under a change of coordinates,
we may assume that V = {0}¢ x Z9~ for some 0 < ¢ < d. If £ = 0, then V = Z% and there is
nothing to prove. If £ > 0, then by restricting to the first polynomials ¢; ;,1 <¢ <d,1 < j </,
we are reduced to the case V' = {0}, finishing the proof. O

Lemma 2.13. Let c: (ZF)* — (QHE be a polynomial given by

c(hy,...,hs) = Z h‘fl...hgs-u(al,...,as)

ai,...,as€ENL

18 Recall that for n = (n1,...,nz) € Z* and v = (v1,...,vr) € N*, n” denotes the quantity n’* ...njF. We
also use the convention 0° = 1.
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for some u(ay, ..., as) € (QYHYL which all but finitely many equal to 0. Then
spang{G(c(hi,...,hs)): h1,... hs € 7k = spang{G(u(ay,...,as)): a,...,as € NL}

For the reader’s convenience we first make the statement clear with an example, with L = 2,
s =1, d =4, and then present the proof. Let ¢: Z? — (Z4)2 be given by

h1 0
—3h1ho h1
clhiha) =12 ™ g, o3
Thihsg h?
Denoting h = (hy, he), we have
10 0 0 0 0 0 0 0 0
o1 0 -3 0 ,[0 0 [0 o
clhisho) =ha| oo thaf g Jy [ Haha | o7 g TR g
0 0 0 0 70 0 1 0 0
10 0 0 0 0 00 0 0
_am |01 on |0 0 an | -3 0 20 [0 0 02 |0 0
O S I I R 0o of*h Lot 0 =
0 0 0 0 70 0 1 0 0
= hOu(1,0) + AOYu(0,1) + AEYu(1,1) + 2ZYu(2,0) + A %P u(0,2),

where the u(i, ) denote the corresponding matrices from the previous step.
Lemma establishes that the span of the columns of c(hq, hy) (for all hi, hy € Z) equals
to the span of the columns of the u(ay,as) (for all ay, a2 € N). More explicitly, it states that

hy 0
—3h1h h
SpanQ h%l 2 , _h2 _1 2]7,% : h17 hQ €7
Thhs h?
equals to

1 0 0 0 0 0 0
0 1 0 -3 0 0 0
e (o] {of -1 fo ]| |of |2
0/ \o 0 7 0 1 0

Proof of Lemma[2.15 We first assume that L = 1. In this case, we have that
c(hy, ... h) = > B RS -u(a, .. a)

at,...,as€N
for hy,...,hs € Z and some u(ay,...,as) € Q%. Tt suffices to show that
spang{c(hi,...,hs): h1,..., hs € Z} = spang{u(ai,...,as): a1,...,as € N}.

19 Here, when H;,i € N are subsets of Qd, we use the notation span@{Hi: 1 € N} to denote the set span@{x €
Qd: x € UieNHi}.
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Since ¢(hq, . .., hs) belongs to the Q-span of {u(ai, ..., as)}a,, .. aseN, the inclusion “C” is straight-
K

forward. We then show the “O” direction. When s = 1, we have that c(hy) = Zhiu(z) for
=0

some K € N. Since the matrix (ji)g§i7j§K is (the transpose of) a Vandermonde matrix, its
determinant is non-zero, so each u(i) is a linear combination of ¢(0),...,c¢(K). Therefore, the
conclusion holds for s = 1.

We now suppose that the conclusion holds for some s > 1 and we prove it for s + 1. Write

C(hh-n,hs—f—l) = Z hclll...hzr'll ~u(a1,...,as+1) :Zhi+1vi<h1>-~-7h5)

at,...,as+1€EN €N
for some polynomials v;: Z* — Q% given by
a s .
vi(h1,...,hs) = Z hi' .. hg - u(ar,. .., as,1).
at,...,as€EN

Since the conclusion holds for s = 1, we have that for all hy,...,hs € Zand i € N, v;(hy,..., hs) €
spang{c(hi, ..., hs, hsy1) © hsy1 € Z}. Applying the induction hypothesis for s, we have that

u(ay,...,as,i) € spang{vi(hi,...,hs): h1,..., hs € Z}

for all ai,...,as,¢ € N, hence the conclusion holds for s + 1. By induction, the L = 1 case is
complete.

For the general case, suppose that c(hi,...,hs) = (c1(h1,...,hs),...,cp(h1,...,hs)) and
u(a,...,as) = (ui(ai,...,as),...,ur(al,...,as)), where ¢;: (Z1)° — Q% w;: (NLys — Q4
1 <4< L. Then
(8) ci(hi,... hs) = Z h{t . hEs - ui(as,. .. as)

ay,asENE
for all 1 <4 < L. By definition, one easily checks that
spang{G(c(hi,...,hs)): h1,... hs € ZL} = spang{ci(h1,..., hs): h1,... hs € Zh1<i< L},
and
spang{G(u(ay,...,as)): a,...,as € NI} = spang{u;(a1,...,as): ai,...,as € N 1<i<L}.
So, it suffices to show that for every 1 <i < L,
spang{ci(h1,...,hs): h1,..., hs € 7k = spang{u;(a1,...,as): a,...,as € NI}, or
9) spang{ci(h): h € 7y = spang{u;(a): a € NLsy,
by viewing (hi,...,hs) and (a1, ...,as) as the Ls-dimensional vectors h and a. Rewriting (8) as
ci(h) = Y h" ui(a),
a€NLs
we can apply the conclusion of the case L' = 1, s’ = Ls, d = d and ¢;: (ZY)* = (Z*)* —
(Z"YY =72 to show @ This finishes the proof. O

20 Recall that we set 0° == 1.
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3. EQUIVALENT CONDITIONS FOR ((77 X - -+ X Td)p(n))nezL BEING ERGODIC

In this short section, we provide equivalent conditions of Property (ii) in Theorem i.€e.,

we characterize when ((77 x - - - x Td)p(n))nezL is ergodic for e

The following lemma is an implication of [12) Lemma 4.18].

Lemma 3.1. Let X; = (X;,Bi, 14, T;), 1 < i < d be Z-systems. The set of eigenvalues of
d

T1 X --- x Ty consists of all numbers of the form H Ai, where )\; is either 1 or an eigenvalue of
i=1
T;, where at least one \; is an eigenvalue.

Proof. Suppose first that A; is either 1 or an eigenvalue of T; and that at least one A; is an
eigenvalue. Then, for all 1 < i < d, T;f; = A\ f; for some f; € L°(u;), where not all f;’s are

d
pi-a.e. constant. Then (17 X -+ XTg)(f1® - ® fg) = <H)\1) (f1® - ®fy). Since f1 - fq
=1

d
is not (p1 X -+ X pg)-a.e. constant, H)‘i is an eigenvalue of 71 x - -+ x Ty.
i=1
Conversely, let A be an eigenvalue of 71 x --- x T with a corresponding eigenfunction f. By
[12] Lemma 4.18|, f = Z cnfin @+ ® fan, where ¢, € C, T} f; » = Ninfin for some \;,, € st
n

d
with H)\m = A. Each \;,, is either 1 or an eigenvalue of T;. Since f is not (1 X -+ X fiq)-a.e.
i=1
constant, some fi, ® -+ ® fg, is also not (p1 X --- X pg)-a.e. constant. For such n, at least
one of A\ p,...,A\qn is an eigenvalue of T;. Note that if f;,, is p;-a.e. constant, then \;, = 1.
Otherwise A;, is an eigenvalue for 7T;, which finishes the proof. O

Let p: Z* — 7Z be a polynomial and A € S'. We say that X is uniform for p if EneZL)\p(") =0.
So, A = 1 is not uniform for any integer-valued polynomial, while by Weyl’s equidistribution
theorem, every A = e?™@ for some a ¢ Q is uniform for all integer-valued polynomials.

The following proposition, which lists conditions equivalent to Property (ii) of Theorem ,
is the main result of the section.

Proposition 3.2 (Conditions equivalent to (ii) of Theorem . Let (X,B,u,Th,...,Ty) be a
system with commuting transformations and p: Z¥ — 7 be a polynomial. The following are
equivalent:
(i) (Ty x -+ x Td)p(n))nezL is ergodic for u®?.
(ii) Ewvery eigenvalue of Th x - -+ x Ty is uniform for p.
(iii) For every 1 <i <d, if \; is either 1 or an eigenvalue of T;, where at least one \; is an

d
eigenvalue, then H Ai is uniform for p.
i=1

Proof. For convenience denote Y = (Y, D, v, T) = (Xd, B4 %4 Ty x - x Ty).
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(i) = (ii): Suppose that X is an eigenvalue of 7. Let f € L°°(v) be a non-v-a.e. constant
function such that T'f = Af. By (i),

0=E,cpn TP f = E,cp NP f.

Since f is not v-a.e. constant, E .,z AP() = 0 and so A is uniform for p.

(ii) = (i): It suffices to show that for all f € L°°(v) with / fdv =0, we have that
Y

Eeze TP f = 0.
By Proposition [2.8] it follows that
Enezr T f = Eneze TPVE(f Z1,r(Y)).

By Lemma we can approximate E(f|Zrr(Y)) in L*(v) by finite linear combinations of
eigenfunctions of T'. So, we may assume without loss of generality that E(f|Z77(Y)) itself is an
eigenfunction of T' and TE(f|Z71r(Y)) = AE(f|Zrr(Y)). Since A is uniform for p,

Ecpt TPE(f| Zr7(Y)) = Enepe WE(f| Zr7(Y)) = 0

and we are done.
(ii) <> (iii): This is a direct corollary of Lemma [3.1] O

4. PET INDUCTION

This section deals and explains the PET induction scheme, which is one of the main tools that
we use in order to study expressions of the form and ﬂ This technique was introduced by
Bergelson (in the now classical [0]) to study multiple averages for essentially distinct polynomials
in weakly mixing systems and show the joint ergodicity property in that setting. His method
used an induction argument via van der Corput lemma, reformulated in his setting, to reduce
the “complexity” of the family of polynomials.

Following this pivotal work of Bergelson, variations of the initial PET induction scheme were
used to tackle more general cases, as the one in [9] to deal with multiple, commuting 7;’s and
“nice” families of polynomials, and in [17] to deal with multiple, commuting, 7;’s and “standard”
families of multi-variable polynomials, which we actually follow here too.

The idea is the following: one runs the van der Corput lemma (vdC-operation) in some family
of integer valued functions-sequences satisfying some special property and gets a family also
satisfying the special property but of lower “complexity”. This allows one to run an inductive
argument and arrive at a base case. In our case the base case is when all the iterates are linear.

Of course, in all the different aforementioned cases, one has to do several technical variations
in the method. In this paper for example, an essential detail is that whenever we talk about
a polynomial with multiple variables, we always treat the first variable as a special one (see
below for more details). Also, to the best of our knowledge, it is the first time that via the vdC-
operations, while running (the variation of) the PET induction, we track down the coefficients
of the polynomials (see Section @, which is crucial for our arguments.

21 For us, PET is an abbreviation for “Polynomial Exhaustion Technique” (PET also stands for “Polynomial
Ergodic Theorem”).
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Definition. For a polynomial p(n; hy, ..., hs): (ZF)*t — Z, we denote with deg(p) the degree of
p with respect to n (for example, for s = 1, L = 2, the degree of p(ni,no; hi1,h12) = hlylhlvgn%+
hilng is 2).
For a polynomial p(n;hy,...,hs) = (p1(n;hy,... hs),...,pa(n;hi,... he)): (ZF)H — 74,
we let deg(p) = 1n<13<xddeg(pi) and we say that p is essentially constant if p(n;hy,..., hs) is
<i<

independent of the variable n. We say that the polynomials p, g: (ZL )SJrl — 7% are essentially
distinct if p — ¢ is not essentially constant, and essentially equal otherwise.

Actually, for a tuple q = (qi,...,q¢) with polynomials qi,...,q: (Z¥)*T' — Z%, we let
deg(q) = max, deg(q;). We say that q is non-degenerate if q1,...,q; are all not essentially

constant, and are pairwise essentially distinct@

Fix a Z%-system (X, B, 1, (Ty)geza)- Letqu, ... qe: (zF)*+t — 79 be polynomials and g1, . . ., g¢:
X x (ZF)* — R be functions such that each g, (-; hi,. .., hs) is an L>(u) function bounded by 1

for all hy,...,hs € Z,1 < m < {. For convenience, let q = (q1,...,q/) and g = (g1,...,9¢). We
call A= (L,s,¢,g,q) a PET-tuple, and for k € N we set

¢
—0 _ K
S(A, k) =E su lim HE T, (n x;hi,...,h .
( ) h17~~~7hs€ZL (IN)]E)EN N oo nely nnl qm(n7h17'~~7h5)gm( 1 S) LZ(,LL)
Fglner seq.

We define deg(A) = deg(q), and we say that A is non-degenerate if q is non-degenerate. For
any f € L(u), we say that A = (L,s,¢,g,q) is standard for f if there exists 1 < m < ¢
such that deg(A) = deg(¢m) and gm(x; h1,...,hs) = f(z). That is, f appears as one of the
functions in g, only depending on the first variable, and that the polynomial acting on f is of
the highest degree. We say A = (L, s,¢,g,q) is semi-standard for f if there exists 1 < m < ¢
such that g, (z;hi,...,hs) = f(x), which is similar to being standard, but we do not require the
polynomial acting on f to be of the highest degree.

For each PET-tuple A = (L, s,/,g,q) and polynomial ¢: (Z%)**! — Z¢, we define the vdC-
operation, 04 A, according to the following three steps:

Step 1: Foralll <m </, let g, = g/, ¢ = gm, and g1, ..., qo;: (ZF)st2 Z% be polynomials
defined as
/(nh h ): Q’n’b(n;hh"'?hs)_Q(n;hlw"ahs) 71§m§€
(P ) =t s b hs) — q(nsha, o he) L EF 1< m <20
i.e., we subtract the polynomial ¢ from the first £ polynomials and for the second ¢ ones we first
shift by hsi1 about the first variable and then we subtract q.

Step 2: We remove from ¢j(n;hi,...,hsi1),-..,qh(n;h1,. .., hsr1) the polynomials which
are essentially constant and the corresponding terms with those as iterates (this will be justified
via the use of the Cauchy-Schwarz inequality and the fact that the functions g,, are bounded),
and then put the non-essentially constant ones in groups J; = {¢}y,...,¢},}, 1 < i < r for
some r, t; € N* such that two polynomials are essentially distinct if and only if they belong to
different groups. We now write g; ;(n; h1, ..., hey1) = g/ 1(n;h1, ... hoyr) + 07 ;(ha, ... hay) for

22 The separation between using or not bold characters might look confusing in the beginning, it makes it
clearer though when we use both vectors and vectors of vectors of polynomials.
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some polynomial p;’ jforalll <j<t;,1<i<r Forconvenience, we also relabel [y
accordingly as g;' jlorall1<j<t,1<i<r.

Step 3: Forall 1 <i <r, let ¢ = QZ1 and

t;

g;(gj; hi, ..., h8+1) = g;:l(x; hi, ..., hSJrl) H Tp;fj(hl,-..,hs+1)ggfj(x; hi,.oos h8+1)'
j=2

Set q* =(q7,...,¢), 8 = (g7,-..,9y) and let this new PET-tuple be 9,4 = (L,s+1,r,g",q").
&

In practice, the polynomial ¢ is some of the initial polynomials q1, ..., g¢. Therefore, if ¢ = ¢
for some 1 <t </, we write 0;A instead of 0, A to lighten the notation.

We will use the previous notation and quantifiers for the vdC-operation from now on.

The following important proposition informs us that, modulo some power and some constant
which are unimportant for our purpose, the value of S(-,-) grows by using the vdC-operation
described above.

Proposition 4.1. Let (X, B, u, (Ty)4ez4) be a Z%-system, A = (L, s,0,g,q) a PET-tuple, and
q: (Z")*T = 74 a polynomial. Then 0qA is non-degenerate and S(A,2k) < 47S(0,A, k) for
every k € N.

Proof. Since in Step 2 of the vdC-operation, essentially constant polynomials are removed and
polynomials which are essentially the same are grouped together, we have that 0,4 is non-
degenerate.

On the other hand, we have that S(A,2k) equals to

23 Here we abuse the notation by writing 0;A to denote any of such operations obtained from Step 1 to 3.
Strictly speaking, 9,4 is not uniquely defined as the order of grouping of ¢i,...,q5 in Step 2 is ambiguous.
However, this is done without loss of generality, since the order does not affect the value of S(944, ).
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-0 2K

Ep, . h.ezt sup hm HEHGIN H Ty (nihi,e b )gm(az hi,..., hs) ,
(In)ven N L2(p)
Fglner seq.

7D [

" -
<A%Ep, heiezt  Sup ]\}lm
(IN)Nen V7

=1
Fglner seq. m

l
EnEIN < H Tqm(n;hl,...,hs)gm(‘r; h17 ceey hs)v (by Lemma’

!
H T (nthogrihyhs)Im (T3 P, h5)>

m=1
-0 — (invariance
=4"E | hi,...,h
hiye.shsp1E€EZL (Ile)lsz)eN Ngn nEIN < H (n;hi,e.shs,h 5+1)gm(l’ 1, s S)a of ,U,)
Fglner seq.
1 K
H Tq el (n; hl,...,hs,hs+1)g7,71($; hla sy h8)> (end of Step 1)
m=1
=0
§4REh1,...,h5+1€ZL sup hm HEneIN H Tq;’l (n3h1yeshst1) (92/'11(5@ hi,..., h5+1)'
IN)NeN
Fglner seq.
t.
- w (Cauchy-Schwarz
[ETpﬁj(hl» ,hs+1)gw(x i, h3+1)) L2(n) and Step 2)
]:
P K
=4 ]Eh1,...,h5+1€ZL sup hm HEHG]NHT% *(n;h,..., s+1)gl (IE hl,...,hs+1) ) (Step 3),
(In)nven N L2(p)
Fglner seq.
which is 4°S(0,A, k), completing the proof. O

The following theorem shows that when we start with a PET-tuple which is standard for a
function, then after finitely many vdC-operations, we arrive at a new PET-tuple of degree 1
which is still standard for the same function. This is useful because by [17, Proposition 3.1],
whenever we have an average with linear iterates, we can bound the limsup of the norm of
the average by some Host-Kra seminorm of the functions. We caution the reader that in our
method, we alternate this standard procedure and instead of deriving to linear iterates for “some
functions”, we run the PET induction multiple times to arrive at linear iterates isolating “each
function” separately.

Theorem 4.2. Let (X, B, u, (Ty) seza) be a Z%-system and f € L>®(u). If A is a non-degenerate
PET-tuple which is standard for f, then there exist p1,...,pr € N*| for some t € N, such that
Op, - - 0p, A is a non-degenerate PET-tuple which is standard for f with deg(0,, ...0, A) = 1.

As an example to demonstrate how the method works, we present some computations for our
Example [T}
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First part of computations for Example [1; For a Z2-system (X, B, 1, (Ty) gez2) and fi, fa €
L*°(u), the PET-tuple of Example |1|is

A= (1707 27 (fla f2>7 (p17p2>)7
where p1(n) = (n? +n,0) = (n? + n)er, pa(n) = (0,n?) = nley, for e; = (1,0) and ey = (0,1).
For i = 1 and 2, we explain how to find a sequence of vdC-operations to reduce A into a
non-degenerate PET-tuple of degree 1 which is standard for f;.
We first isolate the function fi. Setting e = (1,—1), we have 92 A = (1,1, 3, (f1, f1, f2), P1),
where the tuple p; essentially equals to

(n2€ +nep,n’e + (2h1 + 1)neq, 2hines)

(one term is removed because it is essentially constant and so £ = 3). Then 050, A = (1, 2,4, (f1, f1,
f1, f1),p2), where the tuple py essentially equals to

((n? 4 2hyn)e + (1 — 2hy)ner, (n® + 2hin)e + ney, (n? + 2(h1 + ha)n)e + (1 — 2hy)nes, (n? +
2(h1 4+ ha)n)e+mner) (two terms are removed because they are essentially constant and so ¢ = 4).
Finally 0203004 = (1,3,7,(f1,..., f1),p3), where the tuple ps essentially equals to

(—2hiney, 2haone — 2hyey, 2hone, 2hsne — 2hiney, 2hsne, 2(hy + hg)ne — 2hiney, 2(hy + hs)ne)
(one term is removed because it is essentially constant and so ¢ = 7). We have that 0205024 is
non-degenerate and standard for f1, and deg(020302A4) = 1.

We continue by isolating fo. Note that 914 = (1,1, 3, (f2, f1, f2),P1), where the tuple p;
essentially equals to

2e — ney, 2hiner, —n’e — nep + 2hines)

(—n
(one term is removed for it is essentially constant and so £ = 3). Then 0201 A = (1, 2,4, (fo, f2, f2,

f2), p2), where the tuple ps essentially equals to
—n?e—(2h+1)ner, —(n®4+2hin)e—ney, —(n*+2hon)e—(2h1+1)ney, —(n*+2(hy+ha)n)e—ne;)

(
(two terms are removed because they are essentially constant and so £ = 4). Finally 010,01 A =
(1,3,7,(f2,..., f2),p3), where the tuple p3 essentially equals to

(2h1nes, —2hane, —2hone + 2hiney, —2hgne, —2hgne + 2hines, —2(ha + hz)ne, —2(ha + hg)ne +
2hinesz) (one term is removed because it is essentially constant and so £ = 7). We have that
010201 A is non-degenerate and standard for fo, and deg(0102014) = 1.

Proof of Theorem[4.3 We follow the ideas of the PET induction in [I7] and [21].

If deg(A) = 1, there is nothing to prove. So, we assume that deg(A4) > 2, A = (L,s,(,g =
(917 s agé)a q= (qlv R 7‘”))7 with ¢; = (Qi,la s 7qz'7d)> 1<i< €7 where each qi,j is a polynomial
from Z**! to Z. Recall that deg(q;) = max, deg(gi ;). In this proof, we are thinking of q as an

<<

¢ x d matrix (g;,j)1<i<r,1<j<d With polynomial entries.

We say that p,q: (Z1)*™ — Z are equivalent, and we write that p ~ ¢, if deg(p) = deg(q)
and deg(p — q) < deg(p); otherwise, we write p ~ ¢. It is not hard to see that “~” defines an
equivalence relation. Suppose that deg(q) < D. We define the column weight of the column j
to be the vector wj(q) = (w1,(q),...,wp;(q)), where each wy j(q) is equal to the number of
equivalent classes in q of degree k in the column j (i.e., among ¢i j,...,q¢;). For two column
weights v = (v1,...,vp) and v/ = (v],...,v]), we say that v < v/ if there exists 1 < k < D
such that vg < vj, and vy = vy, for all k' > k (notice that we start comparing them from the last
coordinate because this is the one associated to the highest degree). Then, the set of weights
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and the set of column degrees are well ordered sets. Putting this information about q in rows,
we get the D x d matrix wq = [w1(q), ..., wq(q)] which we call the subweigth of q.

Given a matrix M (with polynomial entries), we define its k-reduction, denoted by Ry (M), to
be the submatrix of M obtained by only considering the rows whose first k elements are 0, after
discarding these 0’s. For instance, for the matrix

0 p1 p2 p3
ps 0 0 ps
M:

0 0 ps pr

0 0 0 pg
pP1 P2 P3

where p1,...,ps are non-zero polynomials, its i-reduction for ¢ = 1,2,3,4is | 0 pg p7 |,

0 0 ps

<%6 g 7) , (pg) and () respectively. By convention, the O-reduction Ry(M) is M itself and the
3

k-reduction for k > ¢ is 0.

We now define an order associated to matrices. The weight of a matrix q with polynomial
entries, denoted by W(q), is the vector of the matrices (w(Ro(q)), w(Ri(q)),...,w(R,—1(q))),
where / is the number of columns of q. Given two polynomial matrices q and ', deg(q), deg(q’) <
D, we say that W (q') < W(q) if there exist 1 < J, K < ¢ such that

w;(Rk(q)) = w;(Rk(q)) for all j < J and all k=0,...,¢— 1;
and
wy(Ri(a)) = wy(R(d')) for all k =0,..., K — 1 and ws(Rk(q)) < ws(Rx(d'))-

Under this order, the set of weights of matrices is well-ordered. For a PET-tuple A = (L, 5,4, g, q),
we define W(A) = W(q) to be the weight of A.

Claim: Let A be a non-degenerate PET-tuple which is standard for f with deg(A) > 2. There
exists 1 < p < £ such that d,A is non-degenerate and standard for f with W(9,4) < W(A).

We first finish the proof of the theorem assuming that the claim holds. Let A be a non-
degenerate PET-tuple which is standard for f and deg(A) > 2. After using the claim finitely
many steps, the decreasing chain W(A) > W(0,, A) > W(0,,0,,A) > ... will eventually termi-
nate, so we will end up with a non-degenerate PET-tuple 0,, ... 0,, A which is standard for f,
with deg(0,, ..., A) = 1. This finishes the proof.

So it suffices to prove the claim. Relabeling if necessary, we may assume without loss of
generality that g1 = f and deg(q1,1) = deg(A) > 2. Let jo € {0,...,¢} be the smallest integer
such that Rj,+1(q) = 0. We choose 1 < p < £ in the following way:

(i) Case that jo = 0. This case has three sub-cases.

(a) If some g;1 » q1,1, then let p be the smallest integer such that g,1 ~ ¢11.

In this case, since g,1 ~ 1,1 and A is standard for f, 9,4 is standard for f.
Moreover, wp1(9,A) = wp,1(A) — 1 and so W(d,A4) < W(A).

(b) If all g1,1,...,qe1 are equivalent and there exist 2 < i < ¢, 1 < j < d such that
gij ~ qi,j, and either deg(g; ;) or deg(qi ;) equals to deg(q), then let p be the
smallest integer such that there exists 1 < j < d with ¢,; ~ ¢, and either
deg(qp,j) or deg(qi,;) equals to deg(q). In this case, since g, ; is not equivalent
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to q1,5, and either deg(q, ;) or deg(qi,;) equals to deg(q), d,A is standard for f.
Moreover, wp1(9,A) = 0 < wp,1(A) and so W(d,A) < W(A).

(c) If all ¢1,1,...,qe1 are equivalent, and for all 1 < j < d, either deg(g; ;) is deg(q1 ;)

for all 1 <1i </ or deg(g; ;) < deg(q) for all 1 <i < ¢, then let p=/¢+ 1@
In this case, deg(d,A) < deg(A). Since deg(q1,1) > 2, we have that
deg(qu(n, hl, ey hs) — qu(n + h5+1, h1, ey hs)) = deg(qm) —1= deg(f)pA) > 1.
So 0,A is standard for f. Moreover, wp1(9,4) = 0 < wp1(A) and so W(9,A4) <
W(A).

(ii) Case that jo > 0. Consider the reduction Rj,(q) of the matrix q.

(a) Suppose that an entry of the first column of Rj (q) (which is of course an entry
of the jp + 1 column of q) is not equivalent to any other entry of the first column
of Rj,(q). Among such entries, let p be the smallest index such that g, j,4+1 has
minimal degree.

In this case, we have that 9,4 is standard for f. Moreover,

Wdeg(qp,jq+1):1 (82014) > Wdeg(qp, jo+1)-do (Rj(a)),

where ('3]; = 0p...0, (k times). One can check that this implies that W (0,4) <
W(A).

(b) Suppose all entries in the first column of Rj,(q) are equivalent. Then let p be such
that g, j,+1 corresponds to the first entry of the first column of Rj,(q).
In this case, 0,4 is standard for f. Moreover,

wdeg(qp,jo+1)71(a,gOA) > “’deg(qp,joﬂ),jo(Rj (a))-

One can check that this fact implies that W (9,4) < W (A).

This proves the claim and completes the proof. O
We now provide a proof of Proposition 2.8

Proof of Proposition[2.8 Let A = (L,0,1,{f},{p}). It suffices to show that S(A,x) = 0 for
some x € N, assuming that E(f|Zz2(X)) = 0. For any s € N* and function u: (Z)® — Z, let
Au: (ZL)S"'1 — 7Z be the function Au(zy,...,zs41) = u(z1 + Ts41,...,2s) — u(x1,...,xs) and
Afu = (Ao o A)u (k times).

If deg(p) > 1, then it is easy to verify that 01A = (L,1,1,{f},{Ap}). By induction,
OFA = (L,k,1,{f},{Ap}) for all k < deg(p). By Proposition we have that S(A4,25) <
42K715(81KA, 1), where K = deg(p) — 1. It is easy to see that deg(Ap) = deg(p) — 1 and so
deg(AXp) = 1. We may then assume that AXp(n, hy, ..., hg) = c(hi, ..., hg)-n+c (b, ..., hi)
for some polynomials ¢(hy,...,hi) € ZL, ¢ (h1,... , hi) € Z of hy,. .., hx with ¢ not being the
constant zero vector. By Theorem [2.3

(10) EnEZLTAKp(n,hl,...,hK)f = Tc’(h1,...,hK)E(fu’—(G(C(hl7 SR hK))))

24 We leave it to the interested reader to check that (a), (b) and (c) cover all the possibilities in Case (i).
25 Recall that “deg” only “sees” the first variable.
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If ¢(h1,...,hg) # 0, then

Z(G(c(ha, - hi))) = Zeehn,n)) © Z2.6(elhnhi)) = 22207

where in the last equality we used Lemma (iv), since G(c(h1,...,hK)) is a finite index
subgroup of Z. By Lemma the set of (hi,...,hx) € (ZX)E such that c(hy,...,hgx) =0 is
of upper Banach density 0, so

K =0 E T
S0 A1) =Ey, ezt Sup N

Boer Tarx f(
(In)vex neiNEARp(h i) | 2 )

Fglner seq.

L2 (w)

:]Ehlw7hK€ZL sup lim ‘
(In)nen N7
Fglner seq.

This implies that S(A, oK ) = 0, which finishes the proof. O

EnGINTAKp(n,hl,...,hK)E(f|ZZ,Z) ‘

5. CHARACTERIZING MULTIPLE AVERAGES ALONG POLYNOMIALS

In this section we state Theorem [5.1] the stronger form of Theorem [I.I} which is the main
contribution of this work. Its validity implies (see below) both Theorems and our main
joint ergodicity results.

5.1. Characteristic factors for multiple averages. Recall that a family of (integer valued)
polynomials p1, ..., pg: Z¥ — Z% is non-degenerate if p;, p; — p;j are not essentially constant for
all 1 <i,5 <k, i+# j. The following theorem states that in order to study multiple averages
along polynomials, it suffices to assume that all the functions f; are measurable with respect to
certain Host-Kra characteristic factors:

Theorem 5.1 (Characteristic factors for multiple averages along polynomials). Let d, k, L € N*

and p1,...,pr: Z¥ — Z% be a non-degenerate family of polynomials of degree at most K. Suppose
that p;(n) = Z biyn" for some b;, € Q% Let R C Q% be the set
veNL |v|<K
R = U {biwsbiw = biw: 1 <y’ < kP\{0}.

veNL 0<|v|<K
Let (X, B, i1, (Ty)gez4) be a Z8-system. For every fi,..., fx € L™®(u), we have that
(11) EpezeTpymyf1 oo Ty fro = 0 if E(fil Zya(ryxoey, cn) = 0 for some 1 <i < k.
In particular, if (Ty)geq(r) is ergodic for p for all v € R, then for every fi,..., fr € L™ (n),
(12) Enczt Doy f1 o Ty fi = 0 if B(fil Z(z4yx00) = 0 for some 1 <i < k.

Remark. The following weaker form of in Theorem can be derived by the results of
[17]:

EnGZLTpl(n)fl et Tpk(n)fk =0if ]:E(fz‘Z{G(T)XOO} ) =0 for some 1 S ) S k.

rezd\{o}

26 Note that one can not conclude that Z(G(c(ha, . .., hk))) = Z&(e(h
invalid for d = 1.

hx)) = Zz because Lemma [2.4] (iv) is

,,,,,
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Hence, holds if Ty is assumed to be ergodic for u for all g € Zd\{O}. Theorem improves
the result of [I7] since one only needs to require finitely many 7,’s to be ergodic (i.e., the

generators of G(r),r € R) in order to deduce (|12)).
On the other hand, it is worth noting that (11)) has room for improvement (meaning that

it is possible for one to replace the factor Zig()xecy, ., Of with smaller ones), as we shall
see in the examples below. Actually, we do have a stronger version of (see the proof of
Theorem , but already captures the essence of our result as it is stated here.

Another important example of polynomial averages is the following, for which we actually
characterize its convergence to the “expected” limit, where all the transformations have the same
polynomial iterate.

Example 2. Let (X, B, u,T1,...,Ty) be a system with commuting transformations. One should
think of Ty, . .., Ty as a Z%action (Sg)gezd with T; = S,,, where we recall that e; € 7% denotes the
vector whose ith entry is 1 and all other entries are 0’s. Let p1,...,pa: Z — Z% be polynomials
given by p;(n) = p(n)e; for some polynomial p: Z — Z. By Theorem we have that

(13) EnerTP ™ fr - TE f1 = 03 B(fi| Zggry<oc), ) = O for some 1 < i < d,

where R = {E,TZ}Tj_l: 1 <4,5 <d,i # j}. We remark that Z1G(r)*>=},cp 18 DOt necessarily
the smallest factor with this property. For example, if p(n) = n, then (13 is a weaker form of
Proposition (or |15, Proposition 1]).

Continuation of Example Recall the Z2-system X with two commuting transformations
Ty, Ty and p1,pe: Z — Z* polynomials given by pi(n) = (n + n,0) and pa(n) = (0,n%). By
Theorem [5.1] we have that

(14) Enez T f1 - T3 fo = 0 i E(fi| Zi ) <o), cp) = 0 for i = 1 or 2,

where R = {Tl,Tg,TlT{l}. Again Zig(y)xey, 5 18 not the smallest factor with this property
(later, in equality , we will obtain an improvement of )

It is an interesting, in general open (and definitely hard), question to ask what are the smallest
factors Zy, ..., Z of X such that for every fi,..., fr € L=(u),

EnEZTp1(n)fl el Tpk(n)fk =0if E(fz‘Zz) = 0 for some 1 < 1 < k.

5.2. Proofs of the joint ergodicity results assuming Theorem In this subsection we
explain how to derive our main joint ergodicity results, Theorems and assuming the
validity of Theorem

Proof of Theorem assuming Theorem[5.1 Let R be defined as in Theorem [5.1} Since T} is
ergodic for all g € R, by Theorem [5.1] we may assume without loss of generality that all fi, ..., fx
are measurable with respect to Zzayxoo (X) (note that conditions (i) and (ii) remain valid when
passing to a factor system). By L!(u)-approximation, we may assume without loss of generality
that all f1,..., fi are measurable with respect to Z(za)xm (X) for some M € N. By Theorem [2.6
and again by Ll(,u)—approximation, we may further assume without loss of generality that all
fi,..., fr are measurable with respect a factor of X which is isomorphic to an (M — 1)-step
Z%-nilsystem.
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So, we may assume that X is itself an (M — 1)-step Z%-nilsystem. Since (T (n) X =+ X
Ty (n))nezt is ergodic for 1% we have that

(15) EneZLTpl(n)fl(‘Tl) et Tpk(n)fk(a:k) = /X f1 d,u et /X fk du

for pn®*-a.e. (x1,...,2) € X*. By Theorem holds for all (x1,...,z;) € X* and so in
particular

(16) EneZLTpl(n)fl(a:) ot Tpk(n)fk(x) = /X f1 du ol /X fk d,u
for all z € X (as a pointwise limit). By the dominated convergence theorem, also holds as
an L?(p)-limit, which finishes the proof. O

Before we proceed with the proof of Theorem|[I.4], we need the following lemma and proposition:

Lemma 5.2. Let (X,B,u,T1,...,Ty) be a system with commuting transformations. Then in
the product space (Xd, Bd,,LL@d), the o-algebra of T1 X - -- X Ty-invariant sets is measurable with
d

respect to ® 7, -
i=1

Proof. 1t suffices to show that E(f1 ® -+ ® fyg|Z(T1 x -+ x T4)) = 0 whenever E(f;|Zz, 1,) =0
for some 1 < ¢ < d. Without loss of generality, we may assume that all functions are bounded
by 1 in L*°(p) and that E(f1|Z7, 1) = 0 (or equivalently || fi||7,, 7, = 0). By Lemma and
Jensen’s inequality, setting a(n) = 17" f1 ® - - - ® T} fq, we have that

IE(f1 @ ® falZ(T1 x - X Ta) |72 (u0a) = Enez(Ti % - X Ta)" fr ® -+ @ fall 200
2
< (4EE€ZEn€Z<a(n)7 CL(TL + h)>)
= 165z Enen(fi @ - ® fa, TIf1 ® - © T fa)?

2
<1685, | [ £ T

2
< 168, | [ E(7 - T AT )d

O h 2
< 16E}, ‘E(fl TV f II(Tl))‘

L2(p)
= ]‘GHfI ”%1,’1117
where the last line follows, for instance, from Lemma (iii). This finishes the proof. (|

Proposition 5.3. Let d,L € N*, p: Z' — Z a polynomial and (X,B,u,T,...,Tq) a system
with commuting transformations such that (TV (n), e ,Té) (n))nezL is jointly ergodic for . Then
(i) ((Tz‘Tj_l)p(n))neZL is ergodic for u for all 1 <i,j <d,i # j; and
(ii) (Tf(n) X e X Tg(n))nezL is ergodic for u®e.

Proof. The idea of the proof for Part (i) is similar to [4, Proposition 2.1|. Since the language we
use is different, we present the proof for completeness.
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By assumption,
(17) Bucon T T = [ e [ faan
X X

for all f1,..., fqg € L°(u). Suppose first that (i) fails. We may assume without loss of generality
that ((T1T2_1)p("))neZL is not ergodic for p. So there exist g € L*(u) not p-a.e. equal to a
constant function and a function ¢’ € L?(p) such that

g = Epege (NTy )P Mg # /X gdp

(the existence of the limit can be seen by Furstenberg’s classical spectral-theorem approach, or
even by a known “non-spectral” approach due to Bergelson). Then / g du = / gdup. Note
X X

that ¢’ cannot be p-a.e. equal to a constant. Letting fi =g, fo=¢ and fo = f3 =--- = f4 =1,
we have that

/X fo Bpegt TP 1 TP fydy = Epepe /X g T g dp
E,cze /X (T )P ™Mg - o dpe

B /X E,cze (T3 P™Mg - g du

= [ ¢%du> (| §'dp - gdu 2
Jos > (fo ) = (L)
= /Xf1du-----/dedu,

d
To show (ii), it suffices to show that for all fi,..., fg € L°(u) with H/ fidu = 0, we have
i=17X

a contradiction to (7)), proving (i).

that

d d
(18) Enezt ®Tip(n)fi =Eepn(T1 % - x TP Q) fi = 0.
i=1 =1

We first claim that

d
E,czr QTP f; = 0if E(f:|Zga 24(X)) = 0 for some 1 < i < d.
=1
We apply the proof of Proposition to the Z-system (Xd, B4, ,u®d, Ty x -+ x Ty). Suppose
that E(f;|Zy4 74(X)) = 0 for some 1 < ¢ < d. By Theorem and in the proof of
Proposition it suffices to show that the set of (h1,...,hg) € (Z*)X such that

d
(19) E(Q) HIZ(G(e(h, .. b)) =0
=1
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is of density 1, where ¢: (ZL)X — Z is a non-constant polynomial. If c(hi,...,hx) # 0, then
Z(G(c(hy, ..., hk)) is the sub-g-algebra of BY consists of the (T} x - - x Ty)¢P %) _invariant
sets. By Lemma

Z(G(e(hy, ..., h C®Z c(h1 ,,,,, hic)| c(h1 ..... hi) —®ZT“TZ’

where we used Lemma (iv) in the last equality. On the other hand, by (17 ., we have that
(Tp(n))nezL is ergodic for p for all 1 < ¢ < d, which implies that T; is ergodic for u. By

)

Lemma (ii), we have that

d d
Z(G(c(hy, ... hi)) C ® Zrom, = ® Zya ga.

Since E(fi|Zza 74(X)) = 0, we have that E(® fi

d
®ZZd Zd) ® (fil Zza z4) = 0, and so

holds whenever c(hy,...,hg) # 0. By Proposmon such tuples (h1,...,hK) are of
density 1. This proves the claim.

By the claim, it now suffices to prove under the assumption that all f; are measurable
with respect to Zza 7. By Lemma we can approximate each f; in Lz(u) by eigenfunctions
of X. By multi-linearity, we may assume without loss of generality that each f; is a non-constant
eigenfunction of X given by T,f; = Xi(g)fi for all g € Z% for some group homomorphism
Ai: Z% — S' and that fi(z) # 0 p-a.e & € X. Then by ,

d d d d
o=]] /X fidpt = Bpezr [TT7 i = (Bucze [T M) T i
=1 i=1 i=1 i=1

d
This implies that E, .7 H Ai(p(n)e;) = 0. So,

i=1
d d d
B,z QT7 fi = (EnEZL 11 Ai(ﬁ(”ki)) Q) fi=0.
i=1 i=1 i=1
This proves (ii) and finishes the proof. O
Proof of Theorem assuming Theorem [5.1 We first prove the “if” part. We want to show that
(20) Bucon T T = [ e [ faan
X X

for all fi,..., fq € L=(n).

Regard T; as T¢, and let pq,...,p4: 7Y — 7% be polynomials given by pi(n) = p(n)e;. In this
case, there exists ¢ e Q\{0} such that the set R defined in Theorem[5.1]is R = {qe;, q(e;— ej) 1<
i,j <d,i# j}. By assumption (i), all the T;T; bs (or Te;—e;’s), i # j are ergodic for p, and so

(Ty)gec(qtei—ec;)) = (Tg)gec(ei—e;) 18 ergodic for pu. By assumption (ii), (Tlp(n))neZL is ergodic for

p for all 1 <4 < d, which implies that T; (or T¢,) is ergodic for 1. So (Ty)gec(ge) = (Tg)gec(e,)
is ergodic for u. Thus the assumptions of Theorem [5.1] are fulfilled.
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By Theorem 5.1} we may assume without loss of generality that X = Z 4« (X) (note that con-
ditions (i) and (ii) remain valid when passing to a factor system). Since (77 ™) .. x T d(n))nezL
is ergodic for ,u®d, a similar argument, using Theorem as in the proof of Theorem [1.3] yields
the “if” part of this theorem.

To prove the “only if” part, assume that holds for all f1,..., fqg € L°(un). If TiTj_]L is not
ergodic for some 1 < i,5 < d,i # j, then there exists g € L°(u) which is not p-a.e. equal to a
constant such that T;g = Tjg. So

Epezi(TT; g =Epeprg = g # /X gdp,

which implies that ((7;1° Jfl)” (n))nezL is not ergodic for p, a contradiction to (i) in Proposition
This proofs (i).
Since holds, (ii) follows directly from the statement (ii) of Proposition and the proof

is complete. O

5.3. Ingredients to proving Theorem The rest of the paper is devoted to the proof of
Theorem [5.1] In order to keep track of the coefficients of the polynomials after the iterated van
der Corput operations, we introduce the following definition:

Definition. Let d € N* and V denote the collection of all finite subsets {ug,...,uz} C Q¢
containing the zero vector 0. For Ry = {uj,...,ux} € V and Ry C Qd, we say that R; is
equivalent to Ro (denoted as Ry ~ Rs) if there exists 1 < i < k such that Ry = {—rui,r(uj —
ui): 1 < j <k} for some r € Q\{0}. Note that Ry ~ Ry implies that R; and Ry have the same
cardinality.

Lemma 5.4. The relation ~ is an equivalence relation on V.

Proof. If Ri = {u1,...,u;} and u; =0, then Ry = {—ru;,r(u; —w;): 1 < j < k} for r =1, and
so Ry ~ Ry. Suppose that Ry ~ Ry. We may write Ry = {u1,...,ux} and Ry = {v1,...,vx},
where v; = —ru; and v; = r(uj —u;) for all 1 < j < k,j#ifor some 1 <i<k. It follows that
u; = —(1/r)v; and u; = (1/7)(v; — v;) which means Ry ~ R;.

Assume now that R; ~ Ry and Ry ~ R3. We may write Ry as above and R3 = {w1,...,w},
where wy = —r'vy and wj = 1'(v; — vy) for all j # i for some 1 <4’ < k.

If i =4/, then w; = —r'v; = —r'(—rw;) = rr'u;, and wj = 7' (vj—v;) = r'r(u;—w;) —r'(—ru;) =
rr'u; for all j # 4. So Rz = rr’Ry. This implies that Ry ~ Rs.

Ifi # 4, then w; = 7' (v; —vy) = v/ (—ruy) —r'r(uy —u;) = —rr'uy, wy = —r"vy = r'r(u;—uy),
and w; = r'(v; —vy) = r'r(uj —u;) — r'r(uy —u;) = rr'(uj — uy) for all j # 4,i'. This implies
that R; ~ R3 and the result follows. O

We write Ry < Rs for some Ri, Ry € V if there exists R3 € V such that Ry ~ Rs and
Ry C Rs.

Recall that for b = (by,...,br) € (QY)E, b; € Q¢, we denote G(b) = spang{b1,...,br} N A
The first ingredient we need to prove Theorem is an upper bound for the multiple averages
in terms of Host-Kra seminorms. The following proposition shows that we can somehow control
the coefficients we get in the end of the PET-induction by the initial ones.

27 Note that 0 € Ry as r(u; — u;) = 0 for j = i.
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Proposition 5.5 (Bounding multiple averages by averaged Host-Kra seminorms). Let d, k, L €
N*, p1,..., pr: ZF — Z¢ a non-degenerate family of polynomials of degrees at most K, with
pi(n) = Z b yn" for some b;, € Q% and R, == {biw: 1 <i<k}U{0}. Then there exist
veNL |v|<K
S, t1,...,t, € N* and polynomials ¢ : (ZL) (Zd)L, 1 <i<k1<m<t withcg, #0,
such that the following hold
(i) (Control of the coefficients) Each ¢, is of the form

Cim(hi,... hs) = Z h{' . hEs uim(ar, ... as)

ai,...,as€NL

for some
Wim(a,...,as) = (Uima(ar,...,as), ..., uimr(al,...,as)) € (Qd)L
with all but finitely many terms being zero for each (i, m). In addition, for all ay, ..., as €

N not all equal to O and every 1 <i < k,1 <r < L, denoting
Uir(ai,...,as) = {uimyr(ai,...,as) € Z:1<m< tp} U {0},

we have that there exists v € N¥, |v| > 0 such that U; r(a1,...,as) S Ry.

(ii) (Control of the average) For every Z%-system X = (X, B, u, ( 9)geza) and every fi,. ..,
fr € L™ () bounded by 1, we have that

< C mln Ehl, ,h GZL”fZH Cz m(hh ) )))1<m<i )

(21) sup hm HEngN H Tyiin) f ra) min

(IN)Nen
Fglner seq.

where C' > 0 is a constant depending only on p1, ... ,pk.@

The second ingredient we need in order to show Theorem (which is the main novelty of
this paper) is to estimate the right hand side of using the concatenation theorem.

Proposition 5.6 (Bounding averaged Host-Kra seminorms by a single one). Let py, ..., pg: /-
7 be a family of polynomials. Suppose that there exist s,t1,...,t, € N* and polynomials
Cim: (ZL) (Zd)L, 1<i<k,1<m<t, withci, %0 given by

(22) Cim(hi,.. . hs) = Y B{UhE - wim(an, ... a)
ai,...,asENL

for some w; pm(ai,...,as) € (QHL with all but finitely many terms equal to O for each (i, m) such
that the following holds: if for every Z%-system (X, B, u, (Ty) geza) and every fu,..., fr € L>(p)
bounded by 1, we have that

(23)  Sup Jim nEINHTZn)fz
NeN
Fﬂlnerieq.

L2(n) <C- lgunghh Jheezt | fill (€im(h1,shs)))1<m<e;

28 One can in fact show that C depends only on d, k, L and the highest degree of p1,...,px. We will not go
into more detail about this fact, since it is unimportant for our purposes.
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where C' > 0 is a constant depending only on p1,...,pk, then letting
Hipm = spanQ{G(uim(a17 ceeyQg))i a1, ... a5 € NL} nze,

we have that

im HE T : ( —0 U}
(29) (e Mool IR i 5] 7 Willse. .o
Fglner seq.

We now use Propositions [5.5] and [5.6] to show Theorem [5.1] and leave the proofs of Proposi-
tions [5.5] and [5.6] to Sections [6] and [7] respectively.

Proof of Theorem [5.1] assuming Propositions[5.5 and[5.6. Let the set R be defined as in The-

orem . We can assume without loss of generality that E(f1|Z;g()x>y,.,) = 0. Suppose

that p;(n) = Z b; yn’ for some b;, € Q% and denote R, = {biv:1<i<k}U{0}asin
veNL |v|<K

Proposition By Proposition there exist s,t1,...,t; € N* and polynomials c; . (25 =

(ZHE 1 <i<k,1<m<t; with ¢i,;m # 0 given by

Ci,m(hla---ahs) = Z hﬂlbl.“hgs -ui,m(al,...,as)

ai,...,as€NL

for some Wy m(ay,...,as) € (QY)L with all but finitely many terms equal to 0 for each (i,m)
(and satisfying the additional assumptions given by Proposition , such that holds. Let

H; . = spang{G(wjm(ai,...,as)): a1,...,as € Ny Nzl
By Proposition

(25) (I]i;l]IVDeN N@mHEnefNTpl(n)fl e Tpk(n)fk‘ e 0 if lréliiélk Hfi”Hf,fov~~:Hf,£§° =
Fglner seq.
On the other hand, by the description of c¢; ,,, writing
Wim(ar,...,as) = (uimi(ar,...,as), ..., uimr(a,...,as)),
each i m j(ai,...,as) belongs to the set U;,, which is contained in a set equivalent to one of

R,,v € NI, 0 < |[v| < k. By the definition of R, Uimj(ai,...,as) = qr for some ¢ € Q and r € R.
Since ¢; m, # 0, there exists ¢n,rm € Him\{0} for some ¢, € Q and r,, € R for all 1 < m < ¢;.
So G(ry,) is a subgroup of Hi,,. By Lemma we have that

ZH1><1007 ,HXOO C ZG(Tl)XOO7.."G(Tt1)XOO g Z{G(T)XOO}TER.

1,61

Since E(f1|Z{g(r)x>},cx) = 0, we have that ]E(fllZHXOo gxoo) = 0, meaning that the right

1,1 o 1ty
hand side of is 0, which implies that (11f) equals to 0.
If in addition, (T})geq(r) is assumed to be ergodic for all » € R, then by Corollary we
have that Zig(,)x}, ., = Z(zd4)xe and the proof is complete. ]

29 Note that we have in fact proved the following stronger version of :
EcztTp iy free o Tp ) fe =0 if E(fi|Z{HY ) =0 for some 1 < i < k.

(yxoo
Bif1<j<t;
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6. PROOF OF PROPOSITION

Our strategy to show (21)) in Proposition is the following: We first fix the functions f; on
the right hand side of By a “dimension-increment” argument (see Proposition below),
for a fixed i, we may assume that p; has the highest degree among pq, ..., pr, making the PET-
tuple to be standard for f;. Then, Theorem allows us to control the left hand side of by a
PET-tuple of degree 1 which is also standard for f;. Finally, a Host-Kra-type inequality for linear
polynomials (see Proposition implies that holds for some polynomials ¢;,,. Up to this
point, the method we use is similar to the one used in [I7] and [21] (the main difference is that we

EneinTpin) 17 Tppn) kaLQ( : in Proposition.
o
Our innovation is that in order for the equation to be useful for our purposes, we need a
better description of the functions c¢; ,,, which is the content of part (i) of Proposition
We start with the linear case of Proposition (the special case L = 1 was first proved in
[15, Proposition 1]):

have a more explicit upper bound for lim ’
N—oo

Proposition 6.1 (Host-Kra inequality for linear Z*-averages). Letd, k,L € N*, (X, B, i, (Ty) geza)
a Z%-system and p1, . .., py: Z% — 7% essentially distinct and essentially non-constant polynomi-
als of degree 1. Suppose that p;(n) = u; - n + v; for some u; € (ZHYE,v; € Z¢ for all 1 < i < k
Then for every fi,..., fr € L>(n) bounded by 1, we have that

S0P ngnooHEnefNTm(n)fl s Tpkm)fk‘ oy = C i I illo .G —uo)icycim0
Fglner seq.
where C' is a constant only depending on k. Moreover, writing u; = (w;1,...,U; L), i j € 7% and

Re, = {u;,: 1 <i<k}uU{0}, the set
Ui r(0) = {—wip,ujr —uip: 1 < j <k}
is equivalent to Rerg

Proof. We prove the proposition by induction on k. When k =1, let p1(n1,...,nr) = ui1n1 +
4wy png +wvp for some uyq, ..., u1,0,v1 € 7. By repeatedly using Theorem and the fact
that the limit exists, we have that

EHEZLTpl(n)fl = ]EnLEZ cee EnlEZTU1,1n1+---+u1,LnL+v1 fl
= E(Ty fill(ur,) NN I(uyn)) = E(To, f1ll(G(u1))),

hence, [y ezt T, () fill 22wy = B(To, Al L(G (@)l 22wy = BTG @) 220) = [ f1lla)-
30 Here for u = (u1,...,ur) € (ZH" and n = (ni,...,nr) € N*, u-n denotes nius + - -- + npuz € 2%

31 1t is not hard to verify that the sets Re, and U; (D) coincide with the sets R, and U; (a1, ...,as) defined
in Proposition (in this case for s = 0) respectively. We leave the verification to the interested reader.
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Now suppose that the conclusion holds for k — 1 for some k > 2. Then by Lemma [2:2] the
Cauchy-Schwarz inequality, and using the fact that p1, ..., pg are of degree 1, we have that

N ok
li ‘E T, T
([Jil)lEGN Nl_l;ﬂoo neln Pl(n)fl pk(n)fk 12(0)
Fglner seq.
< 42| lim |E / ﬁ £ H fd gk—1
> hezL sup 11m el h "
© (IN)nven N7 e X i(n) /i i(nth)Ji
Fglner seq.
— g2 su Jim / T fi - H (fi- f)d gk—1
e (IN)JIV)GN Novool [y T PR Enery pim)—pr(n) fi - Tpin) fi) din
Fglner seq.
< 42k71ED 17 H f f) ok—1
su 11m . )
> hezZL ([N)]E)GN [Sarest nGIN pi(n)—pr(n)\Ji Pz (h)Ji 2
Fglner seq.

Since p;(n) — pr(n) = u} - n + (v; — vg), where U} := u; — ug, by induction hypothesis, there is a
constant ¢’ depending on k — 1 such that

ok—1
k—1—=] —_—
42 Eh L sup lim | | 1)
1Y/ nEIN pi(n)—pg( n) pi(h)Ji
F(‘IiV)NeN N—oo L2(p)
glner seq.

2k—1

J1- T mh .

k—1 =
S 42 C, . EhEZL

—u}) {G(u]—u})}a<i<k—1

2k—1
=C- E
heZL fi-T, p1( h)fl G(up—u1),{G(ur—uj)}o<j<i—1
2k 1 2k
=C. EhezL ST p1( h)fl {G(u1—uy)}o<i<k =C Hfl”G(—Ul)’{G(uJ'_ul)}QSjgk7

where C' = 427" C’ and we used Lemma (iii) in the last equality. It is clear that the constant
C depends only on k. By symmetry,

EnEINTpl(n)fl et Tpk(”)fk‘

sup lim ’
(In)ney N7
Fglner seq.

L2( ) < C 11212 HfZHG 111 {G(uj_ui)}lgjgk,j;éi

and the claim follows. (Il

Before proving the general case of Proposition we continue with some additional compu-
tations for our Example [I}
Second part of computations for Example [I} Recall that we are dealing with the case

(TP, T3”), with the PET-tuple
A= (1707 2; (fla fQ)a (p17p2)),

where pi(n) = (n? +n,0) = (n® + n)er, pa(n) = (0,n%) = n’ey, and e; = (1,0),e3 = (0,1) and
e =e; —eg. In this case, L =1 and d = 2, Ry = {e1,0}, Ry = {e1,€2,0} and R, = {0} for all
v > 2. Take s = 3.
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By the first part of computations of Example [I] isolating fi, we have that 020304 =
(3,7, (f1,.-., f1), p3), where the tuple p3 = (q1, ..., qr) essentially equals to

(—2hiney, 2hane — 2hye1, 2hane, 2hgne — 2hiney, 2hane, 2(ha + hs)ne — 2hiney, 2(ha + hg)ne).

By Propositions and Lemma (iv) and the fact that Host-Kra seminorms are T,-

invariant, we have that

(26)
_ 8
sup T ‘]EnGINTI”QJF” £y f2H = 5(4,2%) < C - S(0h05024,1)
F(lrfv)NeN —00 L2 ()
glner seq.

where 0171(h1, hg, hg) = —2h161, C172(h1, hg, h3) = 2}126, Cl,g(hl, hQ, hg) = —2h161 + 2h26,
c1,4(h1, ha, hs) = 2hse, ¢15(h1, ho, hg) = —2h1e1+2hge, 1 6(h1, he, hs) = 2(ha+hs)e, c1,7(h1, ha,
hs) = —2hiey + 2(hg + hg)e. This verifies part (ii) of Proposition for i = 1. Moreover, using
the notation in Proposition [5.5 we have that

ULl(l,0,0) = {—261,0,—261,0, —261,0,—261} = {—261,0} NRl,
U11(0,1,0) = {0,2¢,2¢,0,0,2¢,2¢} = {2¢,0} C {2e, —2¢2,0} ~ Ry,
U1,1(0,0,1) = {0,0,0,2e¢,2¢,2¢,2¢e} = {2¢,0} C {2e, —2¢e2,0} ~ Ry.

This verifies part (i) of Proposition [5.5( for i = 1.

Similarly, by isolating f2, we have that 0102014 = (3,7, (f2,..., f2), P3), where the tuple ps
essentially equals to
(2h1nea, —2hane, —2hone + 2hiney, —2hgne, —2hgne + 2hines, —2(ha + hz)ne, —2(ha + hg)ne +
2hiney). Analogously to , we have

(27)
_ 8
sup  lim (EnefNTf2+"f1 -T;QfQ\ L =8(4,2%) <C - S(2105014,1)
F(I{V)NGN =00 L2 ()
glner seq.

=0

S C ' Ehl,hQ,h?,EZHf2||G(CQ,l(h1,h27h3)),...7G(C277(h1,h2,h3))7
where ca1(h1,ha,h3) = 2hiea, ca2(hi,ha,h3) = —2hge + 2hies, ca3(h1,he,h3) = —2hse,
c2,4(h1, ho, h3) = —2hze+2hyea, ca5(h1, ho, h3) = —2hze, ca6(h1, ha, h3) = —2(ha+h3)e+2hqez,
ca2.7(h1,ha, hg) = —2(hg + hs)e. This verifies part (ii) of Proposition for i = 2. Using the
notation in Proposition 5.5 we have that

UQJ(I,0,0) = {262,262,0,262,0,262,0} = {262,0} Q {—26, 262,0} ~ RQ,
Uz1(0,1,0) = {0,—2e,—2¢,0,0,—2¢, —2e} = {—2¢,0} C {—2e,2e2,0} ~ Ry,
U21(0,0,1) = {0,0,0,—2e, —2¢, —2¢,—2e} = {—2¢,0} C {—2¢,2e3,0} ~ Rs.

This verifies part (i) of Proposition [5.5( for i = 2.

We now introduce some additional notation that we will use in the general case. Let d, ¢, L €
N*, seNand q,...,q: (ZL)SH — Z% be polynomials. Denote q = (q1,-..,q¢), where

qi(n;hi, ... hs) = Z RS %l (b ag, ... ag)

b,ai,...,as€NL
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for some u;(b;aq,...,as) € Q? with all but finitely many being 0 for each 1 < i < ¢. For all
b,ai,...,as € NL, denote

Ry(bsai,...,as) ={ui(b;jaq,...,as): 1§z’§€}u{0}§@d.

Roughly speaking, Rq(b; a1, ..., as) records the coefficients of q at “level™(b; a1, . .., as) (together
with the zero vector 0).

The following proposition shows that, during the PET-induction process, after applying the
vdC-operation to our expression, we can still keep track of the coefficients of the polynomials.

Proposition 6.2 (vdC-operations treat the sets Rq(b; a1, ..., as) nicely). Letd,f,L € N*, s € N,
(X, B, u, (Tg)gezd) a Zd—system, qi,.--,qe: (ZL)S+1 — 70 polynomials and q = (q1,...,q). If
A= (L,s,t,q) with 0,A = (L,s+1,0*,q") for some {* € N1 <w < {, where q* = (q},...,q)

for some polynomials qi, ..., qp: (ZL)5+2 — 7%, then for allb,ay, ... ,as+1 € NE not all equal to
0, we have that

(28) Ry(b;ai,...,as41) S Rq(b+ asi1;a1,...,as).

Proof. For convenience we write q* =~ (p1, ..., py) for some polynomials pi,...,py if g* can be
obtained by removing all the essential constant polynomials from pi,...,py, ordering the rest

into groups such that two polynomials are essentially distinct if and only if they are in different
groups, and then picking one polynomial from each group. It is not hard to see that if q ~ ¢,
then Rq(b;ai,...,as11) = Ry(b;a1,...,ass1) for all byay, ..., as11 € N¥ not all equal to 0.
Denote ¢;: (ZF)¥2 — 29, ¢i(n;hy, ... het1) = qi(n + hgy1;ha, ... hg) forall 1 < i < £, Tt
suffices to show the statement for q* ~ (¢} — q1, ¢ — q1,q; — q1: i # 1) as the general case follows
similarly.
Suppose that

. _ a b .
gi(n;hy,... hg) = E hi' .. hgEn® - ui(bsay,. .., as)
b,a1,...,as ENL

for all 1 <4 < /. Then, one can immediately check that

b+a
@(nyhy, ... hey1) = Z h‘fl...hgfllnb- ( bs+1>ui(b+as+1;a1,...,as)

b,ai,...,as+1ENL
If as41 = 0, then the coefficient of A{* . .. hgsnb for q; —qi is 0, and for both ¢;—q; and ¢} —q; are
ui(b;ai,...,as)—ui(b;a1,...,as). Thisimplies that Rg=(b;a1,...,as,0) = Ry (b;a1,...,as,0) S
Ry(b;aq,. .. ,as)ﬂ which proves .

b
If as41 > 0, then the coefficient of A" . .. hzfll n® for @\ —q1,qi—q1 and ¢, —qj are ( * ZSH> up (b+

b+a
as41;01,---,as), 0 and < +bs+1>ui(b + asq150a1,...,a,) respectively. In this case Rq+(b; a1,

cooyasy1) = Ry (byar, ... as41) ~ Rq(b+ asy1;a1,...,as), which finishes the proof. O

L
32 For a = (a1,...,ar),b=(b1,...,br) € NE, (Z) denotes the quantity H (Zm>.

m=1 m

33 Note that Ry (bjai,...,as,0) ~ Rq(b;a1,...,as) if and only if one of u;(b;ai,...,as) is 0.
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Let A be a PET-tuple and f € L% (u). If A is semi-standard but not standard for f, then the
PET-induction does not work well enough to provide an upper bound for S(A, k) in terms of the
Host-Kra seminorms of f. To overcome this difficulty, we use a “dimension-increment” argument
to change A into a new PET-tuple which is standard for f, but at the cost of increasing the
dimension from L to QLE In fact, this is the main reason that justifies the multi-variable nature
of the results in this article.

This “dimension-increment” argument is carried out in the following proposition. The idea
essentially comes from [I7], 21], but again some additional work needs to be done in order to keep
track of the set Rq(b;ar,...,as):

Proposition 6.3 (Dimension-increasing property). Let L,d,{ € N*, s € N, (X, B, 1, (Ty) e z4)
a Z-system, f € L®(n), qu,...,q0: (Z2)*T — 2% polynomials, g1,...,g0: X x (Z*)* — R
functions such that each g;(-;hi,...,hs) is an L () function bounded by 1 for all hy,... hs €
ZF1<i</t, and let q = (q1y---,q0) and g = (g1,.-.,9¢0).

If the PET-tuple A = (L,s,¢,g,q) is non-degenerate and semi-standard but not standard
for f, then there exist polynomials qy,...,qy_1: (Z2)s*L 5 72 functions g, . .. a1t X X
(Z2%)* — R such that each gi(-; b1, ..., hs) is an L°°(u) function bounded by 1 for all hy, ... hs €
ZF1<i<2-1,4q = (dis-- dhq) and g = (g1,-.-,95%_1), such that the PET-tuple
A" = (2L,s,20 — 1,g',q') is non-degenerate and standard for f and S(A,2r) < S(A',k) for
all & > 0. Moreover, for all bV aq,...,as, ay,...,a, € N not all equal to 0, there exist
b ay,... dl € N” not all equal to 0, such that

» s

(29) Ry (b,V;a1,... as,d),...,a,) ~ Rq(b";a7,...,dl).

Proof. Since A is semi-standard but not standard for f, we may assume without loss of generality
that gi(x; h1,...,hs) = f(z), deg(q1) < deg(A), and deg(qr) = deg(A). For convenience denote
h = (hy,...,hs) and h' = (h],...,h}). For 1 <m < { we set

G ((n,7)); (B, 0')) == g (nsh) — qe(n; D) [F] and g, (x; (h, 1)) == gy (a; h),

while for 1 <m < /£ —1 we set
Uy o((n,7"); (W, 0)) == gm(n';h) — ge(n';h), and g, o(2; (h,h')) == g (z; h).

Also, let ' = (q},---,dh_1), & = (g1,---,g51) and A" = (2L, 5,20 — 1,4, g).

Since deg(qy) = deg(A) and deg(q1) < deg(A), we have that deg(q;) = deg(A’) and moreover
g1 = f. So A’ is standard for f. On the other hand, since A is non-degenerate, one can easily see
that ¢}, ..., gh,_, are essentially distinct (note that gg(n; h)—g(n'; h) is essentially non-constant).
So A" is non-degenerate.

34 In the papers [I7], [21], where similar methods were used, the dimension was increased from L to 3L instead.
35 The notion (h, h') refers to the vector ((hi,h}), ..., (hs, hl)) € (Z**)*, which we use to simplify the notation.
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Recall that EEG(ZL)S = EElGZL . .EiezL. By the fact that the action is measure preserving
and the Cauchy-Schwarz inequality, we have that

S(A 2 ) E I S l.II]. I | h h) "
, LK) = he(ZL)s up 1 el qm g fl? 12
E( ) )N N n N (TL m ( )
Fglner seq.

:EEG(ZL)S sup hrn

IN)Nen
Fglner seq.

Epn EIN/ H @m (n;h) gm z;h) - T, (n’;h)gm(x; h) du

¢
Epwery H T4, (ni)—ge(n's0) I (5 )-
m=1

Fpezry suwp T |

(In)vew N7

Fglner seq.
-1
17 (z:h)|”
] gm (n/;h)—qe(n Zh)gm ’ L2(u)

20—1
En,n’GIN H Tin((n,n’);(h,h/))g;n( (h h/))
m=1

:E(hjh/)e(ZZL)s sup  lim ‘
(In)nveny N
Fglner seq.

L2(p)

<S(A', k),

where the last inequality holds because (Iy X In)nen is a Folner sequence of ZF x ZEF. On the
other hand, if

gi(n;h) = Z RS Rl (b ag, ... ag)
b,ai,...,as€NL
for some wu;(b;ay,...,as) € Q, then for 1 <i < ¢ — 1, we have
b
¢ir¢(n,n';hh') = Z R{Y . RN - (ui(byag, ..., as) —ue(byai, ..., as)),

b,ai,...,as ENL
and for 1 <7</,
b
¢ (n,n’;h,h’) = Z h‘l”...h‘;s(nb-ui(b;al,...,as)—n' cug(byay, ... as)).
b,ai,...,asENL

So for all b,V a1, ...,as,a},...,as € N, similar to the argument in the proof of Proposition
we have

Rq(bsar,...,as) = Rq((b,0);(a1,0),...,(as,0)) ~ Rq/((O7 b); (a1,0),...,(as,0))
and Ry ((b,); (a1,d}),..., (as,a})) = {0}. This implies (29) and finishes the proof. O
We are now ready to prove Proposition and close this section.

Proof of Proposition[5.5 Let A denote the PET-tuple (L,0,k, (p1,-..,pk), (f1,---, fx)). Then
for all k > 0,

S(A,k)= sup lim
(In)nen N7
Fglner seq.

k
Enery H Tppu(my fm L2(p)
m=1
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By the assumption, A is non-degenerate. We only prove for fi; as the other cases are
identical.

We first assume that A is standard for f;. By Theorem there exist finitely many vdC-
operations 9, , ..., 0, such that A" =9, ...d,, A is a non-degenerate PET-tuple which is stan-
dard for f1, and deg(A4’) = 1. By Proposition S(A,2Y) < C - S(A',1) for some C > 0
depending only on the polynomials py,...,pr. We may assume that

l
S(A’, 1) = Ea,...,hsezL ([EI;SEN ]\}E)noo‘ EnGIN n:!;[l Tdm(h1,...,hs)~n+rm(h1,...,hs)gm(l'; hl, ... ,hs) L2
Fglner seq.
for some s,¢ € N*, functions g1,...,g,: X x (ZF)* = R, where g1 (-; h1,...,hs) = fi, such that
each g (-;h1, ..., hs) is an L>(p) function bounded by 1, and polynomials d,,: (Z%)* — (Z%)¥
and 7,,: (ZL)S — 724 1 < m < ¢, where d,,,r take value in vectors with integer coordi-
nates because the vdC-operations send integer-valued polynomials to integer-valued polynomi-
als. Let ¢;; = —d; and ¢y, = d;;, — d; for m # 1. Since A’ is non-degenerate, we have that
Ci1,..-,C1s Z 0. By Proposition we have that

=
s < O Ehh---,hsEZL HTrl(hly---,hs)fl ||{G(Cl,i(hl7---7hs))}1§i§e
=
= C"-Ep, peztllfill{ciersth,ha)}rcice

for some C’ > 0 depending only on the polynomials p1,...,p,. Combining this with the fact
that S(A,2") < C-S(A,1), we get .
Suppose that

cim(hi, ... hs) = Z R{* .. he -ugm(as,. .., as), and

ai,...,as€NL

dim(hi,... hs) = Y B RS vig(ar,. .. as)

ai,...,asENL
for some uy (a1, ..., as), vim(a,...,as) € (Qd)L with all but finitely many terms being zero for
each m. Write u; ,(a1,...,as) = (Uim,1(a1,...,as), ..., uimr(al,...,as)), Vim(a,...,as) =
(Vima(at,...,as), .., Vim,n(a1,...,as)), and, for all 1 <r < ¢, set

Urr(ar,. .. as) ={uimr(ai,...,as) € Q*:1<m< ¢} U{0}; and

‘/l,T(ala . 'aas) = {’Ul,mm(al; s ,(Is) € Qd: 1<m< f} U {O}

Since A" = Oy, ...0u, A, by repeatedly using Proposition for all ai,...,as € N* not all
equal to 0 and every 1 < r < L, there exists v € N v # 0 such that Vi ,(a1,...,as) <
R,. By the relation between uy ,, and vy ,,, we get Uy, (a1,...,as) ~ Vi,(a1,...,as) and so
ULr(al, ey CLS) 5 Rv.

We now assume that A = (L, 0, k, (p1,...,pk), (f1,---, fx)) is not standard for f;. Since A is
semi-standard for f1, by Proposition there exists a PET-tuple A’ = (2L, 0,4, q,g) which is
non-degenerate and standard for f; such that S(A4,2k) < S(A4’, k) for all k > 0 and holds.

Working with the PET-tuple A’ instead of A as before (and using ), we get the result. [
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7. PROOF OF PROPOSITION

This last section is dedicated to the proof of Proposition 5.6l We remark that it is in this
proposition where the concatenation results (Theorem and Corollary [2.11]) are used.

Following the notation of Proposition for every h = (h1,...,hs) € (Z*)° and 1 < i < k,
we set

We hayve:

Lemma 7.1. Let the notations be as in Proposition . If holds for every Zd-system
(X, B, i, (Ty)geza) and every fi,..., fx € L=(u), then for every Ji,...,Jp C (ZF)* of density
1, we have that

(30) Epeze Ty nyf1- - Ty fr =0, if E(filW; ) =0 for some 1 <i < k.

Proof. Suppose that E(f;|W; ;) = 0 for some 1 <i < k. By definition, || filla(c; ,(n)),...G(ci. (h) =
0 for all h € J;. Since J; is of density 1, the conclusion follows from . O

Before proving Proposition we continue with our main example (Example .

Third part of computations for Example (1@ We are dealing with the (T1"2+”,T2"2) case.
Applying to Lemma , we have that

(31) Epez T 1T fo =0, if E(fi|Wiy,)=0fori=1or2,
for all .Jp, Jy € Z? of density 1, where

Wi7J = \/ Wi,(hl,hmhs) = \/ ZG(Ci,l(hl:h2,h3))7~--»G(ci,7(hl:h27h3))’ =12,
(h1,h2,h3)e] (h1,h2,h3)e]

where c; ;: 73 — 7? are the ones in the second part of computations for Example

Recall that e; = (1,0), e2 = (0,1), e = e; — e2. In this case, we have that Hy; = Zey,
H1,3 = H175 = H1’7 = Ze and H172 = H174 = H176 = Z2. MOI‘eOVGI‘, H271 = Zeg, H272 = H274 =
H276 = Ze and H273 = H275 = H277 = ZZ.

Applying to Lemma we get

=0.

2 lim
(32) sup im ‘ L2

(In)nen N7
Fglner seq.

Enery (T 1 B o = T7 E( Wi 2s) - T3 1)
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oo

Fix € > 0. Since W; 3 = \/ W1 —n~,np3, by approximation, there exists a finite subset I of 73
N=1

such that [|[E(f1|Wqz3) — E(f1[W1.0)llL1( < €%/2. Since I f1llzoo )y 1 f2ll ooy < 1, for all n € Z,

2

L2 ()

2
= /X (T B (A Wazs) - T3 fo = TP E(AIWLD) - T3 o) d

H(Tl TE(f1 W z3) 'T22f2 — TV TE(f1|Wh ) 'T22f2>‘

< / 2\ Ty B IWh 29) = TY B (AW )| dp = / 2\E(f1IWi 2) — E(AIWAD)| dp < 2
X X

So,

63)  sup T [[Eueny (T EAIWz) T8 B = TR TR, <
N)NeN
Fglner seq.

Note that W 1 is contained in the (7|I])-step factor
Wi = Z(G(Cl,l(hl7h27h3))7---7G(C1,7(h1uh27h3)))(h1,h2,h3)61'
We say that (h}, hh, hy) € Z3 is good if for any (hy, ho, h3) € I, any

g € {—2hye1,2he — 2hye1, 2hoe, 2hse — 2hye1, 2hse, 2(ha + hs)e — 2hyeq, 2(ha + hs)e}
(i.e., g is the generator of one of G(c1,1(h1,ho, h3)),...,G(c1,7(h1, he, h3))) and any action

g € {—2h}e1,2hbe — 2h ey, 2hbe, 2he — 2R e1, 2h5e, 2(hh + hy)e — 2hfer, 2(hh + hb)el,
(i.e., ¢’ is the generator of one of G(cy1(h}, hy, hY)), ..., G(c17(h), h, hy))) the set

H = spang{g,¢'} N Z*

satisfies the following:

H =1Ze ,ifg=—2hie1,¢ = —2h/1€1
H=1Ze , if g€ {2hse,2hze,2(ha + h3)e}, g € {2hbe, 2hhe, 2(hh + hy)e}
H=17° , otherwise

Let J be the set of all good tuples. Since [ is finite, it is not hard to show that J is of density 1
(see also the claim in the proof of Proposition [5.6)). Again, applying (26| to Lemma
(34)
—_— 2 2 2 2
sup T (| Epery (7" E(AIWL) - T3 fo = T B WL W) - T3 1) |

(In)vewy N7 L2(p)

Fglner seq.
So , and implies that

—_— 2 2 2 2
sup  lim ’]E i (T 1 T o = TP PRy Wag 0 W) - T 2)‘ <e.
(35)  (y)yen Mool "N Ji- T o =TT TE(AIW: VL)L
Fglner seq.

By the definition of good tuples and Corollary we have that

WisnWir €\ WInWigmmy = NV Zigensinl ey oit g2y C Zgxoo gxoo-

(hy:hy,hs)ed (hy,hy,hg)ed
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So implies that

T n2+n n?
sup T |[Eper, TY 0 fr - T3
(In)nen V770
Fglner seq.

L2(p) <& i E(filZgee oxoe) = 0.

Since € > 0 is arbitrary,

im ’E T g ‘ —0, if E(fi|Z 1o ro)=0.
oy b, Nl e T S R
Fglner seq.

Working analogously for the T§2 fo term, we eventually get that
sup  lim HEnelNT{l2+”f1 . TQan2HL2( ) =0 if E(fi|Z,x0 x00) =0 fori=1or2.
I i

(In)Nen N—o0
Fglner seq.

We remark that is a stronger version of (i.e., continuation of Example .

(36)

Remark. As mentioned before, the characteristic factors described in Theorem [5.1] are not the
optimal ones in general, but they are good enough for the purposes of our study.

We briefly explain the idea on proving Proposition [5.6l Under the assumptions of Proposi-
tion Lemma [7.1] says that one can assume that f; is measurable with respect to the factor
Wi, 5,. However, thanks to the freedom of the choices of Ji, we can use Lemma@ to repeatedly
choose different subsets Jy1,..., Ji, for some r € N*, and assume that f; is measurable with
respect to the factor Wy s, , "Wy 5, N ---N Wy s, ,. We then employ the concatenation theo-
rems to estimate the intersection of Wi j, ., and find a smaller factor characterizing the multiple
average we aim to study.

Proof of Proposition [5.6. Let (X, B, i, (Ty)4eza) be a Z-system, fi,..., fr € L>®(u) and s, t1, . . .,
thsCim, 1 <4 <k, 1 <m <t; be as in the statement. By Lemma [2.13]

H;, = spanQ{G(ch(hl, coshs)):ihy, ... hs € ZL} aV/a

To show , it suffices to show that if E(fi\Z(Hiyl)xOo,m,(Hi’ti)xOo) = 0 for some 1 < i < k, then
the left hand side of equals to 0. We assume without loss of generality that ¢ = 1.

For every r € N, every finite subset I C Z”, and every tuple (Jy,...,J,), where J; C (Z%)*,
1 <4 <r, denote

A](Jl, R e EnelTpl(n)E(fllwl,Jl N---N WLJT) . Tpg(n)fg S Tpk(n)fka
and in the degenerated case, set
Ar(0) = EnerTp, ) f1 - Tpomyf2 - -+ Ty () fie-

We say that a tuple (Ji,...,.J,) of subsets of (Z%)* is admissible if for every h, € J,,1 <u <r
and every 1 < m < t1, denoting

(37) G = spang{G(c1m(hy)): v € K} N A
for all K C {1,...,7}, the following holds: for all ) # K’ C K C {1,...,r} such that max{z €
K'} < min{z € K\K'}, either G C Gk or Ggr = Hy

36 We think of this as a notion of having “full rank”.
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Fix ¢ > 0. By , we have that
sup hm HAIN — Ar, (Z2)%)

(In)ven v
Fglner seq.

=0.
L2 ()

By an approximation argument similar to the one obtaining , there exists a finite subset
J| C (Z%)* such that

sup hm ‘AIN Lysy — A7 (J7) <e,
(In)nven N L2(w)
Fglner seq.
and so
sup  lim ‘AI 0) — A (J] ’ <e.
(In)wer Nooo N( ) N( 1) L2(u)
Fglner seq.
Suppose that for some 7 > 1, we have constructed finite subsets Jj, ..., J. C (ZL)* such that:
(i) sup lim HAIN((Z)) — A (J1, . L) < re; and
(In)nen N7 L2(w)
Fglner seq.

(i) (J1,...,J}) is admissible.
We now construct J;, ;. We first claim that there exists Jp41 C (ZF)® of density 1 such that
(Ji,...,J}, Jr-11) is admissible. For every h, € J/,,1 <u <7, 1 <m < t; and nonempty subset

s Iy

K C{1l,...,r}, let
Qm,,..hK = span@{G(ch(hu)): ue K}n 74,

If Qmiby,...hx = Him, we let Vipn, nox = (ZF)*, otherwise Vinshy,...h,:k denotes the set of
h=(hy,...,hs) € (ZL)S such that G(c1,,(h)) is not contained in Qb b,k Let

Jrp1 = m Vinshy,...hysK -
hy€l,, 1<u<r, 1<m<ty, KC{1,...,r}
To show that (J7,...,J., Jr+ ) is admissible, fix h; € J/,1 <i <7, hyyy € Jopq, 1 <m < ty,

and let Gg be defined as in forall K C{l,...,r+1}. Let 0 £ K' C K C{l,...,r+1}
such that max{x € K'} < min{a: € K\K'}. We have the following three possible cases for r + 1:

Case (i): r+1¢ K. Thenr +1¢ K andso ) # K' C K C {1,...,r}. Since (I1,...,1I,) is
admissible, either G C Gk or G = Hy .-

Case (ii): 7+1 € K'. This contradicts the assumption that max{r € K’} < min{z € K\K'}.
So this case is not possible.

Case (iii): r+1€ Kbut r+1 ¢ K'. Then K' C {1,...,r} and so Jr4y1 C Vinhy,. b k-
If Ggr # Him, then since h, 41 € Jr11 € Vihy,. h,.x7, the subgroup G(cim(hy41)) (which is
contained in G since r +1 € K) is not contained in Quy.h,,... h,;x* = Gg’. This implies that
Gk # Ggr.

In conclusion, we have that (Ji,..., Jr, Jr4+1) is admissible. The second part of the claim is
that J,11 is of density 1. Since Ji, ..., J, are ﬁmte sets, it suffices to show that every Vi,.h, .. h.:K
is of density 1. If Qu:h, ..., = Him, Vinhy,. bk = (ZL)S and we are done. Now assume that
Qmin,,...h:K 7 Him. By Lemma. 2.12] the set

Vinehy..hpk = 1h € (Z1)*: G(c1m(h)) € Quuihy... b}
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is either of density 1, or is empty and

Qumshy,...hysk = Spang{G(cim(h1, ... hs)): h1,... ks € ZX} N Z4 = Hy ..
By our assumption, Vp,.h,, ..,k is of density 1. This finishes the proof of the claim.

By Lemma A(Jy, ... ) = A(JY, ..., J., Jry1). By an approximation argument, there
exists a finite subset J;,; C J,41 such that
sup A o T Tpit) = Ay (o T )|

(IN)Nen
Fglner seq.

< E.
L2(n)

Tim |

N—o0

By induction hypothesis,
sup Tim ‘AIN((Z))—AIN(J{,...,J{,, ;+1)HL2(M)<(7~+1)5.

(Un)nen N7
Fglner seq.
So (i) holds for r + 1. Since (Ji,...,J}, Jr+1) is admissible, so is (J1,...,J;,J; ), hence (ii)
holds for 7 + 1. In conclusion, there exist a tuple (J,...,Jy,) of finite subsets of (Z*)* such
that
sup Im ‘A[ 0)— Ar (T, T < diye
(In)ven N—ooo N( ) N( 1 dtl) L2(p)
Fglner seq.
and (Jq,...,Jy,) is admissible. Note that
dtq
Wip o 0OWyy = NV Wi,
u=lh,€eJ)
dt1
- m \/ 26 (1,1 (1)), Gler i, (hu))
u=lh,eJ,
dt1
S RATCTO ) S
u=1

where we used Lemma (vii) in the last inclusion. For each 1 < u < dty, pick some 1 < 'm,, < t;
and h,, € J/,. Consider the set

P = spang{G(c1,m, (hy)): 1 <u < dt1} N A
By the pigeon-hole principle, there exist 1 < m < t; and 1 < u; < --+ < ug < dt; such that

My, =+ =my, =m. Forall 1 <i<d, let K; ={uy,...,u;} C{1,...,dt;} and
P; = spang{G(c1,m, (hy)): u € K;} N A
Since (Ji,...,Jy,) is admissible, for all 1 < i < d — 1, either P; = Hy,, or the dimension of

P;11 is higher than that of P;. Since the dimension of P; can not exceed d, we must have that P;
contains Hy ,, for some 1 <i <d. As P, C P, we have that P also contains Hi ,,,. By Corollary

.11

dtq
WLJ{ N---N Wl"]étl C ﬂ Z{G(Clym(hu))}lgmgtl,hueJ; - ZHXOO X0

1,1 oty
u=1
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. !/ !/
Since E(fl’Z(Hl,l)xoo,---7(H1,t1)Xoo) = 07 A(Jl, N ‘]dtl) =0 and so

sup  lim HAIN(Q))HLQ( : < dtie.

N—oo

(IN)Nen H
Fglner seq.
Since ¢ is chosen arbitrary, the left hand side of (24)) is equal to  sup lim ’A In (@)’ =0,
(In)nen N7 L2(u)
Fglner seq.
which finishes the proof. O
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