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Both precision and spatial resolution of atmospheric data are fundamental aspects when
evaluating air quality and the effects of different factors on the distribution of air pollutants.
Satellite-borne instruments have been very useful to collect this type of data, providing
valuable information for process understanding and when deciding public policies of both
regional and national relevance. However, as sensors and satellites retrievals have improved,
one finds discontinuities in quality and resolution that require homogenisation for establishing
long-term trends.

This work seeks to assess the feasibility of improving the spatial resolution of satellite
measurements while, simultaneously estimating the expected error. A stochastic approach
based on Convolutional Neural Networks is presented, which succeeds in increasing the
spatial resolution of nitrogen dioxide (NO2) columns collected with spectrometers onboard
satellites. Furthermore, the approach allows estimating the aleatoric uncertainty generated
by errors inherent in spectrometer measurements. Also, the methodology allows achieving
the estimation precision of conventional deep learning models. The results show that the
reconstructed fields are robust to added noise on the data, presenting slight decreases in the
evaluated metrics above 5% noise. An advantage of the presented methodology is that the
models can be trained with small-scale images, and then applied without domain restriction,
if the resolution used during training is maintained.

The results indicate that the methodology is appropriate for the stated objectives. Also,
it is subject to further improvement by considering state-of-the-art models (ResNet, GAN).
An application to reconstruct NO2 column data from the Ozone Monitoring Instrument (OMI)
onboard the Aura satellite is shown, illustrating the potential of the methods. Thus, this
work contributes to an improvement in the monitoring of air quality for the country, and it is
expected that it can be applied to obtain better prediction results (both precision and error
estimation) and cover a larger area of application.
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Mejora de la resolución espacial de datos OMI de NO2 utilizando una Red
Neuronal Convolucional Estocástica sobre Chile centro-sur

La precisión y la resolución espacial de datos atmosféricos son aspectos fundamentales a
la hora de evaluar la calidad del aire y los efectos de distintos factores sobre la distribución
de contaminantes. Los instrumentos de medición satelital han sido de gran utilidad para
recopilar este tipo de datos, proveyendo información valiosa para entender procesos y decidir
poĺıticas públicas con relevancia tanto regional como nacional. Sin embargo, a medida que
mejora la calidad de sensores y satélites, se presentan discontinuidades tanto en la calidad
como en la resolución de los datos, lo que requiere métodos de homogenización para poder
establecer tendencias a largo plazo.

Este trabajo busca evaluar la factibilidad de mejorar la resolución espacial de imágenes
satelitales de contaminantes y, al mismo tiempo, estimar el error esperado. Se presenta una
metodoloǵıa estocástica basada en Redes Neuronales Convolucionales, que logra aumentar la
resolución espacial de datos de dióxido de nitrógeno (NO2) obtenidos a partir de espectrómetros
satelitales. Además, los modelos presentados permiten estimar la incertidumbre aleatoria
generada por errores inherentes a las mediciones de espectrómetros, logrando mantener
la precisión de la estimación comparándolo con modelos convencionales basados en Redes
Neuronales. Los resultados muestran que los campos reconstruidos son robustos a ruido
añadido sobre los datos, presentando leves disminuciones en las métricas evaluadas para ruidos
sobre 5%. Una ventaja de la metodoloǵıa presentada es que los modelos pueden ser entrenados
con imágenes en pequeña escala, para luego ser aplicados sin restricción de dominio, mientras
se mantengan las resoluciónes utilizadas durante el entrenamiento.

Los resultados indican que la metodoloǵıa es apropiada para los objetivos planteados,
siendo viable aplicarla a modelos del estado del arte para obtener mejores resultados (ResNet,
GAN). Se muestra una aplicación para reconstruir los datos de columna de NO2 del Ozone
Monitoring Instrument (OMI), a bordo del satélite Aura, mostrando el potencial de aplicación
del método. Este trabajo contribuye a un mejoramiento en el monitoreo de la calidad del aire
para el páıs, y se espera que pueda ser profundizado de manera de obtener mejores resultados
(tanto de predicción como de estimación de error) y abarcar un área mayor de aplicación.
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Introduction

1. Introduction
Tropospheric nitrogen dioxide (NO2) is a primary pollutant that is harmful to human

health (WHO, 2003). Accordingly, the World Health Organization has reduced the annual
average guideline from 40 to 10 µg/m3 in its most recent update (WHO, 2021). Nitrogen
dioxide is the main source of nitrate aerosols, thus contributing to fully inhalable particles
(PM2.5), also NO2 is, via photolysis (λ < 424 nm), the source of odd oxygen involved in the
formation of ozone (O3), and an air pollutant by itself (Crutzen, 1979; Seinfeld & Pandis,
2016). Furthermore, NO2 has a chemistry-mediated climate impact through nitrate aerosols,
O3, and thus, methane (Szopa et al., 2021).

Nitrogen oxides are heterogeneously distributed in space and time due to their short
atmospheric turn-over time (hours to days), and due to the variable distribution of sources
and sinks. At the global scale, anthropogenic emissions of nitrogen oxides are estimated to ca.
42 TgN/yr, being fossil fuel combustion by the transportation sector, including aviation and
shipping, roughly 50% of the total (Hoesly et al., 2018; Szopa et al., 2021). Natural sources of
nitrogen oxides include lightning (ca. 5 TgN/yr within a factor of two) and soil processes (ca.
4.7 - 16.8 TgN/yr) according to Szopa et al. (2021). The main sink of NO2 is its oxidation to
nitric acid and nitrate both through gaseous-phase and multi-phase processes (Seinfeld &
Pandis, 2016).

Satellite measurements have been very useful for monitoring not only NO2, but also
many trace gases and aerosols in the atmosphere. Over the past decades, many improvements
have been made to satellite instruments, and the data retrieved with each of them has
resulted in better environmental monitoring and modelling (Georgoulias et al., 2019). Over
time, retrieval algorithms and instruments improve leading to higher spatial resolution and
lower measurement errors (Judd et al., 2019). Thus, when studying long-term trends, such
changes have to be taken into consideration. Different methods have been developed to handle
this problem, trying to obtain a better resolution of older data by applying post-processing
techniques for image up-sampling1, usually known as super-resolution (SR) methods.

Over the last few years, different deep learning algorithms have been used to improve
the resolution of images (Z. Wang et al., 2020), generally based on Convolutional Neural
Networks (CNN), which are designed to process gridded data. Some applications have focused
on satellite derived climatological data, with promising results (Cheng et al., 2020; Leinonen
et al., 2021; Stengel et al., 2020; Vandal et al., 2017). These works focused on obtaining
a good reconstruction in high resolution, leaving aside the uncertainty that this process
inherently entails. Since environmental modelling problems generally handle noisy data (often

1In literature, both terms ”up-sampling” and ”down-scaling” can be found. Up-sampling often means an
operation that increases the number of pixels in an image and, thus, reduces the physical size of each pixel.
This definition is commonly used in image processing. On the other hand, the term down-scaling is used in
climate science for an operation that reduces the physical size of a pixel and, therefore, increase its spatial
resolution (Leinonen et al., 2021).
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Introduction

heteroscedastic, i.e. having an input dependent variance), it becomes relevant not only to
try to predict the mean of these values, but also the entire conditional distribution. Hence,
having an estimate of the uncertainty of a prediction can add valuable information when
evaluating model results or assessing the impact of policy decisions (Cawley et al., 2007).

The objective of this work is to enable an improved spatial reconstruction of NO2 column
derived data from the Ozone Monitoring Instrument (OMI) onboard the Aura satellite (Levelt
et al., 2006), as well as an estimation of the uncertainty of the reconstructed data. To this
end, a Stochastic Super-Resolution Convolutional Neural Network model is proposed, which
also estimates the error of the prediction by a stochastic approach of the problem. Instead of
focusing on achieving high up-sampling factors, the research is centred on the error estimation
method, assessing the feasibility of the proposed approach for these types of problems. Hence,
two Convolutional Neural Networks (CNN) models and their performances are analysed,
based on a simple configuration (Dong et al., 2016). In future work, once the feasibility of
this methodology has been established, implementations with state-of-the-art architectures
will be explored.

The following section details the satellite-borne column density data retrieval process,
along with the data sources and the domain selected to carry out this work. Thereafter,
the problem of super resolution (SR) is addressed and its approach with CNNs. Once the
background is established, the research methodology is presented. This is divided into data
processing, model definitions, and evaluation experiments. Subsequently, the results are
presented and discussed, to end with the conclusions of the work.

2



Tropospheric NO2 Column Density

2. Tropospheric NO2 Column Density

2.1. Satellite retrieval method

The important role of NO2 in atmospheric composition requires monitoring its con-
centration with reliable, high-resolution observations. Satellite instruments have been very
useful for measuring different components of both the troposphere and stratosphere since they
enable us to estimate the concentrations of several molecules at the same time in a vertical
column. Because higher pixel size decreases the spatial heterogeneity often associated with
highly polluted features, spatial resolution of these measurements can bias the maximum
values over urban regions (Duncan et al., 2016; Judd et al., 2019). Consequently, in the last
decades, better instruments with higher spatial resolution have been continuously put into
orbit, improving the data recovered with each of them and providing almost daily global
coverage of valuable information of, among others, NO2 trends (Georgoulias et al., 2019).
This has driven an important advance both in modelling and in monitoring atmospheric
behaviour, with benefits in multiple fields of science.

To retrieve tropospheric NO2 column density data, satellite instruments use a Differential
Optical Absorption Spectroscopy (DOAS) technique (Platt & Stutz, 2008), measuring the
total amount of NO2 between the satellite and the surface (see diagram in Figure 1). The
basis of this method is Beer-Lambert’s law (Swinehart, 1962), which relates the concentration
of species along a path with the incident radiation at different frequencies. Each species has
a unique absorption cross-section spectrum, that is, an amount of radiation which absorbs
at different wavelengths (Platt & Stutz, 2008). Satellite instruments can measure the slant
column density (SCD), defined by the concentration integrated over the light path in the
atmosphere. Using knowledge of absorption cross-section of several trace gases (seen for NO2
in Figure 2), the SCD can be estimated by obtaining the difference between the incident
beam and a reference value. Afterwards, the SCD is separated into its stratospheric and
tropospheric fraction on the basis of information coming from a data assimilation system
(based on a transport model). Finally, an estimation of the air-mass factor is used to calculate
the tropospheric vertical column density (VCD), which is the concentration of the trace gas
vertically integrated over the troposphere.

2.2. Satellite data sources

For this study, data were collected by the Ozone Monitoring Instrument (OMI), on-
board the Aura mission (Levelt et al., 2006); and the Tropospheric Monitoring Instrument
(TROPOMI), onboard the Sentinel-5 Precursor mission (Veefkind et al., 2012). OMI is a
spectrometer launched in July 2004, having an unprecedented spatial resolution for the time,
which achieves ground pixels of 13 km along-track and 24 km across-track at nadir. This
instrument has successfully provided daily global coverage during more than 15 years (Levelt

3
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Figure 1: Scheme of satellite measurements principle. The instrument compares radiation received
from Earth with a baseline measurement from the Sun to estimate vertical column burden.

et al., 2018), giving a high-value insight regarding the NO2 spatial distribution and variability
over the Earth (Duncan et al., 2016; Krotkov et al., 2016). TROPOMI, a spectrometer as
well, was launched in October 2017, and has been providing almost global coverage each day
since then. It has gone further with a spatial resolution of 7.2 km (5.6 km as of August 2019)
along-track by 3.6 km across-track at nadir. Recent studies have validated and demonstrated
the potential of having such detailed and precise measurements with broad coverage (Griffin
et al., 2019; Lorente et al., 2019; Marais et al., 2021).

These two instruments were chosen due to the similarity between their orbits, so the
recovered data at any coordinates correspond to similar local time. The spectral range
of both sensors is similar for NO2 detection, as can be seen in Figure 3. In addition, the
TROPOMI NO2 retrieval algorithm (Van Geffen et al., 2021) is based on the same approach
introduced for the OMI retrieval (Boersma et al., 2007, 2011), and afterwards it has been
used for reprocessing OMI NO2 measurements (Boersma et al., 2018). Further, several studies
have assessed differences between the two products, showing that TROPOMI data can be
considered a more reliable higher resolution OMI data (Griffin et al., 2019; Judd et al., 2019;
Lorente et al., 2019; Marais et al., 2021; Van Geffen et al., 2020).

Error sources should be considered and well estimated due to the importance of satellite
data for air pollution monitoring, pollution trend studies and policy decisions. Despite nu-
merous contributions to improve the retrieval algorithms of satellite-borne data, measurement
uncertainties have been reduced but not altogether eliminated; hence it is important to
assess them. Certain sources of uncertainty are inherent to the tropospheric column density
recovery method. Three of them are especially relevant: instrument noise when slant column

4
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Figure 2: NO2 absorption cross-section spectrum measured at 243◦K. Data source: Institute of
Environmental Physics (IUP), University of Bremen (Voigt et al., 2002).

density is retrieved; estimate of stratospheric fraction; and tropospheric air mass calculation
(Boersma et al., 2004; Boersma et al., 2018; Lorente et al., 2017). For these reasons, as OMI
and TROPOMI are no exceptions, uncertainties of both instruments have been assessed in
previous studies (Boersma et al., 2018; Van Geffen et al., 2020; Zara et al., 2018). Likewise,
this study seeks to handle these uncertainties in the data retrieved.

2.3. Study domain selection

For this work, the study area is restricted to central and southern Chile, which is shown
in Figure 4a (Lon: 75°W – 69°W; Lat: 32°S – 40°S). Most of the country’s population is
concentrated here; hence, higher anthropic emissions. These emissions are mainly concentrated
in the city of Santiago (seen in Figure 4b; Álamos et al., 2021), where several studies address
their fate and effects (Gallardo et al., 2018; Gallardo et al., 2012; Menares et al., 2020; Seguel
et al., 2020). Accordingly, a better understanding of NO2 spatial distribution in the area is
relevant.

5



Tropospheric NO2 Column Density

Source: Veefkind et al. (2012).

Figure 3: Spectral ranges for TROPOMI and OMI, and high-absorption rate bands for various
species, including NO2.

Santiago

74°W 72°W 70°W

40°S

38°S

36°S

34°S

32°S

0 200 400 600
NO2 column density [ mol/m2]

Figure 4: Study area. (a) Location of Santiago in South America; and (b) example of data retrieved
with TROPOMI together with regional limits, showing higher concentration levels over Santiago.
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3. Convolutional Neural Networks for
Super Resolution

3.1. Single-Image Super Resolution problem

The single-image super resolution (SISR) problem consists in trying to infer a high-
resolution (HR) image from a low-resolution (LR) one. Generic SISR algorithms are developed
for general images, while domain-specific algorithms focus on specific types of images (e.g.,
landscapes, faces, artwork, etc.). Improving resolution is an inherently ill-posed problem since
there are always multiple HR reconstructions for a single LR image. Therefore, the problem
has been approached with a variety of methodologies, obtaining different results depending
on method and specific application (Nasrollahi & Moeslund, 2014; Yang et al., 2014).

Since image super-resolution aims to recover a unique HR image Îy, from an input LR
image Ix, the problem can be posed as

Îy = F(Ix, θ) , (1)

where F is the super-resolution model and θ denotes the parameters of F . Usually, when
modelling F , approaches try to generate Îy as similarly as possible to the original Iy by
optimising θ.

3.2. Convolutional Neural Networks

Convolutional Neural Networks (LeCun et al., 1989), known as CNNs, are specialised
Neural Networks in grid-like topologies (for further read see Goodfellow et al., 2016, Chap. 9;
Aggarwal, 2018, Chap. 8). These can be applied to data with different dimensionality, such as
time series (1D) or images (2D). Due to their handling of correlation between neighbouring
data, different Convolutional Network models have been used successfully in variety of
applications such as image classification, image segmentation, features extraction, i.a. (Dong
et al., 2016; Girshick et al., 2014; He et al., 2016; Huang et al., 2017; Krizhevsky et al., 2012;
Long et al., 2015; Ren et al., 2016; Simonyan & Zisserman, 2015; Szegedy et al., 2017; Vincent
et al., 2008).

3.2.1. Convolution operation

CNNs are based on the discrete convolution operation to process data, which considers
the correlation between neighbouring values. In the case of a two-dimensional image, this is
accomplished by a discrete weight function w(i, j), also called the kernel of a convolutional

7
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layer, which is applied iteratively to the entire image x. The convolution s is defined, for
two-dimensional discrete functions, as follows:

s(i, j) = (x ∗ w)(i, j) =
∑
m

∑
n

x(m,n) · w(i−m, j − n) . (2)

Since it is not necessary to have the commutative property (obtained by flipping the kernel),
the cross-correlation function is generally implemented, which is the same as convolution but
without flipping the weight function:

s(i, j) = (w ∗ x)(i, j) =
∑
m

∑
n

x(i+m, j + n) · w(m,n) . (3)

This operation is graphically shown in Figure 5. Thus, each CNN layer consists of several
filters, which are cross-correlated to the input image and optimised during training to obtain
the desired result. After the filter, an activation function is applied (commonly non-linear,
e.g., ReLu), which leads to the application of the next layer.

Figure 5: Convolutional operation in a CNN layer. The kernel w is applied to the input image x,
obtaining an output image y.

3.2.2. Pooling

Sometimes it is desirable for a CNN layer to be invariant to small translations at the
input. In these cases, a pooling operation is added after the activation function. The pooling
operation is a statistical function that summarises the values between nearby outputs. For
example, a max pooling operation returns the maximum value in a rectangular neighbourhood.
As well as max pooling, average and min pooling are commonly used. Adding pooling in a
convolutional layer helps to keep the same representation when the input is translated in a
small amount, making the model more robust to input variations.
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3.3. Application to SR problem

In recent years, deep learning (DL) techniques have developed rapidly, and newly super-
resolution (SR) models based on CNNs now achieve state-of-the-art results (Z. Wang et al.,
2020). These models range from the early Super-Resolution Convolutional Neural Network
(SRCNN) model, proposed by Dong et al. (2016), to the recently exploited SR applications
of Generative Adversarial Networks (GAN) models (Goodfellow et al., 2014) and Residual
Network (ResNet) models (He et al., 2016). Later applications have shown outstanding results
by combining these DL techniques for generic SR models (e.g., Lai et al., 2017; Ledig et al.,
2017; Lim et al., 2017; X. Wang et al., 2019).

When approached with CNN, the SISR problem consists of extracting latent information
using successive convolutional layers (Z. Wang et al., 2020). At a certain point of the network
a method of up-sampling is required, resulting in an output with higher resolution than the
input. Considering the problem described in Equation 1, it can be approached using the
intrinsic quality of neural networks optimisation methods, that is, training a model using a
set D = {Ix, Iy}mk=1 of images to get optimum parameters θ for the model. The optimisation
of the model is achieved by solving the following optimisation problem:

θ∗ = arg min
θ

J(θ); J(θ) = 1
m

m∑
k=1
Lk(θ) + Φ(θ) , (4)

where L(θ) represents a loss function to compare the generated image and the ground truth
image, and Φ(θ) is a regularisation term over the parameters. Usually, the regularisation
function can be of the L1 type (Lasso Regression) or of the L2 type (Ridge Regression), which
fulfil the task of penalising the parameters with large values in the model. These functions
are defined as:

ΦL1(θ) = λ
p∑
j=1
|θj| , ΦL2(θ) = λ

p∑
j=1

θ2
j , (5)

with λ the coefficient of regularisation.

Due to the impact of spatial resolution on atmospheric measurements (Judd et al.,
2019), it is relevant to apply SR models to atmospheric data with state-of-the-art techniques.
Previous studies have explored the application of CNN models to improve spatial resolution
of data in different fields of atmospheric science. For instance the work on precipitation,
irradiance and wind fields, referred in Cheng et al. (2020), Stengel et al. (2020), and Vandal
et al. (2017).
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3.4. Uncertainties in Neural Network models

There are two main sources of uncertainties that can be quantified in modelling: aleatoric
(random) and epistemic (Kiureghian & Ditlevsen, 2009). An aleatoric uncertainty is presumed
to be the intrinsic randomness of the measurement of a phenomenon, i.e., the uncertainty
which will be carried by the data utilised. Further, aleatoric uncertainty can be classified as
homoscedastic uncertainty, which stays constant for different input values; and heteroscedastic,
which varies depending on the input values, with some of them noisier than others. On the
other hand, epistemic uncertainty refers to the lack of evidence, i.e., the lack of information
that a model has to make an accurate prediction, inherent in incomplete or erroneous models.

When applying DL models, these two uncertainties remain present, with aleatoric
uncertainty being caused by inaccuracies presented in the data utilised, and epistemic uncer-
tainty being caused by the limitations of the model and its lack of knowledge (Hüllermeier
& Waegeman, 2021). To date, several studies have developed methods to estimate aleatoric
and epistemic uncertainties, proposing different approaches to deal with the problem (Bishop,
1995; Khosravi et al., 2011; Papadopoulos et al., 2001). Recent studies have proposed methods
to simultaneously estimate and separate both uncertainties (Amini et al., 2020; Huseljic
et al., 2020; Kendall & Gal, 2017). This work focuses on addressing the aleatoric uncertainty
inherent in satellite data, leaving aside the epistemic uncertainty the model may have.

10
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4. Data and Methodology
In this work, we use Convolutional Neural Networks for SISR applied to satellite data,

i.e., in a specific domain. The aim is to improve OMI NO2 data by training a model using
TROPOMI data, given the need to have high-resolution images to carry out the process.
Further, we present a stochastic approach to approximate the aleatoric uncertainty with a
SRCNN, to consider the noise in satellite-borne tropospheric column data. Since our objective
is to assess the feasibility of uncertainty estimation with CNN models in SR problems, we
mainly focus on the estimation of the error, rather than on the up-sampling factor or the
quality of the reconstruction. Hence, we present a simple SRCNN model which also estimates
aleatoric uncertainty.

4.1. Data and pre-processing

Since our goal is to improve OMI’s spatial resolution, a set D is needed for training
the model, where Ix has OMI’s resolution (25x25 km2) and Iy has the target resolution. In
this work, we define our HR images as 12.5x12.5 km2, that is, an up-sampling by a factor
of two. Data utilised in this work were retrieved by both OMI (Lamsal et al., 2021) and
TROPOMI (Copernicus Sentinel-5P, 2021) (see Section 2.2). The latter, can be considered as
a HR version of OMI. Therefore, TROPOMI data is utilised to train the model, sampling
each image available to both the HR and the LR mentioned, so the optimised model can be
later applied to improve the resolution of OMI images.

Datasets retrieved by satellite are generally characterised by a considerable amount
of data gaps, which constitutes a source of error in their analysis. These data gaps can be
generated due to the orbit of each satellite, cloud contamination, instrumental failure, or
high ground reflectance (Van Geffen et al., 2021). An efficient method of filling data gaps is
required, allowing the dataset to be used with the least possible missing values. In the case
of the data retrieved for this work, both products have a quality assurance value (qa value),
which serves as a filter of the observations, indicating which pixels are useful and valid. Since
a qa value lower than 0.5 is not recommended for use in either case, all pixels with values
lower than 0.5 are filtered out and considered invalid (Van Geffen et al., 2021). This process
leaves the data with certain gaps between pixels, which makes it difficult to use it for CNN
models because they do not inherently handle missing data.

To generate the dataset, all images are regularly gridded at the desired resolution
(12.5x12.5 km2), maintaining the amount of concentration according to the area. Additionally,
missing values are gridded and saved in the new data for further filling. Thereafter, to overcome
the missing data problem, two steps are performed on each image obtained. The first step
consists in discarding those images that contain a high number of spatially close/grouped
missing values (15 pixels or above), as this will make it difficult to fill them in with confidence.
Second, a penalised least square method is used to fill missing values, which has been
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successfully applied to geophysical datasets before (Garcia, 2010; G. Wang et al., 2012).
This method is described below, along with its implementation. Once the gaps have been
filled, it is possible to sample the images at low resolution (25x25 km2) to be used for model
optimisation.

4.1.1. Gap filling method

We use a penalised least square method based on two-dimensional discrete cosine
transforms (DCT), which describes the data in terms of the sum of cosine functions oscillating
at different frequencies (Garcia, 2010). This method has been used successfully to fill
geophysical datasets when the smoothing factor s used is very small (≈ 0) (G. Wang et al.,
2012). Let’s consider a two-dimensional data z (i.e., an image) with missing values, and ẑ an
approximation of the values with the missing values filled. Iteratively applying the DCT and
its inverse (IDCT), it is possible to determine ẑ by least squares solving:

ẑk+1 = IDCT
(

Γ ◦DCT
(
W ◦ (z − ẑk) + ẑk

))
, (6)

where ◦ stands for the Hadamard (elementwise) product. The inclusion of a binary W matrix
indicates where the missing values are. Here, Γ represents a two-dimensional filtering tensor
defined as

Γi1,i2 =
(

1 + s

( 2∑
j=1

(
2− 2 cos (ij − 1) π

nj

))2)−1

, (7)

where ij denotes the ith element along the jth dimension, and nj denotes the size of z along
this dimension. Also, a robust iteration mode is defined, which helps to avoid overweight
outlier values using a re-weighted process updating the residuals of the iteration2.

Once the optimal ẑ is found, the results can be used to fill in the missing data in the
original images. To select which s value use, we proceed to randomly remove 0.5% of the
pixels (real missing values in this dataset are around 0.3%) from the available data and then
fill them in with both the normal and the robust implementation. Then, the reconstruction
root mean squared error (RMSE) is measure to select the optimal s. The results obtained for
different s, with and without robustness, are shown in Figure 6. From these, s = 0.01 is used
to fill the data gaps as it is the value with the lowest reconstruction error.

4.2. Stochastic SRCNN model

In this work, besides the SR problem, we focus on the estimation of the aleatoric
uncertainty, which is determined mainly by the satellite NO2 data recovery errors. Thus, we

2The implementation of the algorithm can be found at github.com/SanParraguez/smoothn.
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Figure 6: Reconstruction RMSE over the data with randomly removed pixels for given s values.
Normal curve corresponds to the results of the basic method; Robust curve corresponds to the results
applying the re-weighting method to avoid outlier data effects.

aim to assess the feasibility of using CNN not only to reconstruct satellite HR images, but
also to use this model to estimate the error of the predictions, i.e., the aleatoric uncertainty.
The main novelty of the uncertainty estimation with CNN lies in the estimation of multiple
correlated distributions in two dimensions, which is more complex than the estimation of a
single distribution.

One of the most straightforward methods to estimate these errors is approximating
a previously determined parametric probability distribution function (PDF) by Maximum
Likelihood Estimation (MLE), proposed by Nix and Weigend (1994). This approach has been
compared with Bayesian and Bootstrap methods with similar results and shorter training
times (Khosravi et al., 2011; Papadopoulos et al., 2001) and used as the aleatoric uncertainty
estimation method of some Neural Network based models (Amini et al., 2020; Huseljic et al.,
2020; Kendall & Gal, 2017). Here, we attempt to approximate a function f(x) by modelling
our data as

y(x) ∼ N (µ, σ2); µ̂, σ̂ = f(x) , (8)

where σ is the aleatoric uncertainty, which behaves as additive noise on the target values. For
this, a network must be designed so that its outputs estimate µ̂ and σ̂ as the mean and the
standard deviation of a Gaussian distribution. For the purpose of this research, our data is
assumed to have a Gaussian noise with 0 mean because this distribution is seen in data over
the Pacific Ocean (Lon: 110°W; Lat: 25°S) far from coasts and ship tracks (Krotkov et al.,
2016). However, our method does not depend on the assumed noise distribution, and other
distributions might be used. Additionally, it is considered a heteroscedastic behaviour in the
data, assuming a single distribution for each pixel.
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Hence, a Stochastic Super Resolution Convolutional Neural Network (SSRCNN) is
proposed, based on the approach of Dong et al. (2016), but adding a so-called Gaussian layer
as the network’s output. This layer aims to estimate µ̂ and σ̂ parameters of the distribution
by maximising the likelihood of y(x). Due to spatial continuity of NO2 concentrations, as
well as µ, σ is dependant not only on the pixel value itself, but also on its neighbours, unlike
problems where a single value is predicted. Therefore, the optimisation of θ can be achieved
by minimising the negative log-likelihood loss function of many Gaussian distributions:

L(θ) = − 1
n

n∑
i=1

log p( yi | µ̂i, σ̂2
i ) = 1

2n

n∑
i=1

log(2πσ̂2
i ) + (yi − µ̂i)2

σ̂2
i

, (9)

with n the number of pixels in the image. While learning θ, the likelihood function successfully
models the aleatoric uncertainty. Notice that our model does estimate the epistemic uncertainty
as it is an intrinsic model property and not of the data (Hüllermeier & Waegeman, 2021).

4.3. Training method

To train the CNN model, the complete set of TROPOMI NO2 data available is used
(from 01 May 2018 to 30 April 2021). The low-resolution images obtained by sampling
TROPOMI ones are used as inputs of the model, aiming to reconstruct the original high-
resolution ones. The application of the data is shown in Figure 7, differentiating a standard
SRCNN model and our SSRCNN model outputs. To carry out the training, 15% of the data
is set aside for subsequent evaluation; in addition, during the training a fraction of 20% of
the data is used for validation.

TROPOMI

Down sampling

μ

x

OMI-like TROPOMI-like

SSRCNN 

SRCNN 

y

σ

Figure 7: Data application process during training. Original images of high-resolution are down
sampled and then the models seek to replicate these original images. In the case of SSRCNN the
expected error is also estimated.
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The optimisation process is carried out by applying the widely used Adam algorithm,
using the backpropagation technique (Rumelhart et al., 1986) to estimate gradients (see
Appendix A for loss functions gradients calculation). This method uses first-order gradients to
compute individual adaptive learning rates for different parameters from estimates of first and
second moments of the gradients (Kingma & Ba, 2015). For each iteration, the parameters θ
of the model are updated by

θt = θt−1 − α ·
m̂t√
v̂t + ε

, (10)

where α is the stepsize, usually known as the learning rate, and m̂ and v̂ are the bias-corrected
first moment estimate and the bias-corrected second raw moment estimate, respectively. The
training process, similar for both SRCNN and SSRCNN cases, is detailed in Figure 8 and is
implemented using Tensorflow framework (Abadi et al., 2016).

Input

Output

Loss Function

Truth

Update model

Backpropagation

Figure 8: Training process of CNN models. The output of the model is compared against the
ground truth by a loss function to afterwards propagate the errors and update the parameters. This
process is repeated for the complete dataset in each iteration.

4.4. Evaluation experiments

There are two main characteristics that must be evaluated in the SSRCNN model:
its capability to make accurate predictions, and its capability to estimate the error of each
prediction. Therefore, both the µ̂ and the σ̂ values of the output must be tested separately.

Prior to the evaluation of the model, two baselines are selected against which the results
obtained in the experiments can be compared. First, a bicubic interpolation is used, acting as
the base case; and second, a SRCNN model, based on the approach of Dong et al. (2016),
is trained (following the same training methodology previously described and using mean
squared error as loss function), which acts as a CNN base case. Hence, suitable architectures
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must be sought for both the SRCNN and the SSRCNN models, under the assumption that
the methods require different knowledge of the data. Having these baselines allows assessing
differences in the precision of the predictions, i.e. evaluate µ̂ of the SSRCNN model.

To measure the model performance of the approach rather than that of a particular
architecture, an appropriate network architecture must be selected for each model, which,
when its parameters have been optimised, can be evaluated. This is carried out by pa-
rameterising the architecture of both CNN models, defining a series of variables that allow
the construction of different networks. The function generates a bullet-shape architecture,
determining parameters such as, inter alia, number of layers, kernel size and number of filters
per layer (see Appendix B). Afterwards, a series of random searches are performed on a given
domain of the parameterisation for both models. Once this stage is finished, a grid search is
carried out to refine the initial results and obtain a better model in both cases.

Once the architectures are defined and both models are optimised, it is necessary to
evaluate their performance on the test data, which has not been used previously during
training. To perform this, different image quality assessment metrics are used. Which are
selected to have a better insight of the reconstruction quality since objective computational
metrics are not necessarily consistent between each other. These metrics are the Peak Signal-
to-Noise Ratio (PSNR), the Structural Similarity Index Measurement (SSIM) and the Mean
Absolute Percentage Error (MAPE). Additionally, the training time of the models is measured
to better assess convenience of the methods.

PSNR is commonly used to quantify image reconstruction quality, comparing the original
one and its reconstruction based in the mean squared error of each pixel. Given the ground
truth image I with N pixels, and a reconstruction Î, the PSNR is defined as:

PSNR = 10 · log10

 L2

1
n

∑n
i=1(Ii − Îi)2

 , (11)

where L stands for the maximum pixel value. As a complementary measure, SSIM is used,
which compares luminance, contrast, and image structure by sections (Horé & Ziou, 2010;
Z. Wang et al., 2004). Here, the simplified form proposed by Z. Wang et al. (2004) is used,
corresponding to:

SSIM = (2µaµb + c1)(2σab + k2)
(µ2

a + µ2
b + c1)(σ2

a + σ2
b + k2) , (12)

where a and b are the two images compared, and µ and σ are their mean intensity and
its standard deviation (notice that this notation is used only at this equation to keep it as
presented by Z. Wang et al.). Constants are used as proposed in the original article, with
k1 = 0.01 and k2 = 0.03. Furthermore, MAPE is evaluated to have a more intuitive quantity
of the error, which is relative to the value predicted. We calculated MAPE by following:
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MAPE = 100
n

n∑
i=1

| Ii − Îi |
max(|Ii|, th) , (13)

where th is a threshold equal to 12 µmol/m2 to avoid values too large when Ii is near zero.
This value is used because it correspond to the mean value of NO2 column over the Pacific
Ocean where zero values are expected.

To evaluate our model, the µ̂ prediction of the SSRCNN is compared trough the said
metrics against a bicubic interpolation and the SRCNN model. In addition to the calculated
metrics, the dispersion of each of the three predictions is evaluated along with their correlations.
This was also visually inspected and evaluated for single-image predictions, providing insight in
the procedure. Afterwards, the same predictions are evaluated in detail for the SSRCNN model
by comparing the prediction values and error values, as well as measuring the uncertainty
through differential entropy (Cover & Thomas, 2006). The differential entropy h is calculated
by its definition, for a Gaussian distribution with probability density function f , as following:

h(f) = −
∫
S
f(x) log f(x)dx = 1

2 log(2πσ2e) . (14)

Further, we evaluated the robustness of the models when considering increasing amounts
of noise in the incoming data. So, we performed a SSRCNN model sensitivity experiment.
Thus, different noise levels are added to the data by multiplying the original value by a factor
sampled from a Gaussian distribution with mean 1. The noise is applied to all pixels of the
Ix images of the test data, while the original Iy are kept with their ground truth values. This
is carried out with different variances for the distribution, assessing the metrics obtained by
the model’s predictions for each instance.
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5. Results and Discussion
The results are presented below, separating them into four sections corresponding to the

different experiments carried out to evaluate the proposed methodology. These experiments
correspond to the architectures found and subsequently used, the model evaluations carried
out, the noise sensitivity analysis, and a first application of the model to OMI data.

5.1. Architectures of models

First, architectures for the CNN models had to be chosen and trained. This procedure
was carried out by means of a random search and then a refinement of the grid, finding
above-average architectures for both CNN models by their loss functions (see Appendix B).
Recall that the objective was to evaluate the feasibility of the approach, rather than trying to
obtain the best architecture.

The SSRCNN model was designed to have two different outputs, which are the parameters
of the given distribution. The selected architecture is detailed in Figure 9a, which specifies
the layers of the model. The model has a bilinear up-sampling layer, three deep layers, and
two independent output layers. Each layer has a dropout rate of 0.1 during training, and a
regularisation for both L1 and L2 types of 1e-8. In contrast, the output layer µ̂ does not have
regularisation, and the σ̂ layer is penalised with L1 = 1e-5 and L2 = 1e-8.

Turning to the SRCNN model, a single output is required, which seeks to approximate
y. The utilised architecture for this model is shown in Figure 9b. This model, as in the
previous case, has three deep layers, but different number of channels and kernel sizes. The
up-sampling method and the dropout ratio remain the same, bilinear and 0.1 respectively.
Nevertheless, the regularisation weights are different; in this case both the deep layers and
the output layer only have an L2 regularisation equal to 1e-7.

Once the architectures have been selected and trained, both the numbers of parameters
to be adjusted and the time it takes to train each model are obtained. The models were
trained for a maximum of 25,000 iterations, with a patience of 500 iterations before stopping
the training in case there were no improvements. It should be noted that the same hardware
was used in both cases to better compare these differences. These data are set out in Table 1.
It is worth noticing that, despite the greater number of parameters that must be optimised,
the SRCNN model takes considerably less time to be optimised. This may be attributable to
the fact that more gradients must be propagated in the case of SSRCNN, leading to a greater
number of calculations necessary to adjust the model parameters. In the following sections,
the performances of these two models will be evaluated against a bicubic interpolation.
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Figure 9: Architectures schemes of both applied CNN models. (a) SSRCNN model architecture;
and (b) SRCNN model architecture.

5.2. Performance evaluation

During this section, the results of the experiments to evaluate the models are presented
and discussed. As previously detailed, 15% of the database was used to assess the performance
of the model and compare its results against the baselines. The mean results of the metrics
(with improvement over bicubic interpolation) applied to the test data are set out in Table 2,
where both CNN models perform better than the bicubic baseline in all images tested. Slight
performance differences can be observed between the models. The clearest difference is found
in MAPE, where the SSRCNN model obtains the best performance.

Table 1
Number of parameters and training time for both CNN
models.

SRCNN SSRCNN

Number of parameters 1,112,513 306,210
Training time [min]* 23.2 69.8

*All models were trained in a GPU NVidia Tesla V100.
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Table 2
Metrics comparison between bicubic interpolation and CNN models (best performance in bold).
Percentage improvement over bicubic interpolation is also shown.

Metric Bicubic SRCNN SSRCNN

Value Diff. [%] Value Diff. [%]

PSNR [dB] 34.78 35.32 1.67 ± 0.34% 35.29 1.53 ± 0.23%
SSIM 0.820 0.833 1.69 ± 0.18% 0.834 1.76 ± 0.18%
MAPE [%] 37.0 36.6 0.99 ± 0.12% 36.2 2.23 ± 0.13%

The differences in metric improvement may be due to optimisation methods and the
definition of the metric itself (Z. Wang et al., 2004). In this case, the better PSNR results of
the SRCNN when compared to the SSRCNN model could be attributed to the loss function
used, since PSNR is defined directly from the MSE between pixels. Besides, the SSRCNN
model outperformed the baselines in both SSIM and MAPE. This means that, on the one hand,
the SSRCNN model creates structures more similar to the ground truth; and on the other
hand, it gets percentage-wise errors closer to the ground truth, where higher improvement is
observed.

For gaining insight regarding the metrics’ distributions, Figure 10 shows the cumulative
empirical distributions obtained with each metric. A similar behaviour is seen between the
three models evaluated, where, as in the case of the mean values, an improvement is observed
in the CNN models with respect to the bicubic interpolation. Further, Figure 11 compares
the improvement of both CNN models against the bicubic interpolation for each of the
assessed metrics. The most significant finding is seen in MAPE, where the SSRCNN clearly
outperforms the base CNN model, which also performs worse than bicubic interpolation on
some images. Nevertheless, SRCNN presents considerably higher differences in PSNR for
certain images, which can be attributed again to the loss function selected.
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Figure 10: Empirical cumulative distributions of models’ metrics for test images. Higher PSNR
and SSIM is better, and lower MAPE is better.
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Figure 11: Empirical cumulative distributions of the improvement of models metrics over a bicubic
interpolation for test images. Higher PSNR and SSIM is better, and lower MAPE is better.

Subsequently, the correlation between the different predictions and the expected values
was assessed. The three panels in Figure 12 show the dispersion of the predictions for each
pixel in the test images. Both CNN models outperform the bicubic interpolation, and the
SRCNN model obtains a higher R2, showing again a slightly better performance over the
SSRCNN model.
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Figure 12: Scatter plot comparison of predicted values and TROPOMI observed values for the
interpolation and models.

Dong et al. (2016) present greater improvements regarding bicubic interpolation than
the ones obtained in this work. This difference is attributable to two main factors: the
database used, which is much broader and more diverse in their case, and the type of images
used (satellite data are characterised by being smooth and without such defined edges, which
improves performance of a bicubic interpolation). On the other hand, the results presented
are consistent with those of Dong et al. (2016), who show that SRCNN models outperform
a bicubic interpolation. Moreover, the experiments suggest that the SSRCNN models can
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demonstrate similar performances and may surpass SRCNN in some metrics such as SSIM or
MAPE. Hence, the method seems capable of achieving similar results compared to a model
which only predicts the desired value, instead of both the desired value and the expected error.
Nonetheless, the training time of the model presented is approximately four times longer for
the selected architectures, which must be considered when selecting an approach.

To have a visual perception of the reconstructions obtained by each model, an example
from the test data was retrieved. As can be seen in Figure 13, both CNN models better
replicate the areas with higher pixel values, which is expected for the SRCNN model. Because
of this, a more detailed analysis was carried out to determine if the CNN models improve
their performance in pixels with higher concentrations.

PSNR / SSIM

Input

36.965 / 0.914

Bicubic

37.625 / 0.921

SRCNN

37.342 / 0.920

SSRCNN Ground truth

Figure 13: Comparison of a single prediction between interpolation and CNN models. (a) Input
image for the models; (b) bicubic interpolation; (c) SRCNN model prediction; (d) SSRCNN model
prediction; and (e) target image. Below each panel one finds the metrics obtained for this image
(higher is better).

5.2.1. Evaluation of column density data maxima

This section presents a more in-depth evaluation of the behaviour of the models for
areas with high NO2 column values. To do this, some of the experiments already carried
out were repeated, but this time only those pixels where the ground truth value is greater
than 50 µmol/m2 were considered. The evaluation metrics were calculated again, omitting
the SSIM because it does not allow a pixel-by-pixel comparison, but rather by areas of the
image. The results obtained are shown in Table 3, in which it could be seen an increase in the
improvement of the CNN models over the bicubic interpolation, compared with the results of
Table 2.

Similarly, the dispersions per pixel are obtained again, filtering those lower than the
imposed threshold. The results of the correlations for each model are presented in Figure 14,
from which two important results emerged. The first is that the bicubic interpolation obtains
a lower R2 with respect to the experiments with the complete images; the second is that the
CNN models not only obtained greater differences with respect to interpolation, but also

22



Results and Discussion

Table 3
Metrics comparison between bicubic interpolation and CNN models for pixels above 50 µmol/m2.
Percentage improvement over bicubic interpolation is also shown.

Metric Bicubic SRCNN SSRCNN

Value Diff. [%] Value Diff. [%]

PSNR [dB] 29.19 30.06 3.69 ± 0.51% 30.11 3.56 ± 0.45%
MAPE [%] 30.31 27.43 8.80 ± 1.13% 27.68 8.91 ± 1.21%

increased their R2 compared to the original experiment. These results are in line with what
can be seen in Figure 13, which suggests a better reconstruction of CNN models of high-value
pixels. Accordingly, if only values over 50 µmol/m2 are considered, the differences between the
models and the bicubic interpolation increase. This behaviour is useful when it is necessary
to apply the models to study data over cities or other high-polluted areas.

0 100 200 300

0

100

200

300

R2 = 0.772

Bicubic

0 100 200 300
TROPOMI [ mol/m2]

R2 = 0.853

SRCNN

0 100 200 300

R2 = 0.829

SSRCNN

Figure 14: Scatter plot comparison of predicted values and TROPOMI observed values for the
interpolation and models. Only TROPOMI values above 50 µmol/m2 are considered.

These findings support the idea that CNN models outperform bicubic interpolation
especially for high values. In addition, they further suggest that for smooth images the
improvement is reduced due to the lack of edges. Although the results are not directly
comparable due to differences in architectures and data, the increase in the metrics in high
values is closer to the results obtained by Dong et al. (2016).

5.2.2. Uncertainty estimation

Up to now, the predicted values have been assessed comparing the performance of the
trained models. The main improvement of the SSRCNN developed is its capability to estimate
the error, i.e., predict the uncertainty of its predictions, which must be evaluated as well.
Therefore, Figure 15 shows the prediction of the SSRCNN model for the same image as in
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Figure 13, comparing the error estimation against the actual prediction error. Due to the
similarity between predicted σ and the error of the estimation, it can be assumed that the
second one behaves as a sample of the approximated distributions. Further, the entropy is
calculated to have a more intuitive measure of the uncertainty of the predictions.

Ground truth Model Absolute error Model Entropy

0 100 200 300 400 500
NO2 column density [ mol/m2]

0 50 100 150 200 250
Error [ mol/m2]

Low High

Figure 15: SSRCNN model single prediction result. (a) TROPOMI truth image; (b) model
prediction; (c) absolute error of the prediction; (d) estimated error by the model; and (e) entropy as
a measure of uncertainty.

By visually evaluating a larger number of images, it is possible to see that this behaviour
is maintained for different distributions and concentrations in the data (see Appendix C).
Future work will aim to better assess the quality of this error estimate; for the moment, the
results presented here indicate that the model is capable of correctly estimating aleatoric
uncertainty.

5.3. Robustness of the SSRCNN approach

To ensure the robustness of the proposed approach, a noise sensitivity analysis of the
three metrics considered is carried out. For this analysis, random noise was added to the input
images by multiplying each value by a noise factor, keeping the original output images. The
amount of added noise ranged from 0.1 to 25% and applies to the entire evaluation dataset,
comparing the metrics obtained in each step.

The results of the noise sensitivity analysis are summarised in Figure 16, in which the
panels show the results of the three methods for each metric. The data obtained show that
both CNN models maintain better results than the bicubic interpolation when adding different
noise levels. From noise values of around 5%, a continuous decrease in performance can be
seen in the three cases shown, and it is more pronounced after values of around 10%. In
MAPE curves, the SRCNN model and the bicubic interpolation for noise ranges above 10%
are closer, while the SSRCNN model remains slightly above. Hence, these findings provide
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support to consider both CNN models robust against noise in the data, making them suitable
for applications with the type of data used.

0.1% 1% 10%

34

35

36

PSNR [dB]

0.1% 1% 10%
Added noise [%]

0.80

0.82

0.84

SSIM

0.1% 1% 10%

36%

38%

40%

MAPE

SRCNN SSRCNN Bicubic

Figure 16: Noise sensitivity of models over test data. Evolution of metrics when different amount
of random noise is added to the data. In transparent, 95% confidence intervals for the test images.

5.4. Application to OMI NO2 data

The methodology proposed in this work focuses, but is not limited, to the application
on OMI NO2 data. Given the results presented, the trained model seems suitable to be used
on OMI images successfully. A first application is made for the year 2016, when TROPOMI
had not yet been launched, in which the images of the entire year are retrieved from OMI,
and afterwards the SSRCNN model is applied, comparing annual average against an updated
NO2 emissions inventory (Álamos et al., 2021). The original OMI yearly mean, the outputs
of the model and the annual inventory can be compared in Figure 17, where an improvement
in resolution can clearly be noticed.

One of the objectives of this research is to create a high-resolution OMI NO2 data
repository for future use. Therefore, in future work the model will be applied to the entire
OMI database for the selected area, and both the training of better models and the application
for larger areas will be evaluated. In addition, a dispersion model will be considered in order
to be able to better compare the results obtained with the available emissions inventories.
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Figure 17: SSRCNN model application. Spatial distribution for 2016 of: (a) NO2 as observed
from OMI at 25x25 km2 resolution (NASA); (b) NO2 as estimated by the SSRCNN model at
12.5x12.5 km2 resolution; (c) the model estimated error at 12.5x12.5 km2; and (d) the emission
fluxes interpolated to 12.5x12.5 km2; all for year 2016.
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6. Conclusions
The present work aimed to evaluate the feasibility of using CNN-based models to improve

the spatial resolution of NO2’s satellite measurements, as well as to estimate the random
uncertainty of the prediction, inherently provided by these data. It focused on improving the
resolution of OMI NO2, using the data provided by TROPOMI as a reference. To this end, a
methodology was presented to address the problem based on a SRCNN model, which was
modified to estimate the desired uncertainty.

To assess the advantages and limitations of the methodology, an SSRCNN model was
trained and evaluated, comparing it with an SRCNN and a bicubic interpolation using
appropriate reconstruction quality metrics. The experiments were carried out in a domain
constrained to the south-central zone of Chile, using data at a specific resolution. The
findings suggest that the proposed methodology can achieve performances like a CNN model
without estimating uncertainty. In fact, some results showed a better performance for the
SSRCNN model, as in the case of MAPE, so, in certain applications, these models could
be an alternative with greater estimation precision. Moreover, the model is robust against
adversarial noise of up to 10%, so the methodology could be applied to data from instruments
with high noise levels. However, SSRCNN models apparently take much longer to converge,
which is a limitation when time is a priority or not enough computing resources are available.
It should be noted that this problem occurs only during the training of the model, not when
applying it.

At last, a first application to OMI NO2 data was presented. Since an important objective
of the work carried out consists in generating a high-resolution OMI data repository, in future
work, the optimised model will be applied to reconstruct the complete OMI time series
available. This high-resolution database is expected to be useful for future studies in Chile
that may benefit from improved resolution. Meanwhile, other architectures and models based
in state-of-the-art methods will be tested, along with less constrained domains, seeking to
obtain better results and extend the built repository.

There are some important limitations of the study, which must be acknowledged. First,
more detailed searches for optimal architectures could lead to models having greater differences
in performance. Unfortunately, it is difficult to cover a wide range of architectures due to
the time required to train and evaluate each one. Second, despite the similarities between
OMI and TROPOMI, there is always a level of error generated by moving from one domain
to another. On the other hand, better results would be expected using a greater amount
of data, exposing the model to a greater variety of patterns, which contributes to a better
generalisation of the data, that is, better models. Finally, further assessment of the uncertainty
estimation should be carried out, giving more certainty about the quality of these estimates.

In summary, the methodology appears adequate and robust to estimate high-resolution
NO2 fields, with performances at the level of models without estimation of uncertainty, but
at the cost of an increasing in training time. This suggests that it would be worth applying
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the methodology in state-of-the-art SR models, seeking to improve precision, up-sampling
factors, and the uncertainty estimation. Given the relevance of considering uncertainties, the
findings of this research provide valuable insights on the convenience of using deep learning
techniques to estimate two-dimensional correlated uncertainties in SR problems, an area that
has not yet been widely covered in the literature. Since this work focuses on NO2 satellite
data, it would be relevant for future work to evaluate the performance of SSRCNN models in
other types of images.

Data availability

All the data used is publicly available at NASA GES DISC repository, including both
TROPOMI and OMI products used. In the future, the data derived from the application of
the model will be published altogether with the model at github.com/SanParraguez.
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Loss function gradients

Appendix A. Loss function gradients
During training process, a loss function is used for assessing the model performance and

then propagate the errors to the parameters. This is known as backpropagation, which allows
to update the parameters at each iteration during model optimisation. The gradients for the
cost functions used in the training of the two models are detailed below.

A.1. Maximum Likelihood for Gaussian distribution

The Maximum Likelihood Estimation (MLE) seeks to maximise the probability of
finding the desired value given a distribution. To use this approach as a minimisation problem,
the negative log-likelihood is taken, given the following loss function:

L(θ) = − 1
n

n∑
i=1

log p(yi) , (A1)

where p is the probability of finding y. For this case, this probability is given by the Gaussian
distribution, which is set as:

p( y | µ̂, σ̂2 ) = 1√
2πσ̂2

exp
(
−(y − µ̂)2

2σ̂2

)
. (A2)

Then, replacing on Equation A1, the loss function can bee simplified by:

L(θ) = − 1
n

n∑
i=1

log
 1√

2πσ̂2
i

exp
(
−(yi − µ̂i)2

2σ̂2
i

) = 1
2n

n∑
i=1

log(2πσ̂2
i ) + (yi − µ̂i)2

σ̂2
i

. (A3)

Subsequently, the derivatives of the loss function must be calculated to perform the
backpropagation and update the parameters θ. Since µ and σ are calculated, both derivatives
must be obtained separately as following:

∂L
∂µ̂

= − 1
n

n∑
i=1

yi − µ̂i
σ̂2
i

, (A4)

∂L
∂σ̂2 = 1

2n

n∑
i=1

1
σ̂2
i

− (yi − µ̂i)2

σ̂4
i

. (A5)

These values can be used to estimate the gradient of each parameter of the model and perform
the optimisation process.
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Loss function gradients

A.2. Mean Squared Error

The Mean Squared Error (MSE) is a commonly used loss function in Neural Networks,
strongly penalising higher differences between the prediction values and the ground truth.
This function is defined as:

L(θ) = 1
n

n∑
i=1

(yi − ŷi)2 , (A6)

where is only one prediction value to optimise. Therefore, the only gradient to calculate
follows:

∂L
∂ŷ

= 2
n

n∑
i=1

(yi − ŷi) . (A7)

Hence, parameters of the model are updated by propagating only this loss.
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Parameterisation of models’ architectures

Appendix B. Parameterisation of models’
architectures

The parameterisation implemented to generate the architectures consists in 14 variables
common to both models, 4 variables for the SRCNN model and 9 variables for the SSRCNN
model. Each of these parameters are shown and explained in Table B1. The differences in
the parameters lie exclusively in the output layer of each architecture. Both models are built
with a bullet shape, where it maintains a stretch of layers of constant size and then descends,
linearly, towards the output layer.

Both CNN models’ architectures are optimised by random search and then grid search.
The first step consists of generating a search domain in which parameters are randomly
selected to generate an architecture to be trained. The probability of selecting each value
within a parameter is uniform in each domain presented in Table B1. After this first search, a
grid search is carried out to refine the initially obtained results. The same number of searches
was carried out for both models; that is, 1000 architectures by random search followed by 200
architectures by grid search in each case.
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Parameterisation of models’ architectures

Table B1
Input parameters to generate the architectures.

Parameter Model Possible values Description

batch size – {32, 64} Size of the batch of data handle at the
same time during an iteration.

learning rate – {1e-3, 5e-4, 1e-4, 5e-5, 1e-5} Step size given to the Adam optimiser.
n layers – {2, 3, 4, ..., 7} Number of layers in the network.

slope – {1.1, 1.2, 1.3, ..., 3.5} Factor of reduction of the number of
neurons in each layer.

last layer – {8, 16, 32, 64} Number of neurons in the last layer
before the output.

const layers – [0, 1] Fraction of the layers with constant
number of neurons.

dropout – {0.0, 0.1, 0.2} Fraction of filters to be dropped during
training.

up sampling – [0, 1] Fraction of the network where the
up-sampling is performed.

ker lr – {3, 5, 7, 9} Size of the kernel utilised before the
up-sampling.

ker hr – {3, 5, 7, 9} Size of the kernel utilised after the
up-sampling.

l1 lay – {0} ∪ {10−k | k ∈ Z ∧ 1 ≤ k ≤ 9} L1 regularisation of the deep layers.
l2 lay – {0} ∪ {10−k | k ∈ Z ∧ 1 ≤ k ≤ 9} L2 regularisation of the deep layers.
layer act – {linear, ReLU, ELU, SELU} Activation function for the deep layers.

ker out Base {3, 5, 7, 9} Size of the kernel of the output
convolution.

ker mu Stch {3, 5, 7, 9} Size of the kernel of the output µ
convolution.

ker si Stch {3, 5, 7, 9} Size of the kernel of the output σ
convolution.

l1 out Base {0} ∪ {10−k | k ∈ Z ∧ 1 ≤ k ≤ 9} L1 regularisation of the output layer.
l2 out Base {0} ∪ {10−k | k ∈ Z ∧ 1 ≤ k ≤ 9} L2 regularisation of the output layer.
l1 mu Stch {0} ∪ {10−k | k ∈ Z ∧ 1 ≤ k ≤ 9} L1 regularisation of the µ output layer.
l2 mu Stch {0} ∪ {10−k | k ∈ Z ∧ 1 ≤ k ≤ 9} L2 regularisation of the µ output layer.
l1 sig Stch {0} ∪ {10−k | k ∈ Z ∧ 1 ≤ k ≤ 9} L1 regularisation of the σ output layer.
l2 sig Stch {0} ∪ {10−k | k ∈ Z ∧ 1 ≤ k ≤ 9} L2 regularisation of the σ output layer.
output act Base {linear, ReLU, ELU, SELU} Activation function for the output layer

mu act Stch {linear, ReLU, ELU, SELU} Activation function for the µ output
layer.

sig act Stch {Softplus, Exponential} Activation function for the σ output
layer.

Base: SRCNN model, Stch: SSRCNN model
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Appendix C. SSRCNN prediction examples

Ground truth Model Absolute error Model Entropy

0 100 200 300 400 500
NO2 column density [ mol/m2]

0 50 100 150 200 250
Error [ mol/m2]

Low High

Figure C1: SSRCNN model prediction examples. By column: (a) TROPOMI truth image; (b)
model prediction; (c) absolute error of the prediction; (d) estimated error by the model; and (e)
entropy.
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