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RESUMEN DE LA TESIS PARA OPTAR
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FECHA: 2022
PROF. GUÍA: FELIPE TOBAR HENRÍQUEZ

DETECCIÓN VORAZ DE PUNTOS DE CAMBIO A TIEMPO REAL

La detección online de puntos de cambio tiene el propósito de detectar cambios abruptos
en series de tiempo a tiempo real, que es crucial en aplicaciones donde se requieran respuestas
inmediatas, como finanzas y monitoreo de señales médicas. Los métodos existentes de detec-
ción de puntos de cambio basan su decisión en la probabilidad de las últimas observaciones, la
cual puede cambiar abruptamente ante la presencia de puntos aislados o outliers, retornando
una alta tasa de falsos positivos.

En esta tesis, se propone Detección voraz de puntos de cambio a tiempo real (en sus si-
glas en inglés, GOCPD) — un algorithmo computacionalmente eficiente que opera de forma
greedy. Concretamente, GOCPD usa búsqueda ternaria para buscar el punto de cambio ópti-
mo que maximiza la verosimilitud de los modelos que representan la distribución de los datos
antes y después del punto de cambio.

De esta forma, las contribuciones de esta tesis son las siguientes: i) se analizan las desven-
tajas de métodos clásicos para detección de cambios, (ii) se introduce un modelo de detección
de puntos de cambio que usa dos criterios intuitivos para buscar y declarar un cambio res-
pectivamente, (iii) se propone una solución eficiente para la búsqueda del punto de cambio
candidato usando búsqueda ternaria, (iv) se valida la robustez de GOCPD con procesos gaus-
sianos en escenarios del mundo real, en los cuales GOCPD supera los métodos clásicos en
términos de tasa de falsos positivos, y (v) se libera una implementación pública de GOCPD.
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GREEDY ONLINE CHANGE POINT DETECTION

Online change point detection (CPD) aims to detect abrupt changes in time series in
real-time, which is crucial for applications that need immediate responses, such as finance
and medical signals monitoring. Existing online CPD methods rely their decision on the
probability of the latest observations, which can change abruptly when outliers appear, thus
leading to high false positive rates.

In this thesis, we propose Greedy Online Change Point Detection (GOCPD) — a compu-
tationally appealing algorithm that greedily finds a change point. Concretely, it uses ternary
search to look for the optimal timestamp that maximizes the likelihood of the models that
summarize the data before and after it.

In this regard, the contribution of this thesis is five-fold: (i) we revisit existing online
CPD methods and address their drawbacks, (ii) we introduce a simple and robust online
CPD method that uses two intuitive criteria to search and declare a change point, (iii) we
propose a computationally efficient approach to search for the candidate change point, (iv)
we validate the robustness of GOCPD with Gaussian processes in real-world scenarios, in
which GOCPD outperforms existing methods in terms of false discovery rates, and (v) we
release a public implementation of GOCPD.
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This too shall pass.
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Chapter 1

Introduction

1.1. Motivation

Detection of abrupt changes in time series is relevant in many fields, such as genomics
[1], speech recognition [2], finance [3, 4] and medical signals monitoring [5, 6, 7]. In parti-
cular, detecting these changes in real-time is crucial for applications that require immediate
responses, such as medical and financial applications. In the context of online detection, pre-
processing or filtering the existing outliers in the dataset is not applicable. Consequently,
a crucial property of online change point detection (CPD) methods is their robustness to
outliers.

Existing online CPD methods are coarsely categorized into two types: Bayesian or non-
Bayesian. The former provides uncertainty quantities of the detection, while the latter mainly
focuses on measuring the discrepancy of the data statistics before and after the change
point. Many of the Bayesian methods for online CPD [8, 9, 10, 11] rely on the standard
Bayesian Online Change Point Detection (BOCPD) [12] that recursively models the posterior
probability of the elapsed time since the last change. In the formulation of BOCPD, the
change point probability depends on the probability of the streaming observations. Therefore,
outliers and noisy data may lead to a high false positive rate. Additionally, BOCPD uses the
probabilities for each arriving sample as fixed values for the upcoming iterations, which
hinders robustness to outliers. On the other hand, non-Bayesian methods mainly rely on
the likelihood ratio test [13, 14], which also leads to false positives when the probability of
the latest observations decreases given an outlier. Therefore, there is a need for a robust
algorithm for detecting changes in real-world time series.

For this purpose, we hypothesize that the change declaration should rely on the comple-
te segment of the so-far observed data since the last change point. Besides, in real-world
scenarios, the distribution that summarizes observations between change points is unknown.
Therefore, the CPD method needs training the underlying predictive model for each segment.

Additionally, human reasoning may benefit the design of an online CPD method. An
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intuitive way to detect a change is to look at the arriving samples and decide whether the
so-far observed data is more likely to follow a single model or two different models. When
the last observations seem to be distributed differently from the old ones, one does not notify
the change instantly to avoid making a false discovery. Instead, a human annotator waits for
more observations and, if the upcoming data continue to behave differently, then the human
notifies a change as an informed decision.

1.2. Hypothesis

In this thesis, we validate the following hypotheses:

The online detection of a change point cannot only rely on the last observed data.

Human reasoning is beneficial for online CPD in the sense of including a period of
verification to approve a change point, which leads to more robust detections.

1.3. General objective

The general objective of this thesis is to propose a simple and robust method for online
change point detection that can outperform existing algorithms in the unsupervised context. In
the unsupervised learning context, the labeled change points are not available for the model,
then the method has to learn patterns from the unlabeled data. Remarkably, this method
cannot assume prior knowledge of the number of change points, nor the parameters of the
distributions, nor the length of each segment in the time series.

1.4. Specific objectives

The specific objectives of this thesis are the following:

To revisit state-of-the-art online CPD methods and identify their common drawbacks.

To propose a computationally appealing method for online change point detection.

To assess the proposed method in univariate and multivariate real-world scenarios, such
as human activity segmentation and change point detection in electroencephalography
signals.

To release a publicly available implementation of the proposed online CPD method.

2



1.5. Contributions

The main contributions of this thesis are the following:

1. The proposal of Greedy Online Change Point Detection (GOCPD) — an unsupervised
online CPD method that uses two simple and intuitive likelihood-based criteria to search
and declare a change point, respectively.

2. A computationally efficient approach to search the candidate change point via ternary
search, which operates in logarithmic time.

3. The validation of GOCPD using Gaussian processes in real-world applications on online
CPD, such as detecting abrupt changes in electroencephalography signals and human
activity monitoring datasets.

4. The construction of a public Python implementation of GOCPD with Gaussian processes
that allows GPU-acceleration.

The remainder of the thesis is structured as follows. In Chapter 2, we introduce the problem
statement and notations. In addition, we provide an overview of some of the most relevant
methods for unsupervised online CPD and their limitations. In Chapter 3, we describe our
proposal, GOCPD, that performs the change location search efficiently and is robust to
outliers. We validate our model with experimental results in both synthetic and real-world
data in Chapter 4, in which we compare GOCPD against classic and extended methods. Next,
in Chapter 5, we provide further analysis of GOCPD in terms of time complexity, number of
evaluations per iteration, and limitations. Lastly, we summarize our work in Chapter 6 and
give possible directions for future work.
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Chapter 2

Background

2.1. Problem statement

Let D = {(xt, yt)}Tt=1 denote observations of a time series, where xt ∈ RD is the input at
time t, usually set to the timestamp of the observation, and yt ∈ RC is the multivariate output
with C channels. Also, let Dti:tj = {(xt, yt)}tjt=ti denote the observations between t = ti and
t = tj. Let us consider that the underlying distribution of this time series changes abruptly
at specific times, called change points. We denote the ordered set of m change points in the
time series as C = {c∗1, c∗2, · · · , c∗n}, so that ∀i ∈ {2, . . . , n− 1}, the sequences of observations
Dc∗i−1:c∗i−1 and Dc∗i :c∗i+1−1 are independent and come from different models.

Online CPD aims to detect the change points in C in an online fashion. Therefore, for each
arriving batch of data Dti:ti+1 , the method should notify if a change occurred in the so-far
observed data and output the location of the detected change point if applies. In this thesis,
we consider that the parameters of the model before and after the change point are unknown.
We aim to detect changes in the context of unsupervised learning, i.e., the algorithm should
discover the patterns of the time series in unlabeled data.

In the following subsections, we provide an overview of some of the most relevant methods
for online change point detection. We coarsely categorize them into probabilistic or Bayesian
methods and non-Bayesian or model-free methods. For a in-depth survey of both probabilistic
and non-probabilistic online change point detection methods, we refer to [15, 16].

2.2. Bayesian methods

Bayesian methods are particularly relevant for CPD, as they provide uncertainty measures
for each detection. The classic work of online CPD from a Bayesian perspective is based on
the Product Partition Model and introduced independently by Adams and Mackay [12] and
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Fearnhead and Liu [17].

The seminal work of Adams and Mackay [12] introduced the Bayesian Online Change
Point Detection (BOCPD) algorithm for handling piece-wise stationary processes. In their
formulation, BOCPD estimates the posterior distribution of the current run-length rt, which
is the elapsed time since the last change point.

At the same time, Fearnhead and Liu [17] proposed an online CPD algorithm for Bayesian
product partition models that requires prior knowledge of the parameters. For each t, they
define a state Ct ∈ {0, 1, . . . , t − 1} that corresponds to the time of the most recent change
point prior to t. The sequence of states C1, C2, . . . Ct is considered as a Markov chain. Similar
to BOCPD, the aim of the work of Fearnhead and Liu [17] is to estimate the posterior distri-
bution for Ct given the observations. This algorithm scales quadratically if these distributions
are stored for all t. To decrease the time complexity, they proposed to use particle filters by
sampling values of Ct for each t, at the expense of introducing error in the model.

Since both methods essentially model the posterior of the elapsed time since the last
change point, and the proposal of Fearnhead and Liu [17] includes sampling techniques that
introduce error, we mainly compare our method with BOCPD in what follows.

2.2.1. Bayesian online change point detection (BOCPD)

Adams and Mackay [12] introduced the Bayesian Online Change Point Detection (BOCPD)
algorithm, which estimates the posterior distribution of the current run-length rt given the
observations. In their formulation, the observations in each segment are considered i.i.d. with
respect to a distribution.

Consider the reasonable assumption that the last change point occurred at time t = 0.
Let yt ∈ Rt×C be the vector of observations up to time t after the last change point, and
rt the run-length at time t. BOCPD maintains an estimation of the run-length posterior
distribution to solve the following optimization problem:

r∗t = arg max
rt

p(rt|yt) = arg max
rt

p(rt,yt)∑
r′t
p(r′t,yt)

, (2.1)

where the joint probability between the run-length and the observations is recursively calcu-
lated as

p(rt,yt) =
∑
rt−1

p(rt|rt−1)p(yt|rt−1,yt−1)p(rt−1,yt−1). (2.2)

In Equation (2.2), p(yt|rt−1,yt−1) is the predictive probability of the model given previous
observations, p(rt−1,yt−1) results from the previous iteration of the recursion, and p(rt|rt−1)
is the conditional prior of the run-length, given by
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p(rt|rt−1) =


H(rt−1 + 1) if rt = 0 (change detection resets rt)
1−H(rt−1 + 1) if rt = rt−1 + 1 (no change)
0 otherwise,

(2.3)

where H(r) = pchange(r)∑∞
s=r pchange(s)

is the hazard function and pchange(•) is the prior probability of
change. The hazard function defines the event rate at time t conditioned on that the event
did not occur before t, i.e., it will be at time t or after t. Concretely, in the context of change
point detection, the hazard function describes how likely a change point occurs given an
observed run-length rt. BOCPD computes this probability for each rt, which leads to a time
complexity of O(T ).

Then, given Equation (2.3), we can split Equation (2.2) into two cases:

p(rt = 0,yt) =
(

1−H(rt−1 + 1)
)
p(yt|rt−1,yt−1)p(rt−1,yt−1) (2.4)

p(rt = rt−1 + 1,yt) =
∑
rt−1

H(rt−1 + 1)p(yt|rt−1,yt−1)p(rt−1,yt−1), (2.5)

where Equation (2.4) can be interpreted as the change point joint probability at time t,
referred to as the change point probability and Equation (2.5) is the joint probability of the
no-change scenario, referred to as the growth probability. We denote these two expressions as
P cp
t and P g

t , respectively.

The space and time complexity per time step is linear in the number of observations so
far observed, which scales to O(T ), where T is the total number of data points. If we only
choose the K most probable run-lengths, then the per-step complexity would be O(K).

Note that for numerical precision issues, a common practice is to implement Equation (2.1)
in its logarithmic version.

2.2.2. Practical consequences of BOCPD

BOCPD operates as an online algorithm by calculating r∗t in Equation (2.1) given the
observations up to t. Note that the algorithm does not explicitly perform a change detection.
In practice, for the current time t, a change point is declared if the change probability P cp

t

surpasses the growth probability P g
t at that time. However, this detection criterion may be

counterintuitive since a change point cannot be detected by only looking at the last set of
observations, which can be of size 1 in the extreme case. This criterion may lead to many
false positives when outliers appear as the model accepts noise as change points.

In practice, p(rt,yt) can be expressed as a matrix indexed by timestamps (rows) and run-
lengths (columns). Since each rt cannot take values that are higher than t− c∗−1, where c∗−1 is
the last change point before t, the matrix p(rt,yt) is composed of square blocks, which size
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Figure 2.1: Example of diagonal dominant property of p(rt,yt) on the first
200 observations of the Well-log dataset [18].

is the number of timestamps between detections. Moreover, each block is diagonally domi-
nant, i.e., its diagonal has larger values than the off-diagonal terms. Figure 2.1 illustrates an
example of this property in the first 200 observations of the Well-log dataset [18]. Therefore,
the optimization in Equation (2.1) for a given t is in practice between p(rt = 0,yt) and
p(rt = t−c∗−1,yt). Due to the diagonally dominant property of p(rt,yt), and given a constant
Hazard function, the change probability will eventually surpass the growth probability after
a sufficiently long time, independently of the observations.

Besides, as Equation (2.2) is formulated as a recursion, then the predictive distribution
p(yt|rt−1,yt−1) may lead to extremely low probabilities when outliers appear. Since the CPD
model is recursive, this will also turn all the distribution for future timesteps into very small
values.

On the other hand, the change point and growth probabilities of each t are only conditioned
to the past of the change point, which prevents verifying the detected change point with new
observations. These probabilities are computed only once and cannot be modified in the next
timestamps, which limits the possibility of correcting wrong detections.

Additionally, we argue that the prior probability of change p(rt|rt−1) is difficult to parame-
trize. In real-world settings, the probability of change is often unknown and varies depending
on the context.

For these reasons, we conjecture that the resulting r∗t found by BOCPDmay not necessarily
reflect the real change points but would tend to be false positives instead.

2.3. Improvements and extensions of BOCPD

As stated in subsection 2.2.2, BOCPD seems to have scarce robustness to outliers, thus
leading to high false discovery rates. Therefore, built on BOCPD, there have been many
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efforts to propose improvements for this method, either to increase its robustness [10] or
to increase its modeling capacity [19, 11]. We describe some of these improvements in the
following subsections.

2.3.1. Gaussian process change point detection (GPCPD)

BOCPD assumes observations in each regime are i.i.d., then temporal dependencies are
not taken into account. To overcome this drawback, Saatçi et al. [11] introduced a nonpa-
rametric time series change point detection using Gaussian processes to capture temporal
correlations and detect more complex changes, such as changes in the covariance structure
of the underlying model.

The Gaussian process (GP) [20] is a Bayesian nonparametric generative model for fun-
ctions f : RD → R, which is the infinite-dimensional extension of the multivariate normal dis-
tribution. A GP, denoted f ∼ GP(m,K), is defined through its mean functionm(•) : RD → R
and a covariance kernel K(•, •), which denotes the covariance between two inputs.

In the context of change point detection in time series, the input is the time xt = t, and
the output is the observation of the time series yt, which is given by

yt = f(t) + εt, f ∼ GP(0, Kθ), εt ∼ N (0, σ2
n), (2.6)

where the mean function is set to zero, and the kernel Kθ is parameterized by a set of
hyperparameters θ.

Then, the predictive distribution of Equation (2.2) is now given by

p(yt|rt−1,yt−1) = N (mt, vt), (2.7)

where

mt = K(yt−1,yt)>
(
K(yt−1,yt−1) + σnI

)−1
yt−1

vt = K(yt,yt)−K(yt−1,yt)>
(
K(yt−1,yt−1) + σ2

nI
)−1

K(yt−1,yt)
(2.8)

Having defined the mean and the kernel functions, we set the GP hyperparameters via
maximum likelihood, which has a computational complexity that scales to O(T 3), where T
is the total number of observations.

GPCPD assumes that the observations are samples from a GP and uses the same detection
criteria as BOCPD. Standard GPs only model stationary time series, but by including change
points in the data, the model can also represent locally smooth time series, which is the
case of most real-world time series. The main drawback of this method is its computational
complexity, which was O(T ) in BOCPD, but now the GP has to be trained for each iteration,
thus scaling to O(T 4). When pruning is applied, the time complexity is O(TKR2), where
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K is the number of most-probable run-lengths considered and R is the maximum run-length
considered. However, deciding the adequate pruning level is difficult in real-world applications
due to the usual lack of prior knowledge about the duration of each state between change
points.

2.3.2. Robust Bayesian online change point detection with model
selection (RBOCPDMS)

Standard Bayesian models minimizes the Kullback-Leibler (KL) divergence between the
learned model and the observations to fit the data, which is not robust to outliers, since its
influence function is strictly increasing as the observations move away from the model poste-
rior. Knoblauch et al. [21] introduced Robust BOCPD with Model Selection (RBOCPDMS)
— a generalization to online model selection with nonstationary data using Generalized Ba-
yesian Inference (GBI) [22, 23], which generalizes standard Bayesian inference to a family of
divergences. In GBI, for a model m and a divergence D, the posterior of the model is given
by

πDm(θm|y(t−rt):t) ∝ πDm(θ) exp
{
−

t∑
i=t−rt

`D(θm|yi)
}
. (2.9)

The choice of the divergence D decides the robustness of the model. RBOCPDMS uses the
β-divergence between the learned model and the observations, instead of the KL divergence.
The authors show that the influence function of the β-divergence does not increase abruptly
with the presence of an outlier. Therefore, the posteriors in Equation (2.2) do not decrease
abruptly, hence avoiding false detections.

Concretely, instead of minimizing the negative log-likelihood in the case of the KL diver-
gence, i.e., `KL(θm|yt) = − log fm(yt|θm), RBOCPDMS minimizes the Tsallis score, given
by

`β(θm|yt) = −
( 1
β
fm(yt|θm)β − 1

1 + β

∫
Y
fm(z|θm)1+βdz

)
. (2.10)

In this formulation, the likelihood is exponentially down-weighted, thus attaching less
influence to observations in the tail of the distribution [21]. Similarly, the log predictive
posterior log p(yt|rt−1,yt−1) is replaced by its β-divergence counterpart:

`β(rt−1,yt−1|yt) = −
( 1
β
fm(yt|rt−1,yt−1)β − 1

1 + β

∫
Y
fm(z|rt−1,yt−1)1+βdz

)
. (2.11)

In practice, the integrals in these formulations are intractable. Therefore, Knoblauch et
al. [21] proposed to leverage that the KL-divergence versions of these posteriors are available
in closed form to approximate the β-divergence posterior with a KL-divergence posterior.

9



Therefore, the β-D posterior for model m and run-length rt can be approximated as

π̂βm(θm) = arg min
πKL

m (θm)

{
KL

(
πKLm (θm)

∥∥∥∥πβm(θm|y(t−rt):t)
)}
, (2.12)

which is equivalent to maximize the Evidence Lower Bound (ELBO) of m, that is available
in closed form for m belonging to the exponential family.

The authors also provide a variation for the optimization algorithm. Full optimization of
the parameters for all run-lengths and timestamps requires quadratic time complexity. On
the other hand, optimizing with Stochastic Gradient Descent makes the optimization faster,
at the expense of lower accuracies. Then, the authors propose a pipeline that mixes both
approaches: perform full optimization for the first iterations, and then incrementally refine
the model in the next iterations with sampled observations. This optimization procedure is
the so-called Stochastic Variance Reduced Gradient (SVRG) inference.

2.3.3. Restarted Bayesian online change point detection (R-BOCPD)

Alami et al. [9] introduced Restarted Bayesian Online Change Point Detection (R-BOCPD),
which is a pruned version of BOCPD applicable for univariate Bernoulli-distributed samples
with changes in the mean of the distribution. In their work, they provide a formal analysis
of the change point detection performance in terms of false alarm and detection delay.

In their work, the authors define new concepts for their analysis. Instead of dealing with a
run-length, they consider the sequence ys:t, whith s = t− rt, thus the predictive probability
p(yt|rt−1,yt−1) is expressed as p(yt|ys:t−1). Given that the observations are assumed to follow
a Bernoulli distribution yt ∼ B(µt), the underlying predictive distribution p(yt|ys:t−1) is the
Laplace predictor, which is given by

Lp(yt|ys:t−1) =


∑t
i=t−rt

yi + 1
rt + 2 if yt = 1∑t

i=t−rt
(1− yi) + 1
rt + 2 if yt = 0.

(2.13)

A forecaster s is a successive product of (t−s) Laplace predictors starting at time s = t−rt.
Note that for each run-length in the original formulation of BOCPD, exists an equivalent
forecaster. Then, the loss of this forecaster has the following form:

L̂s:t = −
t∑

s′=s
log Lp(yt|ys′:t−1) =

t∑
s′=s

`s′:t, (2.14)

where `s:t = − log Lp(yt|ys′:t−1) is the instantaneous loss of the forecaster created at time s.

R-BOCPD assigns to each forecaster a weight vs,t = p(rt = t − s|ys:t). Then, given a
constant Hazard function H(·) = h for the sake of clarity, both change and growth probability
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in Equations 2.4 and 2.5 can be expressed in terms of this weight as follows:

vs,t = (1− h)Lp(yt|ys:t−1)vs,t−1 (2.15)
= (1− h)t−s+1hI{s 6=1} exp

(
−L̂s:t

)
Vs (2.16)

vt,t = h
t−1∑
i=1

Lp(yt|yi:t−1)vi,t−1, (2.17)

= hVt. (2.18)

where Vt = ∑t
s=1 vs,t = ∑t−1

s=1 Lp(yt|ys:t−1)vs,t−1 is the initial weight given to the forecaster
created at time t, i.e., it is the equivalent to the posterior probability of the run-length equal
to 0 in BOCPD.

Instead of computing all the combinations of the forecasters’ weights to obtain the value
of the initial weight Vt, R-BOCPD prunes the contribution of the forecasters created before
some time r. Concretely, the initial weight is set to the following:

Vr:s−1 = exp
(
−L̂r:s−1

)
for some r < s. (2.19)

Now, the new weight assigned to the forecaster s ≥ r at time t ≥ s that considers the
initial weight Vr:s−1 is denoted as ϑr,s,t, and the change detection criterion is defined as

Restartr:t = I{∃s ∈ (r, t] : ϑr,s,t > ϑr,r,t}, (2.20)

which is the prunned version of the criterion we described for BOCPD. After a change is
detected, R-BOCPD restarts a new forecaster at time r = t + 1 and delete the forecasters
created before time t.

Finally, the constant Hazard h is a hyperparameter of the algorithm. Given a range for the
constant Hazard function, the false alarm rate and the detection delay are upper bounded.
This is intuitively expected: only considering the prior probability of change, as h is low
enough, the algorithm will flag more detections, which decreases the detection delay; and as
h is high enough, the algorithm will bound its number of detections, which decreases its false
alarm rate.

2.3.4. Other variants of BOCPD

In addition to the aforementioned improvements of BOCPD, there were also several at-
tempts to extend it for different scenarios under some assumptions, such as multi-armed
bandits [24, 25]. Agudelo-España et al. [8] extended BOCPD to future occurrences of the
change points by estimating the remaining time of the current state. Moreno-Muñoz et al.
[19] considered a hierarchical model that assigns latent classes for the observations between
change points. Han et al. [26] extends BOCPD with Gaussian processes by including a like-
lihood ratio test that flags a change in the covariance structure for locally smooth time series
modeled by Gaussian processes.
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2.4. Non-Bayesian methods

A typical line of non-Bayesian online CPD methods is based on the comparison between
two consecutive windows of data, and the decision is typically subject to a likelihood ratio
thresholding. This method is called Generalized Likelihood Ratio (GLR), which is an exten-
tion of the CUSUM strategy [27]. These methods usually do not require prior knowledge of
the data distribution, thus referred to as model-free methods. Likelihood-ratio-based methods
explicitly compare the probability distribution of consecutive time intervals of fixed window
size [27, 28, 29] and detects a change point when the likelihood ratio of consecutive windows
surpasses a given threshold.

As this approach mainly considers the discrepancy in the likelihood of two consecutive
windows, then, when outliers appear, the likelihood of the new window will change abruptly.
Therefore, these methods generally have a high false positive ratio.

2.4.1. Cumulative sum (CUSUM)

Page [27] firstly proposed the Cumulative Sum (CUSUM) strategy to detect a change in a
parameter of the model for streaming data. This method is commonly applied for normally
distributed data, in which the mean value changes. This strategy accumulates deviations re-
lative to a given target of incoming measurements, and flags a detection when the cumulative
sum surpasses a threshold. In practice, the CUSUM method assigns a score for each sampled
observation, and defines the cumulative score as

Sn =
n∑
k=1

sk, (2.21)

where sk is the score for the k-th sample, which computation varies depending on the types
of changes to be detected, and n is the index for the current sample.

A one-sided transition is a deviation of the model parameter in only one direction, and a
two-sided transition refers to deviations in both directions (either increasing or decreasing).
In a general CPD context, one aims to detect two-sided changes. A two-sided change is
detected if any of the following condition is satisfied:

(i) Sn − min
0≤i<n

Si ≥ ν (increasing direction), or (2.22)

(ii) max
0≤i<n

Si − Sn ≥ µ (decreasing direction), (2.23)

given thresholds ν, µ.

To assess the quality of detection, Page [27] defined the average run-length (ARL) as the
expected number of observations before a change occurs. When the so-far observed data
follow the same distribution, the ARL is a measure of the expense incurred by the scheme
when if returns false alarms. On the other hand, after a change occurred, the ARL indicates

12



the detection delay.

After the classic work of Page [27], further extensions have been proposed. Jeske et al. [30]
extended the CUSUM method to nonstationary time series by including nonparametric tech-
niques for the monitoring process. Aue et al. [31] introduced tests that assess the structural
stability of cross-volatilities for multivariate time series to detect a change in the signal co-
variance. Cho and Fryzlewicz [32] proposed a binary segmentation algorithm based on the
CUSUM strategy for high-dimensional time series. It computes CUSUM statistics for each
channel so that channels without changes do not influence the detection. In addition, to avoid
the need of post-processing changes from different channels, their method automatically iden-
tifies changes shared across channels.

2.4.2. Likelihood-ratio-based methods

A standard line of online CPD methods [13, 14] considers two models that fit data before
and after a timestamp that splits the data into two windows and computes the ratio between
both likelihoods. It detects a change when this ratio exceeds a given threshold.

On the other hand, instead of estimating the probability density of the models before and
after a change point, Kawahara and Sugiyama [33] proposed to directly estimate the ratio of
these probability densities in an online manner. The direct density-ratio estimation extends
the Kullback-Leibler Importance Estimation Procedure (KLIEP) [34, 35] to the online setting.

2.4.3. No-prior-knowledge exponential weighted moving average
(NEWMA)

More recently, Keriven et al. [36] introduced NEWMA, a model-free method that sum-
marizes old and new data in two statistics using the Exponential Weighting Moving Average
algorithm with different forgetting factors, and performs a comparison using Maximum Mean
Discrepancy.

Formally, NEWMA considers Ψ : RC → H, a mapping from the observations to a normed
space (H, || • ||). This mapping summarizes the observations to a lower-dimensional space.
Then, this mapping is utilized to recursively update a statistic that summarizes the infor-
mation of the so far observed data, given a forgetting factor. To extract time-varying infor-
mation, i.e., to compare current observations with respect to older ones, NEWMA computes
two statistics, given by

zt = (1− Λ)zt−1 + ΛΨ(xt) (2.24)
z′t = (1− λ)z′t−1 + λΨ(xt) (2.25)

where λ and Λ are the forgetting factors, which determine the importance of the current
observation to the statistic over the old value of the statistic. Then, a change point is flagged
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if ||zt− z′t|| > τ for some threshold τ , which can be fixed beforehand or adaptive. Note that,
in contrast to sliding-window-based methods, NEWMA does not require keeping any sample
in memory, as all information is summarized in zt and z′t.

NEWMA uses Random Features for Ψ, and the authors show that the Euclidean distance
between averaged random features approximates the Maximum Mean Discrepancy with high
probability [36].

A drawback of this method is that the saved statistic summarizes the information of all
the so far observed data, which includes the current batch of data and the data before the
last change point. Therefore, the old statistic is contaminated with both current and previous
data information, thus may not uniquely represent the information of the old data.

Our aim is not to merely detect the changes but also to provide good modeling of the
observations to infer additional information from it, e.g., to detect seizures in electroencepha-
lography. Therefore, data modeling becomes essential to get this information, as it cannot
be provided by model-free methods. In this thesis, to illustrate the difference between these
two categories of algorithms for online change point detection, we also compare our method
against NEWMA as the representative of model-free methods.
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Chapter 3

Greedy Online Change Point
Detection

Prior work in online CPD mostly depends on the probability of the last observed data
with respect to that of the data from the previously observed window. This may lead to
incorrect detections due to the lack of observations from the previous window. The decision
of change detection may be different when comparing the new window with all of the previous
observations since the last change point, rather than only the previous window.

Also, as pointed out in the previous section, the detection cannot be made by only looking
at a small set of observations, which can have size 1 in the extreme case, because the method
will fail in false positives when outliers appear.

To avoid high false discovery rates, we propose to follow human intuition for detecting a
change. A human observes the arriving data, and when the distribution of the data seems
to change, he/she does not notify a change immediately but waits a short period to make
sure that the new distribution is maintained. If this short period is satisfied, then the human
expert confirms that a change happened at that time.

Moreover, before a change point appears, a human is also capable of selecting the most
probable change point given the data observed so far. However, the expert does not notify
the change because the observations are more likely to belong to one distribution than two
independent ones.

Following this intuition, we propose Greedy Online Change Point Detection (GOCPD).
The key insight of GOCPD is to greedily save the optimal change point location for each
arriving batch of observations and approve it as a real change point if it provides enough
discrepancy during a given period. This procedure is performed in two steps: (i) efficiently
search for the optimal change point location for each iteration and (ii) declare this optimal
location as a real point of transition between states in the time series when the discrepancy
with respect to the original model is high enough.
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We describe the algorithm by dividing it into four parts: (i) a change point location
criterion, (ii) an efficient greedy search of the optimal location of the change point, (iii) the
criterion for approving the selected change point as a real change point, and (iv) how the
previous steps are implemented in an online fashion.

3.1. Notation

Following the notation introduced in Section 2.1, we consider c∗1 = 0 under the realistic
assumption that the first segment is initialized at the first observation. We denote the detected
changes as C̃ = {c̃1, · · · , c̃m}, where n = m does not necessarily hold. At each timestamp, we
denote c̃ : R→ R the function that maps each timestamp to the last detected change point
before time t, e.g., for t ∈ (c̃1, c̃2), it holds that c̃(t) = c̃1, which is not necessarily equal to c∗1.

Note that, in the online setting, the online CPD algorithm is expected to detect a change
point before the next change point arrives. Therefore, in what follows, we consider time series
with only one change point for our analysis, which is analogous to the scenario with multiple
change points.

3.2. Criterion for the candidate change point location

Though our method operates on an arbitrary number of change points, for the sake of
simplicity, we present the detection of a single change point, and the case of multiple change
points can be naturally extended from this setting. Therefore, consider datapoints Dc̃(t):t ⊆ D
with a change point at time c∗ ∈ {c̃(t)+1, c̃(t)+2, ..., t−1}. An intuitive procedure for online
CPD is to analyze the observations available up to time t, and identify the change point at
a timestamp τ previous to the current time t, so that the collections Dc̃(t):τ and Dτ :t−1 are
independent and given by different models.

Intuitively, this detection can be made based on the fact that the probability of the data
coming from two different independent models — i.e.,Dc̃(t):τ−1 comes from a pre-change model
m1 and Dτ :t comes from a post-change model m2 —, is larger than that of the data coming
from a single one, denoted as m0. For numerical stability, we consider the log-likelihood ratio
given by

Lt(τ) = log p(Dc̃(t):τ−1|θ̂τ1)p(Dτ :t|θ̂τ2)
p(Dc̃(t):t|θ̂0)

(3.1)

= log p(Dc̃(t):τ−1|θ̂τ1) + log p(Dτ :t|θ̂τ2)− log p(Dc̃(t):t|θ̂0), (3.2)

where θ̂0, θ̂
τ
1 and θ̂τ2 are the maximum likelihood estimators (MLE) of the parameters of the

parameters in m0,m1,m2, i.e., the models trained with the complete section up to t, the data
before and after τ , respectively. Note that θ̂τ1 and θ̂τ2 depend on the chosen split given by τ .
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Remarkably, although Equation (3.2) is a log-likelihood ratio, since the last term log p̄(Dc̃(t):t|θ̂0)
is constant for a given t, the optimization is essentially computed only through the first two
terms: Lt(τ) = log p(Dc̃(t):τ−1|θ̂τ1)+log p(Dτ :t|θ̂τ2). Therefore, this criterion differs from the th-
resholding of likelihood-ratio-based methods [27, 28] since we directly optimize the likelihood
of the data belonging to two independent models instead of a likelihood ratio.

However, as Lt(τ) is composed of two likelihoods, it depends on the number of observations.
Each of both likelihoods decreases as the number of observations involved increases. Then,
it may occur that, for instance, if t − τ � τ − 1 − c̃(t), i.e., the model m2 is modeling
considerably more observations than m1, then the likelihood of m1 will have more influence
in Lt(τ) than m2, which is not a desired phenomenon, since one wants both models to weight
equally. Therefore, to remove dependency on the number of observations, we consider the
average log likelihood instead, i.e. log p̄(D|·) = 1

|D|
log p(D|·). In this way, we define a change

point location metric as:

st(τ) = log p̄(Dc̃(t):τ−1|θ̂τ1) + log p̄(Dτ :t|θ̂τ2). (3.3)

Note that, by using the average log-likelihood of both sections, we consider equal contribution
from both m1 and m2, regardless of the size of the segments that the models are fitting.

Therefore, searching the optimal change point location given current observations is equi-
valent to finding the optimal τ that maximizes Equation (3.3). We denote this optimal τ as
ct:

ct = arg max
τ∈{c̃(t)+1,...,t−1}

st(τ). (3.4)

3.3. Efficient greedy search of the optimal change point

A naive way to solve Equation (3.4) is to compute st(τ) over all values of τ ∈ {c̃(t), . . . , t}
for every t, but this will take O(t) per timestep. Moreover, in the streaming scenario, data
arrive in batches. Thus, in cases where the data batch size at each iteration is small — in
the limit case, it can be of size 1 — the optimizer of st and st+1 are close to each other, then
computing all values is redundant. Therefore, to circumvent the time complexity of solving
Equation (3.4) at each iteration, we leverage some properties of st(τ), which we describe as
follows.

Proposition 3.3.1 Let Dc̃(t):t be observations of a time series with a change point at
c∗ ∈ {c̃(t) + 1, c̃(t) + 2, ..., t − 1}, and let st(τ) be the change point location metric st(τ) =
log p̄(Dc̃(t):τ−1|θ̂τ1) + log p̄(Dτ :t|θ̂τ2). Then, st(τ) has a unique maximum at τ = c∗ and mono-
tonically increases for τ < c∗ and decreases for τ > c∗.

Proof. Let Dc̃(t):t be observations of a time series with a change point at c∗ ∈ {c̃(t)+1, c̃(t)+
2, ..., t − 1}. Following the recent developments of Chatterjee and Bhattacharya [37], let θ1
and θ2 be the true parameters of m1 and m2, which model observations before and after the
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true change point, respectively, which we consider equal to the estimated parameters given
the true change point, i.e., θ̂c∗1 and θ̂c∗2 , respectively. Since log p̄(D|·) does not depend on the
size of D, for τ < c∗, the following expression holds:

lim
τ→c∗

∣∣∣∣ log p̄(Dδ1:τ−1|θ̂τ1)− log p̄(Dδ1:c∗−1|θ̂c
∗

1 )
∣∣∣∣ = −h(θ̂c∗1 ), (3.5)

where h(θ) is the KL-divergence rate. For GP models with Gaussian-distributed noise, Chat-
terjee and Bhattacharya [37] have shown that this rate is given by

h(θ̂) = log σ̂
σ
− 1

2 + σ2

2σ̂2 + 1
2σ̂2E[µ̂− µ]2, (3.6)

where µ, σ are the true mean and noise variance of the GP. As we consider that the model
approximates the true parameters, we have that h(θ̂c∗1 ) = 0.

On the other hand, as τ < c∗, m2 is also modeling observations that belong to the first
segment (prior to c∗), thus the learned model needs to fit observations from the first segment,
then its likelihood will be lower than that of the model learned with data from the second
segment. Formally, we have

log p̄(Dτ :t−δ2 |θ̂τ2)− log p̄(Dc∗:t−δ2 |θ̂c
∗

2 ) < 0. (3.7)

Additionally, by definition of the limit in Equation (3.5), for every ε > 0, there exists
δ > 0 such that |τ − c∗| < δ =⇒ | log p̄(Dδ1:τ−1|θ̂τ1)− log p̄(Dδ1:c∗−1|θ̂c

∗
1 )| < ε. Taking the last

expression of this implication, we have the following:

−ε < log p̄(Dδ1:τ−1|θ̂τ1)− log p̄(Dδ1:c∗−1|θ̂c
∗

1 ) < ε
(3.7)=⇒ log p̄(Dδ1:τ−1|θ̂τ1)− log p̄(Dδ1:c∗−1|θ̂c

∗
1 ) + log p̄(Dτ :t−δ2 |θ̂τ2)− log p̄(Dc∗:t−δ2 |θ̂c

∗
2 ) < ε

=⇒ log p̄(Dδ1:τ−1|θ̂τ1) + log p̄(Dτ :t−δ2 |θ̂τ2) < log p̄(Dδ1:c∗−1|θ̂c
∗

1 ) + log p̄(Dc∗:t−δ2 |θ̂c
∗

2 ) + ε

Since the last expression holds for every ε > 0, then we get the desired result. The case τ > c∗

is analogous.

For illustration, Figure 3.1 shows a toy example of the unimodal behavior of st(τ). We
generated a synthetic dataset up to t = 100 with a change point at c∗ = 50, where y0:49 ∼
N (0, 0.12) and y50:100 ∼ N (1, 0.12). This example simulates a batch of streaming data, thus
we set t = 1.0 for each τ up to t = 100, i.e. the criteria for all τ is evaluated over the data
up to t = 100. We consider a family of models m0,1,2 ∈ {N (µ, 0.0012)}µ, where µ is the
parameter of the model, which is learned via maximum likelihood. Recall that for each τ , m1
models y1:τ−1, m2 models yτ :t, and m0 models y1:t. Near τ = 50, m1 and m2 maximize the
modeling data that comes from the same distribution, then st(τ) effectively peaks at τ = 50
and decreases before and after the change point.

Additionally, the fourth plot of Figure 3.1 shows the learned parameter for each split
timestamp τ . Before τ = 50, m1 observes data that takes value near to 0, thus the learned
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Figure 3.1: Toy example of unimodal behavior of the change point
location metric. From left to right, the first plot shows synthetic Gaussian
observations with a change in the mean value, the second plot shows the
change point location metric of Equation (3.3), the third plot shows the log
likelihood of m0,1,2. Lastly, the fourth plot shows the learned mean of m0,1,2
for each τ .

Figure 3.2: GP example of unimodal behavior of the change point
location metric. From left to right, the first plot shows an synthetic GP
data with a change point at τ = 60, the second one shows the change point
detection criteria st=125(τ), and the third shows the log likelihood of m1,m2
and m0.

parameter µ1 is close to 0. On the other hand, at τ = 0, m2 observes the complete dataset.
Consequently, the learned parameter takes both segments before and after the change into
account, thus µ2 at τ = 1 is 0.5. As τ approaches τ = 50, the portion of data observed
by m2 that belong to the second segment increases, thus the learned parameter µ2 starts
approaching µ2 = 1. The scenario after τ = 50 is analogous.

Figure 3.2 illustrates an example of the unimodal behavior of the log-likelihood using GP
samples. The data comes from synthetic GP data with a change point at c∗ = 60. Both
segments before and after the change point are generated using an RBF kernel, where the
lengthscale changed from ` = 10 to ` = 2. Observe that, effectively, the log-likelihood has
a maximum at τ = 60. In this example, st(τ) is slightly noisier than the toy example of
Figure 3.1, thus finding its maximum may lead to local maxima. This can be remedied by
downsampling st(τ) when optimizing.

Consequently, solving Equation (3.4) is equivalent to finding the maximum of realizations
of a unimodal function, which is a well-solved problem in the literature and its solutions
have logarithmic complexity [38]. In particular, ternary search [38] is a divide-and-conquer
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Algorithm 1: TernarySearch(`, r, ct−1)
Input: Initial left and right positions ` = ct−1, r = t, previous candidate change point
ct−1, tolerance ε
Output: ct = arg maxτ st(τ)
1. Divide the sequence in three parts
τ1 = `+ (r − `)/3;
τ2 = r − (r − `)/3;

2. Compute st(ct−1), st(τ1), st(τ2)
3. Search
if |τ1 − τ2| < ε then return τ1; // Maximum is found
// Compare with previous candidate CP
if st(ct−1) > st(τ1) then return TernarySearch(ct−1, τ1, ct−1);
// Compare τ1 and τ2
if st(τ1) < st(τ2) then return TernarySearch(τ1, r, ct−1);
if st(τ1) > st(τ2) then return TernarySearch(l, τ2, ct−1);
if st(τ1) = st(τ2) then return TernarySearch(τ1, τ2, ct−1);

algorithm that finds the maximum of a unimodal sequence of size n by dividing it into three
parts. The time complexity of this algorithm is O(log3(n)). In the context of change point
detection with GOCPD, the length of the sequence at time t is t − c̃(t) + 1, which can be
t in the worst case (when there is no change point yet). Then, instead of evaluating st(τ)
on each timestamp, we use ternary search to find its maximum at each iteration, and now
the per-iteration complexity of the change searching is O(C log3(t)), where C is the cost of
computing st(τ), which depends on the chosen underlying predictive model. Note that this
time complexity directly stems from using ternary search and does not depend on whether if
there is a change point in the so-far observed data or not, as the algorithm will converge to
a local maximum. However, local maxima do not hinder the search for the optimal change
point, as there is no change point yet. Algorithm 1 summarizes the searching procedure. Note
that computing st(τ) requires training models m1 and m2 for each iteration.

However, even using a logarithmic-complexity search algorithm, it still has to be performed
over all the current observable range of data and needs to be repeated for each iteration of
the online scenario. Then, to avoid an exhaustive search over all the data points, we leverage
the following property of the optimal change points at each iteration.

Proposition 3.3.2 Given an arbitrary timestamp t, let ct = arg maxτ st(τ) and ct+1 =
arg maxτ st+1(τ) be the solutions of Equation (3.4) at time t and t+ 1 respectively. Then, it
holds that ct ≤ ct+1.

Proof. Consider that the time series has a true change point at c∗. Then, in the online setting,
two scenarios are possible:

1. ct = c∗, i.e. current candidate is the real change point. Then, given Proposition 1, ct is the
unique maximum of st(τ) and st+1(τ). Therefore, arg maxτ st(τ) = arg maxτ st+1(τ) =⇒
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ct = ct+1.

2. ct 6= c∗, i.e. current candidate is not the true change point. This yields more cases:

(i) t + 1 < c∗, i.e. the true change point is not observed yet. Then, the candidate ct+1
can be any timestamp of the observed data, and the variation of the candidate’s
position is not relevant.

(ii) t ≥ c∗, i.e. the true change point is observed already but not selected as candidate.
Note that in this case ct < c∗. This happens when c∗− t is small, i.e. few datapoints
from the new segment are observed so far, thus the change point position at c∗ is
not conclusive yet. In the next iteration, Dt+1 is observed, and since it belongs to
the segment after c∗, then more information is given to the algorithm to select the
candidate change point, then ct+1 will be closer to c∗. Therefore, ct+1 ≥ ct.

This property guarantees that, for a resulting optimal change point ct of an iteration, the
real change point is never located before ct. Moreover, ct′ ≥ ct for all t′ > t. Therefore, times-
tamps that are located before the resulting optimal change point of the previous iteration do
not need to be evaluated in the current iteration.

Following this result, we save the optimal change point with the highest st at each iteration
as a candidate change point, and for the next iteration, only the timestamps after ct are
evaluated in order to find the maximum of st+1(τ). We refer to the resulting interval of
timestamps located after the previously saved candidate change point as the effective interval
size.

3.4. Criterion for the change point approval

When no change point is present in the thus-far observed data, the candidate change point
could be located at any of the current timestamps depending on the result of Equation (3.3).
And this candidate may not change until the real change point appears. However, this can-
didate is not the real change point. Therefore, we need a criterion for approving a candidate
as a real change point.

Intuitively, the model should not detect any change when the likelihood of m0 is large
enough, where the topology of the neighborhood of m0 is given by the posterior covariance of
the model. Following this intuition, recall that the GP observations Dc̃(t):t follow a log-density
given by a Mahalanobis distance between the posterior mean and the observations, defined
by

dm(D) =
√

(y − µx)TΣ−1
xx(y − µx), (3.8)

where x = {xt}t and y = {yt}t are the input and output respectively, and µx and Σxx

are the posterior mean and variance of the model m on x. This is a multi-dimensional
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generalization of measuring how many standard deviations is a point away from a distribution.
Note that evaluating with Equation (3.8) is equivalent to evaluate the GP log posterior
of m. Nevertheless, this expression brings a clearer intuition of the distance between the
observations and the posterior mean.

Besides, dm(Dc̃(t):t) depends on the dimension of Dc̃(t):t, that is |Dc̃(t):t| = t − c̃(t) + 1,
which varies over time. To avoid getting a higher value for the criterion given larger data
sizes, normalization of dm(D) is required. We then approximate the normalization of the
Mahalanobis distance as follows:

d̄m(D) = dm(D)2/|D|. (3.9)

Lastly, the criterion consists of a threshold over the normalized Mahalanobis distance of
both the data before and after the candidate change point with respect to the posterior
distribution of m0:

d̄m0(Dc̃(t):ct−1) > ν1 ∧ d̄m0(Dct:t) > ν2, (3.10)

where the thresholds ν1,2 control how strict this criterion is. A higher νi implies that a higher
discrepancy with respect to the model posterior is allowed without approving a change, thus
fewer change points are detected.

This detection criterion differs from using a threshold for the distance of the complete
sequence dm0(Dc̃(t):t). When using a threshold for the normalized Mahalanobis distance for the
complete section, the covariance between observations before and after the candidate change
point is taken into account. However, in our formulation, as we consider that the observations
before and after the change point come from two independent models, the correlation between
both sequences is not included in the criterion for the detection approval.

Importantly, setting independent thresholds to both segments prevents false detections
with outliers. For instance, if an outlier is present at the second segment Dct:t, only the
criteria for the second segment is satisfied, then the candidate change point is not declared
as a real one. For a candidate change point to be declared as real, the second segment Dct:t
must behave sufficiently different than the previous one so that m0 changes its parameters
largely to fit the complete segment Dc̃(t):t, and then the Mahalanobis distance for the first
segment Dc̃(t):ct−1 with respect to the posterior mean of m0 exceeds the threshold.

3.5. Online implementation

Algorithm 2 summarizes the detection procedure of GOCPD. To increase robustness to
outliers, it notifies a change point when Equation (3.10) is satisfied for a number kmax of
iterations, which is a hyperparameter that depends on the context of the CPD task. Since
ternary search is inherently implemented as recursion, the method needs to train m1 and
m2 at each iteration. In practice, we store the learned parameters at each iteration as initial
condition for the next stage.
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Algorithm 2: Greedy Online Change Point Detection (GOCPD)
Input: X ∈ RT,D, Y ∈ RT,C

Initialize model parameters θ0,1,2 = θprior
0,1,2 , last change point c̃(t) = 0, threshold ν1,2,

initial counter k = 0, maximum counter kmax, initial time t, initial candidate ct = 1,
initial window size Tini;
for t < T do

// Wait for a window size Tini to start detecting
if t− c̃(t) < Tini then

continue;
end
// Current observations since last detected change point
x = Xc̃(t):t; y = Yc̃(t):t;
// Get current candidate change point
ct ← TernarySearch(x, y, ct−1);
// Evaluate change point detection criterion
if dm0(y1:ct) > ν1 ∧ dm0(yct+1:t) > ν2 and ct = ct−1 then

k ← k + 1;
if k > kmax then

Change point is detected: c̃(t)← ct;
Reset model parameters θ0,1,2 ← θprior

0,1,2 ;
k ← 0

end
end

end

In simple words, for each arriving batch of observations, GOCPD updates the optimal
change point location by maximizing the likelihood in Equation (3.4) which considers that
the data belongs to two independent modelsm1,2. Then, GOCPD evaluates whether this data
split provides enough evidence of the data not belonging to only one model. The criterion
for this decision is the normalized Mahalanobis distance. If this distance surpasses a context-
dependent threshold for enough observations, GOCPD declares the candidate change point
as a real detection.

Figure 3.3 illustrates the detection procedure in the online setting. GOCPD saves a can-
didate change point at each iteration, and only the timestamps located after that candidate
are evaluated in the next iteration. Notably, before the real change point arrives, GOCPD
selects the optimal location for the candidate change point, but does not approve it as a real
change, since the condition of Equation (3.10) is not satisfied (Figure 3.3.a) or the period in
which Equation (3.10) is satisfied is yet not long enough (Figure 3.3.b).

Note that every time that a change point is detected, the algorithm waits a time Tini to
start detecting again. Therefore, it prevents abrupt changes in the likelihoods when the data
before the detected change point are dropped and only a few observable data are left. This
is under the assumption that the minimum distance between consecutive change points is
larger than Tini.
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Figure 3.3: Online detection of GOCPD. Yellow region shows the obser-
ved data. The red cross represents a detected CP. (a) A candidate change
point is saved, which is the intersection between red (m1) and blue (m2)
curves, indicated with a black arrow. and only the blue section accounts
for the next iteration. (b) GOCPD updates the candidate change point as
observations unfold. (c) The candidate change point is the same as the pre-
vious iteration. (d) The candidate change point did not move after a given
period, thus GOCPD declares it as a detected change; then, the model waits
for a initial window to locate the candidate change point again.

When Equation (3.10) is satisfied for the given period, the candidate change point is
identified as a real one (Figure 3.3.d). Following the work of Alami et al. [9], after the change
detection, since we consider that the data points in different segments are independent, the
observations located before the detected change point are dropped. In addition, to minimize
the regression error, the modelsm0,1,2 takes the parameters ofm2 as initial condition after the
change detection, since m2 has only modeled observations that are located after the declared
change point.

A key property of GOCPD is that it detects a change point at a period after the real
change occurs. This is essential in change point detection, otherwise, the detected changes
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are simply outliers.

Notably, since GOCPD efficiently searches in the timestamps previous to the current time,
the resulting detections are not limited to the intersection between fixed windows nor batches
of streaming data but can be located in any timestamp since the last change point, in contrary
to sliding-window based methods [33, 39, 40], for which the detections are always located at
the end of a window. Therefore, in GOCPD, there is no need to choose a proper window size,
which is a difficult problem without a universally good solution [36].

On the other hand, although we stated that a change point should be detected before the
next one arrives, if a change point c∗2 appears before the previous one c∗1 is detected, GOCPD
is still able to at least detect one of the changes, which would be the one that satisfies the
detection condition.

Most online CPD methods [10, 12, 11] refer to splitting the data into train and test sets
and learning the hyperparameters in the train set. However, we argue that this approach is
not applicable in reality when the distributions of new data are unknown. Therefore, the only
utility of the training set is to learn the hyperparameters of the first section of the data, and
learning is also needed for the upcoming observations, as GOCPD does.

Note that model-free CPD methods first decides if there exists a change point in the data.
If so, then it estimates the change point location from the data. We invert this order, as we
first locate the most likely location for a change point, and then decide whether to approve
or not this candidate as a real change point.

Remark 1. Difference with respect to likelihood-ratio-based methods

We acknowledge that the likelihood ratio has been widely used [28, 29, 27] for change point
detection. However, it is important to clarify that GOCPD essentially differs from likelihood-
ratio-based methods since it does not compute a likelihood ratio but directly optimizes the
likelihood of the two models that fits the data before and after a candidate change point
respectively to search for the optimal change point location. In addition, unlike likelihood-
ratio-based methods, the thresholding in GOCPD is computed over the discrepancy of the
observations with respect to the no-change scenario to declare the candidate as a detection.

Remark 2. Change detection for better data forecasting

BOCPD can be viewed as a method to predict the upcoming observations more precisely
given the change points. The approach in BOCPD is analogous to predict the data withm0 in
GOCPD. However, since BOCPD does not prune the data before a detected change point, the
underlying predictive model p(yt+1|rt, yt) may contain observations before the last declared
change point depending on the run-length rt considered, thus providing noisy modeling. In
this sense, in addition to the objective of detecting changes, GOCPD also provides models
capable of predicting the upcoming observation. After selecting the optimal candidate change
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point location for each arriving batch of data,m1 always models observations that are located
before the change point. On the other hand, after a detection, the observations modeled
by m2 are certainly located after the change point. Therefore, the trained m1 can predict
observations before the change point, while after a change point detection the trained m2
can forecast the data after the change point.
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Chapter 4

Experiments

We evaluated our method on both synthetic and real-world datasets that contain abrupt
changes in the underlying dynamics. To increase the flexibility when fitting the data, we used
nonparametric models as the underlying predictive model. Specifically, we used Gaussian pro-
cesses [20] for univariate signals and Multi-output Gaussian processes [41] for multivariate
data. We include comparisons with baseline models in terms of detection quality and execu-
tion time. Our code is implemented with GPyTorch [42], and all experiments were executed
on a laptop with an Intel Core i7-9750H 2.6GHz CPU and NVIDIA GTX 1660 Ti 6Gb GPU.
We include the code to replicate our experiments in our GitHub repository1.

4.1. Synthetic data

In this section, we present results in artificially generated time series that contain change
points. We show that BOCPD has an extremely low precision by flagging a high number
of false positives. In addition, we demonstrate the effectiveness of GOCPD in avoiding high
false discovery rates.

Datasets

We generated four time series of 2,000 points from a GP with RBF kernel, i.e., we generated
{yt}2000

t=1 from the following:

yt = f(t) + εt, f ∼ GP(µ,K), εt ∼ N (0, σ2
n),

K(x, x′) = σf exp
(
− 1

2`2‖x− x
′‖2
)
,

1 https://github.com/jouhui/GOCPD

27

https://github.com/jouhui/GOCPD


where we allowed changes in the hyperparameters {`, σf , µ, σn}, which correspond to the
lengthscale of the kernel, the output scale of the kernel, the mean of the Gaussian process,
and the noise variance of the likelihood, respectively. The change locations were randomly
chosen timestamps with a minimum difference of 50 observations between changes to allow
the method to learn sufficiently from the data and make the changes noticeable. We provide
details of these datasets in Appendix A.

Experimental setup

We divided each time series in a 30%-70% (train-test) split, in which the training section
was used to tune the hyperparameters of GOCPD, such as the thresholds ν1,2, the initial
window size, and the maximum counter kmax. We evaluate the results in terms of sensitivity,
or true positive rate (TPR) and precision, or positive predictive value (PPV). The sensitivity
measures how many of the real changes did the method detect, and the precision is a metric
for how many detections were effectively real changes. These metrics are given by

TPR = TP
TP + FN , PPV = TP

TP + FP . (4.1)

where TP, FP, and FN are true positives, false positives, and false negatives respectively. The
intuitive metric for change point detection is the false positive rate. However, the computation
of the false positive rate needs the number of true negatives, which is considerably higher
than TP, FP, and FN, since the distribution of the timestamps that correspond to changes
versus that of the non-change timestamps is highly imbalanced. Therefore, we use PPV as
an alternative metric for false positive ratio.

Results

Figure 4.1 illustrates the detections made by BOCPD and GOCPD over synthetic GP time
series. Overall, BOCPD flagged numerous false positives, which is particularly noticeable in
the time series with changes in lengthscale.

On the other hand, for GOCPD, changes in lengthscale, output scale, and mean were
successfully detected. Nonetheless, GOCPD also detected some false positives for these three
time series. However, although those points were not labeled change points, the dynamic of
the underlying GP at those points clearly changed, e.g., at t = 400 in the time series with
changes in mean and at t ≈ 550 in the time series with changes in lengthscale. Figure 4.1.d
shows the detections for the case of change in the noise magnitude, in which GOCPD did
not detect the first and third change points. However, this corroborates the robustness of our
proposal since it is capable of effectively recognizing the change in variance as simply noise.

Table 4.1 summarizes the results on synthetic datasets. BOCPD achieved perfect TPR
in two datasets, but its PPV was considerably lower. In contrast, our method returned a
lower TPR than that of BOCPD, but consistently outperformed BOCPD in terms of PPV
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Table 4.1: True positive rate (TPR) and positive predictive value
(PPV). BOCPD detected all of the real changes in two datasets, but re-
turns considerably low PPV. In contrast, GOCPD outperformed BOCPD
in terms of PPV for all datasets.

Method Change in ` Change in σf Change in µ Change in σn
TPR PPV TPR PPV TPR PPV TPR PPV

BOCPD 0.86 0.13 1.00 0.35 1.00 0.33 0.86 0.26
GOCPD (ours) 1.00 0.78 0.86 0.60 0.86 0.67 0.71 0.83

for all synthetic time series, i.e., most of the detected changes of GOCPD corresponded to
real labels.
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(d) Change in noise variance.

Figure 4.1: Change point detection on synthetic GP data. In each
figure, the change points consist of changes in each of the parameters of the
RBF kernel. Black crosses represent the labeled changes, green triangles
represent detections of BOCPD, and orange lines represent the detections
of GOCPD. Overall, BOCPD notified a high number of false detections,
while GOCPD returned the highest precision.

4.2. Real world data

In this section, we present the validation of GOCPD in real-world scenarios. We show
that our proposal reaches the lowest false discovery rate in all datasets, while the baseline
methods either flag numerous false positives or miss many labeled changes.
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Datasets

We validated our proposed GOCPD method on four real-world benchmarks in both uni-
variate and multivariate scenarios:

Neonatal Electroencephalography (EEG) dataset [43]. It is a dataset of multi-
channel EEG recordings from 79 human neonates with brain seizures admitted to the
Neonatal Intensive Care Unit (NICU) at the Helsinki University Hospital. It also inclu-
des the visual interpretation of the EEG by three human experts that label the segments
that correspond to brain seizure. We considered a consensus of at least one expert to
approve a timestamp as a seizure. Then, the change points corresponded to the times-
tamps in which the signal changed from seizure to non-seizure or vice versa. We present
results with the first channel of the subject #1.

Human Activity dataset. It is a subset of the Human Activity Sensing Consortium
(HASC) challenge 20112. It provides human activity information collected by portable
three-axis accelerometers, in which the person is asked to do six actions: stay, walk,
jog, skip, stair up and stair down. The change points in the dataset correspond to
transitions between human activity actions. We present detection results for the subject
#671 in both univariate and multivariate scenarios by using one (x-axis) channel and
three channels.

Respiration dataset. It is a univariate dataset from the UCR Time Series Data Mining
Archive3. It contains recordings of patients’ respiration measured by thorax extension
as they wake up. The changes were manually labeled by a medical expert.

Well-log dataset [18]. It is a classic benchmark of univariate change point detection
that records 4,050 nuclear magnetic resonance measurements while drilling a well. Chan-
ges in this dataset correspond to abrupt changes in the resonance measurements.

Models

For GOCPD, we used Gaussian processes [20] for the univariate datasets and Multi-
output Gaussian processes [41] for the multivariate dataset. We consider RBF kernels for all
datasets except for Well-log, in which we used the Dirac delta function for the covariance
K(x, x′) = 1x=x′ due to observed uncorrelateness.

We compared our results against three Bayesian methods and one model-free method.
We considered BOCPD [12], GPCPD [11], and RBOCPDMS [21] as our Bayesian baselines,
and NEWMA [36] as the representative baseline of model-free methods. For BOCPD and
RBOCPDMS, we considered their pruned version by selecting the K = 50 most probable run
lengths. Following [12], we considered constant hazard functions for BOCPD-based methods.

2 http://hasc.jp/hc2011/index-en.html
3 https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
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Figure 4.2: Change point detection on the EEG data. For the sake
of clarity, we illustrate the detected changes of the baseline methods in the
plot at the bottom. Baseline methods detected a considerably high number
of false positives, while GOCPD is robust to slight changes.

Regarding NEWMA, it declares a timestamp t as a change point whenever the distance
between both old and current statistics surpasses a threshold. Therefore, NEWMA may
consider all timestamps after a real change point as detections, as the old statistic still
contains information from the observations before the change point, which would lead to an
extremely high false positive rate. To remedy this issue, we considered a flagged timestamp
t as a detected change point only if t − 1 was not flagged. We used windows of size 100 for
all datasets, except for the EEG dataset, for which we considered size 300, and the Well-log
dataset, for which we used size 50. We chose these values by considering the minimum distance
between consecutive change points in the dataset. We report the implementation details and
the hyperparameter choices in Appendix B. For BOCPD, RBOCPD, and NEWMA, we relied
on officially released codes.

Experimental setup

We evaluated the detection performance through the resulting negative log-likelihood
(NLL) and mean absolute error (MAE) of the learned models evaluated on the dataset
split by the detected change points. In addition, to quantitatively compare the number of
false detections, we report the false discovery rate FDR, computed as FDR = 1−PPV. This
metric measures the proportion of false detections in the total set of detected changes. For
all methods, we report the averaged values in five independent runs, in which the parameters
of the models are randomly initialized. To visualize the detected changes of each method, we
select the best performing run among the five repetitions.
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4.2.1. EEG dataset

Figure 4.2 shows the detected changes for the EEG dataset. Most of the detections of
NEWMA corresponded to false positives, and some of the real abrupt changes are not detec-
ted, for instance, at timestamps before t = 770.

Both BOCPD and RBOCPDMS detected all changes in the ground truth. However, aside
from the ground truth, most detections were false positives, even when the signal did not have
any evident change, e.g., for t ∈ (1000, 1050). The false discoveries are particularly noticeable
when the variance of the signal increases, e.g., for t ∈ (850, 900). Furthermore, even allowing
not-labeled changes that consist of sudden peaks in the signal, e.g., for t ∈ (850, 900), many of
the detections of BOCPD and RBOCPDMS were essentially only one, but many consecutive
detections were flagged. The case of GPCPD is similar, as it mostly detected false changes,
which seems to follow the prior probability of change, as outlined in subsection 2.2.2.

In contrast, GOCPD identified considerably fewer detections. GOCPD missed some la-
beled changes, which generally corresponded to transitions between high-variance data to
low-variance data, e.g., the changes at t ≈ 800 and t ≈ 1000.

Recall that the ground truth derived from the timestamps in which the consensus of
the experts changes between seizure and non-seizure. These annotations were not absolutely
accurate in the sense that the change occurs precisely at the labeled timestamp. For instance,
for the labeled change near t = 750, GOCPD detected a change slightly after the ground
truth, but it was qualitatively more accurate to the abrupt change that appeared after t =
750. A similar phenomenon occurred for the change at t = 950.

In addition, the annotations only partition the signal into seizure and non-seizure seg-
ments. However, noticeable changes may also arise inside both categories, for instance, in
the intervals (800, 900) and the remaining interval after t = 1100, which were detected by
GOCPD. In contrast to the baseline methods, the false positives of GOCPD effectively co-
rresponded to sudden jumps of the signal, which were qualitatively acceptable not-labeled
changes. Notably, our method did not notify a change whenever an abrupt jump appeared,
e.g., in the interval t ∈ (860, 900). These results highlight that our proposal is more robust
than model-free and BOCPD-based methods, and it is capable of defining more accurate
starting points of change.

4.2.2. Human Activity dataset

Figure 4.3 pictures the performance of GOCPD against baseline methods in the univariate
Human Activity dataset. It shows that BOCPD could detect the most evident changes, e.g.,
the transition between stillness and significant movements. Again, detections of GPCPD were
not accurate. Besides, the figure shows that NEWMA has considerably lower accuracy than
the other methods, as it returned some duplicated consecutive changes and missed most of the
labeled changes. On the other hand, the false positives of GOCPD that are located between

32



0

1

0 1000 2000 3000 4000 5000 6000 7000
Time

Ground truth
BOCPD

GPCPD
RBOCPDMS

NEWMA
GOCPD (ours)

Figure 4.3: Results in univariate Human Activity dataset.

t = 3000 and t = 4000 are attributable to the chosen hyperparameters in the training set. As
shown in Figure 4.3, the changes in the signal variance in the last 70 % of the dataset have
higher magnitudes than the first 30 % of the dataset. Therefore, the tuned thresholds had
smaller values than those required in test data. These results evidence the discrepancy of the
change point detection datasets, which suggests the need for adaptive thresholds, which we
leave for future work.

Figure 4.4 illustrates the multivariate case of the same dataset. Similar to the univariate
experiment, most of the results of NEWMA corresponded to real changes, but it also missed
many of the labeled changes. In this case, most of the detections of BOCPD corresponded
to false discoveries, as we discussed in subsection 2.2.2, while GOCPD only flagged two
false detections. On the other hand, RBOCPDMS effectively had a more robust behavior
in comparison with BOCPD, as it only detected two false positives, similar to GOCPD.
However, in this case, RBOCPDMS is too robust and produced more false negatives. This
may be due to the use of β-divergences, as it has a unique maximum and observations that
are farther from the model posterior than that maximum are considered as outliers [21].
Therefore, depending on β, RBOCPD would consider some extremely abrupt changes as
outliers, thus leading to false negatives.

This dataset indicates the type of changes that GOCPD can and cannot detect. Since the
underlying predictive model is a GP in this case, when the current observations correspond
to a GP with small variance, if the time series changes to a state with higher variance, the
original m0 — which is a GP with small variance — will have to change its hyperparameters
to fit both segments of observations with small and high variance respectively. Therefore, the
normalized Mahalanobis distance will be higher, then GOCPD will detect a change point. On
the other hand, if the current observations correspond to noisier samples of the time series,
the GP will have a higher variance. However, when the time series changes to a less noisy
state, the original GP can also model data with smaller variance. Consequently, the posterior
mean of the model still closely follows the new observations, then GOCPD may miss this
change.
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Figure 4.4: Results in multivariate Human Activity dataset. Each
channel corresponds to the acceleration in x−y−z axis respectively. For the
sake of clarity, we present the detections of baseline methods in a different
plot at the bottom.

4.2.3. Respiration dataset

Figure 4.5 shows the detection results for the Respiration dataset. Again, NEWMA de-
tected many false positives, and some of its detected changes did not correspond to the real
transitions, e.g., at t ≈ 750. Regarding BOCPD, most of its detections were false positives
and corresponded to very small changes of the signal magnitude, e.g., at t < 500. Surpri-
singly, instead of returning more robust results than BOCPD, RBOCPDMS identified even
more false positives, which may be attributable to the high variance of the signal, which is
hard to model using Bayesian Linear Regressions. On the contrary, the detections of GOCPD
were overall closer to the perceptible changes, with some false positives, e.g., at t ≈ 1, 700.
Nonetheless, the false positive rate was considerably lower than those of the BOCPD-based
methods.
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Figure 4.5: Results in the Respiration dataset. GOCPD effectively
detects changes in the distribution, while BOCPD and ROCPDMS notified
a large number of false detections.

4.2.4. Well-log dataset

Figure 4.6 shows the results of the detections for the Well-log dataset. The detections of
GPCPD followed the practical consequences we described in subsection 2.2.2, as its detections
were in practice owing to the prior probability of change. Therefore, it practically flags
changes every a certain period, independent of the nature of the signal. On the other hand,
NEWMA failed to detect real changes, and most of its detections were false alarms. As shown
in [21], RBOCPDMS effectively returned a more robust detection than that of BOCPD
but also missed some real changes, e.g., the set of changes located at t ≈ 2500. Regarding
GOCPD, it missed some of the real changes due to the dissimilarity of the changes between
the training set and the test set. Interestingly, the changes missed by GOCPD were also
missed by RBOCPDMS. Note that, unlike BOCPD and GPCPD, our method was robust to
the outliers in t ∈ (1000, 1500). Since the training set includes the outlier located at t ≈ 1200,
GOCPD learned to consider those types of shifts as outliers. Therefore, this is the same reason
for which GOCPD did not detect the last labeled change at t ≈ 4000, as it considered it as
an outlier.

Table 4.2 summarizes the detection results for those datasets that provided labels of the
true change points. Importantly, GOCPD achieved the lowest FDR for all datasets. In parti-
cular, for the multivariate Human Activity dataset, the FDR of GOCPD was less than 25 % of
that of BOCPD. In contrast, BOCPD attained the highest FDR, followed by RBOCPDMS.
Both these methods reached a high TPR due to the large number of detections, which inclu-
des the true change points. Recall that the results of Figures 4.2, 4.3 and 4.4 highlight the
property of BOCPD-based methods of notifying a detection simply due to the prior probabi-
lity of change. Therefore, although BOCPD and RBOCPDMS attained a high TPR, the large
number of false discoveries turn these models into unreliable methods for change detection
in these datasets. Regarding NEWMA, it either committed a similar or higher FDR than
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Figure 4.6: Change point detection in Well log data. Both GOCPD
and RBOCPDMS were robust to outliers located at t ∈ (1000, 1500), while
BOCPD flaggled numerous false positives.

Table 4.2: True positive rate (TPR) and false discovery rate (FDR).
Baseline methods reached higher TPR than GOCPD but returned conside-
rably high FDR in all datasets. In contrast, GOCPD achieved the lowest
FDR overall.

Method EEG Human Act. (uni) Human Act. (multi) Well-log

TPR FDR TPR FDR TPR FDR TPR FDR

BOCPD 1.00 0.88 0.45 0.33 0.86 0.47 0.53 0.53
RBOCPD 1.00 0.86 0.54 0.22 0.38 0.33 0.70 0.30
NEWMA 0.78 0.81 0.38 0.25 0.27 0.14 0.33 0.71

GOCPD (ours) 0.67 0.54 0.42 0.15 0.47 0.10 0.54 0.30

BOCPD-based methods (in the EEG dataset and the Well-log dataset) or achieved lower
FDR than BOCPD-based methods but failed to detect most real changes (in multivariate
and univariate Human Activity datasets). This summary highlights the effectiveness of our
proposal for avoiding high false discovery rates.

Table 4.3: Comparison of negative log-likelihood (NLL) and mean
absolute error (MAE) in univariate datasets. All numbers were avera-
ged over five independent runs. Overall, GOCPD reached the lowest MAE.
∗Corresponds to the original standard deviation 0.01 rounded to the second
decimal.

Method Well-log EEG Human Act (uni) Respiration

NLL MAE NLL MAE NLL MAE NLL MAE

BOCPD 9.99±0.20 4303.12±644.83 0.29±0.14 0.69±0.08 −0.60±0.10 0.09±0.00∗ 1.12±0.24 0.89±0.07

RBOCPDMS 12.26±2.70 6548.87±338.61 0.16±0.24 0.77±0.03 −0.40±0.22 0.10±0.01 0.87±0.41 0.97±0.05

GOCPD (ours) 0.74±0.01 0.28±0.01 0.99±0.00∗ 0.26±0.00∗ 0.88±0.05 0.05±0.01 0.93±0.00∗ 0.28±0.00∗
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Table 4.4: Comparison of negative log-likelihood (NLL) and mean
absolute error (MAE) in the multivariate dataset. Results were ave-
raged over five independent runs. Overall, GOCPD reached the lowest MAE.
∗Corresponds to the original standard deviation 0.007 rounded to the second
decimal.

Method Human Act (multi)
NLL MAE

BOCPD 2.87±0.20 0.49±0.00∗

RBOCPDMS 3.51±0.38 0.62±0.06

GOCPD (ours) 148.91±9.42 0.35±0.02

Tables 4.3 and 4.4 summarize the comparison of our model against Bayesian methods
in both univariate and multivariate datasets respectively. Notably, our proposed GOCPD
provided the lowest MAE in all datasets, while the best-performing method in terms of
negative log-likelihood varies. It is important to note that the higher amount of detections
imply a lower amount of observations for each segmented section of the time series, thus the
model can fit better on the data, which may be the case of BOCPD and RBOCPDMS in
the EEG and Respiration datasets, as it returned a higher number of false positives than
our method. Recall that the change detection results considered the best run among five
repetitions, and we observed that some of the repetitions of BOCPD and RBOCPDMS
returned a very high number of false positives, which may explain the small values of the
negative log-likelihood in some cases. Therefore, we argue that the negative log-likelihood is
only a metric to measure the quality of the data fitting but does not account for a comparison
of the change point detection performance.
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Chapter 5

Deeper insights

In this section, we present more in-depth insights into GOCPD in terms of time comple-
xity in comparison with existing CPD methods. We also provide results of the number of
evaluations to support the time complexity analysis. Finally, we present the limitations of
our method and potential solutions, which we leave for future work.

5.1. Time complexity

Since the implementation in the released code of BOCPD and RBOCPDMS [21] does not
include GPU acceleration, we executed the training process in GOCPD on CPU to provide
a fair comparison in terms of their computational cost. We considered the original version
of BOCPD and RBOCPDMS without pruning for a fair comparison with GOCPD. To have
a comparable method to the pruning technique in BOCPD for GOCPD, it would have to
include some prior knowledge of the change point locations. We kept model-free methods
away from this analysis since those method does not need to model the observations, thus
the execution time is expected to be smaller than that of the methods that require data
modeling.

As shown in Table 5.1, GOCPD was the fastest method overall, followed by BOCPD,
due to its efficient recursive formulation and because the predictive probabilities are directly
expressed in closed form, then it does not require any approximations nor sampling proce-
dures. On the other hand, the execution time of RBOCPDMS was almost 170 times slower
than that of BOCPD, due to its steps of full optimization and sampling. However, since we
implemented GOCPD with Gaussian processes, the fair comparison was against GPCPD, for
which GOCPD was at least 5× faster. Nonetheless, even comparing against RBOCPDMS,
which used GLR as the underlying predictive model, GOCPD presented a 170× speedup.

Additionally, Table 5.1 summarizes the theoretical complexity of each CPD method. It
shows that GOCPD had considerably higher complexity than BOCPD and RBOCPDMS.
However, the time complexity in practice generally differed from the theoretical complexity
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Table 5.1:Average per-batch CPU execution time on Well-log data-
set. We report time measures for the non-pruned version of BOCPD-based
methods. Boldface indicate the fastest method and underline highlights
the second fast method. GOCPD outperforms RBOCPDMS by a ≈ 170×
speedup and is ≈ 5× faster than GPCPD.

Method Time complexity Time/#points [s]

BOCPD O(T ) 0.156
GPCPD O(T 4) 0.404
RBOCPDMS O(1) 13.293

GOCPD (ours) + GP O(T 3 log(T )) 0.075

ranking, as GOCPD does not search over the complete segment of the so-far data. Therefore,
the theoretical complexity accounts for the worst scenario, in which the saved candidate
change point of GOCPD always stays at t = 0, which is improbable in reality. We present a
deeper discussion of this result in the next subsection.

It is important to note that the execution time of these methods depends on the detections
because the model training is performed over the so-far observed data since the last detected
change. Therefore, if the method detects many changes, its execution time will be lower, as
the model needs to fit fewer observations.

These results highlight the advantage of minimizing the searching interval by storing the
best candidate at each iteration and using ternary search to identify the optimal location of
the change point, which reduces the linear per-timestep complexity of computing all possible
change point locations to a logarithmic complexity. To illustrate this, let us consider the
univariate Human Activity dataset, in which the minimum gap between detected change
points (see Figure 4.3) is ∆ ≈ 200. Therefore, without saving the candidate nor identifying the
change point with ternary search, a coarse approximation of the total number of evaluations
would be ∑∆=200

k=1 k = 20, 100. By saving the candidate change point, the average searching
interval size per time-step was reduced to 81.6 ± 5.6 (we include details in Appendix C).
Moreover, by applying ternary search, the real average number of evaluations is 5.6 ± 3.2,
which is equivalent to 5.6×∆ ≈ 1, 120 evaluations. In other words, in the univariate Human
Activity dataset, the proposed components for GOCPD decrease the time complexity of the
optimal change point searching procedure by at least 20 times with respect to the naive
setting. We provide a complete discussion of the effect of the components of GOCPD on the
number of evaluations at each iteration in the next subsection.

5.2. Effectively evaluated timestamps

Figure 5.1 shows the distribution of the original interval size at each iteration, i.e., t− c̃(t),
and the effective interval size after saving the candidate change point, i.e., t − ct. Since
timestamps located before the candidate change point are not potential timestamps to be
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Figure 5.1: Histogram of the size of the original interval since the
last detected change point, the effective interval size, and the real
number of evaluations. Notably, by saving the candidate change point
and using ternary search to maximize the change point location metric, the
number of evaluations decreased in two orders of magnitude.

evaluated in the procedure of ternary search that maximizes the change point location metric,
only the last t − ct timestamps are the possible options in the maximization procedure. In
practice, we observed that t−ct � t−c̃(t) in the datasets included in this work. The difference
of both distributions was of at least one order of magnitude, which illustrates the benefit of
saving the candidate change point at each iteration.

On the other hand, the difference between the distribution of the effective interval size
(after saving the candidate change point) and that of the real number of evaluations per ite-
ration demonstrates the effect of optimizing the change point location metric using ternary
search. Overall, joining both components, GOCPD decreased the number of evaluations nee-
ded to optimize the change point location metric in approximately two orders of magnitude
with respect to the original case, that has quadratic time complexity.

We provide mean and standard deviations of the number of evaluations as well as the
total interval size and the effective interval size in Appendix C.

5.3. Limitations

GOCPD is motivated by the intuition of searching a change point in the thus-far observed
data before the current time and waiting for a minimum period of verification to effecti-
vely notify a change point. The verification period increases the robustness of detection but
also creates an irreducible detection delay. As a consequence, there is a trade-off between
robustness and detection delay for tuning this hyperparameter.

In addition, experimental results showed that using GPs, changes from high to small
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variance were more difficult to detect with GOCPD since a model with high variance (m1) can
still fit data with lower variance. Therefore, the likelihood of m1 does not decrease abruptly.
Using models that are symmetric in terms of the variance or including regularizations in the
model may circumvent this issue. Also, the experimental results show that sometimes the
detected changes were not exactly located in the labeled timestamp. This result may be due
to the shape of st(τ) near the change point, which did not have an evident peak. Therefore,
the ternary search algorithm returned only an approximation of the real maximum.

If a new change point c∗2 appears before detecting the previous one c∗1, Proposition 3.3.2
ensures that the current candidate change point is located before c∗1. However, this may not
happen in reality since the detection condition of Equation (3.10) must hold for a given
period. Therefore, since there are two change points in the so-far observed data, the ternary
search will output the one that provides the split with maximum likelihood, which may be
c∗2 and then GOCPD fails to detect c∗1. This phenomenon explains the false negatives in the
experimental results.
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Chapter 6

Conclusions

In this thesis, we have introduced GOCPD, an online CPD method that uses two simple
criteria simulating human intuition when making online change detection: one for identifying
the timestamp that is more likely to be a change point, and one for approving it as a real
change point. GOCPD uses a computationally appealing searching algorithm to find the
most likely change point location, and leverages the unimodal property of the likelihood of
the observations coming from two different distributions. By greedily saving candidate change
points, the space of possible change points is considerably reduced.

We have validated the hypotheses stated in Section 1.2 with the experimental results,
which have shown that GOPCD can effectively detect changes in synthetic datasets and are
competitive with – and in some cases outperforms – Bayesian methods in both univariate and
multivariate real-world data. Overall, our method returns robust detections, thus decreasing
the false alarm rate. We have also analyzed the computation complexity of the method,
which is two orders of magnitude faster than the method without the proposed components
in GOCPD.

Nonetheless, detecting changes in high-dimensional data is still time-consuming when
using GPs as the underlying predictive model. Therefore, future work includes incorporating
sparse GP approximations [44] to further decrease the training cost and a representation with
latent variables in a lower-dimensional space. On the other hand, since our method retrains
models in the searching algorithm, online models that only need retraining over the new set
of observations are beneficial for GOCPD [45]. Moreover, at each step of the ternary search,
one model steps ahead and observes new data, while the other model takes a step back.
Consequently, it needs to forget datapoints. Therefore, probing these type of models are also
a promising future research direction.

In conclusion, we have presented GOCPD as a new approach for detecting changes in an
online manner different from the standard BOCPD-based or likelihood-ratio-based methods.
We believe our proposal brings the CPD problem closer to a human-like solution, which may
benefit many machine learning methods. We hope this work contributes to broadening the
CPD researches and provides significant intuition for future work.
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Appendix A

Synthetic datasets

The change point locations for the synthetic datasets were randomly chosen with a mi-
nimum gap between change points of ∆t = 50. Between each consecutive pair of change
points, the observations were sampled from independent GPs. The locations were set to
C = [0, 60, 150, 240, 450, 650, 800, 890]. Regarding the hyperparameter values, we considered
a initial value, and then for each segment we multiplied it by a factor. The initial values were
` = 1.0, σf = 0.5, µ = 1, σn = 0.01. The sequence of factors were chosen so that the changes
were visually perceptible.

Table A.1: Hyperparameters for each synthetic time series.

Dataset Factors

Change in lengthscale ` [10, 2, 10, 1, 5, 1/5, 1, 20]
Change in output scale σf [1/10, 10, 1/20, 1, 10, 1/10, 3, 1/8]
Change in mean µ [0, 2,−1, 3, 0,−1.4, 3.5, 0.2]
Change in noise variance σn [1/5, 10, 1/5, 10, 1/5, 5, 1/5, 5]
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Appendix B

Implementation details

B.1. Data preprocessing and hyperparameters

In our experiments, all datasets were standardized. In the case of the multivariate data-
sets, each channel was independently standardized. Table B.1 summarizes the selected index
interval of the dataset and the downsampling rate, when applicable. Also, GOCPD waits
for a period of size Tini after each detection, to ensure that the likelihoods does not change
abruptly due to the lack of enough data after dropping the observations previous to the
detected change point.

Table B.1: Data preprocessing and detection hyperparameters.

Dataset Interval Downsampling rate Period Tini

Well-log complete N/A 80
EEG [18, 29]× 104 10 300
Activity (uni) complete 5 300
Activity (multi) [19, 31]× 103 5 80
Respiration [10, 14]× 103 N/A 300

For baseline methods, we use the same downsampling rate for all datasets.

B.2. Hardware setup

Our experiments were implemented in GPyTorch [42], thus processed can be accelerated
with GPUs. All the experiments were carried out on a NVIDIA GTX 1660Ti 6GB GPU.
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Appendix C

Effectively evaluated timestamps

Table C.1 summarizes the effect of saving the candidate change point at each iteration and
using ternary search to optimize the change point location metric. Importantly, combining
both components reduced the number of evaluations in two orders of magnitude.

Table C.1: Average size of the original interval since the last detec-
ted change point, average effective interval size of evaluation and
average number of evaluations over all iterations among univariate
datasets.

Dataset Well-log EEG Activity Respiration

Total interval size 305.4±173.7 634.8±388.7 414.8±154.1 433.1±172.3

Effective interval size 42.3±31.6 137.7±228.7 81.6±62.3 36.8±24.2

#Evaluations 4.0±2.2 6.7±2.9 5.6±3.2 5.1±2.8
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