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ESTUDIO DE PROBLEMAS DE DISEÑO ÓPTIMO POR EL MÉTODO DE
REGULARIDAD EN ECUACIONES NO LINEALES.

This thesis is devoted to the study of an optimal design problem, which is the maximization
of the internal energy for the solution of a p-Laplacian equation for a two-phase material. The
control variable is the region to be filled with restricted amount of the best material. In general
this type of problems has no solution and therefore it is necessary to work with a relaxed
formulation. We obtain a relaxed formulation for this problem using the homogenization
theory.

By means of the relaxation by homogenization we get a relaxed formuation, which in
turns allow us to obtain some smoothness results. Namely, we show that the flux is in the
Sobolev space H1(Ω)N and that the optimal proportion of the materials is differentiable in
the orthogonal direction to the flux for the solutions of the relaxed problem. This allows us to
prove that the non relaxed problem does not have any solution when f = 1 and the domain
is smooth, bounded and simply connected.

For the relaxed formulation we develope two algorithms, a feasible directions method
and an alternating minimization method. We show the convergence for both of them and we
provide an estimate for the error. When p > 2 both methods are only well defined for a finite-
dimensional approximation, because of this we also study the difference between solving the
finite-dimensional and the infinite-dimensional problems. Although the error bounds for both
methods are similar, numerical experiments show that the alternating minimization method
works better than the feasible directions one.

We also study the problem of minimizing the first eigenvalue of the p-Laplacian operator
for a two-phase material. We prove that there exists a relation between this problem and the
maximization of the energy. Through this relation we provide a relaxed formulation of the
problem and prove some smoothness results for these solutions. As a consequence we show
that if Ω is of class C1,1, simply connected with connected boundary, then the unrelaxed
problem has a solution if and only if Ω is a ball. We provide an algorithm to approximate
the solutions of the relaxed problem and perform some numerical simulations.
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RESUMEN DE LA TESIS PARA OPTAR
AL GRADO DE: DOCTOR EN CIENCIAS DE LA INGENIERÍA
MENCIÓN MODELACIÓN MATEMÁTICA
EN COTUTELA CON LA UNIVERSIDAD DE SEVILLA.
POR: DONATO MAXIMILIANO VÁSQUEZ VARAS
FECHA: 2021
PROF. GUÍA: CARLOS CONCA ROSENDE, JUAN CASADO DÍAZ

ESTUDIO DE PROBLEMAS DE DISEÑO ÓPTIMO POR EL MÉTODO DE
REGULARIDAD EN ECUACIONES NO LINEALES.

Esta tesis está dedicada al estudio de un problema de diseño óptimo, el cual corresponde a
la maximización de la energía interna para la solución de una ecuación del tipo p-Laplaciano
para un material con dos fases. La variable de control es la región a ser rellenada por una
cantidad restringida de material. En general este tipo de problemas no tiene un única solución
y por lo tanto es necesario trabajar con una formulación relajada. En este caso la solución
relajada es obtenida utilizando teoría de homogeneización.

Mediante el método de relajación por homogeneización se obtiene un problema relajado,
el cual a su vez permite obtener algunos resultados de suavidad. Este es, se demuestra que
el flujo asociado al problema, está en el espacio H1(Ω)N y que la proporción óptima de
materiales es derivable en las direcciones ortogonales al flujo para las soluciones del problema
relajado. Esto permite probar el problema no relajado no tiene solución cuando f = 1 y el
dominio es suave, acotado y simplemente conexo.

Para la formulación relajada se desarrolan dos algoritmos, uno de direcciones factibles
y otro de optimización alternada. Se demuestra la convergencia y se obtienen estimaciones
para del error en ambos casos. Cuando p > 2 ambos métodos solo están bien definidos para
una aproximación finito dimensional del problema. Aunque las estimaciones del error para
ambos métodos son similares, a través de experimentos numéricos se aprecia que el método
de optimización alternada funciona mejor que el de direcciones factibles.

También se estudia el problema de minimizar el primer valor propio del p-Laplaciano para
un material con dos fases. Se demuestra que existe una relación entre este problema y el
de la maximización de la energía. A través de esta relación se obtiene una relajación del
problema y se prueban algunos resultados de suavidad para las soluciones de este problema.
Como consecuencia se demuestra que si Ω es de clase C1,1, simplemente conexo y con borde
conexo, entonces el problema no relajado tiene un solución si y solo si Ω es una bola. Se
desarrolla además un algoritmo para aproximar las soluciones del problema relajado y se
realizan algunas simulaciones numéricas con este algoritmo.
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Introduction

0.1. Statement of the problem.
The p-Laplacian operator appears in many applied problems like non linear diffusion,

machine learning, etc. In two dimensions the p-Laplacian is used to model the torsional
creep (see [8] and [30] for a deeper explanation), namely, considering a cylindrical bar of
cross section Ω ⊂ R2 subject to a constant torsion, the problem is to find the function
u : Ω→ R (which is called stress potential) such that

−div
(
|∇u|p−2∇u

)
= 1, u ∈ W 1,p

0 (Ω)

where p ∈ (1,∞). This phenomenon occurs when a material is subjected to an extreme
conditions such as very high pressures or temperatures. Under these conditions the material
behaves in a plastic way. This situation is modeled using the p-Laplacian operator for the
stress potential. When p→∞ the material behaves in a perfect plastic way. The case when
p → 1 is related to a geometric minimization problem. Here, we study the case p ∈ (1,∞)
in two or more dimensions, specifically we study the maximization of energy for a mixture
of two materials.

The general objective of this work is to study the maximization of the potential energy of
a mixing of two non linear materials that fills a domain Ω ⊂ RN , namely:

sup

∫
Ω

|∇uω|p(αχω + βχΩ\ω)dx

ω ⊂ Ω measurable , |ω| 6 κ,
(1)

where uω is the unique solution of the problem:

− div
(
|∇u|p−2∇u(αχω + βχΩ\ω)

)
= f in Ω, u ∈ W 1,p

0 (Ω), (2)

0 < α < β are constants, p ∈ (1,∞), 0 < κ < |Ω|, f ∈ W−1,p′(Ω) and p′ = p
p−1

, which is
the Holder conjugate of p. The constants α and β represent the diffusion coefficients of the
two materials that we want to mix, and ω is the region of Ω where we place the material
which corresponds to the diffusion coefficient α. We pointed out that if we do not consider
the restriction |ω| < κ, then trivially the solution would be ω = Ω, so this corresponds to an
economic constraint that enforce us to use some portion of the material characterized by the
diffusion coefficient β.

In general, this kind of problem does not have a solution or at least is not possible to use
the direct method of calculus of variations to prove the existence of a solution. This is because
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in order to use the direct method, we need to provide a topology such that the minimizing
sequences are compacts and the objective function is lower semi-continuous in this topology.
To overcome this difficulty we use the method of homogenization (see [3], [44], [52]) to get a
relaxed formulation of the problem. Thanks to this relaxation we are able to study several
properties of the solutions. Moreover, it allow us to develop two algorithms to find a solution
in a finite dimensional approximation of the relaxed problem.

In the following sections we introduce some concepts such as relaxation by homogenization
and we summarize some of the noteworthy aspects of the present work.

0.2. Relaxation by homogenization.
Let us recall the direct method in calculus of variation, for a general problem of the form

inf
x∈X

G(x), (3)

where G : X → R is bounded from below and X is not empty. The direct method consists
in providing a topology for X such that G is lower semicontinuous and the minimizing
sequences are compacts. For problem (1), a possibility to get such topology is to identify
every measurable subset ω of Ω with its characteristic function χω and then to use the weak−∗
topology of L∞(Ω). This ensure the compactness of the minimizing sequences. Moreover,
due to the non linearity of the problem, the function is not lower semicontinuous in general.
Moreover, for a sequence ωn ⊂ Ω we only have the existence of θ ∈ L∞(Ω; [0, 1]). not
necessarily a characteristic function, such that χωn

∗
⇀ θ . On the other hand, if we consider

uωn the solution of (2) and u ∈ W 1,p
0 (Ω) such that uωn converges to u in the weak topology of

W 1,p
0 (Ω), we do not have in general that satisfies (2) with χω replaced by θ. To overcome these

difficulties we first obtain a relaxed formulation through homogenization for (1). Briefly, we
say that the problem

inf
x∈X

G̃(x) (4)

is a relaxation of (3) if:

• X is a dense subset of X̃ and the restriction of G̃ to X is equal to G.
• G is lower semicontinuous, i.e. if xn ∈ X converges to x ∈ X, then

G̃(x) 6 lim inf
n→∞

G(xn).

• For every x ∈ X̃ there exists a sequence xn ∈ X such that

G̃(x) = lim inf
n→∞

G(xx).

If (4) is a relaxation of (3), then (4) has a solution and the infimum of (3) agrees with
the minimum of (4). Moreover, x̃ ∈ X̃ is a solution of (4) if and only if there exists a
minimizing sequence of (3) converging to x̃. We will use the theory of Homogenization
to obtain a relaxed formulation for problem (1). This theory deals with the behavior of
composite materials and more precisely with the asymptotic behaviour of the sequences of
mixtures of several materials. In this regard, a key concept in homogenization theory is

2



the H-Convergence of monotone operators (see [45, 50, 52] for the case p=2 and [46] for the
general case). To introduce this concept let us consider a sequence of continuous operators
An : Ω× RN → RN which are strictly monotone, i.e.

(An(ξ1, x)− An(ξ2, x)) · (ξ1 − ξ2) > C (|ξ1|+ |ξ2)min(p−2,0) |ξ1 − ξ2|max(p,2)

∀ ξ1, ξ2 ∈ RN , ξ1 6= ξ2, a.e. x ∈ Ω.
(5)

and satisfy
|An(ξ, x)| 6 C|ξ|p−1, ∀ξ ∈ RN , a.e. Ω with C > 0. (6)

We say that An H-converges to a continuous and strictly monotone operator A0 : Ω×RN →
RN (A0 is the H-limit of An) if for every f ∈ W−1,p′(Ω), the solutions un ∈ W 1,p

0 (Ω) of

−div(An(∇un, x)) = f in Ω, un ∈ W 1,p
0 (Ω),

are such that

un ⇀ u0 ∈ W 1,p
0 (Ω), An(∇un, x) ⇀ A0(∇u0, x) ∈ Lp′(Ω)N ,

with u0 the solution of

−div(A0(∇u, x)) = f in Ω, u ∈ W 1,p
0 (Ω).

In our case, we are interested in

An(ξ, x) = (αχωn(x) + βχΩ\ωn(x))|ξ|p−2ξ.

The H-converges of this kind of operators have been extensively studied when p = 2. In fact,
the set of H-limits for such sequence An when ξωn

∗
⇀ θ ∈ L∞(Ω) is completely characterized

by the eigenvalues of the H−limit (see [44] and section 2.2.3 in [3]). When p 6= 2 such result
is not known, but it is proved in in Chapter 1, which is given by

max

∫
Ω

|∇u|p

(θα
1

1−p + (1− θ)β
1

1−p )p−1
dx

−div

(
|∇u|p−2

(θα
1

1−p + (1− θ)β
1

1−p )p−1
∇u

)
= f in Ω,

u ∈ W 1,p
0 (Ω), θ ∈ L∞(Ω; [0, 1]),

∫
Ω

θdx 6 κ,

(7)

where θ represents the proportion of the material α. We also get the optimality conditions
for this problem, which allow us to get some smoothness results. As consequence we proved
that if Ω is simple connected with smooth and connected boundary and f is constant, then
problem (1) has a solution only if Ω is a ball. Let us also prove that the relaxed problem (7)
can be reformulated as

min
u,θ

{
1

p

∫
Ω

|∇u|p

(1 + cθ)p−1
dx−

〈
f̃ , u

〉}
u ∈ W 1,p

0 (Ω), θ ∈ L∞(Ω; [0, 1]),

∫
Ω

θdx 6 κ,

(8)

with c =
(
α
β

) 1
1−p −1 and f̃ = f/β. This provides a convex problem, which is used in Chapter

2 to develop a gradient descent algorithm to solve it.
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0.3. Numerical simulations.
In Chapter 2 we develop two methods to solve problem (8) in a finite dimension setting

by replacing L∞(Ω) and W 1,p
0 (Ω) by finite dimensional spaces. The first one is based on the

feasible direction method and the other is based on the optimality conditions of the problem
(8). We detail the description of this algorithms in Chapter 2. Moreover, we prove the
convergence and we estimate the rates of convergence.

To implement the algorithms we consider a polyhedral domain Ω in RN . Then, for a
regular mesh Th of Ω composed by N -simplexes (see e.g. [48]), with maximum diameter
h > 0, we consider the Lagrange finite element spaces

Vh =
{
v ∈ C0(Ω) : v

∣∣
τ
∈ P1(τ), ∀τ ∈ Th

}
(9)

Θh =
{
ϑ ∈ L∞(Ω) : ϑ

∣∣
τ
∈ P0(τ), ∀τ ∈ Th

}
, (10)

where P0(τ) denotes the space of constant functions in τ , and P1(τ) the space of affine
functions in τ . Replacing L∞(Ω) and W 1,p

0 (Ω) by Θh and Vh in (8) we obtain the finite
dimensional problem:

min
u,θ

{
1

p

∫
Ω

|∇u|p

(1 + cθ)p−1
dx−

〈
f̃ , u

〉}
u ∈ Vh, θ ∈ Θh ∩ L∞(Ω; [0, 1]),

∫
Ω

θdx 6 κ

(11)

We prove that the value of the finite dimensional approximation (11) converges to the value
of the problem (8). Additionally, assuming that there exists a solution (û, θ̂) ∈ W 1.p

0 (ω) ×
L∞(Ω) such that θ̂ is a function of bounded variation, we provide a convergence rate. Finally,
using the finite dimensional approximation we perform some numerical experiments.

0.4. Minimization of the first eigenvalue
An interesting and applied problem related to (1), is the minimization of the first eigen-

value of the p-Laplacian for a two phase material, namely:

min
ω,u

∫
Ω

|∇u|p(αχω + βχΩ\ω)

ω ⊂ Ω measurable, |ω| 6 κ,∫
Ω

updx = 1, u ∈ W 1,p
0 .(Ω)

(12)

We prove in Chapter 3 the following result which provides a strong relationship between
problems (1) and (12). For a matrix A ∈ L∞(Ω)N×N we have the following equality:

λ1(p,A)
1

1−p =


max
f,u

∫
Ω

|A∇u|p−2A∇u · ∇udx

−div(|A∇u|p−2A∇u) = f, u ∈ W 1,p
0 (Ω), ‖f‖Lp′ (Ω) 6 1.

(13)
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Here λ1(p,A) is the first eigenvalue of the operator u ∈ W 1,p
0 (Ω) → −div(|A∇u|p−2A∇u) ∈

W−1,p(Ω):

λ1(p,A) := min
u∈W1,p

0 (Ω)

‖u‖Lp(Ω)=1

∫
Ω

|A∇u|p−2A∇u · ∇u dx.

The equality (13) and the relaxation result for (1) that we get in Chapter 1 allow us to
get a relaxed formulation for problem (12):

min
ω,u

∫
Ω

|∇u|p

(1 + cθ)p−1
dx

θ ∈ L∞(Ω; [0, 1]),

∫
Ω

θdx 6 κ,∫
Ω

up dx = 1, u ∈ W 1,p
0 .(Ω)

(14)

Through this relaxed formulation and the results proved in Chapter 1 we get a smoothness
result for problem (14) and analogously to problem (1), we prove that when Ω is simply
connected with connected and C1,1 boundary, then problem (12) has a solution if and only
if Ω is a ball.

It is noteworthy to mention the interpretation of (13). It shows that the minimization of
the first eigenvalue is equivalent to solve the problem (1) for every f with ‖f‖Lp′ (Ω) 6 1 and
then to minimize in f . This can be seen as a robust optimization problem.

Finally, in Chapter 3 we also provide a numerical algorithm to solve the relaxed problem
(14), but due to the non-convexity of problem we only prove the convergence to a critical
point of the problem. In order to implement the algorithm, we discretize the problem by
replacing L∞(Ω) and W 1,p

0 (Ω) by Θh(10) and Vh(9), respectively. Using the relation between
the problems (8) and (14) and the convergence results for (8), we prove the convergence of
the value of the discrete problem to the value of the continuous problem and furthermore we
give a bound for the difference between both values.

5



Chapter 1

The Maximization of the p-Laplacian
Energy

Abstract: We consider the optimal arrangement of two diffusion materials in a bounded
open set Ω ⊂ RN in order to maximize the energy. The diffusion problem is modeled by
the p-Laplacian operator. It is well known that this type of problems has no solution in
general and then that it is necessary to work with a relaxed formulation. In the present
paper we obtain such relaxed formulation using the homogenization theory, i.e. we replace
both materials by microscopic mixtures of them. Then we get some uniqueness results and
a system of optimality conditions. As a consequence we prove some regularity properties
for the optimal solutions of the relaxed problem. Namely, we show that the flux is in the
Sobolev space H1(Ω)N and that the optimal proportion of the materials is derivable in the
orthogonal direction to the flux. This will imply that the unrelaxed problem has no solution
in general. Our results extend those obtained by the first author for the Laplace operator.

1.1. Introduction

The present paper is devoted to study an optimal design problem for a diffusion process
in a two-phase material modeled by the p-Laplacian operator. Namely, we are interested in
the control problem

max
ω

∫
Ω

(
αXω + β (1−Xω)

)
|∇u|pdx

−div
(
(αXω + β

(
1−Xω)

)
|∇u|p−2∇u

)
= f in Ω

u ∈ W 1,p
0 (Ω), ω ⊂ Ω mesurable , |ω| 6 κ,

(1.1)

with Ω a bounded open set in RN , N > 2, p ∈ (1,∞), α, β, κ > 0, α < β, Xω the characteristic
function of the set ω, and f ∈ W−1,p′(Ω), with p′ is the Holder conjugate of p

(
p′ = p

p−1

)
.

In (1.1) the equation is understood to hold in the sense of distributions, combined with
u ∈ W 1,p

0 (Ω), denoting by uα and uβ the values of u in ω and Ω\ω respectively and assuming

6



ω smooth enough, this means that the interphase conditions on ∂ω are given by

uα = uβ, α|∇uα|p−2∇uα · ν = β|∇uβ|p−2∇uβ · ν on ∂ω ∩ Ω

in the sense of the traces in W 1/p′,p(∂ω) and W−1/p′,p′(∂ω) respectively. Here ν denotes a
unitary normal vector on ∂ω.

Physically the constants α and β represent two diffusion materials that we are mixing
in order to maximize the corresponding functional, which in (1.1) represent the potential
energy. The control variable is the set ω where we place the material α. If we do not impose
any restriction on the amount of this material, it is simple to check that the solution of (1.1)
is the trivial one given by ω = Ω. Thus, the interesting problem corresponds to κ < |Ω|,
i.e. the material α is better than β but it is also more expensive and therefore, we do not
want to use a large amount of it in the mixture. The case corresponding to p = 2 has been
studied in several papers (see e.g. [13], [28], [44]) where some classical applications are the
optimal mixture of two materials in the cross-section of a beam in order to minimize the
torsion, and the optimal arrangement of two viscous fluids in a pipe. For p ∈ (1, 2) ∪ (2,∞)
the p-Laplacian operator models the torsional creep in the cross-section of a beam [30] and
therefore problem (1.1) corresponds to find the material which minimizes the torsion for the
mixture of two homogeneous materials in non-linear elasticity.

It is well known that a control problem in the coefficients like (1.1) has no solution in
general ( [42], [43]). In fact, some counterexamples to the existence of solution for (1.1) with
p = 2 can be found in [13] and [44]. Thus, it is necessary to work with a relaxed formulation.
One way to obtain this formulation is to use the homogenization theory ( [3], [44], [52]). The
idea is to replace the material αXω +β(1−Xω) in (1.1) by microscopic mixtures of α, β with
a certain proportion θ = θ(x) ∈ [0, 1], x ∈ Ω. The new materials do not only depend on
the proportion of each original material but also on their microscopical distribution. In the
case p = 2, this relaxed formulation has been obtained in [44]. Here we show that a relaxed
formulation for (1.1) is given by

max
θ

{
1

p

∫
Ω

(
θα

1
1−p + (1− θ)β

1
1−p

)1−p
|∇u|pdx

}
−div

((
θα

1
1−p + (1− θ)β

1
1−p
)1−p|∇u|p−2∇u

)
= f in Ω

u ∈ W 1,p
0 (Ω), θ ∈ L∞(Ω; [0, 1]),

∫
Ω

θ(x) dx 6 κ,

(1.2)

which is equivalent to the Calculus of Variations problem
min
θ

{
1

p

∫
Ω

(
θα

1
1−p + (1− θ)β

1
1−p

)1−p
|∇u|pdx− 〈f, u〉

}
u ∈ W 1,p

0 (Ω), θ ∈ L∞(Ω; [0, 1]),

∫
Ω

θ(x) dx 6 κ,

(1.3)

where here and in what follows, 〈f, u〉 denotes the duality product of f and u as elements of
W−1,p′(Ω) and W 1,p

0 (Ω) respectively.

Our main results extend those obtained in [13] (see also [44]) for p = 2 relative to the
uniqueness and regularity of a solution for (1.2). Namely, we prove that although it is not
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clear that (1.3) has a unique solution (u, θ), the flux

σ =
( θ

α
1
p−1

+
1− θ
β

1
p−1

)1−p
|∇u|p−2∇u

is unique. Moreover, assuming Ω ∈ C1,1 and f ∈ Lq(Ω)∩W 1,1(Ω), with q > N , we have that
σ belongs to H1(Ω)N ∩L∞(Ω). This is related to some regularity results for the p- Laplacian
operator obtained in [35]. We also prove that every solution (u, θ) of (1.3) satisfies

u ∈ W 1,∞(Ω), ∂iθ σj − ∂jθ σi ∈ L2(Ω), 1 6 i, j 6 N, (1.4)

where σi denotes the i-th component of the vector function σ, i.e. θ is derivable in the
orthogonal subspace to σ. The existence of first derivatives for σ and θ will imply that we
cannot hope in general an existence result for the unrelaxed problem (1.1). Namely, the
existence of a solution for (1.1) is equivalent to the existence of a solution for (1.3) where θ
only takes the values zero and one, but then the derivatives of θ in (1.4) vanish. Assuming
Ω simply connected with connected boundary, we show that this implies σ = |∇w|p−2∇w,
with w the unique solution of{

−div (|∇w|p−2∇w) = f in Ω

w ∈ W 1,p
0 (Ω).

Similarly to the result obtained in ( [13], [44]), we prove that this is only possible if Ω is a
ball.

We finish this introduction remembering that the results obtained in the present paper
are also related to those given in [12] where, for p = 2, it is considered the minimization in
(1.1) instead of the maximization. Problem (1.1) is also related to the minimization of the
first eigenvalue for the p-Laplacian operator (see [13], [14], [19], [20], [39] for p = 2), problem
which we hope to study in a later work.

1.2. Position of the problem. Relaxation and equivalent
formulations

For a bounded open set Ω ⊂ RN , three positive constants α, β, κ with 0 < α < β, κ < |Ω|,
and a distribution f ∈ W−1,p′(Ω), p > 1, we are interested in the control problem

max
ω

∫
Ω

(
αXω + βXΩ\ω

)
|∇uω|pdx

ω ⊂ Ω measurable, |ω| 6 κ

−div
(
(αXω + βXΩ\ω)|∇uω|p−2∇uω

)
= f in Ω, uω ∈ W 1,p

0 (Ω).

(1.5)

Here α and β represent the diffusion coefficients of two materials, where the diffusion process
is modeled by the p-Laplacian operator. The problem consists in maximizing the potential
energy.

Using uω as test function in the state equation we have∫
Ω

(
αXω + βXΩ\ω

)
|∇uω|pdx = 〈f, uω〉,

8



By the above equality and since p′ = p
p−1

we have∫
Ω

(
αXω + βXΩ\ω

)
|∇uω|pdx

= −p′
(

1

p

∫
Ω

(
αXω + βXΩ\ω

)
|∇uω|pdx−

∫
Ω

(
αXω + βXΩ\ω

)
|∇uω|pdx

)
= −p′

(
1

p

∫
Ω

(
αXω + βXΩ\ω

)
|∇uω|pdx− 〈f, uω〉

)
which combined with uω, unique solution of the minimization problem

min
u∈W 1,p

0 (Ω)

{
1

p

∫
Ω

(
αXω + βXΩ\ω

)
|∇u|pdx− 〈f, u〉

}
,

gives the equivalent formulation for problem (1.5): min
ω,u

{
1

p

∫
Ω

(
αXω + βXΩ\ω

)
|∇u|pdx− 〈f, u〉

}
u ∈ W 1,p

0 (Ω), ω ⊂ Ω measurable, |ω| 6 κ.

(1.6)

It is known that the maximum in (1.5) or the minimun in (1.6) are not achieved, i.e.,
that (1.5) (or (1.6)) has no solution in general. Namely, for p = 2 and f = 1, it has been
proved in [13] and [44] that if Ω is smooth, with connected smooth boundary, and (1.5) has a
solution, then Ω is a ball. Some other classical counterexamples to the existence of solution
for problems related to (1.5) can be found in [42] and [43]. Due to this difficulty it is then
necessary to find a relaxed formulation for (1.5). This is done by the following theorem

Theorem 1.1 A relaxed formulation of problem (1.6) is given by
min
θ,u

{
1

p

∫
Ω

(
θα

1
1−p + (1− θ)β

1
1−p

)1−p
|∇u|pdx− 〈f, u〉

}
u ∈ W 1,p

0 (Ω), θ ∈ L∞(Ω; [0, 1]),

∫
Ω

θdx 6 κ,

(1.7)

in the following sense:

1. Problem (1.7) has a solution.
2. The infimum for problem (1.6) agrees with the minimum for (1.7).
3. Every minimizing sequence (un, ωn) for (1.6) has a subsequence still denoted by (un, ωn)

such that
un ⇀ u in W 1,p

0 (Ω), Xωn
∗
⇀ θ in L∞(Ω), (1.8)

with (u, θ) solution of (1.7).
4. For every pair (u, θ) ∈ W 1,p

0 (Ω) × L∞(Ω; [0, 1]) there exist un ∈ W 1,p
0 (Ω), ωn ⊂ Ω

measurable, with |ωn| 6 κ such that (1.8) holds and such that

lim
n→∞

∫
Ω

(
αXωn + βXΩ\ωn

)
|∇un|pdx =

∫
Ω

(
θα

1
1−p + (1− θ)β

1
1−p

)1−p
|∇u|pdx. (1.9)
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Remark 1.1 Such as we will see in the proof of Theorem 1.1, the relaxed materials in (1.7)
are obtained as a simple lamination in a parallel direction to ∇u. In this context, a laminated
material corresponds to a particular distribution of two materials, which depends exclusively
on one direction, say ξ ∈ RN , which is represented by a function ϕ ∈ L∞(Ω; [0, 1]) with a
generic form as follows:

ϕ(x) = g(ξ · x) ∀x ∈ Ω,

where g is a real-valued function. (see sections 2.3.5 and 2.2.1 in [3] for more details on
laminated materials).

Proof of Theorem 1.1. Using that the function J : RN × (0,∞)→ R defined by

J(ξ, t) =
|ξ|p

tp−1
, ∀ (ξ, t) ∈ RN × (0,∞), (1.10)

is convex, and the sequential compactness of the bounded sets in W 1,p
0 (Ω) × L∞(Ω) with

respect to the weak-∗ topology, it is immediate to show that (1.7) has at least a solution
and that every minimizing sequence (un, θn) for (1.7) has a subsequence which converges in
W 1,p

0 (Ω)× L∞(Ω) weak-∗ to a minimum.

Since problem (1.6) consists in minimizing the same functional than the one in (1.7), but
on the smaller set{

(u,Xω) ∈ W 1,p
0 (Ω)× L∞(Ω; [0, 1]) : ω ⊂ Ω,

∫
Ω

Xω dx 6 κ
}
,

it is clear that the infimum in (1.6) is bigger or equal than the minimum in (1.7). Thus,
taking into account that the convergence of the minimizing sequences stated above will imply
statement (3), we deduce that it is enough to prove statement (4) to complete the proof of
Theorem 1.1. For this purpose, we introduce the functions (the index ] means periodicity)
H ∈ L∞((0, 1)× R) ∩ C0([0, 1];L1

] (0, 1)), G ∈ W 1,∞((0, 1)× R) ∩ C0([0, 1];W 1,1
] (0, 1)), by

H(q, r) =
∞∑

k=−∞

X[k,k+q)(r), G(q, r) = qr −
∫ r

0

H(q, s) ds, ∀ q, r ∈ [0, 1]× R. (1.11)

Now, for a pair (u, θ) ∈ C1
c (Ω)× C0(Ω) with∫

Ω

θ dx < κ,

and δ > 0, we consider a family of cubes Qi, 1 6 i 6 nδ, of side δ such that

Ω ⊂
nδ⋃
i=1

Qi, |Qi ∩Qj| = 0, if i 6= j,

and a partition of the unity in Ω by functions ψi ∈ C∞c (RN), with

sup(ψi) ⊂ Qi +B(0, δ), ψi(x) > 0, 1 6 i 6 nδ and
nδ∑
i=1

ψi(x) = 1, ∀x ∈ Ω.
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Then, we take

qi =
1

δN

∫
Qi

θ dx, ξi =
1

δN

∫
Qi

∇u dx, ζi =

{
ξi if ξi 6= 0

e if ξi = 0,

with e ∈ RN \{0} fixed, and we introduce, for every ε > 0, the sets ωδ,ε ⊂ Ω and the functions
uδ,ε ∈ W 1,∞(Ω), with compact support by

Xωδ,ε =

nδ∑
i=1

H
(
qi,
ζi · x
ε

)
XQi

, uδ,ε = u+ ε

nδ∑
i=1

ψi

G
(
qi,

ξi·x
ε

)(
β

1
1−p − α

1
1−p
)

α
1

1−p qi + β
1

1−p (1− qi)
.

Using the result (see e.g. [2])

Φ
(
x,
x · ξ
ε

) ∗
⇀

∫ 1

0

Φ(x, s) ds in L∞(Ω), (1.12)

for every Φ ∈ C0(Ω;L1
] (0, 1))∩L∞(Ω×R) and every ξ ∈ RN \ {0}, we have that ωδ,ε satisfies

Xωδ,ε
∗
⇀ θδ :=

nδ∑
i=1

qiXQi
in L∞(Ω), when ε→ 0, (1.13)

where thanks to θ uniformly continuous, we also have

θδ → θ in L∞(Ω; [0, 1]), when δ → 0. (1.14)

In particular, since the integral of θ is strictly smaller than κ, we deduce that for every δ > 0
small enough, there exists εδ > 0 such that

|ωδ,ε| < κ, ∀ 0 < ε < εδ. (1.15)

Since q(q − 1) 6 G(q, r) 6 0, for every q ∈ [0, 1] and every r ∈ R, we also have the existence
of C > 0 such that

‖uδ,ε − u‖C0(Ω) 6 Cε, ∀ ε, δ > 0 (1.16)

and taking into account that u has compact support and that G(q, 0) = 0, we deduce that,
for δ small enough, uδ,ε has compact support and thus belongs to W 1,p

0 (Ω). Moreover, thanks
to (1.12) (observe that there is not problem if ξi = 0 because then G(qi,

ξi·x
ε

) = 0 for every
x ∈ RN)

∇uδ,ε = ∇u+

nδ∑
i=1

(
β

1
1−p − α

1
1−p
)

α
1

1−p qi + β
1

1−p (1− qi)

(
ε∇ψiG

(
qi,
ξi · x
ε

)
+ ψi

(
qi −H

(
qi,
ξi · x
ε

))
ξi

)
∗
⇀ ∇u in L∞(Ω) when ε→ 0, ∀ δ > 0.

Therefore

uδ,ε
∗
⇀ u in W 1,∞(Ω) ∩W 1,p

0 (Ω) when ε→ 0, ∀ δ > 0 small engouh. (1.17)
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On the other hand, using the above expression of ∇uδ,ε, and denoting Hi(s) = H(qi, s),
we can use (1.12) combined with H(q, s) = 1 if s ∈ (0, q), H(q, s) = 0 if s ∈ (q, 1), and ξi = 0
is ζi 6= ξi to deduce

lim
ε→0

∫
Ω

(
αXωδ,ε + β(1−Xωδ,ε)

)
|∇uδ,ε|pdx

=

nδ∑
i=1

∫
Qi

∫ 1

0

(
αHi(s) + β(1−Hi(s))

)∣∣∣∣∣∇u+

nδ∑
i=1

ψi

(
qi −Hi(s)

)(
β

1
1−p − α

1
1−p
)

α
1

1−p qi + β
1

1−p (1− qi)
ξi

∣∣∣∣∣
p

dsdx

=

nδ∑
i=1

∫
Qi

αqi

∣∣∣∣∣∇u+
(qi − 1)

(
β

1
1−p − α

1
1−p
)

α
1

1−p qi + β
1

1−p (1− qi)
ξi

∣∣∣∣∣
p

dx

+

nδ∑
i=1

∫
Qi

β(1− qi)

∣∣∣∣∣∇u+
qi

(
β

1
1−p − α

1
1−p
)

α
1

1−p qi + β
1

1−p (1− qi)
ξi

∣∣∣∣∣
p

dx.

Thanks to the uniform continuity of θ and ∇u, we can also take the limit when δ tends to
zero in the right-hand side of the above equality to get

lim
δ→0

(
nδ∑
i=1

∫
Qi

αqi

∣∣∣∣∣∇u+
(qi − 1)

(
β

1
1−p − α

1
1−p
)

α
1

1−p qi + β
1

1−p (1− qi)
ξi

∣∣∣∣∣
p

dx

+

nδ∑
i=1

∫
Qi

β(1− qi)

∣∣∣∣∣∇u+
qi

(
β

1
1−p − α

1
1−p
)

α
1

1−p qi + β
1

1−p (1− qi)
ξi

∣∣∣∣∣
p

dx

)

=

∫
Ω

(
αθ
∣∣∣1 +

(θ − 1)(β
1

1−p − α
1

1−p )

α
1

1−p θ + β
1

1−p (1− θ)

∣∣∣p
+β(1− θ)

∣∣∣1 +
θ(β

1
1−p − α

1
1−p )

α
1

1−p θ + β
1

1−p (1− θ)

∣∣∣p)|∇u|pdx
=

∫
Ω

(
θα

1
1−p + (1− θ)β

1
1−p

)1−p
|∇u|pdx.

(1.18)

Let us now use that for ε < 1, ∇uδ,ε is bounded in L∞(Ω)N , independently of δ and ε,
and χωδ,ε ∈ {0, 1}. Thus, there exists C > 1 such that

‖Xωδ,ε‖L∞(Ω) 6 1, ‖∂juδ,ε‖L∞(Ω) 6 C, 1 6 j 6 N, ∀ ε, δ > 0, 0 < ε < 1.

Here, we recall that the closed ball BC of center 0 and radius C in L∞(Ω), endowed with
the weak-∗ topology is metrizable. Taking d a suitable distance, and using (1.13), (1.15) and
(1.17), we can choose for every δ > 0, ε(δ) > 0 such that

d(Xωδ,ε(δ) , θδ) < δ, |ωδ,ε(δ)| < κ, d(∂juδ,ε(δ), ∂ju) < δ, 1 6 j 6 N,∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∫
Ω

(
αXωδ,ε(δ) + β(1−Xωδ,ε(δ))

)
|∇uδ,ε(δ)|pdx

−
nδ∑
i=1

∫
Ω

αqi

∣∣∣∣∣∇u+
(qi − 1)

(
β

1
1−p − α

1
1−p
)

α
1

1−p qi + β
1

1−p (1− qi)
ξi

∣∣∣∣∣
p

dx

−
nδ∑
i=1

∫
Ω

β(1− qi)

∣∣∣∣∣∇u+
qi

(
β

1
1−p − α

1
1−p
)

α
1

1−p qi + β
1

1−p (1− qi)
ξi

∣∣∣∣∣
p

dx

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
< δ. (1.19)
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Then, taking into account (1.14) and (1.18), we get

Xωδ,ε(δ)
∗
⇀ θ in L∞(Ω), |ωδ,ε(δ)| < κ, uδ,ε(δ)

∗
⇀ u in W 1,∞(Ω) ∩W 1,p

0 (Ω),

lim
δ→0

∫
Ω

(
αXωδ,ε(δ) + β(1−Xωδ,ε(δ)

)
|∇uδ,ε(δ)|pdx =

∫
Ω

(
θα

1
1−p + (1− θ)β

1
1−p

)1−p
|∇u|pdx.

This proves assertion (4) for u, θ smooth and
∫

Ω
θ dx < κ. The general result follows by

density.

Remark 1.2 We can express problem (1.7) in a simpler way defining

c :=
(β
α

) 1
p−1− 1 > 0, f̃ :=

f

β
, (1.20)

which provides 
min
θ,u

{
1

p

∫
Ω

|∇u|p

(1 + c θ)p−1
dx− < f̃, u >

}
u ∈ W 1,p

0 (Ω), θ ∈ L∞(Ω; [0, 1]),

∫
Ω

θdx 6 κ.

(1.21)

For simplicity, in the following we will redefine f as f̃ .

1.3. Uniqueness results and optimality conditions for the
relaxed problem

Since in problem (1.21) the cost functional is not strictly convex, the uniqueness of solution
is not clear. However, let us prove in Proposition 1.1 that the flux

σ̂ :=
|∇û|p−2

(1 + c θ̂)p−1
∇û, (1.22)

with (û, θ̂) a solution of (1.21) is uniquely defined. The result follows from a dual formulation
of (1.21) as a min-max problem. In the case p = 2, a similar result has been obtained in [44].

Proposition 1.1 For every solution (û, θ̂) ∈ W 1,p
0 (Ω) × L∞(Ω; [0, 1]) of (1.21), the flux σ̂

defined by (1.22) is the unique solution of

min
−div σ=f

σ∈Lp′ (Ω)N

max
θ∈L∞(Ω;[0,1])∫

Ω θ dx6κ

∫
Ω

(1 + c θ)|σ|p′dx. (1.23)

The function θ̂ solves the problem

max
θ∈L∞(Ω;[0,1])∫

Ω θ dx6κ

min
−divσ=f

σ∈Lp′ (Ω)N

∫
Ω

(1 + c θ)|σ|p′dx, (1.24)

and the minimum value in (1.23) agrees with the maximum in (1.24).
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Proof. For θ ∈ L∞(Ω; [0, 1]), we define σθ ∈ Lp
′
(Ω)N as the unique solution of

min
−divσ=f

σ∈Lp′ (Ω)N

∫
Ω

(1 + c θ)|σ|p′dx.

The uniqueness of σθ is ensured by the strictly convexity of the problem. Then, taking into
account that σθ satisfies

p′
∫

Ω

(1 + cθ)|σθ|p
′−2σθ · η dx = 0, ∀ η ∈ Lp′(Ω), with div η = 0,

we deduce the existence of uθ ∈ W 1,p
0 (Ω) such that (1 + cθ)|σθ|p

′−2σθ = ∇uθ in Ω. Using also
that −div σθ = f in Ω, we get that uθ is the unique solution of

−div

(
|∇uθ|p−2

(1 + cθ)p−1
∇uθ

)
= f in Ω, uθ ∈ W 1,p

0 (Ω),

or equivalently, of the minimization problem

min
u∈W 1,p

0 (Ω)

{
1

p

∫
Ω

|∇u|p

(1 + c θ)p−1
dx− 〈f, u〉

}
,

which combined with

1

p

∫
Ω

|∇uθ|p

(1 + c θ)p−1
dx− 〈f, uθ〉 = − 1

p′

∫
Ω

(1 + c θ)|σθ|p
′
dx,

proves that (û, θ̂) is a solution of (1.21) if and only if θ̂ is a solution of the max-min problem
(1.24), and (θ̂, σ̂), with σ̂ defined by (1.22), is a saddle point. From the von Neumann Min-
Max Theorem [54, Theorem 2.G and Proposition 1 in Chapter 2], we get that the minimum
in (1.23) agrees with the maximum in (1.24), and that σ̂ is a solution of (1.23). Taking into
account that the functional

σ ∈ Lp′(Ω)N 7→ max
θ∈L∞(Ω;[0,1])∫

Ω θdx6κ

∫
Ω

(1 + c θ)|σ|p′dx

is strictly convex, as a maximum of a family of strictly convex functions, we deduce the
uniqueness of σ̂.

The following theorem provides a system of optimality conditions for the convex problem
(1.7). It proves in particular that û is the solution of a nonlinear Calculus of Variations
problem which does not contain the proportion θ̂. We refer to Section 4 in [28] for a related
result in the case p = 2.

Theorem 1.2 A pair (û, θ̂) ∈ W 1,p
0 (Ω) × L∞(Ω; [0, 1]) is a solution of (1.21) if and only if

there exists µ̂ > 0 such that û is a solution of

min
u∈W 1,p

0 (Ω)

(∫
Ω

F (|∇u|)dx− 〈f, u〉
)
, (1.25)
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with F ∈ C1([0,∞)) ∩W 2,∞
loc (0,∞), the convex function defined by

F (0) = 0, F ′(s) =


sp−1 if 0 6 s < µ̂

µ̂p−1 if µ̂ 6 s 6 (1 + c)µ̂

sp−1

(1 + c)p−1
if (1 + c)µ̂ < s,

(1.26)

and µ̂, θ̂ are related by

• If µ̂ = 0 then

θ̂ = 1 a.e. in
{
|∇û| > 0

}
,

∫
Ω

θ̂ dx 6 κ. (1.27)

• If µ̂ > 0, then

θ̂ =


0 if 0 6 |∇û| < µ̂

1

c

(
|∇û|
µ̂
− 1

)
if µ̂ 6 |∇û| < (1 + c)µ̂

1 if (1 + c)µ̂ < |∇û|,

∫
Ω

θ̂ dx = κ. (1.28)

Proof. Applying Kuhn-Tucker’s theorem to the convex problem (1.7), we get that (û, θ̂) is
a solution if and only if there exists µ̂ > 0 such that (û, θ̂) solves

min
u∈W 1,p

0 (Ω)

θ∈L∞(Ω;[0,1])

{∫
Ω

(1

p

|∇u|p

(1 + c θ)p−1
+
cµ̂p

p′
θ
)

dx− < f, u >

}
, (1.29)

and ∫
Ω

θ̂ dx 6 κ, µ̂

(∫
Ω

θ̂ dx− κ
)

= 0. (1.30)

Differentiating in (1.29) we have that (û, θ̂) is a solution of (1.29) if and only if∫
Ω

|∇û|p−2∇û · ∇v̂
(1 + cθ̂)p−1

dx = 〈f, v〉, ∀ v ∈ W 1,p
0 (Ω), (1.31)

∫
Ω

(
µ̂p − |∇û|p

(1 + cθ̂)p

)(
θ − θ̂

)
dx > 0, ∀ θ ∈ L∞(Ω; [0, 1]). (1.32)

Condition (1.31) is equivalent to û solution of the minimum problem

min
u∈W 1,p

0 (Ω)

{
1

p

∫
Ω

|∇u|p

(1 + cθ̂)p−1
dx− 〈f, u〉

}
, (1.33)

while (1.32) is equivalent to θ̂ satisfying (1.27) or (1.28) depending on whether µ̂ = 0 or µ̂ > 0.
Replacing this value of θ̂ in (1.29) we have the equivalence between (1.33) and (1.25).
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Remark 1.3 Using (1.27) or (1.28) and expression (1.22) of σ̂, we have that θ̂ satisfies

θ̂(x) =

{
1 if |σ̂| > µ̂

0 if |σ̂| < µ̂.
(1.34)

Moreover, Theorem 1.2 implies µ̂ = 0 if and only if the unique solution ũ of

min
u∈W 1,p

0 (Ω)

{
1

p

∫
Ω

|∇u|p

(1 + c)p−1
dx− 〈f, u〉

}
,

satisfies ∣∣{x ∈ Ω : |∇ũ| > 0
}∣∣ 6 κ,

where in this case û = ũ.

1.4. Regularity for the relaxed problem

In the present section we study the regularity of the solutions of problem (1.21). As a
consequence we show that the unrelaxed problem (1.6) has no solution in general. We begin
by stating the main results. The corresponding proofs are given later.

Theorem 1.3 Let Ω ⊂ RN be a C1,1 bounded open set and (û, θ̂) ∈ W 1,p
0 (Ω)× L∞(Ω; [0, 1])

be a solution of (1.21), then, for σ̂ defined by (1.22) and µ̂ given by Theorem 1.2 we have:

1. If f ∈ W−1,q(Ω), p′ 6 q < ∞, then ∇û ∈ Lq(p−1)(Ω)N and there exists C > 0, which
only depends on p, q,N and Ω such that

‖∇û‖Lq(p−1)(Ω)N 6 C
(
‖f‖

1
p−1

W−1,q(Ω) + µ̂
)
. (1.35)

2. If f ∈ Lq(Ω) with q > N, then there exists C > 0 which only depends on p, q,N and Ω
such that

‖∇û‖L∞(Ω)N 6 C
(
‖f‖

1
p−1

Lq(Ω) + µ̂
)
. (1.36)

3. If f ∈ W 1,1(Ω)∩L2(1+r)(Ω), with r > 0 or f ∈ W 1,2(1+r)(Ω) with r ∈ (−1/2, 0), then the
function |σ̂|rσ̂ is in H1(Ω)N and there exists C > 0, which only depends on p, q,N, µ̂
and Ω such that

∥∥|σ̂|rσ∥∥
H1(Ω)N

6

 C
(

1 + ‖f‖W 1,1(Ω) + ‖f‖2(1+r)

L2(1+r)(Ω)

)
if r > 0

C
(
1 + ‖f‖W 1,2(1+r)(Ω)

)
if − 1

2
< r < 0.

(1.37)

Moreover
σ̂ is parallel to ν on ∂Ω, (1.38)

with ν the unitary outside normal to ∂Ω.
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4. For 1 6 i, j 6 N and f ∈ W 1,1(Ω) ∩ L2(Ω)

∂iθ̂σ̂j − ∂j θ̂σ̂i = (1 + cθ̂)(∂jσ̂i − ∂iσ̂j)X{|σ̂|=µ̂} ∈ L2(Ω). (1.39)

Moreover, if θ̂ only takes a finite number of values a.e. in Ω, then

∂iθ̂σ̂j − ∂j θ̂σ̂i = 0, 1 6 i, j 6 N, curl(|σ̂|p′−2σ̂) = 0 in Ω. (1.40)

where, for a distribution from Ω into RN , the curl operator is defined as curl(Φ) :=
1
2

(
∇Φ−∇Φ>

)
.

Remark 1.4 As in [13] we can also obtain some local regularity results for û, θ̂ and σ̂ but,
for the sake of simplicity, we have preferred to only state and prove the global regularity result.

Remark 1.5 If we assume that f belongs to W 1,1(Ω) ∩ L2(Ω), that the unrelaxed problem
(1.6) has a solution (û, θ̂), and that Ω is simply connected, then (1.40) proves the existence
of w ∈ W 1,p(Ω) such that σ̂ = |∇w|p−2∇w a.e in Ω. By (1.38), we must also have û constant
in each connected component of ∂Ω. Assuming then that ∂Ω has only a connected component
and taking into account that w is defined up to an additive constant, we get

σ̂ = |∇w|p−2∇w, w solution of

{
−div (|∇w|p−2∇w) = f in Ω

w = 0 on ∂Ω.
(1.41)

We will show that this implies that the unrelaxed problem has no solution in general.

Theorem 1.4 Let Ω ⊂ RN be a connected open set of class C1,1 with connected boundary
and f = 1. If there exists a solution of (1.1), then Ω is a ball.

Remark 1.6 In the case p = 2, Theorem 1.4 has been proved in [44] assuming that (1.1)
has a smooth solution and in [13] in the general case.

The proof of Theorem 1.3 will follow from the following Lemma.

Lemma 1.1 Let Ω ⊂ RN be a C2 bounded open set and G : [0,∞)→ [0,∞) be a C1 function
such that there exist λ, µ > 0 and p > 1 satisfying

G(s) = sp−2, ∀ s > µ, (1.42)

0 6 G(s) +G′(s)s, G(s) 6 λsp−2, ∀ s > 0. (1.43)

Let u ∈ C2(Ω) be such that there exists f ∈ C1,1(Ω) satisfying

− div
(
G(|∇u|)∇u

)
= f in Ω, u = 0 on ∂Ω. (1.44)

Then, the following estimates hold:
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1. For every q ∈ (p′,∞), there exists C > 0 depending only on p, q and Ω, such that

‖∇u‖Lq(p−1)(Ω)N 6 C
(
‖f‖

1
p−1

W−1,q(Ω) + µ
)
. (1.45)

2. For every q > N there exists C > 0 depending only on p, q and Ω such that

‖∇u‖L∞(Ω)N 6 C
(
‖f‖

1
p−1

Lq(Ω) + µ
)
. (1.46)

3. For every γ > −1, there exists C > 0 depending only on p,N, λ, γ and Ω such that∫
Ω

|∇u|γ
(G′(|∇u|)
|∇u|

∣∣∇2u∇u
∣∣2 +G

(
|∇u|

)∣∣∇2u
∣∣2) dx

6 Cµp+γ + Cµ1+γ‖f‖W 1,1(Ω) + C‖f‖
p+γ
p−1

L
p+γ
p−1 (Ω)

,

if γ > p− 2, (1.47)

∫
Ω

|∇u|γ
(G′(|∇u|)
|∇u|

∣∣∇2u∇u
∣∣2 +G

(
|∇u|

)∣∣∇2u
∣∣2) dx

6 Cµp+γ + C‖f‖
W

1,
p+γ
p−1 (Ω)

,

if − 1 < γ < p− 2. (1.48)

Proof. In order to prove (1.45), we write (1.44) as

−div
(
|∇u|p−2∇u

)
= f − div

(
|∇u|p−2∇u−G(|∇u|)∇u

)
in Ω,

where the last term in the right-hand side is bounded in W−1,∞(Ω) by Cµp−1. Then the
result follows from Theorem 2.3 in [38].

For the rest of the proof let us differentiate equation (1.44) with respect to xi. This gives

− div
(
L∇∂iu

)
= ∂if in Ω, (1.49)

with

L =
G′
(
|∇u|

)
|∇u|

∇u⊗∇u+G
(
|∇u|

)
I. (1.50)

Observe that L is non-negative thanks to (1.43).

In order to estimate ∂iu from (1.49), we also need to add some boundary conditions.
For this purpose, fixed x̄ ∈ ∂Ω, we use that there exist δ > 0 and functions τ 1, . . . , τN ∈
C1(B(x̄, δ))N such that for every x ∈ B(x̄, δ){ {

τ 1(x), . . . , τN(x)
}

is an orthonormal basis of RN ,

τN(x) agrees with the unitary outside normal vector to Ω on ∂Ω ∩B(x̄, δ).
(1.51)

Using that

∇u =
N∑

i=1

(
∇u · τ i

)
τ i a.e. in B(x̄, δ),

18



and (1.44), we get

−
N∑

i=1

div
(
G(|∇u|)τ i

)
∇u · τ i −

N∑
i=1

∇
(
∇u · τ i

)
· τ iG(|∇u|) = f in Ω, (1.52)

where thanks to u vanishing on ∂Ω, we have

∇u = (∇u · τN)τN , ∇u · τ i = 0, ∇(∇u · τ i) · τ i = 0 on ∂Ω, 1 6 i 6 N − 1.

Thus, developping (1.52), we get

−L∇2uτN · τN = f +G(|∇u|)
(

div τNI +
(
∇τN

)t)
τN · ∇u on ∂Ω ∩B(x̄, δ).

By the arbitrariness of x̄, we then deduce the existence of a vector function h ∈ L∞(∂Ω)N ,
which only depends on Ω, such that ∇u satisfies the boundary conditions{

∇u = |∇u|sν, s ∈ {0, 1} a.e. on ∂Ω,

−L∇2uν · ν = f +G(|∇u|)h · ∇u on ∂Ω,
(1.53)

with ν the unitary outside normal on ∂Ω.

Let us now prove (1.45). We reason similarly to [23]. For

w = |∇u|2, (1.54)

and k > µp, we multiply (1.49) by
(
w

p
2 − k

)+
∂iu ∈ H1(Ω) and integrate by parts. Adding in

i and taking into account (1.53), we get

p

4

∫
{w

p
2 >k}

w
p−2

2 L∇w · ∇w dx+
N∑

i=1

∫
Ω

(
w

p
2 − k

)+
L∇∂iu · ∇∂iu dx

= −
∫
∂Ω

s|∇u|
(
f +G(|∇u|)h · ∇u

)(
w

p
2 − k

)+
ds(x) +

∫
Ω

∇f · ∇u
(
w

p
2 − k

)+
dx

= −
∫
∂Ω

s|∇u|G(|∇u|)h · ∇u
(
w

p
2 − k

)+
ds(x)−

∫
Ω

f∆u
(
w

p
2 − k

)+
dx

−p
2

∫
{w

p
2 >k}

w
p−2

2 f∇u · ∇w dx,

which thanks to k > µ, (1.42) and (1.50) proves∫
{w

p
2 >k}

wp−2|∇w|2dx+

∫
Ω

(
w

p
2 − k

)+
w

p−2
2

∣∣∇2u
∣∣2dx

6 C

∫
∂Ω

w
p
2

(
w

p
2 − k

)+
ds(x) + C

∫
Ω

|f |
∣∣∇2u

∣∣(w p
2 − k

)+
dx+ C

∫
{w

p
2 >k}

w
p−1

2 |f ||∇w|dx,

and then, using Young’s inequality∫
{w

p
2 >k}

wp−2|∇w|2dx+

∫
Ω

(
w

p
2 − k

)+
w

p−2
2

∣∣∇2u
∣∣2dx

6 C

∫
∂Ω

w
p
2

(
w

p
2 − k

)+
ds(x) + C

∫
{w

p
2 >k}
|f |2w dx.

(1.55)
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In the first term on the right-hand side we use that, thanks to the compact embedding of
W 1,1(Ω) into L1(∂Ω), for every ε > 0, there exists Cε > 0 such that∫

∂Ω

|v|ds(x) 6 Cε

∫
Ω

|v|dx+ ε

∫
Ω

|∇v|dx, ∀ v ∈ W 1,1(Ω).

Therefore there exists a constant C depending on p and ε such that∫
∂Ω

w
p
2

(
w

p
2 − k

)+
ds(x) 6 C

∫
Ω

w
p
2

(
w

p
2 − k

)+
dx+ ε

∫
{w

p
2 >k}

wp−1|∇w|dx.

Replacing this inequality in (1.55), taking ε small enough, and using Young’s inequality,
we get ∫

{w
p
2 >k}

wp−2|∇w|2dx 6 C

∫
{w

p
2 >k}

wpdx+ C

∫
{w

p
2 >k}
|f |2w dx,

which by Sobolev’s inequality and f in Lq(Ω) provides(∫
Ω

∣∣(w p
2 − k

)+∣∣2∗dx) 2
2∗

6 C

∫
{w

p
2 >k}

wpdx+ C‖f‖2
Lq(Ω)

(∫
{w

p
2 >k}

w
q
q−2 dx

) q−2
q

, (1.56)

with
2∗ =

2N

N − 2
if N > 2, 2∗ ∈ (2,∞) if N = 2.

Now, we use that q > N allows us to take r > 1 large enough to have

2∗

2

(q − 2

q
− 1

r

)
> 1,

2∗

2

(
1− p

r

)
> 1.

For such r, we use Hölder’s inequality in (1.56) to get(∫
Ω

∣∣(w p
2 − k

)+∣∣2∗dx) 2
2∗

6 C

(∫
Ω

wrdx

) p
r ∣∣∣{w p

2 > k}
∣∣∣1− pr

+C‖f‖2
Lq(Ω)

(∫
Ω

wrdx

) 1
r ∣∣∣{w p

2 > k}
∣∣∣ q−2

q
− 1
r

which by (1.45) with q = 2r/(p− 1) and

‖f‖
W
−1, 2r

p−1 (Ω)
6 C‖f‖Lq(Ω),

implies (∫
Ω

∣∣(w p
2 − k

)+∣∣2∗dx) 2
2∗

6 C
(
‖f‖

1
p−1

Lq(Ω) + µ
)2p∣∣∣{w p

2 > k}
∣∣∣min

(
1− p

r
, q−2
q
− 1
r

)
.

Taking h > k and defining ϕ by

ϕ(k) =
∣∣∣{w p

2 > k}
∣∣∣,
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we have then proved

ϕ(h)
2

2∗ 6
C
(
‖f‖

1
p−1

Lq(Ω) + µ
)2p

(h− k)2
ϕ(k)min

(
1− p

r
, q−2
q
− 1
r

)
, for h > k > µp,

where C only depends on p,N , and Ω. Lemma 4.1 in [51] then proves (1.46).

Let us now prove (1.47). Defining w by (1.54), we take (w + ε)
γ
2 ∂iu, with ε > 0, γ > −1,

as test function in (1.44). Using (1.53), we get

γ

4

∫
Ω

(w + ε)
γ−2

2 L∇w · ∇w dx+
N∑

i=1

∫
Ω

(w + ε)
γ
2L∇∂iu · ∇∂iu dx

= −
∫
∂Ω

s|∇u|
(
f +G(|∇u|)h · ∇u

)
(w + ε)

γ
2 ds(x) +

∫
Ω

∇f · ∇u(w + ε)
γ
2 dx.

(1.57)

In this inequality, we observe that the integrand in the left-hand side is nonnegative due to

2w
N∑

i=1

L∇∂iu · ∇∂iu− L∇w · ∇w

= 2|∇u|2
N∑

i=1

L∇∂iu · ∇∂iu− 2L(∇2u∇u) · (∇2u∇u) > 0 a.e. in Ω,

(1.58)

and γ > −1. This allows us to use the Fatou Lemma on the left-hand side and the dominated
convergence theorem on the right-hand side, when ε tends to zero, to deduce

γ

4

∫
Ω

w
γ−2

2 L∇w · ∇w dx+
N∑

i=1

∫
Ω

w
γ
2L∇∂iu · ∇∂iu dx

6 −
∫
∂Ω

s|∇u|
(
f +G(|∇u|)h · ∇u

)
w

γ
2 ds(x) +

∫
Ω

∇f · ∇uw
γ
2 dx.

(1.59)

Let us first cosider the case γ > p− 2. Defining T ∈ W 1,∞(0,∞) by

T (s) =


0 if 0 6 s 6 µ2

s

µ2
− 1 if µ2 6 s 6 2µ2

1 if s > 2µ2,

we decompose the last term in (1.59) as∫
Ω

∇f · ∇uw
γ
2 dx =

∫
Ω

∇f · (1− T (w))∇uw
γ
2 dx+

∫
Ω

∇f · T (w)∇uw
γ
2 dx.

Integrating by parts the last term, replacing in (1.59) and using Young’s inequality, h ∈
L∞(∂Ω), and (1.42), we deduce∫

Ω

w
γ−2

2 L∇w · ∇w dx+
N∑

i=1

∫
Ω

w
γ
2L∇∂iu · ∇∂iudx 6 µ1+γ

∫
∂Ω

|f | ds(x)

+C

∫
∂Ω

w
p+γ

2 ds(x) + µ1+γ

∫
Ω

|∇f |dx+ C

∫
Ω

|f |2w
γ−p+2

2 dx+ Cµ1+γ

∫
Ω

|f | dx.

(1.60)
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For the second term on the right-hand side we use the continuous embedding of W 1,1(Ω) into
L1(∂Ω) and Young’s inequality to get∫

∂Ω

w
p+γ

2 ds(x) 6 Cµp+γ +

∫
∂Ω

∣∣(w − µ2)+
∣∣ p+γ2 ds(x)

6 Cµp+γ + C

∫
Ω

w
p+γ

2 dx+ C

∫
{w>µ2}

w
p+γ−2

2 |∇w| dx

6 Cµp+γ + C
(

1 +
1

δ

)∫
Ω

w
p+γ

2 dx+ Cδ

∫
{w>µ2}

w
p+γ−4

2 |∇w|2dx,

(1.61)

with δ > 0 arbitrary. Taking δ small enough, replacing in (1.60) and using Hölder’s inequality
we have∫

Ω

w
γ−2

2 L∇w · ∇w dx+
N∑

i=1

∫
Ω

w
γ
2L∇∂iu · ∇∂iudx 6 µ1+γ

∫
∂Ω

|f | ds(x)

+Cµp+γ + C

∫
Ω

w
p+γ

2 dx+ µ1+γ

∫
Ω

|∇f |dx+ C

∫
Ω

|f |
p+γ
p−1 dx+ Cµ1+γ

∫
Ω

|f | dx.

Using (1.45) with q = p+γ
p−1

and the continuous imbedding of Lq(Ω) into W−1,q(Ω), combined
with (1.58) and

N∑
i=1

L∇∂iu · ∇∂iu =
G′
(
|∇u|

)
|∇u|

∣∣∇2u∇u
∣∣2 +G

(
|∇u|

)∣∣D2u
∣∣2, a.e. in Ω, (1.62)

we conclude (1.47).

We now assume −1 < γ < p− 2. In this case we estimate the right-hand side in (1.59) as
follows:

For the first term, using (1.61), we have for δ < 1∣∣∣∣∫
∂Ω

s|∇u|
(
f +G(|∇u|)h · ∇u

)
w

γ
2 ds(x)

∣∣∣∣ 6 C

∫
∂Ω

(
|f |w

γ+1
2 + w

p+γ
2

)
ds(x)

6 C

∫
∂Ω

|f |
p+γ
p−1 ds(x) + C

∫
∂Ω

w
p+γ

2 ds(x)

6 C

∫
∂Ω

|f |
p+γ
p−1 ds(x) + Cµp+γ +

C

δ

∫
Ω

w
p+γ

2 dx+ Cδ

∫
{w>µ2}

w
p+γ−4

2 |∇w|2dx.

(1.63)

For the second term on the right-hand side of (1.59), we just use Hölder’s inequality to get∣∣∣∣∫
Ω

∇f · ∇uw
γ
2 dx

∣∣∣∣ 6 C

∫
Ω

|∇f |
p+γ
p−1 dx+ C

∫
Ω

w
p+γ

2 dx. (1.64)

Using (1.63) with δ small enough, and (1.64) in (1.59), and then using (1.45) with q = p+γ
p−1

,
we conclude (1.48).

Remark 1.7 Since the constant in the previous theorem only depends on the norm in L∞

of the first derivative of the functions {τ i}Ni=1 defined in (1.51), we can relax the conditions
u ∈ C2(Ω̄) and Ω of class C2 to u ∈ C1,1(Ω̄) and Ω of class C1,1 by a density argument.
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Remark 1.8 As a simple case, Lemma 1.1 can be applied to the p-Laplacian operator, G(s) =
|s|p−2. Indeed, since here µ = 0 it is simple to check that the proof above does not use the
assumption f ∈ W 1,1(Ω) in (1.47). Thus, it shows that for f ∈ W−1,p′(Ω) ∩ L

p+γ
p−1 (Ω), if

γ > p−2 or f ∈ W−1,p′(Ω)∩W 1, p+γ
p−1 (Ω) if −1 < γ < p−2, there exists a solution u of (1.44)

such that
|∇u|

p+γ−2
2 |∇2u| belongs to L2(Ω),

i.e. |∇u| p+γ2 belongs to H1(Ω). In particular, it proves that u belongs to H2(Ω) if p < 3 and
f belongs to W 1, 2

p−1 (Ω). This is a known result which can be found in [22]. It also proves
that for f ∈ L2(1+r)(Ω) if r > 0, or f ∈ W 1,2(1+r)(Ω) if −1/2 < r < 0 the flux σ = |∇u|p−2∇u
satisfies that |σ|rDσ belongs to L2(Ω)N×N , or equivalently, that |σ|rσ belongs to H1(Ω)N .
The case r = 0 has been proved in [35].

Proof of Theorem 1.3. Let us assume the right-hand side f in (1.21) smooth enough, which
by û solution of (1.25) implies that û ∈ C0,α(Ω) for some α > 0 (see e.g. [23]) and satisfies

− div

(
F ′(|∇û|)
|∇û|

∇û
)

= f in Ω, u ∈ W 1,p
0 (Ω). (1.65)

For ε > 0 small and F defined by (1.26), we take Fε : [0,∞)→ [0,∞) of class C2([0,∞))
such that for some k > 0, it satisfies

Fε(0) = 0, F ′ε(s) >
sp−1

2(1 + c)p−1
, ε 6 F ′′ε (s) 6 ε+ ksp−2, ∀ s > 0,

Fε(s) = F (s), ∀ s > (1 + c)µ̂, lim
ε→0
‖Fε − F‖L∞(0,∞) = 0.

(1.66)

The existence of this approximation is ensured by Theorem 2.1 and Remark 3.1 in [25]. Then,
we define uε as the unique solution of

min
u∈W 1,p

0 (Ω)∩L2(Ω)

{∫
Ω

Fε(|∇u|)dx+
1

2

∫
Ω

|u− û|2dx−
∫

Ω

f u dx

}
. (1.67)

and therefore
− div

(
F ′ε(|∇uε|)
|∇uε|

∇uε
)

+ uε − û = f in Ω. (1.68)

Since ∫
Ω

Fε(|∇uε|)dx+
1

2

∫
Ω

|uε − û|2dx−
∫

Ω

fuε dx 6
∫

Ω

Fε(|∇û|)dx−
∫

Ω

fû dx,

we have that uε is bounded in W 1,p
0 (Ω) ∩ L2(Ω) and thus, up to a subsequence, it converges

weakly in W 1,p
0 (Ω) ∩ L2(Ω) to a certain function u0. Taking into account the uniform con-

vergence of Fε to F , and F convex, we can pass to the limit in the above inequality to
deduce ∫

Ω

F (|∇u0|)dx+
1

2

∫
Ω

|u0 − û|2dx−
∫

Ω

fu0 dx

6 lim inf
ε→0

(∫
Ω

Fε(|∇uε|)dx+
1

2

∫
Ω

|uε − û|2dx−
∫

Ω

f uε dx

)
6
∫

Ω

F (|∇û|)dx−
∫

Ω

fû dx,
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which combined with û solution of (1.25) shows u0 = û and

lim
ε→0

∫
Ω

F
(
|∇uε|

)
dx = lim

ε→0

∫
Ω

Fε
(
|∇uε|

)
dx =

∫
Ω

F
(
|∇û|

)
dx. (1.69)

On the other hand, the assumptions of Fε imply that

σε =:
F ′ε
(
|∇uε|

)
|∇uε|

∇uε

is bounded in Lp
′
(Ω)N , and then by (1.68), for a subsequence, there exists σ0 ∈ Lp

′
(Ω)N

such that
σε ⇀ σ0 in Lp

′
(Ω)N , −div(σ0) = f in Ω. (1.70)

Taking V ∈ Lp(Ω)N and using the convexity of Fε, we have∫
Ω

F ′ε(|∇uε|)
|∇uε|

∇uε ·
(
V −∇uε

)
dx 6

∫
Ω

(
Fε(|V |

)
− Fε(|∇uε|)

)
dx,

which can also be written as∫
Ω

(F ′ε(|∇uε|)
|∇uε|

∇uε −
F ′ε(|∇û|)
|∇û|

∇û
)
· ∇(û− uε) dx

+

∫
Ω

F ′ε(|∇û|)
|∇û|

∇û · ∇(û− uε) dx+

∫
Ω

F ′ε(|∇uε|)
|∇uε|

∇uε ·
(
V −∇û

)
dx

6
∫

Ω

(
Fε(|V |)− Fε(|∇uε|)

)
dx.

From (1.65), (1.69) and (1.70) we can pass to the limit in this inequality to deduce∫
Ω

σ0 ·
(
V −∇û

)
dx 6

∫
Ω

(
F (|V |)− F (|∇û|)

)
dx, ∀V ∈ Lp(Ω)N .

Taking V = ∇û+ tW , with W ∈ Lp(Ω)N , t > 0, dividing by t and passing to the limit when
t tends to zero, we get∫

Ω

σ0 ·W dx 6
∫

Ω

F ′(|∇û|)
|∇û|

∇û ·W dx, ∀W ∈ Lp(Ω)N ,

which shows
σ0 =

F ′(|∇û|)
|∇û|

a.e. in Ω.

We have thus proved

uε ⇀ û in W 1,p
0 (Ω),

F ′ε(|∇uε|)
|∇uε|

∇uε ⇀
F ′(|∇û|)
|∇û|

∇û in Lp
′
(Ω)N .

Assuming Ω ∈ C2,α we can apply for example Theorem 15.12 in [26] to deduce that uε
belongs to C2,α(Ω). On the other hand, we have that Gε ∈ C1([0,∞)) defined by

Gε(s) =
F ′ε(s)

s
if s > 0, Gε(0) = 0,
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satisfies
G′ε
(
|∇uε

)
|∇uε|

∣∣∇2uε∇uε
∣∣2 +Gε

(
|∇uε|

)∣∣∇2uε
∣∣2

=
F ′ε(|∇uε|)
|∇uε|

(
|∇uε|2 −

|∇2uε∇uε|2

|∇uε|2
)

+ F ′′ε (|∇uε|)
|∇2uε∇uε|2

|∇uε|2
,

while
|Dσε|2 =

F ′ε(|∇uε|)2

|∇uε|2
(
|∇uε|2 −

|∇2uε∇uε|2

|∇uε|2
)

+ F ′′ε (|∇uε|)2 |∇2uε∇uε|2

|∇uε|2
,

Then, the assumptions of Fε imply the existence of a constant C > 0, which only depends
on the constant k in (1.66) such that

|Dσε|2 6 C
(
ε+ |∇uε|p−2

)(G′ε(|∇uε)
|∇uε|

∣∣∇2uε∇u
∣∣2 +Gε

(
|∇uε|

)∣∣∇2uε
∣∣2) .

Using Lemma 1.1 and
|∇uε| 6 2

1
p−1 (1 + c)|σε|

1
p−1 ,

we conclude (1.35), (1.36) and (1.37) for f and Ω smooth. The general case follows by an
approximation argument.

Let us now show (1.39). First, we recall that since we are assuming f ∈ W 1,1(Ω)∩L2(Ω),
we have σ in H1(Ω)N . Using that (1.22) implies

∇û = (1 + cθ̂)|σ̂|p′−2σ̂ a.e. in Ω,

and taking i, j ∈ {1, . . . , N}, and Φ ∈ C∞c (0,∞), such that Φ = 1 in a neighborhood of µ̂,
we get in the distributional sense

∂jû∂i[Φ(|σ̂|)]− ∂iû∂j[Φ(|σ̂|)] = ∂i

(
∂jûΦ(|σ̂|)

)
− ∂j

(
∂iûΦ(|σ̂|)

)
= ∂i

(
(1 + cθ̂)|σ̂|p′−2Φ(|σ̂|)σ̂j

)
− ∂j

(
(1 + cθ̂)|σ̂|p′−2Φ(|σ̂|)σ̂i

)
= c∂iθ̂ |σ̂|p

′−2Φ(|σ̂|)σ̂j − c∂j θ̂ |σ̂|p
′−2Φ(|σ̂|)σ̂i

+(1 + cθ̂)
(
∂i

(
Φ(|σ̂|)|σ̂|p′−2σ̂j

)
− ∂j

(
Φ(|σ̂|)|σ̂|p′−2σ̂i

))
,

(1.71)

which using that the support of Φ is compact and that σ belongs to H1(Ω)N shows

|σ̂|p′−2Φ(|σ̂|)
(
∂iθ̂ σ̂j − ∂j θ̂ σ̂i

)
∈ L2(Ω). (1.72)

Now we recall that
θ̂ = 0 in {|σ̂| < µ̂}, θ̂ = 1 in {|σ̂| > µ̂}.

This implies that for every Ψ ∈ C∞c ((0,∞) \ {µ̂}) we have

|σ̂|p′−2Φ(|σ̂|)
(
∂iθ̂ σ̂j − ∂j θ̂ σ̂i

)
= |σ̂|p′−2Φ(|σ̂|)

(
∂iθ̂ σ̂j − ∂j θ̂ σ̂i

)
(1−Ψ(|σ̂|)

)
.

By (1.72) we can take Ψ̂ = Ψ̂δ with

0 6 Ψ̂δ 6 1, Ψ̂δ(µ̂) = 0, Ψ̂δ(s)→ 1, ∀ s 6= µ̂,
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to deduce that
|σ̂|p′−2Φ(|σ̂|)

(
∂iθ̂ σ̂j − ∂j θ̂ σ̂i

)
vanishes a.e. in {|σ̂| 6= µ̂} and then that

|σ̂|p′−2Φ(|σ̂|)
(
∂iθ̂ σ̂j − ∂j θ̂ σ̂i

)
= µ̂p

′−2Φ(µ̂)
(
∂iθ̂ σ̂j − ∂j θ̂ σ̂i

)
X{|σ̂|=µ̂}.

On the other hand, recalling that ∇|σ̂| = 0 a.e. in {|σ̂| = µ̂}, we can return to (1.71) to
conclude (1.39).

Assertion (1.40) now follows from Proposition 2.1 in [9]. which shows that

∂iθ̂σ̂j − ∂j θ̂σ̂i ∈ L2(Ω),

implies
∂iθ̂σ̂j − ∂j θ̂σ̂i = 0 a.e. in {θ̂ = c}, ∀ c ∈ [0, 1].

Proof of Theorem 1.4. Let ω̂ a mesurable subset of Ω, and û ∈ W 1,p
0 (Ω) be such that (χω̂, û)

is a solution of (1.21) with f̃ = f . By Remark 1.5, we have(
αXω̂ + βXΩ\ω̂

)
∇û = ∇w,

with w the unique solution of{
−div

(
|∇w|p−2∇w

)
= 1 in Ω

w ∈ W 1,p
0 (Ω).

(1.73)

Thanks to Theorem 1.1 in [33] and the fisrt corollary in [23] we know that w is in C1,β(Ω)
for some β ∈ (0, 1), and (see [41]) that it is analytic in {|∇w| > 0}. Using Theorem 1.1
in [35] (or Theorem 1.3) we also have that σ̂ = |∇w|p−2∇w is in H1(Ω)N . Thus, −divσ̂ = 0
a.e. in {σ̂ = 0}, which combined with w solution of (1.73) implies that ∇w 6= 0 a.e. in Ω.
Analogouly, let us prove that for every λ > 0, the set {|∇w| = λ} has zero measure. For this
purpose we observe that a.e. in {|∇w| = λ}, we have

0 = ∆|∇w|p = pλp−2
(
|∇2w|2 + (∆∇w) · ∇w

)
,

but a.e. in {|∇w| = λ}, we also have

0 = ∇div(|∇w|p−2∇w) = λp−2∇∆w = λp−2∆∇w.

Therefore ∇2w = 0 a.e. in {|∇w| = λ}, which combined with

−λp−2∆w = −div(|∇w|p−2∇w) = 1 a.e. in {|∇w| = λ},

implies that the set {|∇w| = λ} has zero measure. Now, we recall that thanks to (1.34), the
constant µ̂ in Theorem 1.2 satisfies

{x ∈ Ω : |∇w| > µ̂} ⊂ ω̂ ⊂ {x ∈ Ω : |∇w| > µ̂},
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while Theorem 1.2 implies |ω̂| = κ. So, using that |{|∇w| = µ̂}| = 0, we get (up to a set of
null measure)

ω = {x ∈ Ω : |∇w| < µ̂}, (1.74)

and |ω̂| < |Ω|. Then, taking a connected component O of the open set {x ∈ Ω : |∇w| > µ̂},
we can repeat the argument in [14] to deduce that O b Ω is an analytic manifold with
connected boundary such that{ −div

(
|∇w|p−2∇w

)
= 1 in O

w,
∂w

∂ν
are constant on ∂O.

(1.75)

From Serrin’s Theorem ( [49]), this proves thatO is an open ball and that w is a radial function
in O with respect to its center. Taking into account the analyticity of w in {|∇w| 6= 0}, the
unique continuation principle shows that Ω is a ball.

1.5. Conclusion Section
In the present paper we have studied the optimal design of a two-phase material modeled

by the p-Laplacian operator posed in a bounded open set Ω ⊂ RN . The goal is to maximize
the potential energy (problem (1.1)) when we only dispose of a limited amount of the best
material. Since the problem has not solution in general, we have obtained a relaxed formu-
lation (problems (1.2) and (1.3)) where instead of taking in every point of Ω one of both
materials, we use a microscopic mixture where the proportion θ of the best material takes
values in the whole interval [0, 1]. This new formulation is obtained using homogenization
theory. Reasoning by duality, we have also obtained a new formulation of the minimization
problem as a min-max problem (problems (1.23) and (1.24)). As a consequence we show that
although the relaxed problem has not uniqueness in general, the flux σ̂ is unique.

The optimal conditions for the relaxed problem show that the state function û is the
solution of a nonlinear Calculus of Variation problem (1.25). Since the second derivative of
the function F in this problem is not uniformly elliptic, the corresponding Euler-Lagrange
equation does not provide in general the existence of second derivatives for û. However it
allows us to show that if the data es smooth enough then, for every r > −1/2, the function
|σ̂|rσ̂ is in the Sobolev space H1(Ω)N ∩ L∞(Ω)N . Moreover, the optimal proportion θ̂ is
derivable in the orthogonal directions to ∇û. As an application of these results, we show
that the original problem has a solution in a smooth open set Ω with a connected boundary
if and only if Ω is a ball.

The results obtained in the present paper extend those obtained by other authors in the
case of the Laplacian operator (see e.g. [13], [18], [28], [44]).
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Chapter 2

Numerical Maximization of the
p-Laplacian energy of a two-phase
material

Abstract:For a diffusion problem modeled by the p-Laplacian operator, we are interested
in obtaining numerically the two-phase material which maximizes the internal energy. We
assume that the amount of the best material is limited. In the framework of a relaxed formula-
tion we present two algorithms, a feasible directions method and an alternating minimization
method. We show the convergence for both of them and we provide an estimate for the error.
Since for p > 2 both methods are only well defined for a finite-dimensional approximation, we
also study the difference between solving the finite-dimensional and the infinite-dimensional
problems. Although the error bounds for both methods are similar, numerical experiments
show that the alternating minimization method works well than the feasible directions one.

2.1. Introduction
The aim of the present work is the numerical resolution of an optimal design problem. It

corresponds to the maximization of the energy for a non-linear diffusion process in a two-
phase material modeled by the p-Laplacian operator. Namely, we are interested in the control
problem 

max
ω

1

p

∫
Ω

(αXω + β (1−Xω)) |∇u|pdx

−div
(
(αXω + β (1−Xω)) |∇u|p−2∇u

)
= f in Ω

u ∈ W 1,p
0 (Ω), ω ⊂ Ω mesurable , |ω| 6 κ,

(2.1)

with Ω a bounded open set in RN , N > 2, p ∈ (1,∞), α, β, κ > 0, α < β, and f ∈ W−1,p′(Ω).
Here α and β are the diffusion constants corresponding to the two materials that we want to
mix in order to maximize the corresponding functional. If we do not impose any restrictions
on the amount of material α (i.e. κ > |Ω|) then, the solution is the trivial one given by
ω = Ω. Thus, the interesting case corresponds to κ < |Ω|. This problem has been extensively
studied for p = 2 ( [3], [13], [19], [28], [31], [32], [44]). In this case, it models for example the
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optimal rearrangement of two materials in the cross section of a beam in order to minimize
its torsion (in this application f = 1). Analogously, for p ∈ (1, 2) ∪ (2,∞) the p-Laplacian
operator models the torsional creep in the cross-section of a beam [30]. Therefore problem
(2.1) corresponds to find the two-phase material which minimizes the torsion in non-linear
elasticity, assuming that the amount of the best material is limited. As it is usual for this type
of problems ( [42], [43]), it has no solution in general ( [13], [15], [44]). Thus, it is necessary
to work with a relaxed formulation which can be obtained from the homogenization theory
( [3], [45], [52]). In the present case, it has been proved in [15] ( [44] for p = 2) that such
relaxation is given by

max
u,θ

1

p

∫
Ω

|∇u|p

(1 + cθ)p−1
dx

−div
( |∇u|p−2

(1 + cθ)p−1
∇u
)

=
1

β
f in Ω

u ∈ W 1,p
0 (Ω), θ ∈ L∞(Ω; [0, 1]),

∫
Ω

θ dx 6 κ,

(2.2)

with c =
(
β
α

) 1
p−1 − 1. In this formulation, the materials α and β have been replaced by mix-

tures of them obtained by laminations. The new control variable θ represents the proportion
of the best material α used in the mixture.

The problem can also be formulated in a simple way as the following Calculus of Variation
problem 

min
u,θ

{
1

p

∫
Ω

|∇u|p

(1 + cθ)p−1
dx− 1

β
〈f, u〉

}
θ ∈ L∞(Ω; [0, 1]), u ∈ W 1,p

0 (Ω),

∫
Ω

θdx 6 κ,

(2.3)

The numerical resolution of (2.3) for p = 2 has been the subject of several works. In this
way, some numerical simulations have been carried out in [28] and [31] using a multi-grid
method. In [3] and [53], it has been shown the convergence of the alternating minimization
algorithm, using the optimality conditions. In [7], it has been studied the convergence of a
projected gradient method.

For p 6= 2, the use of the optimality conditions implies the resolution of the p-Laplacian
equation in each iteration. This is a problem which has been considered for example in [27]
and [29] using a steepest descent method . We also refer to [36] where a reformulation of the
p-Laplacian is given in order to use an augmented Lagrangian method. In these works, the
order of convergence is linear in the best case.

In the present paper we introduce two algorithms to solve (2.5). The first one is based on
the Frank-Wolfe algorithm, also known as the feasible direction method. The second one is
an alternating minimization method. In both of them we choose a descent direction in H1

0 (Ω)
instead of W 1,p

0 (Ω) and we solve a linear problem instead of a p-Laplacian which, as we said
above, is very expensive from a computational point of view. For p > 2, this forces us to
work with a discretized version of the problem because H1

0 (Ω) is not contained in W 1,p
0 (Ω).

We prove the convergence of both methods obtaining estimates for the rate of convergence.
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In the best of the cases (p > 2) we only have a convergence of order 1/i, with i the number
of iterations. This is due to the non strict convexity of the problem. In this sense we can
observe that solving the minimum in θ in problem (2.3) and using Kuhn-Tucher theorem, we
can rewrite (2.3) as (see [13], [15], [28], [31])

max
µ>0

min
u∈W 1,p

0 (Ω)

{∫
Ω

F (µ,∇u) dx− µp(p− 1)c

p
κ− 1

β
〈f, u〉

}
(2.4)

with

F (µ, ξ) =



1

p

|ξ|p

(1 + c)p−1
+
µp(p− 1)c

p
if µ 6

|ξ|
(1 + c)

µp−1|ξ| − µp(p− 1)

p
if
|ξ|

(1 + c)
< µ < |ξ|

1

p
|ξ|p if µ > |ξ|.

Observe that F is non strictly convex in ξ and it is not differentiable with respect to µ.

We also prove the convergence of the solutions of the discretized problem towards the
solutions of the continuous one. Even more, taking a regular sequence of triangulations in
Ω of diameter h > 0, and discretizing W 1,p

0 (Ω) and L∞(Ω) by the the usual P1 and P0 finite
elements respectively, we show that the difference between the minimum for the continuous
and the discretized problem is of order h. In order to prove this result we assume the existence
of a solution (u, θ) for (2.3) such that u is in W 1,∞(Ω), ∇u belongs to BV (Ω)N and θ belongs
to BV (Ω). Some smoothness results for problem (2.3) can be found in [13] and [31] for p = 2
and [15] for p ∈ (1,∞), we also refer to [12] for the relaxed problem corresponding to take
minimum in (2.1) instead of the maximum one. These smoothness results imply that u is
in W 1,∞(Ω), the flow σ = |∇u|p−2∇u/(1 + cθ)p−1 is in H1(Ω)N and the derivatives of θ in
the direction of σ are in L2(Ω). However this is not enough to get ∇u and θ BV -functions.
Nevertheless, this assumption seems to be satisfied in the numerical experiments.

The paper is organized as follows:

In section 2.2 we recall some known results for problem (2.3) which have been proved
in [15] (see [13], [44], for p = 2).

In section 2.3 we state the main results of the paper.

Section 2.4 is devoted to prove the results in Section 2.3.

Finally in Section 2.5 we illustrate the results of the paper with some numerical simula-
tions. They show that the alternating minimization method converges faster than the feasible
direction method.

2.2. Previous results
As we mentioned in the introduction, our aim in the present paper is to numerically solve

the optimal design problem (2.1). Since it has no solution in general, we work with the
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relaxed formulation (2.3), which renaming f/β by f to simplify the notation, can be written
as

min

{
F(θ, u) : θ ∈ L∞(Ω; [0, 1]), u ∈ W 1,p

0 (Ω),

∫
Ω

θ dx 6 κ

}
, (2.5)

with
F(θ, u) =

1

p

∫
Ω

|∇u|p

(1 + c θ)p−1
dx− 〈f, u〉. (2.6)

Here Ω is a bounded open set of RN , N > 2, p ∈ (1,∞), c > 0, κ ∈ (0, |Ω|) and f is a
distribution in W−1,p′(Ω). Since F is convex in (θ, u) and coercive in u, W 1,p

0 (Ω) is reflexive
and L∞(Ω; [0, 1]) is bounded, and then sequentially compact for the weak-∗ topology in
L∞(Ω), the existence of solution is straightforward. However F is not strictly convex and
therefore the uniqueness is not clear.

The relaxed formulation (2.5) has been obtained in [15]. In this paper we have also
obtained some optimality conditions and some equivalent formulations. As a consequence we
got some uniqueness and smoothness results (see [13], [28], [31], [44] for related results in the
case p = 2).

Thanks to the convexity of F , Kuhn-Tucker’s theorem easily provides the following system
of optimality conditions ( [15])

Proposition 2.1 A pair (θ̂, û) is a solution of (2.5) if and only if there exists µ̂ > 0 such
that:

If µ̂ = 0, then

θ̂ = 1 a.e. in {x ∈ Ω : ∇û(x) 6= 0
}
,

∣∣{x ∈ Ω : ∇û(x) 6= 0
}∣∣ 6 κ, (2.7) −div

(
|∇û|p−2

(1 + c)p−1
∇û
)

= f in Ω

û = 0 on ∂Ω.

(2.8)

If µ̂ > 0, then

θ̂ = max

{
0,min

{
1,

1

c

(
|∇û|
µ̂
− 1

)}}
,

∫
Ω

θ̂ dx = κ, (2.9)


−div

(
|∇û|p−2

(1 + cθ̂)p−1
∇û

)
= f in Ω

û = 0 on ∂Ω.

(2.10)

Remark 2.1 The expression of θ̂ in Proposition 2.1 is obtained by solving (see [15], [44])

min

{∫
Ω

|∇û|p

(1 + cθ)p−1
dx : θ ∈ L∞(Ω; [0, 1]),

∫
Ω

θ dx 6 κ

}
. (2.11)
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The constant µ̂ > 0 is a Lagrange multiplier corresponding to the constraint
∫

Ω
θ dx 6 κ.

We observe that for an arbitrary function û ∈ W 1,p
0 (Ω) (not necessarily a solution for

(2.5)), the solutions of (2.11) can be explicitly obtained using Kuhn-Tucker’s theorem which
shows that θ̂ is a solution if and only if there exists µ̂ > 0 such that

µ̂

(∫
Ω

θ̂dx− κ
)

= 0,

and θ̂ is a solution of

min

{∫
Ω

|∇û|p

(1 + cθ)p−1
dx+ µ̂

∫
Ω

θ̂ dx : θ ∈ L∞(Ω; [0, 1])

}
. (2.12)

This provides the following rule to solve (2.11):

If û is such that |{∇û 6= 0}| 6 κ, then θ̂ is any function in L∞(Ω; [0, 1]) satisfying

θ̂ = 1 a.e. in {x ∈ Ω : ∇û(x) 6= 0},
∫

Ω

θ̂ dx 6 κ.

In the other case, denoting for µ > 0

θµ := max

{
0,min

{
1,

1

c

(
|∇û|
µ
− 1

)}}
,

and defining G : (0,∞)→
[
0, |Ω|

]
by

G(µ) =

∫
Ω

θµdx, ∀µ ∈ (0,∞),

we have that the set of solutions of (2.11) is given by{
θµ ∈ L∞(Ω; [0, 1]) : µ > 0, G(µ) = κ

}
. (2.13)

Remark that the equation G(µ) = κ has a solution (not unique in general) due to G decreasing,
continuous, and

lim
µ→0

G(µ) =
∣∣{x ∈ Ω : ∇û(x) 6= 0}

∣∣, lim
µ→∞

G(µ) = 0.

Numerically, the equation G(µ) = κ can be easily solved using for example a dichotomy
method.

In [15] (see [44] for p = 2) it has also been proved that introducing the flow

σ =
|∇u|p−2

(1 + cθ)p−1
∇u,

we have that (2.5) is equivalent to the min-max problem

min
−div σ=f

σ∈Lp′ (Ω)N

max
θ∈L∞(Ω:[0,1])∫

Ω θ dx6κ

∫
Ω

(1 + c θ)|σ|p′dx = max
θ∈L∞(Ω:[0,1])∫

Ω θ dx6κ

min
−div σ=f

σ∈Lp′ (Ω)N

∫
Ω

(1 + c θ)|σ|p′dx. (2.14)
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Taking into account that the functional

σ ∈ L2(Ω)N → max
θ∈L∞(Ω:[0,1])∫

Ω θ dx6κ

∫
Ω

(1 + c θ)|σ|p′dx

is strictly convex, we get the uniqueness of the optimal flow. Moreover, using (2.4), we get
the following smoothness results for the solutions of (2.5).

Theorem 2.1 For every solution (θ̂, û) of (2.5) the flow σ̂ defined by

σ̂ =
|∇û|p−2

(1 + cθ̂)p−1
∇û (2.15)

is uniquely defined

If f belongs to W 1,1(Ω) ∩ Lq(Ω), q > N , and Ω is a C1,1 domain, then σ̂ belongs to
H1(Ω)N ∩L∞(Ω)N . Moreover, there exists C > 0 which only depends on N , p, c and Ω such
that

‖σ̂‖H1(Ω)N∩L∞(Ω)N 6 C
(
‖f‖W 1,1(Ω)∩Lq(Ω) + µ̂

)
, (2.16)

with µ̂ given by Proposition 2.1.

The function θ̂ satisfies

θ̂(x) =

{
1 if |σ̂| > µ̂

0 if |σ̂| < µ̂,
(2.17)

and decomposing σ̂ = (σ̂1, ..., σ̂N), we have

∂iθ̂σ̂j − ∂j θ̂σ̂i = (1 + cθ̂)(∂jσ̂i − ∂iσ̂j)χ{|σ̂|=µ̂} ∈ L2(Ω), 1 6 i, j 6 N. (2.18)

Remark 2.2 Theorem 2.1 has been proved in [15] where some other regularity results de-
pending on the smoothness of f have been obtained. The case p = 2, has been first proved
in [13]. Observe that σ̂ in L∞(Ω)N implies that û belongs to W 1,∞(Ω). This was previously
shown in [31] for p = 2.

2.3. Algorithms and main results
In this section we present two variants of a descent algorithm to numerically solve problem

(2.5). We also show the convergence of both algoritms.

A first attempt to construct an algorithm is to use an alternate method consisting in
minimizing in u, then in θ and so on. That is, assuming an approximation (ui, θi) of a
solution of (2.5), we compute ui+1 as a solution of

min
v∈W 1,p

0 (Ω)

{
1

p

∫
Ω

|∇v|p

(1 + cθi)p−1
− 〈f, v〉

}
(2.19)
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and then θi+1 as a solution of

min
θ∈L∞(Ω;[0,1])∫

Ω θ dx6κ

{
1

p

∫
Ω

|∇ui+1|p

(1 + cθ)p−1
dx

}
. (2.20)

This method works well if p = 2, but for p 6= 2, problem (2.19) is a p-Laplacian problem
which is very expensive to solve from the computational point of view due to the nonlinearity
of the corresponding Euler-Lagrange equation.

Instead of using the above alternate method, we can also try to use a gradient method,
i.e. an iterative method where the iterations are defined through ui+1 = ui + tivi+1, θi+1 =
θi + si(ϑi+1 − θi) for some ti, si ∈ (0, 1), with (vi+1, ϑi+1) a solution of

min
‖v‖

W
1,p
0 (Ω)

61

{
1

p

∫
Ω

|∇ui|p−2

(1 + cθi)p−1
∇ui · ∇v dx− 〈f, v〉

}
,

max
ϑ∈L∞(Ω;[0,1])∫

Ω ϑ dx6κ

∫
Ω

|∇ui|p

(1 + cθi)p
ϑ dx,

(2.21)

but the minimization in v also implies the resolution of a p-Laplacian problem. To avoid this
difficulty, we can replace the constraint ‖v‖W 1,p

0 (Ω) 6 1 by ‖v‖H1
0 (Ω) 6 1. This is a feasible

direction method. In each iteration we look for the direction of maximum descent of F in
the convex set:{

(v, ϑ) ∈ H1
0 (Ω)× L∞(Ω; [0, 1]) : ‖v‖H1

0 (Ω) 6 1,

∫
Ω

ϑdx 6 κ

}
.

The maximum direction with respect to ϑ is simple to calculate. Namely, reasoning as in
Remark 2.1 we have:

If |{|∇ui| > 0}| 6 κ, then ϑi is any function in L∞(Ω; [0, 1]) such that

χ{|∇ui|>0} 6 ϑi,

∫
Ω

ϑi dx 6 κ. (2.22)

In another case, we introduce H : (0,∞)→ [0, |Ω|] by

H(µ) =
∣∣{x ∈ Ω : |∇ui(x)| > (1 + cθi)µ

}
, ∀µ > 0.

Then, H is a decreasing function, continuous on the right and satisfying

lim
µ→0+

H(µ) =
∣∣{x ∈ Ω : |∇ui(x)| > 0}

∣∣, lim
µ→∞

H(µ) = 0.

This assures the existence of µi > 0 (not unique in general) such that

H(µi) 6 κ 6 lim
µ→µ−i

H(µ),

which can be easily numerically obtained by a dichotomy rule. For such µi, the maximum
direction in θ in (2.21), ϑi, is given by any function in L∞(Ω; [0, 1]) such that

χ{|∇ui|>(1+cθi)µi} 6 ϑi,

∫
Ω

ϑi dx = κ. (2.23)
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A similar result holds if we use a finite-dimensional approximation consisting in choosing
θ taking constant values in the elements of a given mesh. On the other hand, the maximum
descent direction with respect to v is unique and it is the solution of a linear equation.
However, we observe that for p > 2, the sequence of functions {ui} generated by the method
is not in W 1,p

0 (Ω). Thus, the algorithm has only a sense using a finite-dimensional space
instead of L∞(Ω) ×W 1,p

0 (Ω). In such case, all the norms are equivalent. However it would
be necessary to prove the convergence of the solutions of the discretized problem to the
continuous one.

With these considerations, we are going to be interested in the following problem

min

{
F(θ, u) : θ ∈ Θ, u ∈ V,

∫
Ω

θ dx 6 κ, θ ∈ [0, 1] a.e. in Ω

}
, (2.24)

with Θ and V finite-dimensional subspaces of L∞(Ω) and H1
0 (Ω) ∩W 1,p

0 (Ω) respectively. As
in the continuous problem, it is not clear that (2.24) has a unique solution but for every
solution (θ∗, u∗), the flow

σ∗ =
|∇u∗|p−2

(1 + cθ∗)p−1
∇u∗, (2.25)

is unique because it is a solution of (see (2.14))

min

 max
θ∈L∞(Ω:[0,1])∫

Ω θ dx6κ

∫
Ω

(1 + c θ)|σ|p′dx : σ ∈ Lp′(Ω)N ,

∫
Ω

σ · ∇v dx = 〈f, v〉, ∀ v ∈ V

 ,

where the function to minimize is strictly convex.

As an example of practical interest we can consider a regular triangular mesh Th of Ω with
maximum diameter h > 0 and the Lagrange finite element spaces

Θh =
{
v =

∑
τ∈Th

ατXτ : ατ ∈ R, ∀τ ∈ Th
}

(2.26)

Vh =
{
v ∈ C0

0(Ω) : v|τ ∈ P1(τ), ∀τ ∈ Th
}
, (2.27)

with P1(τ) the space of affine functions in τ .

Since the minimization of F in θ for u fixed is simple to carry out in practice (see (2.1) for
the infinite-dimensional case, the finite-dimensional one is analogous) we can also consider a
variant of the previous algorithm consisting in directly computing the minimum in θ in each
iteration.

With these considerations, we present the following two algorithms:

Algorithm 1.

Initialization: i = 1, θ0 ∈ Θ, u0 ∈ V , a, b ∈ (0, 1).
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1 : Set vi solution of∫
Ω

∇vi · ∇φ dx = 〈f, φ〉 −
∫

Ω

|∇ui|p−2

(1 + cθi)p−1
∇ui · ∇φ dx, ∀φ ∈ V. (2.28)

2 : Choose the step length by ti = bj (Armijo’s rule), with j the smallest non-negative
integer such that

F(θi, ui + tivi) 6 F(θi, ui)− ati
∫

Ω

|∇vi|2dx (2.29)

and set ui+1 = ui + tivi.
3 : Set ϑi a solution of

max

{∫
Ω

|∇ui+1|p

(1 + cθi)p
ϑ dx : ϑ ∈ Θ, 0 6 ϑ 6 1 a.e. in Ω,

∫
Ω

ϑdx 6 κ

}
. (2.30)

4 : Choose si = bk, with k the smallest non-negative integer such that

F(θi + si(ϑi − θi), ui+1) 6 F(θi, ui+1)− asi
c(p− 1)

p

∫
Ω

|∇ui+1|p

(1 + cθi)p
(ϑi − θi) dx (2.31)

and set θi+1 = θi + si(ϑi − θi).

Algorithm 2.

Initialization: i = 0, u0 ∈ V , a, b ∈ (0, 1).

1 : Set vi ∈ V the solution of (2.28).
2 : Choose the step length by ti = bj with j the smallest non-negative integer such that

(2.29) is satisfied, and set ui+1 = ui + tivi.
3 : Set θi+1 a solution of

min

{∫
Ω

|∇ui|p

(1 + cϑ)p−1
dx : ϑ ∈ Θ, 0 6 ϑ 6 1 a.e. in Ω,

∫
Ω

ϑ dx 6 κ

}
. (2.32)

Remark 2.3 Since by definition (2.28) of vi, we have

lim
t→0

F(θi, ui + tvi)−F(θi, ui)

t
= −

∫
Ω

|∇vi|2dx,

and a < 1, we get that

F(θi, ui + tvi)−F(θi, ui) 6 −at
∫

Ω

|∇vi|2dx,

for 0 < t small enough. This proves the existence of ti satisfying (2.29). A similar argument
shows the existence of si in (2.31).
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Remark 2.4 If p = 2, then ti = 1 for both algorithms and every i > 0. The second method
agrees in this case with the one given in [3] Theorem 5.1.5, and [53].

Our main result is given by theorem 2.2 below which provides the convergence for both
algorithms. Before stating it, we need the following definition.

Definition 2.5 For p > 1, we define γp > 0 by{
‖v‖H1

0 (Ω) 6 γp‖v‖W 1,p
0 (Ω) if 1 < p < 2

‖v‖W 1.p
0 (Ω) 6 γp‖v‖H1

0 (Ω) if p > 2.
∀ v ∈ V. (2.33)

Remark 2.6 Clearly γ2 = 1, while for p 6= 2 and V replaced by a sequence of finite dimen-
sional spaces Vh such that

lim
h→0

min
v∈Vh
‖v − vh‖W 1,p

0 (Ω) = 0, ∀ v ∈ W 1.p
0 (Ω),

we have that γp = γp,h tends to infinity when h goes to zero. For example, in the case where
the spaces Vh are given by (2.27), with Th a sequence of regular meshes of diameter h, we
have

γp,h = O

(
1

hN |
1
2
− 1
p
|

)
. (2.34)

Theorem 2.2 Let Ω ⊂ RN be a bounded open set, p ∈ (1,∞), f ∈ W−1,p′(Ω), and Θ, V
finite-dimensional subspaces of L∞(Ω) and W 1,p

0 (Ω) respectively. Taking (θi, ui) ∈ Θ × V ,
the sequence defined by Algorithm 1 or Algorithm 2, denoting by F∗ the minimum value of
(2.24), and by ei the sequence of errors

ei = F(θi, ui)−F∗ > 0, i > 0, (2.35)

we have that ei is a decreasing sequence and that there exists C > 0 depending on a, b, u0, θ0, f, c, N
and p such that

ei 6

{
Cγpp i−

1
p−1 if 1 < p < 2

Cγ4
p i−1 if p > 2.

∀i > 1. (2.36)

Moreover, the sequence

σi =
|∇ui|p−2

(1 + cθi)p−1
∇ui, (2.37)

converges strongly to σ∗ defined by (2.25) in Lp
′
(Ω)N . Namely, there exists C > 0 as above

such that

∫
Ω

(
|σ∗|+ |σi|)p−2|σ∗− σ|2dx 6

 C
(
1 + γp‖u0‖W 1,p

0 (Ω)

)
(ei − ei+1)

1
p′ if 1 < p < 2

C
(
|1 + γ2

p‖u0‖p−1

W 1,p
0 (Ω)

)
(ei − ei+1)

1
2 if p > 2.

(2.38)
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Remark 2.7 In the continuous case V = W 1,p
0 (Ω), and 1 < p < 2, the classical regularity

results for the Poisson equation show that the solution vi of (2.28) satisfies the estimate

‖vi‖W 1,p′
0 (Ω)

6 C
(
‖ui‖W 1,p

0 (Ω) + ‖f‖W−1,p′ (Ω)

)
, (2.39)

with C > 0 depending only on p and Ω. Thanks to this result we can deduce that in this
case (2.36) holds true with γp replaced by one. Similar results to (2.39) also hold for special
choices of spaces V , see e.g. [11], Theorem 8.5.3. With these choices we can eliminate the
dependence in γp of estimate (2.36) for 1 < p < 2.

Remark 2.8 In the case of the p-Laplacian problem, i.e.

min
u∈W 1,p

0 (Ω)

{
1

p

∫
Ω

|∇u|pdx− 〈f, u〉
}
,

we can consider the following algorithm, similar to Algorithms 1 and 2:

Initialization: i = 0, u0 ∈ V , a, b ∈ (0, 1).

1 : Set vi ∈ V the solution of∫
Ω

∇vi · ∇φ dx = 〈f, φ〉 −
∫

Ω

|∇ui|p−2∇ui · ∇φ dx, ∀φ ∈ V. (2.40)

2 : Choose the step length by ti = bj with j the smallest non-negative integer such that

1

p

∫
Ω

|∇(ui + tivi)|pdx− 〈f, ui + tivi〉

6
1

p

∫
Ω

|∇ui|pdx− 〈f, ui〉 − ati
∫

Ω

|∇vi|2dx,

and set ui+1 = ui + tivi.

Then, a similar reasoning to the one used below to prove Theorem 2.2 shows the estimates

F(ui)−F∗ 6



Cγ
2p

2−p
p

i
2(p−1)

2−p

if p < 2

C i if p = 2

Cγ
2p
p−2
p

i
p
p−2

if p > 2,

(2.41)

with C < 1 for p = 2. Similarly to Remark 2.7 the dependence of the estimate on γp can be
suppressed for 1 < p < 2 in the continuous case, or V finite-dimensional but satisfying further
assumptions. Observe that estimates (2.41) are better than the ones obtained in Theorem 2.2.
This is due to the strict convexity of the p-Laplacian operator, which does not hold in our
case.
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We finish this section studying the convergence of the solutions of the discrete problem to
the solutions of the continuous one. Next result is an immediate consequence of the convexity
of F and therefore is given without proof.

Proposition 2.2 Assume two sequences of spaces Θh ⊂ L∞(Ω) and Vh ⊂ W 1,p
0 (Ω) such that

• For every θ ∈ L∞(Ω), with θ > 0, there exists a sequence θh ∈ Θh such that

0 6 θh 6 ‖θ‖L∞(Ω),

∫
Ω

θhdx 6
∫

Ω

θdx, θh → θ in L1(Ω). (2.42)

• For every u ∈ W 1,p
0 (Ω), there exists a sequence uh ∈ Vh such that

uh → u in W 1,p
0 (Ω). (2.43)

Then, defining F∗h as the value of the minimum in (2.24) with Θ and V replaced by Θh and
Vh respectively, and F̂ as the value of the minimum in (2.19), we have

lim
h→0
F∗h = F̂ . (2.44)

Moreover, defining σ∗h by (2.25), with (θ∗, u∗) any solution of (2.24) for Θ = Θh, V = Vh, we
have

σ∗h → σ̂ in Lp
′
(Ω)N , (2.45)

with σ̂ defined by (2.15).

An example of spaces satisfying properties (2.42) and (2.43) is given by (2.26) and (2.27).
In this case we have the following improvement

Theorem 2.3 Assume Ω a polygonal open set, f ∈ W−1,∞(Ω)∩L1(Ω) and that there exists
a solution (θ̂, û) of (2.5), such that

θ̂ ∈ BV (Ω), û ∈ W 1,∞(Ω), ∇û ∈ BV (Ω)N . (2.46)

We also consider a regular sequence Th of triangulations in Ω by N-simplexes and define the
spaces Θh and Vh by (2.26) and (2.27) respectively. Then, there exists C > 0, depending on
Ω, p, and the functions θ̂, û, such that denoting by F̂ and F∗h the minimum values of (2.5)
and (2.24) respectively with Θ = Θh and V = Vh, we have

F̂ 6 F∗h 6 F̂ + Ch, ∀h > 0. (2.47)

Moreover, the functions σ∗h and σ∗ defined as in Proposition 2.2, satisfy∫
Ω

(|σ∗|+ |σ∗h|)p−2|σ∗ − σ∗h|2dx 6 Ch. (2.48)

Remark 2.9 In Theorem 2.1 we recalled some smoothness results for problem (2.5). Con-
trary to Theorem 2.3, they assumed that Ω is C1,1 instead of a polygonal set. Indeed, assuming
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Ω a smooth convex set, Theorem 2.3 could still be applied, taking a sequence of regular meshes
for polygonal subsets of Ω which fulfill Ω as the limit. Even with this assumption we do not
know that θ and ∇u are in BV (Ω) and BV (Ω)N , but numerical simulations usually provide
solutions which seem to satisfy these assumptions.

From (2.34), (2.36) and (2.47), we get

Corollary 2.1 In the assumptions of Theorem 2.3, we have the estimates

0 6 F(θi,h, ui,h)− F̂ 6


C
( 1

hN(1− p
2

)ip−1
+ h
)

if 1 < p < 2

C
( 1

h2N(1− 2
p

)i
+ h
)

if p > 2,
(2.49)

Here F̂ denotes the minimum value of (2.5), (θi,h, ui,h) is the i-th pair obtained by any of the
algorithms, and Θh, Vh are defined by (2.26) and (2.27) respectively.

2.4. Convergence proof
We dedicate this section to prove the results stated in the previous one. In order to

simplify the proof of Theorem 2.2, we start with the following lemma.

Lemma 2.1 Assume p ∈ (1,∞), then we have

1. There exists C > 0, depending only of p such that for every ξ, η ∈ RN , we get

∣∣|η|p − |ξ|p − p|ξ|p−2ξ · (η − ξ)
∣∣ 6 { C|ξ − η|p if p < 2

C
(
|ξ|+ |η|

)p−2|ξ − η|2 if p > 2.
(2.50)

2. There exists C > 0, depending only on p and c, such that for every q, r ∈ [0, 1], we get∣∣∣∣∣ 1

(1 + cr)p−1
− 1

(1 + cq)p−1
+

(p− 1)c(r − q)
(1 + cq)p

∣∣∣∣∣ 6 C|r − q|2. (2.51)

Proof. In order to show (2.50), we first recall the following property of the function ξ ∈
RN 7→ |ξ|p−2ξ ∈ RN : There exists cp > 0, such that for every ξ, η ∈ RN , we have

∣∣|η|p−2η − |ξ|p−2ξ
∣∣ 6 { cp|ξ − η|p−1 if p < 2

cp
(
|ξ|+ |η|

)p−2|η − ξ| if p > 2.
(2.52)

By the mean value theorem, for every ξ, η ∈ RN , there exists λ ∈ (0, 1), such that

|η|p − |ξ|p = p
∣∣λξ + (1− λ)η

∣∣p−2(
λξ + (1− λ)η

)
· (η − ξ), (2.53)
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where thanks to (2.52), we have∣∣∣∣∣λξ + (1− λ)η
∣∣p−2(

λξ + (1− λ)η
)
−
∣∣ξ|p−2ξ

∣∣∣
6

{
cp|ξ − η|p−1 if p < 2

2p−2cp
(
|ξ|+ |η|

)p−2|η − ξ| if p > 2.

(2.54)

This proves (2.50). Let us now show (2.51). As above, for every q, r ∈ [0, 1], the mean value
theorem provides the existence of λ ∈ (0, 1) such that

1

(1 + cr)p−1
− 1

(1 + cq)p−1
= − (p− 1)c(r − q)(

1 + c(λq + (1− λ)r)
)p , (2.55)

where ∣∣∣∣∣ 1(
1 + c(λq + (1− λ)r)

)p − 1

(1 + cq)p

∣∣∣∣∣ =

∣∣∣(1 + cq)p −
(
1 + c(λq + (1− λ)r)

)p∣∣∣(
1 + c(λq + (1− λ)r)

)p
(1 + cq)p

.

Using here the mean value theorem in the numerator, that the denominator is bigger or equal
than 1, and that q, r ∈ [0, 1], we get∣∣∣∣∣ 1(

1 + c(λq + (1− λ)r)
)p − 1

(1 + cq)p

∣∣∣∣∣ 6 pcp(2 + c(q + r))p−1|q − r|

6 p2p−1cp(1 + c)p−1|q − r|.

(2.56)

Inequalities (2.55) and (2.56) show (2.51).

The proof of Theorem 2.2 also uses the following lemma which has been obtained in [29],
Lemma 1.

Lemma 2.2 Assume ν > 0, γ > 1 and a sequence of positive numbers λn such that

λn − λn+1 > νλγn, ∀n > 0.

Then, for r = 1/(γ − 1), we have

λn 6
1

nr
max

{
λ0,
(2r − 1

ν

)r}
. (2.57)

Proof of Theorem 2.2. Let us first prove estimate (2.36) for Algorithm 1.

For every i > 0, estimate (2.50), Hölder’s inequality and definition (2.28) of vi imply the
existence of C > 0 depending only on p such that:

If 1 < p < 2

F(θi, ui + tvi)−F(θi, ui)

6 t

(∫
Ω

|∇ui|p−2

(1 + cθi)p−1
∇ui · ∇vi dx− 〈f, vi〉

)
+ Ctp

∫
Ω

|∇vi|pdx

= −t‖vi‖2
H1

0 (Ω) + Ctp‖vi‖pW 1p
0 (Ω)

.

(2.58)
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If p > 2

F(θi, ui + tvi)−F(θi, ui) 6 t

(∫
Ω

|∇ui|p−2

(1 + cθi)p−1
∇ui · ∇vi dx− 〈f, vi〉

)
+Ct2

(
‖ui‖W 1,p

0 (Ω) + ‖ui + tvi‖W 1,p
0 (Ω

)p−2

‖vi‖2
W 1,p

0 (Ω)

= −t‖vi‖2
H1

0 (Ω) + Ct2
(
‖ui‖W 1,p

0 (Ω) + ‖ui + tvi‖W 1,p
0 (Ω)

)p−2

‖vi‖2
W 1,p

0 (Ω)
.

(2.59)

Now, we observe that if ti < 1 then, by definition of ti, we have

F(θi, ui + btivi)−F(θi, ui) > −abti‖vi‖2
H1

0 (Ω).

Combined with (2.58) or (2.59) this proves the existence of τ > 0 which only depends on a, b
and p such that

ti >



min

1, τ
‖vi‖

2
p−1

H1
0 (Ω)

‖vi‖p
′

W 1,p
0 (Ω)

 if 1 < p < 2

min

1, τ
‖vi‖2

H1
0 (Ω)(

‖ui‖W 1,p
0 (Ω) + ‖ui+1‖W 1,p

0 (Ω)

)p−2‖vi‖2
W 1,p

0 (Ω)

 if p > 2.

(2.60)

On the other hand, inequality (2.51) implies the existence of another constant C > 0 de-
pending only on p and c such that

F(θi + s(ϑi − θi), ui+1)−F(θi, ui+1)

6 −sc(p− 1)

p

∫
Ω

|∇ui+1|p

(1 + cθi)p
(ϑi − θi) dx+ Cs2

∫
Ω

|∇ui+1|p|ϑi − θi|2dx,

which reasonling as above, implies the existence of λ > 0 depending only on a, b, c and p such
that

si > min

1, λ

∫
Ω

|∇ui+1|p

(1 + cθi)p
(ϑi − θi)dx∫

Ω

|∇ui+1|p|ϑi − θi|2dx

 . (2.61)

Using that
ei − ei+1 = F(θi, ui)−F∗ −

(
F(θi+1, ui+1)−F∗

)
= F(θi, ui+1)−F(θi+1, ui+1) + F(θi, ui)−F(θi, ui+1),

inequalities (2.29), (2.31), (2.60) and (2.61) and

‖vi‖W 1,p
0 (Ω) 6

{
|Ω|

1
p
− 1

2‖vi‖H1
0 (Ω) if 1 < p < 2

γp‖vi‖H1
0 (Ω) if p > 2,

we deduce the existence of C > 0 depending only on a, b, c, p and |Ω|, such that:
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If 1 < p < 2

ei − ei+1 > C min

1,

(∫
Ω

|∇ui+1|p
(1+cθi)p

(ϑi − θi)dx
)2∫

Ω
|∇ui+1|p|ϑi − θi|2dx

+ ‖vi‖p
′

H1
0 (Ω)

 . (2.62)

If p > 2,

ei − ei+1

> C min

{
1,

(∫
Ω

|∇ui+1|p
(1+cθi)2 (ϑi − θi)dx

)2∫
Ω
|∇ui+1|2|ϑi − θi|2dx

+
γ−4
p ‖vi‖2

W 1,p
0 (Ω)(

‖ui‖W 1,p
0 (Ω) + ‖ui+1‖W 1,p

0 (Ω)

)p−2

}
.

(2.63)

In particular, ei is a non-negative and non-increasing sequence and therefore a converging
sequence. In particular ei − ei+1 tends to zero. Moreover, ei non-increasing implies that
F(θi, ui) and then ‖ui‖W 1,p

0 (Ω) are bounded.

On the other hand, thanks to the convexity of F , ui+1 = ui + tivi, with 0 6 ti 6 1, and
definitions (2.28) and (2.30) of vi and ϑi respectively, we have

ei = F(θi, ui)−F(θ∗, u∗) 6
∫

Ω

|∇ui|p−2

(1 + cθi)p−1
∇ui · ∇(ui − u∗) dx+ 〈f, ui − u∗〉

−c(p− 1)

p

∫
Ω

|∇ui+1|p

(1 + cθi)p
(θi − θ∗)dx+ Cti

∫
Ω

(
|∇ui|+ |∇ui+1|

)p−1|∇vi|dx

6
∫

Ω

∇vi · ∇(ui − u∗) dx− c(p− 1)

p

∫
Ω

|∇ui+1|p

(1 + cθi)p
(θi − ϑi)dx

+C

∫
Ω

(
|∇ui|+ |∇ui+1|

)p−1|∇vi|dx,

(2.64)

where C only depends on p and c. Combined with Hölder’s inequality, (2.62), (2.63), and

min
{
‖u∗‖W 1,p

0 (Ω),min
i>0
‖ui‖W 1,p

0 (Ω)

}
6 C‖u0‖W 1,p

0 (Ω),

which is a consequence of ei non-increasing and the definition of u∗, we conclude

ei 6

 Cγp‖u0‖W 1,p
0 (Ω)(ei − ei+1)

p−1
p if 1 < p < 2

Cγ2
p‖u0‖p + 1W 1,p

0 (Ω)(ei − ei+1)
1
2 if p > 2.

(2.65)

This inequality allows us to use Lemma 2.2 to get (2.36) for the first algorithm.

For Algorithm 2, using again (2.58) or (2.59) we get that (2.60) still holds true. Combined
with

F(θi+1, ui+1) 6 F(θi, ui+1),
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we have analogously to (2.62) and (2.63)

ei − ei+1 >


C min

{
1, ‖vi‖p

′

H1
0 (Ω)

}
if 1 < p < 2

C min

{
1,

γ−4
p ‖vi‖2

W 1,p
0 (Ω)(

‖ui‖W 1,p
0 (Ω) + ‖ui+1‖W 1,p

0 (Ω)

)p−2

}
if p > 2.

(2.66)

Using then that by convexity, θi+1 solution of (2.32) is equivalent to θi+1 solution of

max

{∫
Ω

|∇ui|p

(1 + cθi+1)p
ϑ dx : ϑ ∈ Θ, 0 6 ϑ 6 1 a.e. in Ω,

∫
Ω

ϑdx 6 κ

}
,

we have similarly to (2.64)

ei 6
∫

Ω

∇vi · ∇(ui − u∗) dx+ C

∫
Ω

(
|∇ui−1|+ |∇ui|

)p−1|∇vi−1|dx,

Using here
ei−1 = ei + ei − ei−1, ei−1 − ei, ei − ei+1 6 ei−1 − ei+1,

and taking into account (2.66), we conclude similarly to (2.65)

ei−1 6

 Cγp
(
‖u0‖W 1,p

0 (Ω) + 1
)
(ei−1 − ei+1)

p−1
p if 1 < p < 2

Cγ2
p

(
‖u0‖pW 1,p

0 (Ω)
+ 1)(ei−1 − ei+1)

1
2 if p > 2.

(2.67)

which, by Lemma Lemma 2.2, proves that (2.36) also holds true for the second algorithm.

Let us now estimate the difference between σi and σ∗. To simplify the exposition, we just
prove the result for Algorithm 1, the proof for Algorithm 2 is completely similar.

We consider a solution (θ∗, u∗) of (2.24). Then, (θ∗, σ∗) is a solution of the the discrete version
of (2.14). Combined with the strict convexity properties of the function ξ ∈ RN 7→ |ξ|p ∈ R,
we get ∫

Ω

(1 + cθ∗)|σ∗|p′dx >
∫

Ω

(1 + cθi)|σ∗|p
′
dx

>
∫

Ω

(1 + cθi)|σi|p
′
dx+ p′

∫
Ω

(1 + cθi)|σi|p
′−2σi · (σ∗ − σi) dx

+ρ

∫
Ω

(
|σ∗|+ |σi|)p−2|σ∗ − σi|2dx

=

∫
Ω

(1 + cϑi)|σi|p
′
dx+ p′

∫
Ω

(1 + cθi)|σi|p
′−2σi · (σ∗ − σi) dx

+ρ

∫
Ω

(
|σ∗|+ |σi|)p−2|σ∗ − σi|2dx+ c

∫
Ω

(θi − ϑi)|σi|p
′
dx,

(2.68)

with ρ a positive constants which only depend on p. Simimilarly, using that ϑi a solution of
(2.30) we have∫

Ω

(1 + cϑi)|σi|p
′
dx >

∫
Ω

(1 + cθ∗)|σ∗|p′dx

+p′
∫

Ω

(1 + cθ∗)|σ∗|p′−2σ∗ · (σi − σ∗) dx+ ρ

∫
Ω

(
|σ∗|+ |σi|)p−2|σ∗ − σi|2dx

(2.69)
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From (2.68) and (2.69), we deduce

0 > p′
∫

Ω

(
(1 + cθi)|σi|p

′−2σi − (1 + cθ∗)|σ∗|p′−2σ∗
)
· (σ∗ − σi) dx

+2ρ

∫
Ω

(
|σ∗|+ |σi|)p−2|σ∗ − σi|2dx+ c

∫
Ω

(θi − ϑi)|σi|p
′
dx,

(2.70)

Now, we use that (
(1 + cθi)|σi|p

′−2σi − (1 + cθ∗)|σ∗|p′−2σ∗
)
· (σ∗ − σi)

=
( |∇u∗|p−2

(1 + cθ∗)p−1
∇u∗ − |∇ui|p−2

(1 + cθi)p−1
∇ui

)
· ∇(ui − u∗).

which taking into account (2.28), and that (θ∗, σ∗) satisfies the discrete version of (2.11) prove∫
Ω

(
(1 + cθi)|σi|p

′−2σi − (1 + cθ∗)|σ∗|p′−2σ∗
)
· (σ∗ − σi) dx =

∫
Ω

∇(ui − u∗) · ∇vi dx. (2.71)

Replacing this equality in (2.70) and recalling ui+1 = ui + tivi, with 0 6 ti 6 1, we get

2ρ

∫
Ω

(
|σ∗|+ |σi|)p

′−2|σ∗ − σi|2dx 6 c

∫
Ω

|∇ui+1|p

(1 + cθi)p
(ϑi − θi)dx

+C

∫
Ω

(
|∇ui|+ |∇u∗|

)p−1|∇vi|dx+ p′
∫

Ω

(
|∇ui|+ |∇u∗|

)
|∇vi|dx

(2.72)

with C depending only on p and c. By (2.62) and (2.63) we then conclude (2.38).

Proof of Theorem 2.3. For (θ̂, û) the solution of (2.5) which satisfies (2.46), σ̂ defined by
(2.15) and h > 0, we introduce θ̂h ∈ Θh, σ̂h ∈ ΘN

h and ûh ∈ Vh by

θ̂h =
1

|τ |

∫
τ

θ̂ dx, σ̂h =
1

|τ |

∫
τ

σ̂ dx, ∀ τ ∈ Th, (2.73)

ûh(xi) = û(xi), ∀xi vertex of Th. (2.74)

Thanks to (2.46) and the regularity of Th, there exists C > 0 such that

h‖ûh‖W 1,∞(Ω) + ‖ûh − û‖L∞(Ω) + ‖ûh − û‖W 1,1
0 (Ω) + ‖θ̂h − θ̂‖L1(Ω) 6 Ch. (2.75)

The definition of F , the mean value theorem and these estimates imply∣∣∣F(θ̂, û)−F(θ̂h, ûh)
∣∣∣ 6 C

(
‖∇û‖L∞(Ω)N + ‖∇ûh‖L∞(Ω)N

)p−1

‖∇(u− uh)‖L1(Ω)N

+‖∇û‖p
L∞(Ω)N

‖θ̂ − θ̂h‖L1(Ω) + ‖f‖L1(Ω)‖û− ûh‖L∞(Ω) 6 Ch.

Then, since the definitions of F̂ and F∗h imply

F(θ̂, û) = F̂ 6 F∗h 6 F(θ̂h, ûh),
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we conclude (2.47). On the other hand, we consider (θ∗h, u
∗
h) a solution of (2.24) with Θ and

V replaced by Θh and Vh. We define σ̂ by (2.15), σ∗h by

σ∗h =
|∇u∗h|p−2

(1 + cθ∗h)
p−1
∇u∗h, (2.76)

and we recall that thanks to (2.14), we have∫
Ω

(1 + cθ̂)|σ̂|p′dx = max

{∫
Ω

(1 + cθ)|σ̂|p′dx : θ ∈ L∞(Ω; [0, 1]),

∫
Ω

θ dx 6 κ

}
.

Thus, we deduce∫
Ω

(1 + cθ̂)|σ̂|p′dx >
∫

Ω

(1 + cθ∗h)|σ̂|p
′
dx >

∫
Ω

(1 + cθ∗h)|σ∗h|p
′
dx

+p′
∫

Ω

(1 + cθ∗h)|σ̂∗h|p
′−2σ̂∗h · (σ̂ − σ̂∗h)dx+ ρ

∫
Ω

(|σ̂|+ σ̂∗h|)p−2|σ̂ − σ̂∗h|2dx,

(2.77)

for some ρ > 0, which only depends on p. Using the definitions of σ̂ and σ̂∗ and that (θ̂, û),
(θ∗, u∗h) are solutions of (2.5) and (2.24) we have∫

Ω

(1 + cθ̂)|σ̂|p′dx =

∫
Ω

|∇û|p

(1 + cθ̂)p−1
dx = −p′F̂ ,

∫
Ω

(1 + cθ∗h)|σ∗h|p
′
dx =

∫
Ω

|∇u∗h|p

(1 + cθ∗h)
p−1

dx = −p′F∗h ,

p′
∫

Ω

(1 + cθ∗h)|σ̂∗h|p
′−2σ̂∗h · (σ̂ − σ̂∗h)dx = p′

∫
Ω

(σ̂ − σ̂∗h) · ∇u∗h dx = 0.

Replacing these equalities in (2.77) and taking into account (2.47) we get (2.48).

2.5. Numerical experiments
In this section we present some simulations for the numerical resolution of (2.5) using the

two algorithms presented in Section 2.3. The implementation has been carried out in python
using the finite element solver Fenics [6].

In our numerical experiments, we have taken N = 2, Ω the unit disc, c = 1, f = 1 and
κ = 1. In this case, the solution of (2.5) is explicitly given by

θ̂(x) =

{
1 if |x| < π−

1
2

0 if |x| > π−
1
2 ,

û(x) =


1

2
1
p−1p′

(
1 + π−

p′
2 − 2|x|p′

)
if |x| < π−

1
2

1

2
1
p−1p′

(
1− |x|p′

)
if |x| > π−

1
2 ,

and thus
F̂ = F(θ̂, û) = − π

p′(2 + p′)2
1
p−1

(
1− 1

2π1+ p′
2

)
.
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We solve the problem for meshes of different diameter h and p = 1.2, 2, 100.

The stop criterion for the first algorithm is

∫
Ω

|∇vi|2dx+
c(p− 1)

p

∫
Ω

|∇ui+1|p

(1 + θi)p
(ϑi − θi) dx 6 10−7 or i > 2000, (2.78)

while for the second one it is given by

∫
Ω

|∇vi|2dx+
c(p− 1)

p

∫
Ω

|∇ui+1|p

(1 + θi+1)p
(θi+1 − θi)dx 6 10−7 or i > 2000. (2.79)

Observe that in both cases replacing 10−7 by 0 would mean that (θi, ui) satisfies the optimality
conditions for (2.5) and then, by the convexity of F , that (θi, ui) is a solution for (2.24).

Depending on p, h, and the choice of the algorithm, we present in figure 2.1 the convergence
history of the objective function, the Lagrange multiplier µ, and the stop criterion (‖DF‖
denotes the left-hand sides in (2.78) and (2.79) respectively). Observe that for p = 1.2 and
p = 2, the rate of convergence for both algorithms is similar. However for p = 100, Algorithm
2 converges faster than Algorithm 1. Although our estimates depend on h, we do not observe
this dependence in the numerical experiments for p = 2. This is because γ2 = 1 and therefore
according to remark 2.4 the step length is constant and all the bounds in Theorem 2.2 do
not depend on the mesh size.

In figure 2.2 we represent the solutions (θi, ui) depending on p but only for the finest mesh.
Observe that the solutions obtained are very similar for both algorithms.

In figure 2.3 we show the time spent in the resolution of the numerical experiments. We
observe that the iterations are faster calculated for Algorithm 2 than for Algorithm 1. When
the diameter of the mesh decreases, the time increases for both algorithms in the same way.
Moreover, for p large Algorithm 2 needs fewer iterations than Algorithm 1 while for p small
both algorithms use more or less the same number of iterations.
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Figure 2.1: Convergence history for each p and mesh.
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Figure 2.2: Solutions for the finest mesh.
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Figure 2.3: Mean CPU time by iteration in seconds for each p.
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Figure 2.4: Convergence rate of minimum value as function of the mesh size for each p.

2
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Chapter 3

Minimization of the p-Laplacian first
eigenvalue for a two-phase material

Abstract: We study the problem of minimizing the first eigenvalue of the p-Laplacian
operator for a two-phase material in a bounded open domain Ω ⊂ RN , N > 2 assuming that
the amount of the best material is limited. We provide a relaxed formulation of the problem
and prove some smoothness results for these solutions. As a consequence we show that if
Ω is of class C1,1, simply connected with connected boundary, then the unrelaxed problem
has a solution if and only if Ω is a ball. We also provide an algorithm to approximate the
solutions of the relaxed problem and perform some numerical simulations.

3.1. Introduction
The present paper is devoted to study the optimal design problem of obtaining the two-

phase material which minimizes the first eigenvalue of the p-Laplacian operator with Dirichlet
conditions assuming that the amount of the best material is limited. Namely, for a bounded
open set Ω ⊂ RN , N > 2, two positive constants α < β which represent the diffusion
coefficients of the two materials, and a constant κ ∈ (0, |Ω|) which corresponds to the maximal
amount of the best material, we are interested in the minimization problem

min
ω,u

∫
Ω

(
αχω + βχΩ\ω

)
|∇u|pdx

ω ⊂ Ω measurable, |ω| 6 κ

u ∈ W 1,p
0 (Ω),

∫
Ω

|u|p = 1,

(3.1)

with p ∈ (1,∞). Observe that without the restriction |ω| 6 κ the solution is the trivial one
ω = Ω. The case p = 2 has been extensively studied from both the theorical and numerical
point of view (see e.g. [13], [14], [19], [20], [21], [32], [37], [40]), but for p 6= 2 the problem is
new in our knowledge.

It is well known ( [43]) that this type of problems has not a solution in general. More
concretely, in the case p = 2 and related with the results obtained in [13] and [44], it has
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been proved in [14] that if Ω is simply connected with connected boundary, then problem
(3.1) has a solution if and only if Ω is a ball. This makes necessary to work with a relaxed
formulation which is usually obtained by using homogenization theory ( [3], [44], [52]). The
idea is to replace the diffusion material with coefficients (αχω+βχΩ\ω) corresponding to take
in every point of Ω the material α or the material β, by a general mixture of both materials
where in each point x, we use the material α with proportion θ(x) ∈ [0, 1] and the material
β with proportion 1 − θ(x). The corresponding homogenized material obtained in this way
does not only depend on the proportion but also on the disposition of both materials. Taking
into account the results in [15], we deduce that for a given proportion θ = θ(x), the optimal
disposition of the materials is given by a simple laminate in the direction of the flux. This
provides the relaxed formulation of (3.1):

min
θ,u

∫
Ω

|∇u|p

(1 + cθ)p−1
dx

θ ∈ L∞(Ω; [0, 1]), u ∈ W 1,p
0 (Ω)∫

Ω

θdx 6 κ,

∫
Ω

|u|pdx = 1,

(3.2)

with c = (β/α)
1
p−1 − 1 > 0. We also show that the relaxed problem admits the equivalent

formulation: 
min
θ,u,f

∫
Ω

(1

p

|∇u|p

(1 + cθ)p−1
− fu

)
dx

θ ∈ L∞(Ω; [0, 1]), u ∈ W 1,p
0 (Ω), f ∈ Lp′(Ω)∫

Ω

θdx 6 κ,

∫
Ω

|f |p′dx 6 1

(3.3)

This allows us to use the results in [15] (see also [13] for p = 2) to deduce some smoothness
properties for the solutions of (3.2). Namely, assuming Ω ∈ C1,1 we show that every solution
(u, θ) of (3.2) is such that (ν denotes the outward unitary normal on ∂Ω) u ∈ W 1,∞(Ω), σ :=

|∇u|p−2

(1 + cθ)p−1
∇u ∈ H1(Ω)N ,

∂iθσj − ∂jθσi ∈ L2(Ω), ∀ i, j ∈ {1, · · · , N}.
(3.4)

Observe that (3.1) has a solution if and only if (3.2) has a solution of the form (χω, u) with
ω ⊂ Ω measurable. In this case, we show that the derivability condition on θ given in (3.4)
implies that curl(|σ|p′−2σ) vanishes. Thanks to this, we extend the result in [16] for p = 2,
showing that if Ω is smooth and simply connected with connected boundary, then problem
(3.1) has a solution if and only if Ω is a ball.

In the second part of the paper we carry out the numerical study of problem (3.3). The
algorithm that we propose (see Section 3.3) solves in each iteration a problem of the form

min
θ,u

∫
Ω

(1

p

|∇u|p

(1 + cθ)p−1
− fu

)
dx

θ ∈ L∞(Ω; [0, 1]), u ∈ W 1,p
0 (Ω),

∫
Ω

θdx 6 κ,

(3.5)
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for a certain function f which changes with the iteration. The numerical resolution of (3.5)
has been considered in [16], where we propose two algorithms and we show the convergence
to a critical point. Problem (3.5) has been studied by several authors because it appears for
example in the optimization of two isotropic materials posed in the cross section of a beam
in order to minimize the torsion. In this way, a theoretical study of (3.5) for arbitrary p > 1
has been carried out in [15]. In the case p = 2 we refer to [3], [7], [13] [28], [31], [44] and [53]
to the study of (3.5) from both, the theoretical and numerical point of view.

3.2. Relaxation and smoothness results.
Our purpose in the present section is to study problem (3.1). As we said in the intro-

duction, the first difficulty is that it has not solution in general and therefore it is interest-
ing to get a relaxed formulation which will consists in replacing the mixtures of materials
αχωn+βχΩ\ωn in (3.1) by more general mixtures where the material α is used with proportion
θ = θ(x) ∈ [0, 1] and the material β with proportion 1− θ.

Theorem 3.1 A relaxed formulation of problem (3.1) is given by
min
θ,u

∫
Ω

(
θα

1
1−p + (1− θ)β

1
1−p

)1−p
|∇u|pdx

θ ∈ L∞(Ω; [0, 1]), u ∈ W 1,p
0 (Ω)∫

Ω

θdx 6 κ,

∫
Ω

|u|pdx = 1,

(3.6)

in the sense of Murat-Tartar [44], p. 140, which implies the following four statements:

(1) Problem (3.6) has at least one solution.
(2) The infimum for problem (3.1) agrees with the minimum for problem (3.6).
(3) If (ωn, un) is a minimizing sequence for (3.1), then un is bounded in W 1,p

0 (Ω). Taking a
subsequence, still denoted by (un, ωn), such that there exists (u, θ) ∈ W 1,p

0 (Ω) ∩ L∞(Ω)
with

un ⇀ u in W 1,p
0 (Ω), χωn

∗
⇀ θ in L∞(Ω) (3.7)

we have that (θ, u) is a solution for (3.6) and

lim
n→∞

∫
Ω

(αχωn + βχΩ\ωn)|∇un|pdx =

∫
Ω

(θα
1
p−1 + (1− θ)β

1
p−1 )1−p|∇u|pdx. (3.8)

(4) For every pair (θ, u) ∈ L∞(Ω; [0, 1]) × W 1,p
0 (Ω) with

∫
Ω
θdx 6 κ, and ‖u‖Lp(Ω) = 1,

there exist ωn ⊂ Ω measurable, with |ωn| 6 κ and un ∈ W 1,p
0 (Ω), with ‖un‖Lp(Ω) = 1

such that (3.7) and (3.8) hold.

Proof. The first statement is a consequence of the convexity of the function J : RN ×
(0,∞) 7→ R defined by

J(ξ, t) =
|ξ|p

t
∀(ξ, t) ∈ RN × (0,∞), (3.9)

54



combined with the Rellich-Kondrachov compactness theorem. Statement (4) is a consequence
of Theorem 2.1 in [15]. Using again the convexity of J , it implies statement (3) and then
statement (2).

Denoting

c :=
(β
α

) 1
p−1 − 1 > 0, (3.10)

problem (3.6) can be written as (3.2). From now on, we will consider the problem in this
form.

For a distribution f at least in the space W−1,p′(Ω), we have studied in [15] the optimal
design problem 

min
θ,u

{
1

p

∫
Ω

|∇u|p

(1 + cθ)p−1
dx− 〈f, u〉

}
θ ∈ L∞(Ω; [0, 1]),

∫
Ω

θdx 6 κ, u ∈ W 1,p
0 (Ω).

(3.11)

Similarly to the result for p = 2 obtained in [13], let us show that both problems (3.2)
and (3.11) are strongly related. Namely, problem (3.2) consists in solving (3.11) for every
f ∈ Lp

′
(Ω) with ‖f‖Lp′ (Ω) 6 1 and then to minimize in f . This is given by the following

proposition

Proposition 3.1 Problem (3.2) is equivalent to
min
θ,u,f

{∫
Ω

(
1

p

|∇u|p

(1 + cθ)p−1
− fu

)
dx

}
θ ∈ L∞(Ω; [0, 1]),

∫
Ω

θdx 6 κ, u ∈ W 1,p
0 (Ω), f ∈ Lp′(Ω),

∫
Ω

|f |p′dx 6 1,

(3.12)

in the following sense:

If λ̂ denotes the minimum in (3.2) and Î the minimum in (3.12), then

λ̂ =

(
− 1

p′Î

)p−1

. (3.13)

Moreover, if (θ̂, û) is a solution of (3.2) then (θ̂, λ̂
1

1−p û, |û|p−2û) is a solution of (3.12). Re-
ciprocally, if (θ̂, û, f̂) is a solution of (3.12), then f̂ = λ̂|û|p−2û and (θ̂, λ̂

1
p−1 û) is a solution

of (3.2).

The above proposition is a consequence of the following lemma which in the case p = 2
was proved in [17] (see also [13]).

Lemma 3.1 For p ∈ (1,∞) and A ∈ L∞(Ω)N×N symmetric and uniformly elliptic, the first
eigenvalue

λ1(p,A) := min
u∈W1,p

0 (Ω)

‖u‖Lp(Ω)=1

∫
Ω

|A∇u|p−2A∇u · ∇u dx (3.14)
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of the operator u ∈ W 1,p
0 (Ω) 7→ −div(|A∇u|p−2A∇u) ∈ W−1,p′(Ω) is characterized by

λ1(p,A)
1

1−p = max
f,u

{∫
Ω

|A∇u|p−2A∇u · ∇udx

}
−div(|A∇u|p−2A∇u) = f, u ∈ W 1,p

0 (Ω), ‖f‖Lp′ (Ω) 6 1.

(3.15)

Moreover, if f ∈ Lp′(Ω) is a solution of (3.15), then |f |p′−2f is an eigenfunction for λ1(p,A).
Reciprocally, if u is an eigenfunction for λ1(p,A), then f = ‖u‖1−p

Lp(Ω)|u|p−2u is a solution of
(3.15).

Proof. Let f ∈ Lp′(Ω) be with ‖f‖Lp′ (Ω) 6 1 and let u be the unique solution of

−div(|A∇u|p−2A∇u) = f in Ω, u ∈ W 1,p
0 (Ω). (3.16)

Then, thanks to the definition of λ1(p,A), we get∫
Ω

|A∇u|p−2A∇u · ∇u dx > λ1(p,A)

∫
Ω

|u|pdx.

On the other hand, using u as test function in (3.16) and taking into account that ‖f‖Lp′ (Ω) 6
1, we have ∫

Ω

|A∇u|p−2A∇u · ∇u dx =

∫
Ω

fu dx 6 ‖u‖Lp(Ω). (3.17)

These two inequalities prove∫
Ω

|A∇u|p−2A∇u · ∇u dx 6 ‖u‖Lp(Ω) 6

(
1

λ1(p,A)

∫
Ω

|A∇u|p−2A∇u · ∇u dx

) 1
p

, (3.18)

and therefore ∫
Ω

|A∇u|p−2A∇u · ∇udx 6 λ1(p,A)
1

1−p . (3.19)

By the arbitrariness of f , we have then proved that the right-hand side of (3.15) is smaller
or equal than the left-hand side. To get the opposite inequality we consider an eigenfunction
v ∈ W 1,p

0 (Ω) with ‖v‖Lp(Ω) = 1 and define f̃ = |v|p−2v, ũ = λ1(p,A)
1

1−pv. Then, f̃ and ũ
satisfy

−div(|A∇ũ|p−2A∇ũ) = f̃ in Ω, ũ ∈ W 1,p
0 (Ω), ‖f̃‖Lp′ (Ω) = 1,∫

Ω

|A∇ũ|p−2A∇ũ · ∇ũdx = λ1(p,A)
1

1−p

This shows that there exists the maximum in the right-hand side of (3.15) and it agrees with
λ1(p,A)

1
1−p .

To finish the proof it remains to prove that every solution of the maximum problem in
(3.15) is an eigenfunction of the operator u → −div(|A∇u|p−2A∇u). To do so, we consider
f̂ ∈ Lp′(Ω) a solution to (3.15), and define û as the unique solution of

− div(|A∇û|p−2A∇û) = f̂ in Ω, û ∈ W 1,p
0 (Ω). (3.20)
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By (3.17) and (3.18) we get∫
Ω

f̂ û dx = ‖û‖Lp(Ω) = ‖f̂‖Lp′ (Ω) · ‖û‖Lp(Ω) = λ1(p,A)
1

1−p . (3.21)

We have then shown that Hölder’s inequality is an equality for the product f̂ û and thus
that there exists λ > 0 such that f̂ = λ|û|p−2û. The last equality in (3.21) combined
with ‖f̂‖Lp′ (Ω) = 1 implies now λ = λ1(p,A). Thus û and then f̂ is an eigenfunction for
λ1(p,A).

Proof of Proposition 3.1. The result is a quite simple consequence of Lemma 3.1 and the
fact that for every f ∈ Lp′(Ω), we have

min
u∈W 1,p

0 (Ω)

∫
Ω

(
1

p

|∇u|p

(1 + cθ)p−1
− fu

)
dx = − 1

p′

∫
Ω

|∇uf |p

(1 + cθ)p−1
dx,

with uf the solution of

−div
( |∇u|p−2

(1 + cθ)p−1
∇u
)

= f in Ω, u = 0 on ∂Ω.

Problem (3.11) has been studied in [15] (see also [13], [28], [44], [31] for p = 2), where
they were obtained the corresponding optimality conditions and some smoothness properties.
These smoothness results also hold for the solutions of (3.2) because by Proposition 3.1
every solution (θ̂, û) of (3.2) is a solution of (3.11) with f = λ̂|u|p−1u and λ̂ the value of
the minimum in (3.2). Using a bootstrap argument and that every eigenfunction for the
minimum eigenvalue of the operator u 7→ −div((1 + cθ)1−p|∇u|p−2∇u) cannot change sign
we immediately have the following result.

Theorem 3.2 Let Ω ⊂ RN be an open bounded set with C1,1 boundary, and (θ, u)a solution
of (3.2). Then, we have

• The function u is in W 1,∞(Ω) and except for a change of sign, it is strictly positive in
Ω.

• The function

σ =
|∇u|p−2

(1 + cθ)p−1
∇u (3.22)

satisfies

|σ|rσ ∈ H1(Ω)N , ∀ r > −1

2
, σ = (σ · ν)ν on ∂Ω, (3.23)

with ν the unitary outward normal on ∂Ω.
• The function θ satisfies ∫

Ω

θ dx = κ, (3.24)
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and there exists µ > 0 such that

θ = max

{
0,min

{
1,

1

c

(
|∇u|
µ
− 1

)}}
a.e. in Ω. (3.25)

Moreover, it satisfies

∂iθσj − ∂jθσi = (1 + cθ) (∂jσi − ∂iσj)χ{|σ|=µ} ∈ L2(Ω), ∀ i, j ∈ {1, ..., N}. (3.26)

• If the solution is unrelaxed, i.e. θ ∈ {0, 1} a.e. in Ω, then

curl (|σ|p′−2σ) = 0 a.e. in Ω. (3.27)

A consequence of this regularity is the following non existence result for problem (3.1).
The proof is similar to the one in [14], where it is proved the result for p = 2. Therefore we
schematize some parts. We also refer to [13], [15], [44] for related results relative to problem
(3.12).

Theorem 3.3 Let Ω ⊂ RN be an open, bounded and simply connected set with C1,1 connected
boundary and assume that there exists a solution of (θ, u) of (3.2) with θ = χω for some ω ⊂ Ω
measurable. Then, Ω is a ball and u and ω have a radial structure.

Remark 3.1 The existence of radial solutions for problem (3.1) has been first proved in [4].
The structure of these radial functions in the case p = 2 is a problem that has been considered
for example in [19], [20], [32] and [40].

Proof of Theorem 3.3. We define σ by (3.22). By (3.27) and Ω simply connected, we know
that there exists w ∈ W 1,∞(Ω), with |∇w|s∇w ∈ H1(Ω)N , for every s > (p− 3)/2 such that

∇w = |σ|p′−2σ ⇐⇒ |∇w|p−2∇w = σ. (3.28)

Using also the second assertion in (3.23), we get that ∇w is ortogonal to the boundary on
∂Ω. Since the boundary is connected, this means that w is constant on the boundary. Taking
into account that w is defined up to a constant, we can then take w vanishing on ∂Ω, which
proves that w can be chosen as the unique solution of{

−div(|∇w|p−2∇w) = λup−1 in Ω

w = 0 on ∂Ω.
(3.29)

Since u belongs to W 1,∞(Ω), the first corollary in [23] and the Calderon-Zygmund theory
show that for some γ ∈ (0, 1),

w ∈ C1,γ(Ω) ∩W 3,q
loc (Ω \ {∇w = 0}), ∀ q > 1. (3.30)

Now, taking µ > 0 such that (3.25) holds, let us prove that for every x0 ∈ Ω, with

|B(x0, r) ∩ ω| > 0, |B(x0, r) \ ω| > 0, ∀ r > 0, (3.31)
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there exists a connected open set O strictly contained in Ω of class W 3,q for every q > 1 such
that

x0 ∈ ∂O, |∇w| = µ on ∂O, w = w(x0) on ∂O. (3.32)

Moreover, all the points in ∂O satisfy (3.31). We define the set

Υ̂ =
{
x ∈ Ω : w(x) = w(x0), |∇w(x0)| > µ

2

}
.

which using the implicit function theorem is a (N − 1)-dimensional sub-manifold of class
W 3,q(Ω) for every q > 1. We also define Υ as the connected component of Υ̂ containing
x0. Taking into account (3.28) and (3.22) we conclude (see Lemma 2.6 in [14]) that for any
compact set K ⊂ Υ, there exist a neighborhood U of K, τ > 0 and h ∈ W 1,∞(w(x0) −
τ, w(x0) + τ) such that

u(x) = h(w(x)), a.e. in U ⇒ ∇u = h′(w)∇w a.e. in U.

Since we also know that ∇u = (1 + cχω)∇w a.e. in Ω, we deduce as an application of the
coarea formula that there exists N ⊂ (w(x0) − τ, w(x0) + τ) of null measure such that for
every s ∈ (w(x0)− τ, w(x0) + τ)\N , we have (HN−1 denotes the (N −1)-Hausdorff measure)

h′(s) ∈
{

1 + c, 1
}
,

{
h′(s) = 1 + c⇒ HN−1

(
w−1(s) ∩ U \ ω

)
= 0

h′(s) = 1⇒ HN−1

(
w−1(s) ∩ U ∩ ω

)
= 0,

Combined with (3.31) this shows that |∇w| = µ on K, which by the arbitrariness of K
proves |∇w| = µ on Υ. Thanks to this equality we can now show that the open manifold Υ
is also closed and then by the Jordan-Brouwer theorem, that Υ is the boundary of an open
set O satisfying (3.32). Now, we can prove that the interior of the intersection of all the
connected open sets O satisfying |∇w| = µ and w constant on ∂O is also in these conditions.
To simplify the notation, we still denote such intersection as O. Observe that this set cannot
contain any point x0 satisfying (3.31), which taking into account that it is connected, implies
that O is contained in ω or in Ω \ ω. Since w is constant on ∂O it must contain at least a
point where ∇w vanishes. By (3.25), this proves that it is the condition O ⊂ Ω \ ω which
holds true. Therefore, ∇w = ∇u a.e. in O and thus w = u + a in O for some a ∈ R. From
(χω, u) solution of (3.11), the definition (3.22) of σ and (3.28), we have that w satisfies

−div
(
|∇w|p−2∇w

)
= λ̂|w − a|p−2(w − a) in O

w,
∂w

∂ν
constant on ∂O,

(3.33)

with λ̂ the value of the minimum in (3.11). Since O is of class C2, we can apply Serrin’s
Theorem ( [49]) to deduce that O = B(x̄, r) for some x̄ ∈ O and some r > 0. Moreover, w
is a radial function with respect to x̄ in O. Let R > 0 be the ball defined by

B(x̄, R) =
⋃

O ⊂ B(x̄, s)
w radial in B(x̄, s)

B(x̄, s).

If w = 0 on ∂B(x̄, R), then Ω = B(x̄, R) since Ω is simply connected with connected bound-
ary. In another case, by Hopf’s Lemma for the p-Laplacian operator (Theorem 1 in [24], The-
orem 5.5 in [47]) we have w = c > 0 and ∇w 6= 0 on ∂B(x̄, R). Thus, by Lemma 2.6 in [14]
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there exists a neighborhood U of ∂B(x̄, R) and a Lipschitz function h : (c − δ, c + δ) → R,
with δ > 0, such that u(x) = h(w(x)) in U. Then, we take ε > 0 small enough to have
B(x̄, R+ ε) \B(x̄, R− ε) ⊂ U and such that there exists a solution φ ∈ W 3,∞(R− ε, R+ ε)
of the Cauchy problem{

−
(
rN−1|φ′|p−2φ′

)
= rN−1h(φ) in (R− ε, R + ε)

φ(R) = c, φ′(R) =
∂w

∂n

∣∣
∂B(x̄,R)

.
(3.34)

The function v(x) = φ(|x− x̄|) is a radial functions with respect to x̄ and satisfies{
−div(|∇v|p−2∇v) = h(v) in U.

w = v in U ∩B(x̄, R).

By lemma 3.2 below, we have w = v in U . Thus w is a radial function in B(x̄, R + ε), in
contradiction with the definition of B(x̄, R). Thus Ω is a ball centered in x̄ and w is a radial
function. By (3.22), (3.28) and (3.25) we also have that ω has a radial structure and that u
is a radial function.

In the proof of Theorem 3.3 we have used the following unique continuation lemma

Lemma 3.2 Let Ω ⊂ RN be a connected open set and h : (a, b)→ R be a Lipschitz function.
Assume u1 ∈ C3(Ω) and u2 ∈ W 2,∞

loc (Ω) such that

− div(|∇ui|p−2∇ui) = h(ui) in Ω, i = 1, 2 (3.35)

and
inf
x∈Ω
|∇ui(x)| > 0, i = 1, 2. (3.36)

If u1 = u2 in a open subset of Ω, then u = v in Ω.

Proof. Thanks to the smoothness of u1, u2, we can rewrite (3.35) as:

Ai : D2ui =
h(ui)

|∇ui|p−2
in Ω, i = 1, 2, (3.37)

with
Ai = I + (p− 2)

∇ui ⊗∇ui

|∇ui|2
, i = 1, 2.

Then, taking v = u1 − u2, subtracting the equations (3.37), and taking into account the
smoothness properties of u1 and u2, we have that for every open set O b Ω, there exists a
constant M depending on O such that∣∣A1 : D2v

∣∣ 6M
(
|∇v|+ |v|

)
in O.

Since A1 is uniformly elliptic and has coefficients of class C2, this allows us to use the unique
continuation principle in [5] to conclude v = 0 and then u1 = u2 in O for every open set
O b Ω. Thus, u1 = u2 in Ω.
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3.3. Numerical approximation.
The present section is devoted to define a numerical algorithm for the resolution of problem

(3.2) and to prove the convergence to a critical point. We also show the convergence of the
solution of a discrete version of (3.2) to the solutions of the continuous one and we provide
some numerical experiments.

Algorithm.

Initialization: A strictly positive function u0 ∈ W 1,p
0 (Ω) with ‖u0‖Lp(Ω) = 1, θ0 ∈ L∞(Ω; [0, 1])

with ‖θ0‖L1(Ω) 6 κ and i = 0.

1 : Set
λi =

∫
Ω

|∇ui|p

(1 + cθi)p−1
dx. (3.38)

2 : Set (θi+1, ũi+1) a solution of

min
ϑ,v

∫
Ω

(1

p

|∇v|p

(1 + cϑ)p−1
− λiu

p−1
i v

)
dx

ϑ ∈ L∞(Ω; [0, 1]), v ∈ W 1,p
0 (Ω),

∫
Ω

ϑdx 6 κ.
(3.39)

3 : Set
ui+1 =

ũi+1

‖ũi+1‖Lp(Ω)

. (3.40)

Theorem 3.4 The sequence λi defined by the above algorithm is decreasing and converges
to λ > λ̂. Moreover, the sequence ui is bounded in W 1,p

0 (Ω). Taking a subsequence of i, still
denoted by i, such that there exist u ∈ W 1,p

0 (Ω) and θ ∈ L∞(Ω; [0, 1]), with

ui ⇀ u in W 1,p
0 (Ω), θi

∗
⇀ θ in L∞(Ω), (3.41)

we also have that
ũi, ui−1 ⇀ u in W 1,p

0 (Ω). (3.42)

and (θ, u) is a solution of

min
ϑ,v

{∫
Ω

(1

p

|∇v|p

(1 + cϑ)p−1
− λup−1v

)
dx

}
ϑ ∈ L∞(Ω; [0, 1]), v ∈ W 1,p

0 (Ω),

∫
Ω

ϑdx 6 κ.
(3.43)

Remark 3.2 The fact that (θ, u) is a solution of (3.43) is equivalent (see Theorem 3.1 in
[15]) to (θ, u) a critical point for (3.11) in the sense that it satisfies the optimality conditions

− div
( |∇u|p−2

(1 + cθ)p−1
∇u
)

= λup−1 in Ω, (3.44)
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‖u‖Lp(Ω) = 1, λ =

∫
Ω

|∇u|p

(1 + cθ)p−1
dx, u > 0 in Ω,

∫
Ω

θ = κ, (3.45)

and there exists µ > 0 such that θ and u satisfy (3.25). Moreover, u is positive implies
that λ is the first eigenvalue of the operator v ∈ W 1,p

0 (Ω) 7→ −div((1 + cθ)1−p|∇v|p−2∇v) ∈
W−1,p′(Ω).

Proof of Theorem 3.4. First we observe that (θi+1, ũi+1) solution of (3.39) implies that ũi+1

is a solution of
− div

( |∇ũi+1|p−2

(1 + cθi+1)p−1
∇ũi+1

)
= λiu

p−1
i in Ω. (3.46)

In particular this allows us to use the strong maximum principle to deduce by induction that
ui is striclty positive in Ω for every i.

Let us obtain some estimates: Multiplying (3.46) by ũi+1 and taking into account (3.38)
and (3.40) we get

λi+1‖ũi+1‖pLp(Ω) =

∫
Ω

|∇ũi+1|p

(1 + cθi+1)p−1
dx = λi

∫
Ω

up−1
i ũi+1 dx. (3.47)

On the other hand, (3.39) proves∫
Ω

(1

p

|∇ũi+1|p

(1 + cθi+1)p−1
− λiu

p−1
i ũi+1

)
dx 6

∫
Ω

(1

p

|∇ui|p

(1 + cθi)p−1
− λiu

p
i

)
dx, (3.48)

which using the second equality in (3.47) combined with (3.38) and (3.40) can be written as

−
‖ũi+1‖pLp(Ω)

p′
λi+1 6 −

1

p′
λi ⇐⇒ λi 6 λi+1‖ũi+1‖pLp(Ω). (3.49)

Using Hölder’s inequality in (3.47) and ‖ui‖Lp(Ω) = 1, we also have

λi+1‖ũi+1‖p−1
Lp(Ω) 6 λi, (3.50)

‖ũi+1‖pW 1,p
0 (Ω)

6 λi(1 + c)p−1‖ũi+1‖Lp(Ω). (3.51)

From (3.49), (3.50) and
λi > λ̂ > 0, (3.52)

with λ̂ the value of the minimum in (3.2), which is a consequence of (3.38), we have

1 6 ‖ũi+1‖Lp(Ω). (3.53)

Thus (3.50) shows
λi+1 6 λi. (3.54)

Inequality (3.54) proves that the sequence λi is decreasing and therefore it converges to a
limit λ which by (3.52) is bigger or equal than λ̂. Inequalities (3.50) and (3.53) then show

∃ lim
i→∞
‖ũi‖Lp(Ω) = 1. (3.55)
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By λi bounded, (3.51) and (3.55), we have that ũi and ui are bounded in W 1,p
0 (Ω), and that

for a subsequence of i, still denoted by i, there exists u ∈ W 1,p
0 (Ω) such that

ui ⇀ u in W 1,p
0 (Ω), ũi ⇀ u in W 1,p

0 (Ω), ‖u‖Lp(Ω) = 1. (3.56)

Taking another subsequence if necessary, we can also assume that there exist θ ∈ L∞(Ω; [0, 1])
and z ∈ W 1,p

0 (Ω) such that

θi
∗
⇀ θ in L∞(Ω), ui−1 ⇀ z in W 1,p

0 (Ω), ‖z‖Lp(Ω) = 1. (3.57)

By (3.39) with i replaced by i− 1, we have∫
Ω

(1

p

|∇ui|p

(1 + cθi)p−1
− λi−1u

p−1
i−1 ui

)
dx 6

∫
Ω

(1

p

|∇v|p

(1 + cϑ)p−1
− λi−1u

p−1
i−1 v

)
dx, (3.58)

for every v ∈ W 1,p
0 (Ω) and every ϑ ∈ L∞(Ω; [0, 1]), with ‖ϑ‖L1(Ω) 6 κ. Using the convexity of

J defined by (3.9), (3.56), (3.57) and the Rellich-Kondrachov compactness theorem, we can
pass to the limit in (3.58) to deduce∫

Ω

(1

p

|∇u|p

(1 + cθ)p−1
− λzp−1u

)
dx 6

∫
Ω

(1

p

|∇v|p

(1 + cϑ)p−1
− λzp−1v

)
dx, (3.59)

for every v ∈ W 1,p
0 (Ω) and every ϑ ∈ L∞(Ω; [0, 1]), with ‖ϑ‖L1(Ω) 6 κ. Thanks to the Rellich-

Kondrachov compactness theorem, we can also pass to the limit in (3.47) with i replaced by
i− 1 to deduce

1 =

∫
Ω

up−1z dx,

where ‖u‖Lp(Ω) = ‖z‖Lp(Ω) = 1. Thus, Hölder’s inequality is an equality and then, using u
and z positive, we deduce u = z. Using this equality in (3.59), we finish the proof of the
theorem.

Remark 3.3 Problem (3.39) is a particular case of (3.11) with f = λiu
p−1
i . The numerical

resolution of this problem has been studied in [16] where we have given two algorithms and
proved the convergence. We also refer to [3], [7], [28], [31] and [53] for some other results
referred to the case p = 2.

In order to implement the above algorithm is necessary to work with a discrete version
of (3.2), where the spaces L∞(Ω) and W 1,p

0 (Ω) are replaced by finite-dimensional spaces.
Moreover, the algorithms proposed in [16] need to work with a discrete version of the problem
at least for p > 2 because in this case W 1,p

0 (Ω) is not included in H1
0 (Ω). As an example

of discretization, let us assume that Ω is a polyhedral domain in RN . Then, for a regular
mesh Th of Ω composed by N -simplexes (see e.g. [48]), with maximum diameter h > 0, let
us define the Lagrange finite element spaces

Vh =
{
v ∈ C0(Ω) : v

∣∣
τ
∈ P1(τ), ∀τ ∈ Th

}
(3.60)

Θh =
{
ϑ ∈ L∞(Ω) : ϑ

∣∣
τ
∈ P0(τ), ∀τ ∈ Th

}
, (3.61)
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where P0(τ) denotes the space of constant functions in τ , and P1(τ) the space of affine
functions in τ . Using these spaces, we consider the discrete version of (3.2)

min
u,θ

∫
Ω

|∇u|p

(1 + cθ)p−1
dx

θ ∈ Θh, 0 6 θ 6 1 a.e. in Ω,

∫
Ω

θdx 6 κ

u ∈ Vh,
∫

Ω

|u|pdx = 1,

(3.62)

Clearly, Theorem 3.4 still holds for this discrete problem where now the weak and strong
convergences are the same because we are working in finite dimension. An important question
is if the solutions of the discrete problem converge to the solutions of the continuous one when
h tends to zero. The following theorem provides a positive answer to this question.

Theorem 3.5 Assume a polyhedral open set Ω ⊂ RN and a sequence Th of regular mesh
whose diameter h tends to zero. Then, the value λh of the minimum in (3.62) converges to
the value λ̂ of the minimum in (3.2). Moreover, if (uh, θh) is a solution of (3.43), then uh
is bounded in W 1,p

0 (Ω) and extracting a subsequence of h, still denoted by h, such that there
exist θ ∈ L∞(Ω; [0, 1]) and u ∈ W 1,p

0 (Ω) with

uh ⇀ u in W 1,p
0 (Ω), θh

∗
⇀ θ in L∞(Ω), (3.63)

we have that (θ, u) is a solution of (3.2).

If we also asume that there exists a solution (θ̂, û) of (3.2), such that

û ∈ W 1,∞(Ω), ∇û ∈ BV (Ω)N , θ̂ ∈ BV (Ω), (3.64)

then, there exists C > 0, depending on Ω, p, θ̂, and û, such that

λ̂ 6 λh 6 λ̂+ Ch, ∀h > 0. (3.65)

Proof. By the definitions of λh and λ̂, it is clear that λh > λ̂. On the other hand, the
classical finite element theory shows that for every solution (θ, u) ∈ L∞(Ω; [0, 1]) of (3.2),
there exist θ̃h ∈ Θh and ũh ∈ Vh such that

θ̃h → θ in L1(Ω), θ̃h
∗
⇀ θ in L∞(Ω),

∫
Ω

θ̃h dx 6 κ. (3.66)

ũh → u in W 1,p
0 (Ω), ‖ũh‖Lp(Ω) = 1. (3.67)

Therefore,

λ̂ =

∫
Ω

|∇u|p

(1 + cθ)p−1
dx = lim

h→0

∫
Ω

|∇ũh|p

(1 + cθ̃h)p−1
dx > lim sup

h→0
λh,

which combined with λh > λ̂ proves that λh converges to λ̂.

Let us now consider a solution (uh, θh) of (3.43). Taking into account

‖uh‖pW 1,p
0 (Ω)

(1 + c)p−1
6
∫

Ω

|∇uh|p

(1 + cθh)p−1
dx = λh,
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we get that uh is bounded in W 1,p
0 (Ω). Extracting a subsequence of h such that (3.63) holds,

we have that

‖u‖Lp(Ω) = 1, θ ∈ L∞(Ω; [0, 1]),

∫
Ω

θ dx 6 κ,

while the convexity of J given by (3.9) shows

λ̂ 6
∫

Ω

|∇u|p

(1 + cθ)p−1
dx 6 lim

h→0

∫
Ω

|∇uh|p

(1 + cθh)p−1
dx = lim

h→0
λh = λ̂.

This proves that (θ, u) is a solution of (3.2).

If we now assume that there exists a solution (θ̂, û) of (3.2) satisfying (3.64), then, defining
θ̃h ∈ Θh, ũh ∈ Vh by

θ̃h
∣∣
τ

=
1

|τ |

∫
τ

θ dx, ∀ τ ∈ Th, ũh =
πhu

‖πhu‖Lp(Ω)

,

with πhu the usual projection operator in the finite element space Vh, i.e.

πhu ∈ Vh, (πhu)(xi) = u(xi), ∀xi vertex of Th,

we have that (3.66), (3.67) hold and, thanks to (3.64),

‖ũh − u‖W 1,p
0 (Ω) + ‖θ̃h − θ‖L1(Ω) 6 Ch.

Thus, we have ∫
Ω

∣∣∣∣ |∇u|p

(1 + cθ)p−1
− |∇ũh|p

(1 + cθ̃h)p−1

∣∣∣∣ dx 6 Ch,

which implies

λ̂ =

∫
Ω

|∇u|p

(1 + cθ)p−1
dx 6 λh 6

∫
Ω

|∇ũh|p

(1 + cθ̃h)p−1
dx 6 λ̂+ Ch.

Remark 3.4 Observe that the smoothness properties of the solutions of (3.2) do not imply
(3.64), however this seems to be satisfied in the numerical experiments.

We implement the algorithm in Python, using the finite element solver Fenics [6]. We
solve the problem in the square (0, 1)2 ⊂ R2 for five different values of p, c = 1 and κ = 1/2.
The corresponding contour lines for the optimal functions u and θ are given by the following
pictures.
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(a) u, p=1.2. (b) θ, p=1.2.

Figure 3.1: Solutions for p = 1.2.

(a) u, p=1.5. (b) θ, p=1.5.

Figure 3.2: Solutions for p = 1.5.

(a) u, p=2. (b) θ, p=2.

Figure 3.3: Solutions for p = 2.
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(a) u, p=4. (b) θ, p=4.

Figure 3.4: Solutions for p = 4.

(a) u, p=6. (b) θ, p=6.

Figure 3.5: Solutions for p = 6.

(a) u, p=8. (b) θ, p=8.

Figure 3.6: Solutions for p = 8.
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(a) u, p=10. (b) θ, p=10.

Figure 3.7: Solutions for p = 10.
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Conclusions

In this work we have studied the problem of maximizing the energy of the p-Laplacian
operator for a two-phase material in a bounded open set by means of the optimization by
the homogenization method.

In Chapter 1 we have obtained a relaxed formulation using the homogenization theory. We
have proved that, although the relaxed problem does not have a unique solution in general,
the flux σ̂ is unique. The relaxed formulation (2.5) allowed us to get optimality conditions
which we gave in Theorem 1.2. We have shown that if the data is smooth enough, then, for
every r > −1/2 the function |σ̂|rσ̂ is in the Sobolev space H1(Ω)N ∩L∞(Ω)N . Moreover, the
optimal proportion θ̂ is derivable in the orthogonal directions to ∇û. Using these results, we
have proved that the original problem has a solution in a smooth open set Ω with connected
boundary if and only if Ω is a ball.

In Chapter 2, we provided two algorithms to solve the finite dimensional approximation
of (2.5), given by (2.24). In Theorem (2.2) have estimated the rates of convergence for
both algorithms. We have also proved that the flux σi, obtained by any of both algorithms,
converges strongly in Lp′(Ω) to the solution of (2.25). These results were known for p = 2, but
we have extended them to any p ∈ (1,∞). Moreover, we have estimated the error between the
value of the discretized and continuous problems (2.24) and (2.5), where Θ = Θh and V = Vh
are finite elements spaces given by (2.26) and (2.27) respectively, assuming the existence of
a solution (θ̂, û) such that θ̂ ∈ BV (Ω) and ∇û ∈ BV (Ω)N .

As an application of the results proved in Chapters 1 and 2 we have studied in Chapter
3 problem (3.1), which corresponds to the minimization of the first eigenvalue of the p-
Laplacian for a two phase material. We obtained the homogenized formulation (3.2) of this
problem using proposition 3.1 which in turns allowed us to apply a bootstrap argument
to obtain the regularity and characterization results in Theorem 3.2. As in chapter 1, the
regularity Theorem allows us to prove that the problem only has a solution in an open domain,
bounded and simply connected if it is a ball. Additionally, based on the power method and
the alternate optimization algorithm developed in Chapter 2, we developed and proved the
convergence of an algorithm converges to a critical point of the problem. Analogously to
the convergence Theorem (2.3), we have estimated the error between the finite dimensional
problem (3.62) and the continuous one (3.2).

Finally, the results obtained through this thesis can be used as the basis for future research.
For example, it is interesting to study the case when the material represented by the coefficient
β is much worse than the corresponding to α. Mathematically, this happens when β goes
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to infinity. In this regard, by formal calculations we conjecture that the value of the relaxed
formulation (1.7) of (1.1) converges to the value of

min
θ,u

{
α

p

∫
Ω

|∇u|p

θp−1
dx− 〈f, u〉

}
u ∈ W 1,p

0 (Ω), θ ∈ L∞(Ω; [0, 1]),

∫
Ω

θdx 6 κ.

(3.68)

Moreover, if this problem has a solution (θ, u) ∈ L∞(Ω; [0, 1]) ×W 1,p
0 (Ω) such that θ = χω

for a measurable set ω ⊂ Ω, then we need to have ∇u = 0 in Ω\ω. Thus u must be constant
in the connected components of Ω \ω. This means that Ω \ω is filled with a extremely rigid
material which is consistent with the fact that β →∞. From the results of Chapters 1 and
2 we can expect to be able to prove some smoothness results for the solutions of (3.70).

Another interesting extension is to study the case when p → ∞, which corresponds to
study the mixture of two plastic materials. It is important to observe that in this case we
need to consider a sequence of coefficients αp and βp depending on p such that α1−p

p and
α1−p
p are converging sequences. Arguing as in [10] and [1] and assuming that α1−p

p and β1−p
p

converges to α∞ and β∞ when p→∞, we conjecture that the value of the problem
min
θ,u

{
1

p

∫
Ω

|∇u|p

(α1−p
p θ + β1−p

p (1− θ))p−1
dx− 〈f, u〉

}
u ∈ W 1,p

0 (Ω), θ ∈ L∞(Ω; [0, 1]),

∫
Ω

θdx 6 κ,

converges to the value of
min
θ,u
−〈f, u〉

u ∈ W 1,∞
0 (Ω), θ ∈ L∞(Ω; [0, 1]),

∫
Ω

θdx 6 κ,

|∇u(x)|(α∞θ(x) + β∞(1− θ(x))) 6 1 a.e. x ∈ Ω.

(3.69)

Therefore problem (3.71) can be seen as the homogenized version of the ∞−Laplacian
equation. Of course, the rigorous demonstration of this convergence needs further analysis,
however problem (3.71) make it possible to study the mixture of two inelastic materials
characterized by the constants α∞ and β∞ respectively.
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Conclusiones

En este trabajo se ha estudiado el problema de maximizar la energía del operador p-
Laplaciano para un material de dos fases en un conjunto abierto y acotado por medio del
método de optimización por homogeneización.

En el Capítulo 1 se ha obtenido una formulación relajada utilizando teoría de homoge-
neización. Se ha demostrado que, aunque el problema relajado no tiene una única solución
en general, el flujo σ̂ es único. La formulación relajada (2.5) permitió obtener condiciones
de optimalidad las cuales son dadas en el Teorema 1.2. Se ha mostrado que si los datos son
suficientemente suaves, entonces, para todo r > −1/2 la función |σ̂|rσ̂ está en el espacio de
Sobolev H1(Ω)N ∩ L∞(Ω)N . Más aún, la proporción óptima es derivable en las direcciones
ortogonales a ∇û. Utilizando estos resultados, se ha probado que el problema original tiene
un solución en un conjunto Ω abierto, suave, simplemente conexo y con borde conexo si y
solo si Ω es una bola.

En el Capítulo 2, se presentaron dos algoritmos para resolver una aproximación finito
dimensional de (2.5), dada por (2.24). En el Teorema (2.2) se han estimado los ratios de
convergencia para ambos algoritmos. Se ha demostrado también que el flujo σi, obtenido por
cualquiera de los dos algoritmos, converge fuertemente en Lp′(Ω) a la solución de (2.25). Estos
resultados eran conocidos para p = 2, pero en este trabajo han sido extendidos a cualquier
p ∈ (1,∞). Más aún, se ha estimado el error entre los valores de los problemas desratizado
y continuo (2.24) y (2.5), donde Θ = Θh y V = Vh son espacios de elementos finitos dados
por (2.26) y (2.27), respectivamente, asumiendo la existencia de una solución (θ̂, û) tal que
θ̂ ∈ BV (Ω) y ∇û ∈ BV (Ω)N .

Como una aplicación de los resultados demostrados en los Capítulos 1 y 2, se ha estudiado
en el Capítulo 3 el problema (3.1), el cual corresponde a la minimización del primer valor
propio del p-Laplaciano para un material con dos fases. Se obtuvo la formulación homogenei-
zada (3.2) para este problema utilizando la proposición 3.1, que a su vez permitió aplicar un
un argumento tipo ’bootstrap’ para obtener los resultados de regularidad caracterización en
el Teorema 3.2. Al igual que en el Capítulo 1, el resultado de regularidad permitió demostrar
que el problema no relajado tiene solución en un conjunto abierto, acotado y simplemente
conexo con borde simplemente conexo y suave si y solo si es una bola. Adicionalmente, ba-
sado en el método de la potencia y el método de optimización alternada desarrollado en el
Capítulo 2, se desarrollo y demostró la convergencia de un algoritmo que converge a un punto
crítico del problema. Análogamente al Teorema de convergencia (2.3), se estimó el error entre
el problema finito dimensional (3.62) y el continuo (3.2).
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Finalmente, los resultados obtenido a lo largo de esta tesis pueden ser usados como base
para investigación futura. Por ejemplo, es interesante estudiar el caso cuando el material
representado por el coeficiente β es mucho peor que el correspondiente a α. Matemáticamente,
esto pasa cuando β tiende a infinito. Con respecto a esto, mediante cálculos formales se
conjetura que el valor del problema relajado(1.7) converge al valor del problema dado por

mı́n
θ,u

{
α

p

∫
Ω

|∇u|p

θp−1
dx− 〈f, u〉

}
u ∈ W 1,p

0 (Ω), θ ∈ L∞(Ω; [0, 1]),

∫
Ω

θdx 6 κ.

(3.70)

Más aún, si este problema tiene un solución(θ, u) ∈ L∞(Ω; [0, 1])×W 1,p
0 (Ω) tal que θ = χω

para un conjunto medible ω ⊂ Ω, entonces se debe tener que ∇u = 0 en Ω \ ω. Entonces, u
debe ser constante en las componentes conexas de Ω \ω. Esto significa que Ω \ω es rellenado
con un material extremadamente rígido, lo cual es consistente con el hecho de que β → ∞.
Por los resultados obtenidos en los Capítulos 1 y 2 es esperable que se puedan obtener algunos
resultados de regularidad para las soluciones de (3.70).

Otra extensión interesante es estudiar el caso cuando p → ∞, lo cual corresponde a
estudiar la mezcla de dos materiales perfectamente plásticos. Es importante observar que en
este caso es necesario considerar una secuencia de coeficientes αp y βp tales que α1−p

p y α1−p
p

son sucesiones convergentes. Argumentando como en [10] y [1] y asumiendo que α1−p
p y β1−p

p

convergen a α∞ y β∞ cuando p→∞,se puede conjeturar que el valor del problema
mı́n
θ,u

{
1

p

∫
Ω

|∇u|p

(α1−p
p θ + β1−p

p (1− θ))p−1
dx− 〈f, u〉

}
u ∈ W 1,p

0 (Ω), θ ∈ L∞(Ω; [0, 1]),

∫
Ω

θdx 6 κ,

converge al valor de
mı́n
θ,u
−〈f, u〉

u ∈ W 1,∞
0 (Ω), θ ∈ L∞(Ω; [0, 1]),

∫
Ω

θdx 6 κ,

|∇u(x)|(α∞θ(x) + β∞(1− θ(x))) 6 1 a.e. x ∈ Ω.

(3.71)

Por lo tanto el problema (3.71) puede ser visto como una versión homogeneizada de la
ecuación del∞−Laplacian. Por supuesto, la demostración rigurosa de esta convergencia nece-
sita un análisis más profundo, sin embargo, el problema (3.71) hace posible estudiar la mezcla
de dos materiales inelasticos caracterizados por las constantes α∞ and β∞, respectivamente.
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