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ESTUDIO DE PROBLEMAS DE DISENO OPTIMO POR EL METODO DE
REGULARIDAD EN ECUACIONES NO LINEALES.

This thesis is devoted to the study of an optimal design problem, which is the maximization
of the internal energy for the solution of a p-Laplacian equation for a two-phase material. The
control variable is the region to be filled with restricted amount of the best material. In general
this type of problems has no solution and therefore it is necessary to work with a relaxed
formulation. We obtain a relaxed formulation for this problem using the homogenization
theory.

By means of the relaxation by homogenization we get a relaxed formuation, which in
turns allow us to obtain some smoothness results. Namely, we show that the flux is in the
Sobolev space H'(2)" and that the optimal proportion of the materials is differentiable in
the orthogonal direction to the flux for the solutions of the relaxed problem. This allows us to
prove that the non relaxed problem does not have any solution when f = 1 and the domain
is smooth, bounded and simply connected.

For the relaxed formulation we develope two algorithms, a feasible directions method
and an alternating minimization method. We show the convergence for both of them and we
provide an estimate for the error. When p > 2 both methods are only well defined for a finite-
dimensional approximation, because of this we also study the difference between solving the
finite-dimensional and the infinite-dimensional problems. Although the error bounds for both
methods are similar, numerical experiments show that the alternating minimization method
works better than the feasible directions one.

We also study the problem of minimizing the first eigenvalue of the p-Laplacian operator
for a two-phase material. We prove that there exists a relation between this problem and the
maximization of the energy. Through this relation we provide a relaxed formulation of the
problem and prove some smoothness results for these solutions. As a consequence we show
that if Q is of class OY!, simply connected with connected boundary, then the unrelaxed
problem has a solution if and only if €2 is a ball. We provide an algorithm to approximate
the solutions of the relaxed problem and perform some numerical simulations.
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RESUMEN DE LA TESIS PARA OPTAR

AL GRADO DE: DOCTOR EN CIENCIAS DE LA INGENIERIA
MENCION MODELACION MATEMATICA

EN COTUTELA CON LA UNIVERSIDAD DE SEVILLA.

POR: DONATO MAXIMILIANO VASQUEZ VARAS

FECHA: 2021

PROF. GUIA: CARLOS CONCA ROSENDE, JUAN CASADO DIAZ

ESTUDIO DE PROBLEMAS DE DISENO OPTIMO POR EL METODO DE
REGULARIDAD EN ECUACIONES NO LINEALES.

Esta tesis esté dedicada al estudio de un problema de diseno 6ptimo, el cual corresponde a
la maximizacion de la energia interna para la solucién de una ecuacion del tipo p-Laplaciano
para un material con dos fases. La variable de control es la region a ser rellenada por una
cantidad restringida de material. En general este tipo de problemas no tiene un tnica soluciéon
y por lo tanto es necesario trabajar con una formulacion relajada. En este caso la solucion
relajada es obtenida utilizando teoria de homogeneizacion.

Mediante el método de relajacion por homogeneizaciéon se obtiene un problema relajado,
el cual a su vez permite obtener algunos resultados de suavidad. Este es, se demuestra que
el flujo asociado al problema, estd en el espacio H(2)Y y que la proporcion éptima de
materiales es derivable en las direcciones ortogonales al flujo para las soluciones del problema
relajado. Esto permite probar el problema no relajado no tiene soluciéon cuando f =1y el
dominio es suave, acotado y simplemente conexo.

Para la formulaciéon relajada se desarrolan dos algoritmos, uno de direcciones factibles
y otro de optimizacién alternada. Se demuestra la convergencia y se obtienen estimaciones
para del error en ambos casos. Cuando p > 2 ambos métodos solo estan bien definidos para
una aproximacion finito dimensional del problema. Aunque las estimaciones del error para
ambos métodos son similares, a través de experimentos numeéricos se aprecia que el método
de optimizacion alternada funciona mejor que el de direcciones factibles.

También se estudia el problema de minimizar el primer valor propio del p-Laplaciano para
un material con dos fases. Se demuestra que existe una relaciéon entre este problema y el
de la maximizacion de la energia. A través de esta relacion se obtiene una relajacion del
problema y se prueban algunos resultados de suavidad para las soluciones de este problema.
Como consecuencia se demuestra que si € es de clase C1!, simplemente conexo y con borde
conexo, entonces el problema no relajado tiene un solucién si y solo si €2 es una bola. Se
desarrolla ademés un algoritmo para aproximar las soluciones del problema relajado y se
realizan algunas simulaciones numeéricas con este algoritmo.
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Introduction

0.1. Statement of the problem.

The p-Laplacian operator appears in many applied problems like non linear diffusion,
machine learning, etc. In two dimensions the p-Laplacian is used to model the torsional
creep (see [8] and [30] for a deeper explanation), namely, considering a cylindrical bar of
cross section 0 C R? subject to a constant torsion, the problem is to find the function
u: Q — R (which is called stress potential) such that

—div (|[VuP?Vu) =1, ue WP (Q)

where p € (1,00). This phenomenon occurs when a material is subjected to an extreme
conditions such as very high pressures or temperatures. Under these conditions the material
behaves in a plastic way. This situation is modeled using the p-Laplacian operator for the
stress potential. When p — co the material behaves in a perfect plastic way. The case when
p — 1 is related to a geometric minimization problem. Here, we study the case p € (1,00)
in two or more dimensions, specifically we study the maximization of energy for a mixture
of two materials.

The general objective of this work is to study the maximization of the potential energy of
a mixing of two non linear materials that fills a domain Q C RY, namely:

SUP/Q Vg [P(axw + Bxaw)dz (1)
w C 2 measurable , |w| < &,
where u,, is the unique solution of the problem:
—div (|Vul 2 Vu(ax, + Bxaw)) = £ in Q, u € Wy?(Q), (2)

0 < a < f3 are constants, p € (1,00), 0 < & < |Q|, f € W1 (Q) and p' = 57, which is
the Holder conjugate of p. The constants a and [ represent the diffusion coefficients of the
two materials that we want to mix, and w is the region of {2 where we place the material
which corresponds to the diffusion coefficient a. We pointed out that if we do not consider
the restriction |w| < &, then trivially the solution would be w = €, so this corresponds to an
economic constraint that enforce us to use some portion of the material characterized by the
diffusion coefficient 5.

In general, this kind of problem does not have a solution or at least is not possible to use
the direct method of calculus of variations to prove the existence of a solution. This is because



in order to use the direct method, we need to provide a topology such that the minimizing
sequences are compacts and the objective function is lower semi-continuous in this topology.
To overcome this difficulty we use the method of homogenization (see [3|, [44], [52]) to get a
relaxed formulation of the problem. Thanks to this relaxation we are able to study several
properties of the solutions. Moreover, it allow us to develop two algorithms to find a solution
in a finite dimensional approximation of the relaxed problem.

In the following sections we introduce some concepts such as relaxation by homogenization
and we summarize some of the noteworthy aspects of the present work.

0.2. Relaxation by homogenization.
Let us recall the direct method in calculus of variation, for a general problem of the form

inf G(z), (3)
where G : X — R is bounded from below and X is not empty. The direct method consists
in providing a topology for X such that G is lower semicontinuous and the minimizing
sequences are compacts. For problem , a possibility to get such topology is to identify
every measurable subset w of {2 with its characteristic function y,, and then to use the weak—x
topology of L>°(€2). This ensure the compactness of the minimizing sequences. Moreover,
due to the non linearity of the problem, the function is not lower semicontinuous in general.
Moreover, for a sequence w, C 2 we only have the existence of § € L>(£;[0,1]). not
necessarily a characteristic function, such that y,, — 6 . On the other hand, if we consider
u,, the solution of (2)) and u € W;*(2) such that u,,, converges to u in the weak topology of
VVO1 P(€)), we do not have in general that satisfies (2]) with y,, replaced by 6. To overcome these
difficulties we first obtain a relaxed formulation through homogenization for . Briefly, we
say that the problem 3

inf G(2) (4)

is a relaxation of if:

e X is a dense subset of X and the restriction of G to X is equal to G.

e (5 is lower semicontinuous, i.e. if x,, € X converges to x € X, then

G(z) < liminf G(z,).

n—0o0

e For every z € X there exists a sequence z,, € X such that

G(x) = lim inf G(x,).
n—oo
If is a relaxation of , then ~has a solution and the infimum of agrees with
the minimum of . Moreover, £ € X is a solution of if and only if there exists a
minimizing sequence of converging to . We will use the theory of Homogenization
to obtain a relaxed formulation for problem (). This theory deals with the behavior of
composite materials and more precisely with the asymptotic behaviour of the sequences of
mixtures of several materials. In this regard, a key concept in homogenization theory is



the H-Convergence of monotone operators (see [45,50,/52| for the case p=2 and [46| for the
general case). To introduce this concept let us consider a sequence of continuous operators
A, Q x RY — RY which are strictly monotone, i.e.

(An(1,7) = An(&, 1)) - (& — &) > C (|&] + [&)™"P 72V g — g
LESHIES RY, &1 # &, ae x el
and satisfy

()

|4, (&) S CIEPY, VEERY,  ae. Qwith C > 0. (6)

We say that A, H-converges to a continuous and strictly monotone operator A : Q x RY —
RN (Ag is the H-limit of A,) if for every f € W~ (Q), the solutions u, € Wy (Q) of

—div(A,(Vu,, z)) = f in Q, u, € Wy?(9),
are such that
U, — g € WoP(Q),  An(Vup,z) — Ag(Vug, ) € LF (Q)V,
with wug the solution of

—div(Ag(Vu,z)) = f in Q, u € Wy (Q).

In our case, we are interested in

A€, ) = (X, (T) + BXa\wn (x))|€|p_2§-

The H-converges of this kind of operators have been extensively studied when p = 2. In fact,
the set of H-limits for such sequence A, when &, — 6 € L>®(Q) is completely characterized
by the eigenvalues of the H—limit (see [44] and section 2.2.3 in [3]). When p # 2 such result
is not known, but it is proved in in Chapter 1, which is given by

( / [Vul?
max . . dx
Q (Qar + (1 —0)517»)p~1
p—2
—div - [Vl - Vu | = fin Q, (7)
(6o + (1— )3T5 )1
ue WyP(Q), 0 e L=(Q;[0,1]), / 0dz < ,
\ Q

where 6 represents the proportion of the material . We also get the optimality conditions
for this problem, which allow us to get some smoothness results. As consequence we proved
that if Q2 is simple connected with smooth and connected boundary and f is constant, then
problem has a solution only if ) is a ball. Let us also prove that the relaxed problem

can be reformulated as
. (1 |VulP :
iy {;/Wd B <f7“>}

u € WyP(Q), 0 € L=(Q;0,1]), / odz < &,
Q

(8)

1
8]

with ¢ = (E) P 1 and f=f /. This provides a convex problem, which is used in Chapter

2 to develop a gradient descent algorithm to solve it.

3



0.3. Numerical simulations.

In Chapter 2 we develop two methods to solve problem (8g]) in a finite dimension setting
by replacing L>(€2) and W, () by finite dimensional spaces The first one is based on the
feasible direction method and the other is based on the optimality conditions of the problem
. We detail the description of this algorithms in Chapter 2. Moreover, we prove the
convergence and we estimate the rates of convergence.

To implement the algorithms we consider a polyhedral domain € in RY. Then, for a
regular mesh 7, of ) composed by N-simplexes (see e.g. [48]), with maximum diameter
h > 0, we consider the Lagrange finite element spaces

Vi={veCy(Q): v|_ePir), VreT} (9)
On={9e L= ): I ePy(r), VreT}, (10)

where Py(7) denotes the space of constant functions in 7, and Py(7) the space of affine
functions in 7. Replacing L®(Q) and W,"*(Q) by ©;, and Vj, in we obtain the finite

dimensional problem:
. [1 |VulP x
v {2_9/9 1+ Cg)p—1dx - <f,u>}

(11)
we Vi, 00, L2 0,1]), / odz < r
Q

We prove that the value of the finite dimensional approximation . converges to the value
of the problem (8). Additionally, assuming that there exists a solution (i, 0) € WP (w) x
L>(Q) such that 6 is a function of bounded variation, we provide a convergence rate. Finally,
using the finite dimensional approximation we perform some numerical experiments.

0.4. Minimization of the first eigenvalue

An interesting and applied problem related to , is the minimization of the first eigen-
value of the p-Laplacian for a two phase material, namely:

win | [VuPax. + fxan)
w C Q measurable, |w| < &, (12)
/updx =1, uc W;".(Q)

Q

We prove in Chapter 3 the following result which provides a strong relationship between
problems (1)) and (12)). For a matrix A € L>(Q)V*" we have the following equality:

max/ |AVu[P2 AV - Vudz

M(p, AT = (13)

—div(|AVul|P2AVu) = f, u € Wol’p(Q), HfHLp/(Q) <1

4



Here A\ (p, A) is the first eigenvalue of the operator u € W, ?(Q) — —div(|AVul|P"2AVu) €
W=1r(Q):
A(p, A) := min / |AVulP2AVu - Vu da.
Q

uewy P ()
lullLp (0)=1

The equality and the relaxation result for that we get in Chapter 1 allow us to
get a relaxed formulation for problem :

min/ ﬂdx
6 e L°(0:[0,1]), / bdz < x, (14)
Q

/upda: =1, u€ W,".(Q)
Q

Through this relaxed formulation and the results proved in Chapter 1 we get a smoothness
result for problem and analogously to problem (1), we prove that when Q is simply
connected with connected and C'! boundary, then problem has a solution if and only
if 2 is a ball.

It is noteworthy to mention the interpretation of . It shows that the minimization of
the first eigenvalue is equivalent to solve the problem for every f with || f]] o < 1and
then to minimize in f. This can be seen as a robust optimization problem.

Finally, in Chapter 3 we also provide a numerical algorithm to solve the relaxed problem
, but due to the non-convexity of problem we only prove the convergence to a critical
point of the problem. In order to implement the algorithm, we discretize the problem by
replacing L>°(2) and VVO1 ?(Q2) by O, (L0) and V},(9)), respectively. Using the relation between
the problems and and the convergence results for , we prove the convergence of
the value of the discrete problem to the value of the continuous problem and furthermore we
give a bound for the difference between both values.



Chapter 1

The Maximization of the p-Laplacian
Energy

Abstract: We consider the optimal arrangement of two diffusion materials in a bounded
open set  C RY in order to maximize the energy. The diffusion problem is modeled by
the p-Laplacian operator. It is well known that this type of problems has no solution in
general and then that it is necessary to work with a relaxed formulation. In the present
paper we obtain such relaxed formulation using the homogenization theory, i.e. we replace
both materials by microscopic mixtures of them. Then we get some uniqueness results and
a system of optimality conditions. As a consequence we prove some regularity properties
for the optimal solutions of the relaxed problem. Namely, we show that the flux is in the
Sobolev space H(2)" and that the optimal proportion of the materials is derivable in the
orthogonal direction to the flux. This will imply that the unrelaxed problem has no solution
in general. Our results extend those obtained by the first author for the Laplace operator.

1.1. Introduction

The present paper is devoted to study an optimal design problem for a diffusion process
in a two-phase material modeled by the p-Laplacian operator. Namely, we are interested in
the control problem

w

max/ (X, + B (1— X)) |VulPdz
Q
—div((ad, + B (1 — ,))|Vul2Vu) = f in Q (1.1)
we WyP(Q), wC Qmesurable, |w| < &,
with © a bounded open set in RY, N > 2, p € (1,00), a, B,k > 0, a < 3, X, the characteristic
function of the set w, and f € W~ (Q), with p’ is the Holder conjugate of p (p’ = Z%).

In (L.1)) the equation is understood to hold in the sense of distributions, combined with
u € WyP(Q), denoting by u® and u? the values of u in w and Q\ w respectively and assuming

6



w smooth enough, this means that the interphase conditions on dw are given by
u® = v’ o VuP?Vu® - v = BIVuP P2V’ - v on dwn

in the sense of the traces in W/?'?(9w) and W~/7P(9w) respectively. Here v denotes a
unitary normal vector on dw.

Physically the constants a and [ represent two diffusion materials that we are mixing
in order to maximize the corresponding functional, which in (1.1)) represent the potential
energy. The control variable is the set w where we place the material a. If we do not impose
any restriction on the amount of this material, it is simple to check that the solution of
is the trivial one given by w = €. Thus, the interesting problem corresponds to x < ||,
i.e. the material « is better than g but it is also more expensive and therefore, we do not
want to use a large amount of it in the mixture. The case corresponding to p = 2 has been
studied in several papers (see e.g. [13], [28], [44]) where some classical applications are the
optimal mixture of two materials in the cross-section of a beam in order to minimize the
torsion, and the optimal arrangement of two viscous fluids in a pipe. For p € (1,2) U (2, c0)
the p-Laplacian operator models the torsional creep in the cross-section of a beam [30] and
therefore problem (|1.1]) corresponds to find the material which minimizes the torsion for the
mixture of two homogeneous materials in non-linear elasticity.

It is well known that a control problem in the coefficients like has no solution in
general ( [42], [43]). In fact, some counterexamples to the existence of solution for with
p = 2 can be found in [13] and [44]. Thus, it is necessary to work with a relaxed formulation.
One way to obtain this formulation is to use the homogenization theory ( |3|, [44], [52]). The
idea is to replace the material a X, + 5(1 — A&,,) in by microscopic mixtures of «;, 5 with
a certain proportion § = 6(z) € [0,1], x € Q. The new materials do not only depend on
the proportion of each original material but also on their microscopical distribution. In the
case p = 2, this relaxed formulation has been obtained in [44]. Here we show that a relaxed
formulation for is given by

( max {]19/9 (Gaﬁ +(1— 9)51;’)1_p’vu|pd$}
—div((eaﬁ +(1- 9)5ﬁ)“pIVu|p‘2VU) =f inQ (1.2)

we WhP(Q), 0e L®(Q:0,1]), / 0(r) de < 1,
Q

which is equivalent to the Calculus of Variations problem

min {%/Q (627 +(1-0)577) v - u>} (1.3)

we WP (Q), 6e L=(Q;0,1]), /e(g;) dz < &,
Q

where here and in what follows, (f,u) denotes the duality product of f and u as elements of
W17 (Q) and W, (Q) respectively.

Our main results extend those obtained in [13| (see also [44]) for p = 2 relative to the
uniqueness and regularity of a solution for (1.2)). Namely, we prove that although it is not

7



clear that (1.3]) has a unique solution (u,#), the flux

o= ( 91 + ﬂ>1p|Vu|p_2Vu

C(pj ﬁp—l

is unique. Moreover, assuming 2 € C1! and f € LY(Q)NW1(Q), with ¢ > N, we have that
o belongs to H'(Q)N N L>(2). This is related to some regularity results for the p- Laplacian
operator obtained in [35]. We also prove that every solution (u, #) of (1.3|) satisfies

u € Wl’OO(Q), 810 0 — 8]-901 € L2<Q), 1 g 17] < Na (14)

where o; denotes the i-th component of the vector function o, i.e. 6 is derivable in the
orthogonal subspace to 0. The existence of first derivatives for ¢ and 6 will imply that we
cannot hope in general an existence result for the unrelaxed problem (1.1). Namely, the
existence of a solution for (1.1]) is equivalent to the existence of a solution for (1.3)) where 0
only takes the values zero and one, but then the derivatives of 6 in ((1.4]) vanish. Assuming
Q) simply connected with connected boundary, we show that this implies 0 = |Vw[P~2Vw,
with w the unique solution of

—div (|Vw|[P?Vw) = f in Q

w € Wy (Q).
Similarly to the result obtained in ( [13|, [44]), we prove that this is only possible if €2 is a
ball.

We finish this introduction remembering that the results obtained in the present paper
are also related to those given in [12| where, for p = 2, it is considered the minimization in
instead of the maximization. Problem is also related to the minimization of the
first eigenvalue for the p-Laplacian operator (see [13], [14], [19], [20], [39] for p = 2), problem
which we hope to study in a later work.

1.2. Position of the problem. Relaxation and equivalent
formulations

For a bounded open set 2 C RY| three positive constants «, 3,k with 0 < a < 3, k < |9,
and a distribution f € W5 (Q), p > 1, we are interested in the control problem
max/ (an + BXQ\M) |Vu, |Pdz
“ Ja

w C 2 measurable, |w| < K (1.5)

—div (X, + BXon) | Vuu[P>Vu,) = fin Q, u, € WyP(Q).

Here o and 5 represent the diffusion coefficients of two materials, where the diffusion process
is modeled by the p-Laplacian operator. The problem consists in maximizing the potential
energy.

Using u,, as test function in the state equation we have

[ (0 + it ) [9ulras = (7.,

8



By the above equality and since p’ = & we have

/ (an -+ ﬁXQ\w) |Vu,[Pdx
Q

=—p 219/ (a?(w + [J’Xg\w) \Vu,|[Pdx —/ (osz + ,BXQ\w) |Vuw\pdx>
Q Q

= (5 [ 0+ 80.0) Vulrds — (1)

which combined with wu,,, unique solution of the minimization problem

min {1 / (Oé)(w + BXQ\UJ) |Vu]pdx - <f7 u>} ;
Q

ueWyP(Q) P

gives the equivalent formulation for problem (1.5)):

w,u

min{%/ﬂ(aff + Ba\w) [VulPdr — (f, “} (1.6)

uwe WP (Q), wC Qmeasurable, |w|<

It is known that the maximum in or the minimun in are not achieved, i.e.,
that (or ) has no solution in general. Namely, for p = 2 and f = 1, it has been
proved in [13] and [44] that if Q is smooth, with connected smooth boundary, and has a
solution, then €2 is a ball. Some other classical counterexamples to the existence of solution
for problems related to (|1.5)) can be found in [42| and [|43]. Due to this difficulty it is then
necessary to find a relaxed formulation for . This is done by the following theorem

Theorem 1.1 A relaxed formulation of problem ((1.6)) is given by

II@lﬂiun {]19/9 <0aﬁ +(1- 9)5111’>1P|Vu|pdx —(f, u>}

(1.7)
we WIP(Q), 6eL>(Q;0,1)), / 0dr < K
Q

i the following sense:

1. Problem (1.7)) has a solution.

2. The infimum for problem (1.6) agrees with the minimum for (1.7)).
3. Every minimizing sequence (up,wy,) for (1.6 has a subsequence still denoted by (u,, w,,)
such that
U, —u in WyP(Q), X, =0 in L=(Q), (1.8)

with (u,0) solution of (1.7)).
4. For every pair (u,0) € WyP(Q) x L=(Q;[0,1]) there exist u, € Wy (Q), w, C Q
measurable, with |w,| < k such that (1.8)) holds and such that

1—
lim [ (aX,, + BXo\, )| Vu,[Pde = / (ea%p +(1- 9)51*;) I VuPde.  (1.9)

n—oo QO 0
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Remark 1.1 Such as we will see in the proof of Theorem the relazed materials in (|1.7))
are obtained as a simple lamination in a parallel direction to Vu. In this context, a laminated
material corresponds to a particular distribution of two materials, which depends exclusively
on one direction, say & € RN, which is represented by a function ¢ € L>*(2;[0,1]) with a
generic form as follows:

p(r) =g ) VreQ,

where g is a real-valued function. (see sections 2.3.5 and 2.2.1 in [3] for more details on
laminated materials).

Proor oF Turorem [1l Using that the function J : RY x (0,00) — R defined by

Jet) = L e e RY x (0,00), (1.10)

tp—1’

is convex, and the sequential compactness of the bounded sets in W, () x L*®(Q) with
respect to the weak-x topology, it is immediate to show that has at least a solution
and that every minimizing sequence (uy,,6,) for has a subsequence which converges in
WyP(Q) x L®(Q) weak-* to a minimum.

Since problem (1.6 consists in minimizing the same functional than the one in (1.7, but
on the smaller set

[, 2) € WE() x L@ [0.1]) : wE @ / X,de < k).

it is clear that the infimum in is bigger or equal than the minimum in ((1.7)). Thus,
taking into account that the convergence of the minimizing sequences stated above will imply
statement (3), we deduce that it is enough to prove statement (4) to complete the proof of
Theorem . For this purpose, we introduce the functions (the index f means periodicity)
H € L=((0,1) x R) N C°([0, 1]; L} (0,1)), G € W=((0,1) x R) N C°([0, 1]; W,"(0, 1)), by

H(Qa T) - Z X[k,k-i—q)(r)? G(Qv T) =qr — A H(Q7 S) dS, vqa re [07 ]'] X R. (111>

Now, for a pair (u, ) € CH(Q) x C°(Q) with

/0dx<m,
Q

and 0 > 0, we consider a family of cubes @;, 1 < i < ng, of side ¢ such that
QclJa, 1QnQ;l=0, ifi#]
i=1
and a partition of the unity in by functions ¢; € C*(RY), with
sup(¢;) C Q; + B(0,6), ¥;(x) >0, 1 <i< ngand Z%(x) =1, Vo e Q.

10



Then, we take

1 1 & &G #0
i = v de, i:_/ Vudx, i =
! 5N/Qi 575 o ‘ {e if & =0,

with e € RV \ {0} fixed, and we introduce, for every € > 0, the sets ws. C 2 and the functions
us. € Wh*°(Q), with compact support by

1

ns ns . 1 1

o G(g, 52) (875 — at7)
XUJEZE H(qb_)Xn U75:U—|—€§ (O = .
i i=1 < ¢ ’ i=1 Oéﬁ% + 5ﬁ<1 - ¢)

Using the result (see e.g. [2])
xX - 6 * !
a(r, 1) / B(z,s)ds in L2(), (1.12)
0

for every ® € CO((; Lj(0,1)) N L®(Q x R) and every £ € RV \ {0}, we have that w; . satisfies

ns

Xys, = 05:= Y q:Xg, in L®(Q), when e — 0, (1.13)

i=1
where thanks to 6 uniformly continuous, we also have
0s — 0 in L>=(Q;[0,1]), when § — 0. (1.14)

In particular, since the integral of # is strictly smaller than s, we deduce that for every § > 0
small enough, there exists €5 > 0 such that

|w57€| < K, V0 <e <egs. (1.15)

Since (¢ — 1) < G(g,7) <0, for every ¢q € [0, 1] and every r € R, we also have the existence
of C' > 0 such that
[use — ullco@ < Cé, Ve, d >0 (1.16)

and taking into account that u has compact support and that G(gq,0) = 0, we deduce that,
for 0 small enough, us. has compact support and thus belongs to I/VO1 P(€2). Moreover, thanks
to 1} (observe that there is not problem if & = 0 because then G(g;, %”) = 0 for every
r € RY)

< (37 —a)
i1 atrg+ B (l—g)
S Vu in L2(Q) whene —0, V6 >0.

&-x

3

) + 1/4(% - H(Qb %))&)

Vus. = Vu+ (€V1/)iG(Qi,

Therefore

Use —u in WH2(Q) N Wy P(Q) when e — 0, V4§ >0 small engouh. (1.17)

11



On the other hand, using the above expression of Vus., and denoting H;(s) = H(g;, s),
we can use (1.12)) combined with H(q,s) =1if s € (0,q), H(¢,s) =0if s € (¢,1),and & =0
is G # & to deduce

g% [ (0, + B = 2., Vs e

o — Hi(s)) (877 —at7) |
Vu+z¢i(q L( ))(51 )fi dsdx
i=1 aT-rg + B1-r (1 - Qi)

awq+@pu—w

6]1(5q —Oéq)
+ ﬂ 1_Q1 1 1
Z atrg + 7 (1 - q)

Thanks to the uniform continuity of  and Vu, we can also take the limit when § tends to
zero in the right-hand side of the above equality to get

p

dzx.

)| Vu + &

1 1 p
1 1-p — 1-p
lim(Z/ Qg Vu+ )(5 o )& dz
90 Q- pql"i_ﬁl p(l_Q1)
1 1 p
S e
atrqg + BT (1 — q)

(1.18)

:/ ep+9‘mﬂz‘”””
a7 + 375 (1 — 0)
657 —a™7)
1-0)|1 ’ . VulPd
+6( ))+abﬁ+ﬁhdl—@‘>lw .

1 1 \1-»p
:/ (Qaﬁ —|—(1—0)5ﬁ> |Vul|Pde.
Q

Let us now use that for e < 1, Vus,. is bounded in L*°(Q)", independently of § and e,
and X, € {0,1}. Thus, there exists C' > 1 such that

HXUJ&EHLOO(Q) < 1, Haju(g’g”[/oo(Q) < C, 1 g] < N, VE,5 > 0, 0<e< 1.

Here, we recall that the closed ball B¢ of center 0 and radius C' in L>®(€2), endowed with
the weak-* topology is metrizable. Taking d a suitable distance, and using (1.13)), (1.15)) and
(1.17), we can choose for every § > 0, £(6) > 0 such that

d(X ‘95) < (5, |w575(5)| <K, d(ajU57€(5),8ju) < (5, 1 <] < N,

Ws,e(8)?

/ (ana + B( - W(S a(&))) ’vuévg(‘s) ‘pdiL‘

—1)(F7 —at7) [
‘Z/O‘ql Vi + & P E P(l—ql) &| de <6 (1.19)
Qi(ﬂl v —0411”) ’
- B(1—q)|Vu+ — - &| dx
;/ﬁ atrg + BT (1 — q)
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Then, taking into account ((1.14) and (1.18)), we get
X, 2010 Lo(Q),  |wse@)| < Ky Use) — win WH(Q)N Wy (Q),

Ws,e(8)

) 1 1 \1-p
lim (oc?(wé,g(é) + 6(1— Xw&g(é)) Vg o(5)|Pda = / (Qa = 4+ (1 — Q)Bl—p> |Vul|Pda.

This proves assertion (4) for u, 6 smooth and [, 0 dz < . The general result follows by
density. O]

Remark 1.2 We can express problem n a simpler way defining

¢ = <§> 1w, i (1.20)

«

. [1 |VulP x
w4 et )

we WP (Q), 6eL®(Q;0,1]), /degfi.
0

which provides

(1.21)

For simplicity, in the following we will redefine f as f

1.3. Uniqueness results and optimality conditions for the
relaxed problem

Since in problem ([1.21)) the cost functional is not strictly convex, the uniqueness of solution
is not clear. However, let us prove in Proposition that the flux

~1p—2
e YU Gy (1.22)
(1+cO)p-1

with (a, é) a solution of ([1.21)) is uniquely defined. The result follows from a dual formulation
of (1.21]) as a min-max problem. In the case p = 2, a similar result has been obtained in [44].

Proposition 1.1 For every solution (ii,0) € WyP(Q) x L®(;[0,1]) of ([L.21), the flux &
defined by (1.22)) is the unique solution of

min max /(1 +¢0)|o) dz. (1.23)
—dive=f  0eL>(0,1]) YO
oer? Q)N Jq 0de<k

The function 0 solves the problem

max min /(1 + ¢0)|o|P dz, (1.24)
9eL®(20,1]))  —divo=f JQ
Jy0de<k  oeLP (N

and the minimum value in (1.23|) agrees with the maximum in (|1.24).
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Proor. For § € L>=(Q;[0,1]), we define oy € L” (Q)N as the unique solution of

min /(1+cz9)|a\p/d:c.
—dive=f Q
ceL? ()N

The uniqueness of gy is ensured by the strictly convexity of the problem. Then, taking into
account that oy satisfies

p’/(l + cb)|og|P 209 -ndz =0, Vne LF(Q), with divy =0,
0

we deduce the existence of ug € W, (Q) such that (14 cf)|og|”’ 209 = Vug in Q. Using also
that —divog = f in Q, we get that wuy is the unique solution of

Vug|P~2
—div (%VU@) = f in Q, Uy € WOLP<Q),

or equivalently, of the minimization problem

min — P dr = u ’
ueWy"(92) {p /Q (1+cO)pt (f,u)

which combined with

1 ’Vu@‘p 1 / /
— | ————dx — (fug) = —— [ (1 + c0)|oy|’ dx,
proves that (1, 0) is a solution of (1.21)) if and only if 6 is a solution of the max-min problem
(1.24), and (0, ), with ¢ defined by ((1.22)), is a saddle point. From the von Neumann Min-
Max Theorem [54, Theorem 2.G and Proposition 1 in Chapter 2|, we get that the minimum
in ((1.23) agrees with the maximum in ([1.24]), and that & is a solution of (|1.23)). Taking into

account that the functional

oe ()N — max /(1 +¢0)|o) dz
0cL>(;[0,1]) YO
fQ 0dz<k

is strictly convex, as a maximum of a family of strictly convex functions, we deduce the
uniqueness of 7. n

The following theorem provides a system of optimality conditions for the convex problem
(1.7). It proves in particular that u is the solution of a nonlinear Calculus of Variations
problem which does not contain the proportion 6. We refer to Section 4 in [28] for a related
result in the case p = 2.

Theorem 1.2 A pair (u, é) € W, P(Q) x L®(;]0,1]) is a solution of (L.21) if and only if
there exists 1 = 0 such that @ is a solution of

min | (/Q F(|Vul)de — (f, u)) , (1.25)

uGWg’p
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with F € C([0,00)) N W22°(0, 00), the convex function defined by

sP~1 if 0<s<p
/\p 1 . A < < A~
F0)=0, F(s)= o Jhsss It (1.26)
sP™
1
and fi, 0 are related by
o Ifi=0 then
0=1 ae. in {|va| > 0}, /édx < K. (1.27)
Q
o Ifi>0, then
0 if 0< |V <i
. 1 7 .
0=<¢ - <|VAU| - 1) if B<|Val<(1+co)p /de = K. (1.28)
c H Q
1 if (14c)p < |Val,

Proor. Applying Kuhn-Tucker’s theorem to the convex problem (1.7), we get that (, é) is
a solution if and only if there exists 1 > 0 such that (@, ) solves

1 P P
min {/ (—W—“|_1+ e )dx— < fou >} (1.29)
uEWP(Q) o \p(1+ch)p P’
0e L= (€4[0,1])

and

/édmgﬁ, ﬂ(/édx—/f) = 0. (1.30)
0 0

Differentiating in (1.29) we have that (@, ) is a solution of (1.29) if and only if

p—2
/ VAN V04— (r), Yo e WET(Q), (1.31)
1+ ch)r—!
N |ValP .
P————— (0 —0)dx >0, V6O e L>*(][0,1]). 1.32
L= )=o) (€ [0.1) (132
Condition ([1.31)) is equivalent to @ solution of the minimum problem
1 p
min —/ W—ujdx— (fyu) o, (1.33)
wewy?(@) | P Ja (14 )Pt

while ([1.32)) is equivalent to 0 satisfying (1.27) or (1.28) depending on whether /i = 0 or /i > 0.
Replacing this value of 0 in (11.29) we have the equivalence between - and - O
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Remark 1.3 Using (1.27) or (1.28|) and expression (1.22)) of &, we have that 0 satisfies

. {1 if |6 > f

0(z) = 0 i 161< i (1.34)

Moreover, Theorem implies 1 = 0 if and only if the unique solution @ of
1 VulP
min {—/ ‘—ulldx— <f,u)},
wewdr@) | p Jo (1+c)P~

{zeQ: |Va| >0} <x

satisfies

where in this case 4 = 1.

1.4. Regularity for the relaxed problem

In the present section we study the regularity of the solutions of problem (1.21). As a
consequence we show that the unrelaxed problem (1.6 has no solution in general. We begin
by stating the main results. The corresponding proofs are given later.

Theorem 1.3 Let Q@ C RN be a CV' bounded open set and (i, 0) € WyP(Q) x L=(;[0,1])
be a solution of (L.21)), then, for ¢ defined by (1.22)) and i given by Theorem [1.9 we have:

1 If f e WH9(Q), p' < q < oo, then Vi € LIP=(Q)N and there exists C > 0, which
only depends on p,q, N and € such that

IVl Low-n (||f||W Loty T ). (1.35)

2. If f € LY(Q) with ¢ > N, then there exists C > 0 which only depends on p,q, N and €
such that

Vil Loy < (Hf”Lq (o T i) (1.36)
3. If f € WHH(Q)NL2H)(Q), withr > 0 or f € WE2AH)(Q) with r € (—1/2,0), then the

function 6|76 is in HY(Q)N and there exists C > 0, which only depends on p,q, N, ji
and 2 such that

C (14 1wy + 113800 @) 720

¢ (1 + ”fHWlﬂ?(l-&-r)(Q)) if — % <r<0.

(1.37)

|H6|TUHH1(Q)N S

Moreover
o s parallel to v on 05, (1.38)

with v the unitary outside normal to O0).
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4. For1<i,j7 < N and f € WH(Q) N L*(Q)
8106, — 0,06, = (1 + cB)(9;61 — 3i6;) Xyjo1=py € L*(Q). (1.39)
Moreover, zfé only takes a finite number of values a.e. in €2, then
05; — 0,00, =0, 1<i,j<N, cul(|6]"26)=0 inQ. (1.40)

where, for a distribution from 0 into RN, the curl operator is defined as curl(®) :=
5 (VO —VaT).

Remark 1.4 As in [15] we can also obtain some local reqularity results for a, 6 and & but,
for the sake of simplicity, we have preferred to only state and prove the global regularity result.

Remark 1.5 If we assume that f belongs to Wh1(Q) N L*(Q), that the unrelazed problem
has a solution (ﬁ,é), and that Q2 is simply connected, then proves the existence
of w € WHP(Q) such that 6 = |[Vw[P~*Vw a.e in Q. By (1.38)), we must also have 4 constant
in each connected component of 0S). Assuming then that 0S) has only a connected component
and taking into account that w is defined up to an additive constant, we get

—div (|[Vw[P?Vw) = f in
6 = |Vw|P>Vw, w solution of (1.41)
w=20 on 0.

We will show that this implies that the unrelazed problem has no solution in general.

Theorem 1.4 Let Q C RY be a connected open set of class C*' with connected boundary
and f = 1. If there exists a solution of (L.1)), then Q is a ball.

Remark 1.6 In the case p = 2, Theorem has been proved in [44] assuming that (1.1)

has a smooth solution and in [15] in the general case.

The proof of Theorem [1.3] will follow from the following Lemma.

Lemma 1.1 Let Q C RY be a C* bounded open set and G : [0, 00) — [0, 00) be a C* function
such that there exist A, > 0 and p > 1 satisfying

G(s) = "2, Vs> pu, (1.42)

0<G(s)+G'(s)s, G(s) < AsP 2 Vs>0. (1.43)
Let u € C%(Q) be such that there exists f € CY1(Q) satisfying

— div (G(|Vu|)Vu> =finQ, u=0 on 0. (1.44)
Then, the following estimates hold:
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1. For every q € (p/,00), there exists C' > 0 depending only on p, q and 2, such that

19ull 00y < C (1N aagey + ). (1.45)

2. For every q > N there exists C' > 0 depending only on p, q and € such that

IVulliey < (17 1ty + ). (1.46)

3. For every v > —1, there exists C' > 0 depending only on p, N, X,y and €2 such that

/ |Vu |7 il ”vaD ]V%Vuf + G(|Vul) ‘VZu]2> dx
ify=zp—2, (147)

écup+’y_|_0#1+7”f”w11 —i—CHfH i (Q),

/|v kK G“VVTD‘V2UVU‘2+G(|VU|)|V2u‘2> dz

P+
<O+ Ol gt g

if —1<vy<p—2. (1.48)

Proor. In order to prove (|1.45), we write (|1.44)) as
—div(|VulP2Vu) = f — div(\vu\Hvu - G(yvuy)vu) in Q,

where the last term in the right-hand side is bounded in W~1°(Q) by Cu?~!. Then the
result follows from Theorem 2.3 in [38].

For the rest of the proof let us differentiate equation (|1.44)) with respect to z;. This gives

— div (LV&U) —Of inQ, (1.49)
with o
L= %Vu@VquG(NUDI. (1.50)

Observe that L is non-negative thanks to ({1.43).

In order to estimate du from ([1.49), we also need to add some boundary conditions.
For this purpose, fixed Z € 9, we use that there exist 6 > 0 and functions 7',...,7V €
C*(B(z,6))" such that for every x € B(z,d)

{ {7_1<x)’ o ,TN(x)} is an orthonormal basis of ]RN, (1.51)

7V (z) agrees with the unitary outside normal vector to €2 on 92 N B(Z, ).

Using that
N

Vu = Z (Vu-7) 7" ae. in B(z,0),

i=1
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and (|1.44), we get
N
—Zle (|Vul)T )VU-Ti—ZV<VU-Ti) -T'G(|Vul) = f in Q, (1.52)
i=1
where thanks to u vanishing on 02, we have
Vu=(Vu- ™)™, Vu-7'=0, V(Vu-7)-7=0 on9dQ, 1<i<N 1.
Thus, developping , we get
—LV2urN N = f 4 G(|Vu) (div NIy (VTN)t>TN “Vu on 90N B(z,9).

By the arbitrariness of Z, we then deduce the existence of a vector function h € L>®(9Q)",
which only depends on €2, such that Vu satisfies the boundary conditions

{ Vu = |Vu|sy, se€{0,1} a.e. on 09, (153)
—LV?*uv v = f + G(|Vu|)h - Vu on 99,
with v the unitary outside normal on 0.
Let us now prove ([1.45)). We reason similarly to [23]. For
w = |Vul?, (1.54)

and k > pP, we multiply (1.49) by (wg — k)+8iu € H'(Q) and integrate by parts. Adding in
i and taking into account ([1.53[), we get

p
- " LVw - Vwdz + / TLVOw - Vo dz
4/{10%216} Z
:—/ s|Vul(f + G(|Vul)h - Vu)(uﬂ —k) /Vf Vu( w2 —k) dx
G
= —/ s|VulG(|Vul)h - Vu(w? —k: /fAu w? —k:
o0

—]—9/ wp%fVu-dex,
2 Jiwtzny

which thanks to k& > pu, and proves
/ ) wp2]Vw|2dx+/ (wg —k)+wL52}V2u‘2dx
{w?2 >k} Q
<C w%(uﬂ—k) ds(z +C’/|f||V2u‘( ) de+C [ wp;‘zl\fHVw|dx,

09 {w2 >k}

and then, using Young’s inequality
/ wP~?|Vw|*dz +/ (wg - k)+w%2‘v2u|2dx
{wh k)

. (1.55)
<C [ wh(w?—k)Tds(x) + 0/ |f 2w dz.
(w8 >k}

o0
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In the first term on the right-hand side we use that, thanks to the compact embedding of
Wh(Q) into L'(99), for every € > 0, there exists C. > 0 such that

lv|ds(z /]v\d:c—l—a/ |Voldz, Vo e Wh(Q).

o0

Therefore there exists a constant C' depending on p and e such that
/ w? (wf —k)"d C/ S(wh — k) dx—l—a/ wP™ | Vw|dz.
80 (w? >k}

Replacing this inequality in (|1.55)), taking € small enough, and using Young’s inequality,

we get
/ w2 Vw|*dz < C/ wPdx + C’/ | f)?w da,
{w5 >k} {wh >k} 5

{wh>k)
which by Sobolev’s inequality and f in L?(£2) provides

p * 2% q %
(/ |(w? — k)" dx) <C | whdr+ Ol o (/ ) w<1—2dx> ., (1.56)
Q {w?2 >k} {w?z >k}
with o N
2:N—2 if N>2 2"€(2,00) if N=2.

Now, we use that ¢ > N allows us to take r > 1 large enough to have

2*rq—2 1 2%
Zo2 oy 2y
2 q T 2

r

For such r, we use Hélder’s inequality in (1.56]) to get

(few =07

2
=

> x> <C</ ’"dx) ‘{wé,k}‘l_g
Q

1

+O Py ([ wae) [t > 13

which by (1.45) with ¢ = 2r/(p — 1) and

I =122 ) < Cll Lo

(@)
implies
i

(16t =0 )" <c(iflim +0) ot >

Taking h > k and defining ¢ by

VS|




we have then proved

CIFIED, + )™ - _
gO(h)i* < (H (”hL_(Q])€)2 ) (,O(k)mm (17;,77;)’ for h > k > up

where C' only depends on p, N, and €. Lemma 4.1 in [51] then proves (|1.46)).

N

Let us now prove (1.47). Defining w by (1.54)), we take (w 4 £)2du, with € > 0, v > —1,
as test function in ([1.44)). Using (1.53]), we get

N
1/(w+5)w22LVw-dex—l—Z/(qus)gLV@iu-V@iudm
1o i=1 /¢ (1.57)

_—/ s|Vul(f + G(|Vu|)h - Vu) (w + ) )2ds(z /Vf Vu(w + )2 dz.
o0

In this inequality, we observe that the integrand in the left-hand side is nonnegative due to

N
2w Z LYo - Vou — LVw - Vw
i=1

N (1.58)
=2|Vul* Y " LV - Vou — 2L(V*uVu) - (VuVu) > 0 ae. in Q,

i=1
and v > —1. This allows us to use the Fatou Lemma on the left-hand side and the dominated
convergence theorem on the right-hand side, when ¢ tends to zero, to deduce

N
z/wﬁLVw-dem—f—Z/w;LV&u-Vaiudx
4 Ja (1.59)

<—/ s|Vul(f + G(|Vu|)h - Vu)uﬂds /Vf Vuw?dz.
o9

Let us first cosider the case v > p — 2. Defining ' € W1>(0, c0) by
0 if 0 <s<p?

T(s) = /%—1 if 2 <s<2u?
1 if s > 242,
we decompose the last term in (1.59) as
/ V- Vuw?ds = / V- (1—=T(w)Vuw?dz + / V- T(w)Vuw?dz.
Q 0 Q

Integrating by parts the last term, replacing in (1.59) and using Young’s inequality, h €
L>(092), and (|1.42)), we deduce

N
/w”fLVw - Vwdz + Z/ w? LV - Voudz < ulﬂ |f| ds(z)
o :
(1.60)

v0 [ W dste) +0 [ (95la0+ / [P0 de+ Cu e [ |7l dn
o0



For the second term on the right-hand side we use the continuous embedding of W'!(Q) into
L' (99) and Young’s inequality to get

Pty

[ oot asw e [ -] dsto)
o0 o0

pty—2

SC’,upﬂ—l—C/wppdx—l—C’ w2 |Vw|dx (1.61)
Q

{w=p?}

pty—4

1 Pty
<O +0(1+ = w dz + C6 w2 |Vw|’de,
)
Q

{w>p?}

with § > 0 arbitrary. Taking ¢ small enough, replacing in ((1.60) and using Holder’s inequality
we have

N
/ W' LVw - V da + Z/ w3 LV O - Voudr < i [ |f] ds()
Q = /o oN

+CuP* + C/ W' dr + ,ulﬂ/ |V f|dz + C’/ |7 tde + Culﬂ/ |f|dz.
Q 0 Q 0
Using (1.45) with ¢ = Zﬁ and the continuous imbedding of L?(Q) into W~19(Q), combined
with (1.58)) and

G'(|Vul)

| Vuval + G(vu) [Pl ae. in g, (1.62)

N
> LVou- Vou =
i=1

we conclude (|1.47)).

We now assume —1 < v < p — 2. In this case we estimate the right-hand side in ([1.59)) as
follows:

For the first term, using (1.61]), we have for § < 1

/(9Q s|Vul(f + G(|Vul)h - Vu)w%ds(x)

< c/ (If|w™= +w")ds(x)

<C |f|%ds(as) + C’/ wHTst(x) (1.63)
20 o9

< O/ |f‘%d3(l') +Cﬂp+w+%/wpydx+05/ wp+gi4|Vw|2dx.
a0 Q

{wzp?}

For the second term on the right-hand side of (1.59)), we just use Holder’s inequality to get

/Vf Vuw?dz
Q

Using (1.63)) with § small enough, and (|1.64) in (1.59), and then using (1.45]) with ¢ = Iﬁ,
we conclude (|1.48)). O

< C/ |Vf|if1dx+c/w”?dx. (1.64)
Q Q

Remark 1.7 Since the constant in the previous theorem only depends on the norm in L*™
of the first derivative of the functions {7’1}_i]i1 defined in (1.51)), we can relax the conditions
u € C*(Q) and Q of class C* to u € CH(Q) and Q of class C1' by a density argument.
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Remark 1.8 As a simple case, Lemma can be applied to the p-Laplacian operator, G(s) =

|s[P~2. Indeed, since here p = 0 it is simple to check that the proof above does not use the
pt+y

assumption f € WHL(Q) in (1.47). Thus, it shows that for f € W= (Q) N L1 (Q), if

y=p—2orfecW P (Q) ﬂWl’%(Q) if =1 <~ < p—2, there exists a solution u of (|1.44)
such that

pry—2

|Vul|™" 2 |[V?u| belongs to L*(9),
i.e. ]Vu]¥ belongs to H'(Q). In particular, it proves that u belongs to H*(Q) if p < 3 and

f belongs to Wlﬁ(Q) This is a known result which can be found in [22]. It also proves
that for f € L20+)(Q) if r > 0, or f € WH204)(Q) if —1/2 < r < 0 the flur o = |Vul|P~2Vu
satisfies that |o|"Do belongs to L*(Q)N*N | or equivalently, that |o|"c belongs to H(Q)N.
The case v =0 has been proved in [35].

Proor oF TueoreM [L3l Let us assume the right-hand side f in (1.21]) smooth enough, which
by @ solution of (1.25)) implies that @ € C%*(Q2) for some a > 0 (see e.g. [23]) and satisfies

— div <%va> =f inQ, ueWPQ). (1.65)

For € > 0 small and F defined by (1.26)), we take F. : [0,00) — [0, 00) of class C?([0, 00))
such that for some k£ > 0, it satisfies
sp~1
— < F'(s)<e+ ks’ Vs>=0,
2(1+ ! (1.66)

Fo(s)=F(s), Vs = (1 + o)i, }:1_{% |1Fe = Fll2o(0,00) = 0

F.(0)=0, Fl(s)=>

€

The existence of this approximation is ensured by Theorem 2.1 and Remark 3.1 in |25]. Then,
we define u, as the unique solution of

1
min {/ F5(|Vu|)dx—|——/ |u—ﬁ|2dx—/fudx}. (1.67)
wewlr@nrz) Jao 2 Ja Q

— div (%V%) +u.—u=f inQ. (1.68)

and therefore

Since

1
/F€(|Vug|)dx+—/|u€—ﬂ|2dx—/fu€dx</F€(|Vﬂ|)dx—/fadx,
Q 2 Ja 0 Q Q

we have that u. is bounded in W,?(Q) N L2(Q) and thus, up to a subsequence, it converges
weakly in W,"(€2) N L*(Q) to a certain function uy. Taking into account the uniform con-
vergence of F. to F', and F convex, we can pass to the limit in the above inequality to

deduce .
/F(|Vu0|)dx—|——/ |u0—a|2dx—/fu0dx
Q 2 Q Q

1
< liminf (/ F5(|Vu5|)dx+—/ |ue —@|2dx—/fu5 dx)
e—0 Q 2 Q Q

</F(|Vﬂ|)dx—/fﬂdx,
Q Q
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which combined with @ solution of (1.25]) shows uy = 4 and

lim F(|Vu€|)dx:li_r>1(1)/QFE(]VuEDdx:/QF(|V12|)da;. (1.69)

e—0 Q

On the other hand, the assumptions of F. imply that
F! .

0. =: —E(|VU |> Ue
|Vu|

is bounded in L* (Q)", and then by (I.68)), for a subsequence, there exists oy € L¥ (Q)V
such that
0. — oy in P ()N, —div(se) = f in Q. (1.70)

Taking V € LP(Q)" and using the convexity of F., we have

FATD Gy - vu)s e
/Q V.| V. - (V= Vu.)d </Q(FE(IV!) F.(|Vu.]))d,

which can also be written as

F/(|Vu.]) FU|Vil) o . X
TVl gy, — V0 . —u.)d
/Q( Y Vu Vil Vu) V(i —u.)de

F(Vi)) o . . /F’(!VUED A
+ [ =—*Vu-V(i—u)do+ | =—*Vu.-(V—-Vu)dz
[ v v s [ SR (v - i)

< [((RV) - F(Vub)a.

From (1.65)), (1.69) and (|1.70) we can pass to the limit in this inequality to deduce

/an - (V=Va)de < /Q (F(|V]) = F(|Val))dz, VYV e LP()V.

Taking V = Va +tW, with W e LP(Q)V, t > 0, dividing by ¢ and passing to the limit when
t tends to zero, we get

F'(|Vi
/oo-deg/Mva-de, YW e LP(Q)N,
Q o Vil

which shows

F'(|Vu
o9 = % a.e. in Q.
We have thus proved
N F!(|Vue|) F'(|Va|)_ . . ,
Us — U 1IN Wol’p(Q), WVUE — WVU in L? (Q)N

Assuming € C?** we can apply for example Theorem 15.12 in [26] to deduce that wu.
belongs to C%%(€)). On the other hand, we have that G. € C*([0,c0)) defined by

Gts) = 9 s o0 G0 =0,

S
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satisfies

GL(|Vu.)
V|
BV

|Vu|

|V2u€Vu€‘2 + G (|Vue|) [ VPu.

}2

|V2u Vu,|?
|Vu,|?

|V2u . Vu,|*

2 p—
<|VU’5‘ |V/U/E|2 )

)+ F/(IVu)

while

Fel(|vue|)2 |V2U5VUE|2 2|V2ugVua|2
|V, |? |V, |? |Vu|2

Then, the assumptions of F. imply the existence of a constant C' > 0, which only depends
on the constant & in (1.66]) such that

Do |* = (Ivue? - )+ ()

G’E(|Vu8

|Do.|* < C(e + |Vu|'?) ( Vo ) ‘V2U€Vu|2 + G5(|Vu€|){V2u5|2> :

Using Lemma [I.T] and

Ve < 277 (1)o7,
we conclude (1.35)), (1.36) and (1.37) for f and €2 smooth. The general case follows by an

approximation argument.

Let us now show ([1.39). First, we recall that since we are assuming f € WhH(Q) N L*(Q),
we have o in H*(Q)". Using that (1.22) implies

Vi = (1+c0)|6]" %6 ae. inQ,

and taking i,7 € {1,..., N}, and & € C°(0,00), such that & = 1 in a neighborhood of f,
we get in the distributional sense

0, (|61)] — 0:10,[®(|5])] = 0,(0,.(|61])) — 3, (A ®((5))
= a1+ D)l 20(1))5,) — 05 (1 + )61~ (|5])e)

— 001617 2(16])5; — 0, 6" D (|6])s; T
H1 4 oh) (:(2() 16T 265) — 0y (@ (6ol 6) ).
which using that the support of ® is compact and that o belongs to H(Q)" shows
617 2@ (|6]) (A 6; — 0;0 6) € L*(Q). (1.72)

Now we recall that R A
0=0 in{log|<p}, 0=1 in{|o| > i}

This implies that for every ¥ € C'°((0,00) \ {i}) we have
67 20(|6]) (850 65 — 0;0 6) = |67 2®(|6]) (350 65 — 0;0 6) (1 — ¥ (|6])).
By (1.72) we can take ¥ = U, with

0<Us <1, Us() =0, Ts(s)—=1, Vs # i,
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to deduce that ) R
6720 (|6) (010 65 — 9;0 &)

vanishes a.e. in {|o| # i} and then that
61" 20 (|6) (00 6; — 0,0 61) = i (1) (8.0 55 — 0,0 61) Xyjs|=p-

On the other hand, recalling that V|s| = 0 a.e. in {|6| = i}, we can return to (1.71)) to
conclude ({1.39)).

Assertion ((1.40) now follows from Proposition 2.1 in [9]. which shows that
&b5; — 9,05, € L*(Q),

implies

&é@» - @»é&i =0 a.e. in {é = C}, Vee [0, 1]
O]

Proor oF ThroreM [[4 Let @ a mesurable subset of {2, and @ € W,y P (Q) be such that (g, )
is a solution of (|1.21)) with f = f. By Remark , we have

with w the unique solution of

—div ([VwP>Vw) =1 in Q
(1.73)

w € W, P(Q).

Thanks to Theorem 1.1 in [33] and the fisrt corollary in 23] we know that w is in C1#(Q)
for some € (0,1), and (see |41]) that it is analytic in {|Vw| > 0}. Using Theorem 1.1
in [35] (or Theorem [1.3) we also have that 6 = |[Vw[P~2Vw is in H*(Q)". Thus, —divé = 0
a.e. in {6 = 0}, which combined with w solution of implies that Vw # 0 a.e. in (.
Analogouly, let us prove that for every A > 0, the set {|Vw| = A} has zero measure. For this
purpose we observe that a.e. in {|Vw| = A}, we have

0= A[Vul” = pX=*(|V?w]* + (AVw) - V),
but a.e. in {|Vw| = A}, we also have
0 = Vdiv(|Vw[P?Vw) = Nl ?°VAw = N’ ?AVw.
Therefore V2w = 0 a.e. in {|Vw| = A}, which combined with
N 2Aw = —div(|[Vw[P?Vw) = 1 ae. in {|Vw| = A},

implies that the set {|Vw| = A} has zero measure. Now, we recall that thanks to (1.34]), the
constant i in Theorem [I.2] satisfies

{reQ: |Vw|>a} coc{zre: |Vu|l = pa},
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while Theorem [1.2] implies |&] = k. So, using that |{|Vw| = i}| = 0, we get (up to a set of
null measure)
w={ze€Q: |Vw| <}, (1.74)

and |@] < |2]. Then, taking a connected component O of the open set {z € Q: |Vw| > i},
we can repeat the argument in [14] to deduce that O € Q is an analytic manifold with
connected boundary such that

1.75
w, Y are constant on 9O. ( )

{ —div (|[Vw[P>Vw) =1in O
v

From Serrin’s Theorem ( [49]), this proves that O is an open ball and that w is a radial function
in O with respect to its center. Taking into account the analyticity of w in {|Vw| # 0}, the
unique continuation principle shows that {2 is a ball. O

1.5. Conclusion Section

In the present paper we have studied the optimal design of a two-phase material modeled
by the p-Laplacian operator posed in a bounded open set 2 C RY. The goal is to maximize
the potential energy (problem ((1.1))) when we only dispose of a limited amount of the best
material. Since the problem has not solution in general, we have obtained a relaxed formu-
lation (problems and (L.3)) where instead of taking in every point of  one of both
materials, we use a microscopic mixture where the proportion # of the best material takes
values in the whole interval [0, 1]. This new formulation is obtained using homogenization
theory. Reasoning by duality, we have also obtained a new formulation of the minimization
problem as a min-max problem (problems ((1.23) and ((1.24))). As a consequence we show that
although the relaxed problem has not uniqueness in general, the flux ¢ is unique.

The optimal conditions for the relaxed problem show that the state function 4 is the
solution of a nonlinear Calculus of Variation problem . Since the second derivative of
the function F' in this problem is not uniformly elliptic, the corresponding Euler-Lagrange
equation does not provide in general the existence of second derivatives for u. However it
allows us to show that if the data es smooth enough then, for every r > —1/2, the function
676 is in the Sobolev space H'(Q)N N L>®(Q)N. Moreover, the optimal proportion 6 is
derivable in the orthogonal directions to Vu. As an application of these results, we show
that the original problem has a solution in a smooth open set €2 with a connected boundary
if and only if 2 is a ball.

The results obtained in the present paper extend those obtained by other authors in the
case of the Laplacian operator (see e.g. [13], [18], [28], [44]).
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Chapter 2

Numerical Maximization of the
p-Laplacian energy of a two-phase
material

Abstract:For a diffusion problem modeled by the p-Laplacian operator, we are interested
in obtaining numerically the two-phase material which maximizes the internal energy. We
assume that the amount of the best material is limited. In the framework of a relaxed formula-
tion we present two algorithms, a feasible directions method and an alternating minimization
method. We show the convergence for both of them and we provide an estimate for the error.
Since for p > 2 both methods are only well defined for a finite-dimensional approximation, we
also study the difference between solving the finite-dimensional and the infinite-dimensional
problems. Although the error bounds for both methods are similar, numerical experiments
show that the alternating minimization method works well than the feasible directions one.

2.1. Introduction

The aim of the present work is the numerical resolution of an optimal design problem. It
corresponds to the maximization of the energy for a non-linear diffusion process in a two-
phase material modeled by the p-Laplacian operator. Namely, we are interested in the control
problem

1
max—/ (0, + B (1 — &) [Vulrds
w PJa
—div ((aX, + 8 (1 = &,)) [VulP>Vu) = f inQ

we WP (Q), wC Qmesurable , |w| < &,

(2.1)

with Q a bounded open set in RN, N > 2, p € (1,00), o, 3,5 >0, o < 3, and f € W1 (Q).
Here o and  are the diffusion constants corresponding to the two materials that we want to
mix in order to maximize the corresponding functional. If we do not impose any restrictions
on the amount of material a (i.e. x > |{2|) then, the solution is the trivial one given by
w = Q. Thus, the interesting case corresponds to £ < |Q2|. This problem has been extensively
studied for p =2 (3|, [13], [19], [28], [31], [32], [44]). In this case, it models for example the
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optimal rearrangement of two materials in the cross section of a beam in order to minimize
its torsion (in this application f = 1). Analogously, for p € (1,2) U (2,00) the p-Laplacian
operator models the torsional creep in the cross-section of a beam [30]. Therefore problem
corresponds to find the two-phase material which minimizes the torsion in non-linear
elasticity, assuming that the amount of the best material is limited. As it is usual for this type
of problems ( [42], [43]), it has no solution in general ( [13|, [15], [44]). Thus, it is necessary
to work with a relaxed formulation which can be obtained from the homogenization theory
( [3], 145], [52]). In the present case, it has been proved in [15| ( [44] for p = 2) that such
relaxation is given by

( maxl/ B T
u,@ p Q (1 + C@)p_l
, |Vu[P=2 1, .
_ 0 = _ 2.2
d1V<(1 e u) 5 f inQ (2.2)

we WP (Q), 6e L=(Q;0,1]), / 0dz < &,
Q

\

1
with ¢ = (g) p=1 — 1. In this formulation, the materials o and 5 have been replaced by mix-
tures of them obtained by laminations. The new control variable 6 represents the proportion
of the best material o used in the mixture.

The problem can also be formulated in a simple way as the following Calculus of Variation

problem
.1 |Vul? 1
mp {5 s 5 0]

(2.3)

6 e L™([0.1)), ue W9, / b < r,
Q
The numerical resolution of for p = 2 has been the subject of several works. In this
way, some numerical simulations have been carried out in |28 and [31] using a multi-grid
method. In [3] and [53], it has been shown the convergence of the alternating minimization
algorithm, using the optimality conditions. In [7], it has been studied the convergence of a
projected gradient method.

For p # 2, the use of the optimality conditions implies the resolution of the p-Laplacian
equation in each iteration. This is a problem which has been considered for example in [27]
and [29] using a steepest descent method . We also refer to [36] where a reformulation of the
p-Laplacian is given in order to use an augmented Lagrangian method. In these works, the
order of convergence is linear in the best case.

In the present paper we introduce two algorithms to solve . The first one is based on
the Frank-Wolfe algorithm, also known as the feasible direction method. The second one is
an alternating minimization method. In both of them we choose a descent direction in Hj ()
instead of I/VO1 P(€)) and we solve a linear problem instead of a p-Laplacian which, as we said
above, is very expensive from a computational point of view. For p > 2, this forces us to
work with a discretized version of the problem because H}(Q) is not contained in W, 7(Q).

We prove the convergence of both methods obtaining estimates for the rate of convergence.
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In the best of the cases (p > 2) we only have a convergence of order 1/i, with i the number
of iterations. This is due to the non strict convexity of the problem. In this sense we can
observe that solving the minimum in 6 in problem and using Kuhn-Tucher theorem, we
can rewrite as (see |13], |15], |28], [31])

rﬂggcuwr%ig(m {/Q F(p, Vu)dx — WI{ — %(f, u)} (2.4)
i g 1) A
( P wP(p—1)e
pirorit 5 TSR
_ -1 pP(p—1) . 19
1
\ ];|§|p if p > €]

Observe that F' is non strictly convex in £ and it is not differentiable with respect to p.

We also prove the convergence of the solutions of the discretized problem towards the
solutions of the continuous one. Even more, taking a regular sequence of triangulations in
Q of diameter h > 0, and discretizing W,?(Q) and L>(Q) by the the usual P, and P, finite
elements respectively, we show that the difference between the minimum for the continuous
and the discretized problem is of order h. In order to prove this result we assume the existence
of a solution (u, ) for such that u is in W*(Q), Vu belongs to BV (Q)" and 6 belongs
to BV (). Some smoothness results for problem (2.3]) can be found in [13] and [31] for p = 2
and [15] for p € (1,00), we also refer to [12] for the relaxed problem corresponding to take
minimum in instead of the maximum one. These smoothness results imply that u is
in Wh(Q), the flow o = |Vul[P72Vu/(1 + c0)P~! is in H'(Q)Y and the derivatives of 6 in
the direction of o are in L*(€2). However this is not enough to get Vu and § BV -functions.
Nevertheless, this assumption seems to be satisfied in the numerical experiments.

The paper is organized as follows:

In section we recall some known results for problem (2.3)) which have been proved
in [15] (see [13|, [44], for p = 2).

In section [2.3| we state the main results of the paper.
Section [2.4] is devoted to prove the results in Section

Finally in Section [2.5| we illustrate the results of the paper with some numerical simula-
tions. They show that the alternating minimization method converges faster than the feasible
direction method.

2.2. Previous results

As we mentioned in the introduction, our aim in the present paper is to numerically solve
the optimal design problem (2.1). Since it has no solution in general, we work with the
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relaxed formulation ({2.3]), which renaming f/3 by f to simplify the notation, can be written
as

min {f(@,u) C 0 e L®(Q;00,1]), ue Wy P(Q), /6’dx< /f}, (2.5)
Q
with . Vup
F(0,u) = ]—j/gmdx —(f.u). (2.6)

Here € is a bounded open set of RN, N > 2, p € (1,00), ¢ > 0, k € (0,]Q]) and f is a
distribution in W~ (Q). Since F is convex in (6, u) and coercive in u, Wy (Q) is reflexive
and L>(;[0,1]) is bounded, and then sequentially compact for the weak-x topology in
L>(£2), the existence of solution is straightforward. However F is not strictly convex and
therefore the uniqueness is not clear.

The relaxed formulation (2.5) has been obtained in [15|. In this paper we have also
obtained some optimality conditions and some equivalent formulations. As a consequence we
got some uniqueness and smoothness results (see [13], [28], [31], [44] for related results in the
case p = 2).

Thanks to the convexity of F, Kuhn-Tucker’s theorem easily provides the following system
of optimality conditions ( [15])

Proposition 2.1 A pair (9,12) is a solution of if and only if there exists i > 0 such
that:

If L =0, then
0=1ae in{xre: Vi(z) # 0}, [{z € Q: Vi(z) #0}] <&, (2.7)
, vap— o\
aw ((1 + c)”*lvu =/ m (2.8)
=0 on 0N.
If i > 0, then
é:max{o,mln{l,—(’vAu’—1)}}, /édx:%, (2.9)
c 2 Q
~1p—2
—div ’vu|A u | =f inQ
(14 ch)r—1 (2.10)
u=0 on 0N

Remark 2.1 The expression of 6 in P'roposz'tz'on is obtained by solving (see [15], [44])

min{/ﬁ<|v—ﬂ|pdx: 0 € 1°(0:[0,1]), /Qedx < H}. (2.11)

1+ cf)r—!
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The constant f1 = 0 is a Lagrange multiplier corresponding to the constraint fQ Odzr < k.

We observe that for an arbitrary function 4 € Wol’p(Q) (not necessarily a solution for
), the solutions of can be explicitly obtained using Kuhn-Tucker’s theorem which
shows that 6 is a solution if and only if there exists i > 0 such that

ﬂ(/édx—m) =0,
Q
and 0 is a solution of

. |va|p ~ N o
min —————dx+4 [ Ode: 0€ L>(;]0,1]) ¢ . (2.12)
Q Q

(14 co)r—!
This provides the following rule to solve .'

If @i is such that |[{Va # 0}| < k, then 0 is any function in L>(;[0,1]) satisfying

0=1 ae in{zreQ: Vi(z)#£0}, /édxém.
Q

In the other case, denoting for p > 0

0, = maX{O,min{l,1 (W_U| — 1)}},
¢ M

and defining G : (0,00) — [0, \QH by

G = [ e, Ve (0,00),
Q

we have that the set of solutions of is given by
{6, € L*(Q;[0,1]) : p>0, G(u)=r}. (2.13)

Remark that the equation G(1) = k has a solution (not unique in general) due to G decreasing,
continuous, and

lim G(p) = |[{z € Q: Vi(z) # 0}, uh—glo G(pn) = 0.

n—0

Numerically, the equation G(u) = k can be easily solved using for example a dichotomy
method.

In [15] (see |44] for p = 2) it has also been proved that introducing the flow

o [Vulp?
T T

we have that (2.5)) is equivalent to the min-max problem
min max /(1 +¢O)|of'de = max min /(1 +c0)|o)Pdz. (2.14)
—dive=f 0€L>®(Q:[0,1]) v 0cL>(:[0,1]) —dive=f JQ

UGLPI(Q)N Jq 0de<rk Jq 0de<rk O'GLP/(Q)N
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Taking into account that the functional

oc L*(QN — max /(1 +c0)|oP dx
0cL>(Q:[0,1]) JQ
fQdegn

is strictly convex, we get the uniqueness of the optimal flow. Moreover, using (2.4]), we get
the following smoothness results for the solutions of ({2.5).

Theorem 2.1 For every solution (é,ﬁ) of the flow o defined by

Va2
Vap= o

1+ ey (219)

o=

is uniquely defined

If f belongs to WH(Q) N LYQ), ¢ > N, and Q is a C*' domain, then & belongs to
HY Q)N N L2(Q)N. Moreover, there exists C' > 0 which only depends on N, p, ¢ and € such
that

161l @)vnzee@y < C (I1flwri@nzae) + 1) , (2.16)
with i given by Proposition[2.1]

The function 0 satisfies

. 1 af |o] >0
0(z) = 91 (2.17)
0 if lol <
and decomposing 6 = (61, ...,0y5), we have
05, — 0,06, = (1 + cB) (D61 — Bi5;)Xo/=py € L*(Q), 1<i,j < N. (2.18)

Remark 2.2 Theorem has been proved in [15] where some other reqularity results de-
pending on the smoothness of f have been obtained. The case p = 2, has been first proved
in [13]. Observe that & in L>=(Q)Y implies that @ belongs to W>°(Q). This was previously
shown in [31] for p = 2.

2.3. Algorithms and main results

In this section we present two variants of a descent algorithm to numerically solve problem
(2.5). We also show the convergence of both algoritms.

A first attempt to construct an algorithm is to use an alternate method consisting in
minimizing in u, then in ¢ and so on. That is, assuming an approximation (u;,6;) of a
solution of (2.5)), we compute u;,1 as a solution of

. 1 |V’U|p }
min {- [ ——————(f,v 2.19
veW, P () {P /Q (14 c;)r—1 (f,v) ( )
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and then 6;,, as a solution of

1 i1’
min _/ de , (2.20)
sere o) | p Jo (14 )Pt

Jq 0dz<k

This method works well if p = 2, but for p # 2, problem (2.19) is a p-Laplacian problem
which is very expensive to solve from the computational point of view due to the nonlinearity
of the corresponding Euler-Lagrange equation.

Instead of using the above alternate method, we can also try to use a gradient method,
i.e. an iterative method where the iterations are defined through wui,qy = u; + tjvi 1, 011 =
0; + s;(¥i41 — 6;) for some t;, s; € (0,1), with (viy1,¥i11) a solution of

. 1 |Vui|p*2
" min . {]—?/QWVUIVUCM—U,U)};

<1
HW&’p(Q)
YV |P
max Q Jdz,
vere @) Jo (14 cb;)P

[Q Ydx<k

(2.21)

but the minimization in v also implies the resolution of a p-Laplacian problem. To avoid this
difficulty, we can replace the constraint |[v[|y 10y < 1 by [[v]|my) < 1. This is a feasible
direction method. In each iteration we look for the direction of maximum descent of F in
the convex set:

{(v,ﬁ) € HY(9) x L¥([0,1)) : [[o]lmo) < L, /Qﬁd:c < m} .

The maximum direction with respect to ¢ is simple to calculate. Namely, reasoning as in
Remark 2.I] we have:

If |{|Vu;| > 0}| < &, then ¥; is any function in L>(€2; [0, 1]) such that

X{|Vus|>0p < Ui, /191 dz < k. (2.22)
Q

In another case, we introduce H : (0,00) — [0, |©2|] by
H(p) = {z € Q: |Vu(z)| > (1+cb)u}, Yu=0.
Then, H is a decreasing function, continuous on the right and satisfying

lim H(p) = |[{z € Q: |Vu(z)| > 0}, lim H(p) = 0.

u—0t H—00

This assures the existence of y; > 0 (not unique in general) such that

H(w) < k< lim H(p),

W=y

which can be easily numerically obtained by a dichotomy rule. For such p;, the maximum
direction in € in (2.21)), ¥;, is given by any function in L>(£2; [0, 1]) such that

X{\Vui|>(1+09i)ui} < 191, / 19i dz = k. (2.23)
Q
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A similar result holds if we use a finite-dimensional approximation consisting in choosing
0 taking constant values in the elements of a given mesh. On the other hand, the maximum
descent direction with respect to v is unique and it is the solution of a linear equation.
However, we observe that for p > 2, the sequence of functions {u;} generated by the method
is not in VVO1 P(Q2). Thus, the algorithm has only a sense using a finite-dimensional space
instead of L®(Q) x Wy (Q). In such case, all the norms are equivalent. However it would
be necessary to prove the convergence of the solutions of the discretized problem to the
continuous one.

With these considerations, we are going to be interested in the following problem
min {f(@,u) : 0eB, ueV, / fdz <k, 6€]0,1] ae. in Q} : (2.24)
Q

with © and V finite-dimensional subspaces of L=(Q) and H{ () N W, P(Q) respectively. As
in the continuous problem, it is not clear that has a unique solution but for every
solution (6*,u*), the flow

[Vurr—?

is unique because it is a solution of (see (2.14]))
min max /(1+c€)]a|pldx: UELPI(Q)N, /0-Vvdx—<f,v>, YoeV ,,
Q

0€ L (Q:[0,1]) Q
fQ Odz<k

where the function to minimize is strictly convex.

As an example of practical interest we can consider a regular triangular mesh 7, of  with
maximum diameter h > 0 and the Lagrange finite element spaces

O, = {v = Z o X, o €R, VT € 771} (2.26)
TET
Vi={veCy(Q) : v, ePi(r), Y7 E€TH}, (2.27)

with IP;(7) the space of affine functions in 7.

Since the minimization of F in # for u fixed is simple to carry out in practice (see ([2.1)) for
the infinite-dimensional case, the finite-dimensional one is analogous) we can also consider a
variant of the previous algorithm consisting in directly computing the minimum in 6 in each
iteration.

With these considerations, we present the following two algorithms:
Algorithm 1.

Initialization: i =1, 6y € ©, ug € V, a,b € (0,1).
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1 : Set v; solution of

. |Vui|p_2

2 : Choose the step length by ¢; = ¥/ (Armijo’s rule), with j the smallest non-negative
integer such that

F(6y,us + tvs) < F(0h,w) — ats / Voi2de (2.29)
Q

and set w11 = u; + ;.
3 : Set ¥; a solution of

P
max{/gvu;ﬂﬁdx: ﬁE@,Oéﬁgla.e.iHQ,/
Q

ddz < . 2.
T+ B i T Ii} (2.30)

4 : Choose s; = b*, with k the smallest non-negative integer such that

c(p—1 Vuiq|P
F(0; + si(9 — 60;), uir1) < F(Oi,uiyr) — as; ( ) ) /Q (|1 n Z@li’)p (9 —6;)dz  (2.31)

and set 011 = 0; + s (V5 — 6;).

Algorithm 2.
Initialization: i =0, ug € V, a,b € (0,1).

1 : Set v; € V the solution of (2.28]).

2 : Choose the step length by ¢; = ¥ with j the smallest non-negative integer such that
(2.29) is satisfied, and set w11 = u; + ;.

3 : Set 6041 a solution of

. |VUi|p . /
IV g <P <1ae inQ, <k .
m1n{/(2(1+019)p_1dx YeB, 0<¥<lae inf Qﬁdx K (2.32)

Remark 2.3 Since by definition of vi, we have

hm f(@i,ui + tUi) — ]:(Gi,ui) _ _/ ‘V?}i‘2d$’
Q

t—0 t

and a < 1, we get that
}"(Oi,ui —f—t’Ui) — f(@i,ui) < —at/ |V’Ui|2dl’,
Q

for 0 <t small enough. This proves the existence of t; satisfying . A similar argument
shows the existence of s; in .
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Remark 2.4 If p =2, then t; = 1 for both algorithms and every i > 0. The second method
agrees in this case with the one given in [3] Theorem 5.1.5, and [53/.

Our main result is given by theorem [2.2] below which provides the convergence for both
algorithms. Before stating it, we need the following definition.

Definition 2.5 For p > 1, we define v, > 0 by

vl ay0) < Wlollwiegy F1<p<2
{ ’ o Vo eV (2.33)

[ollwrr@y < Wlvllmye)y oo =2

Remark 2.6 Clearly v, = 1, while for p # 2 and V' replaced by a sequence of finite dimen-
stonal spaces Vy, such that

1.
%%gémHv_vhHWlp(m 0, YveW, p(Q),

we have that vy, = v, tends to infinity when h goes to zero. For example, in the case where
the spaces Vj, are given by , with Ty, a sequence of reqular meshes of diameter h, we

have
1
/Yp,h = O (m) . (234)

Theorem 2.2 Let Q C RN be a bounded open set, p € (1,00), f € W= (Q), and ©, V
finite-dimensional subspaces of L®(Q) and Wy (Q) respectively. Taking (6;,u;) € © x V,
the sequence defined by Algorithm 1 or Algorithm 2, denoting by F* the minimum value of
, and by e; the sequence of errors

€ = 'F<917ui) - ‘F* > 07 i > 07 (235)

we have that e; is a decreasing sequence and that there exists C' > 0 depending on a, b, ug, 0y, f,c, N
and p such that

1
CyPiTr 1 4fl<p<?2
e < Tp fi<p Vi1 (2.36)
Cypi™t ifp=2
Moreover, the sequence
o \Vui\p_2

converges strongly to o* defined by in LP (Q)N. Namely, there exists C > 0 as above
such that

1
7/

ifl<p<?2
ifp>2

O(l_l"YPHUOHWW Q))( — €it1)?

(2.38)
(|1+7p||uo||p ))(ei_ei+1)

NI

[ o1+l 2o~ oo <
Q
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Remark 2.7 In the continuous case V = Wol’p(Q), and 1 < p < 2, the classical reqularity
results for the Poisson equation show that the solution v; of satisfies the estimate

ellya gy < C ety + 1 w100 0). (2.39)

with C > 0 depending only on p and ). Thanks to this result we can deduce that in this

case holds true with v, replaced by one. Similar results to also hold for special
choices of spaces V', see e.qg. [11)], Theorem 8.5.3. With these choices we can eliminate the
dependence in vy, of estimate for1l<p<2.

Remark 2.8 In the case of the p-Laplacian problem, i.e.

1
min {—/\Vu|pdx—(f,u)},
ueWy?(Q) LP Jo

we can consider the following algorithm, similar to Algorithms 1 and 2:

Initialization: 1 =0, ug € V, a,b € (0,1).
1 : Set vy € V the solution of
/vii -Vodr = (f,¢) — /Q |Vu;|P~*Vu; - Vodr, Vo€ V. (2.40)
2 : Choose the step length by t; = b7 with j the smallest non-negative integer such that
: /Q 9 (e + i) P — (i + s

1
< —/ |Vu|Pde — (f, u;) — ati/ |Vui|?da,
P Ja Q
and set w1 = u; + ;.

Then, a similar reasoning to the one used below to prove Theorem (2.3 shows the estimates

r c %
5 ‘
‘2<pp—1) ifp<2
1 2-»p
Flu)=F <¢  C ifp=2 (2.41)
2p
Crp?
L ifp>2
\ {p—2

with C' < 1 for p = 2. Similarly to Remark‘ the dependence of the estimate on vy, can be
suppressed for 1 < p < 2 in the continuous case, or' V' finite-dimensional but satisfying further

assumptions. Observe that estimates are better than the ones obtained in Theorem .

This is due to the strict convexity of the p-Laplacian operator, which does not hold in our
case.
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We finish this section studying the convergence of the solutions of the discrete problem to
the solutions of the continuous one. Next result is an immediate consequence of the convexity
of F and therefore is given without proof.

Proposition 2.2 Assume two sequences of spaces ©,, C L®(Q) and Vi, C Wy (Q) such that

e For every 0 € L>™(Q)), with 0 > 0, there ezists a sequence ), € Oy, such that
0 < 0 < 110 0. / Ondz < / odz, O —0 inINQ).  (242)
) )

o For every u € WiP(S), there exists a sequence uy, € Vi, such that
0

u, —uin Wy (Q). (2.43)
Then, defining F, as the value of the minimum in (2.24) with © and V' replaced by O, and
Vi, respectively, and F as the value of the minimum in (2.19), we have
lim F; = F. (2.44)
h—0

Moreover, defining oy, by (2.25), with (6*,u*) any solution of for© =0,, V=V, we
have
or =6 in L7 (Q)V, (2.45)

with ¢ defined by .

An example of spaces satisfying properties (2.42) and ([2.43) is given by ([2.26]) and (2.27)).
In this case we have the following improvement

Theorem 2.3 Assume Q a polygonal open set, f € W=1>°(Q) N L'() and that there exists
a solution (0,1) of , such that

0e BV(Q), aeWh(Q), VaeBV(Q)V. (2.46)

We also consider a reqular sequence Ty, of triangulations in Q by N-simplexes and define the

spaces ©yp, and V}, by and respectiwely. Then, there exists C > 0, depending on
2, p, and the functions 0, 4, such that denoting by F and F; the minimum values of
and respectively with © = Oy, and V =V,,, we have

F<F <F+Ch, Yh>0. (2.47)

Moreover, the functions o}, and o* defined as in Proposition [2.3, satisfy
/(\J*l + |or)P2|o* — of|*dx < Ch. (2.48)
Q
Remark 2.9 In Theorem we recalled some smoothness results for problem . Con-
trary to Theorem they assumed that ) is C™! instead of a polygonal set. Indeed, assuming
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Q a smooth convex set, Theorem[2.3 could still be applied, taking a sequence of reqular meshes
for polygonal subsets of 0 which fulfill ) as the limit. Even with this assumption we do not
know that 0 and Vu are in BV () and BV ()N, but numerical simulations usually provide
solutions which seem to satisfy these assumptions.

From (2.34), (2.36) and (2.47), we get

Corollary 2.1 In the assumptions of Theorem we have the estimates

1 .

) C<—hN(1§)ip1 + h) ifl<p<?2

0< Fbip,uip) —F < 1 (2.49)
_ ) >

O<h2N(1§)i+h> ifp > 2,

Here F denotes the minimum value of s (6in,win) is the i-th pair obtained by any of the
algorithms, and Oy, V}, are defined by and respectively.

2.4. Convergence proof

We dedicate this section to prove the results stated in the previous one. In order to
simplify the proof of Theorem 2.2 we start with the following lemma.

Lemma 2.1 Assume p € (1,00), then we have

1. There exists C > 0, depending only of p such that for every &, n € RN, we get

C|& —nf? if p <2

p—2 2 . (250)
C(>Il+ )" 71 =0l ifp>2.

[l — [&]” = pleP~2 - (n = )] < {

2. There exists C > 0, depending only on p and ¢, such that for every q,r € [0, 1], we get

1 1 L p=Delr=g)
(I4+cr)p=t (1 +cq)p? (1+ cq)?

< Olr —qf*. (2.51)

Proor. In order to show (2.50)), we first recall the following property of the function { €
RY — [£]P~2¢ € RY: There exists ¢, > 0, such that for every &, € RY, we have

- - cp|§—n|p_1 if p <2
[Inf=2n — |e2¢] < { | (2.52)
cp(l€l + )" "In—¢l ifp>2.
By the mean value theorem, for every &, € RY, there exists A € (0, 1), such that
—2
nlP = 1€ = p|AE + (1 = N)n|" " (A + (1= N)n) - (n = &), (2.53)
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where thanks to (2.52), we have
A€+ (1= Mm]" 2 (0 + (1 = A)m) — [él2¢
{ cplé — Pt if p<2 (2.54)
<

_ —2 .
272, ([€]+ )" In—¢&| ifp>2.

This proves (2.50). Let us now show (2.51)). As above, for every ¢,r € [0, 1], the mean value
theorem provides the existence of A € (0,1) such that

L L (p=Der—g
(1 + CT)P—l - (1 + Cq)p—l - (1 + C()\q i (1 — )\)T>)p; (255)

where
1+ gl = (14 g + (1= A)r))”
(1+chg+ (1 —=Nr)"  (L+cgp (L4+c(Ag+ (1= N)r)°(1+cq)r

Using here the mean value theorem in the numerator, that the denominator is bigger or equal
than 1, and that ¢,r € [0, 1], we get

1 1

1 1

<pf(2+clg+7)P g — |

(1+c(Ag+(1— /\)r))p (14 cq)P (2.56)
<P+ g — o]
Inequalities ([2.55)) and ([2.56]) show ([2.51]). O

The proof of Theorem also uses the following lemma which has been obtained in [29],
Lemma 1.

Lemma 2.2 Assume v > 0, v > 1 and a sequence of positive numbers N\, such that
A — App1 2 VAL, V> 0.
Then, forr=1/(y — 1), we have

)\ngirmax{)\o,<2r;1y}. (2.57)

n

Proor oF TueorEM 221 Let us first prove estimate ([2.36|) for Algorithm 1.

For every i > 0, estimate (2.50|), Holder’s inequality and definition (2.28]) of v; imply the
existence of C' > 0 depending only on p such that:

fl<p<?2
.7(91, Ui + tUi) — .7:(91, Ui)

|V |P—2 P P
<t i Wvul -V dr — <f7 Ui> +Ct 0 |VU1’ dz (258)

= —t”UiH?qg(Q) + Ctp||Ui||€V01p(Q)-
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Ifp>2

F(6;,u + tvy) — F(6;,w) < t / | VP2 Vo Ve (oo
i, Ui Vi) — iU ) & — _Vu;-Vuydz — v
o (1 +ct;)prt
p—2
+Ct? (HUiHW(}m(Q) + [Jui + tviHW&”’(Q) ”UiHiQ/V(}’p(Q) (2.59)

p—2
= _tHUiH?{é(Q) + Ct2<||“i‘|wg*f’(9) + [Jui + wi”w&”’@)) ”Ui”ffv(}"’(ﬂ)'

Now, we observe that if ¢; < 1 then, by definition of ¢;, we have
F(@i, Uy + bti’Ui) — f(@i, Uj) > —abtiHviH?{é(Q).

Combined with (2.58) or (2.59) this proves the existence of 7 > 0 which only depends on a, b
and p such that

( 2
ol 77,
min 1,TW¢ if1<p<?
b W@ (2.60)
12
min< 1,7 HUIHH&(Q) =) 5 ifp>2.
(g + Toserlagan)” T

On the other hand, inequality (2.51)) implies the existence of another constant C' > 0 de-
pending only on p and ¢ such that

F (b + s — 6:), uip1) — F(0i, tig1)

_C<p_1)/|vuiﬂ|p i — 0; 2/ P19, _ p.|2
s ’ Q(l—i—cﬁi)pwl 0;)dz + C's Q|Vul+1| 10; — 6;]%dz,

which reasonling as above, implies the existence of A > 0 depending only on a, b, c and p such

that ,
/ M(ﬁi — 6)dz
5 > min 4 1, 322 L) (2.61)
/ |VU1+1|p|191 - 91|2d$
Q
Using that

e —eip1 = F(bh,w) — F" — (-7:(91+1,Ui+1) - -7:*)
= F(b, uig1) — F(Oip1, wig1) + F (05, w) — F (05, uig),
inequalities ([2.29)), (2.31)), (2.60) and (2.61)) and

1_1 .
o _ { Q2 vl 11 <p<2
i Wol’p(Q) x

Yollvill a3 e if p > 2,

we deduce the existence of C' > 0 depending only on a, b, ¢, p and ||, such that:
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fl<p<?2

Vuir1|P
) ( Q ‘1+c§1‘ s _Q)dQC)

i — €1 = C'mi , + || 2.62
e — i1 min VPl = ds ||v; “HI(Q (2.62)
Itp =2

€i — €i+1

2
Vuiyrq1|P _
. {1 (Jo st (0 — 01y . L G P } (2.63)
> (C'min — 0
fQ ’vui+1’ |7_91 - 61|2d$ (HUIHWOLP(Q) + ||Ui+1||W011P(Q))p

In particular, e; is a non-negative and non-increasing sequence and therefore a converging
sequence. In particular e¢; — e;y; tends to zero. Moreover, e; non-increasing implies that
F(6;,u;) and then ||uiHW01,p(Q) are bounded.

On the other hand, thanks to the convexity of F, u;. 1 = u; + tjv;, with 0 < t; < 1, and
definitions ([2.28)) and ([2.30|) of v; and ¢; respectively, we have

5 % |VUi|p72 * *
i = F (0 w) = F(O"u) < | Vi - V(u — ) do + (f, u — u*)

Q ]_ ‘I— Cei)p_l

_c(p—l)/ Vuial? / | e
p Q(1+cei)p(91 0" )dz + Ct; | (V| + [Vuia|)” Vol da

* c(p - 1) / |V’LL1+1‘
< ;- i —u')dr — 0; — v;)d
/QVU V(u —u*)de ) AL ( )dx

(2.64)

¢ [ (19l +19ual) Vo
Q
where C' only depends on p and ¢. Combined with Hélder’s inequality, (2.62)), (2.63)), and

min {||u*||W01,p(Q), 1}12151 ||Ui||wgvp(9)} < C’HUOHWOLP(Q)’

which is a consequence of e; non-increasing and the definition of u*, we conclude

—1
Cyplluol oy (65 — ei+1)pT ifl<p<2
g oo (2.65)
Cyplluoll” + Lyyir (o) (ei —eip1)? ifp>2

N

This inequality allows us to use Lemma to get (2.36) for the first algorithm.

For Algorithm 2, using again (2.58)) or (2.59) we get that (2.60)) still holds true. Combined
with

F (b1, uip1) < F (0, uiga),
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we have analogously to (2.62)) and (2.63)

Omin{l,uvingl(m} if1<p<2
0
| — €yl = | AT 2.66
oo C’min{l o ol } ifp>2 (2:00)
) ;) Z 4.
(Hui”WOl’p(Q) + ||ui+1||W01vP(Q))p

Using then that by convexity, 6;,; solution of (2.32) is equivalent to 6;,; solution of

.|P
max{/—lvull ddr: ¥ve€0, 0<v <1 ae. inQ,/ﬁdxélﬁ},
(14 cthy1)? Q

we have similarly to (2.64))
e < / Vi - V(u — u*) de + C’/ (V| + ]Vui])p_1|Vvi,1|dx,
Q

Using here
€_1 = € + € — e_q, €1 — €, — €iy1 < €i—1 — €it1,

and taking into account ([2.66[), we conclude similarly to (2.65)

=1
C”Yp(HUOHWLP @ T 1)(8171 - €i+1)p” ifl1<p<2
. . (2.67)
Cp (lluoll?, 1oy T D(eimr—ein)? ifp>2
which, by Lemma Lemma [2.2 E, proves that (2.36)) also holds true for the second algorithm.

Let us now estimate the difference between o; and ¢*. To simplify the exposition, we just
prove the result for Algorithm 1, the proof for Algorithm 2 is completely similar.

We consider a solution (6%, u*) of (2.24]). Then, (6%, 0*) is a solution of the the discrete version
of (2.14 - Combined w1th the strlct convex1ty properties of the function £ € RY — |¢P € R,
we get

/(1+c€*)|0*]”/dx > /(1+c€i)|0*|p'dx
Q Q
2/(1+c€i)|ai|p,dx+p/(1+09)|al|p “20i- (0" — 0y) dz
Q
+p/ (Io"] + o) 2lo" - oilPde (2.68)
Q
= /(1+Cl91)|0’i|p/d$ +p//(1+09i)|01‘p,_20}' (U*—Ui) dz
0 Q

s [ (o + by 2o = oiPda e [ (6~ )l d
Q Q

with p a positive constants which only depend on p. Simimilarly, using that ¥; a solution of
(2.30) we have

/(1 + )0yl dz > /(1 +c0%)|o* P du
¢ ¢ (2.69)

4l [ ol 2 (o= o) do ot p [ (10°]+ 1l lo” - o
Q Q
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From ([2.68)) and (2.69), we deduce

0= p'/ ((1 + cby)|oiP 2o — (1 + c@*)|a*|p'_20*> (0" —0y)dx
y (2.70)
+2p/ (|o*] + |ai|)P 20" — o’ dz + c/(@i — 9|0y [P du,

Q Q

Now, we use that

(14 )l 20 = (1+ )]0 20" ) - (0" = o)

* |Vui|p72 «
otV G e ) V=)

_ ( [V
which taking into account (2.28]), and that (6%, 0*) satisfies the discrete version of (2.11)) prove

/ ((1 + cb)|oy [P 20y — (1 + 09*)|0*|p,_20*> (0" —o0y)dx = / V(ui —u*) - Voyde. (2.71)
Q Q

Replacing this equality in (2.70]) and recalling w; 11 = wu; + tiv;, with 0 < ¢; < 1, we get

* 2| 2 Vi [P
29 [ (1| 1ol 0" — e < [ 0 g

(2.72)
+C’/ (IVw| + [Vu*))' ™ Vo |da —I—p'/ (V| + [Vu*]) |V |da
Q Q
with C' depending only on p and ¢. By (2.62) and (2.63)) we then conclude ({2.38)). O

Proor OF TueorEM 23l For (é,@) the solution of (2.5) which satisfies (2.46), 6 defined by
1) and h > 0, we introduce 6, € Oy, 6, € O and 4, € Vj, by

. 1 . 1
Qh:—/edm, 6h:—/6dx, V1 e T, (2.73)
7| /7 7| /7
up(x;) = u(zy), Va; vertex of Ty. (2.74)
Thanks to (2.46) and the regularity of 7y, there exists C' > 0 such that
h||tn|[wree ) + |[tn — @ ooy + ||tn — ﬂHngl(Q) + 10n — 0|1 () < Ch. (2.75)
The definition of F, the mean value theorem and these estimates imply
A A p—1
F(e, U) - .F(Hh, 'LLh)‘ < C(HVUHLW(Q)N + ”VUhHLOO(Q)N> HV(U, - uh)HLl(Q)N
FIVU oo @ 10 = OnllLr @) + [ f i@l = | L) < Ch.
Then, since the definitions of F and Fy imply
F(0,0) = F < Fp < F(On, ),
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we conclude (2.47)). On the other hand, we consider (0}, u;}) a solution of (2.24) with © and
V replaced by ©, and Vj,. We define 6 by (2.15)), o}, by

[ Vuz "~

T T 0 ey

Vuy, (2.76)

and we recall that thanks to (2.14)), we have

/(1 + c0)|6|” dz = max {/(1 +ch)|6P'dz : 0 € L>(;[0,1]), /
Q Q

deéﬁ}.
Q

Thus, we deduce

l/ﬂ+£wﬂﬂx>/Uﬁm%ﬁﬂ%x}/ﬂ+d@bﬁﬂx

“ “ “ (2.77)

4l [ loit 26y & = ai)da+p [ (54 531P 2l - o3P,
Q Q

for some p > 0, which only depends on p. Using the definitions of & and 6* and that (é, w),

(0%, uy) are solutions of (2.5 and (2.24]) we have

~ , 0P ~
1+ch)|olP de = %dxz—p’]ﬂ
(
Q o (14 cd)r-1

* *|p’ . ’vu;kz‘p _ ! T
/S;(]_ +C€h)|0h|p dx _/S;de = —th,

p'/(l +cb;)|64 " 265 - (6 — 63)de = P'/(a' —03,) - Vuydz = 0.
Q Q

Replacing these equalities in (2.77)) and taking into account ([2.47)) we get (12.48)). O

2.5. Numerical experiments

In this section we present some simulations for the numerical resolution of (2.5)) using the
two algorithms presented in Section [2.3] The implementation has been carried out in python
using the finite element solver Fenics [6].

In our numerical experiments, we have taken N = 2, 2 the unit disc, c =1, f = 1 and
k = 1. In this case, the solution of (2.5)) is explicitly given by

1 _r ’ . _1
o B (17T =22 if o] <7

. if |z] <772 . 2v-1p/
O(z) = ) 1 () = 1 , 1
0 if [z > 72, L/(1_|gg|p) if |[x] > 772,

2r-1p
and thus )
FerFla)=—"—(1-——)
P(2+p)2r 2ritE



We solve the problem for meshes of different diameter h and p = 1.2, 2, 100.

The stop criterion for the first algorithm is

—1 ir1? _ .
/ Voif2de + 2= / Vuisil® 5 gy aw <1077 or i > 2000, (2.78)
Q D o (1+06;)P

while for the second one it is given by

—1) Vi [P _ .
Vo2 da + ol / By — 6.)dz < 1077 or i > 2000. 2.79
/Q v 2 [ e G =) (2.79)

Observe that in both cases replacing 1077 by 0 would mean that (6;, u;) satisfies the optimality
conditions for (2.5)) and then, by the convexity of F, that (6;,u;) is a solution for ([2.24)).

Depending on p, h, and the choice of the algorithm, we present in figure[2.1]the convergence
history of the objective function, the Lagrange multiplier i, and the stop criterion (|[DF||
denotes the left-hand sides in and respectively). Observe that for p = 1.2 and
p = 2, the rate of convergence for both algorithms is similar. However for p = 100, Algorithm
2 converges faster than Algorithm 1. Although our estimates depend on h, we do not observe
this dependence in the numerical experiments for p = 2. This is because 5 = 1 and therefore
according to remark the step length is constant and all the bounds in Theorem [2.2] do
not depend on the mesh size.

In figure We represent the solutions (6;, u;) depending on p but only for the finest mesh.
Observe that the solutions obtained are very similar for both algorithms.

In figure we show the time spent in the resolution of the numerical experiments. We
observe that the iterations are faster calculated for Algorithm 2 than for Algorithm 1. When
the diameter of the mesh decreases, the time increases for both algorithms in the same way.
Moreover, for p large Algorithm 2 needs fewer iterations than Algorithm 1 while for p small
both algorithms use more or less the same number of iterations.
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Chapter 3

Minimization of the p-Laplacian first
eigenvalue for a two-phase material

Abstract: We study the problem of minimizing the first eigenvalue of the p-Laplacian
operator for a two-phase material in a bounded open domain Q C RY, N > 2 assuming that
the amount of the best material is limited. We provide a relaxed formulation of the problem
and prove some smoothness results for these solutions. As a consequence we show that if
Q) is of class C'!, simply connected with connected boundary, then the unrelaxed problem
has a solution if and only if €2 is a ball. We also provide an algorithm to approximate the
solutions of the relaxed problem and perform some numerical simulations.

3.1. Introduction

The present paper is devoted to study the optimal design problem of obtaining the two-
phase material which minimizes the first eigenvalue of the p-Laplacian operator with Dirichlet
conditions assuming that the amount of the best material is limited. Namely, for a bounded
open set O C RN, N > 2, two positive constants o < [ which represent the diffusion
coefficients of the two materials, and a constant x € (0, |2]) which corresponds to the maximal
amount of the best material, we are interested in the minimization problem

(
mln/ (an =+ BXQ\w) ]Vu]pdx
wu fq

w C  measurable, |w| <k (3.1)

wewpr @, [lp-1
Q

\

with p € (1,00). Observe that without the restriction |w| < & the solution is the trivial one
w = (). The case p = 2 has been extensively studied from both the theorical and numerical
point of view (see e.g. [13|, [14], [19], [20], [21], [32], [37], [40]), but for p # 2 the problem is
new in our knowledge.

It is well known ( [43]) that this type of problems has not a solution in general. More
concretely, in the case p = 2 and related with the results obtained in [13| and [44], it has
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been proved in [14] that if 2 is simply connected with connected boundary, then problem
has a solution if and only if ) is a ball. This makes necessary to work with a relaxed
formulation which is usually obtained by using homogenization theory ( [3], |44], [52]). The
idea is to replace the diffusion material with coefficients (ax., + Sxa\w) corresponding to take
in every point of €2 the material o or the material 3, by a general mixture of both materials
where in each point z, we use the material o with proportion #(x) € [0,1] and the material
S with proportion 1 — 6(z). The corresponding homogenized material obtained in this way
does not only depend on the proportion but also on the disposition of both materials. Taking
into account the results in [15], we deduce that for a given proportion 6 = 6(z), the optimal
disposition of the materials is given by a simple laminate in the direction of the flux. This
provides the relaxed formulation of :

( mm/ de
(1+ ch)p1

0 € L=(Q;00,1]), ueW,?(Q) (3.2)

/de /|u|pdx =1,
Q

with ¢ = (8/ Oz)P%l —1 > 0. We also show that the relaxed problem admits the equivalent

formulation: VP
( . U
?”}/Q (s ey~ f0)e
0 L=(2[0,1]), uweW;"(Q), fel¥(Q) (33)
/ Odz < k, / IfIPde < 1
\ Q Q

This allows us to use the results in [15] (see also [13] for p = 2) to deduce some smoothness
properties for the solutions of (3.2]). Namely, assuming 2 € C! we show that every solution
(u,0) of (3.2) is such that (v denotes the outward unitary normal on 0f2)

Vulr?
we Whe(Q), VUl Gue (@),

" (1)
difo; — d;60: € L*(Q), Vi,j € {1,--- ,N}.

(3.4)

Observe that (3.1]) has a solution if and only if (3.2)) has a solution of the form (., u) with
w C ) measurable. In this case, we show that the derivability condition on € given in ([3.4])
implies that curl(|o|?~20) vanishes. Thanks to this, we extend the result in [16] for p = 2,

showing that if €2 is smooth and simply connected with connected boundary, then problem
(3.1) has a solution if and only if € is a ball.

In the second part of the paper we carry out the numerical study of problem ({3.3)). The
algorithm that we propose (see Section solves in each iteration a problem of the form

_ 1 |VulP
e, Grreaapr 1)

(3.5)
6 Lo(:[0,1]), ue WP (Q), / odz < r
Q
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for a certain function f which changes with the iteration. The numerical resolution of
has been considered in [16], where we propose two algorithms and we show the convergence
to a critical point. Problem has been studied by several authors because it appears for
example in the optimization of two isotropic materials posed in the cross section of a beam
in order to minimize the torsion. In this way, a theoretical study of for arbitrary p > 1
has been carried out in [15]. In the case p = 2 we refer to [3], |7], [13] 28], [31], [44] and [53]
to the study of from both, the theoretical and numerical point of view.

3.2. Relaxation and smoothness results.

Our purpose in the present section is to study problem . As we said in the intro-
duction, the first difficulty is that it has not solution in general and therefore it is interest-
ing to get a relaxed formulation which will consists in replacing the mixtures of materials
aXw, +BX\w, in by more general mixtures where the material « is used with proportion
0 = 6(x) € [0,1] and the material § with proportion 1 — 6.

Theorem 3.1 A relazed formulation of problem 1S given by

1—
min/ (HOzﬁ + (1 - 9)5ﬁ> ' |VulPdx
v

0,u

6 € L=(2[0,1]), ue WyP(Q) (3.6)
/ Odr < kK, / lu|Pde =1,
Q Q

in the sense of Murat-Tartar [44], p. 140, which implies the following four statements:

(1) Problem (3.6) has at least one solution.

(2) The infimum for problem agrees with the minimum for problem (@

(3) If (wn, un) is a minimizing sequence for , then u,, is bounded in Wy (Q). Taking a
subsequence, still denoted by (u,,wy), such that there exists (u,0) € Wy (Q) N L=(Q)
with

Up — u in Wy P(Q), X, = 0 in L®(Q) (3.7)

we have that (6,u) is a solution for (3.6) and

lim | (ave, + Bxew,)|VuPdz = / (0o + (1 — )87 7| Vufde.  (3.8)

(4) For every pair (0,u) € L=(Q;[0,1]) x WyP(Q) with [,0dz < k, and ||u| @) = 1,
there exist w, C Q measurable, with |w,| < Kk and u, € Wy*(Q), with ||u,| e = 1

such that (3.7) and (3.8) hold.

Proor. The first statement is a consequence of the convexity of the function J : RV x
(0,00) — R defined by

J(€,t) = g V(€ ) € RY x (0, 00), (3.9)
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combined with the Rellich-Kondrachov compactness theorem. Statement (4) is a consequence
of Theorem 2.1 in [15]. Using again the convexity of .J, it implies statement (3) and then
statement (2). O

Denoting
B\
c:= (—) 10, (3.10)
a
problem (3.6)) can be written as (3.2). From now on, we will consider the problem in this
form.

For a distribution f at least in the space W~ (Q2), we have studied in [15] the optimal

design problem
1 P
min{—/ W—u“dx — (f,u>}
9,u p Q (1+C€>p_ <311)

0 € L>=(Q;[0,1]), / Odz < v, u € W,7(Q).
0

Similarly to the result for p = 2 obtained in [13|, let us show that both problems
and (3.11)) are strongly related. Namely, problem ({3.2)) consists in solving for every
f € LP(Q) with || f[|;»q) < 1 and then to minimize in f. This is given by the following
proposition

Proposition 3.1 Problem 15 equivalent to

min 1—|Vu|p — u) x}
e,u,f{/a (p(1+09)p‘1 fu)d (3.12)

0 € L>(Q;0,1]), / odr < K, ueWyP(Q), felL(Q), / |fIPdz < 1,
Q Q

in the following sense:

]f;\ denotes the minimum in and I the minimum in , then

1\
A= ( - ) : (3.13)
p'I

Moreover, if (0,4) is a solution of then (0, 5\111721, |i[P~24) is a solution of . Re-
~ A A ~ ~ oAl
ciprocally, if (0,14, f) is a solution of , then f = MNa|P~%a and (0, \»=14) is a solution

of (3-9).

The above proposition is a consequence of the following lemma which in the case p = 2
was proved in [17] (see also [13]).

Lemma 3.1 Forp € (1,00) and A € L>®(Q)N*N symmetric and uniformly elliptic, the first
eigenvalue

A(p,A) ==  min / |AVulP2AVu - Vude (3.14)
oy
u LP(Q):I
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of the operator u € Wy*(Q) — —div(|AVul[P~2AVu) € W1 (Q) is characterized by

A1 (p, A)ﬁ = max {/ |AVuP2 AV, - Vudx}
fu Q (315)

—div(|AVuP2AVu) = f, u € WyP(Q), |fllwq < 1.

Moreover, if f € LP (Q) is a solution of , then | f|P'=2f is an eigenfunction for Ay (p, A).
Reciprocally, if u is an eigenfunction for Ai(p, A), then f = ||u||1L;€)Q)|u|p*2u is a solution of

e
Proor. Let f € LP () be with 1 £l ) < 1 and let u be the unique solution of
—div(JAVu|P2AVu) = f in Q, wue W, Q). (3.16)

Then, thanks to the definition of A\;(p, A), we get
/ |AVuP2AVu - Vudz > A (p, A)/ |u|Pdz.
Q Q

On the other hand, using u as test function in (3.16) and taking into account that || || 1.7y <
1, we have

/|AVu|”_2AVu-Vuda::/fudx< lall e, (3.17)
Q Q

These two inequalities prove

1 p
/ |AVulP 2 AVu - Vudz < ||ul ) < (—/ ]AVu\pQAVqudx) , (3.18)
Q M(p, A) Jo

and therefore
/ AV U2 AV - Vudz < A (p, A) ™. (3.19)
Q

By the arbitrariness of f, we have then proved that the right-hand side of is smaller
or equal than the left-hand side. To get the opposite inequality we consider an eigenfunction
v € WyP(Q) with [|v]|re) = 1 and define f = |[v|P~20, @ = \i(p, A)ﬁv. Then, f and @
satisfy

—div(|AVaf?AVE) = fin Q, @€ WP(Q), |fllq =1

/ |AVa|P2AVi - Vide = M\ (p, A)Tr
Q

This shows that there exists the maximum in the right-hand side of (3.15)) and it agrees with
>\1 (p7 A) ﬁ .

To finish the proof it remains to prove that every solution of the maximum problem in
(3.15)) is an eigenfunction of the operator u — —div(|AVu[P"2AVu). To do so, we consider
f € LP () a solution to 1' and define @ as the unique solution of

— div(|AVa[P2AVa) = fin Q, @€ WiP(Q). (3.20)
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By (3.17) and (3.18) we get
/Qfﬁdﬂf = [|allr) = 11l ) - 1l o) = Aa(p, A) . (3.21)

We have then shown that Holder’s inequality is an equality for the product fﬂ and thus
that there exists A > 0 such that f = A|a[P"24. The last equality in (3.21) combined
with ||f||L,,/(Q) = 1 implies now A = A;(p, A). Thus @ and then f is an eigenfunction for
A(p, A). O

Proor oF ProrosiTioN 3.1l The result is a quite simple consequence of Lemma and the
fact that for every f € L (Q), we have

) 1 \Vu|p |Vuf|p
_ d -
uemn/ill’g(g)/ < (1 + )1 fu ) v / 1+ ch)r—1 dz,

with u; the solution of

[Vl

—div (WVu> =f inQ, wu=0 on .

O

Problem has been studied in [15] (see also [13], [28], [44], [31] for p = 2), where
they were obtained the corresponding optimality conditions and some smoothness properties.
These smoothness results also hold for the solutlons of . because by Proposition
every solution (6,4) of is a solution of with f = Mul[P"'u and A the value of
the minimum in (3.2)). Usmg a bootstrap argument and that every eigenfunction for the
minimum eigenvalue of the operator u — —div((1 4 ¢0)'"?|Vu[P7>Vu) cannot change sign
we immediately have the following result.

Theorem 3.2 Let Q C RY be an open bounded set with CY' boundary, and (8,u)a solution
of (3.2). Then, we have

o The function u is in WH*(Q) and except for a change of sign, it is strictly positive in

Q.

o The function

[VulP~
satisfies
1
lo|"o € HY(Q)N, Vr > —5 o= (c-v)v ondQ, (3.23)

with v the unitary outward normal on Of).

e The function 0 satisfies

/ 0dx = k, (3.24)
Q
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and there exists yu > 0 such that

6 = max {O,min {1,1 (|V_u| — 1> }} a.e. in . (3.25)
c\ n

Moreover, it satisfies
di0o; — 0;00; = (14 c) (001 — Bi0;) X{jo|=py € L*(Q), Vi,j € {1,..,N}.  (3.26)
e [f the solution is unrelazed, i.e. 6 € {0,1} a.e. in 2, then
curl (|o|P 20) = 0 a.e. in Q. (3.27)

A consequence of this regularity is the following non existence result for problem (3.1J).
The proof is similar to the one in [14], where it is proved the result for p = 2. Therefore we
schematize some parts. We also refer to [13|, [15], [44] for related results relative to problem
(13.12).

Theorem 3.3 Let Q C RY be an open, bounded and simply connected set with C*' connected
boundary and assume that there exists a solution of (6,u) of (3.2)) with 8 = x,, for somew C Q
measurable. Then, € is a ball and v and w have a radial structure.

Remark 3.1 The existence of radial solutions for problem (3.1)) has been first proved in [4].
The structure of these radial functions in the case p = 2 is a problem that has been considered
for example in [19], [20], [32] and [40)].

Proor oF TueoreM B3l We define o by (3.22). By (3.27) and 2 simply connected, we know
that there exists w € W>(Q), with |Vw|[*Vw € H'(Q)", for every s > (p — 3)/2 such that
Vw = |o]/ 20 < |[Vuw|/?Vuw = 0. (3.28)

Using also the second assertion in (3.23)), we get that Vw is ortogonal to the boundary on
0f). Since the boundary is connected, this means that w is constant on the boundary. Taking
into account that w is defined up to a constant, we can then take w vanishing on 0f2, which
proves that w can be chosen as the unique solution of

(3.29)

—div(|Vw|P2Vw) = A’ in Q
w =20 on 0.

Since u belongs to W1(Q), the first corollary in |23] and the Calderon-Zygmund theory
show that for some 7 € (0, 1),

we CHQ)NWRYQ\ {Vw =0}), V¢=>1. (3.30)

loc

Now, taking p > 0 such that (3.25)) holds, let us prove that for every zy € €2, with

|B(xg,7) Nw| >0, |B(xg,r)\w|>0, Vr>0, (3.31)
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there exists a connected open set O strictly contained in € of class W34 for every ¢ > 1 such
that
o € 00, |Vw|=p on 00, w=w(xy) on 0. (3.32)

Moreover, all the points in 0O satisfy (3.31). We define the set

T= {x €Q: wlw) =w(w), |Vw(z) > g}
which using the implicit function theorem is a (N — 1)-dimensional sub-manifold of class
W34(Q) for every ¢ > 1. We also define T as the connected component of T containing
xo. Taking into account and we conclude (see Lemma 2.6 in [14]) that for any
compact set K C T, there exist a neighborhood U of K, 7 > 0 and h € W' (w(zg) —
T,w(xo) + 7) such that

u(x) = h(w(x)), ae. in U= Vu=~'"(w)Vw ae. in U.

Since we also know that Vu = (1 + ¢x,)Vw a.e. in €2, we deduce as an application of the
coarea formula that there exists N C (w(xg) — 7,w(xg) + 7) of null measure such that for
every s € (w(xg) — 7, w(xg)+7)\ N, we have (Hy_1 denotes the (N — 1)-Hausdorff measure)

h'(s) € {1+c,1}7 {

Combined with this shows that |Vw| = p on K, which by the arbitrariness of K
proves |Vw| = p on Y. Thanks to this equality we can now show that the open manifold Y
is also closed and then by the Jordan-Brouwer theorem, that T is the boundary of an open
set O satisfying . Now, we can prove that the interior of the intersection of all the
connected open sets O satisfying |Vw| = p and w constant on 0O is also in these conditions.
To simplify the notation, we still denote such intersection as O. Observe that this set cannot
contain any point z( satisfying , which taking into account that it is connected, implies
that O is contained in w or in Q \ w. Since w is constant on A0 it must contain at least a
point where Vw vanishes. By , this proves that it is the condition O C Q \ w which
holds true. Therefore, Vw = Vu a.e. in O and thus w = v + a in O for some a € R. From
(Xw, u) solution of (3.11)), the definition (3.22)) of o and (3.28), we have that w satisfies

W(s)=1+c=Hy(w ' (s)NU\w) =0
W(s)=1= Hy_1(w ' (s)NUNw) =0,

—div ([Vw[P~*Vw) = AMw — alP~2(w — a) in O
ow (3.33)

w, — constant on 00,

with A the value of the minimum in 1) Since O is of class C?, we can apply Serrin’s
Theorem ( [49]) to deduce that O = B(z,r) for some € O and some r > 0. Moreover, w
is a radial function with respect to  in O. Let R > 0 be the ball defined by

B(z,R) = U B@s)
O C B(z,s)
w radial in B(Z, s)

If w=0on 0B(z, R), then Q = B(z, R) since 2 is simply connected with connected bound-
ary. In another case, by Hopf’s Lemma for the p-Laplacian operator (Theorem 1 in [24], The-
orem 5.5 in [47]) we have w = ¢ > 0 and Vw # 0 on 0B(z, R). Thus, by Lemma 2.6 in [14]
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there exists a neighborhood U of 0B(Z, R) and a Lipschitz function h : (¢ — d,¢ 4+ J) — R,
with 6 > 0, such that u(xz) = h(w(x)) in U. Then, we take ¢ > 0 small enough to have
B(Z,R+¢)\ B(z, R —¢) C U and such that there exists a solution ¢ € W3*(R —¢, R+ ¢)
of the Cauchy problem

{ — (PN MY P ?¢) =1V h(¢) in (R—e,R+e)

0 3.34
¢p(R)=c, ¢(R)= 8_::|63(5U,R)‘ ( )

The function v(z) = ¢(|x — Z|) is a radial functions with respect to & and satisfies
—div(|Vo[P"*Vv) = h(v) in U.
w=vin UNB(z, R).

By lemma below, we have w = v in U. Thus w is a radial function in B(z, R + ¢), in
contradiction with the definition of B(Z, R). Thus 2 is a ball centered in Z and w is a radial

function. By (3.22)), (3.28) and (3.25) we also have that w has a radial structure and that u
is a radial function. O

In the proof of Theorem we have used the following unique continuation lemma

Lemma 3.2 Let Q C RY be a connected open set and h : (a,b) — R be a Lipschitz function.
Assume uy € C3(Q) and uy € W22(Q) such that

loc
— div(| V[P 2 Vy) = h(w) in Q, i=1,2 (3.35)

and
insf2 |Vu;(x)] >0, i=1,2. (3.36)
T€E

If uy = uy in a open subset of €2, then u = v in ).

Proor. Thanks to the smoothness of u;, uy, we can rewrite (3.35)) as:

h(w;)

. D2, — ; S
Ai D Ui = W m Q, 1= 1, 27 (337)
with Vi ® v
U4 U3
Ai:I — ) — 1, :172
)

Then, taking v = u; — ug, subtracting the equations (3.37)), and taking into account the
smoothness properties of u; and uy, we have that for every open set O & (2, there exists a
constant M depending on O such that

|A1 2 D*0| < M(|Vo| + |v]) in O.

Since A; is uniformly elliptic and has coefficients of class C?, this allows us to use the unique
continuation principle in [5] to conclude v = 0 and then u; = uy in O for every open set
O € Q. Thus, u; = us in €. O
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3.3. Numerical approximation.

The present section is devoted to define a numerical algorithm for the resolution of problem
and to prove the convergence to a critical point. We also show the convergence of the
solution of a discrete version of to the solutions of the continuous one and we provide
some numerical experiments.

Algorithm.

Initialization: A strictly positive function uy € Wy (Q) with ||u|| sy = 1, o € L®(Q;[0,1])
with ||6g|1 (@) < # and i=0.

1 : Set TP
Ui
2 : Set (011, Uir1) a solution of
1 P
min/ <—|V—U|1 - )\iu’i”_lv>dx
b Jo \p(1+cd)P (3.39)
g€ L¥Q:[0,1]), e W), /ﬁdx <
Q
3 : Set ~
Ui+1 = };1 (340)
@1l e ()

Theorem 3.4 The sequence \; defined by the above algorithm is decreasing and converges
to X > \. Moreover, the sequence u; is bounded in Wol’p(Q). Taking a subsequence of i, still
denoted by i, such that there exist u € WyP(Q) and 6 € L®(;[0,1]), with

u —u in Wy (Q), 0 >0 in L®(Q), (3.41)
we also have that
s, uig —u in WyP(Q). (3.42)
and (6, u) is a solution of
1 P
min {/ (_W—U|1 - )\upflv) dx}
) Q \P (]. + Cﬁ)p_ (343)
g€ L¥Q:[0,1]), e W), /ﬁdx <
Q

Remark 3.2 The fact that (0,u) is a solution of (3.43|) is equivalent (see Theorem 3.1 in
[15]) to (0,u) a critical point for (3.11)) in the sense that it satisfies the optimality conditions

[VulP~

—_dj — \,p—1
d1v(<1+09)p1Vu> AU in Q, (3.44)
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Vul .
iy =1, A= | ————d 0 in 0 = 3.45
o =10 A= [ e wsome, [o-n G4y

and there exists p > 0 such that 6 and u satisfy (3.25). Moreover, u is positive implies
that \ is the first eigenvalue of the operator v € Wy P(Q) — —div((1 + ¢8)'?|Vu|P~2Vv) €
W=17(Q).

Proor oF THeoreEM 3.4l First we observe that (6;,1, Uiy 1) solution of (3.39)) implies that ;4

is a solution of 5 )
|Vt |P~

— div (—

(1 + C@H_l)p_l

In particular this allows us to use the strong maximum principle to deduce by induction that
u; is striclty positive in Q for every i.

Vﬁm) — A in Q. (3.46)

Let us obtain some estimates: Multiplying (3.46) by @;.; and taking into account (3.38))
and ((3.40)) we get

~ V7:Li 1|p -1~
Nt [T |2, :/|—+d=Ai/P i1 da. 3.47
+1”U+1HL (®) 0 (1—}-0(91“)17*1 x QUI Ui+ AT ( )
On the other hand, (3.39) proves
(A V0l )< [ (A0 ) (3.48)
o \p (1 +chpt 7 o \p (Lt T .

which using the second equality in (3.47) combined with (3.38)) and (3.40]) can be written as

141700 1 i
_ p/ P( ))\i+1 < —17)\1 <— A\ < )‘iJrlHuiJrlHiP(Q)' (349)

Using Holder’s inequality in (3.47) and ||u;||r»o) = 1, we also have

Aistll@ i) < A (3.50)
||ai+1||;,01,p(9) <A1+ )P gl or@)- (3.51)

From (B19), (B50) and A
A= A>0, (3.52)

with \ the value of the minimum in 1) which is a consequence of (3.38)), we have

1< G|l ze@)- (3.53)
Thus (3.50) shows
)\i_;’_]_ < )\i- (354)

Inequality (3.54]) proves that the sequence Aj is decreasing and therefore it converges to a
limit A which by (3.52) is bigger or equal than A. Inequalities (3.50) and (3.53) then show

Flim @i e = 1. (3.55)
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By \; bounded, (3.51) and (B.53), we have that @; and u; are bounded in W, ”(Q), and that
for a subsequence of i, still denoted by i, there exists u € W, () such that

up —u in WyP(Q), @ —wu in WyP(Q), |ullr@ = 1. (3.56)

Taking another subsequence if necessary, we can also assume that there exist § € L>(; [0, 1])
and z € W, ?(Q) such that

;0 in L°(Q), wiy — 2z in WyP(Q), |2l = 1. (3.57)

By (3.39)) with i replaced by i — 1, we have

1 |Vui|p _ 1 |V2}|p _
/Q Gy — i) de < / Caraym — Mdio)de, @59)

for every v € W, *(Q2) and every 9 € L=(€;[0,1]), with ||| 1) < . Using the convexity of
J defined by (3.9), (3.56)), (3.57) and the Rellich-Kondrachov compactness theorem, we can
pass to the limit in (3.58)) to deduce

1 |Vul? - 1 |Vl B
T o1 < - r=-r )
/Q<p<1+c9)p1 - u>dx\/9<p(1—|—cq9)l’l \Flo)dr,(359)

for every v € W, ?(Q) and every ¥ € L>(R;[0,1]), with ||| ;1) < #. Thanks to the Rellich-
Kondrachov compactness theorem, we can also pass to the limit in (3.47) with i replaced by

1— 1 to deduce
1= / uP 1z dx,
Q

where ||u||zr) = ||2]|zr@) = 1. Thus, Holder’s inequality is an equality and then, using u
and z positive, we deduce u = z. Using this equality in (3.59)), we finish the proof of the
theorem. O

Remark 3.3 Problem 1s a particular case of with f = )\iuf_l. The numerical
resolution of this problem has been studied in [16] where we have given two algorithms and
proved the convergence. We also refer to (3], [7], (28], [31] and [55] for some other results
referred to the case p = 2.

In order to implement the above algorithm is necessary to work with a discrete version
of (3-2), where the spaces L®(Q) and Wy™”(Q) are replaced by finite-dimensional spaces.
Moreover, the algorithms proposed in [16] need to work with a discrete version of the problem
at least for p > 2 because in this case W, ?(Q) is not included in H}(Q). As an example
of discretization, let us assume that  is a polyhedral domain in R". Then, for a regular
mesh 7, of Q composed by N-simplexes (see e.g. [48]), with maximum diameter h > 0, let
us define the Lagrange finite element spaces

Vi={veC(): v| ePi(r), VreT} (3.60)
On={0 e L>(Q): V|_e€Py(r), VreT}, (3.61)
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where Po(7) denotes the space of constant functions in 7, and P;(7) the space of affine
functions in 7. Using these spaces, we consider the discrete version of ([3.2))

\

( : / [Vaul?
min | —————dz
u,0 Q (1 + Cg)p_l
feB,, 0<60<L1 ae inQ, / 0dr < K (3.62)
Q
u € Vy, / lulPdz =1,
Q

Clearly, Theorem [3.4] still holds for this discrete problem where now the weak and strong
convergences are the same because we are working in finite dimension. An important question
is if the solutions of the discrete problem converge to the solutions of the continuous one when
h tends to zero. The following theorem provides a positive answer to this question.

Theorem 3.5 Assume a polyhedral open set Q@ C RY and a sequence Ty, of reqular mesh
whose diameter h tends to zero. Then, the value N\, of the minimum in (3.62)) converges to
the value \ of the minimum n . Moreover, if (up,0y) is a solution of , then uy,
15 bounded in Wol’p(Q) and extracting a subsequence of h, still denoted by h, such that there
exist € L®(;]0,1]) and u € Wy (Q) with

up, —u in WyP(Q), 0, =0 in L®(Q), (3.63)
we have that (0,u) is a solution of (3.2).
If we also asume that there exists a solution (é,ﬁ) of , such that
e Wh(Q), VaeBV(QYN, §eBV(Q), (3.64)
then, there exists C' > 0, depending on €2, p, 0, and U, such that
A< M <A+Ch, Yh>0. (3.65)
Proor. By the definitions of A, and ), it is clear that A\, > A. On the other hand, the

classical finite element theory shows that for every solution (0,u) € L*(€2;[0,1]) of (3.2),
there exist 8, € ©;, and u; € V}, such that

0, — 0 in LY(Q), 6,26 in L®(Q), / O dz < K. (3.66)
Q

U —u in WyP(Q),  |an|lmr@ = 1. (3.67)

Therefore,

A~ p U p

\ = / W—u‘ldm — 1jm/ de > limsup Ay,
o (1+ ch)r- h=0 Jo (1 4 cfy)P~1 h—0

which combined with A, > A proves that A\, converges to A

Let us now consider a solution (uy, 6,) of (3.43). Taking into account

||uh||€V1,P(Q) ’vU/h‘p
=N dr =
(1 —+ C)pf 0 (1 + C(gh)pf
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we get that uy, is bounded in W, ?(Q). Extracting a subsequence of h such that ([3.63) holds,
we have that

lullr) =1, 6 € L>(§10,1]), /de <k,
Q

while the convexity of J given by (3.9)) shows

~ p p ~
A< %dx < lim —|Vuh| dr = lim A\, = .
9) (1 + Cg)p_l h=0 Jo (1 + Ceh)p_l h—0

This proves that (0, ) is a solution of (3.2]).

_ If we now assume that there exists a solution (A, u) of (3.2)) satisfying (3.64)), then, defining
Gh < @h, uy, € V), by

TRU

~ 1
Qh}T:—/de, V1éeT, up = —————,
17| J- ||7Thu||Lp(Q)
with m,u the usual projection operator in the finite element space V,, i.e.
mhu € Vi, (mpu) (i) = u(x;), Vg vertex of T,

we have that (3.66|), (3.67) hold and, thanks to (3.64)),

[an — UHWOLP(Q) + Héh — 0|11 < Ch.

J

~ p U |P ~
A:/W—““dnghg/degmu(]h.
o (1+ ch)r- o (14 chy)pt

Thus, we have
‘VUV) B |V7:Lh|p
(T+ch)P=t (14 ch,)r!

xr < Ch,

which implies

]

Remark 3.4 Observe that the smoothness properties of the solutions of (3.2)) do not imply
(3.64), however this seems to be satisfied in the numerical experiments.

We implement the algorithm in Python, using the finite element solver Fenics |6]. We
solve the problem in the square (0,1)? C R? for five different values of p, c = 1 and xk = 1/2.
The corresponding contour lines for the optimal functions u and 6 are given by the following
pictures.
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3.1: Solutions for p = 1.2.
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Figure 3.2: Solutions for p = 1.5.
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Figure 3.3: Solutions for p = 2.
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Figure 3.4: Solutions for p = 4.
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Figure 3.5: Solutions for p = 6.
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Figure 3.6: Solutions for p = 8.
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Figure 3.7: Solutions for p = 10.
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Conclusions

In this work we have studied the problem of maximizing the energy of the p-Laplacian
operator for a two-phase material in a bounded open set by means of the optimization by
the homogenization method.

In Chapter 1 we have obtained a relaxed formulation using the homogenization theory. We
have proved that, although the relaxed problem does not have a unique solution in general,
the flux & is unique. The relaxed formulation allowed us to get optimality conditions
which we gave in Theorem We have shown that if the data is smooth enough, then, for
every r > —1/2 the function |5|"6 is in the Sobolev space H!(Q)N N L>(Q)N. Moreover, the
optimal proportion 6 is derivable in the orthogonal directions to V. Using these results, we
have proved that the original problem has a solution in a smooth open set 2 with connected
boundary if and only if €2 is a ball.

In Chapter 2, we provided two algorithms to solve the finite dimensional approximation
of , given by . In Theorem have estimated the rates of convergence for
both algorithms. We have also proved that the flux o;, obtained by any of both algorithms,
converges strongly in L' () to the solution of . These results were known for p = 2, but
we have extended them to any p € (1, 00). Moreover, we have estimated the error between the
value of the discretized and continuous problems and , where © = O, and V =V,
are finite elements spaces given by and respectively, assuming the existence of
a solution (6,4) such that § € BV(Q) and Va € BV (Q)V.

As an application of the results proved in Chapters 1 and 2 we have studied in Chapter
3 problem , which corresponds to the minimization of the first eigenvalue of the p-
Laplacian for a two phase material. We obtained the homogenized formulation of this
problem using proposition [3.I] which in turns allowed us to apply a bootstrap argument
to obtain the regularity and characterization results in Theorem [3.2] As in chapter 1, the
regularity Theorem allows us to prove that the problem only has a solution in an open domain,
bounded and simply connected if it is a ball. Additionally, based on the power method and
the alternate optimization algorithm developed in Chapter 2, we developed and proved the
convergence of an algorithm converges to a critical point of the problem. Analogously to
the convergence Theorem 7 we have estimated the error between the finite dimensional
problem and the continuous one ([3.2)).

Finally, the results obtained through this thesis can be used as the basis for future research.
For example, it is interesting to study the case when the material represented by the coefficient
[ is much worse than the corresponding to a. Mathematically, this happens when 3 goes
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to infinity. In this regard, by formal calculations we conjecture that the value of the relaxed
formulation ([1.7)) of ([1.1)) converges to the value of

min{g ‘vu‘pdm— (f u)}

bu (p Jo 077

(3.68)
uGWOI’p(Q), 0 € L*>(Q;[0,1]), /degm
Q

Moreover, if this problem has a solution (6,u) € L>(9;[0,1]) x W, ”(Q) such that 6 = x,,
for a measurable set w C 2, then we need to have Vu = 0 in Q \ w. Thus v must be constant
in the connected components of 2\ w. This means that Q \ w is filled with a extremely rigid
material which is consistent with the fact that 5 — oco. From the results of Chapters 1 and
2 we can expect to be able to prove some smoothness results for the solutions of .

Another interesting extension is to study the case when p — oo, which corresponds to
study the mixture of two plastic materials. It is important to observe that in this case we
need to consider a sequence of coefficients oy, and 3, depending on p such that oz;*p and
Oz}?_p are converging sequences. Arguing as in |10] and [1] and assuming that 0411)_” and 6;_5"
converges to a,, and [, when p — 0o, we conjecture that the value of the problem

. f1 |VulP B
o {p / @ ara— oy Y “>}

we WH(Q), 0 L=(0,1)), / odz < 1,
Q

converges to the value of

min —(f, u)
weWy™(Q), 6eL>(Q;[0,1]), / Odz < k, (3.69)
Q

IVu(x)| (@l () + Poo(l —0(2))) < 1 a.e. x € Q.

Therefore problem can be seen as the homogenized version of the co—Laplacian
equation. Of course, the rigorous demonstration of this convergence needs further analysis,
however problem (3.71)) make it possible to study the mixture of two inelastic materials
characterized by the constants a., and [, respectively.
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Conclusiones

En este trabajo se ha estudiado el problema de maximizar la energia del operador p-
Laplaciano para un material de dos fases en un conjunto abierto y acotado por medio del
método de optimizacion por homogeneizacion.

En el Capitulo 1 se ha obtenido una formulacién relajada utilizando teoria de homoge-
neizacion. Se ha demostrado que, aunque el problema relajado no tiene una tnica solucion
en general, el flujo & es tnico. La formulacion relajada permitié obtener condiciones
de optimalidad las cuales son dadas en el Teorema Se ha mostrado que si los datos son
suficientemente suaves, entonces, para todo r > —1/2 la funcién |6|"¢ esta en el espacio de
Sobolev HY(Q)N N L>(Q)N. Mas atin, la proporcién 6ptima es derivable en las direcciones
ortogonales a Vu. Utilizando estos resultados, se ha probado que el problema original tiene
un solucién en un conjunto €2 abierto, suave, simplemente conexo y con borde conexo si y
solo si €2 es una bola.

En el Capitulo 2, se presentaron dos algoritmos para resolver una aproximacion finito
dimensional de , dada por . En el Teorema se han estimado los ratios de
convergencia para ambos algoritmos. Se ha demostrado también que el flujo oy, obtenido por
cualquiera de los dos algoritmos, converge fuertemente en L? () a la solucién de (2.25)). Estos
resultados eran conocidos para p = 2, pero en este trabajo han sido extendidos a cualquier
p € (1,00). Mas atn, se ha estimado el error entre los valores de los problemas desratizado
y continuo - ) v . donde © = O, y V =V}, son espacios de elementos finitos dados
por | - ) v , respectivamente, asumiendo la existencia de una soluciéon (9 @) tal que
0eBV(Q)y Vu € BV (Q)N.

Como una aplicacion de los resultados demostrados en los Capitulos 1 y 2, se ha estudiado
en el Capitulo 3 el problema , el cual corresponde a la minimizacién del primer valor
propio del p-Laplaciano para un material con dos fases. Se obtuvo la formulacién homogenei-
zada para este problema utilizando la proposicién , que a su vez permitio aplicar un
un argumento tipo ’bootstrap’ para obtener los resultados de regularidad caracterizaciéon en
el Teorema [3.2] Al igual que en el Capitulo 1, el resultado de regularidad permitié demostrar
que el problema no relajado tiene solucién en un conjunto abierto, acotado y simplemente
conexo con borde simplemente conexo y suave si y solo si es una bola. Adicionalmente, ba-
sado en el método de la potencia y el método de optimizacion alternada desarrollado en el
Capitulo 2, se desarrollo y demostro la convergencia de un algoritmo que converge a un punto
critico del problema. Analogamente al Teorema de convergencia , se estimo el error entre
el problema finito dimensional y el continuo (3.2)).
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Finalmente, los resultados obtenido a lo largo de esta tesis pueden ser usados como base
para investigacion futura. Por ejemplo, es interesante estudiar el caso cuando el material
representado por el coeficiente 5 es mucho peor que el correspondiente a . Mateméticamente,
esto pasa cuando [ tiende a infinito. Con respecto a esto, mediante calculos formales se
conjetura que el valor del problema relajado converge al valor del problema dado por

min{g |Vu|pdx_ <f,u>}

bu | p Jo OP71

(3.70)
ueWyP(Q), 6e L>(Q;[0,1]), / 0dz < k.
Q

Mas afin, si este problema tiene un solucion(f, u) € L>(Q;[0,1]) x W ?(Q) tal que 6 = x.,
para un conjunto medible w C €2, entonces se debe tener que Vu = 0 en Q) \ w. Entonces, u
debe ser constante en las componentes conexas de Q \ w. Esto significa que 2\ w es rellenado
con un material extremadamente rigido, lo cual es consistente con el hecho de que f — oo.
Por los resultados obtenidos en los Capitulos 1 y 2 es esperable que se puedan obtener algunos

resultados de regularidad para las soluciones de (3.70)).

Otra extension interesante es estudiar el caso cuando p — 00, lo cual corresponde a
estudiar la mezcla de dos materiales perfectamente plasticos. Es importante observar que en
este caso es necesario considerar una secuencia de coeficientes o, y 3, tales que ozzl,_p y oz}o_p
son sucesiones convergentes. Argumentando como en [10] y [1] y asumiendo que a,? y )P
convergen a (i, v foe cuando p — 0o,se puede conjeturar que el valor del problema

e Vup g
Bt { P /Q R ) ()

we WyP(Q), 6eL=(Q;[0,1]), / odx < k,
Q

converge al valor de

IIQII,H _<f7 U>
u € W(}OO(Q), 0 € L>=(Q;]0,1]), /edg; <K, (3.71)
Q

IVu(z)|[(asd(z) + Boo(l — 8(x))) < 1 a.e. x € Q.

Por lo tanto el problema puede ser visto como una versiéon homogeneizada de la
ecuacion del co—Laplacian. Por supuesto, la demostracion rigurosa de esta convergencia nece-
sita un analisis mas profundo, sin embargo, el problema hace posible estudiar la mezcla
de dos materiales inelasticos caracterizados por las constantes a,, and [, respectivamente.
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