
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE INGENIERÍA ELÉCTRICA

NANOSATELLITE CONSTELLATIONS CONTROL FRAMEWORK USING
EVOLUTIONARY CONTACT PLAN DESIGN AND COMMAND

ARCHITECTURE FLIGHT SOFTWARE

TESIS PARA OPTAR AL GRADO DE DOCTOR EN INGENIERÍA ELÉCTRICA

CARLOS EDUARDO GONZÁLEZ CORTÉS

PROFESOR GUÍA:
MARCOS DÍAZ QUEZADA

PROFESOR CO-GUÍA:
ALEXANDRE BERGEL

MIEMBROS DE LA COMISIÓN:
SANDRA CÉSPEDES UMAÑA

JUAN FRAIRE
SHINICHI NAKASUKA

Este trabajo ha sido parcialmente financiado por:
CONICYT-PCHA/Doctorado Nacional/2016-21161016.

Powered@NLHPC: Esta investigación/tesis fue parcialmente apoyada por
la infraestructura de supercómputo del NLHPC (ECM-02)

SANTIAGO DE CHILE
2022

RESUMEN DE LA TESIS PARA OPTAR AL GRADO
DE DOCTOR EN INGENIERÍA ELÉCTRICA
POR: CARLOS EDUARDO GONZÁLEZ CORTÉS
FECHA: 2022
PROF. GUÍA: MARCOS DÍAZ QUEZADA
PROF. CO-GUÍA: ALEXANDRE BERGEL

NANOSATELLITE CONSTELLATIONS CONTROL FRAMEWORK USING
EVOLUTIONARY CONTACT PLAN DESIGN AND COMMAND

ARCHITECTURE FLIGHT SOFTWARE

Agencias espaciales, instituciones educacionales, y empresas usan Cubesats para la inves-
tigación científica, educación, demostraciones tecnológicas e industria espacial en la era del
New Space. El siguiente paso en la cambiante industria espacial es la construcción y operación
de mega constelaciones de cientos a miles de pequeños o nanosatélites. Este contexto agrega
nuevos requerimientos y desafíos para las líneas de producción y operación de proyectos es-
paciales. Este trabajo se enfoca en la operación ágil de una mega constelación satelital con
comunicaciones inter-satélite. Este trabajo propone utilizar la topología de la constelación
para diseñar planes de contacto usando algoritmos evolutivos y la información del plan de
contacto para controlar la operación de la constelación. El plan de contactos se usa para crear
una tabla con un plan de vuelo global que resumirá las operaciones necesarias para ejecutar
una tarea. Así, los satélites y estaciones terrenas solo necesitan un software de vuelo capaz de
encolar, ejecutar y transferir los comandos del plan de vuelo. Este trabajo presenta el diseño
e implementación del sistema completo así como casos de estudio para validar el funciona-
miento con constelaciones de hasta 1000 nodos. La propuesta de usar algoritmos evolutivos
para diseñar el plan de contactos muestra resultados prometedores abriendo la posibilidad
de controlar mega constelaciones de cientos a miles de nanosatélites.

i

ABSTRACT OF THE THESIS FOR THE DEGREE
OF DOCTOR IN ELECTRICAL ENGINEERING
AUTHOR: CARLOS EDUARDO GONZÁLEZ CORTÉS
DATE: 2022
ADVISOR: MARCOS DÍAZ QUEZADA
CO-ADVISOR: ALEXANDRE BERGEL

NANOSATELLITE CONSTELLATIONS CONTROL FRAMEWORK USING
EVOLUTIONARY CONTACT PLAN DESIGN AND COMMAND

ARCHITECTURE FLIGHT SOFTWARE

Space agencies, educational institutions, and private companies have adopted CubeSat
nanosatellites to do scientific research, training, technology demonstration, and space-based
industries in the New Space era. The next step in this changing space sector corresponds to
the assembly and operation of large satellite constellations consisting of hundreds or thou-
sands of small- or nanosatellites. This context adds new requirements and challenges to the
production and operation lines of these space projects. This work focuses on the agile ope-
ration of a large nanosatellite constellation with inter-satellite communications. This work
proposes utilizing the constellation contact topology to design contact plans using evolutio-
nary algorithms and contact plan information to control the constellation operations. The
contact plan is then used to create a Global Flight Plan table that summarizes all the ope-
rations required to execute a proposed task. Thus, satellites and ground station nodes only
need flight software capable of queuing, executing, and transferring Flight Plan commands.
This work presents the design and implementation of the complete system and case studies
to validate framework functioning with constellations up to 1000 nodes. The evolutionary
contact plan design approach shows promising scalability results opening the possibility of
controlling satellite mega constellation of hundreds or thousands of nanosatellites.

ii

A mis padres y hermanas por que les debo todo lo que soy,
y porque gracias a su gran esfuerzo y apoyo incondicional

he podido llegar a instancias que nunca imaginé.

Los amo, siempre estaré con y para ustedes

iii

Agradecimientos
A mi familia, padres y hermanas, por su incondicional apoyo y comprensión durante este

largo proceso. En especial a mis padres por su gran esfuerzo, por su confianza, por haber
sembrado en mí, desde muy pequeño, la motivación para ser una gran profesional. Con su
ejemplo, me han enseñado la lección más importante: el trabajo dedicado, el esfuerzo y la
perseverancia son las claves para lograr las metas en la vida, la felicidad personal y la de
quienes te rodean. Por siempre les estaré agradecido. Espero que mis metas sean también
parte su felicidad.

A mi novia, mi compañera, mi amiga y mi amor: Tamara. Muchas gracias por tu incon-
dicional apoyo y paciencia en momentos difíciles. Compartir contigo en tantos aspectos de
la vida ha sido una experiencia inigualable. Gracias por motivar mis esfuerzos y abrir las
puertas a nuevas perspectivas de futuro. Este trabajo está lleno de tu gracia.

A Pacu, quien ama, apoya y enseña sin decir nada.

A los miembros de mi comisión, por la confianza depositada en mí, su apoyo y aporte, que
ha sido vital en mi formación como profesional. Al profesor Marcos Díaz por la oportunidad
invaluable de poder participar en un proyecto tan fuera de serie, por compartir su visión sobre
el rol profesional y social que implica este grado académico. Al profesor Alexandré Bergel
quien amablemente ha compartido su conocimiento y entusiasmo, entregando un apoyo de
otro nivel para cumplir esta meta. Sus valores humanos, éticos y profesionales son una base
inigualable para crecer como persona.

A todos los miembros del proyecto SUCHAI, porque este trabajo integra, de manera di-
recta o indirecta, el esfuerzo de un gran equipo de personas. En el intento de compartir mi
experiencia, he aprendido de ustedes conocimientos y virtudes que no puedes encontrar en
ningún libro. En mi persona hay una amalgama de cada conversación, risas, logros, fatigas y
sueños que hemos compartido en las arduas horas de trabajo. A mis amigos y colegas Alex
Becerra, Camilo Rojas, Elias Obreque, Francisco Anguita. Ustedes le dan sentido a las pa-
labra equipo, poder compartir la alegría y el rigor con ustedes es un privilegio para mí. A
todas mis amistades, gracias por estar más allá de lo que el tiempo significa.

A mis alumnos y colegas de la Universidad de Santiago de Chile. Probablemente no se-
pan que han sido un soporte muy importante para desarrollar este trabajo. Enseñar es un
privilegio y una responsabilidad y sobre todo una gran motivación. He aprendido demasia-
do de ustedes. Finalmente, recordar que este trabajo ha sido apoyado por becas y fondos
científicos estatales. De forma muy directa la sociedad depositó su confianza y me entregó
la responsabilidad de retribuir desde mi disciplina y humanidad a una mejor sociedad para
todos.

iv

Table of contents

1. Introduction 1
1.1. Motivation . 1
1.2. Problem definition . 2
1.3. Research questions . 3
1.4. Hypotheses . 4
1.5. Research objectives . 4

1.5.1. General objective . 4
1.5.2. Specific objectives . 4

1.6. Contributions of this work . 4
1.7. Publications . 5

1.7.1. Scientific journals (ISI) . 5
1.7.2. International conferences and workshops 6

1.8. Outline of the thesis . 6

2. Background 7
2.1. Large satellite constellation . 7
2.2. Task scheduling in satellite constellations . 8
2.3. DTN and contact plan design . 10
2.4. Nanosatellites flight software . 10
2.5. Chapter highlights . 12

3. Nanosatellite constellation control framework 14
3.1. Constellation control framework . 14

3.1.1. Scenario and task definitions . 15
3.1.2. Contact list generation . 17
3.1.3. Contact plan design . 18

3.1.3.1. Genetic algorithm . 20
3.1.3.2. Encoding . 21
3.1.3.3. Constraints and fitness function 22
3.1.3.4. Initialization and stopping criteria 23
3.1.3.5. Mutation operation . 24
3.1.3.6. Cross-over operation . 24

3.1.4. Flight plan design . 25
3.1.5. Implementation details . 26

3.2. Flight software . 26
3.2.1. Requirements analysis . 26

3.2.1.1. Non-functional requirements 26

v

3.2.1.2. Functional requirements . 27
3.2.2. General design . 28

3.2.2.1. Drivers layer . 29
3.2.2.2. Operating system layer . 30
3.2.2.3. Application layer . 31
3.2.2.4. Flight plan . 32

3.2.3. Implementation details . 33
3.3. Simulator . 33

3.3.1. Implementation details . 34
3.4. Chapter highlights . 35

4. Results 36
4.1. Contact list generation scalability . 36
4.2. Genetic algorithm hyper-parameters tuning 38

4.2.1. Scenario A: 10 satellites Walker constellation 38
4.2.1.1. Task 1 . 40
4.2.1.2. Task 2 . 43

4.2.2. Scenario B: 10 satellites Ad hoc constellation 45
4.2.2.1. Task 1 . 46
4.2.2.2. Task 2 . 48

4.2.3. Scenario C: 100 satellites Walker constellation 50
4.2.3.1. Task 1 . 52
4.2.3.2. Task 2 . 53

4.2.4. Scenario D: 100 satellites Ad hoc constellation 55
4.2.4.1. Task 1 . 56
4.2.4.2. Task 2 . 57

4.2.5. Scenario E: 1000 satellites Ad hoc constellation 59
4.2.5.1. Task 1 . 59
4.2.5.2. Task 2 . 59

4.2.6. Genetic algorithm scalability . 60
4.3. Flight software verification and validation 62

4.3.0.1. Evaluation of modularity using software visualization 62
4.4. Constellation simulator results . 65

4.4.1. Set up . 65
4.4.2. Execution . 66

4.4.2.1. Results . 68
4.5. Chapter highlights . 70

5. Conclusions and future work 72
5.1. Conclusions . 72
5.2. Challenges . 73
5.3. Future work . 75

List of acronyms 78

Bibliography 80

vi

List of tables

1.1. Small- and nanosatellite constellation challenge summary 3
2.1. Review of small and nano-satellite constellations 8
2.2. Review of flight software architectures used in CubeSat projects 13
3.1. Scenario definition . 16
3.2. Task definition . 16
3.3. Flight plan related commands . 33
4.1. Scenario A description . 39
4.2. Scenario A, task 1 example contact plan and flight plan solution. 42
4.3. Scenario A, task 2 example contact plan and flight plan solution. 44
4.4. Scenario B description . 45
4.5. Scenario B, task 1 example contact plan and flight plan solution. 47
4.6. Scenario B, task 2 example contact plan and flight plan solution. 49
4.7. Scenario C description . 50
4.8. Scenario C, task 1 example contact plan and flight plan solution. 53
4.9. Scenario C, task 2 example contact plan and flight plan solution. 53
4.10. Scenario C description . 55
4.11. Scenario D, task 1 example contact plan and flight plan solution. 56
4.12. Scenario D, task 2 example contact plan and flight plan solution. 58
4.13. Scenario E description . 59
4.14. Scenario F, task 1 example contact plan and flight plan solution. 60
4.15. Scenario F, task 2 example contact plan and flight plan solution. 60
4.16. Scenarios description . 66

vii

List of illustrations

2.1. Constellation geometries: a) Walker Delta constellation; b) Walker Star Conste-
llation [4] . 7

2.2. Example of a Delay or Disruption Tolerant Network (DTN) contact topology
modeled as: a) Contact List (CL); b) Finite State Machine (FSM) [38]. 11

3.1. Constellation working scheme . 15
3.2. Constellation control framework block diagram 15
3.3. Contact topology and using it FSM representation. It includes ground stations

and targets as nodes . 18
3.4. Contact Plan Design rules and example Contact Plan 19
3.5. Genotype, phenotype, validity and delivery time of a possible solution for the

example scenario and task definition . 22
3.6. Individuals initialization. S, T, and E are the Start, Target, and End nodes’

numbers. These values are known from the task definition. The index I of node
T is particular to an individual. A, B, and C are unknown and so generated
randomly for each individual . 23

3.7. Mutation operation. Left, case A: i ∈ {I − 1, I + 1}, so both indexes 1 and 3 are
mutated. Right, case B: i /∈ {0, I − 1, I, , I + 1, L− 1} so mutate node at index 5. 24

3.8. Cross-over operation. Left, case A: the cut point is chosen from parent A so
j = IA + 1 = 4 and the first section comes from parent A while the second
section comes from parent B. Right, case B: in this case the cut point is chosen
from parent B so so j = IB + 1 = 3 and the first section also comes from parent B 25

3.9. Relation between Contact Plan (Contact Plan (CP)) and Flight Plan (Flight
Plan (FP)) . 25

3.10. Example of satellite constellation operations. Ground station nodes send com-
mands and flight plans to satellites. Satellites execute flight plan commands and
remote commands (on-demand operations) and autonomous commands (house-
keeping, attitude control, etc.). Using the ISL, nodes can send commands and
data to other nodes. All nodes in the constellation execute the same flight software. 28

3.11. SUCHAI Flight software architecture: UML model diagram. Each layer consists
of a number of coarse-grain modules, a module resulting from compiling several
C files and headers. A direct dependency between modules is indicated with an
arrow. The architecture follows a top-down interaction: higher-level layers can
interact with layers below, but a lower level layer should never depend on layers
above. 29

viii

3.12. SUCHAI Flight software architecture: UML communication diagram. In this ar-
chitecture, clients only generate requests to execute commands, depending on
the control strategy that each client implements. These requests are sent as
messages to the invoker that may implement some control strategies over the
command execution, such as filtering, priorities, and logging. If the invoker deci-
des that the command can be executed, it sends the request to the receiver. The
receiver actually executes the command by calling the corresponding function.
The command and data repositories provide an interface to handle commands
creation and data storage, respectively. 30

3.13. SUCHAI Flight software architecture: UML sequence diagram. Each client im-
plements a control strategy and can request commands execution under certain
circumstances. To execute a command, the client has to create it using the com-
mand repository and then send an asynchronous message to the invoker. The
invoker receives all client messages and organizes the execution by sending the
request to the receiver. The receiver actually executes the command by calling
the corresponding function. Once the command is executed, the receiver sends
a message back to the invoker with the execution result. 31

3.14. Simulator modules integrated in the SUCHAI Flight Software (FS). In blue: new
simulator related modules. In gray: modules no longer used 34

3.15. Software in the loop simulator for nanosatellites constellation using the SUCHAI
FS . 34

4.1. Contact list generation flow diagram. 36
4.2. Contact list generator scalability results for a 10 satellites constellation (left) and

100 satellites constellation (right). Propagation time 16200 seconds (3 orbits)
with 30 seconds resolution, and 60 seconds contacts resolution. 37

4.3. Contact list calculation execution times for 10, 100 and 1000 satellites scenarios.
Propagation time 16200 seconds (3 orbits) with 30 seconds resolution, and 60
seconds contacts resolution. 38

4.4. Scenario A satellite tracks after 45 minutes (Approx. half orbit), ground stations
and targets locations (red). 40

4.5. Scenario A contact list in FSM representation. Contact opportunities are grey
lines connecting two nodes. For clarity, a simplified version with 300 seconds
contacts resolution is shown. Note that lines connecting nodes in a particular
state may be overleaped. 40

4.6. Scenario A, task 1 hyper-parameters tuning with maximum 9 hops. The box
plots show the fitness value as the number of valid contacts in the solution
sequence (upper left), the duration -or delivery time- of the solution in seconds
(upper right), the time required to find the solution (lower left), and the number
of generations required to find the solution (lower right). 41

4.7. Scenario A, task 1 example results with maximum 9 hops. Contacts resolution
60 seconds. Left: Mutation=0.6, population=150, fitness=9, duration=4620 s,
sequence=[10, 8, 8, 0, 12, 0, 0, 12, 0, 11], contacts=[417, 417, 519, 643,
643, 643, 643, 643, 938]. Right: Mutation=0.4, population=50, fitness=9, du-
ration=4620 s, sequence=[10, 8, 6, 2, 0, 12, 0, 11, 11, 11, contacts=[417, 462,
499, 512, 643, 643, 938, 938, 938] . 42

ix

4.8. Scenario A, task 2 hyper-parameters tuning with maximum 13 hops. The box
plots show the fitness value as the number of valid contacts in the solution
sequence (upper left), the duration -or delivery time- of the solution in seconds
(upper right), the time required to find the solution (lower left), and the number
of generations required to find the solution (lower right). 43

4.9. Scenario A, task 2 example results with maximum 13 hops. Contacts resolution
60 seconds. Left: Mutation=0.6, population=150, fitness=13, duration=7380 s,
sequence=[11, 8, 6, 8, 10, 8, 0, 0, 6, 0, 0, 12, 0, 11], contacts=[97, 134,
134, 417, 417, 519, 519, 543, 543, 543, 643, 643, 938]. Right: Mutation=0.4,
population=200, fitness=13, duration=7380 s, sequence=[11, 8, 10, 8, 0, 8, 8,
0, 8, 0, 12, 0, 11, 11], contacts=[97, 417, 417, 519, 519, 519, 519, 519, 519,
643, 643, 938, 938] . 44

4.10. Scenario B satellite tracks after 45 minutes (Approx. half orbit), ground stations
and targets locations (red). 46

4.11. Scenario B contact list in FSM representation. Contact opportunities are grey
lines connecting two nodes. Note that lines connecting nodes in a particular
state may be overleaped. Contacts resolution is 300 seconds to improve clarity 46

4.12. Scenario B, task 1 hyper-parameters tuning with maximum 8 hops. The box
plots show the fitness value as the number of valid contacts in the solution
sequence (upper left), the duration -or delivery time- of the solution in seconds
(upper right), the time required to find the solution (lower left), and the number
of generations required to find the solution (lower right). 47

4.13. Scenario B, task 1 example results with maximum 9 hops. Left: Mutation=0.6,
population=150, fitness=9, duration=4860 s, sequence=[10, 2, 2, 2, 5, 5, 8,
12, 8, 11], contacts=[732, 732, 732, 825, 825, 835, 952, 952, 1196]. Right:
Mutation=0.8, population=200, fitness=9, duration=4860 s, sequence=[10, 2,
5, 8, 3, 2, 8, 12, 8, 11], contacts=[732, 825, 831, 833, 842, 856, 952, 952, 1196] 48

4.14. Scenario B, task 2 hyper-parameters tuning with maximum 8 hops. The box
plots show the fitness value as the number of valid contacts in the solution
sequence (upper left), the duration -or delivery time- of the solution in seconds
(upper right), the time required to find the solution (lower left), and the number
of generations required to find the solution (lower right). 49

4.15. Scenario B, task 2 example results with maximum 12 hops. Left: Mutation=0.6,
population=150, fitness=12, duration=7680 s, sequence=[11, 2, 10, 2, 9, 9, 3,
5, 8, 12, 8, 11, 11], contacts=[464, 732, 732, 782, 782, 793, 816, 831, 952, 952,
1196, 1196]. Right: Mutation=0.8, population=50, fitness=12, duration=7680
s, sequence=[11, 2, 10, 2, 9, 3, 8, 2, 8, 12, 8, 11, 11], contacts=[464, 732, 732,
782, 786, 822, 838, 838, 952, 952, 1196, 1196] 50

4.16. Scenario C satellite tracks after 45 minutes (Approx. half orbit), ground stations
and targets locations (red). 51

4.17. Scenario C contact list in FSM representation. Contact opportunities are grey
lines connecting two nodes. Note that lines connecting nodes in a particular
state may be overleaped, please refer to the annexes to see the full table 51

x

4.18. Scenario C, task 1 hyper-parameters tuning with maximum 9 hops. The box
plots show the fitness value as the number of valid contacts in the solution
sequence (upper left), the duration -or delivery time- of the solution in seconds
(upper right), the time required to find the solution (lower left), and the number
of generations required to find the solution (lower right). 52

4.19. Scenario C, task 2 hyper-parameters tuning with maximum 9 hops. The box
plots show the fitness value as the number of valid contacts in the solution
sequence (upper left), the duration -or delivery time- of the solution in seconds
(upper right), the time required to find the solution (lower left), and the number
of generations required to find the solution (lower right). 54

4.20. Scenario D satellite tracks after 45 minutes (Approx. half orbit), ground stations
and targets locations (red). 55

4.21. Scenario D contact list in FSM representation. Contact opportunities are grey
lines connecting two nodes. Note that lines connecting nodes in a particular
state may be overleaped, please refer to the annexes to see the full table 56

4.22. Scenario D, task 1 hyper-parameters tuning with maximum 9 hops. The box
plots show the fitness value as the number of valid contacts in the solution
sequence (upper left), the duration -or delivery time- of the solution in seconds
(upper right), the time required to find the solution (lower left), and the number
of generations required to find the solution (lower right). 57

4.23. Scenario D, task 2 hyper-parameters tuning with maximum 12 hops. The box
plots show the fitness value as the number of valid contacts in the solution
sequence (upper left), the duration -or delivery time- of the solution in seconds
(upper right), the time required to find the solution (lower left), and the number
of generations required to find the solution (lower right). 58

4.24. Evolutive contact plan design scalability results 61
4.25. Modules dependencies comparison between commits 765c128 and 0ca21db. . . 63
4.26. Application layer architecture visualization. Relation between Task modules,

Invoker, Receiver and messages queues for commits 765c128 and 0ca21db . . 64
4.27. Contact plan for each scenario and task in the simulation 67
4.28. Contact plan for each scenario and task in the simulation 68
4.29. Scenario Walker command execution rate (commands/seconds). Top: task 1 re-

sults. Bottom: task 2 results. 69
4.30. Scenario Ad hoc command execution rate (commands/seconds). Top: task 1

results. Bottom: task 2 results. 70

xi

https://data.spel.cl/viz_html/2017-12-11.21:24:57.765c128.html
https://data.spel.cl/viz_html/2018-05-22.22:51:08.0ca21db.html
https://data.spel.cl/viz_html/queues/2017-12-11.21:24:57.765c128.html
https://data.spel.cl/viz_html/queues/2018-05-22.22:51:08.0ca21db.html

Chapter 1

Introduction

1.1. Motivation
CubeSats are standardized satellites shaped like a 10cm edge cube. According to the Cube-

Sat Design Specification, this basic unit (1U) can be extended to 2U, 3U, 6U, and more [1].
CubeSat nanosatellites have demonstrated that cost- and time-effective access to space is
possible. Space agencies, educational institutions, and private companies have adopted this
technology to do scientific research, training, technology demonstration, and space-based
industries in the New Space era [2]. In general, satellites can operate independently or in for-
mation flying, i.e., several vehicles are used to accomplish a mission cooperatively. The most
common satellite formations flying are trailing, cluster, and constellation [3] using Walker-
delta or Walker-star geometries [4]. However, it is unlikely that a large or mega CubeSat
constellation can be deployed with a specific geometry. Instead, Ad-hoc configurations re-
sulting from several secondary payload launching opportunities can be expected [5, 6]. If
the satellites are equipped with an inter-satellite communication system, the capabilities of
the constellation are enhanced, enabling missions such as: servicing or proximity operations,
autonomous operations, fractionated spacecraft, or distributed processing [3].

Today, the trend in this changing space sector is the assembly and operation of large sate-
llite constellations consisting of hundreds or thousands of small or nanosatellites [7, 8, 9]. Such
a number of satellites have no precedents and propose new challenges. Satellite operations
largely depend on human operators, statically assigned ground capabilities, or homogeneo-
us satellite networks. Constellations with inter-satellite capabilities are not widely deployed
yet except for a few companies. Small and nanosatellites add numerous challenges to this
problem: heavy restrictions in space, power, and communications capabilities, plus different
configurations, short life cycle, and rapid technological evolution. These challenges may stress
satellites’ production lines [10]. Meanwhile, the deployment, maintenance, data acquisition,
routing, and optimization of constellation operations are complex scheduling problems [11],
so novel techniques are required to achieve repeatability, autonomy, and scalability in nano-
satellite constellation missions [10].

Radhakrishnan et al. (2016) [3] review the challenges of constellations missions with small
satellites from Physical to Network layers of the OSI model. However, the assembly and
operation of these space systems also present many challenges in the Application Layer. A
high level of automation is required to optimize the usage of small satellite constellation

1

capabilities. Assigning earth and space resources, distributing goals, or propagating changes
in the constellation system are complex problems that require intelligent algorithms to be
solved [12, 13]. Even the simplest versions of these scheduling problems are Mixed Integer
Linear Programming (MILP) and hence NP-hard class [14]. Therefore exact solution algo-
rithms can be impractical for large constellations of thousands of nodes. On the other hand,
heuristics approaches such as Evolutionary Algorithms have been used with promising results.

From the Network and Transport layers perspective, traditional TCP/IP protocols are
not well suited for a satellite constellation due to long-delay and low reliable communication
links. CCSDS protocols are more widely used in space applications but with limited use cases
in large constellations. The family of DTN routing protocols is better suited in LEO cons-
tellations with ISL. In contrast with TCP/IP stack protocol, Delay or Disruption Tolerant
Network (DTN) protocols assume that contacts among nodes are sporadic, so nodes require
a buffer to store and carry messages until a link is available. Despite the time-evolving nature
of the connections in a Low Earth Orbit (LEO) satellite network, the contact opportunities
can be predictable due to orbital mechanics [15]. The contact information can be used to
design contact plans with different goals[15, 16, 17].

All the operations mentioned above must be supported in the satellite flight software as
well as the ground control nodes [18, 11]. Previous works have remarked that modular, ex-
tensible, and reliable flight software architectures are required to deliver quality software in
less time and with less effort [19, 20].

Despite the incipient deployment of small- and nanosatellite mega-constellations, the stu-
dies in task scheduling, and advances in flight software development, there is a gap in solutions
that integrate those concepts to scale the production and operation of nanosatellites cons-
tellations from tens to hundreds or thousands of nodes. Thus, in this work, we present a
nanosatellite constellation control framework (See section 3) that uses the contact topology
information to design a global flight plan which must be executed cooperatively by the sa-
tellites to solve a particular task. This global flight plan is created using a contact plan,
just as in DTN routing protocols. Thus, an evolutionary algorithm is used to design this
contact plan, considering the scalability of a large number of nodes. Based on typical Cube-
Sats’ hardware and software capabilities, delegating the scheduling problem to the ground
nodes and delivering a global flight plan table to the satellites seems to be a more suitable
solution. Validation of these ideas is shown in Section 4 through a case study that includes
constellations with tens, hundreds, and thousands of satellites.

1.2. Problem definition
Constellations with a large number (hundreds to thousands) of small or nanosatellite with

Inter-satellite link (ISL) are challenging. These challenges, decomposed using the OSI fra-
mework, ranging from the Physical to the Application layers, are summarized in Table. 1.1.
In lower layers, inter-satellite communication systems for nanosatellites with limited energy
resources and pointing capabilities and proper medium access control (MAC) protocols are
required. Emerging technologies based on optical communication links and phased array an-

2

tennas have shown promising results [3]. From the Network and Transport layers perspective,
traditional TCP/IP protocols are not well suited for a satellite constellation due to long-delay
and low reliable communication links. CCSDS protocols are more widely used in space ap-
plications but with limited use cases in large constellations. A new family of routing protocol
for DTN is required [15]. Finally, in the Application layer, a more flexible and autonomous
software solution to control a small nanosatellite constellation operation is an active research
area [21]. Additionally, the flight software should include tools to simplify the constellation
operation, task scheduling, and options to optimize the system resource usage [18, 11]. Des-
pite the incipient deployment of small- and nanosatellite mega-constellations, the studies in
task scheduling, and advances in flight software development, there is a gap in solutions that
integrate those concepts to scale the production and operation of nanosatellites constellations
from tens to hundreds or thousands of nodes.

Table 1.1: Small- and nanosatellite constellation challenge summary

OSI model Challenges

Application
Presentation
Session

Flight software architectures capable of scaling to assembly hundreds or
thousands of small or nanosatellites in an agile fashion [21]. Support an
autonomous operation of the constellation. Optimize the usage of the
constellation resources (computational, energy, lifetime, etc.) [18, 11]

Transport
Network

Network protocols that support long delays and/or interrupted
communication links [15]. Protocols aware of computational resources,
energy, and link capacity limitations [17].

Data-link
Physical

Inter-satellite communication links for small or nanosatellites with energy,
pointing, and space limitations [3]. MAC protocols for large wireless
network [22].

1.3. Research questions
Considering the problem stated Section 1.2, this Ph. D. thesis addresses the following

research question:

"How to control the operation of a large nanosatellite constellation with ISL optimizing
the system resources usages "

This general research question generates further relevant secondary questions:

1. Should the operation control strategy be implemented in the ground or space segment?

2. What optimization technique should be implemented to solve the scheduling problem?

3. What are the software requirements, in terms of architectural design, to control a nano-
satellite constellation operation?

These questions intend to provide a general guideline to find a feasible framework design
to operate large nanosatellite constellations with ISL.

3

1.4. Hypotheses
The Hypotheses presented in this Ph. D. thesis are the following:

H1 A nanosatellite constellation can be controlled from a central entity by setting a global
flight plan that nodes must execute cooperatively.

H2 The flight plan that solves the scheduling problem can be derived from the contact
topology designing a valid contact plan as seen in DTN routing problems.

H3 Evolutionary algorithms can find a valid contact plan, and thus a global flight plan, in
bounded time even for large constellations of hundreds or thousands satellites.

1.5. Research objectives
1.5.1. General objective

The general objective of this Ph.D. thesis is to provide a framework to automate a nano-
satellite constellation’s operations with ISL and evaluate the scalability of the solution to a
constellation of hundreds to thousands of nodes.

1.5.2. Specific objectives
The specific objectives required to fulfill the work are:

Design and implement a mission control framework to schedule and execute tasks in a
satellite network automatically.

Design and implement a nanosatellite flight software that satisfies the framework ope-
ration model’s requirements.

Define metrics and tool-chains to test, measure, and validate the framework results. For
example, measure the solution’s scalability to scenarios of thousands of satellites and
the constellation resources usage when tasks are executed.

1.6. Contributions of this work
The contributions of this work are summarized below:

Nanosatellite constellations mission control framework: This work presents the
design and the implementation of a framework to schedule and execute tasks in a nano-
satellite constellation. The framework was implemented as a set of libraries and scripts
in the Python programming language. It includes modules to define scenarios and tasks,
calculate the constellation contact list from the satellite Two-line Elements Set (TLE)s
and target locations, calculate valid contact plans using a genetic algorithm, and obtain
the flight plan that solves the defined task. In addition, the framework can be extended
to set new constraints and optimization goals.

4

Flight software for nanosatellite constellations: As a way to close the gap between
the problem definition of this work and the practical deployment of future nanosatellite
constellation, this work presents a nanosatellite flight software designed to work with
the proposed control framework and to meet the principal requirements of CubeSat
constellation missions. This work also proposes a verification technique, based on the
visual software architecture tracking, to ensure quality requirements are fulfilled even in
nanosatellite massive production. The software was implemented in the C programming
language, ported to the FreeRTOS and GNU/Linux operating systems, and licensed as
a Free/Libre and Open Source Software (FLOSS) project to be used in a wide range of
CubeSat projects.

Nanosatellite constellation software in the loop simulation suite: The software
in the loop simulation suite is used to validate the results of the control framework. This
suite uses the proposed flight software and the results of the control framework as input.
Implemented in the Python programming language, the suite interacts with several flight
software instances simulating satellites or ground control nodes. The simulation results
make it possible to evaluate the proposed solution’s performance. This suite is intended
to be used in future production environments to accurately predict the constellation
system’s functioning before executing a task.

Only Free and Open Source Software (FOSS) projects were used in this work. Hoping
to contribute to these efforts, all the software results of this work are available in a GitLab
repository and licensed as FLOSS. The intention is to expand the CubeSat community’s tools
into developing better and complex missions in the future.

1.7. Publications
1.7.1. Scientific journals (ISI)

C. E. Gonzalez, C. J. Rojas, A. Bergel and M. A. Diaz, An Architecture-Tracking Ap-
proach to Evaluate a Modular and Extensible Flight Software for CubeSat Nanosatellites,
in IEEE Access, vol. 7, pp. 126409-126429, 2019, doi: 10.1109/ACCESS.2019.2927931.

• In this publication, the author contributed to the complete design and implementation of
novel flight software for CubeSats. The author also studied state of the art, defined the
software requirements, performed tests and analyzed the results. The visualization tool as
wheel as the software implementation was developed in collaboration with the co-authors.
This work is relevant for this thesis and the CubeSat program because it facilitates the
development of the mission, payloads, and derived works. It also opens the ability to
operate constellations, as explored in this Ph.D. thesis.

T. Gutierrez, A. Bergel, C. E. Gonzalez, C. J. Rojas, and M. A. Diaz, Systematic Fuzz
Testing Techniques on a Nanosatellite Flight Software for Agile Mission Development,
in IEEE Access, vol. 9, pp. 114008-114021, 2021, doi: 10.1109/ACCESS.2021.3104283.

• In this publication, the thesis’s author contributed to designing the flight software and
guidelines to interact with external tools such as the fuzz testing system. In collaboration
with the co-authors, analyzed and solved the errors found by the novel testing techniques
and helped characterize the errors. Thanks to previous collaborations with other CubeSats

5

teams, the author also provided guidelines to implement this testing technique in third-
party flight software. This work is relevant to the Ph.D. thesis because it also studies
agile and automated techniques to develop satellites which are key to deploying large
constellations.

1.7.2. International conferences and workshops
C. E. Gonzalez, A. Bergel and M. Diaz, Nanosatellite constellation control frame-
work using evolutionary contact plan designs Conference Paper. Presented in the 8th
IEEE International Conference on Space Mission Challenges for Information Technology
(SMC-IT), 2021.

M. Diaz, J. Rojas, C. E. Gonzalez, C. Rojas, E. Obreque, I. Portillo, Preliminary
analysis of the new space communication scenario: the ground segment perspective. In
proceedings. 2020 IEEE Biennial Congress of Argentina (ARGENCON). 2020.

T. Gutierrez, A. Bergel, C. E. Gonzalez, C. J. Rojas, and M. A. Diaz, Toward Applying
Fuzz Testing Techniques on the SUCHAI Nanosatellites Flight Software. In proceedings.
2020 IEEE Biennial Congress of Argentina (ARGENCON). 2020.

Diaz, M. A. ; Gonzalez, C. ; Moya, P. S. ; Martinez Ledesma, M., Preliminary results
of the first year of operation of the SUCHAI-1 Cubesat: Langmuir probe and particle
counter measurements. Poster. American Geophysical Union, Fall Meeting. 2018.

C Gonzalez, C Rojas, A Becerra, J Rojas, T Opazo, M Diaz, Lessons Learned from
Building the First Chilean Nanosatellite: The SUCHAI Project. In proceedings. 32nd
Annual AIAA/USU Conference on Small Satellites. 2018.

1.8. Outline of the thesis
This Ph. D. thesis continues in Section 2 presenting a background of concepts and state of

the art regarding nanosatellite constellations, task scheduling problems, delay or disruptions
tolerant networks, and nanosatellite flight software. Then, the proposed constellation con-
trol framework is described in detail in Section 3. Section 4 present the results of applying
the framework to case studies. Finally, conclusions and future work are presented in Sec-
tion 5.

6

Chapter 2

Background

This chapter presents the main topics related to this doctoral thesis. From general to
specific, this chapter describes definitions and state of the art about large satellite conste-
llations, task scheduling in satellite constellations, Delay and Disruption Tolerant Networks,
and nanosatellite flight software.

2.1. Large satellite constellation
Distributed Space Missions (DSMs), such as formation flight and constellations [23], are

being recognized as key solutions to enhance satellite services by increasing the spatial and
temporal measurement frequency or providing global communication networks. According to
the satellites’ spatial relationship [23], the most popular constellations distributions are the
Walker Delta and the Walker Star geometries [4]. Both geometries are shown in Fig. 2.1.
However, it is unlikely that a large or mega CubeSat constellation can be deployed with a
specific geometry. Instead, Ad-hoc configurations resulting from several secondary payload
launching opportunities have been used more frequently. Marinan et al. (2013) [6] analyze this
case and show that it is possible to achieve a global coverage earth-observing constellation
from successive secondary launch opportunities with performance comparable to uniform
Walker constellations.

As shown in Table 2.1, mega-constellations consisting of hundreds and thousands of small-

Figure 2.1: Constellation geometries: a) Walker Delta constellation; b) Wal-
ker Star Constellation [4]

7

Table 2.1: Review of small and nano-satellite constellations

Project N°
Sat.

Orbit
alt.

Mass Frequency ISL Usage

Telesat 117 1000-
1248 km.

168 kg* Ka-band No Broadband com-
munications

OneWeb 720 1200 km. 145 kg. Ku-,
and Ka-
bands

No Broadband com-
munications

StarLink 4425 1110-
1325 km.

260 kg. Ku-,
and Ka-
bands

Yes Broadband com-
munications

Astrocast 64 450-600
km.

4 kg. (3U) L-band Yes IoT

Fleet 100 NA NA (1.5U, 3U, 12U) NA Yes IoT
Kepler 140 500-650

km.
5 kg. (3U) Ku-,

and Ka-
bands

Yes Satellite backhaul

Planet 160* 390-500
km.

5 kg (3U) S-, and
X-bands

No Earth-
observation

*: Estimation from available information
NA: Not available in public sources

satellites have started to be deployed by private companies such as Telesat, OneWeb, and
SpaceX with 117, 720, and 4425 planed nodes respectively [9, 24]. Nanosatellites are al-
so part of this trend. Akyildiz et al. (2019) [8] summarizes the Astrocast, Fleet, and Ke-
pler commercial constellations with 64, 100, and 104 proposed nanosatellites, respectively.
Meanwhile, Planet company has launched more than 160 earth-observing 3U CubeSats [25].
The future of nanosatellite constellations will be heavily influenced by current research and
technology demonstration missions. For example, Bandyopadhyayet al. (2016) [26] presents a
review of 39 research and technology demonstration of nanosatellite constellations projects.
Su et al. (2017) [27] study a global communication constellation with CubeSats, and Kak et
al. (2019) [28] proposes a framework to design and evaluate large-scale CubeSat constellation
for IoT applications.

However, due to the commercial nature of the mentioned constellation projects, there is
little technical information about hardware and software capabilities, constellation control
strategies, communication protocols, among others. As detailed in table 2.1 it is possible
to find information about orbits and frequency allocations thanks to the communication
regulations.

2.2. Task scheduling in satellite constellations
In satellite constellations, mission operations scheduling or task scheduling means assig-

ning system resources to distribute the operation’s workload. System resources are satellites,
instruments, ground stations, or inter-satellite links, while tasks can refer to earth observation
activities, provide communications services, or operate scientific instruments. This problem
may imply mapping discrete temporal resources, or time slots, optimally considering techni-
cal and economic constraints.

8

In earth-observing satellite constellations where satellites work as a gathering, storing,
and downloading data system, the problem is defining the time, location, and satellites to
take pictures to cover one o more geographical areas. Constrains are related to satellite ma-
neuvering capabilities, optical sensor capabilities, energy, memory consumption, meteorology,
and ground station availability. Lemaitre et al. (2002) [14] describes the formulation of the
Earth-Observing satellite scheduling problem and explores exact algorithms to solve it, sho-
wing that the solution is computationally hard. Cho et al. (2018) [29] delve into a two-step
linear programming approach to solve both imaging and data downloading schedule, inclu-
ding energy constraints; they simulated results for a constellation of up to 12 satellites. The
onboard scheduling problem in a bi-satellite cluster is studied by Chu et al. (2017) [30] where
a low-resolution satellite sets targets to the high-resolution satellite, which generates online
planning; an Anytime Branch and Bound Algorithm was applied. The work of Kennedy et
al. (2017) [18] evaluate two algorithms, Resource-Aware SmallSat Planner (RASP) and Li-
mited Communication Constellation Coordinator (LCCC), to coordinate a constellation of
earth-observation CubeSat satellites with ISL. Both RASP and LCCC algorithms perform
online and onboard planning of imaging tasks, sharing the planning with the constellation
using the ISL. They run simulations for Plain Walker, Stitched Walker, and Ad-hoc conste-
llations geometries up to 18 satellites. Also, in the field of CubeSats, Nag et al. (2018) [11]
present a framework for scheduling the attitude control operations for a constellation of small
Earth-observing satellites using Dynamic Programming and Mixed Integer Linear Program-
ming (MILP) algorithms; up to 4 satellites were simulated. Another approach is the usage of
meta-heuristic such as evolutionary algorithms to solve scheduling problems in satellite cons-
tellations. Its simplicity and efficiency can be an advantage in finding high-quality solutions
to these kinds of optimization problems. For example, Li et al. (2007) [31] uses a combina-
tion of Genetic Algorithm (GA) and Simulating Annealing to solve selecting and scheduling
tasks of agile earth-observing satellites. Yuan et al. (2014) [32] used a similar approach but
provided high-quality starting solutions to the GA improving the overall performance.

Communication satellite constellations, especially those equipped with inter-satellite links,
may need to find the optimal path to transfer data from one point to another, considering
restrictions such as link capacity, antenna pointing, energy consumption, among others. The
work of Spangelo and Cutler (2015) [33] solves the single-satellite, multi-ground station com-
munication scheduling problem to maximize the total amount of data downloaded from space
focused on small satellites. Jia et al. (2017) [34] propose a collaborative scheme that allows
satellites to offload data among themselves using inter-satellite links before they come to con-
tact the ground station. They used an iterative algorithm to solve the optimization problem,
and the schema was tested with simulations in the Globalstar and Iridium constellations. The
work of Deng et al. (2018) [35] analyses the scenario of user satellites and data relay satelli-
tes to propose a two-phase dynamic task scheduling method. In this method, the first step
uses a GA to solve the scheduling problem and a second step manages the possible distur-
bances in the initial task scheduling by preemptive task-switching. The simulation scenario
includes 3 data relay satellites and 8 user satellites. Bisgaard et al. (2019) [36] presents a
CubeSat-related work where a battery-aware scheduling problem for the GomX-3 satellite is
studied. In this work, a two-step procedure to perform task scheduling is formally presented
using a timed automata model. Battery models and scheduling results are contrasted with
the satellite in-orbit operation. Later, Fraire et al. (2020) [37] studied the scalability of the
batter-aware scheduling problem solving the MILP with a commercial solver. They were able

9

to solve scenarios up to 50 satellites.

In summary, even the simplest versions of these scheduling problems are MILP, and hence
NP-hard class [14]. Exact algorithms such as Greedy Algorithms (GA) [18, 29] or Dynamic
Programming (DP) [11]. However, due to these algorithms’ complexity, the solution can be
impractical for large constellations of thousands of nodes. On the other hand, heuristics
approaches such as Evolutionary Algorithms, Genetic Algorithms [31, 38] have been used
with promising results.

2.3. DTN and contact plan design
In contrast with ground networks based on the TCP/IP protocol stack where continuous

end-to-end connectivity is assumed, in a constellation of LEO satellites with ISL connectivity
among nodes could be sporadic. The latter is an example of Delay or Disruption Tolerant
Network (DTN). These networks use a store-carry-forward message scheme, so each node
requires non-volatile memory to store messages until the next hop is available. Despite the
time-evolving nature of the connections in LEO satellite networks, the contact opportunities
can be predictable due to orbital mechanics [15].

The work of Fraire et al. (2015) [15] defines a contact as the opportunity to establish a
temporal communication link among two DTN nodes when physical requirements are met.
They also define the contact topology as the set of all feasible contacts within an interval and
explain two ways to model the topology: Contact List (CL) and Finite State Machine (FSM)
representations. As shown in Fig. 2.2 in the CL representation each contact is in the form
of a source, destination, start time, and stop time table. For example, its possible to observe
a contact between node N1 and node N2 starting at 608 s. and finishing at 2228 s. In the
FSM representation, the contact list is discretized in states k1 to k7. Each state describes the
contacts available in a time window. In the example c2,3,4 represent a contact between node
N3 and N4 at state k2. Is is always possible to translate from CL to FSM and vice versa.

The process of selecting the contact set that meets a specific problem’s communication
requirements is called Contact Plan Design (CPD). The resulting contact set is defined as
Contact Plan (CP) [15]. Depending on the specific problem to be solved, different strategies
Contact Plan Design (CPD) have been proposed in the literature; however, as the number of
satellites in the constellation increases, meta-heuristics approaches as evolutionary algorithms
have shown promising results [38].

2.4. Nanosatellites flight software
Flight Software (FS) refers to the software system that controls the spacecraft operations

and is executed by the On-Board Computer (OBC), usually a real-time embedded system.
The FS implements most of the mission operational requirements and is a key element to
facilitate the development and operation of satellite constellations [39, 40]. Significant efforts
have been developed to provide better FS for nanosatellites, as detailed in Table 2.2. Also,
Miranda et al. (2019) [21] present a survey of available flight software frameworks for the
New Space era [2]. They show that nowadays, it is possible to find ready to use FS solutions
for CubeSats being the NASA Core Flight System (cFS) [41] and the Kubos initiative [42],

10

Figure 2.2: Example of a DTN contact topology modeled as: a) CL; b)
FSM [38].

some of the well documented and FOSS alternatives.

CubeSats are using a variety of On-Board Computers (OBCs) and Operating System
(OS) from 16-bits microcontrollers running FreeRTOS to modern ARM-Cortex microproces-
sors capable of running GNU/Linux. Undoubtedly, the processor’s selection, the OS, and the
programming language are closely related, and this decision directly affects other mission
variables. On the one hand, if the FS requires a high-level programming language or entirely
depends on features available only in GNU/Linux, then a more powerful processor is nee-
ded, which impacts the power consumption. On the other hand, using an OS for embedded
systems can save power at the cost of the processing capabilities and limit the availability
of developers since they are required either to know or to learn a low-level programming
language.

Most of the articles and missions listed in Table 2.2 and Miranda et al. (2019) [21] pre-
sent some level of software architecture definition. State machines, component-based, and

11

service-oriented architectures, messaging systems-based architectures, and command-centric
architectures are proposed. They also present some non-functional requirements such as mo-
dularity, extensibility, flexibility, robustness, and fault-tolerance [43] as relevant features of
the FS for nanosatellites. Non-functional requirements refer to the quality attributes of a sys-
tem [43]. Beyond the functional aspects of a satellite mission, it is necessary to define some
design guidelines that affect architectural decisions, especially in the context of agile, flexible,
and fast-growing CubeSat projects. This context makes non-functional requirements relevant
in the design and development phases. Except for NASA cFS and Kubos, all the reviewed
works are not open source or do not report the actual implementation details. Without this
information, it is challenging to evaluate software quality criteria beyond the design phase;
moreover, as far as we know, there is no standard and low-cost methodology to verify soft-
ware quality criteria for space systems neither in an agile fashion nor in real-time. Araguz
et al. [19] present three structured criteria to develop nanosatellite FS: robustness through
hierarchy, payload-oriented modularity, and onboard planning capabilities. The cFS deve-
lopers have used, among others, unit testing and graphical tools to verify the architecture
and quality of the software [44, 45] but these tools are not continuously integrated into the
development process in a way that might allow real-time monitoring of the architecture after
the contribution of different developers.

The numbers of satellites proposed for the coming constellations are unprecedented [60,
61]. It is critical for current and future FS solutions to facilitate satellites’ mass production
and the operation of a large number of spacecraft. Therefore, it is imperative that the ar-
chitectural guidelines and declared quality features of the FS, such as modularity, flexibility,
and extensibility, could be evaluated in an agile manner. That is, tracking software quality
during the development and integration phases instead of delegating these analyses to the
final phases.

2.5. Chapter highlights
In this section, nanosatellite constellation operation challenges and state of the art have

been discussed, and the following conclusions are extracted.
A nanosatellite constellation will likely be constructed by successive secondary launches,
creating an Ad-hoc configuration instead of a Walker configuration.

Task scheduling in satellite constellations is an NP-hard optimization problem. Although
different exact algorithms have been explored in the literature, heuristics approaches
such as evolutionary algorithms may scale better in large constellation scenarios.

A LEO constellation of nanosatellites with ISL can be modeled as a delay and disruption
tolerant network. Using the constellation contact topology, designing a contact plan
that meets certain design criteria is possible. Evolutionary algorithms have been used
to design contact plans.

Nanosatellite flight software is not standardized. There is a variety of solutions, archi-
tectures, and design goals reported in the literature. There is a lack of flight software
design for large nanosatellite constellations, including agile methods to test and verify
software quality.

12

Table 2.2: Review of flight software architectures used in CubeSat projects

Project Architecture details OS sup-
ported

Language Hardware sup-
ported

Source
code

License

PilsenCUBE[46] State machine N/A C NXP LPC2148 No N/A
Delfi-
n3Xt[47]

Layered. State machine. State
machine in the application la-
yer.

N/A C TI MSP430F1611 No NI

RACE,
ARMADILLO[48]

Layered. Component based
modules. State machine to
execute modules functionali-
ties in the application layer.

GNU/Linux C,
C++

NXP LPC3250 No N/A

UWE-2[49] Centralized. Modules contro-
lled by a central module.

uClinux C Hitachi H8 No N/A

Kysat[50] Layered. Component based
modules. Centralized tasks
organization.

Salvo
RTOS

C TI MSP430F1611 No N/A

Kysat-2[51] Layered. SPA distributed mes-
saging system.

SPA
middle-
ware

NI SL 8051F930 No N/A

PolySat[52] Modules separated in proces-
ses, inter process communica-
tions with UDP sockets

GNU/Linux C Atmel
AT91SAM9G20

No N/A

ESTCUBE-
1[53]

Layered. Modules as indepen-
dent tasks.

FreeRTOS C STM32F1 No N/A

WinCube[54] Layered. Modules as indepen-
dent tasks.

Salvo
RTOS

C TI MSP430F169 No N/A

Asundi et
al.[55]

Distributed. Functionalities
distributed across two micro-
processors.

NI NI MSP430, TI
C6000

N/A N/A

3Cat-1[56] Layered. Two high level la-
yers: System Core and Pro-
cess Manager. Modules are th-
reads with messaging system
and task scheduler.

Linux Prolog AT91SAM9G20 No N/A

NUTS[57] Layered. Service oriented. Inter
task and inter processor com-
munications with CSP.

FreeRTOS C Atmel
AVR32UC3,
SAMV71

Yes NI

CubETH[58] Component-based model, veri-
fied and validated with BIP
framework.

N/A C,
C++

SL
EFM32GG880

No N/A

EQUULEUS,
PROCYON[59]

Layered. Command Centric
Architecture (C2A).

N/I C,
C++

N/I No N/A

NASA Co-
re Flight
System[41]

Layered. Service-oriented.
Publisher-Subscriber inter
task messaging system.

GNU/Linux,
VxWork,
RTEMS

C x86, RAD750,
MCP750, Coldfi-
re, and others

Yes NASAs
Open
Source
Agreement

Kubos[42] Layered, N-thier architecture.
Service oriented.

GNU/Linux Rust,
Python,
C

BeagleBone
Black (Cortex
A8), ISIS OBC
(ARM9)

Yes Apache 2.0

Brightascension
GenerationO-
ne

Layered. Component-based
framework. Component gene-
rator using XML definitions.

GNU/Linux,
FreeR-
TOS,
RTEMS

XML,
C

Nanomind
A712(ARM7TDMI),
Clayspace OBC
(FPGA based
ARM Cortex
M3), BeagleBone
Black (Cortex
A8), TI MSP430,
Vorago VA10820,
Xiphos Q7

No Commercial

N/A: Not applicable. NI: No information available

There is a lack of solutions integrating all the ingredients necessary to operate a nano-
satellite constellation with a certain level of automation.

13

Chapter 3

Nanosatellite constellation control
framework

This chapter describes the design of a nanosatellite constellation operation framework to
schedule, distribute and execute tasks automatically. First, the framework’s global design is
presented, including the definitions of scenarios, tasks, and contacts. Second, an evolutionary
algorithm to generate contact plans is described. Third, this section presents the restrictions of
the problem studied and the genetic algorithm details. Finally, the SUCHAI Flight Software
design is discussed in detail. This software was designed to execute the global flight plan
derived from the evolutionary contact plan design. A constellation software in loop simulation
suite to validate the proposed scheduling is also presented.

3.1. Constellation control framework
Figure 3.1 shows a scenario with three nanosatellites and two ground stations. Satellites

are equipped with some earth observing payload and inter-satellite communication. Let us
consider that the satellites and ground station software support the execution of commands
scheduled in the flight plan table. Also, let us define a task as taking an instrument’s data over
a certain location and downloading that data in the designated ground station in the shorter
possible period. Two key variables must be considered to solve this problem: commands and
contact times. Commands are satellites and ground stations’ actions, including sending data
to nodes, taking data from instruments, pointing, and attitude maneuvers. Contact oppor-
tunities may refer to two ideas: the instants where nodes can establish radio links or targets
visible to nodes. These two variables can be expressed in a global flight plan that includes
the time, node, and command to be executed to accomplish a task. This flight plan must be
distributed to all nodes using the inter-satellite links.

Thus, the constellation control framework aims to generate a global flight plan that solves
a specific task for a certain scenario. Generating a valid flight plan is a scheduling problem.
Variables such as delivery time, starting time, or resource usages are optimized under res-
trictions such as contacts feasibility and node capabilities. This work uses an evolutionary
contact plan design approach to solve the scheduling problem and generate a valid flight
plan. Fig. 3.2 shows the general framework functioning scheme. It consists of three main
modules: a contact list generator, the contact plan design, and the flight plan generator. The
contact list generator module uses the scenario definition to determine future satellite to

14

T2
Feasible link

Satellite

Node 1

Satellite

Node 2

Command
executor

Satellite

Node 3

Command
executor

Ground station

Node 4

Command
executor

Ground station

Node 5

Command
executor

Command
executor

t N CMD
1 4 CMD

2 1 CMD

3 2 CMD

4 2 CMD

5 3 CMD

Flight plan

t N CMD
2 1 CMD

3 2 CMD

4 2 CMD

5 3 CMD

Flight plan
t N CMD
3 2 CMD

4 2 CMD

5 3 CMD

Flight plan
t N CMD
5 3 CMD

Flight plan

t N CMD

Flight plan

T1
Feasible link

T3
Target visible

T4
Feasible link

T5
Feasible link

Target

Node 6

Figure 3.1: Constellation working scheme

satellite, satellite to ground stations, and satellite to targets contacts; satellite capabilities
such as communication system and payload instruments parameters are used to define a fea-
sible contact. The contact plan design module searches for a valid solution, according to the
restrictions defined in the task, in the space of all contact opportunities; thus, solving the
scheduling problem. Finally, the selected contact plan is translated into a flight plan contai-
ning the commands that nodes must execute to complete the proposed task. The command
sequence’s validity and feasibility are analyzed through the software on the loop simulation of
the constellation; unfeasible solutions are rejected, and a new solution is obtained. Satellites
operation is simulated using the flight software (FS), so its architecture and functioning will
be explained in detail.

Scenario
definition

Contact list

Task
definition

Contact
topology

Contact
plan design

Flight
plan generator

Constellation
simulator

Flight
software

Unfeasbile solution

Feasible
solution

Telemetry
data

Figure 3.2: Constellation control framework block diagram

3.1.1. Scenario and task definitions
Scenarios are objects that describe the time constraints, the satellites in the constellation,

the ground station, and the targets of the simulation case. As described in Table 3.1, satellites
are defined by their TLE, node number, and id. Targets and ground stations are defined by
their spatial coordinates and id. This object can also store a cache with calculated tracks and
contacts files.

15

Table 3.1: Scenario definition

Scenario object definition Ground station object definition

field type description field type description

id string Scenario identifier id string Ground station id or name
start number Scenario start time in seconds node number Node number in the constellation
duration number Scenario duration in seconds lat number Latitude coordinate
step number Time resolution in seconds lon number Longitude coordinate
tracks string Path to file with satellite tracks, or null alt number Altitude coordinate
contacts string Path to file with the contact list, or null
satellites list List of satellite objects
stations list List of ground station objects
targets list List of targets objects

Satellite object definition Target object definition

field type description field type description

id string Satellite id, name or catalog number id string Target id or name
node number Node number in the constellation node number Node number in the constellation
tle1 string TLE line 1 lat number Latitude coordinate
tle2 string TLE line 2 lon number Longitude coordinate

alt number Altitude coordinate

Task objects define what actions must be performed by the constellation. As shown in Ta-
ble 3.2, a task definition includes the starting node (the ground station that starts the task
execution), the list of targets to visit, and the commands to execute on it (usually points
where collect data from an instrument), and the end node where result data is retrieved (the
ground station where data will be downloaded). This object also stores the solution (flight
plan).

Table 3.2: Task definition

Task object definition Task target object definition
field type description field type description
id string Task id id string Target id
start string Ground station object id command string Command to execute
end string Ground station object id result string Result data id
targets list List of task target objects prio int Target priority
solution string Flight plan file path, or null

An example scenario and task definition as JSON files are shown in Listing 3.1 and 3.2.
These files describe a scenario with three satellites, two ground stations, and one target.
The task consist on execute the take_data command over the SAA node, starting from the
Santiago (stgo) ground station and ending in the Tokyo (tokyo) ground station.

Listing 3.1: Example scenario definition JSON

1 {
2 "id": 1,
3 "start": 1588054885,

16

4 "duration": 43200,
5 "step": 30,
6 "satellites": [
7 {"id": "1244", "node": 1, "tle1": "1 45196U 20012U 20094.58334491 -.00029761 00000-0

↪→ -20303-2 0 9999", "tle2": "2 45196 52.9956 50.6558 0001754 72.9283 341.9461 15.05609076
↪→ 1716"},

8 {"id": "1102", "node": 2, "tle1": "1 44920U 20001G 20094.58334491 .00050489 00000-0
↪→ 34604-2 0 9999", "tle2": "2 44920 53.0009 350.6416 0001892 65.4641 85.7463 15.05571452
↪→ 13382"},

9 {"id": "1032", "node": 3, "tle1": "1 44737U 19074AA 20094.58334491 -.00005148 00000-0
↪→ -33442-3 0 9997", "tle2": "2 44737 53.0002 210.6425 0001072 82.8131 134.9394 15.05576243
↪→ 22184"}

10],
11 "stations": [
12 {"id": "stgo", "node": 4, "lat": -33.3833, "lon": -70.7833, "alt": 476},
13 {"id": "tokyo", "node": 5, "lat": 35.6830, "lon": 139.7670, "alt": 5}
14],
15 "targets": [
16 {"id": "saa", "node": 6, "lat": -15.0, "lon": -15, "alt": 0}
17],
18 "tracks": "logs/track_1_1588054885.csv",
19 "contacts": "logs/contacts_1_1588054885.csv"
20 }

Listing 3.2: Example task definition JSON

1 {
2 "id": 1,
3 "start": "stgo",
4 "end": "tokyo",
5 "targets": [
6 {"id": "saa", "command": "sim_take_data data1", "result": "data1", "prio": 1}
7],
8 "solution": null
9 }

3.1.2. Contact list generation
Contacts are generally described as the communication opportunities between two nodes

in the satellite constellation. The CL is the summary of all communication opportunities for
a given scenario. This list is obtained by propagating satellite orbits and calculating their
proximity based on their communication system capabilities or assumptions. The CL can be
expressed as table with (from, to, start, end) entries or in the FSM representation [15]. Figure
3.3 shows an example topology diagram and the contact list in its FSM representation. In
this work, not only the satellites are included in the contact topology but also the ground
stations and targets. The main caveat is that contacts with targets do not produce data
transfers; these contacts are only used as opportunities to get data from instruments and not
as real data communication opportunities. In detail, three types of contacts and conditions
are defined:

1. Satellite to satellite: Omnidirectional antennas were considered in the inter-satellite

17

links. Thus, an inter-satellite contact occurs when the euclidean distance between sate-
llites is in an N km range.

2. Satellite to ground stations: Ground stations are defined by their latitude, longitude,
and altitude coordinates. A feasible contact is defined by the satellite footprint and the
minimum elevation angle α of the ground station.

3. Satellite to targets: As ground stations, targets are also defined by their latitude,
longitude, and altitude coordinates. In this case, a contact is defined by the footprint of
the satellite instrument over the target. For example, in earth-observing satellites, the
contact is defined by the camera footprint. It is also possible to define contacts with high
attitude targets, for example, magnetometers, plasma instruments, or particle counters,
interested in taking samples over particular areas such as the poles or the South Atlantic
Anomaly (SAA) [62]. This type of contact differs from the other two because no data
is exchanged (from the telecommunications point of view), and this restriction must be
taken into consideration to generate the CP

Satellite to ground

station contact

Satellite to

target contact
Satellite to

satellite contact

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Satellite to ground

station contact

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 Time

 k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 State

Figure 3.3: Contact topology and using it FSM representation. It includes
ground stations and targets as nodes

3.1.3. Contact plan design
A nanosatellite constellation with ISL can be considered a DTN, so it is possible to use

the contact information to schedule which nodes are used in a task. In a DTN, for a given
CL there are many possible paths to visit the targets defined in a task. A valid set of con-
tacts is defined as a CP and the process to find a CP under certain restrictions is called CPD.

18

Satellite to ground

station contact

Satellite to

target contact
Satellite to

satellite contact

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Satellite to ground

station contact

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 Time

Rule
R5

 k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10

Rule
R1

Rule
R5

Rules
R3, R4

Rule
R5

Rule
R2

State

Figure 3.4: Contact Plan Design rules and example Contact Plan

Using the Contact List FSM representation (see Fig 3.3), the CPD consists on selecting
a sequence of nodes S = [S1, ..., SL] at states K = [k1, ..., kL]. For example, for the task
defined in Listing 3.2 the Fig. 3.4 show a valid CP that selects the contacts of the sequence
S1 = [4, 1, 2, 6, 2, 1, 5] at states KS1 = [k1, k3, k4, k7, k9]. Note that this is not the only valid
sequence, and that in real scenarios the solution space grows significantly.

Using this example CP, it is possible to define the delivery time of the task as DS1 =
T10− T1, the sequence length L = 7 and the validity of the solution V = 0. These variables
are described below:

1. Validity (V): Because this work includes the targets and ground stations in the CL,
not all sequences of contacts are valid and some rules are added to the CPD to determine
if a given CP is valid or not:

R1. The CP must start in the ground station defined by the task.
R2. The CP must end in the ground station defined by the task.
R3. The CP must visit all targets defined in the task.
R4. Targets are not data relays. That is, if a contact from satellite A to target T occurs,

the next contact must start from the same satellite A
R5. Satellites are data relays. That is, if a contact between satellite A to satellite B

occurs, the next contact must start from the satellite B.

If one or more of these rules are not satisfied in a CP, it is defined as invalid. Thus,
validity is defined as the sum of contact rules not satisfied per state k of the CP: Vk = 0

19

if R1. to R5. are meet, else Vk = 1. So, the sum of contacts validity V = ∑n
k=1 Vk must

be zero to define a sequence as valid.

2. Delivery time (D): Delivery time is defined as the total time the task takes to execute.
That is the time between the state k start time (T i

k) and the state l end time (T f
l). Then,

D = T f
l − T i

k.

3. Number of contacts (L): The length of the solution or the number of contacts used
in the contact plan L = length(S).

Thus, the CPD is an optimization problem, primarily over the delivery time variable,
subject to the validity of the solution.:

minimize :D = T f
l − T i

k (3.1)

subject to :V =
L∑

k=1
Vk = 0 (3.2)

0 < D ≤ T f
n − T i

0 (3.3)
0 < L ≤ n (3.4)

(3.5)

Different approaches can be used to solve the CPD problem; however, as the number of
nodes increases, classical optimization techniques are not practical and evolutionary algo-
rithms have been proposed in the literature [38]. In this work, a genetic algorithm is used to
find a CP.

3.1.3.1. Genetic algorithm

The proposed GA for the Constellation Control Framework CPD is designed to generate
multiple CP candidates and evaluate its validity and optimize the delivery time function.
The algorithm is designed to find valid contact paths in an evolutionary fashion, a problem
similar to finding the escape route in a labyrinth. Then, the algorithm focuses on minimizing
the cost of this path. This approach is described in Algorithm 1 and throughout this section.

The algorithm requires the scenario and task definitions as inputs because this informa-
tion will be used to generate the initial population according to the encoding and validity
rules (See section 3.1.3.2 and 3.1.3.4. The CL is used to evaluate the individuals in the fitness
function to contrast the CP sequence with actual contact opportunities. Thus, infeasible or
low-quality solutions will be discarded in the evolution (See section 3.1.3.3). Other parame-
ter are: L, the sequence length; Psize, the population size; Iter, the maximum number of
iterations; pmut, the mutation probability; and pcr, the crossover probability. Individuals are
generated as random sequences, but they are fixed using the task information, so individuals
always contain the start, target, and end node described in Section 3.1.3.4. Then, a popula-
tion is evaluated obtained the V alidity and Fitness values. As described in Section 3.1.3.3,
V alidity represent how feasible is the solution and Fitness evaluates the delivery time. Du-
ring the tournament, individuals are sorted first by V alidity and then by Fitness; thus, the
algorithm first finds feasible solutions and then optimizes the delivery time. The old popu-
lation is replaced in the next iteration with the best individuals, new individuals product of

20

the crossover operation, or a mutation according to the probabilities and operators described
in Section 3.1.3.6 and 3.1.3.5. Finally, after Iter iterations or the stop condition described in
Section 3.1.3.4 the algorithm returns the best individual.

Algorithm 1: Genetic algorithm
Input: Scenario, Task, CL, L, Psize, Iter, pmut, pcr

Output: CP
// Create initial population

1 for i ∈ Psize do
2 indv ← random_sequence(0, Scenario.nodes, L)
3 P [indv]← fix_individual(indv, Task)

// Run until max. iterations reached
4 for Iter do

// Evaluate population
5 for ∀indv ∈ P do
6 V alid[indv]← evaluate_valid(indv, CL, Task)
7 Fitness[indv]← evaluate_fitness(indv, CL)

// Population replacement
8 for ∀indv ∈ P do
9 parent1, parent2 ← tournament(P, V alid, F itness)

10 indv_new ← parent1
11 if random(0, 1) ≤ pcr then
12 indv_new ← crossover(parent1, parent2)
13 if random(0, 1) ≤ pmut then
14 indv_new ← mutation(indv_new)
15 P [indv]← indv_new

16 if termination_condition(V alid, F itness) then
17 break

18 CP ← indv|V alid[indv]− > 0 ∧ Fitness[indv]− > min

3.1.3.2. Encoding

In this work, individuals are encoded using a list of integers. Thus, the sequence S =
[s1, ..., sL] represent a list of nodes si to visit in the execution of the CP or FP associated
with a task definition. This work’s approach is to use the information of the task and the
validity rules to encode valid individuals (but not necessarily feasible) from the beginning.
Consider the situation described in Fig. 3.4, where the task is take a data sample from node 6
(Target), starting from node 4 (Start), and finishing in node 5 (End). The following diagram
describes the situation.

START TARGET END

Of course, at this point, we do not know how to travel to these nodes. Let say we can
move trough Start, Target and End nodes, using the nodes (satellites) {A, B, C} encoding
to the sequence S = [Start, A, B, Target, B, C, End] (L = 7). The genotype S expresses as

21

a phenotype K = [k1, ..., k6] which encodes the sequence of states ki where the contacts are
feasible according to the CL. This situation is described in the following diagram.

START TARGET END

CA B

k1

k2

k3 k4

k5

k6

In the sequence, S = [Start, A, B, Target, B, C, End], the Start, Target, and End nodes
are well known (Fixed in the task definition). Thus, the algorithm has to find the values
A, B, and C. These values are generated randomly, and the genotype K is obtained during
the fitness function evaluation by searching sequentially in the CL for states that makes the
sequence S feasible. If there are less than L− 1 states for the sequence S, it is an unfeasible
or invalid solution. Since L is a parameter, it can be set arbitrarily large because redundant
contacts are allowed. Figure 3.5 shows the encoding of a possible solution to the example
scenario and task definition.

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 Time

Rule
R5

 k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10

Rule
R1

Rule
R5

Rules
R3, R4

Rule
R5

Rule
R2

State

Encoding of the proposed solution

S = [4, 1, 2, 6, 2, 1, 5] # Sequence of nodes to visit

K = [k1, k3, k4, k4, k7, k9] # Sequence of states

V = 0 # Validity

D = T10-T1 # Delivery time

Figure 3.5: Genotype, phenotype, validity and delivery time of a possible
solution for the example scenario and task definition

3.1.3.3. Constraints and fitness function

The fitness function is the objective function in Eq. 3.2, i.e., the delivery time (also
mentioned as sequence duration, or simply duration). However, in this problem, the validity
restrictions (see rules R1. to R5.) are absolutely relevant to evaluate a solution. Therefore,

22

validity is also considered in the fitness function, creating a multi-objective optimization
problem. Thus, the following fitness function is used:

fitness : Fi = (Vi, Di) (3.6)
0 ≤ Vi ≤ L (3.7)
Di > 0 (3.8)

(3.9)

Where Vi is the validity of the sequence Si and is calculated as the sum of invalid contacts.
Let define Vk as 1 if the contact at state k breaks any rule R1. to R5. or 0 if not. If a sequence
of Si = {s1, ..., sL} of length L contains only valid contacts then Vi = 0:

Vi =
L∑

k=1
Vk (3.10)

Delivery time Di is calculated as the time difference between first and last contact in
sequence Si:

Di = (T end
kL−1
− T start

k0) (3.11)

3.1.3.4. Initialization and stopping criteria

Individuals are created from three parameters: the task, the maximum number of nodes
allowed (L), and the target’s position in the sequence (I). The start, target and end node
numbers are obtained from the task definition. The maximum number of nodes is a user-
defined parameter to limit the sequence length. This number can be arbitrarily large because
redundant contacts are allowed, and the final sequence can be simplified to a short version
without repeated contacts. The target nodes’ position is a randomly chosen index, so I ∈
[2, L − 2] and an individual tracks this value to maintain its validity during the genetic
operations. A couple of examples of individuals are shown in Fig. 3.6. This idea can be
extended to arbitrary large sequences and an arbitrary number of targets.

S A B T C EB

S A T A C EB

Start
Target

I = Target index
End

L = 7 Sequence lenght
L-1 = 6 Number of contacts

Individual 1

Individual 2

0 1 2 3 5 64

Figure 3.6: Individuals initialization. S, T, and E are the Start, Target, and
End nodes’ numbers. These values are known from the task definition. The
index I of node T is particular to an individual. A, B, and C are unknown
and so generated randomly for each individual

Thus, a population of N individuals of length L is created. The target index I and the

23

nodes (other than the start, target and end) are chosen randomly. After the evaluation, each
individual keeps track of the sequence of valid contacts K reached by its sequence.

If an individual of length L reaches L − 1 valid contacts, i.e.,, V = 0, then its sequence
is a valid contact plan. The delivery time or sequence duration D is also evaluated using the
information of the CL.

If individuals reached the validity condition (V = 0) and if no observable improvement of
the delivery time D of the best individual during five consecutive generations, GA is assumed
to have reached convergence, and the stop condition is satisfied.

3.1.3.5. Mutation operation

The mutation operation starts selecting an index i of the sequence to mutate. Depending
on the value of i there are several cases:

i ∈ {0, I, L− 1}: If the mutation index i points to the start, end, or target position, do
nothing. These values cannot be changed.

i ∈ {I − 1, I + 1}: In any case, replace both I − 1 and I + 1 with a new random value.
This operation respects the validity rule R4..

Otherwise: replace the node at index i with a new random value.

Figure 3.7 graphically describes the mutation operation. Note that this operation always
generates a valid sequence.

S A B T C EB

Mutate

Case B

S A B T D EB

S A T A C EB

S D T D C EB
0 1 2 3 5 64 0 1 2 3 5 64

Mutate

Case A

i=3
I=2
L=7

i=5
I=3
L=7

Figure 3.7: Mutation operation. Left, case A: i ∈ {I − 1, I + 1}, so both
indexes 1 and 3 are mutated. Right, case B: i /∈ {0, I − 1, I, , I + 1, L − 1}
so mutate node at index 5.

3.1.3.6. Cross-over operation

To do the crossover between two individuals, a cut point j is selected. The cut point is
always the index next to the target index to maintain the sequences valid, i.e. j = I + 1.
However, the sequence to cut is chosen randomly. Thus, as described in Fig. 3.8 the crossover
operation consists of mixing section SA[0 : j] of the first individual with section SB[j : L− 1]
of the second individual, or vice versa.

24

A B T B

S A B T C EB

CB

Case B

S E

S D T D G EF

D T D

Case A

S A B T C EB

S E

S D T D G EF

G

Parent A

Child

Parent B

0 1 2 3 5 64 0 1 2 3 5 64

Figure 3.8: Cross-over operation. Left, case A: the cut point is chosen from
parent A so j = IA + 1 = 4 and the first section comes from parent A while
the second section comes from parent B. Right, case B: in this case the cut
point is chosen from parent B so so j = IB + 1 = 3 and the first section also
comes from parent B

3.1.4. Flight plan design
This module has to find the FP that is a valid solution to execute a task using the

constellation’s capabilities. Figure 3.9 describes how the CP is related to the FP to solve the
problem. The CP defines the instants and operations required to visit the nodes involved in
the solution; then, the last step is to define the commands in the FP. Commands depend on
the contact type and the task definition. Four different directives should be implemented in
the nodes’ software:

set_fp <time> <command>: This directive will be used to set a FP entry. It can be
used to queue commands that will be executed in future contact. The <time> is defined
in the CP. The <command> can be any of the following directives.

send_fp <node>: This directive can be used to transfer FP entries to another node
during a contact. The <node> parameter is obtained from the CP. In combination with
the previous directive its possible to automate FP transfers.

get_data <data_id>: Satellites must implement specific commands to operate its pay-
loads and get data from targets. This directive is used in a satellite-to-target contact
and is obtained from the task definition.

send_data <node> <data_id>: This directive can be used to transfer payload data
back to the ground stations. In combination with the set_fp directive its possible to
automate data transfers.

From To Start End

4 1 T1 T2

1 2 T2 T3

2 6 T3 T4

2 3 T4 T5

3 5 T5 T6

Time Node Command

T1 4 fp_send 1

T2 1 fp_send 2

T3 2 get_data 55a1

T4 2 fp_send 3

T5 3 send_data 5 55a1

T4 2 send_data 3 55a1

Ground station to satellite
or satellite to satellite contact:

transfer flight plan

Satellite to target contact:
get data from target

Ground station to satellite
or satellite to satellite contact:

return data and transfer flight plan

Contact plan Flight plan

Figure 3.9: Relation between Contact Plan (CP) and Flight Plan (FP)

25

The FP contains all the information required to execute the task. This information is sent
to the first node, a ground station, to start the task’s automated execution. The execution
of this global FP can be simulated to validate the feasibility of the solution or detect any
problem. The remaining question is how to build a constellation capable of executing this
kind of FP, i.e.,, a homogeneous FS solution (capable of running commands in the satellites
and ground station nodes) is required.

3.1.5. Implementation details
The complete suite has been implemented in the Python programming language, and it is

available under the LGPL v3 license in the following GitLab repository: https://gitlab.com/
carlgonz/constellation-framework

Interested readers can find installation and execution instructions in the repository READ-
ME.md file.

3.2. Flight software
To control a nanosatellite constellation, a Flight Software (FS) solution capable of inter-

acting with the proposed framework is required. Also, to implement a more realistic software
in the loop simulator, it will use the same software solution as the spacecraft once in or-
bit. For these reasons and with the aim of closing the gap between theoretical and practical
developments, in this work, a nanosatellite constellation FS solution is presented and descri-
bed in detail. The requirements and architectural decisions are inspired by the Satellite of
the University of Chile for Aerospace Investigation (SUCHAI) nanosatellite program being
developed at the University of Chile. In fact, base ideas were developed for the SUCHAI
I CubeSat, launched into space in 2017, and operated for about 1.5 years. This university
space program continues to the date, building a small constellation of three 3U CubeSat. For
this reason, the solution developed in this work is named SUCHAI Flight Software.

3.2.1. Requirements analysis
A comprehensive review of available FS solutions, and common requirements for FS de-

velopment was presented in section 2.4. Below in this section is a summary of the desired
FS characteristics, both non-functional and functional requirements, in the context of New
Space satellite missions, agile CubeSat development, high flexibility of mission tasks, and a
constellation of large numbers of nanosatellites.

3.2.1.1. Non-functional requirements

Non-functional requirements refer to the quality attributes of a system [43]. Beyond the
functional aspects of a satellite mission, it is necessary to define some design guidelines that
will affect the architectural decisions, especially in agile, flexible, and fast-growing CubeSat
projects. This context makes non-functional requirements more relevant not only in the de-
sign phase but also in the development process. Based on the literature review, the list of
the quality attributes considered in this work includes:

26

https://gitlab.com/carlgonz/constellation-framework
https://gitlab.com/carlgonz/constellation-framework

Q1 The FS must be extensible, in the sense that any change or improvement should be
localized, avoiding affecting the system structure.

Q2 The FS must be modular, so that non-critical modules, such as payloads, might be ad-
ded or removed without affecting the entire system (e.g., needing to modify or recompile
the entire system).

Q3 The FS design should reduce failure points and help in the implementation of fault
tolerance techniques to improve the mission reliability.

Q4 The FS must be portable to multiple hardware and software platforms, such as em-
bedded systems supported by FreeRTOS or computers capable of running GNU/Linux.
Hardware portability is also required to being reusable along current and future mis-
sions.

Q5 The FS must be scalable, in the sense that the solution can support the manufacturing
and operation of an increasing number of nanosatellite in large constellations.

3.2.1.2. Functional requirements

To determine the functional requirements of the FS, the operation model (or use case)
described in Fig. 3.10 is considered. When the satellite is within the ground station ran-
ge, the operators can send telecommands. These commands include the setup of the flight
plan table. The satellite can execute these commands immediately (for example, download
telemetry, download payload data, or modify settings) or queue flight plan commands (al-
so known as time-tagged commands) for later execution (for example, sample sensors, take
payload data, or transfer the flight plan to another node). During the remaining orbit, the
satellite has to perform some activities autonomously. These activities include periodic tasks
(such as housekeeping, sending a beacon, resetting watchdog timers, and checking for inco-
ming telecommands), executing commands queued in the flight plan at a specific time, and
reacting non-deterministic events such as malfunctions, unexpected resets, batteries dischar-
ge, among others. As a reference, a low orbit satellite can establish contact with the ground
station three or four times in 24 hours, and each contact may last between 5 to 10 minutes.
The remaining time, the satellite executes autonomous or scheduled operations.

This operation model is heavily based on the satellite’s ability to execute commands, both
remote or self-generated [63, 59]. The satellite operators should break down the satellite mis-
sion in a series of remote commands. Autonomous operations are translated to self-generated
commands with a well-defined execution logic (for example, periodical or event-based).

The concept of remote and self-generated command execution can also be extended to
constellation operations. Let us suppose that each satellite in the constellation can execute
a set of commands. Mission control can decompose (manually or automatically) the mission
goals into a series of commands, time, and nodes that each satellite in the constellation has
to execute. Let us call this list of commands a Global Flight Plan (FP) table. If satellites
have inter-satellite communication capabilities, then any satellite can transfer FP entries to
surrounding satellites, thus facilitating the operation by distributing the mission goals over
the constellation. The information exchange can also include data generated by payloads and

27

(T2) Satellite 1 executes remote, flight
plan and autonomus commands. Transfers
flight plan commands to other node.

(T1) Control framework creates the global
Flight Plan. The ground station sends a list
of commands to satellite 1

NODE 1

(T4) Satellite 3 receives a flight plan and data.
Execute the flight plan to send data to final
destination

(T3) Satellite 2 in range of a target. Executes
the flight plan's commands to take data from
instruments and send that data.

Data

Data

NODE 2

NODE 3

NODE 4 NODE 5

Cmd.

Cmd.

Cmd.

Figure 3.10: Example of satellite constellation operations. Ground station
nodes send commands and flight plans to satellites. Satellites execute flight
plan commands and remote commands (on-demand operations) and auto-
nomous commands (housekeeping, attitude control, etc.). Using the ISL,
nodes can send commands and data to other nodes. All nodes in the cons-
tellation execute the same flight software.

instruments. Therefore, the FS functional requirements can be expressed as follows:

F1 The FS must queue and execute commands at specific times in a Flight Plan table.

F2 The FS must execute remote (on-demand) commands generated from ground satellite
operators

F3 The FS must execute self-generated (autonomous) commands. The execution logic of
these commands can be single event, periodical, or event-based.

F4 The FS must store and download telemetry data.

Note that any specific mission functional requirements should be translated to commands
and command execution logic. Thus, the FS is flexible enough to implement a variety of
functional requirements. For example: “to send a beacon every minute”, “to collect particles-
counter samples over the South Atlantic Anomaly”, or “to transfer a FP entry to node N”,
are all possible mission functional requirements that can be implemented as commands and
executed with a defined logic. Particularly important is supporting and implementing the
commands defined by the constellation control framework in Sec. 3.1.4.

3.2.2. General design
Following the experiences of similar projects [44, 19] the proposed software design follows

the layer architectural pattern dividing the system into hardware drivers, operating system,
and application layers. This design provides a portable solution [64, 65, 66] that satisfies the

28

requirement Q4 because the operating system and the device drivers layer can be exchanged
by design. This approach allows us to integrate existing solutions in the drivers and opera-
ting systems layers and focus on the design and implementation of an application layer that
satisfies the operation model discussed in Fig. 3.10.

Each layer functionality is divided into modules and dependencies between modules. Star-
ting from the lower abstraction level, the minimum set of functionalities required are real-time
clock, data storage system, access to input/output devices, and drivers for external devices
or peripherals. The operating system layer will use these functionalities to provide high-level
features such as threads, thread/task scheduler, timing functionalities, queues or message
systems, and synchronization structures. Finally, functionalities to implement tasks, data re-
positories, and the concept of commands and flight plan are required in the application layer.
The dependency tree of these modules is described in Fig. 3.11 Maintaining this dependency
tree helps to maintain portability because, by design, the operating system and drivers are
totally independent of the application code. The following sections describe each layer’s de-
sign and implementation details, with a special focus on the application layer implementation.

Figure 3.11: SUCHAI Flight software architecture: UML model diagram.
Each layer consists of a number of coarse-grain modules, a module resulting
from compiling several C files and headers. A direct dependency between
modules is indicated with an arrow. The architecture follows a top-down
interaction: higher-level layers can interact with layers below, but a lower
level layer should never depend on layers above.

3.2.2.1. Drivers layer

This layer is populated by hardware and vendor-dependent software, created to interact
with peripherals and devices at a low level. Any supported device should provide a set
of drivers, libraries, or frameworks that help to interact with the device’s features. From
experience working with embedded systems, the diversity in this layer is so extended that the

29

author recommends following each vendor standard and solving the upper layer’s differences
through interfaces and wrappers. This recommendation includes managing different build
systems at this level.

3.2.2.2. Operating system layer

The Operating System (OS) adds an abstraction level between the hardware and appli-
cation layers so more advanced solutions can be implemented in the application layer using
utilities such as multi-tasking, message queues, timers, and files. From requirement Q4 and
Q5 at least two operating systems should be supported: GNU/Linux and FreeRTOS. Sup-
porting GNU/Linux is useful for simulating the satellite functions on personal computers
(a developer’s laptop or testing servers) and supporting powerful embedded computers such
as the Raspberry Pi or the ARM™ Cortex A9 found in the Zynq 7000 family. Meanwhile,
FreeRTOS is more suitable for low-power embedded systems, which are usually 16 or 32-bit
microcontrollers such as the Microchip™ PIC24 and PIC32, the Atmel™ AVR32, the Es-
pressif™ ESP32, to name a few. This portability layer is required to map specific operating
system functionalities to a common custom interface. For example, a custom function os-
TaskCreate() to create Tasks is implemented, which is a wrapper to pthread_create() in
GNU/Linux and to xTaskCreate() in FreeRTOS.

Figure 3.12: SUCHAI Flight software architecture: UML communication
diagram. In this architecture, clients only generate requests to execute com-
mands, depending on the control strategy that each client implements. The-
se requests are sent as messages to the invoker that may implement some
control strategies over the command execution, such as filtering, priorities,
and logging. If the invoker decides that the command can be executed, it
sends the request to the receiver. The receiver actually executes the com-
mand by calling the corresponding function. The command and data repo-
sitories provide an interface to handle commands creation and data storage,
respectively.

30

3.2.2.3. Application layer

The application layer architecture is based on the command processor design pattern.
This pattern explains how to build an application that separates the service request from
its execution, encapsulating each requirement in different commands [65]. Nevertheless, this
pattern was used at an architectural level and adapted for implementation in the C pro-
gramming language [66]. The software architecture is described by the UML communication
diagram shown in Fig. 3.12 and the UML sequence diagram shown in Fig. 3.13. The execution
logic is the following: when a client is required to do a particular action, it creates a specific
command and requests its execution to the invoker by sending the “send_cmd” message.
The invoker checks if the command is executable and sends the requirement to the receiver
as the “exe_cmd” message. The receiver actually executes the command by calling the co-
rresponding function and sends the return value back to the invoker in a “result” message.
Furthermore, the satellite needs to store at least the available commands, a list of settings or
status variables, and data generated by payloads. Therefore, a set of repositories are included
in the architecture, which are modules designed to encapsulate the data handling.

Figure 3.13: SUCHAI Flight software architecture: UML sequence diagram.
Each client implements a control strategy and can request commands execu-
tion under certain circumstances. To execute a command, the client has to
create it using the command repository and then send an asynchronous mes-
sage to the invoker. The invoker receives all client messages and organizes
the execution by sending the request to the receiver. The receiver actually
executes the command by calling the corresponding function. Once the com-
mand is executed, the receiver sends a message back to the invoker with the
execution result.

The architecture’s necessary modules are the clients, the invoker, and the receiver because

31

they implement the command execution logic. These modules are implemented as concurrent
tasks (FreeRTOS) or threads (GNU/Linux) that use a messaging system to communicate
clients’ requests. These requests or commands are data structures (C structs) that contain
all the relevant information to execute the target code, such as a function pointer and para-
meters. Any of the many existing clients can generate commands. The messaging mechanism
might be a shared queue where clients can push the commands as C structs; thus, the invoker
can pop commands to be processed one at a time.

The SUCHAI FS presents a clear execution logic because clients just generate the require-
ments and only the receiver actually calls functions for its execution; if additional control is
required (such as command priorities, safe mode, execution logging, etc.), the invoker can im-
plement these functionalities. This execution logic (described in Fig. 3.12 and 3.13) requires
the definition of the set of client modules, commands and repositories.

3.2.2.4. Flight plan

In the SUCHAI FS the Flight Plan is one of the Client modules, so it is implemented as a
concurrent task. This module’s main goal is to schedule commands to be executed at a certain
date and time. The schedule can be modified by specific commands to dynamically change
the mission plan once the satellite is in orbit. The command list is stored in non-volatile
memory to maintain the state between resets. The logic of this task is very simple. As des-
cribed in Algorithm 2, the idea is to periodically check the system timestamp with 1-second
resolution and search in the list for commands queued at a specific time. Additionally, this
implementation also supports the schedule of periodic commands, i.e., the command can be
rescheduled period seconds in the future up to repetitions times. Table 3.3 show the list of
available commands to control de FP operation.

Algorithm 2: Flight plan algorithm
// Run forever

1 while True do
2 sleep(1second)
3 current_time← get_unix_time()
4 command, node, repetitions, period← get_command(current_time)

// Check if a command is scheduled for this node
5 if command = null ∨ node ̸= this_node then
6 continue

// Support command repetition
7 if period > 0 ∧ repetitions > 0 then
8 set_command(current_time+period, command, node, repetitions−1, period)

// Execute the command
9 if repetitions ≥ 0 then

10 execute_cmd(command)

32

Table 3.3: Flight plan related commands
Command Arguments Description
fp_set_cmd <time><node><rep><period><command>[args] Set a new flight plan table entry
fp_del_cmd <time> Delete a flight plan table entry
fp_show Print current flight plan table
fp_reset Clear flight plan table
fp_send <node> Transfer current flight plan table to <node>
fp_recv <fp_table> Parse and load a flight plan table

3.2.3. Implementation details
The SUCHAI Flight Software has been implemented in the C programming language and

supports the GNU/Linux and FreeRTOS operating systems. It has been tested and used in
X86 computers, the Raspberry Pi minicomputer, the Espressif ESP32 microcontroller, and
the Nanomind A3200 (ATMEL AVR32) onboard computer. The software is released under
the GPL v3 license in the following GitLab repository: https://gitlab.com/spel-uchile/suchai-
flight-software

Interested readers can find installation and execution instructions in the repository READ-
ME.md file and a complete usage guide in the following link: https://docs.google.com/
presentation/d/1CzChzQjQzATod_S-Zj9ivqEMR4P_FI5_3RXnxfiKWzM/edit?usp=sharing

3.3. Simulator
A software in the loop simulator is a flexible tool-chain to evaluate the functioning of

complex systems such as nanosatellites. The idea of implementing an operational simulator
for nanosatellites has been explored as an option to reduce mission risk and provide agility
to space missions [67, 68]. A similar idea is required in this work but extended to simulate
a set of satellites working as a constellation with inter-satellite capabilities. The goal is to
validate solutions obtained by the Flight Plan Generator module using the software on the
loop simulation methodology.

Figure 3.14 details the simulator modules integrated into the SUCHAI FS. The simulator
will use the same IO system to get/put data commands because the communication libraries
(CSP or TCP/IP) support local loopback interfaces. Simulator commands and simulated
devices are required for hardware operations not supported in the host system (GNU/Linux),
such as payloads, instruments, and actuators. The OS layer is intervened with a Simulator
Scheduler to control the execution time. Thus, all software timers such as system tick, system
calendar, and threads delays run in an accelerated simulated time. The Simulator main
module controls the starting, ending, and tick update. It also controls time synchronization
with other nodes in the constellation simulation using POSIX shared memory and shared
mutex. One node runs the Primary Timer task, which updates the simulator ticks counter
to the shared memory space. The rest of the nodes run the Secondary Timer task, which
reads the current simulator tick from the shared memory and signals all waiting Tasks.

33

https://gitlab.com/spel-uchile/suchai-flight-software
https://gitlab.com/spel-uchile/suchai-flight-software
https://docs.google.com/presentation/d/1CzChzQjQzATod_S-Zj9ivqEMR4P_FI5_3RXnxfiKWzM/edit?usp=sharing
https://docs.google.com/presentation/d/1CzChzQjQzATod_S-Zj9ivqEMR4P_FI5_3RXnxfiKWzM/edit?usp=sharing

Application

Operating system

Drivers

CommandsTasks

TimersThreads Queues Mutexes
Simulator
Scheduler

DevicesStorageRTC

RepositoriesMain

Timer
primary

Timer
secondary

Simulator
Commands

Simulated
Devices

IO

Figure 3.14: Simulator modules integrated in the SUCHAI FS. In blue: new
simulator related modules. In gray: modules no longer used

3.3.1. Implementation details
Figure 3.15 describes the architecture designed for the simulator. The simulator uses the

SUCHAI Flight Software as the base framework and creates a new application. The main
idea is to launch and set up multiple instances of the simulator application, each representing
a node in the constellation (ground station or satellite). FS instances shared the simulated
time and also a communication bus. Using the communication bus and the CL information,
it is possible to simulate the inter-satellite and ground station links. Thus, simulated instan-
ces can share commands and data interacting as in reality from the software point of view.
A simulator controller was written in Python to take the scenario and task definitions and
launch the simulated satellite instances. The FS instances collect periodic telemetry and the

<TCP/IP>

Remote
cmd.

Orbit
prop.

Flight
plan

Command
execution

Libraries
and drivers

Remote
cmd.

Orbit
prop.

Flight
plan

Command
execution

Libraries
and drivers

Communications
HUB

Simulation time

Remote
cmd.

Orbit
prop.

Flight
plan

Command
execution

Libraries
and drivers

<TCP/IP>

Scenario Task

Set-up

Run

Analyze

Simulation controller Node 1 Node 2 Node N

Commands

Telemetry

...

Shared memory

<write><read>

Figure 3.15: Software in the loop simulator for nanosatellites constellation
using the SUCHAI FS

34

list of commands executed. This information is used to validate the execution of the task and
analyze the functioning of the constellation.

The simulator is a separated SUCHAI FS based application so it can be found in the
following GitLab repository: https://gitlab.com/carlgonz/suchai-constellation-simulator/-/
tree/framework

3.4. Chapter highlights
A nanosatellite constellation operation framework was presented in this section, including

the task scheduler, the flight software, and a simulation suite. The following conclusions were
obtained.

In the scenario of a nanosatellite constellation with ISL, considering CubeSats’ typical
size, power, and computational resources limitations, the operations can be summarized
in a global flight plan table. Ground nodes can calculate this global flight plan table to
reduce the space segment computational workload. The framework does not distinguish
between ground nodes, satellite nodes, or targets. It requires that all nodes support the
same software characteristics, including commands and flight plan execution.

The framework is composed of three main modules: a contact list generator, a contact
plan generator, a flight plan table generator, and software in loop simulation suite.

The contact plan generation presents specific restrictions to satisfy de data flow of the
studied problem. Five validity rules and two optimization parameters are described. The
goal is to design a contact plan that satisfies the validity rules while optimizing the flow
of data to accomplish the tasks.

A genetic algorithm was used to solve the contact plan design. A particular encoding,
a two-step fitness function, and particular genetic operators (mutation and crossover)
were created to solve the problem under study.

It is possible to derive a global flight plan using the contact plan information. The
constellation must cooperatively execute this flight plan to accomplish the proposed
task.

It was possible to create a flight software based on the command design pattern to
meet all functional a non-functional requirements derived from a CubeSat constellation
operation. The designed software can execute the global flight plan and communicate
data with surrounding nodes.

It was found that the quality attributes of the flight software are key to supporting
the agile assembly and operation of a mega constellation. Therefore, it will be neces-
sary to create benchmarks and techniques to verify software quality criteria during the
constellation assembly and operation.

35

https://gitlab.com/carlgonz/suchai-constellation-simulator/-/tree/framework
https://gitlab.com/carlgonz/suchai-constellation-simulator/-/tree/framework

Chapter 4

Results

This section presents the results of applying the proposed constellation control framework
to various scenarios. In particular, the task scheduler performance is evaluated in conste-
llations up to 1000 nodes in walker and Ad hoc configurations. It also shows the scalability
tests to the contact list calculation tool and the evolutive contact plan design algorithm. This
section also presents the flight software’s quality verification results using agile visualization
techniques. Finally, it presents the constellation resource usage results obtained from the
constellation operational simulator tool.

4.1. Contact list generation scalability
The proposed framework requires generating the contact list of constellations up to 1000

nodes. As explained in Figure 4.1, calculating the contact list requires several stages. First,
each satellite track is propagated to future time using the TLE orbital parameters and a
SGP4 propagator. Second, for each node and time instant, the software evaluates if contact
is feasible with any other node. According to the radio link model programmed (in this
case, omnidirectional antennas), this step generates an intermediate result with all possible
contacts among all nodes in the scenario. Finally, the tool generates the contact list data file
according to the format commonly used in DTN studies (contact start time, start node, end
time, destination node, and contact span). For simplicity, contacts are considered bidirectional
in all calculations.

Target 2-satellites
contacs

...

Target N-satellites
contacs

Target 1-satellites
contacs

Sat 3-satellites
contacs

...

Sat N-1-satellites
contacs

Sat N-satellites
contacs

Sat 2-satellites
contacs

Sat 1-satellites
contacs

Contact list
merge

....

S
a
t

N
 t

ra
c
k
s

S
a
t

2
 t

ra
c
k
s

S
a
t

1
 t

ra
c
k
s

Tracks
datafile

Targets
contacts
datafiles

Satellite
contacts
datafiles

Contact list
datafile

Scenario
definition

Figure 4.1: Contact list generation flow diagram.

Calculating N to N nodes contacts opportunities is a computationally intense task, es-

36

pecially for large constellations. Thus, several optimizations were implemented to calculate
contact lists up to 1000 nodes. Parallel processing was required to accelerate results. RAM
usage optimization and intermediate files were necessary to limit memory usage. Scalability
tests where performed in the NLHPC1 cluster using the slims nodes (up to 20 cores)2 for the
10 satellites scenario and the general nodes (up to 44 cores)3 for the 100 satellites scenario.
Results are shown in Figure 4.2. As Figure 4.1 explains, not all the process is parallelized.
Using Amdahl’s law

speedup = 1/(s + p/N) (4.1)

It is possible to determine the portion of execution time spent in the serial part (s). For the
10 satellites scenario s = 0.19 on average, at least 19 % of the workload was not parallel. For
the 100 satellites scenario s = 0.04 on average or a 4 % of serial workload. The later results
are explained because calculating satellite to satellite contacts in parallel is more compu-
tationally expensive than calculating satellite tracks and merging the contact lists data files
serially. Therefore parallelization is exploited better in large scenarios.

Processes (cores)

E
xe

cu
tio

n
tim

e
(s

)

S
pe

ed
up

0

10

20

30

40

0

2

4

6

8

10

5 10 15 20

Execution time Speedup Ideal S=0.15 S=0.25

10 satellites

Contact list scalability

Processes (cores)

E
xe

cu
tio

n
tim

e
(s

)

S
pe

ed
up

0

250

500

750

100
0

0

5

10

15

20

10 20 30 40

Execution time Speedup Ideal S=0.06 S=0.03

100 satellites

Contact list scalability

Figure 4.2: Contact list generator scalability results for a 10 satellites conste-
llation (left) and 100 satellites constellation (right). Propagation time 16200
seconds (3 orbits) with 30 seconds resolution, and 60 seconds contacts re-
solution.

Finally, total execution times to calculate the contact list for 10, 100, 1000 scenarios are
shown in Figure 4.3. The general nodes with 44 cores were used to propagate orbits during
16200 seconds (3 orbits) with 30 seconds resolutions. Contact lists were calculated with 60
seconds resolution. Results show that less than 60 seconds are required to calculate contacts
of 100 satellites during three orbits. Meanwhile, about 1 hour is required to calculate contacts
of 3 orbits with 1000 satellites which is a ratio of 4.5 times between the scenario period and
calculation time.

1 https://www.nlhpc.cl/
2 128 nodes with 2 x Intel Xeon E5-2660v2 @ 2,20GHz, 10 cores each, 48 GB of RAM
3 48 nodes with 2 x Intel Xeon Gold 6152 CPU @ 2.10GHz, 22 cores each, 192 GB of RAM

37

https://www.nlhpc.cl/

10 100 1000
Satellites

101

102

103

Ex
ec

ut
io

n
tim

e
(s

)

Contact list execution time
Contacts resolution: 60 s

Ad hoc
Walker
Contacts

101

102

103

104

105

106

107

Nu
m

be
r o

f c
on

ta
ct

s

Figure 4.3: Contact list calculation execution times for 10, 100 and 1000
satellites scenarios. Propagation time 16200 seconds (3 orbits) with 30 se-
conds resolution, and 60 seconds contacts resolution.

4.2. Genetic algorithm hyper-parameters tuning
Case studies were used to evaluate the performance of the genetic algorithm generating

contact plans. These cases were also used to tune the algorithm’s hyper-parameters, including
mutation rate and population size. A small constellation with 10 satellites will be considered
at the beginning to keep the results, visualizations, and analysis treatable. Then, scenarios
with 100 and 1000 satellites are studied.

4.2.1. Scenario A: 10 satellites Walker constellation
Scenario A consists of a constellation with ten satellites in Walker configuration (5 orbital

planes, 2 satellites per plane, 500 km altitude), two ground stations, and one target. Details
are described in Table 4.1. An SGP4 orbit propagator4 implementation was used to calculate
satellite ground tracks, Inter-satellite link (ISL) and ground station contacts. Inter-satellite
links consider omnidirectional antennas with a 1500 km range. A maximum elevation of 5°
was considered for the ground to satellite links. It is also assumed that radio links are fast
enough to transmit all dada during the contact and that commands are executed fast enough
during the contact. A simulation of 16200 seconds with a resolution of 60 seconds to calculate
the contact opportunities resulted in 1929 contacts.

4 https://rhodesmill.org/skyfield/api-satellites.html

38

Table 4.1: Scenario A description

Simulation time
Start time: 2020-09-30T00:00:00 UTC (1601424000 Unix time)
Simulation time: 16200 seconds (∼3 orbits)
Simulation resolution: 30 seconds
Contact list resolution: 60 seconds
Number of contacts: 1929

Satellites
Node Period (min) Incl Mean anom. R. ascension
0 94.47 97° 0.0° 0.0°
1 94.47 97° 90.0° 0.0°
2 94.47 97° 0.0° 36.0°
3 94.47 97° 90.0° 36.0°
4 94.47 97° 0.0° 72.0°
5 94.47 97° 90.0° 72.0°
6 94.47 97° 0.0° 108.0°
7 94.47 97° 90.0° 108.0°
8 94.47 97° 0.0° 144.0°
9 94.47 97° 90.0° 144.0°

Ground stations and targets
Node Lat. Lon. Alt. Reference
10 -33.3833° -70.7833° 476 m Santiago, Chile
11 35.6830° 139.7670° 5 m Tokyo, Japan
12 -15.0° -15.0° 500 km S. Atlantic Anomaly

Figure 4.4 shows a static representation of the satellites’ ground tracks after 45 minutes
(approx. half orbit). Satellites will eventually get closer to each other at some points (es-
pecially at the poles), and ISL are possible. The contact list FSM representation shown in
Fig. 4.5 presents a better view of this scenario. In this figure, contact opportunities are shown
as arcs connecting two nodes. Contact opportunities are discretized and calculated with 60
seconds resolution but displayed with 300 seconds resolution. Thus, the goal of the GA is to
search in this graph for the best possible combination of contact opportunities to solve the
proposed task.

39

Figure 4.4: Scenario A satellite tracks after 45 minutes (Approx. half orbit),
ground stations and targets locations (red).

Figure 4.5: Scenario A contact list in FSM representation. Contact oppor-
tunities are grey lines connecting two nodes. For clarity, a simplified version
with 300 seconds contacts resolution is shown. Note that lines connecting
nodes in a particular state may be overleaped.

4.2.1.1. Task 1

The first task to test was a storage and forward mission. The goal is to execute the
command sim_get_data 1 over the South Atlantic Anomaly (SAA), starting in Santiago
ground station to download the result id 1 in Tokyo ground station. The definition file for
this task, according to Section 3.1.1, is described in Listing 4.1.

Listing 4.1: Task 1 definition file

40

1 {
2 "id": 1,
3 "start": "stgo",
4 "end": "tokyo",
5 "targets": [
6 {"id": "saa", "command": "sim_get_data 1", "result": "1", "prio": 1}
7],
8 "solution": null
9 }

The scenario and task definition were loaded into the constellation controller framework
to obtain the case’s contact and flight plans. The hyper-parameters evaluation included 4 po-
pulation sizes (50, 100, 150, and 200), and 4 mutation rates (0.2, 0.4, 0.6, and 0.8). Because
of the stochastic nature of GA, 100 independent runs of the algorithm for each combination
were executed, each run with a different random seed. A summary of the results is presented
in Fig. 4.6.

Hyper-parameters tuning. Scenario A, task 1

Figure 4.6: Scenario A, task 1 hyper-parameters tuning with maximum 9
hops. The box plots show the fitness value as the number of valid contacts
in the solution sequence (upper left), the duration -or delivery time- of the
solution in seconds (upper right), the time required to find the solution
(lower left), and the number of generations required to find the solution
(lower right).

41

These results show that the algorithm can find valid solutions to the proposed task and
converges to the optimal value of 4620 seconds5 (duration or delivery time) for mutation
rates larger than 0.4. In this case, greater mutation rate or population size do not signifi-
cantly impact the algorithm’s performance; however, large population size and high mutation
rate favor convergence. The maximum length of the sequence (or the number of hops) was
not relevant because the algorithm allows redundant contacts in a sequence. On average,
the algorithm obtains solutions in 276.8 seconds average (64.5 seconds minimum) using the
laboratory workstation6 and 10 generations average (5 generations minimum). Two solutions
were randomly chosen to be displayed in Fig.4.7. These solutions are not identical, but they
are valid and have the same fitness value. The algorithm can choose the intermediate contacts
among several options while the task definition and validity rules are met (See section 3.1.3).
The solution shown in Fig. 4.7-right is the sequence S=[10, 8, 8, 0, 12, 0, 0, 12, 0, 11] that
can be simplified to S=[10, 8, 0, 12, 0, 11] and contacts K=[417, 519, 643, 643, 938]. This
sequence corresponds to the contact plan and flight plan described in Table 4.2.

Figure 4.7: Scenario A, task 1 example results with maximum 9 hops. Con-
tacts resolution 60 seconds. Left: Mutation=0.6, population=150, fitness=9,
duration=4620 s, sequence=[10, 8, 8, 0, 12, 0, 0, 12, 0, 11], contacts=[417,
417, 519, 643, 643, 643, 643, 643, 938]. Right: Mutation=0.4, popula-
tion=50, fitness=9, duration=4620 s, sequence=[10, 8, 6, 2, 0, 12, 0, 11,
11, 11, contacts=[417, 462, 499, 512, 643, 643, 938, 938, 938]

Table 4.2: Scenario A, task 1 example contact plan and flight plan solution.
Contact plan Flight plan

contact from to start end duration Time Node Command
417 12 8 1601428140 1601428200 60 1601428140 12 sim_send_fp 8
519 8 0 1601428320 1601428380 60 1601428320 8 sim_send_fp 0
643 0 12 1601429520 1601429580 60 1601429520 0 sim_get_data 1
643 12 0 1601429520 1601429580 60 1601429521 0 sim_send_data 11 1
938 0 11 1601431920 1601431980 60 1601431920 0 sim_send_fp 11

5 Preliminary results with 300 seconds contact list resolution converged to 4800 seconds
6 Intel(R) Core(TM) i7-990X @3.47GHz, 6 cores/12 threads, 24 GB of RAM

42

4.2.1.2. Task 2

A second task was analyzed, consisting of a store and forward operation over two targets.
The idea is to execute the command sim_get_data 1 over Santiago, and the command
sim_get_data 2 over SAA starting in Tokyo ground station to download both data 1 and
data 2 also in Tokyo ground station. The definition file for this task is described in Listing 4.2.

Listing 4.2: Task 2 definition file

1 {
2 "id": 2,
3 "start": "tokyo",
4 "end": "tokyo",
5 "targets": [
6 {"id": "stgo", "command": "sim_get_data 1", "result": "1"},
7 {"id": "saa", "command": "sim_get_data 2", "result": "2"}],
8 "solution": null }

Hyper-parameters tuning. Scenario A, task 2

Figure 4.8: Scenario A, task 2 hyper-parameters tuning with maximum 13
hops. The box plots show the fitness value as the number of valid contacts
in the solution sequence (upper left), the duration -or delivery time- of the
solution in seconds (upper right), the time required to find the solution
(lower left), and the number of generations required to find the solution
(lower right).

43

This task used the constellation controller framework to obtain the contact and flight
plans similar to the previous case. The hyper-parameters evaluation included 4 population
sizes (50, 100, 150, and 200), 4 mutation rates (0.2, 0.4, 0.6, and 0.8), and 100 realizations
for each combination. A summary of the results is presented in Fig. 4.8.

These results show that the algorithm converges to the fitness value of 13 contacts and
a duration of 7380 seconds7; however higher mutation rate and larger population size are
relevant to ensure convergence. In average, the algorithm obtain solutions in 1126.1 seconds
and 30 generations with a minimum of 75.7 seconds and 5 generations. Two solutions are
presented in Fig 4.9. The solution shown in Fig. 4.9-right is the sequence S=[11, 8, 10, 8, 0,
12, 0, 11] that can be simplified to S=[11, 8, 10, 8, 0, 12, 0, 11] and contacts K=[97, 417,
417, 519, 643, 643, 938]. This sequence can be translated to the contact plan and flight plan
described in Table 4.3.

Figure 4.9: Scenario A, task 2 example results with maximum 13 hops.
Contacts resolution 60 seconds. Left: Mutation=0.6, population=150, fit-
ness=13, duration=7380 s, sequence=[11, 8, 6, 8, 10, 8, 0, 0, 6, 0, 0, 12, 0,
11], contacts=[97, 134, 134, 417, 417, 519, 519, 543, 543, 543, 643, 643,
938]. Right: Mutation=0.4, population=200, fitness=13, duration=7380 s,
sequence=[11, 8, 10, 8, 0, 8, 8, 0, 8, 0, 12, 0, 11, 11], contacts=[97, 417,
417, 519, 519, 519, 519, 519, 519, 643, 643, 938, 938]

Table 4.3: Scenario A, task 2 example contact plan and flight plan solution.
Contact plan Flight plan

contact from to start end duration Time Node Command
97 11 8 1601424600 1601424660 60 1601424600 11 sim_send_fp 8
417 8 10 1601427360 1601427420 60 1601427360 8 sim_get_data 1
417 10 8 1601427360 1601427420 60 1601427361 8 sim_send_data 0 1
519 8 0 1601428320 1601428380 60 1601428320 8 sim_send_fp 0
643 0 12 1601429520 1601429580 60 1601429520 0 sim_get_data 2
643 12 0 1601429520 1601429580 60 1601429521 0 sim_send_data 11 1
938 0 11 1601431920 1601431980 60 1601431920 0 sim_send_data 11 2

1601431802 0 sim_send_fp 11

7 Preliminary results with 300 seconds contact list resolution converged to 7500 seconds

44

4.2.2. Scenario B: 10 satellites Ad hoc constellation
Scenario B consists of a constellation with ten satellites in Ad hoc configuration, two

ground stations, and one target. In this scenario, the orbital parameters are chosen randomly
with an altitude between 500 km and 600 km. A simulation of 16200 seconds with 60 seconds
resolution to calculate the contact opportunities resulted in 1573 contacts. The complete
details of this configuration are shown in Table 4.4.

Figure 4.10 shows a static representation of the satellites’ ground tracks after 45 minutes
(Approx. half orbit). A better view of this scenario is obtained from the contact list FSM
representation shown in Fig. 4.11 (using a contact resolution of 300 seconds to improve
clarity). The reader can note that in contrast with Fig. 4.5 in the ad-hoc configuration, the
contact opportunities are less regular and frequent.

Table 4.4: Scenario B description

Simulation time
Start time: 2020-09-30T00:00:00 UTC (1601424000 Unix time)
Simulation time: 16200 seconds (∼3 orbits)
Simulation resolution: 30 seconds
Contact list resolution: 60 seconds
Number of contacts: 1573

Satellites
Node Period (min) Incl Mean anom. R. ascension
0 95.58 99.0° 24.0° 136.0°
1 95.36 89.0° 146.0° 78.0°
2 95.53 96.0° 66.0° 161.0°
3 95.45 97.0° 80.0° 178.0°
4 96.21 98.0° 126.0° 177.0°
5 94.97 83.0° 52.0° 59.0°
6 94.71 91.0° 150.0° 73.0°
7 95.37 92.0° 171.0° 84.0°
8 96.18 95.0° 61.0° 20.0°
9 95.81 82.0° 121.0° 14.0°

Ground stations and targets
Node Lat. Lon. Alt. Reference
14 -33.3833° -70.7833° 476 m Santiago, Chile
16 35.6830° 139.7670° 5 m Tokyo, Japan
18 -15.0° -15.0° 500 km S. Atlantic Anomaly

45

Figure 4.10: Scenario B satellite tracks after 45 minutes (Approx. half orbit),
ground stations and targets locations (red).

Figure 4.11: Scenario B contact list in FSM representation. Contact op-
portunities are grey lines connecting two nodes. Note that lines connecting
nodes in a particular state may be overleaped. Contacts resolution is 300
seconds to improve clarity

4.2.2.1. Task 1

The framework was used to solve Task 1 as described in the previous scenario (See 4.2.1.1).
The results of the hyper-parameters tuning are shown in Fig. 4.12. Results show convergen-
ce of the algorithm when the population size is larger than 100 individuals and converges
to the fitness value (duration or delivery time) of 4860 seconds8. Compared with the 4620
seconds of the Walker configuration, there is a 240 seconds difference or 4 states. The latter
means that in terms of performance, the Walker configuration presents slightly better results.

8 Preliminary results with 300 seconds contact list resolution converged to 5100 seconds

46

Figure 4.13 show two example of valid solutions. In particular the solution in Fig. 4.13-left
correspond to the sequence S=[10, 2, 2, 2, 5, 5, 8, 12, 8, 11] and contacts K=[732, 732,
732, 825, 825, 835, 952, 952, 1196] obtained with a mutation rate of 0.6 and a population
size of 150 individuals. This solutions evaluates to 4860 seconds (delivery time) and took
1935.3 seconds in 100 generations to get the result. The complete contact list and contact
plant for this solution is detailed in Table 4.5

Hyper-parameters tuning. Scenario B, task 1

Figure 4.12: Scenario B, task 1 hyper-parameters tuning with maximum 8
hops. The box plots show the fitness value as the number of valid contacts
in the solution sequence (upper left), the duration -or delivery time- of the
solution in seconds (upper right), the time required to find the solution
(lower left), and the number of generations required to find the solution
(lower right).

Table 4.5: Scenario B, task 1 example contact plan and flight plan solution.
Contact plan Flight plan

contact from to start end duration Time Node Command
732 10 2 1601431440 1601431500 60 1601431440 10 sim_send_fp 2
825 2 5 1601432400 1601432460 60 1601432400 2 sim_send_fp 5
952 8 12 1601433720 1601433780 60 1601433720 8 sim_get_data 1
1196 8 11 1601436240 1601436300 60 1601436240 8 sim_send_data 11 1

1601436241 8 sim_send_fp 11

47

Figure 4.13: Scenario B, task 1 example results with maximum 9 hops. Left:
Mutation=0.6, population=150, fitness=9, duration=4860 s, sequence=[10,
2, 2, 2, 5, 5, 8, 12, 8, 11], contacts=[732, 732, 732, 825, 825, 835, 952, 952,
1196]. Right: Mutation=0.8, population=200, fitness=9, duration=4860 s,
sequence=[10, 2, 5, 8, 3, 2, 8, 12, 8, 11], contacts=[732, 825, 831, 833,
842, 856, 952, 952, 1196]

4.2.2.2. Task 2

Similar to the previous section, task 2 was solved, and the performance of the GA was
evaluated by hyper-parameters analysis. Fig. 4.14 shows the results for this task, and sce-
nario combination. The results exhibit convergence for a population size of 100 individuals
or greater. The algorithm converges to the value of 7680 seconds9 (delivery time), solving
the problem in 623 seconds. The difference with scenario A in Sec. 4.2.1 (Walker configura-
tion) is 300 seconds (5 states). Thus, Walker configurations show slightly better performance.

Figure 4.15 show two example of valid solutions. In particular the solution in Fig. 4.15-left
correspond to the sequence S=[16, 2, 2, 14, 2, 2, 5, 8, 18, 8, 16, 16] and contacts K=[111,
111, 176, 176, 176, 202, 209, 234, 234, 289, 289] obtained with a mutation rate of 0.6
and a population size of 150 individuals. This solutions evaluates to 7800 seconds (delivery
time) and took 82.16 seconds in 7 generations to get the result. Note that, despite this task
is slightly more complex than Task 1, the time and generations required to find a solution
are not affected significantly. Details of the contact plan and flight plan corresponding to this
solution are found in Table 4.6

9 Preliminary results with 300 seconds contact list resolution converged to 7800 seconds

48

Hyper-parameters tuning. Scenario B, task 2

Figure 4.14: Scenario B, task 2 hyper-parameters tuning with maximum 8
hops. The box plots show the fitness value as the number of valid contacts
in the solution sequence (upper left), the duration -or delivery time- of the
solution in seconds (upper right), the time required to find the solution
(lower left), and the number of generations required to find the solution
(lower right).

Table 4.6: Scenario B, task 2 example contact plan and flight plan solution.
Contact plan Flight plan

contact from to start end duration Time Node Command
464 11 2 1601428620 1601428680 60 1601428620 11 sim_send_fp 2
732 2 10 1601431440 1601431500 60 1601431440 2 sim_get_data 1
782 2 9 1601431980 1601432040 60 1601431980 2 sim_send_data 9 1
793 9 3 1601432100 1601432160 60 1601431981 2 sim_send_fp 9
816 3 5 1601432340 1601432400 60 1601432100 9 sim_send_data 3 1
831 5 8 1601432460 1601432520 60 1601432101 9 sim_send_fp 3
952 8 12 1601433720 1601433780 60 1601432340 3 sim_send_data 5 1
1196 8 11 1601436240 1601436300 60 1601432341 3 sim_send_fp 5

1601432460 5 sim_send_data 8 1
1601432461 5 sim_send_fp 8
1601433720 8 sim_get_data 2
1601436240 8 sim_send_data 11 1
1601436241 8 sim_send_data 11 2
1601436242 8 sim_send_fp 11

49

Figure 4.15: Scenario B, task 2 example results with maximum 12 hops.
Left: Mutation=0.6, population=150, fitness=12, duration=7680 s, sequen-
ce=[11, 2, 10, 2, 9, 9, 3, 5, 8, 12, 8, 11, 11], contacts=[464, 732, 732, 782,
782, 793, 816, 831, 952, 952, 1196, 1196]. Right: Mutation=0.8, popula-
tion=50, fitness=12, duration=7680 s, sequence=[11, 2, 10, 2, 9, 3, 8, 2, 8,
12, 8, 11, 11], contacts=[464, 732, 732, 782, 786, 822, 838, 838, 952, 952,
1196, 1196]

4.2.3. Scenario C: 100 satellites Walker constellation
This case study uses 100 satellites to evaluate the genetic algorithm’s performance in a

large constellation scenario. In particular, the effect of the number of the satellites and the
GA hyper-parameters. Scenario C consists of a constellation with 100 satellites in Walker
configuration (20 orbital planes, 5 satellites per plane, 500 km altitude), two ground stations,
and one target. Details are described in Table 4.7. A simulation of 12000 seconds with a
resolution to calculate the ISL of 600 seconds resulted in 16057 contacts. Restrictions and
assumptions remain equal.

Table 4.7: Scenario C description

Simulation time

Start time: 2020-09-30T00:00:00 UTC (1601424000 Unix time)
Simulation time: 12000 seconds (2.1 orbits)
Simulation resolution: 30 seconds
Contact list resolution: 600 seconds
Number of contacts: 16057

Satellites

Node: 0-99
Period: 94.47 min
Inclination: 97°
Mean anomaly: 0, 36°, 72°, 108°, and 144°
Right ascension step: 9° (0°, 9°, 18°, ..., 171°)

50

Figure 4.16 shows an static representation of the satellites ground tracks after 45 minutes
(Approx. half orbit) and Fig. 4.17 shows the contact list FSM representation. The tracks and
contacts’ visualization is more challenging here due to the data density.

Figure 4.16: Scenario C satellite tracks after 45 minutes (Approx. half orbit),
ground stations and targets locations (red).

Figure 4.17: Scenario C contact list in FSM representation. Contact op-
portunities are grey lines connecting two nodes. Note that lines connecting
nodes in a particular state may be overleaped, please refer to the annexes
to see the full table

51

4.2.3.1. Task 1

The framework is used to solve task 1 described in the previous scenario. The result of
the hyper-parameters tuning is shown in Fig. 4.18. Increasing the number of satellites produ-
ces a greater number of contacts. As the results show, increasing the population variability
is crucial to ensure the convergence of the GA. In this case, a population larger than 200
individuals is required. On the other hand, it is possible to lower the contact resolution to
reduce the contact list length and speed-up calculations. For this population size and contact
resolution, solutions are obtained in 187 seconds on average.

Graphically display the contact plan is not practical in this case due to the density of the
data. For this reason, only an example solution is detailed here, in this case the sequence
S=[104, 85, 6, 6, 108, 6, 6, 46, 0, 106] with contacts K=[4092, 4985, 4985, 6203, 6203,
6203, 8813, 9786, 10493] with mutation rate of 0.4 and population size of 200. This solution
was obtained after 15 generations in 153.6 seconds with a fitness value of 5400 seconds
(delivery time). Table 4.8 details the corresponding contact plan and flight plan.

Hyper-parameters tuning. Scenario C, task 1

Figure 4.18: Scenario C, task 1 hyper-parameters tuning with maximum 9
hops. The box plots show the fitness value as the number of valid contacts
in the solution sequence (upper left), the duration -or delivery time- of the
solution in seconds (upper right), the time required to find the solution
(lower left), and the number of generations required to find the solution
(lower right).

52

Table 4.8: Scenario C, task 1 example contact plan and flight plan solution.
Contact plan Flight plan

contact from to start end duration Time Node Command
4092 104 85 1601427000 1601427600 600 1601427000 104 sim_send_fp 85
4985 85 6 1601427600 1601428200 600 1601427600 85 sim_send_fp 6
6203 6 108 1601428800 1601429400 600 1601428800 6 sim_get_data data1
6203 108 6 1601428800 1601429400 600 1601430600 6 sim_send_fp 46
8813 6 46 1601430600 1601431200 600 1601430601 6 sim_send_data 46 data1
9786 46 0 1601431200 1601431800 600 1601431200 46 sim_send_fp 0
10493 0 106 1601431800 1601432400 600 1601431201 46 send_data 0 data1

1601431800 0 sim_send_fp 106
1601431801 0 sim_send_data 106 data1

4.2.3.2. Task 2

Task 2 was also evaluated in the 100 satellites scenario. As Figure 4.19 shows, the hyper-
parameters space used is not enough to ensure the convergence of the GA. This situation
restates the idea of requiring great population variability as the size of the problem increases.
Here the test limited the maximum number of generations to 50, sufficient to get valid results.

Despite of the results of the hyper-parameters analysis in this case (the values was main-
tained equal among the different tests) valid results as obtained using a mutation rate of
0.6 and a population size of 1000 individuals. With this values, the solution with sequence
S=[104, 85, 6, 6, 108, 6, 6, 46, 0, 106] and contacts K=[4092, 4985, 4985, 6203, 6203,
6203, 8813, 9786, 10493] was obtained after 16 generations in 401.0 seconds with a fitness
value of 8400 seconds (delivery time). Table 4.9 details the corresponding contact plan and
flight plan.

Table 4.9: Scenario C, task 2 example contact plan and flight plan solution.
Contact plan Flight plan

contact from to start end duration Time Node Command
249 106 91 1601424000 1601424600 600 1601424000 106 sim_send_fp 91
1006 91 71 1601424600 1601425200 600 1601424600 91 sim_send_fp 6
3377 71 104 1601426400 1601427000 600 1601426400 71 sim_get_data data1
4915 71 86 1601427600 1601428200 600 1601427600 71 sim_send_fp 86
5908 86 0 1601428200 1601428800 600 1601427601 71 sim_send_data 86 data1
7364 0 108 1601429400 1601430000 600 1601428200 86 sim_send_fp 0
9051 0 5 1601430600 1601431200 600 1601428201 86 sim_send_data 0 data1
10042 5 106 1601431800 1601432400 600 1601429400 0 sim_get_data data2

1601430600 0 sim_send_fp 5
1601430601 0 sim_send_data 5 data1
1601430602 0 sim_send_data 5 data2
1601431800 5 sim_send_fp 106
1601431801 5 sim_send_data 106 data1
1601431802 5 sim_send_data 106 data2

53

4.2. GENETIC ALGORITHM HYPER-PARAMETERS TUNING 54

Hyper-parameters tuning. Scenario C, task 2

Figure 4.19: Scenario C, task 2 hyper-parameters tuning with maximum 9
hops. The box plots show the fitness value as the number of valid contacts
in the solution sequence (upper left), the duration -or delivery time- of the
solution in seconds (upper right), the time required to find the solution
(lower left), and the number of generations required to find the solution
(lower right).

4.2.4. Scenario D: 100 satellites Ad hoc constellation
Another large constellation scenario was tested, this case with 100 satellites in Ad hoc

configuration. In this scenario, the orbital parameters are chosen randomly with an altitude
between 500 km. and 600 km. Details are described in Table 4.13. A simulation of 14400
seconds with a resolution to calculate the ISL of 600 seconds resulted in 22371 contacts.
Restrictions and assumptions remain equal.

Table 4.10: Scenario C description

Simulation time

Start time: 2020-09-30T00:00:00 UTC (1601424000 Unix time)
Simulation time: 14400 seconds (2.67 orbits)
Simulation resolution: 30 seconds
Contact list resolution: 600 seconds
Number of contacts: 22371

Satellites

Node: [0, 99]
Period: unif(94.47, 96.54) min
Inclination: unif(80°, 100°)
Mean anomaly: unif(0°, 180°)
Right ascension angle: unif(0°, 180°)

Figure 4.20 shows an static representation of the satellites ground tracks after 45 minutes
(Approx. half orbit) and the contact list FSM representation is shown in Fig. 4.21. In this
case, the tracks and contacts’ visualization is more challenging due to the data’s density.

Figure 4.20: Scenario D satellite tracks after 45 minutes (Approx. half orbit),
ground stations and targets locations (red).

55

Figure 4.21: Scenario D contact list in FSM representation. Contact op-
portunities are grey lines connecting two nodes. Note that lines connecting
nodes in a particular state may be overleaped, please refer to the annexes
to see the full table

4.2.4.1. Task 1

Results of the hyper-parameters tuning for task 1 are shown in Fig. 4.22. As a solution
visualization is not practical, an example solution is described. The following solution was
obtained with a mutation rate of 0.2 and a population size of 100 individual and correspond to
the sequence S=[104, 49, 37, 38, 87, 97, 108, 97, 77, 106] and contacts K=[14, 977, 2498,
3509, 4003, 4833, 4833, 6647, 7545]. This solution value is 5400 seconds and is obtained in
61.7 seconds or 10 generations. These results are exactly equal to the Walker configuration;
thus, it is impossible to determine which configuration performs better with this contacts
resolution. The contact plan and flight plan are detailed in Table 4.11.

Table 4.11: Scenario D, task 1 example contact plan and flight plan solution.
Contact plan Flight plan

contact from to start end duration Time Node Command
14 104 49 1601424000 1601424600 600 1601424000 104 sim_send_fp 49
977 49 37 1601424600 1601425200 600 1601424600 49 sim_send_fp 37
2498 37 38 1601425200 1601425800 600 1601425200 37 sim_send_fp 38
3509 38 87 1601425800 1601426400 600 1601425800 38 sim_send_fp 87
4003 87 97 1601426400 1601427000 600 1601426400 87 sim_send_fp 97
4833 97 108 1601427000 1601427600 600 1601427000 97 sim_get_data data1
6647 97 77 1601428200 1601428800 600 1601428200 97 sim_send_fp 77
7545 77 106 1601428800 1601429400 600 1601428201 97 sim_send_data 77 data1

1601428800 77 sim_send_data 106 data1

56

Hyper-parameters tuning. Scenario D, task 1

Figure 4.22: Scenario D, task 1 hyper-parameters tuning with maximum 9
hops. The box plots show the fitness value as the number of valid contacts
in the solution sequence (upper left), the duration -or delivery time- of the
solution in seconds (upper right), the time required to find the solution
(lower left), and the number of generations required to find the solution
(lower right).

4.2.4.2. Task 2

Similarly the hyper-parameters tuning for task 2 is shown in Fig. 4.23. The following
solution was obtained with a mutation rate of 0.2 and a population size of 200 individuals,
corresponding to the sequence S=[106, 73, 8, 104, 8, 70, 78, 78, 108, 78, 76, 78, 106] and
contacts K=[422, 1091, 3027, 3027, 4863, 5812, 5812, 7551, 7551, 9453, 9453, 11209]. This
solution evaluates to 7800 seconds and was obtained in 158.42 seconds or 12 generations. The
variance of the results does not enable a fair comparison of each configuration performance.
The contact plan and flight plan are detailed in Table 4.12.

57

4.2. GENETIC ALGORITHM HYPER-PARAMETERS TUNING 58

Hyper-parameters tuning. Scenario D, task 2

Figure 4.23: Scenario D, task 2 hyper-parameters tuning with maximum 12
hops. The box plots show the fitness value as the number of valid contacts
in the solution sequence (upper left), the duration -or delivery time- of the
solution in seconds (upper right), the time required to find the solution
(lower left), and the number of generations required to find the solution
(lower right).

Table 4.12: Scenario D, task 2 example contact plan and flight plan solution.
Contact plan Flight plan

contact from to start end duration Time Node Command
422 106 73 1601424000 1601424600 600 1601424000 106 sim_send_fp 73
1091 73 8 1601424600 1601425200 600 1601424600 73 sim_send_fp 8
3027 8 104 1601425800 1601426400 600 1601425800 8 sim_get_data data1
4863 8 70 1601427000 1601427600 600 1601427000 8 sim_send_fp 70
5812 70 78 1601427600 1601428200 600 1601427001 8 sim_send_data 70 data 1
7551 78 108 1601428800 1601429400 600 1601427600 70 sim_send_fp 78
9453 78 76 1601430000 1601430600 600 1601427601 70 sim_send_data 78 data 1
11209 78 106 1601431200 1601431800 600 1601428800 78 sim_get_data data2

1601430000 78 sim_send_fp 76
1601430001 78 sim_send_data 76 data 1
1601430002 78 sim_send_data 76 data 2
1601431200 78 sim_send_fp 106
1601431201 78 sim_send_data 106 data 1
1601431202 78 sim_send_data 106 data 2

4.2.5. Scenario E: 1000 satellites Ad hoc constellation
A mega constellation scenario with 1000 satellites is tested in this section. As shown in

Sections 4.1 and 4.2.6 these kind of scenarios are computationally expensive so only the Ad
hoc configuration was tested. Visualizing and analyzing data in these large scenarios is espe-
cially challenging, so displaying tracks, contacts, and contact plans in static plots is worthless.
For these reasons, the results showed are limited to the contact plan and flight plan tables.

This scenario uses an Ad hoc configuration, so the orbital parameters are chosen ran-
domly with an altitude between 500 km. and 600 km. Details are described in Table 4.13. A
simulation of 16200 seconds with a resolution to calculate the ISL of 60 seconds resulted in
16106905 contacts. Restrictions and assumptions remain equal.

Table 4.13: Scenario E description

Simulation time

Start time: 2020-09-30T00:00:00 UTC (1601424000 Unix time)
Simulation time: 16200 seconds (3.0 orbits)
Simulation resolution: 30 seconds
Contact list resolution: 60 seconds
Number of contacts: 16106905

Satellites

Node: [0, 999]
Period: unif(94.47, 96.54) min
Inclination: unif(80°, 100°)
Mean anomaly: unif(0°, 180°)
Right ascension angle: unif(0°, 180°)

4.2.5.1. Task 1

The hyper-parameters analysis shown in previous scenarios is impractical here due to the
required computational time. Also, the visualization of the solution is not useful due to the
information density. Instead, a limited set of trials were executed with a fixed set of hyper-
parameters: mutation rate of 0.6 and population size of 100 individuals and 20 generations
maximum. An example solution is corresponding to the sequence S=[2649754, 3090991,
3644957, 3736247, 4857548, 4857548, 4857548, 8410834, 10909304] and contacts K=[14,
977, 2498, 3509, 4003, 4833, 4833, 6647, 7545] is detailed in Table 4.14. This solution
value is 8340 seconds and was obtained in 7855.38 seconds or 13 generations.

4.2.5.2. Task 2

Similar to the previous case, task 2 tests were executed the following set of hyper-
parameters: mutation rate of 0.6 and, population size of 100 individuals and 20 genera-
tions maximum. An example solution is corresponding to the sequence S=[1001, 380, 212,
1000, 212, 518, 432, 746, 298, 1002, 298, 521, 1001] and contacts K=[5689021, 5739086,

59

8617418, 8617418, 9301191, 9333460, 9392656, 9495685, 10047152, 10047152, 10163231,
12714813] is detailed in Table 4.15. This solution evaluates to 7200 seconds and was obtained
in 10027.53 seconds or 18 generations.

Table 4.14: Scenario E, task 1 example contact plan and flight plan solution.
Contact plan Flight plan

contact from to start end duration Time Node Command
2649754 1000 932 1601426640 1601426700 60 1601426640 1000 sim_send_fp 932
3090991 932 848 1601427060 1601427120 60 1601427060 932 sim_send_fp 848
3644957 848 826 1601427600 1601427660 60 1601427600 848 sim_send_fp 826
3736247 826 346 1601427660 1601427720 60 1601427600 826 sim_send_fp 346
4857548 346 1002 1601428860 1601428920 60 1601428860 346 sim_get_data 1
8410834 346 758 1601432400 1601432460 60 1601432400 346 sim_send_data 346 1
10909304 758 1001 1601434920 1601434980 60 1601432401 346 sim_send_fp 758

1601434920 758 sim_send_data 1001 1
1601434921 758 sim_send_fp 1001

Table 4.15: Scenario E, task 2 example contact plan and flight plan solution.
Contact plan Flight plan

contact from to start end duration Time Node Command
5689021 1001 380 1601429640 1601429700 60 1601429640 1001 sim_send_fp 380
5739086 380 212 1601429700 1601429760 60 1601429700 380 sim_send_fp 212
8617418 212 1000 1601432580 1601432640 60 1601432580 212 sim_get_data 1
9301191 212 518 1601433240 1601433300 60 1601433240 212 sim_send_data 518 1
9333460 518 432 1601433300 1601433360 60 1601433241 212 sim_send_fp 518
9392656 432 746 1601433360 1601433420 60 1601433300 518 sim_send_data 432 1
9495685 746 298 1601433420 1601433480 60 1601433301 518 sim_send_fp 432
10047152 298 1002 1601434080 1601434140 60 1601433360 432 sim_send_data 746 1
10163231 298 521 1601434200 1601434260 60 1601433361 432 sim_send_fp 746
12714813 521 1001 1601436780 1601436840 60 1601433420 746 sim_send_data 298 1

1601433421 746 sim_send_fp 298
1601434080 298 sim_get_data 2
1601434200 298 sim_send_data 521 1
1601434201 298 sim_send_data 521 2
1601434202 298 sim_send_fp 512
1601436780 521 sim_send_data 1001 1
1601436780 521 sim_send_data 1001 2
1601436780 521 sim_send_fp 1001

4.2.6. Genetic algorithm scalability
Finally, the scalability of the evolutive contact plan design algorithm versus the number of

satellites in the constellation was studied. The Ad hoc scenario was re-executed under similar
conditions with 10, 100, and 1000 satellites constellation sizes. Thus, all test were executed
in the slims nodes10 of the NLHPC cluster, using one core per realization, and 10 realizations
per test in parallel. All test used the same mutation rate m = 0.6, population size s = 200,
and maximum number of generations i = 50. The contact lists calculated in Section 4.1 with
a resolution of 60 seconds were used, so these test measures only the time required by the
genetic algorithm to create a valid contact plan. Note that this is a sequential process, and
scalability is measured against the number of satellites.

10 2 x Intel Xeon E5-2660v2 @ 2,20GHz, 10 cores each, 48 GB of RAM

60

Figure 4.24 summarizes the results. It shows that the execution time does not vary sig-
nificantly with the task complexity but with the length of the contact list. The contact list
size scales exponentially so does the contact plan design complexity. Results confirm that
managing large constellations of hundreds of nodes is feasible. It is possible to plan seve-
ral hours in a portion of time. However, planning for a mega constellation of thousands of
nodes might be challenging in terms of computational resources and execution time. Scena-
rios of hundreds of satellites can be managed in regular workstation computers, but larger
scenarios require high-performance computing capabilities and implementing some level of
parallelization inside the genetic algorithm. For example, it is worth studying parallelizing
the population fitness function evaluation.

10 100 1000
Satellites

500

1000

2000

5000

10000

20000

Ex
ec

ut
io

n
tim

e
(s

)

Contact plan design execution time
Contact list resolution: 60 s

Task 1
Task 2
Contacts

101

102

103

104

105

106

107

Nu
m

be
r o

f c
on

ta
ct

s
Figure 4.24: Evolutive contact plan design scalability results

61

4.3. Flight software verification and validation
As discussed in Section 2.4, the CubeSat community is concerned about the design and

quality of the Flight Software (FS). However, defining and ensuring rigorous software quality
criteria is not simple. CubeSat projects apply different techniques such as extensive tes-
ting [69, 57], hardware in the loop simulation [70], static analysis, or the use of of of certified
language standards [50]. This section provides a methodology that utilizes software enginee-
ring tools, in the context of embedded systems development, to track the quality attributes of
the SUCHAI FS using a visual architecture evaluation tool. When this visual tool is integra-
ted with the development process, developers can monitor the non-functional requirements’
evolution and detect architecture disruptions that may deteriorate the software quality.

Visual displays allow the human brain to study multiple aspects of a complex problem
simultaneously. It is well known that software visualization allows for a higher level of abstrac-
tion and closer mapping to the problem domain [71]. For this reason, several visualizations
were produced to measure and assess the modularity of the components involved in the FS
and to extract the architecture from the source code. Source code visualizations are gene-
rated using a script written in the Pharo programming language [72] and based on an agile
visualization library called Roassal [73].

4.3.0.1. Evaluation of modularity using software visualization

Visualizing software dependencies is a common technique employed to communicate in-
teraction between components [74]. In the global architecture, these interactions express the
modularity of the FS solution. The visualization tool consists of a script that parses the sour-
ce code files, classifying them as an application (including main, clients, invoker, receiver,
repositories, and commands files), operating system, or drivers, modules to associate them
a color. Then, it constructs a directed graph based on its dependencies. Dependencies are
extracted from the #include directives contained in the source code. Edges between modu-
les indicate a dependency as described in the UML model diagram shown in Fig. 3.11. Two
snapshots of the SUCHAI FS source code are represented in Fig. 4.25. The first snapshot was
produced in December 2017 (commit 765c128 on GitHub) while the second in May 2018
(commit 0ca21db on GitHub).

The visualization shows modules (files having the extension .c with the corresponding .h)
and their dependencies. Each file is represented as a colored box. The box’s height indicates
the number of code lines in the module, while the box’s width represents the number of
dependencies included in the represented module. For example, the central green box in Fig.
4.25 represents the module named repoCommand.c, which represents the command reposi-
tory whose purpose is to store and give access to available commands. This module is one
of the largest in the SUCHAI FS since it is the highest box. Similarly, the blue box on the
top represents the main.c file. The main is the widest module. It includes a large number of
dependencies, which makes sense because it is the software entry point.

In the commit 765c128 from December 2017 the FS contains only the fundamentals mo-
dules to support command executions. The diagram in Fig. 4.25 left shows that client tasks

62

https://github.com/spel-uchile/SUCHAI-Flight-Software/tree/765c128e33ceb530e54a0f2f4804272620feb85f
https://github.com/spel-uchile/SUCHAI-Flight-Software/tree/0ca21dbebc736ae6a1ae377f5da472f6d670d7a0
https://data.spel.cl/viz_html/2017-12-11.21:24:57.765c128.html

Figure 4.25: Modules dependencies comparison between commits 765c128
and 0ca21db.

depend on command and data repositories, command repository includes all command modu-
les, and data repository includes drivers for data storage handling. This dependencies graph
matches the proposed architecture described in Fig. 3.11, except for a circular dependency
between the command repository and the command modules. This circular dependency is
not described nor desired in the architecture shown in Fig. 3.11. However, an inspection of
the source code reveals that using a command repository function inside command modules
to register new commands in the system increases the code’s readability and maintainability.

The diagram of the commit 0ca21db from May 2018 in Fig. 4.25 right shows the evolution
of the software after several commits. A similar analysis makes it possible to determine that
the architecture is preserved and that no extra dependencies were added. However, the vi-
sualization reveals that new clients were added, one was deleted, new commands were added,

63

https://data.spel.cl/viz_html/2017-12-11.21:24:57.765c128.html
https://data.spel.cl/viz_html/2018-05-22.22:51:08.0ca21db.html
https://data.spel.cl/viz_html/2018-05-22.22:51:08.0ca21db.html

while some modules changed the amount of code. The main module has reduced code lines
since some initialization routines were moved to the new taskInit client. On the one hand,
new commands and clients were added, which means that the software was augmented with
new functionalities. However, on the other hand, the Invoker and the Receiver remain intact,
which means that the commands execution logic was not intervened. A significant number of
lines of code have been added to the data and command repository; hence, developers should
concentrate on testing these modules.

The same visualization tool is used to validate the architectural rules of the application
layer. The application layer architecture is based on the command pattern as the UML dia-
gram in Fig. 3.12 details. The application layer modules are related by a messaging system to
send commands from Task modules to the Invoker and the Receiver. The messaging system
was implemented as queues in FreeRTOS and Linux, so the idea is to visualize Task modules
and queues’ relation. Figure 4.26 shows the structure and evolution of the application layer
after several months of development. Only Task modules of type Client use the queue to
send commands for execution. Although some Client modules were added and removed from
commit 765c128 to 0ca21db, the architecture of the application layer remains intact. The
evolution shown in Fig. 4.25 contrasts with the results in Fig. 4.26 because with time, new
features, lines of code, and modules were added, but the execution logic in the upper layer
has remained intact.

These visualizations can be immediately exploitable by a software engineer. They are
meant to be an early indicator of (i) a violation of the architecture and (ii) an anomaly due
to exceptional entities.

Figure 4.26: Application layer architecture visualization. Relation between
Task modules, Invoker, Receiver and messages queues for commits 765c128
and 0ca21db

Due to the architecture presented in Section 3.2 was inspired by a well-known design pat-
tern, the implementation is simple and clear. However, to corroborate that the architecture
and the quality requirements are effectively accomplished, visual support of the source code
was developed to detect architecture disruptions in perfectly working code. This situation can

64

https://data.spel.cl/viz_html/queues/2017-12-11.21:24:57.765c128.html
https://data.spel.cl/viz_html/queues/2018-05-22.22:51:08.0ca21db.html
https://data.spel.cl/viz_html/queues/2017-12-11.21:24:57.765c128.html
https://data.spel.cl/viz_html/queues/2018-05-22.22:51:08.0ca21db.html

represent potential errors or deterioration in software quality. Thus, dependencies, message
paths, and differences between commits were visualized to quickly determine which compo-
nents are affected by a source code change and keep track of the software’s architectural
attributes. Moreover, as these tools can be automated and integrated into the development
cycle, the presented flight software and the verification techniques exhibit good scalability to
support large constellations’ development.

4.4. Constellation simulator results
The evolutionary flight plan design tool and a flight software solution are validated; thus,

the last step was to integrate these results in software in the loop simulation tool. The cons-
tellation simulator will take scenario definition information, the flight plan designed to solve
a specific task, and will deploy N instances of the SUCHAI FS interconnected via a local loop
and synchronized using shared memory space. The simulation will run up to 100 times faster
than in real-time, depending on the level of parallel cores available. The goal is to validate
the correctness of the generated flight plan and obtain execution time data to analyze the
whole constellation resources usage prior to deploying the task.

The SUCHAI FS uses the Cubesat Space Protocol (CSP) library as a communication stack.
This library presents many advantages, such as Linux and FreeRTOS support, is lightweight
enough to be used in microcontrollers, and has been tested in several space missions. However,
to date, version 1.0 of this communication protocol supports up to 32 network addresses11.
This limitation impedes test scenarios with 100 and 1000 nodes. For this reason, only scenarios
A and B with 10 satellites each are simulated.

4.4.1. Set up
Let us assume a complete new install of the constellation control framework to illustrate

its usage. First, clone and initialize the repository with the following commands to download
and build the python scripts, the simulator application, and the SUCHAI Flight Software.

1 git clone https://gitlab.com/carlgonz/constellation-framework.git
2 cd constellation-framework
3 sh init.sh

Then, place the scenario and task definitions in a separated folder. Following the default
repository setup the following files are placed in the cases/scenario_a_b directory: scena-
rio_walker_10_5.json, scenario_adhoc_10.json, task1.json and task2.json.

Scenarios can be created using the scenarios.py script to match the definitions of table
4.16. In this case, a contact list of 300 seconds was used because minimum differences we-
re observed with lower resolutions in previous tests (see Section 4.2.1 and 4.2.2). Use the
following commands to generate the scenario definition files:

1 python3 scenario.py walker 10 -p 5 -o scenario_walker_10_5.json -s 1601424000 -d 16200
2 python3 scenario.py adhoc 10 -o scenario_adhoc_10.json -s 1601424000 -d 16200

11 To date CSP v2.0 is under development increasing the address field to 14 bits or 16384 addresses

65

Listing 4.3: Task 1 and 2 definition file

1 # task1.json
2 {
3 "id": 1,
4 "start": "stgo",
5 "end": "tokyo",
6 "targets": [
7 {"id": "saa", "command": "sim_get_data 1", "result": "1", "prio": 1}
8],
9 "solution": null

10 }
11
12 # task2.json
13 {
14 "id": 2,
15 "start": "tokyo",
16 "end": "tokyo",
17 "targets": [
18 {"id": "stgo", "command": "sim_get_data 1", "result": "1"},
19 {"id": "saa", "command": "sim_get_data 2", "result": "2"}
20],
21 "solution": null
22 }

Table 4.16: Scenarios description

Scenario A and B parameters
Start time: 2020-09-30T00:00:00 UTC (1601424000 Unix time)
Simulation time: 16200 seconds (∼3 orbits)
Simulation resolution: 30 seconds
Contact list resolution: 3000 seconds
Number of contacts: 493 and 383

4.4.2. Execution
The framework entry point is the controller.py script. This software executes the following

steps:

1. Load scenario and task file definitions

2. Generate the contact list data file, or load a pre-calculated file.

3. Generate the contact plan and flight plan using the evolutionary algorithm, or load a
pre-calculated solution.

4. Run a simulation by launching N instances of the SUCHAI FS and simulation app.

5. Collect each node telemetry and produced summary files.

Use the following commands to run each scenario and task:

66

1 python3 controller.py cases/scenario_a_b scenario_walker_10_5.json task1.json -s 200 -m 0.6 -i 100 -
↪→ n 2 --dt 300

2 python3 controller.py cases/scenario_a_b scenario_walker_10_5.json task2.json -s 200 -m 0.6 -i 100 -
↪→ n 2 --dt 300

3 python3 controller.py cases/scenario_a_b scenario_adhoc_10.json task1.json -s 200 -m 0.6 -i 100 -n 2
↪→ --dt 300

4 python3 controller.py cases/scenario_a_b scenario_adhoc_10.json task2.json -s 200 -m 0.6 -i 100 -n 2
↪→ --dt 300

Figure 4.27 show the contact plans generated for each scenario and task executed.

Scenario WalkerTask 1 Task 2

Scenario Ad hocTask 1 Task 2

Figure 4.27: Contact plan for each scenario and task in the simulation

Finally, the controller will run the simulation by launching one instance of the SUCHAI
FS simulator application for each node (satellites and ground stations). Using the parameters
–tty it is possible to display the instances outputs in a set of previously opened terminals;
else, the software log output is redirected to a file. Figure 4.28 is an example output of 8
SUCHAI FS instances running during a simulation.

67

Figure 4.28: Contact plan for each scenario and task in the simulation

4.4.2.1. Results

Because the idea is to simulate the normal functioning of satellites in the constellation,
each instance executes some commands by default. These operations include running the
SGP4 propagator, housekeeping tasks such as updating software watchdogs and status va-
riables, collecting status data telemetry, and collecting all time-tagged commands executed
by the flight plan task. These two telemetries enable a posterior analysis of the constellation
operation. With the commands telemetry, it is possible to validate that the proposed global
flight plan was executed without errors. While with the status variables telemetry, it is pos-
sible to obtain resources usage metrics.

The command executing rate will be used as a constellation resources usage metric in
this work. As discussed in Section 3.2 and 4.3 the SUCHAI Flight Software was designed to
execute commands mainly, so measuring variations in the commands queue/execution rate
is a relevant metric.

Figures 4.29 and 4.30 show the commands execution rate results for the Walker and Ad
hoc scenarios respectively. They showed that node satellites have a base rate of 0.3 commands
per second in both scenarios because the housekeeping task executes commands periodically
(update date and time, update status, propagate orbit, among others). Ground station nodes
do not propagate their orbits, so they execute fewer commands at a rate of 0.2 commands/-
seconds. The plots show usage peaks coincident with the flight plan timing because those are
new commands to execute. Despite the initial set-ups, the maximum usage is 0.5 and 0.6 for
task 1, less than one command per second. These results confirm that task 1 is a lightweight
and simple task, and the constellation has more resources available. For task 2, the maximum
usages are 1.1 and 1.3 because each target visited also implies moving data between satellites
resulting in more commands executed during a contact.

68

Despite the results revealing that both tasks are lightweight, they are relevant in showing
the complete system working; thus, closing gaps between task scheduling, contact plan de-
sign, flight software design, and the constellation operation. Furthermore, it is possible to
include more functioning details in the simulator, for example: simulate commands’ actual
duration, communication delays, battery usage, attitude control, among others. Models for
these parameters can also be included in the contact plan design algorithm and contrasted
with simulation results.

0 1000 2000 3000 4000
Timestamp since 1601427289 (s)

0.1

0.2

0.3

0.4

0.5

0.6

ob
c_

ex
ec

ut
ed

_c
m

ds
_r

at
e

Status telemetry (scenario_walker_10_5_task1_tm_status.csv)
0
1
2
3
4
5
6
7
8
9
10
11

0 1000 2000 3000 4000 5000 6000 7000
Timestamp since 1601424588 (s)

0.2

0.4

0.6

0.8

1.0

1.2

ob
c_

ex
ec

ut
ed

_c
m

ds
_r

at
e

Status telemetry (scenario_walker_10_5_task2_tm_status.csv)
0
1
2
3
4
5
6
7
8
9
10
11

Figure 4.29: Scenario Walker command execution rate (commands/seconds).
Top: task 1 results. Bottom: task 2 results.

69

0 1000 2000 3000 4000 5000
Timestamp since 1601431189 (s)

0.1

0.2

0.3

0.4

0.5

0.6

ob
c_

ex
ec

ut
ed

_c
m

ds
_r

at
e

Status telemetry (scenario_adhoc_10_task1_tm_status.csv)
0
1
2
3
4
5
6
7
8
9
10
11

0 1000 2000 3000 4000 5000 6000 7000
Timestamp since 1601428489 (s)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ob
c_

ex
ec

ut
ed

_c
m

ds
_r

at
e

Status telemetry (scenario_adhoc_10_task2_tm_status.csv)
0
1
2
3
4
5
6
7
8
9
10
11

Figure 4.30: Scenario Ad hoc command execution rate (commands/seconds).
Top: task 1 results. Bottom: task 2 results.

4.5. Chapter highlights
This chapter shows the results of the genetic algorithm for contact list design. The study

focuses on the genetic algorithm scalability to a large number of nodes and the analysis of
the flight software quality. The main conclusions are:

The genetic algorithm converges to generate valid contact plans for several tasks and
different scenarios. In particular, constellations with Walker and Ad hoc configuration
and up to 1000 nodes were solved.

The genetic algorithm performance versus the population size and mutation rate hyper-
parameters was studied. It was possible to find a combination of parameters to obtain
optimal or near to optimal solutions in all cases. Furthermore, optimal solutions were

70

verified by inspection in the smallest cases.

A graphical tool was developed to extract the software architecture of the implemented
code. This visualization of the architecture helps software engineers verify the code’s
quality attributes.

Using visualizations, it is possible to detect architecture disruptions that may negatively
impact the software quality, thus increasing mission risks.

Scalability measurements show that the serial portion of the work limits the speedup of
the contact list generation tool. However, optimizations and parallelization were critical
to calculating contacts in scenarios up to 1000 nodes in reasonable times.

Scalability measurements show that the time required to find a contact plan scales
proportionally to the number of contacts in the scenario. The number of contacts scales
exponentially with the number of satellites.

71

Chapter 5

Conclusions and future work

5.1. Conclusions
In this thesis, the problem of operating a large nanosatellite constellation was studied.

To date, small- and nanosatellite constellations consisting of hundreds to thousands of nodes
are being deployed. The New Space context adds new restrictions and requirements to this
problem stressing the production and operation lines. Agility, flexibility, and autonomy are
key concepts to succeed in the New Space era.

Literature shows that many efforts have been deployed to solve task scheduling problems
in satellite constellations, deploy communication networks that support dynamic topologies,
delays, and disruptions; and physically connect small- and nanosatellites using radio and
optical links. CubeSat nanosatellites are part of this trend and present particular restric-
tions regarding space, power, computing resources, and constellation deployment logistics.
In particular, it is not possible to assume that CubeSat constellations will be deployed in
particular geometries, such as Walker Star or Walker Delta, but in Ad Hoc configuration due
to several secondary payload launches. Also, the scheduling problem’s complexity suggests
that onboard planning and scheduling can be computationally demanding. This approach
may not scale properly to a large number of nodes in the constellation. For these reasons,
using meta-heuristic algorithms and ground-based planning is a valid approach to solve this
problem.

The results of this work may also be applied to other contexts, including larger satellites
(small o microsatellites). The original inspiration of this work is the increasing number of Cu-
beSat satellites being deployed and the possibility to operate automatically as a coordinated
constellation with this kind of spacecraft. The computational power and energy restrictions
motivate offline planning and evolutionary algorithms. Commonly, larger satellites have more
computational resources, larger solar panels, and batteries to afford onboard planning algo-
rithms, which adds more autonomy to the system. On the other hand, this work may also
be applied to satellites without ISL but with an extensive network of ground stations. The
restrictions are similar, but adding connections between ground stations in the contact list
will be necessary. The current implementation allows using ground stations as a bridge sto-
ring the flight plan until another satellite approaches if necessary.

In this work, satellites with Inter-satellite link (ISL) were considered. Thus, the LEO

72

constellation can be considered a Delay or Disruption Tolerant Network (DTN) and Contact
Plan Design (CPD) technics were used to solve the scheduling problem. In particular, an
evolutionary algorithm was designed and implemented to optimize the CPD under the study
case’s particular restrictions. The resultant Contact Plan is then used to generate a global
Flight Plan table that describes the operations of the satellites to execute a task coopera-
tively. Therefore, the spacecraft complexity from the flight software perspective is bound to
execute a set of time-tagged commands.

Case studies were used to validate the hypotheses. Simulated scenarios with 10, 100, and
1000 satellites in Walker and Ad Hoc configurations were used. Two tasks per scenario were
used to analyze the performance of the GA. Results show that the algorithm con generates
valid contact plan and flight plan tables in all cases. It was shown that it is possible to control
a CubeSat constellation using the flight plan table derived from the contact plan design. It
was also shown that the time required to solve the scheduled problem is bounded and re-
mains feasible even for a large number of nodes. It was also shown that the command-based
flight software architecture being used in the SUCHAI nanosatellites is suitable for this pro-
blem. This work also explains how to implement a Flight Software and software in the loop
simulation tool to validate the scheduling solutions generated by the genetic contact plan
design algorithm. Thus, this work expects to close an existing gap between the nanosatellite
constellation software development and the operation of this complex system under heavy
restrictions of computation resources.

Part of the results of this work have been published in the IEEE Access scientific jour-
nal under the title “An architecture-tracking approach to evaluate a modular and extensible
flight software for CubeSat nanosatellites” [63] and in the 2021 Space-Terrestrial Internet-
working Workshop (STINT) proceedings with the title “Nanosatellite constellation control
framework using evolutionary contact plan designs”. Also, the derived work “Systematic Fuzz
Testing Techniques on a Nanosatellite Flight Software for Agile Mission Development” [75]
was recently published in the IEEE Access journal. The nanosatellite flight software and the
nanosatellite constellation control framework are released as FLOSS projects in Git reposito-
ries121314. The author aims to contribute to the CubeSat community with the tools developed
during this work.

5.2. Challenges
This section aims to discuss some of the challenges addressed during the implementation

of the thesis.

Scenarios and contact lists This work required generating the contact list of conste-
llations up to 1000 nodes. Calculating the contact list requires defining each satellite orbital
parameters and propagating orbits. Then, the contacts matrix is calculated: the instants whe-
re any pair of satellites are in the line of sight according to the communication system range.

12 https://gitlab.com/spel-uchile/suchai-flight-software
13 https://gitlab.com/carlgonz/constellation-framework
14 https://gitlab.com/carlgonz/suchai-constellation-simulator

73

https://gitlab.com/spel-uchile/suchai-flight-software
https://gitlab.com/carlgonz/constellation-framework
https://gitlab.com/carlgonz/suchai-constellation-simulator

This task is usually done with third-party proprietary software such as STK. In this work,
a free and open-source implementation of this problem was developed in Python. However,
commercial solutions offer more advanced tools to calculate contacts with different radio link
configurations, for example, directional antennas or several antennas. Still, this work only
implements the omnidirectional antenna case. As the contact condition is evaluated in a
Python function, it is possible to improve the radio link contacts model in the future. Several
optimizations were implemented to calculate contact lists of 100 and 1000 nodes. Parallel
processing was required to accelerate results. RAM usage optimization and intermediate files
were necessary to limit memory usage.

Genetic algorithm encoding. The implementation of the genetic algorithm required
several trials. The main challenge was to choose the correct encoding and the algorithm itself.
The first approach was to replicate the algorithm presented in Fraire et al. (2018) [38]. Ho-
wever, binary encoding and permutation encoding did not work properly due to the validity
restrictions. The contacts rules proposed in this work include the task targets as nodes. The-
se target nodes are not data relays; instead, they are checkpoints, and satellites must cover
these points to execute the task. These target nodes are also mandatory, so only contact
plans that satisfy all validity rules can be considered. Thus, the validity of the sequences
is also an optimization variable. The result was a trade-off between validity, delivery time,
and the number of contacts variables. Even with multi-objective genetic algorithms such as
NSGA-II, the encoding tends to create low variability in the population and thus converge to
local optimal. The solution was to define a particular encoding to consider the validity res-
trictions during the initial population creation. Particular genetic operators were also created
to maintain the validity of the individuals.

Contact list visualization Visualizing a contact list and contact plan is a powerful tool
to analyze and communicate results quickly, but there were no available tools to visualize
contact plans. Thus, Python scripts were developed to create these visualizations. The con-
tact list FSM representation was useful to generate visualization, but it was still difficult to
communicate the results on some occasions. Extra annotations were required, such as the
direction of the data flow in the graph and connections between states. Also, visualizing large
scenarios is challenging, and the proposed visualization was not practical for the 100 nodes
case study. It is worth exploring better contact plan visualization tools.

Flight software This work aimed to create a solution feasible and usable in existing
CubeSat projects. Thus, it is evident that a straightforward interface with the physical system
was necessary together with the operating framework. This interface is the flight software
of the nanosatellite. After studying the problem, it was decided to develop a flight software
solution for the SPEL CubeSats. The proof of concept was the launch and operation of the
SUCHAI 1 in June 2017 (during the second year of the Ph. D. program). The operation of
the satellite was a success, in part due to the flight software design. Then, the construction
of the SUCHAI 2, 3, and PlantSat nanosatellites started. From the experience of the first
CubeSat, several improvements were necessary. First, the command architecture worked well,
but more flexibility on the command’s parameters was necessary. Second, extending the
satellite as a computer network required standardizing the payloads and ground station
interface. Thus, the OBC, payloads, and the ground station will use the SUCHAI Flight
Software. Finally, this approach required rewriting the SUCHAI flight software to be portable

74

to different software architectures, including X86 computers, the Raspberry Pi embedded
computer, and the NanoMind A3200 (AVR32UC3) microcontroller. To date, at least three
SUCHAI Flight Software instances run in each of the three CubeSats, plus the ground station
and other operators’ terminals. Maintaining the development of more than 10 flight software
instances with a team of no more than three to four part-time graduate and undergrad
students is challenging. The team worked hard to automate testing using CI/CD tools, but
new techniques were also required. Thus, the visual software architecture tracking and the
fuzz testing tools were developed as part of this thesis and published in ISI journals.

5.3. Future work
The results of this thesis open several opportunities to explore. Promising results were ob-

tained in the scalability of large constellations in relatively simple tasks. Therefore it would
be interesting to explore more complex tasks and workflows, model those problems, and use
the framework to validate the results. This work explores the execution of multiple indepen-
dent tasks, which is useful for sampling multiple points on earth or monitoring a single point
for a period. Future work should explore the execution of distributed programs, including
loops, conditionals, and procedures. It will require creating a domain-specific language to de-
fine tasks so operators can create scripts in a high-level language that is aware of the actual
constellation capabilities. This kind of distributed programs usually require sharing a global
state, so it is necessary to explore more advanced network capabilities such as DTN routing
protocols.

The GA, and evolutionary approaches in general, should be flexible enough to integrate
more restrictions and variations to the original problem presented here. However, it will be
necessary to model each problem, define the restrictions and measure the performance. Futu-
re works must keep the focus on scalability to large constellations and evaluate at least up to
1000 nodes. Also, it is important to consider the computational limitations of nanosatellites
and ensure that the proposed models fit with the operational capabilities of the flight soft-
ware. It could be necessary to extend the proposed flight software to support scripts, states,
and routing protocols.

The analysis and visualization of the CPD results with a large number of nodes were
challenging. The density of nodes and paths resulted in illegible contact list diagrams for
scenarios with more than 100 nodes. Exact solutions can be challenging to obtain in large
constellation scenarios, so expert analysis of the proposed contact plan will be valuable and
faster. However, more interactive visualization tools with focus, filters, and adaptive capabi-
lities are required to improve the analysis. Contributions in this direction might be valuable
for researchers working in DTN.

A real-life demonstration is important to validate these ideas. The whole idea of this work
was to close the gap between computational complex scheduling algorithms and the opera-
tion of a constellation of heavy limited CubeSat nanosatellites. The Space and Planetary
Exploration Laboratory (SPEL) of the University of Chile is currently developing three Cu-
beSats nanosatellites, the SUCHAI 2, 3, and PlantSat. Immediate work is to prepare the
satellites to work with the proposed constellation operation framework. Part of this work is
already developed. These satellites already execute the proposed flight software and use the

75

visualization tool to verify software quality daily. The ground station node also implements
the software, and the whole system can operate as a computer network. However, additional
work is required. The satellites must be physically connected using the UHF radio links. It
is necessary to define operation scenarios based on the available payloads and instruments
and run the case studies with the actual hardware. These tests will give more insights into
the physical restrictions to include them in the models. With the satellites in orbit, it will be
possible to conduct real-life experiments and collect operational data to complement these
studies with realistic scenarios.

Finally, considering the ISL capabilities of the SPEL CubeSats, it is worth exploring the
applicability of DTN routing protocols to the existing network stack based on the CubeSat
Space Protocol (CSP). This exercise will open a full research line that could start validating
the feasibility of existing DTN protocols found in the literature to finally propose impro-
vements based on the restrictions of these spacecrafts. It will also allow to compare DTN
routing protocols with the proposed constellation operation framework and define how to
integrate both tools to solve more complex tasks.

76

77

List of acronyms

ALU Arithmetic Logic Unit.
API Application Programming Interface.
CL Contact List.
CP Contact Plan.
CPD Contact Plan Design.
CPU Central Processing Unit.
CSP Cubesat Space Protocol.
DTN Delay or Disruption Tolerant Network.
EEPROM Electrically Erasable Programmable Read-Only Memory.
EPS Energy Power System.
EULA End-User License Agreement.
FLOSS Free/Libre and Open Source Software.
FOSS Free and Open Source Software.
FP Flight Plan.
FS Flight Software.
FSM Finite State Machine.
GA Genetic Algorithm.
GPL General Public License.
HAL Hardware Abstraction Layer.
I2C Inter Integrated Circuit.
IARU International Amateur Radio Union.
IDE Integrated Development Environment.
ISL Inter-satellite link.
MILP Mixed Integer Linear Programming.
MVC Model-View-Controller.
OBC On-Board Computer.
RAM Random Access Memory.
RISC Reduced Instruction Set Computing.
RSSI Received Signal Strength Indicator.
RTCC Real Time Clock.
RTOS Real Time Operating System.
SAA South Atlantic Anomaly.
SPI Serial Peripheral Interface.
SUCHAI Satellite of the University of Chile for Aerospace Investigation.

78

TLE Two-line Elements Set.
TNC Terminal Node Controller.
UART Universal Asynchronous Receiver-Transmitter.
UHF Ultra High Frequency.
USB Universal Serial Bus.
WDT Watchdog timer.

79

Bibliography

[1] S. Lee, A. Hutputanasin, A. Toorian, W. Lan, R. Munakata, J. Carnahan, D. Pignatelli,
and A. Mehrparvar, “Cubesat design specification rev. 13,” Tech. Rep. 2, The CubeSat
Program, Cal Poly San Luis Obispo, US, 2014.

[2] D. Paikowsky, “What is new space? the changing ecosystem of global space activity,”
New Space, vol. 5, no. 2, pp. 84–88, 2017.

[3] R. Radhakrishnan, W. W. Edmonson, F. Afghah, R. M. Rodriguez-Osorio, F. Pinto,
and S. C. Burleigh, “Survey of inter-satellite communication for small satellite systems:
Physical layer to network layer view,” IEEE Communications Surveys Tutorials, vol. 18,
pp. 2442–2473, Fourthquarter 2016.

[4] Y. Su, Y. Liu, Y. Zhou, J. Yuan, H. Cao, and J. Shi, “Broadband leo satellite communi-
cations: Architectures and key technologies,” IEEE Wireless Communications, vol. 26,
no. 2, pp. 55–61, 2019.

[5] S. Bandyopadhyay, R. Foust, G. P. Subramanian, S.-J. Chung, and F. Y. Hadaegh,
“Review of formation flying and constellation missions using nanosatellites,” Journal of
Spacecraft and Rockets, no. 0, pp. 567–578, 2016.

[6] A. Marinan, A. Nicholas, and K. Cahoy, “Ad hoc cubesat constellations: Secondary
launch coverage and distribution,” in 2013 IEEE Aerospace Conference, pp. 1–15, March
2013.

[7] C. Boshuizen, J. Mason, P. Klupar, and S. Spanhake, “Results from the Planet Labs
Flock Constellation,” in AIAA/USU Conference on Small Satellites, aug 2014.

[8] I. F. Akyildiz and A. Kak, “The internet of space things/cubesats,” IEEE Network,
vol. 33, no. 5, pp. 212–218, 2019.

[9] I. del Portillo, B. G. Cameron, and E. F. Crawley, “A technical comparison of three low
earth orbit satellite constellation systems to provide global broadband,” Acta Astronau-
tica, vol. 159, pp. 123–135, 2019.

[10] J. Alvarez and B. Walls, “Constellations, clusters, and communication technology: Ex-
panding small satellite access to space,” in 2016 IEEE Aerospace Conference, pp. 1–11,
March 2016.

[11] S. Nag, A. S. Li, and J. H. Merrick, “Scheduling algorithms for rapid imaging using agile
cubesat constellations,” Advances in Space Research, vol. 61, no. 3, pp. 891 – 913, 2018.

[12] Z. Zheng, J. Guo, and E. Gill, “"swarm satellite mission scheduling & planning using
hybrid dynamic mutation genetic algorithm",” Acta Astronautica, vol. 137, pp. 243 –
253, 2017.

80

[13] Z. Zheng, J. Guo, and E. Gill, “Onboard autonomous mission re-planning for multi-
satellite system,” Acta Astronautica, vol. 145, pp. 28 – 43, 2018.

[14] M. Lemaitre, G. Verfaillie, F. Jouhaud, J.-M. Lachiver, and N. Bataille, “Selecting and
scheduling observations of agile satellites,” Aerospace Science and Technology, vol. 6,
no. 5, pp. 367 – 381, 2002.

[15] J. A. Fraire and J. M. Finochietto, “Design challenges in contact plans for disruption-
tolerant satellite networks,” IEEE Communications Magazine, vol. 53, pp. 163–169, May
2015.

[16] J. A. Fraire, P. G. Madoery, and J. M. Finochietto, “Traffic-aware contact plan design
for disruption-tolerant space sensor networks,” Ad Hoc Networks, vol. 47, pp. 41–52, 9
2016.

[17] J. A. Fraire, G. Nies, C. Gerstacker, H. Hermanns, K. Bay, and M. Bisgaard, “Battery-
aware contact plan design for leo satellite constellations:the ulloriaq case study,” IEEE
Transactions on Green Communications and Networking, pp. 1–1, 2019.

[18] A. K. Kennedy and K. L. Cahoy, “Performance analysis of algorithms for coordination of
earth observation by cubesat constellations,” Journal of Aerospace Information Systems,
vol. 14, no. 8, pp. 451–471, 2017.

[19] C. Araguz, M. Marí, E. Bou-Balust, E. Alarcon, and D. Selva, “Design Guidelines
for General-Purpose Payload-Oriented Nanosatellite Software Architectures,” Journal
of Aerospace Information Systems, vol. 15, pp. 107–119, mar 2018.

[20] M. Tipaldi, C. Legendre, O. Koopmann, M. Ferraguto, R. Wenker, and G. D’Angelo,
“Development strategies for the satellite flight software on-board Meteosat Third Gene-
ration,” Acta Astronautica, vol. 145, pp. 482–491, apr 2018.

[21] D. J. A. F. Miranda, M. A.-c. Ferreira, F. Kucinskis, and D. McComas, “A Comparative
Survey on Flight Software Frameworks for TNew Space Nanosatellite Missions,” Journal
of Aerospace Technology and Management, vol. 11, 00 2019.

[22] T. Ferrer, S. Céspedes, and A. Becerra, “Review and evaluation of mac protocols for
satellite iot systems using nanosatellites,” Sensors, vol. 19, no. 8, p. 1947, 2019.

[23] J. Le Moigne, J. C. Adams, and S. Nag, “A new taxonomy for distributed spacecraft
missions,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, vol. 13, pp. 872–883, 2020.

[24] J. N. Pelton and R. Laufer, Commercial Small Satellites for Business Constellations
Including Microsatellites and Minisatellites, pp. 1–20. Cham: Springer International
Publishing, 2019.

[25] D. Doan, R. Zimmerman, L. Leung, J. Mason, N. Parsons, and K. Shahid, “Commissio-
ning the world’s largest satellite constellation,” 8 2017.

[26] S. Bandyopadhyay, R. Foust, G. P. Subramanian, S.-J. Chung, and F. Y. Hadaegh,
“Review of formation flying and constellation missions using nanosatellites,” Journal of
Spacecraft and Rockets, vol. 53, no. 3, pp. 567–578, 2016.

[27] Weilian Su, Jianwen Lin, and T. Ha, “Global communication coverage using cubesats,”
in 2017 IEEE 7th Annual Computing and Communication Workshop and Conference

81

(CCWC), pp. 1–7, Jan 2017.
[28] A. Kak and I. F. Akyildiz, “Large-scale constellation design for the internet of space

things/cubesats,” in 2019 IEEE Globecom Workshops (GC Wkshps), pp. 1–6, 2019.
[29] D.-H. Cho, J.-H. Kim, H.-L. Choi, and J. Ahn, “Optimization-based scheduling method

for agile earth-observing satellite constellation,” Journal of Aerospace Information Sys-
tems, vol. 15, no. 11, pp. 611–626, 2018.

[30] X. Chu, Y. Chen, and Y. Tan, “An anytime branch and bound algorithm for agile earth
observation satellite onboard scheduling,” Advances in Space Research, vol. 60, no. 9,
pp. 2077 – 2090, 2017.

[31] Y. Li, M. Xu, and R. Wang, “Scheduling observations of agile satellites with combined
genetic algorithm,” in Third International Conference on Natural Computation (ICNC
2007), vol. 3, pp. 29–33, 2007.

[32] Z. Yuan, Y. Chen, and R. He, “Agile earth observing satellites mission planning using
genetic algorithm based on high quality initial solutions,” in 2014 IEEE Congress on
Evolutionary Computation (CEC), pp. 603–609, 2014.

[33] S. Spangelo, J. Cutler, K. Gilson, and A. Cohn, “Optimization-based scheduling for the
single-satellite, multi-ground station communication problem,” Computers & Operations
Research, vol. 57, pp. 1 – 16, 2015.

[34] X. Jia, T. Lv, F. He, and H. Huang, “Collaborative data downloading by using inter-
satellite links in leo satellite networks,” IEEE Transactions on Wireless Communications,
vol. 16, no. 3, pp. 1523–1532, 2017.

[35] B. Deng, C. Jiang, L. Kuang, S. Guo, J. Lu, and S. Zhao, “Two-phase task scheduling in
data relay satellite systems,” IEEE Transactions on Vehicular Technology, vol. 67, no. 2,
pp. 1782–1793, 2018.

[36] M. Bisgaard, D. Gerhardt, H. Hermanns, J. Krčál, G. Nies, and M. Stenger, “Battery-
aware scheduling in low orbit: the gomx-3 case,” Formal Aspects of Computing, vol. 31,
no. 2, pp. 261–285, 2019.

[37] J. A. Fraire, C. Gerstacker, H. Hermanns, G. Nies, M. Bisgaard, and K. Bay, “On the
scalability of battery-aware contact plan design for leo satellite constellations,” Interna-
tional Journal of Satellite Communications and Networking, vol. 39, no. 2, pp. 193–204,
2021.

[38] J. A. Fraire, P. G. Madoery, J. M. Finochietto, and G. Leguizamón, “An evolutionary
approach towards contact plan design for disruption-tolerant satellite networks,” Applied
Soft Computing Journal, vol. 52, pp. 446–456, 3 2017.

[39] D. L. Dvorak, “NASA Study on Flight Software Complexity,” in AIAA Info-
tech@Aerospace Conference and AIAA Unmanned...Unlimited Conference, (Reston, Vi-
rigina), p. 264pp, American Institute of Aeronautics and Astronautics, apr 2009.

[40] J. Alonso, M. Grottke, A. P. Nikora, and K. S. Trivedi, “An empirical investigation
of fault repairs and mitigations in space mission system software,” in Proceedings of
the International Conference on Dependable Systems and Networks, pp. 1–8, IEEE, jun
2013.

82

[41] D. McComas, J. Wilmot, and A. Cudmore, “The Core Flight System (cFS) Community:
Providing Low Cost Solutions for Small Spacecraft,” in AIAA/USU Conference on Small
Satellites, aug 2016.

[42] R. Plauche, “Building modern cross-platform flight software for small satellites,” in
AIAA/USU Conference on Small Satellites, Aug 2017.

[43] M. Glinz, “On non-functional requirements,” in 15th IEEE International Requirements
Engineering Conference (RE 2007), pp. 21–26, Oct 2007.

[44] D. Ganesan, M. Lindvall, C. Ackermann, D. McComas, and M. Bartholomew, “Verifying
architectural design rules of the flight software product line,” in Software Product Lines,
13th International Conference, SPLC 2009, San Francisco, California, USA, August
24-28, 2009, Proceedings, pp. 161–170, Carnegie Mellon University, 2009.

[45] D. Ganesan, M. Lindvall, D. McComas, M. Bartholomew, S. Slegel, and B. Medina,
“Architecture-based unit testing of the flight software product line,” in Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lectu-
re Notes in Bioinformatics), vol. 6287 LNCS, pp. 256–270, Springer, Berlin, Heidelberg,
2010.

[46] P. Fiala and A. Vobornik, “Embedded microcontroller system for PilsenCUBE pico-
satellite,” in 2013 IEEE 16th International Symposium on Design and Diagnostics of
Electronic Circuits & Systems (DDECS), pp. 131–134, IEEE, apr 2013.

[47] A. van den Berg, “Fault-tolerant on-board computer software for the del
fi-n3xt nanosatellite,” Master’s thesis, Delft University of Technology, Delft, Netherlands,
August 2012.

[48] S. Johl, E. Glenn Lightsey, S. M. Horton, and G. R. Anandayuvaraj, “A reusable com-
mand and data handling system for university cubesat missions,” in IEEE Aerospace
Conference Proceedings, pp. 1–13, IEEE, mar 2014.

[49] M. Schmidt and K. Schilling, “An extensible on-board data handling software platform
for pico satellites,” Acta Astronautica, vol. 63, pp. 1299–1304, dec 2008.

[50] S. F. Hishmeh, T. J. Doering, and J. E. Lumpp, “Design of flight software for the KySat
CubeSat bus,” in IEEE Aerospace Conference Proceedings, pp. 1–15, IEEE, mar 2009.

[51] C. Mitchell, J. Rexroat, S. A. Rawashdeh, and J. Lumpp, “Development of a modular
command and data handling architecture for the KySat-2 CubeSat,” in IEEE Aerospace
Conference Proceedings, pp. 1–11, IEEE, mar 2014.

[52] G. Manyak and J. M. Bellardo, “Polysat’s next generation avionics design,” in 2011
IEEE Fourth International Conference on Space Mission Challenges for Information
Technology, pp. 69–76, Aug 2011.

[53] I. Sünter, Software for the Estcube-1 Command and Data Handling System. PhD thesis,
Institute of Computer Science, University of Tartu, 2014.

[54] D. Schor, J. Scowcroft, C. Nichols, and W. Kinsner, “A command and data handling
unit for pico-satellite missions,” in Canadian Conference on Electrical and Computer
Engineering, pp. 874–879, 2009.

[55] S. A. Asundi and N. G. Fitz-Coy, “Design of command, data and telemetry handling sys-

83

tem for a distributed computing architecture CubeSat,” in IEEE Aerospace Conference
Proceedings, pp. 1–14, IEEE, mar 2013.

[56] C. Araguz López, Towards a modular Nano-Satellite Software Platform: Prolog
Constraint-based Scheduling and System Architecture. PhD thesis, Universitat Politèc-
nica de Catalunya, sep 2014.

[57] M. A. Normann and R. Birkeland, Software Design of an Onboard Computer for a Na-
nosatellite. PhD thesis, Norwegian University of Science and Technology, 2016.

[58] M. Pagnamenta, Rigorous software design for nano and micro satellites using BIP fra-
mework. PhD thesis, École polytechnique fédérale de Lausanne, 2014.

[59] S. Nakajima, J. Takisawa, S. Ikari, M. Tomooka, Y. Aoyanagi, R. Funase, and S. Nakasu-
ka, “Command-centric architecture (c2a): Satellite software architecture with a flexible
reconfiguration capability,” Acta Astronautica, vol. 171, pp. 208–214, 2020.

[60] R. J. Barnett, “Oneweb non-geostationary satellite system: Technical information to
supplement schedule s - attachment to fcc application sat-loi-20160428-00041,” tech.
rep., 2016.

[61] M. Albulet, “Spacex non-geostationary satellite system: Technical information to sup-
plement schedule s - attachment to fcc application sat-loa-20161115-00118,” tech. rep.,
2016.

[62] M. A. Diaz, J. C. Zagal, C. Falcon, M. Stepanova, J. A. Valdivia, M. Martinez-Ledesma,
J. Diaz-Peña, F. R. Jaramillo, N. Romanova, E. Pacheco, M. Milla, M. Orchard, J. Silva,
and F. P. Mena, “New opportunities offered by Cubesats for space research in Latin
America: The SUCHAI project case,” Advances in Space Research, vol. 58, pp. 2134–
2147, nov 2016.

[63] C. E. Gonzalez, C. J. Rojas, A. Bergel, and M. A. Diaz, “An architecture-tracking
approach to evaluate a modular and extensible flight software for cubesat nanosatellites,”
IEEE Access, pp. 1–1, 2019.

[64] I. Sommerville, Software Engineering. Delhi, 2006.
[65] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns – Elements of Reusa-

ble Object-Oriented Software. Pearson Education, 1994.
[66] F. Buschmann, R. Meunier, H. Rohnert, P. S. Stal, and A. Michael, Pattern-Oriented

Software Architecture: a system of patterns, vol. 1. Wiley, 1996.
[67] M. Grubb, J. Morris, S. Zemerick, and J. Lucas, “Nasa operational simulator for small

satellites (nos3): Tools for software-based validation and verification of small satellites,”
in AIAA/USU Conference on Small Satellites, 2016.

[68] J. Morris, S. Zemerick, M. Grubb, J. Lucas, M. Jaridi, J. N. Gross, J. A. Christian,
D. Vassiliadis, A. Kadiyala, J. Dawson, et al., “Simulation-to-flight 1 (stf-1): A mission
to enable cubesat software-based verification and validation,” in 54th AIAA Aerospace
Sciences Meeting, p. 1464, 2016.

[69] M. Pessans-Goyheneix, J. Bønding, M. Burchard, T. Kasper, and F. Jensen, “Softwa-
re Framework for Reconfigurable Distributed System on Aausat3,” tech. rep., Aalborg
University, 2008.

84

[70] S. Corpino and F. Stesina, “Verification of a CubeSat via hardware-in-the-loop simula-
tion,” IEEE Transactions on Aerospace and Electronic Systems, vol. 50, no. 4, pp. 2807–
2818, 2014.

[71] M. Petre, “Why looking isn’t always seeing: readership skills and graphical program-
ming,” Communications of the ACM, vol. 38, pp. 33–44, jun 1995.

[72] A. Bergel, D. Cassou, S. Ducasse, and J. Laval, Deep Into Pharo. Square Bracket Asso-
ciates, 2013.

[73] A. Bergel, Agile Visualization. LULU Press, 2016.
[74] M. Lanza and S. Ducasse, “Polymetric views - A lightweight visual approach to reverse

engineering,” IEEE Transactions on Software Engineering, vol. 29, pp. 782–795, sep
2003.

[75] T. Gutierrez, A. Bergel, C. E. Gonzalez, C. J. Rojas, and M. A. Diaz, “Systematic fuzz
testing techniques on a nanosatellite flight software for agile mission development,” IEEE
Access, pp. 1–1, 2021.

85

	Resumen
	Resumen
	Agradecimientos
	Table of contents
	List of tables
	List of illustrations

	1 Introduction
	1.1 Motivation
	1.2 Problem definition
	1.3 Research questions
	1.4 Hypotheses
	1.5 Research objectives
	1.5.1 General objective
	1.5.2 Specific objectives

	1.6 Contributions of this work
	1.7 Publications
	1.7.1 Scientific journals (ISI)
	1.7.2 International conferences and workshops

	1.8 Outline of the thesis

	2 Background
	2.1 Large satellite constellation
	2.2 Task scheduling in satellite constellations
	2.3 DTN and contact plan design
	2.4 Nanosatellites flight software
	2.5 Chapter highlights

	3 Nanosatellite constellation control framework
	3.1 Constellation control framework
	3.1.1 Scenario and task definitions
	3.1.2 Contact list generation
	3.1.3 Contact plan design
	3.1.3.1 Genetic algorithm
	3.1.3.2 Encoding
	3.1.3.3 Constraints and fitness function
	3.1.3.4 Initialization and stopping criteria
	3.1.3.5 Mutation operation
	3.1.3.6 Cross-over operation

	3.1.4 Flight plan design
	3.1.5 Implementation details

	3.2 Flight software
	3.2.1 Requirements analysis
	3.2.1.1 Non-functional requirements
	3.2.1.2 Functional requirements

	3.2.2 General design
	3.2.2.1 Drivers layer
	3.2.2.2 Operating system layer
	3.2.2.3 Application layer
	3.2.2.4 Flight plan

	3.2.3 Implementation details

	3.3 Simulator
	3.3.1 Implementation details

	3.4 Chapter highlights

	4 Results
	4.1 Contact list generation scalability
	4.2 Genetic algorithm hyper-parameters tuning
	4.2.1 Scenario A: 10 satellites Walker constellation
	4.2.1.1 Task 1
	4.2.1.2 Task 2

	4.2.2 Scenario B: 10 satellites Ad hoc constellation
	4.2.2.1 Task 1
	4.2.2.2 Task 2

	4.2.3 Scenario C: 100 satellites Walker constellation
	4.2.3.1 Task 1
	4.2.3.2 Task 2

	4.2.4 Scenario D: 100 satellites Ad hoc constellation
	4.2.4.1 Task 1
	4.2.4.2 Task 2

	4.2.5 Scenario E: 1000 satellites Ad hoc constellation
	4.2.5.1 Task 1
	4.2.5.2 Task 2

	4.2.6 Genetic algorithm scalability

	4.3 Flight software verification and validation
	4.3.0.1 Evaluation of modularity using software visualization

	4.4 Constellation simulator results
	4.4.1 Set up
	4.4.2 Execution
	4.4.2.1 Results

	4.5 Chapter highlights

	5 Conclusions and future work
	5.1 Conclusions
	5.2 Challenges
	5.3 Future work

	List of acronyms
	Bibliography

