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CHARACTERIZATION OF E.COLI SWIMMING NEAR SINUSOIDAL SURFACES

Bacteria swim thanks to the movement of their flagella. That affirmation branches in many
forms, as bacteria have different body shapes and flagella types. Moreover, the environment
plays a crucial role. Swimming in the ocean with flows or near a surface is not the same.
Flat surfaces have been found to trap bacteria, eventually resulting in their adhesion to
the surface and the initiation of biofilm formation. Avoiding biofilm formation is an open
medical problem whose solution would save lives. This thesis studies, both experimentally
and theoretically, how surface shape can modify cell trapping. The main idea is that a
microscopic sinusoidal wall could reorient cells and expel them away from the wall.

The first chapter explains the main concepts required to understand this work and its
relevance. The second chapter describes the protocols for bacteria culture, fabrication of
the microfluidic devices, data acquisition, and analysis. Experiments were performed with a
genetically modified strain of E.coli that does not tumble because it is less likely for them
to leave the surface. Also, bacterial density was kept low to observe individual bacteria
movement.

The third chapter presents a theoretical framework for the numerical description of the
bacterial dynamics with minimal components. This leads us to an agent-based model of
spherical active Brownian particles in a two-dimensional representation that considers elastic
collisions and steric alignments with the wall.

Chapter 4 shows the results obtained in the experiments and the model, which show that the
curvature of the sinusoidal wall plays a fundamental role. When the curved wall is almost flat,
the bacteria hardly come out of the wall. On the other hand, if the valleys are too narrow,
bacteria will be trapped there. Varying the amplitude and wavelength of the surface profile, a
transition between these two regimes is found. The critical regime represents the case where
bacteria can still move through the valley quickly, but the escape angle is higher, causing the
bacteria to leave the surface, leading to a minimum in the accumulation. Measured velocities
in the tracking of bacteria support this result. The numerical model qualitatively reproduces
experimental observations adjusting only two parameters, the rotational diffusion coefficient
and the magnitude of the alignment interaction with the wall. This simplicity allows us
to conclude that the alignment of the cells with the wall is the cause of this phenomenon,
while other effects caused by hydrodynamic interactions with the wall and between cells
are negligible. Because many bacteria experience steric forces in a similar way, this study
promises to apply to other bacterial species.

Finally, chapter 5 summarizes the conclusions and perspectives of this work.
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RESUMEN DE LA MEMORIA PARA OPTAR AL GRADO

DE MAGÍSTER EN CIENCIAS, MENCIÓN FÍSICA
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PROF. GUÍA: MARÍA LUISA CORDERO GARAYAR, NÉSTOR SEPÚLVEDA SALAZAR

PROF. CO-GUÍA: RODRIGO SOTO BERTRÁN

CARACTERIZACIÓN DEL NADO DE E.COLI CERCA DE PAREDES SINUSOIDALES

Las bacterias nadan gracias al movimiento de sus flagelos. Esa afirmación se ramifica de
muchas maneras, ya que las bacterias tienen diferentes formas corporales y tipos de flagelos.
Además, el entorno tiene un papel crucial. No es lo mismo nadar en el océano con flujos
o cerca de una superficie. Se ha visto que las superficies planas atrapan a las bacterias,
eventualmente provocando su adhesión a la superficie y el inicio de la formación de biofilms.
Evitar la formación de biofilm es un problema abierto cuya solución salvaŕıa vidas. En esta
tesis se estudiará experimental y teóricamente, cómo la forma de la superficie puede modificar
el atrapamiento de las células. La idea principal es que una pared microscópica sinusoidal
podŕıa reorientar las células, expulsandolas lejos de la pared.

El primer caṕıtulo, explica los conceptos principales requeridos para entender este trabajo y su
relevancia. El segundo caṕıtulo describe los protocolos de cultivo de bacterias, la fabricación
de los dispositivos microflúıdicos, las mediciones y su análisis. Los experimentos se hicieron
con una cepa modificada genéticamente de E.coli que no hace giros porque eso supone una
menor probabilidad de abandonar una superficie. La densidad se mantuvo baja, para poder
observar el movimiento de bacterias individuales.

El tercer caṕıtulo presenta un marco teórico que describe como simular numéricamente la
dinámica de las bacterias con ingredientes mı́nimos. Esto nos lleva a un modelo microscópico
de part́ıculas brownianas activas esféricas en una representación bidimensional que considera
colisiones elásticas y alineamientos estéricos con la pared.

El caṕıtulo 4 muestra los resultados obtenidos en los experimentos y el modelo, que
demuestran que la curvatura de la pared sinusoidal juega un papel fundamental. Cuando la
pared curva es casi plana, las bacterias apenas salen de la pared. Por otro lado, si el valle es
demasiado estrecho, las bacterias quedarán atrapadas ah́ı. Variando la amplitud y la longitud
de onda del perfil de la superficie, se encuentra una transición entre estos dos reǵımenes. El
punto cŕıtico representa el caso en que las bacterias aún pueden moverse por el valle, pero el
ángulo de escape es mayor provocando que las bacterias salgan de la superficie, causando un
mı́nimo en la acumulación. Mediciones de la velocidad v́ıa tracking apoyan este resultado. El
modelo numérico reproduce cualitativamente las observaciones experimentales ajustando solo
dos parámetros, el coeficiente de difusión rotacional y la magnitud del alineamiento con la
pared. Esta simplicidad permite concluir que el alineamiento de las células con la pared es la
causa de este fenómeno, mientras que otros efectos causados por interacciones hidrodinámicas
son despreciables. Debido a que muchas bacterias experimentan fuerzas estéricas con la pared
de forma similar, este estudio promete aplicar a otras especies de bacterias.

El caṕıtulo 5 resume las conclusiones y perspectivas de este trabajo.
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que han compartido conmigo. Aprend́ı de ustedes a hacer modelos y experimentos, dándome
una perspectiva mucho más profunda de mi trabajo, lo cual valoro mucho. Ustedes saben
mejor que nadie la dedicación que le hemos puesto a esta investigación y sin su ayuda no
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que los quiero mucho.

iv



Contents

1 Introduction 1

1.1 Biofilm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Objective: to interrupt biofilm formation . . . . . . . . . . . . . . . . 3

1.2 Active matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Bacterial suspensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Escherichia coli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Surface effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Curved surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Experiments 11

2.1 Experimental Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Bacteria culture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Fabrication of microfluidic devices . . . . . . . . . . . . . . . . . . . . 12

2.1.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Image analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Mask creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Noise treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.3 Intensity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.4 Bacteria tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Numerical models and simulations 27

v



3.1 Theoretical framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Agent-based models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.2 Overdamped dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.3 Rotational diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.4 Alignment with the wall . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 The collision force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.2 Rotational diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.3 Final model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.4 Numerical integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.5 Intensity profiles in simulations . . . . . . . . . . . . . . . . . . . . . 35

3.2.6 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Results 37

4.1 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Cell adhesion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.2 Circular trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1.3 Flat wall trapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1.4 Steric alignment with the wall . . . . . . . . . . . . . . . . . . . . . . 39

4.1.5 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Mean intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.1 Two-dimensional mean intensity . . . . . . . . . . . . . . . . . . . . . 44

4.2.2 Intensity profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.3 The c1 coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.4 Mean of the normalized intensity . . . . . . . . . . . . . . . . . . . . 52

4.3 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.1 Speed distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.2 Speed profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

vi



4.3.3 Characteristic times . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Conclusions and perspectives 63

Bibliography 65

Annexed 71

Normalized intensity and speed profiles for all cases 72

vii



List of Tables

2.1 Summary of all quantities used in the image analysis . . . . . . . . . . . . . 26

3.1 Summary of the quantities used in the simulations . . . . . . . . . . . . . . . 33

viii



List of Figures

1.1 Diagram of biofilm formation . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Examples of active matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Comparison of bacteria flagella of different species . . . . . . . . . . . . . . . 5

1.4 Force dipole approximation for bacteria swimming effects in fluids. . . . . . . 6

1.5 Volumetric reconstruction of bacteria during a wall-entrapment event. . . . . 7

1.6 Curved surfaces studied in the literature . . . . . . . . . . . . . . . . . . . . 9

1.7 Results previously observed in sinusoidal surfaces . . . . . . . . . . . . . . . 10

2.1 Channel diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Microfluidic device diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Focal plane diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Typical video frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Mask example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Bands example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Mean noise example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.8 Mean image and profile of an experiment . . . . . . . . . . . . . . . . . . . . 20

2.9 Tracking video frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.10 Detection method comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.11 Example of trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Diagram of the components involve in the wall allignment . . . . . . . . . . 31

3.2 Example of trajectories for the simulations . . . . . . . . . . . . . . . . . . . 36

ix



4.1 Frames of an experiment not used because the channel was not coated with
BSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Circular trajectories near walls . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Observation of a train of bacteria swimming in the same direction . . . . . . 39

4.4 Trajectories of bacteria following the profile of the curved wall in experiments
and simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5 Clusters formed in valleys of the most . . . . . . . . . . . . . . . . . . . . . 42

4.6 Collision in a curved wall with low amplitude . . . . . . . . . . . . . . . . . 42

4.7 Comparison in simulations between values of kcell in the high curvature case 43

4.8 Mean intensity over a period for different values of A and λ . . . . . . . . . . 45

4.9 Experimental intensity profiles . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.10 Coefficient c1 for experiments and simulations . . . . . . . . . . . . . . . . . 48

4.11 Comparison of the accumulation transition curves for different values of K and
Dr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.12 Comparison of intensity profiles within experiments and four simulation
candidates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.13 Coefficient c1 as function of the curvature κ . . . . . . . . . . . . . . . . . . 51

4.14 Comparison of the accumulation transition curves for experiments and the
optimal set of parameter with the curvature define by constant curvature κ∗ = 0.3 52

4.15 Mean intensity in the A, λ parameter space for experiments and simulations 53

4.16 Mean normalized intensity 〈I(x)〉 as function of the curvature κ . . . . . . . 54

4.17 Probability density functions for the normalized speed in contact with the
curved wall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.18 Probability density functions for the normalized speed in contact with the
curved wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.19 Speed profiles compared between experiments and simulations with the
parameters K∗ = 3.0, D∗r = 0.015. . . . . . . . . . . . . . . . . . . . . . . . . 59

4.20 Minmimum of the speed profile as a function of the curvature . . . . . . . . 60

4.21 Diagram of the definition of the contact and escape times . . . . . . . . . . . 61

4.22 Mean and standard deviation of the characteristic times in experiments and
simulations with the best pair of parameters . . . . . . . . . . . . . . . . . . 62

x



A.0 Normalized intensity and speed profiles for all amplitudes and wavelengths for
the experiments and the simulation with the pair of optimal parameters. . . 77

xi



Chapter 1

Introduction

Life is a beautiful phenomenon. We struggle to find it in other parts of the universe, yet in our
planet is everywhere. Even in the most inhospitable places, such as volcanoes and deserts, life
flourishes. Also, life comes in different forms as living organisms are roughly classified into
five very different kingdoms. Such diversity raises many questions for scientists interested in
understanding life. Biophysicists are devoted to revealing the intricacies of living organisms
via physics and sometimes chemistry. This novel approach has gained much attention, as
physics provides a fundamental vision of the phenomena that allow us to understand them
in a broader sense, grouping those with a common interpretation.

Biophysics has addressed topics of various parts of life. There are studies with a physical
approach on cell membranes [1, 2, 3], biological macromolecules [4, 5, 6], evolution [7], bacteria
movement [8, 9], diseases such as cancer and Alzheimer’s [10, 11], ecology [12] and much else.
Physics has already brought to these topics fundamental explanations, which contributed
to typically descriptive biology in the quest to understand life. Biophysics has proven its
usefulness in a few decades.

This thesis focuses on studying bacteria movement, in particular the interaction between
bacteria and sinusoidal walls from a biophysical point of view to control biofilm formation,
either to increase or reduce its appearance.

1.1 Biofilm

Biofilms are consortia of cells living on a surface. These cells secrete polymers, typically
proteins and polysaccharides, which form an extracellular matrix shared by the cells.
Mechanisms employed in biofilm formation vary depending on strains and environmental
conditions. It is challenging to deal with biofilms, as antibiotics have failed at killing bacteria
in biofilm even at a concentration 1000 times higher than the normal concentration that kills
planktonic bacteria [13]. This means that biofilm is a chronic bacterial infection when it is
formed in a organical tissue.

Biofilms were not a problem in the early development of health care because it is relatively

1



Figure 1.1: Diagram of biofilm formation in chronological order. a) Reversible association of
a bacterium with a surface. b) Irreversible adhesion of bacteria, due to chemical or physical
reasons. c) Cellular division leads to formation of microcolonies and aftwerwards d) biofilm
structure is complete (from [13])

.

rare to have this kind of infection in a human. Due to this, biofilm was the last of the
problems, but this has changed recently. This change relies on the cause of biofilm formation
in the human body. “The inability of the host and of therapeutic efforts to resolve acute
infection triggers a series of events that culminates in a chronic condition” [14]. Diabetes
and intra-corporal devices are contemporary reasons that decrease the ability of the body
to resolve an infection, so biofilm appears. Badly treated diabetes can produce chronic
hyperglycemia, associated with failure of blood vessels among many other organs [15]. This
reduces wound healing as less blood reaches the wound; therefore, people with diabetes are
an at-risk group for biofilm formation.

On the other hand, intra-corporal devices are made to replace something on a human body,
compensating for the missing function. The problem is that intra-corporal devices are like
dead tissue for the immune system. This means that any bacteria that attach to this surface
will be harder to reach. These device-related infections have interrupted the development of
complex medical devices that could replace organs like the heart. If these mechanical organs
are susceptible to infections, they bring more problems than solutions [16]. Considering this,
developing technology that prevents biofilm formation has brought interest as it could allow
new medical technologies that would save lives. Due to this many studies have focused on
biofilm, both experimentally and theoretically [17, 18, 19, 20, 21].

2



1.1.1 Objective: to interrupt biofilm formation

Biofilm formation as shown in figure 1.1 begins with the association of a bacterium to a
surface. This means that the bacteria are near or in contact with the surface. Bacteria are
attracted to the surface due to hydrodynamic effects, and some species can even sense the
presence of a surface by signaling molecules [22, 23]. This state of association is reversible as
bacteria are still moving on the surface. Depending on the species, bacteria may move very
little or explore the surface before adhering [16]. Once adhered, due to chemical or physical
reasons, the process is irreversible. The cell will divide, forming microcolonies of bacteria
whose secretions will form the extracellular matrix that composes the biofilm. Therefore, to
reduce biofilm formation, it is essential to revert the association of bacteria with a surface
before the adhesion takes place. To do so, the chemical and physical properties of the surface
must be tweaked.

Considering the above, the objective of this thesis is to generate a surface that makes
bacteria to move away from it due to its sinusoidal geometry, thus preventing cell
adhesion. This will be done experimentally in in vitro systems, i.e., in controlled non-living
environments. In addition, a numerical model of the system will be generated to
pursue a fundamental physical explanation of the experimental observations. This
complement between experiments and simulations will lead to a deeper understanding of the
results. The rest of this chapter introduces the physical effects that led to this objective. In
section 1.2 we describe bacteria movement in general and later on focus on Escherichia coli
(E. coli), the species we used in experiments. Meanwhile, section 1.3 describes the effects of
surfaces on bacteria swimming and the idea behind using a sinusoidal surface.

1.2 Active matter

In this thesis, we focus on the interaction between E. coli bacteria and a surface. The area
of biophysics that encompasses this subject is known as active matter. Active matter studies
complex systems with the perspective that the active motion of every particle is the key
to understanding the phenomena. Active motion refers to the idea that a particle obtains
energy from the medium to propel itself. This is a common feature of organisms such as
prokaryotic cells and animals. Interactions between particles or their environment lead to
fascinating phenomena. Flock of birds [24, 25], schools of fish [26], bacterial suspensions
[27, 28, 29], crowds of people [30] and even artificially active colloidal particles [31, 32] are
examples of active matter shown in figure 1.2. Typically, these systems exhibit interesting
collective behavior. For example, in flocks and schools, individuals move more or less in the
same direction and are able to follow as a whole the change of direction proposed by any
individual. This collective movement is a survival method that allows the flock to avoid
attack by predators [24, 25].

3



Figure 1.2: a) Flocks of birds, b) school of fish c) active colloids, d) crowds, and e) bacterial
suspensions are examples of active matter. The active matter is present at the micro and
macroscopic scales.

1.2.1 Bacterial suspensions

Among the different kind of active matter examples, we are interested in the culture of
bacteria in fluids, called bacterial suspensions. Bacteria are grown in a rich medium and
put in microscopic environments to study the dynamics of the cells. The liquid medium and
the environment can be controlled to study bacteria in different conditions. For example,
bacteria can be centrifuged and moved to a medium with less nutrients in which they cannot
divide. However, not only the conditions can be controlled, but the bacteria themselves,
by using different species or even by genetic modifications. Individuals of the same species
E. coli can move in straight lines instead of doing tumbles just by changing one gene [33].
Genetic modifications produce new species strains that can better suit a specific study. Such
possibilities make bacterial suspensions the playground of choice for many active matter
studies.

Bacteria have different mechanisms to move depending on their natural habitat. In solid
surfaces, bacteria move through twitching, gliding, or usage of flagella. Flagella-driven
movement is the most common type of movement, and it also allows swimming in liquids.
Flagella structure has three parts, the basal body that produces rotation, the filament, a
helical propeller, and the hook that connects both structures transmitting the torque from
the body to the filament [34]. Different species may have differently composed flagella and
also a different number of flagella (see figure 1.3).

When swimming, the flagella of bacteria move coordinately to propel the body in one
direction. This movement propels the bacteria with a force F. The body of the bacteria
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Figure 1.3: Electron micrographs of a) Salmonella typhimurium and b) E. coli cells. Position
and number of flagella are different. c) Structural differences in the basal body among
bacterial species observed with electron cryotomography (adapted from [34, 35]).

also experiments a drag force −F due to the fluid resistance. Therefore, the effect of bacteria
movement in fluids is modeled as a force dipole. This description has one degree of freedom
called polarity. Polarity reveals whether the bacteria push or pull the fluid. Pushers have
their flagella at the rear while the pullers have them at the front. An alternative description
is that the pushers produce a flow away from their bodies, while pullers produce the opposite.
In figure 1.4 d) it is possible to see a comparison between the flow produced by these
two swimming mechanisms. Flow induced by bacteria produce hydrodynamic interactions
between cells and also with surfaces. Such interactions have been extensively studied, and
the effects of interest to us will be discussed in section 1.3.

1.2.2 Escherichia coli

In our study, we use the species of E. coli bacteria because it is the most studied bacterial
species. For example, as seen in figure 1.4, it has been proven that the first-order
approximation of the dipole force scheme fits properly the flow produced by E. coli swimming
at long ranges [36]. Near-field effects are not captured correctly. Also, physical properties
of E. coli have been measured. Cells are rod-shaped and are about 2 µm long and 0.5 to
1 µm in diameter [37]. E. coli produces around 5 to 10 flagella randomly distributed across
the cell surface. When moving in straight lines or in a “run”, these flagella form a bundle
that rotates in a counter-clockwise direction (when seen from behind). If any flagella start
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Figure 1.4: a) Experimentally measured average flow field produced by a single E. coli.
b) Best-fit force dipole flow and c) the subtraction of the best-fit flow and the measured
field. Parameters for the fitting include the magnitude of the forces |F| = 0.42 pN and the
separation l = 1.9 µm between the two forces (taken from [36]). d) Comparison between flows
produced by spherical pushers and pullers in numerical simulations when moving upwards
(taken from [39]).

rotating clockwise, the bundle disassembles, and bacteria changes the direction of motion
or “tumbles”. This movement is described as a run-and-tumble motion. The basal body
of E. coli rotates at 10 Hz and the typical tumble duration is 0.1 s [38]. We measured the
average speed of an E. coli culture to be around 18 to 25 µm/s. The average speed depends
on culture conditions such as temperature, oxygen presence, and mechanical stress produced
by manipulation.

The species E. coli also has many mutant variations. It has been proven that up to 80% of
the genes in a typical genome of E. coli are variable or “accessory” genes [40]. In laboratories,
E. coli strains normally have a gene for expressing green (GFP) or red (mCherry) fluorescent
proteins, allowing observation of bacteria only. For active matter studies, in particular,
the most common genetic modification corresponds to the elimination of the synthesis of
the cheY protein. This protein is involved in the transmission of sensory signals from the
chemoreceptors to the flagellar motors, or in other words, regulates the tumbles as a reaction
to chemical signals. Therefore, cheY deletion causes the cell to stop tumbling. This is
useful for studying particular properties of the swim that are independent of the tumbles
or to avoid effects produced by tumbling. Bacteria with this genetic modification are called
“smooth swimmers” and we used them in our experiments. Another typical example of
genetic modifications is E. coli strains rendered non-motile via deletion of motility proteins
and then restored motility via inducible expression of the deleted gene from a plasmid. Other
bacteria or a specific signal can regulate the induction. These strains lead to interesting
dynamics, such as pattern formation and directed movement [41, 42].
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Figure 1.5: a) A sequence of volumetric reconstructions of a swimming cell during a wall-
entrapment event. b) A close and lateral view of a cell colliding with the wall. Time intervals
between reconstructions are 0.2 s in both figures. (c) For the same cell as in (b), the wall
distance is plotted as a black line, while the red line plots the angle of the cell-body axis. In
both curves, three stages can be identified: approach to the wall, reorientation, and surface
swimming. The grey shaded areas help to visualize these three stages (taken from [43]).

1.3 Surface effects

When E. coli bacteria approach a flat surface, several physical effects affect their dynamics.
These effects produce the association of the bacteria with the surface, causing the bacteria
to remain swimming in contact with the surface. It should be emphasized that these effects
occur prior to adhesion. We are interested in these effects because our objective is to prevent
adhesion from occurring. Bianchi et al. [43] described these effects clearly by separating them
into three stages. The wall approach stage, the steric reorientation stage, and the surface
swimming stage.

First, in the wall approach stage, the cell is not in contact with the wall, meaning that there
is no direct interaction. It is reasonable to think that in this stage, the dynamics should not
be the same as when the bacteria are far from the surface. This change is associated with
hydrodynamic effects caused by the flow generated by the movement of bacteria. For flat
surfaces, this cell-surface hydrodynamic interaction has been measured to slow down E. coli
bacteria by around 20% of their bulk velocity and on average not rotate bacteria except for
nearly parallel swimming [43]. Such results are not predicted accurately by the force dipole
approximation because near field effects are more relevant [36].

The moment bacteria reach the wall, a steric force arises. This repulsive force prevents the
bacterium from passing through the wall. Therefore, its magnitude is equal to the component
of the force exerted by the flagellum in the direction perpendicular to the wall. This force
will have an associated torque that will produce a reorientation of the cell until parallel to
the surface. Therefore, this stage is called the reorientation stage. Near-field hydrodynamic
interactions are still present, but steric reorientation is dominant for cells incident on the
surface at a considerable angle.
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Then, in the surface swimming phase, bacteria are now almost parallel to the surface, and
the dynamics are governed by both the contact and viscous forces. When swimming away
from the surface, bacteria swim in straight lines, and the viscous forces are opposite to that
direction. Also, rotation of the flagella produces a rotation of the cell body in the axis of
movement. When near a surface, new viscous forces appear. First, as can be seen, when
pushing a ball on the surface of a pool, translation produces a rotation of the ball in the
perpendicular direction to the movement contained in the surface plane. Second, the helical
bundle of the flagella also experiment a force due to variations of the local drag coefficient
when near a surface. Both of these effects couple and produce bacteria to move in circular
trajectories when in contact with a wall [44]. Figure 1.5 a) shows a circular trajectory
measured by three-axis holographic microscopy.

A similar hydrodynamic model also shows that the equilibrium contact angle with a flat
surface is not zero due to viscous forces. Such predictions were verified experimentally by
measuring the average contact angle of cells swimming in contact with a surface, which on
average was 5° [45]. In figure 1.5 c) the red plot shows that the angle wobbles around a
mean different from zero. This leads to the trapping of bacteria on the surface, increasing
the residence time of bacteria to times much greater than the usual time of reorientation.
For non-tumbling E. coli the average residence time has been measured to be 64 s [36] and
21 s for E. coli that tumble [46]. This cell trapping is responsible for the accumulation of
bacteria on a flat surface.

Another species of bacteria may experience other physical effects. For example, for puller
swimmers, since the flagella are at the front of the body, direct contact between the flagella
and the surface dominates the dynamic. Instead of an alignment, such interactions produce
a surface scattering of the cells. This has been observed for the eukaryotic Chlamydomonas
algae [47].

There are also differences between in vitro and in vivo environments. in vitro systems have
considerably different conditions from natural ones, where surfaces are coated with adsorbed
polymers. Cell adhesion is more likely in in vivo surfaces as the polymers may block cell
movement. Moreover, in in vitro experiments, bacteria are grown in rich media, while in
natural conditions, bacteria live deprived of some minerals or nutrients. Cell membranes are
susceptible to such changes in the growth medium. In in vivo situations, the cell membrane
develops structures to adapt to environmental conditions, which alters the adhesion process
[48]. This means there are biological effects since bacteria can sense the presence of a surface
and react to its presence [49, 50]. This should be kept in mind because we cannot fully
generalize the results of this study. Even so, the complexity of in vivo systems, in the sense
of their variability and inhomogeneity, means that in vitro studies are still relevant. Moreover,
even though several studies have been done in in vitro environments, there are still aspects
of the interplay between surface geometry and cell accumulation that are not understood.

1.3.1 Curved surfaces

A scientific community has focused on physical rather than chemical alternatives to interrupt
biofilm formation because bacteria evolve rapidly and become resistant to such substances. As
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b) c)

Figure 1.6: Examples of curved surfaces studied in the literature. a) Microscopical wells of
nanometric depth distributed in different patterns. Each pattern has its own profile below the
image and the colors indicate depth (taken from [51]). b) SharkletTM surface that biomimics
the skin of sharks shown in c), reducing biofouling (taken from [52]).

a result, several studies have focused on using surface topography to prevent colony formation.
Many topography designed surfaces have helped decrease bacteria accumulation, such as
microscopic wells of nanometric depth homogeneously distributed in spaces [51], diamond-
like patterns inspired in sharkskin [52] and hierarchically wrinkled surface topographies
having wrinkles of different length scales (generations) ranging from tens of nanometers to
a fraction of a millimeter [53]. Figure 1.6 shows pictures of two of these figures. The effects
of these surfaces have not yet been fully understood. An insightful study that measured
cell accumulation in-cylinder depending on the radius. They showed that there is a critical
radius where there is no solution for an angle of equilibrium in contact with the wall. In
other words, hydrodynamic drag forces are not enough to maintain contact with the wall,
and therefore bacteria leave the surface [45] short after the reorientation stage.

This brings us to the idea behind this thesis. A sinusoidal-shaped surface will be composed
of valleys and peaks. In the valleys, the cells will reorient themselves and be guided towards
the peaks. There they will detach from the wall due to its curvature. Unfortunately, a few
months ago, we discovered a study with similar ideas published in May 2019 [54]. There they
determined the accumulation of cells in sinusoidal surfaces as a function of the amplitude and
wavelength of the surface, as shown in figure 1.7. We can observe that there is a minimum
of the accumulation in the surface for amplitude 5.25 µm and wavelength 28 µm. We observe
similar results in our experiments as will be discussed in section 4.1.5.

9



Figure 1.7: Results previously observed in sinusoidal surfaces. a) Measure in experiments
of the accumulation of bacteria in the surface divided by the density of bacteria in the bulk
of the system. For low amplitudes bacteria accumulate more as the behavior in similar to
a flat surface. Then for high amplitude low wavelength, bacteria start to stagnate in the
valley and the accumulation increases. The minimum accumulation is observed in the withe
line associated with a maximum curvature of κ∗ = 0.31 µm. They also compare results with
models of b) brownian dynamics and c) run and tumble motion, with similar results. (taken
from [54]).

To differentiate ourselves from this study, in this thesis, we delve deeper into the physics
governing the dynamics observed on these surfaces, using data obtained by tracking such as
velocities and contact times. Also, we propose a more simplified model with the advantage
that a minimal representation points to the important aspects of the dynamics, in this case,
the steric alignment with the wall. Before publishing this work, we also want to perform
experiments with tumbling strains of E. coli as such comparison is not considered in [54].

1.4 Thesis structure

The organization of this thesis is as follows: Chapter 2 describes experimental protocols,
data acquisition, image analysis, and tracking methods. Chapter 3 describes the theoretical
framework of the simulations. Theoretical descriptions of low Reynolds number dynamics,
rotational diffusion, and steric alignment are considered. Then we summarize the model and
describe how the simulations are performed. In chapter 4, we describe the results obtained
with the described methodology. It begins with a summary of relevant observations that
correspond with the literature and develops a big picture of the system. Then we describe
the main observation of this project; the accumulation transition. This transition is observed
in an indirect measure of mean bacteria density, the intensity profiles. We show how the
sinusoidal shape of the wall can go from aiding bacterial release to causing bacteria to become
trapped in the valley, depending on the parameters of the wall. We then use particle positions
and velocities to understand the dynamics of bacteria near walls further. We show how the
particles slow down in overly curved valleys and measure the time it takes for the bacteria
to exit the wall. Chapter 5 discusses the main conclusions of this work and its implications.
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Chapter 2

Experiments

2.1 Experimental Protocols

2.1.1 Bacteria culture

Experiments were done with the non-chemotactic, smooth swimmer strain of E.coli JEK1038
(W3110 [lacZY::GFPmut2, cheY::frt], green) provided by prof. Juan Keymer. The strain was
modified to express the green fluorescent protein GFPmut2, and its run-and-tumble dynamics
were suppressed by cheY deletion [33].

Bacteria stocks are stored at −20 °C. To initiate a new bacterial culture, 20 µL are put
in 5 mL of Lysogeny Broth (LB) medium for approximately 24 hours in an incubator with
a shaker at 28 °C and 180 rpm. Then, 30 µL of this overnight were diluted in 3 mL of LB
medium with 3 mM isopropyl β-D-1-thiogalactopyranoside (IPTG Sigma-Aldrich) and grown
until the optical density at 600 nm (OD600) reaches 0.5 ± 0.05. Afterward, we added 0.1%
w/v bovine serum albumin (BSA) to avoid cell-to-cell adhesion and centrifuge the culture
for 15 minutes at 4600 rpm or 2600 relative centrifugal force (rcf), leaving a bacteria pellet
at the bottom of the falcon tube. We resuspended the pellet in 3 mL of MMA, resulting
in a mixture with an OD600 slightly lower than 0.5. MMA or minimal motily media is a
phospate buffer where bacteria can live, but prevents cell division [55]. MMA is composed
of 10 mM K2HPO4, 10 mM KH2PO4, 0.1 mM EDTA and 20 µM sodium lactate. To reach a
low bacterial density, we again diluted until 5× 10−4 OD600 is reached. It is important to
mention that OD600 is insufficient to determine the final density in our experiments since
bacteria will not enter the channel evenly every time because they move through the walls.
We assume that these density variations are sufficiently small not to affect the dynamics of
each regime.
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2.1.2 Fabrication of microfluidic devices

Figure 2.1: Diagram of the 3D perspective of the channel for one amplitude A and different
wavelength λ, not at scale. The frontal side of this sketch will face towards the microscope
slide after forming the PDMS-PDMS bonds. For each channel, the curved wall has a
sinusoidal form with one amplitude A and different wavelengths λ. There are four different
channels with amplitudes A = 3, 6, 9, 12 µm and each one is divided into four sections with
wavelengths λ = 21, 24, 27, 30 µm allowing to study in a range of curvatures. The gravity
points out of the plane.

In the experiments, we put the bacteria suspension in a microfluidic channel that is 100 µm
width and 25 µm deep and have three flat walls and one curved in a sinusoidal form. The
channel is divided in several sections with different combinations of amplitudes A and
wavelengths λ. Figure 2.1 shows a diagram of the channel. The nominal values of the
amplitudes are A = 3, 6, 9, 12 µm and the wavelengths λ = 21, 24, 27, 30 µm.

We fabricated the microfluidic devices with conventional optical lithography techniques [56,
57] to create a mold with the shape of the channels. The mold creation process begins with
cleaning a silicon wafer in the plasma cleaner for 8 minutes. The objective is to remove
organic contaminants and dehydrate the substrate. Then the photoresist (SU-8, Gersteltech
Sarl, GM-1070) is added, approximately up to half the diameter of the wafer. The wafer
is rotated in a spin-coater, first at 500 rpm for 60 s to distribute the photoresist over the
entire surface of the wafer, and then by the final rotation speed 3100 rpm for 40 s, to reach
the desired thickness of 25 µm. The higher the rotation speed, the thinner the film left on
the wafer. The next step is to evaporate the solvent from the resin so that a dry layer
remains. This is done on a hotplate (Fisher Scientific model Isotemp) in two steps, the first
at 65 °C for 15 minutes, the second at 95 °C for 35 minutes. The design is printed on this
film, using a maskless laser writer (Heidelberg Instruments model MLA100) that draws with
a UV laser at a dosis of 620 mJ/cm2 the design on the wafer coated with SU-8. This is a
negative resin, which means that everything that is exposed to UV light will reticulate and
remain on the wafer after development. This happens because the UV light interacts with
the salt in the solution creating hexafluoroantimonic acid that then protonates the epoxides
groups in the resin monomers. The monomer are thus activated but the polymerization will
not proceed significantly until the temperature is raised as part of the post expose bake.
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The post exposure bake (PEB) heating process is also divided in two parts of 65 °C for 15
minutes and 95 °C for 40 minutes. Here the formed polymers will cross-link, meaning that
they will form bonds that link one polymer chain to another. After baking the wafer, it
is developed, i.e. it is immersed in propylene glycol monomethyl ether acetate (PGMEA
Sigma-Aldrich) for 3 minutes until all unexposed resin is dissolved and then the wafer is
washed with isopropanol. Finally the wafer is baked at 135 °C for 2 hours to increase the
crosslinking rate inducing elimination of cracks or unstuck parts. At the end of the process
the wafer has a pattern with the shape of the channels.

The UV laser does not focus perfectly so the real values of the amplitude and wavelength
differ from the nominal values, mostly on the amplitude A ∼ 12 µm where the differences
are up to 2 µm. Nevertheless, both A and λ were measured for every channel section. The
measured dimensions will be used to characterize channels.

The wafer is put in a petri dish and filled with polydimethylsiloxane (PDMS). We prepare
a PDMS mixture of Sylgard 184 elastomer (Dow Corning) base and curing agent in a 10:1
mass ratio. It is essential to mix for several seconds to ensure the PDMS is homogenous. If
the mixing is not enough, some parts of the PDMS might not separate from the mold and
cause irregularities on the channel. Then, the mixture should be centrifuged for 10 minutes
at 5000 rpm to degas it. To ensure there is no air after pouring the mixture on the mold,
it is necessary to put the mold in a vacuum chamber. The remaining bubbles will expand
and merge, so they pop more easily. Finally, the mold is left in an oven at 65 °C for at least
1 hour. If the air bubbles were not removed, they would expand during the heating process
and could ruin the shape of the channel. After removing each channel from the mold, we
made two entrance pools at opposite ends of the channels with a 4 mm tissue punch for each
channel.

We also considered that the channel must have the four walls made of PDMS to avoid different
mechanical or chemical properties on the walls. To do so, we cover a microscope slide with
a thin layer of ∼ 0.4 g of PDMS, spread with a plastic spatula. The slide is left overnight
on top of a leveled surface, so PDMS uniformly distributes, and then it is put into the oven.
Using a plasma cleaner, it is possible to bond the channel with the slide [58]. We set the
RF level to maximum power and exposed the PDMS block with the microchannel and the
PDMS-covered glass to air plasma for 1 minute. PDMS is comprised of repeated units of
-O-Si(CH3)2. The exposure to an oxygen plasma will form silanol groups Si-OH, so when a
similar surface is brought into contact, covalent Si-O-Si bonds are created, displacing a water
molecule [59]. Finally, plasma oxidation will make the channel surface hydrophilic. The final
assembly is shown in the figure 2.2 a).
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Figure 2.2: a) Diagram of the empty microfluidic device. The red line is the channel where
all the experiments are performed. b) Diagram of the microfluidic device when the bacteria
suspension is added. The bacteria suspension, represented as green, fills both pools and the
channel.

2.1.3 Experimental setup

Figure 2.3: Diagram of the focal plane, shown
in red. The depth of the focal plane is 2 µm
so the depth of the channel does not matter in
the observed dynamics.

Since E.coli cell membrane is negatively
charged, adsorption of cells to walls might
occur. We coated the channel walls with
0.1% BSA solution dissolved in MMA to
prevent it. BSA also has negative charges
so that it will act as a blocking protein.
Then, we add bacteria and seal the access
holes with a glass coverslip preventing
external flows in the experiment, as shown
in figure 2.2 b). We used an inverted
microscope (Nikon TS100F) with a 40x/0.6
NA Plan Fluor objective to measure bacteria
fluorescence and recorded it with a camera (Andor Zyla 2048 × 2048 px2) at 10 fps, gain
4, and 2x2 binning giving a resolution of 0.32 µm/px. Since the PDMS thickness may vary,
adjusting the correction ring of the objective to the appropriate dimensions is necessary. The
focal plane will be on the edge of the channel, whose depth is approximately 2 µm. Therefore
we assume that the depth of the channel (25 µm) will not affect the observed dynamics.
Figure 2.3 shows a diagram of the focal plane.

2.2 Image analysis

This section describes how we analyzed the videos obtained from the experiments. A video
can be considered as a 3-axis matrix with values vtij where i, j are the pixel position indices
and t represents the frame number. The value of vtij is the intensity of that pixel. The
measured intensities have two sources, camera noise ntij and bacteria fluorescence btij. Our
goal is to use btij to measure different properties of the system. In figure 2.4 it is possible to
see a typical frame and histogram for the intensities vtij.
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Figure 2.4: a) Example of one frame in a video and b) probability density function (pdf) of
the intensity for the entire video. The video is saved in a 12-bit format so the intensities for
each pixel v can take values from 0 to 4096.

2.2.1 Mask creation

Masks are binarized images that determine the region of interest (ROI) for the experiment.
In this case, we look for the region where bacteria swim, bounded by the flat and sinusoidal
walls. The procedure starts by creating an image W from the original video that contains
the maximum value reached for each pixel in the video Wij = maxt∈[1,Tmax]v

t
ij. Pixels that

only represent noise will have maximum values Wij around the noise distribution, but the
presence of a bacterium in a pixel at a given time will considerably increase the obtained
maximum value at that pixel. Since bacteria mostly swim near walls, we can measure the
contour of the walls as we see in figure 2.5 a). In order to binarize the image, we use the
OpenCV python package whose thresholding function includes Otsu’s binarization algorithm
[60]. This method will automatically calculate a threshold for the image as a point between
two intensity peaks. As we see in figure 2.5 b), the histogram has optimal conditions for
this method. By doing this, we can detect the wall boundaries, and by filling all the pixels
in between with ones, we can create a binary image with the region of interest as shown
in figure 2.5 c). Finally, the tilting angle of the experiment can be measured as the angle
between the x-axis and the flat wall. Thus the binarized image and the whole video can be
rotated to produce a horizontal wall. The final result is displayed in figure 2.5 d).
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Figure 2.5: a) Max pixel intensity image, created directly from the video. b) Pdf of the
max pixel intensity image W . The first peak of the histogram is associated with the noise
distribution ntij and the second with btij. c) Binary mask derived from the max intensity
image and d) the rotated mask, so the flat wall is horizontal.

Figure 2.6: Image of the bands for the same
mask shown in figure 2.5 c).

The mask serves two primary purposes.
The first one is to determine the actual
dimensions of the channel. We manually
enter the position of the peaks and valleys
to the program. The amplitude A is half of
the mean vertical distance between a peak
and a valley from the input locations, while
the wavelength λ is the horizontal separation
between two consecutive peaks or valleys.
The input has subpixel precision, so errors
are only associated with mouse movement.
Errors are not systematic because they
are added randomly, so the method gives
reasonable measures. An automatic version
will introduce many problems, as the border
of the mask is not smooth, making many
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criteria not robust.

The second purpose is to define the boundary of the experiment. We define the bands Bc, Bf

around the curved and flat walls respectively, to be 4 µm thick from each wall into the bulk
system. Bands are used to measure the density near walls and to decide if a bacterium is
in contact with the wall or not. In figure 2.6 there is an example showing both bands. The
width of the bands was chosen to ensure that bacteria swimming in contact with the wall
fall entirely inside the band region. In some cases, bacteria will be swimming barely not in
contact with the wall but still inside the band region. These cases are considered marginal
since most of them will reach the wall one or two frames later.

2.2.2 Noise treatment

As we said, the intensity values are given by vtij = ntij + btij. We are only interested in btij, and
therefore, we want to minimize the effects of the noise. One important thing to consider is
that the mean noise intensity is not the same for every pixel. In other words, the probability
density function of noise intensities depends on space. There are two main reasons for this
inhomogeneity. First, there are different noise levels at the PDMS and the MMA because
out of focus bacteria contribute to the noise, and we can see in figure 2.7 a) and b) that the
noise is higher on the liquid. Second, the illumination is inhomogeneous because we close the
diaphragm to decrease noise intensity, only allowing light in the ROI to enter the camera,
but the effect is more intense on the edges of the image. This effect is often less important
than the first.

To deal with the space dependence of ntij, we exploit many properties of the data. We first
approximate the noise distribution by just calculating the mean intensity of v̄ = 〈vtij〉ijt
where the average is over space and time, as the lower indices indicate. Since for most pixels,
the bacteria intensity btij = 0 as bacteria occupy a small fraction of the ROI, v̄ is slightly
greater than the mean of ntij for different pixels. Now, we assume that every pixel satisfying
vtij < v̄+ 3σ where σ is the standard deviation of vtij do not include bacteria fluorescence, i.e.
btij = 0. The vtij values that satisfy the previous inequality are renamed as N t

ij because they
represent an approximation of the noise. Then, we are only interested in the region with
MMA and bacteria, so we estimate the mean of the noise in that region:

nest ≡ meanROI(N
t
ij). (2.1)

Here the meanROI function represents the mean in time and space of the values of N t
ij for

pixels in any frame but inside the ROI defined by the mask. The pdf of N t
ij in the ROI

is shown in figure 2.7 c). The resulting nest is then substracted to the video so now the
intensities on the video are given by Bt

ij = vtij − nest = btij + ñtij, where ñtij ≡ ntij − nest. The
pdf of Bt

ij is shown in figure 2.7 d). We observe that the mean of the noise distribution is
now close to zero, meaning that the matrix ñtij averages 0 in the ROI. Now the matrix Bt

ij

has negative values, so it is not a measure of the intensity of bacteria as it is strictly positive.
Nevertheless, due to the subtraction of the average noise, an average in time and space of
Bt
ij only has contributions from btij. Since bacteria intensity is proportional to density, the
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Figure 2.7: a) Mean noise image obtained averaging over time N t
ij. The experiment displayed

is one where the noise inhomogenities are clearly seen. b) Pdf of N t
ij over two 20 × 500 px2

windows, one in PDMS and the other on MMA. The noise distribution on MMA is shifted
to the right compared with the one on PDMS. Also, the difference is greater toward higher
values, probably due to the influence of bacteria out of the focal plane. c) Pdf of N t

ij only
for pixels in the ROI, where the dashed black line is on N = nest. The meanROI function
calculates the mean over this distribution. d) Histogram of Bt

ij, the video that is used for
future measurements. The dashed black line is on B = 0.

average of Bt
ij is and indirect measurement of mean bacterial density.

2.2.3 Intensity analysis

The properties of the Bt
ij matrix give the possibility to measure mean bacteria intensity over

time and space identically as measured with btij. We are interested in how bacteria behave in
the bands of each wall and how both walls compare. We begin by considering Mij = 〈Bt

ij〉t.
The image Mij is called the mean image of the experiment and is an indicator of where
bacteria swam through. An example of Mij is shown in figure 2.8 a). The curved wall has
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a sinusoidal form, so it is reasonable to average Mij over every period. If the experimental
data of one video has Nexp periods, the average intensity in one period Dxj is given by:

Dxj =
1

Nexp

Nexp∑
n=1

Mx+nλ,j. (2.2)

The matrix Dxj is an indirect measurment of the mean two-dimensional density in one period
of the curved wall. We use the coordinate x instead of i to emphasize that x only takes
values among one wavelength as the average is on every period. The position of the valley
corresponds to x = 0. Figure 2.8 b) shows an example of Dxj. Then we consider the intensity
near a wall iwi as:

iwx =
∑
j∈Bw

Dxj, (2.3)

where Bw is the band of a specific wall w, meaning that w is either c or f depending if the
wall is curved of flat respectively. Then the definition of iwx is the vertical sum of Dxj over the
band Bw. We normalize the intensity profiles by the mean of the flat wall intensity profile
īf = 〈ifx〉x.

Iwexp(x) =
iwx
īf
. (2.4)

With this definition the normalized profile of the flat wall shows little fluctuations around 1
for all experiments. The flat wall profile may have inhomogenities if a bacteria is adhered
to the surface, but that never happens if the channel is coated with BSA. Therefore, the
flat wall profile carries no relevant information for the analysis. For simplicity, from now on
we define Iexp(x) as the normalized intensity profile of the curved wall, without the upper
index c. Here we maintain the label exp to remember that this is the result from the video
of one experiment. The normalization allows the comparison between different experiments
respect to the standard of the flat wall. Therefore it is possible to define the mean normalized
intensity profile I(x) as the weigthed average of the Iexp(x) profiles of experiments that share
the same amplitude A and wavelength λ. If EA,λ is the set of experiments that share the
same values of A and λ, we calculate I(x) as:

N =
∑

exp∈EA,λ

Nexp, (2.5)

I(x) =
∑

exp∈EA,λ

Iexp(x)
Nexp

N
, (2.6)

where N is the total number of periods considered in the average. One set of profiles is
displayed in figure 2.8 c) as an example. When I(x) is lower than 1, the intensity is lower in
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Figure 2.8: Mean image and profile of an experiment with A = 5.7 µm and λ = 30 µm. a)
Mean image Mij of a experiment where pixels outside of the ROI where colored in black.
The accumulation on the walls can be seen. b) Mean intensity over a period for the mean
image shown in a). Both images share the same colorbar. c) Normalized intensity I(x) for
all experiments that share dimensions with the mean image of a). The profile of the flat wall
fluctuates around 1 for all experiments and will be omitted from now on. The errorbars are
the 95% confidence interval of the mean I(x) over the N periods.

the curved wall than in the flat wall. We interpret this as a lower concentration of bacteria
in the curved wall as compared to the flat one. The values of A and λ will be specified in all
figures with an intensity profile. Chapter 4 will profoundly discuss all the information and
physics related to intensity profiles.

2.2.4 Bacteria tracking

Tracking, in general, refers to determining the trajectories of objects in an image sequence.
There are two main steps when doing the tracking: object detection and track creation. In
this subsection, we will describe two different methods for doing detection and the tracking
method based on linear assignment problems (LAP tracker). These methods are the ones that
were the most succesful during this MSc thesis, but other options were studied as well. All of
the methods that will be discussed are already implemented on Trackmate, an open-source
plugin for Fiji [61].

We start by describing object detection. The specific objective is to determine bacteria
position via the intensity Bt

ij. Then, a detection algorithm should be able to measure intensity
variations indicative of the presence of bacteria. One possibility is to use the Laplacian of
Gaussian detector (LoG) [62, 63]. This method is easier to understand if the matrix Bt

ij

is thought of as a scalar field B(x, y, t). We only know the field values at a regular grid
of point, but we can calculate integrals and derivatives using standard numerical methods.
As the detector’s name indicates, we first convolve with a Gaussian and then calculate the
Laplacian of the result. The equations for the method are:
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G(x, y;σ) =
1√

2πσ2
exp

(
−x

2 + y2

2σ2

)
, (2.7)

Bgb(x, y, t;σ) = B(x, y, t) ∗G(x, y;σ), (2.8)

R(x, y, t;σ) = ∇2Bgb(x, y, t;σ). (2.9)

Here G(x, y;σ) is a Gaussian kernel that, when convolved (∗ operation) with the image,
produces a smoothed version Bgb(x, y, t;σ) where gb stands for gaussian-blurred. The reason
for the smoothing effect of this convolution is that it acts as a low-pass filter for the field
[64], removing highly space-dependent noise contributions. The value of σ is r/

√
2 where r is

the estimated bacteria radius. More importantly, in equation (2.9) the Laplace operator ∇2

is applied to Bgb(x, y, t;σ) to obtain R(x, y, t;σ). The result is that bacteria with maximum
intensity in the center will also have a minimum negative Laplacian there, so local minima
in R(x, y, t;σ) are bacteria centers. Locality, in this case, refers to a circle of the estimated
radius r, so the method detects bacteria as blobs of that size. There are more generalized
versions of LoG that allowfor non-circular particles [62]. This method is ideal for images
with noise and particles with a maximum intensity at their center and decaying at a radius
r, but it only detects circumferences, so it should not be used if it is necessary to know the
exact shape of the particles or their orientations.

Figure 2.9: Example of a typical frame for the
binarized matrix T tij.

Another possibility to consider is binarizing
the videos. A binarized image will have
sharp variations of intensity, and if done
correctly, will not lose bacteria in the
process. In our case, we again use Otsu’s
binarization method into the matrix Bt

ij.
The result is then used for the tracking,
so we call it T tij. An example of a typical
frame of this tracking video is shown in figure
2.9. Bacteria detection in T tij as simple
as considering all connected regions as a
particle. This detection method is known
as the thresholding detector. One possible
issue is that there is only one detection when
multiple cells collide. In figure 2.10 there is a
comparison with results for the two methods.
The LoG detector works well with noise, which does not mean that it will fail with a
binarized image. Proper binarization often helps with any detection method. Conversely,
the thresholding detector adapts to bacteria form and does not make fake detections. This
last point convinced us to use a thresholding detector for these experiments.

Now we deepen into the automatic tracking method described in Trackmate’s user manual.
There are many options for automatic tracking that use simple criteria such as the nearest
neighbor assignment or overlapping criteria. It is not meriting to explain these methods as
they only work under restricted conditions. Instead, the idea behind LAP trackers gives a
general tool for tracking without overcomplications [65]. A linear assignment problem refers
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Figure 2.10: Zoom image of a video T tij, and bacteria detection results displayed in green for
a) LoG detector and b) Thresholding detector. LoG detector adds virtual detections in large
bacteria, but the thresholding method will account for multiple bacteria collisions as only one
particle. Methods give comparable results, but the best choice will depend on experimental
properties, such as bacteria shape and frequency of collisions. In our case, Otsu’s binarization
method has the conditions to perform the algorithm successfully, so the overall thresholding
detector b) has better results than the LoG detector a).

to determining the assignment matrix A that satisfies:

A = argmin

(∑
k,l

AklCkl

)
, (2.10)

where Ckl is a cost matrix and Akl is a boolean matrix of 1 (link) and 0 (no-link) with
the restriction that there is only one link for each row or column. To understand how this
problem is used for tracking we need to inspect the cost matrix C. The simpler form of C is
to consider connections between detections of two frames t and t+ 1. These frames will have
n and m detections, respectively. Then C is an (n+m)× (n+m) with four quadrants.

• The top left quadrant of size n×m has the cost of linking a detection on frame t to one
in t + 1. The cost is Ckl = (DklPkl)

2 where Dkl is the distance between the detections
and Pkl = 1+

∑
f p

f
kl where pfkl is a penalization for differences on the particle feature f

given by pfkl = Wf
|fk−fl|
fk+fl

, where fk is the value of the feature f for particle k. Features
that are useful with the thresholding detector are bacteria perimeter and area. The
usage of penalization by features requires these characteristics to be held constant for
there to be a connection. The magnitude of the feature penalization Wf regulates the
importance of this conservation. If Dkl exceeds the double of the mean distance traveled
in each frame, Ckl is set to infinity

• Top right and bottom left quadrants are cost for not linking particles for frame t and
t+ 1 respectively. The cost values are set to c = 1.05×max(Ckl) where the maximum
is only taken on the top left quadrant and does not consider the infinite values.

• The bottom right quadrant is an auxiliary matrix in the Munkres and Khum algorithm
used to solve the LAP problem [66].

22



Considering the form of the cost matrix Ckl, depending on the quadrant of the connections,
the assignment matrix Akl will connect detections from one frame to another or start/end
tracks. Applying this to all frames will create the trajectories of the particles. A similar LAP
can be considered for all the resulting tracks. In this case, the goal is to merge tracks, so the
cost matrix includes distances between ends and starts of tracks. The cost is infinite if the
end occurs at a time T before the start. This process is called gap closing, as it allows to
solve gaps in the tracks caused primarily due to detection failures involved in collisions. If
particles separate from each other soon after the collision, this process will fix the errors. If
they do not, the involved particles could be interchanged, causing wrong links, so the time
T should be kept as low as possible. The LAP tracker as both frame-to-frame linking and
gap closing works for general-purpose tracking, but Brownian motion is the best performing
case for this method.

Nevertheless, we used a more specific version of the LAP tracker that considers the
trajectories’ properties in our experiments. The modification is simple but has profound
effects. Based on particle trajectories, a prediction of where spots will be in the next frame is
made. Instead of linking detections to each other, detections are linked with predictions based
on the previous frame. The Kalman filter, also known as the linear quadratic estimation
algorithm, is used to make predictions. Kalman filtering is a world in itself and has
applications in robotics, navigation of vehicles, geophysics, among others [67, 68]. Here
we need to know that the Kalman filter considers bacteria’s previous velocities to predict
the future positions. Predictions allow gap closing differently. If two particles collide, there
will only be one detection for two tracks. Then, one prediction will not have a link, but
another prediction can be made for the next frame based on the previous. Predictions can
fail to link up to Nf = 4 times before the track is ended. If a track successfully encounters
a detection before the Nf failed attempts, the gap is closed. However, the predictions are
not registered as intermediate positions, only truly measured detections. This method has
two more parameters: the initial search radius ri = 15 px = 4.8 µm and the search radius
rs = 10 px = 3.2 µm. Both are the maximum allowed distances for frame-to-frame linking,
with the difference that ri is only for new track initiation while rs is for linking considering
predictions. The algorithm is briefly summarized as:

• In the first frame, particles are linked to the second frame using standard particle to
particle connections. The result is many starting tracks whose initial velocity can be
measured, so predictions via Kalman filtering are now possible.

• For subsequent frames, the LAP is changed to prediction to particle linking, but the
cost matrix structure does not change. New velocity measures will be considered in the
Kalman filtering predictions.

• If a track fails to connect its prediction to a detection, new predictions will be made for
future frames based on the current prediction. If this fails up to Nf times, the track is
terminated.

• Also, new particles could appear, so if a detection fails to find a track, the next
frame, that detection will be considered in a separate LAP for tracking initiation.
This LAP will be solved only with particles not in a track and after solving the LAP
with predictions. This assigning order means that a track creation cannot cause other
tracks to end.
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The algorithm is successful in gap closing and frame to frame linking, bypassing problems
caused by collisions. This affirmation only applies if particles have a roughly constant velocity
and the search radius rs is more than the displacement between successive frames. The second
point is important because when bacteria collide with a wall, they may completely stop, so
a short rs may exclude these cases, ending the track. All the results of tracking are left
for chapter 4; meanwhile, figure 2.11 shows some trajectory examples. In table 2.1 all the
relevant quantities for the methods described in this chapter are summarized.

Tracking gives all the positions of a single bacterium connected in time. We can calculate
the velocity of particle i in a frame t as:

ṙi(t) =
ri(t+ dt)− ri(t)

dt
, (2.11)

where dt is the time difference between two successive detections in a trajectory, and ri is
the position of the i-th bacteria. The time resolution of the video is 0.1 s, but dt can be
greater if particles are not detected for a brief time, for example, in the case of collisions.
The maximum allowed value for dt is 0.5 s.

24



Figure 2.11: Example of trajectories obtained with the tracking method. The star represents
the start of each track and the triangles the end of them. The mask is used as background
to show the walls. Dimensions of the curved wall are shown at the bottom.
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Table 2.1: All the quantities used for the image analysis, with their description and values.
Parameters that are discussed but not include in the methods are not included in this table.

Quantity Description Values

A Amplitude of the sinusoidal curved wall. ∼ 3, 6, 9, 12 µm
λ Wavelength of the sinusoidal curved wall. ∼ 21, 24, 27, 30 µm
vtij Intensity of the raw data in the video.

v̄ Mean of the matrix vtij .

σ Standard deviation of the matrix vtij .

btij Part of the signal vtij associated to bacteria fluorescence.

ntij Part of the signal vtij associated to the background noise.

Wij Image with the maximum value of vtij for all frames. After
binarization is the mask that defines the ROI of the experiment.

Bc Band of the curved wall. It is the region 4 µm thick starting from
the wall boundary into the ROI.

Bf Band of the flat wall. It is the region 4 µm thick starting from
the wall boundary into the ROI.

N t
ij Video data considering only values that satisfy vtij < v̄ + 3σ.

The mean of this matrix over the ROI is used to eliminate noise
contributions.

Bt
ij The raw data vtij minus meanROI(V

t
ij). Averages of Bt

ij are equal
to one done exclusively with btij .

Mij Mean image obtained as 〈Bt
ij〉t

Dxj Period average of the average image Mij . The x coordinate only
takes values within a period.

iwx Intensity near a specific wall w, averaged over the vertical
direction in the respective band.

Iexp(x) Characteristic intensity profile in one period of the curved wall,
normalized by the flat wall, for only one experiment.

I(x) Average intensity profile profile between all experiments that
share same values of A and λ. See equation (2.6)

ri Initial search radius for the LAP tracker. Radius ri is used for
particle-particle linking at the beginning of a track.

4.8 µm

rs Search radius for a current tracking the LAP tracker. Radius rs
is used for particle-prediction linking.

3.2 µm

Nf Number of allowed failures for particle-prediction linking before
the track is ended.

4
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Chapter 3

Numerical models and simulations

3.1 Theoretical framework

This section explains details of the numerical model considered and the criteria used for its
election. We consider an agent-based model of spherical active particles with overdamped
dynamics in a 2-dimensional representation.

3.1.1 Agent-based models

In biophysics, models can be sorted into two classes, agent-based, and continuum models.
Agent-based models simulate the dynamics of cells individually, offering accurate system
descriptions. Depending on the complexity of the model, they can be costly in a
computational sense. Some examples of recent studies with such models are [69, 70, 71]. On
the other hand, continuum models consider a coarse-grained description with density and
velocity fields. We work in a low-density regime, so a continuum description is meaningless.
Therefore, we will use agent-based models. For simplicity, we consider cells with spherical
shapes. In reality, the cell shape depends on the growth phase of the bacteria culture, but
E.coli ’s body is a spherocylinder with typical dimensions of 0.5 µm in radius and 2 µm in
length.

3.1.2 Overdamped dynamics

To describe the dynamics of single cells, we invoke Newton’s second law:

mr̈ =
∑

F = Fhydro + Fflag + Fbrown + Fcoll, (3.1)

where we define four different force sources, Fhydro the hydrodynamic friction produced by
the fluid, Fflag the force produced by the flagella, Fbrown the Brownian force due to collisions
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with the liquid molecules, and Fcoll produced due to cell-cell and cell-surface collisions. We
can deduce an important fact widely accepted in microscopic systems with the following
analysis. To analyze the role of inertia, let’s imagine we have isolated E.coli bacterium that
suddenly stops swimming, so Fflag = Fcoll = 0. Although the influence of Fbrown is essential,
its effect is stochastic with zero mean. If we repeat the situation many times and average the
ensemble, its contribution is expected to be zero. Therefore, for the moment, we will neglect
it. Then we are left with the equation:

mr̈ = Fhydro = −γṙ = −6πRηṙ, (3.2)

where we used Stokes’ law to calculate the drag force coefficient γ with R = 0.5 µm being
the particle radius and η = 10−3 Pa · s the viscosity. Since the mass of an E.coli is m =
10−12 g, the characteristic time of slowing down is given by m/(6πRη) ≈ 10−7 s. This means
that in the timescale of 1 µs the bacteria should have stopped. We record at 10 fps in our
experiments, so the detention is immediate for our time resolution. This means that we are
working in the overdamped limit, where inertia is negligible, and so it is correct to simplify
the dynamics as:

γṙ = Fflag + Fbrown + Fcoll. (3.3)

3.1.3 Rotational diffusion

We considered two different effects of the fluid in the bacterial dynamics. First, Fhydro is
a phenomenological dynamical drag force that represents the average effect of the liquid on
an object moving through the fluid, and second, Fbrown of stochastic kind accounting for
the thermal fluctuations. The latter produces a mean square displacement of 〈r2〉(t) = 4Dt
where D is the diffusion constant given by the fluctuation-dissipation theorem [72]:

D =
kbT

γ
≈ 1.5× 10−1 µm2/s, (3.4)

where kb is the Boltzmann constant, T the temperature of the fluid. The same value for
γ was used. This diffusion constant is purely translational. Nevertheless, the collisions
between cells and water molecules also exert torques on the bacteria, meaning that the
orientation of swimming is subject to an equivalent stochastic process. This process has a
rotational diffusion constant Dr independent of D. For smooth-swimming E.coli it has been
measured at Dr = 0.057 rad2/s [36]. We can perceive the importance of rotational diffusion
by neglecting collisions in equation (3.3) and calculating the mean square displacement as
described in [8].

ṙ =
Fflag + Fbrown

γ
= up + F∗brown, (3.5)
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where u = 20 µm/s is the mean speed of bacteria, p the vector of orientation, and F∗brown is
just the force with the coefficient γ absorbed. Integrating equation (3.5) in time we obtain:

r(t)−���*
0

r(0) =

∫ t

0

[up(t′) + F∗brown(t′)]dt′, (3.6)

Taking the dot product of (3.5) and (3.6) we obtain an equation for the time derivative of
the square displacement.

ṙ · r =
1

2

d

dt
(r2) =

∫ t

0

[u2p(t′) · p(t) + F∗brown(t) · F∗brown(t′)]dt′ + irrelevant terms. (3.7)

All the terms in the right side of equation (3.7) are stochastic and vary from cell to
cell. Nevertheless, their average for all particles has properties that allow progress in the
calculation. For example, the terms cataloged as irrelevant consider dot products of two
quantities completely uncorrelated, the director vector p and the force F∗brown. Therefore
after averaging on the ensemble of cells, the average dot product is zero, and we are left with:

d

dt
〈r2〉 = 2

∫ t

0

〈u2p(t′) · p(t) + F∗brown(t) · F∗brown(t′)〉dt′. (3.8)

The quantity 〈p(t′) · p(t)〉 is the mean time correlation of the vector director p and depends
on the rotational diffusion coefficient as e−2Dr|t−t′| [8]. On the other side F∗brown is assumed
to be an uncorrelated noise, that satisfies 〈F∗brown(t) · F∗brown(t′)〉 = 2Dδ(t′ − t). Therefore,
integrating over both t and t′ we obtain:

〈r2〉(t) =
u2

Dr

(
t+

e−2Drt

2Dr

− 1

2Dr

)
+ 4Dt (3.9)

At short times, t� D−1
r = 18 s the exponential can be expanded in a Taylor series e−2Drt ≈

1− 2Drt+ 2(Drt
2) +O(t3) giving 〈r2〉(t) ≈ (ut)2, which means that at short times particles

swim is straight lines. Bacteria swimming is more important than diffusion even at our lowest
time scale of t = 0.1 s, as in that case 4Dt is two order of magnitude lower than (ut)2. In the
other case t� D−1

r the mean square displacement is (u2/Dr+4D)t. Adding the translational
diffusion discussed previously, we deduce an effective diffusion constant for long times Deff

given by:

Deff = D +
u2

4Dr

(3.10)

For the typical values mentioned, Deff ≈ 2× 103 µm2/s which is four orders of magnitude
larger than D. This means that bacteria swimming makes translational Brownian motion
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irrelevant compared to the effects of rotational diffusion. We conclude that Fbrown can be set
to zero for simplicity without losing relevant dynamics. We are left with the equation:

ṙ = up +
1

γ
Fcoll = up + F∗coll, (3.11)

where F∗coll absorbs the drag coefficient γ and hence has units of speed.

3.1.4 Alignment with the wall

We observe that bacteria interacting with the curved and flat walls, suffer a torque that
aligns them with the wall [43]. This alignment has its origin on steric forces. If we consider
equation (3.11) and take the dot product with the vector perpendicular to the surface n̂w at
the point of contact, we obtain:

��
��:0

ṙ · n̂w = up · n̂w + F∗coll · n̂w, (3.12)

where ṙ · n̂w = 0 is imposed as bacteria do not cross the surface. Since the collision force with
the wall F∗coll is exclusively perpendicular to the wall, equation (3.12) gives the magnitude
of the collision force as γup · n̂w, where γ reappeared because we are calculating the force.
Then we can write the equation for the angle of swimming θ considering that the inertia of
the cell is negligible and so that the sum of torques must be zero. Simplifying the system,
we consider the torques respect to the center of mass as the rotational drag and the torque
exerted by the wall. Other torques can be considered for more complete models to explain
observations such as circular trajectories and longer residence times in the wall [44, 45]. For
this thesis we decided to work with a simple model because these effects are not required to
explain the abandonment of the curved wall by bacteria. Using equation (3.12),

0 = −γrθ̇ẑ− uγ(p · n̂w)(rcm × n̂w), (3.13)

where γr is the rotational drag coefficient and rcm the vector from the center of mass to
the point of contact, as we are calculating the torque with respect to the center of mass.
Therefore, rcm× n̂w = Lcm(p · t̂w)ẑ where t̂w is the tangential vector to the wall in the point
of contact that satisfies ẑ = t̂w×n̂w and we used rcm = Lcmp with Lcm is the distance between
the center of mass and the point of contact taking into consideration the contribution of the
flagella to the center of mass. The elements involve in these equations are shown in figure
3.1. We are left with the equations:

p = cos θx̂ + sin θŷ, (3.14)

θ̇ = −K(p · t̂w)(p · n̂w)Γ(r,p), (3.15)
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where K ≡ uLcmγ/γr. The scalar K controls the intensity of the alignment and in ref. [73] a
fit of experimental data yields K = 4.9 rad/s. In our study we consider K as a free parameter
with values between 0 and 7 rad/s. This is because we are considering the more complicated
case of a curved wall. Also, Γ(r,p) is a step function that indicates if the bacteria is in contact
with the wall or not. It is equal to 1 when the distance from the center of the particle r to
the closest point of the wall is smaller than one radius, and its swimming direction points
towards the wall i.e. p · n̂w < 0 indicating the cell is going into the wall and not away from
it. Otherwise Γ equals zero. Equation (3.15) will align the vector p with the ±t̂w depending
on the sign of p · t̂w. This effect is only considered for the flat and curved wall as the frontal
wall is already taken into account because simulations are two-dimensional.

Figure 3.1: Diagram of the components involve
in the wall alignment. O represents the origin
of coordinates.

We calculate the point of contact as the
closest point in the walls to the cell by
dividing the interval [x − R, x + R] in 300
points where x = r·x̂. Then, we calculate the
distance between the cell and the position
obtained with the parametric definition of
the wall for each point. The point rw with
the lowest distance is the closest with a
precision of 3× 10−3 µm. This “brute force”
algorithm works because a point outside of
the interval [x − R, x + R] is not in contact
with the cell, and it is convenient because
the distance to the wall as a function of the
x-axis has many local minima.

3.2 Simulations

Equations (3.11)–(3.15) summarize the physics involved in the description of the system. We
are only missing two aspects; rotational diffusion and the details of F∗coll. This section first
explains how we implement these phenomena, summarize the model, and finally explain how
the simulations are performed.

3.2.1 The collision force

F∗coll is the force produced by the collision of cells with other cells or the wall, but divided
by the drag coefficient γ. We considered it as an elastic force for both cell-cell and cell-wall
collisions. We parameterize the force F∗,icoll that the i-th particle experiments through the
following:

F∗,icoll =
∑
w

kwall(R− diw)d̂iwΘ(R− diw) +
∑
j∈NNi

kcell(2R− dij)d̂ijΘ(2R− dij), (3.16)
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where diw, d̂iw represent the distance and the unit vector between the particle i and the
closest point of the wall w, and dij, d̂ij are the same but between the particles i, j where j is
part of NNi which is the set of nearest neighbors of the particle i. Θ is the usual Heaviside
function. Finally the parameters kwall, kcell are the intensities of these forces, and have units
of s−1. We consider kwall = 1× 103 s−1, which means that for R − diw = 2× 10−2 µm the
magnitude of the interaction with the wall is equal to u, so it is impossible for bacteria to
go through the surface. The parameter kwall is not related to K it only defines the distance
at which the elastic force is enough to repel bacteria. Meanwhile kcell will be considered as
zero, meaning there are no cell-cell interactions. The explanation for such consideration is
on section 4.1.4.

3.2.2 Rotational diffusion

Rotational diffusion is naturally added to (3.15) as a Gaussian white noise ηi(t) [74, 75]
meaning it has zero mean and its completly uncorrelated in time and between particles,
〈ηi(t)ηj(t′)〉 ∝ δijδ(t− t′). This white noise will change randomly the direction of swimming
p of the cell. We will go into more detail in the following sections.

3.2.3 Final model

The final set of equations that are used in the model are:

ṙi = upi + F∗,icoll, (3.17)

pi = cos θix̂ + sin θiŷ, (3.18)

θ̇i = −K(pi · t̂w)(pi · n̂w)Γ(ri,pi) + ηi(t), (3.19)

F∗coll = kwall(R− diw)d̂iwΘ(R− diw) +
∑
j∈NNi

kcell(2R− dij)d̂ijΘ(2R− dij). (3.20)

All of the quantities used in these equations and on the model are described in table 3.1.
These equations are written for the dynamics of a circular particle i, involving other entities
such as the wall and the nearest neighbors. Equations (3.17)–(3.20) belong to the class of
Langevin equations due to their stochastic nature.

Quantities with the lower index w depend on the wall. Simulations have a flat and a curved
wall with amplitude A and wavelength λ. The parametric definition of the walls positions
are y = yf for the flat and y = yc + A sin 2πx

λ
for the curved wall. The values of yf , yc are

so that the mean distance between walls is 100 µm. Also, periodic boundary conditions will
be applied. To avoid problems with discontinuities in the wall, the length of the channel is
adjusted to have an integer number of wavelengths and be greater than 300 µm. The total
particle number is adjusted so that all simulations have the same particle density ρ. These
values are similar to the experiments.
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Table 3.1: Quantities used for the model, with their description and values if adequate. For
parameters whose value changes, that column will have a − symbol and in chapter 4, results
will have that value specified.

Variable Description

r Position of the particle i.
p Direction of swimming of the particle i, defined by the angle

θi.
η White noise associated with rotational diffusion.

t̂w Unitary vector tangent to the wall in the closest point to the
cell i.

n̂w Unitary vector normal to the wall in the closest point to the
cell i. The normal vectors points away from the wall.

d̂iw Unitary vector pointing from the closest point in the wall to
the cell i.

diw Distance between the cell i and the closest point of the wall.
NN Set of nearest-neighbors of the particle i.

d̂ij Unitary vector pointing from the neighbor j to the cell i.
dij Distance between the cell i and the neighbor j.

Parameter Description Value

ρ Density of cells. This density relates to the number of particles
seen in the focal plane.

3× 10−3 cells/µm2

u Swimming speed. 20 µm/s
R Radius of the cells. 0.5 µm
K Magnitude of the aligment with the wall. -
Dr Rotational diffusion coefficient. -
kwall Elastic constant for cell-wall collisions. 1× 103 s−1

kcell Elastic constant for cell-cell collisions. 0
∆t Time step for the integration of the equations. 10−3 s
∆tr Time step for the recording of data. 10−1 s
T Time duration of the simulations. 1200 s

3.2.4 Numerical integration

Typically, there are many options to solve a differential equation numerically. In this case,
the equations are somewhat simple, so it is tempting to integrate (3.17) and (3.19) with
Euler’s method. That integration method is a first-order method which means that during a
step ∆t of integration, the integrands are taken as constants. Therefore we would obtain:

ri(t+ ∆t) = ri(t) + ∆t[upi(t) + F∗coll(t)], (3.21)

θi(t+ ∆t) = θi(t) + ∆t[−K(pi(t) · t̂w)(pi(t) · n̂w)Γ(ri(t),pi(t)) + ηi(t)]. (3.22)

However, there is a problem with the last term of equation (3.22), which relies on the timescale
in which η acts. Remember that η represents the torque produced by collisions with the
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liquid molecules. These thermal fluctuations have a characteristic time between collisions of
∼1.9× 10−13 s [72]. That means we have two options, either we consider a minimal time step
∆t so the hypothesis that η is constant in the interval is true, or we treat η separately. The
latter is the best option, as η’s timescale is much smaller than all the others present in the
system. The correct equations are:

ri(t+ ∆t) = ri(t) + ∆t[upi(t) + F∗coll(t)], (3.23)

θi(t+ ∆t) = θi(t)−K∆t(pi(t) · t̂w)(pi(t) · n̂w)Γ(ri(t),pi(t))

+

∫ t+∆t

t

ηi(t
′)dt′. (3.24)

Then a new problem arises, how do we calculate the integral of η. We can find the answer
on stochastic calculus, and here we describe one of the possible demonstrations. First, we
treat η as what it is, a discrete function representing all the collisions with liquid molecules.

∫ t+∆t

t

η(t′)dt′ =
N∑
n=1

φηn, (3.25)

where ηn is proportional to the angle displacement produced in a certain collision n. The
magnitude of these rotations is contained in φ so that we can treat them as standard normal
Gaussians. As we stated, these collision displacements are also uncorrelated. Therefore, we
can use that the distribution of the sum of two gaussian uncorrelated variables, x ∼ N (µx, σ

2
x)

and y ∼ N (µy, σ
2
y), is given by N (µx + µy, σ

2
x + σ2

y) and by induction obtain:

N∑
n=1

ηn ∼ N (0, N) =
√
NN (0, 1), (3.26)

were the last equality is in the sense of probability density distribution. Then, the total
number of collisions N is proportional to ∆t, for instance N = α∆t, where α is a rate of
collisions. Then we can write:

ri(t+ ∆t) = ri(t) + ∆t[upi(t) + F∗coll(t)], (3.27)

θi(t+ ∆t) = θi(t)−K∆t(pi(t) · t̂w)(pi(t) · n̂w)Γ(ri(t),pi(t))

+
√
φ2α∆tη(t). (3.28)

Here φ is in rad and α in s−1 so φ2α has units of rad2 s−1, the same as the rotational diffusion
coefficient. Therefore, we naturally obtained the diffusion coefficient, normally defined as
2Dr ≡ φ2α. As already mentioned, for smooth swimmer E.coli in liquids it has been measured
that Dr = 0.057 rad2/s. Nevertheless we consider Dr as a free parameter with values between
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Dr = 0.001 to 0.05 rad2/s as is expected to be lower in our case, due to the constraints of
the walls. Therefore K and Dr are the free parameters of the model.

The result of equation (3.28) is really important for the consistency of the numerical
integration, since the equation 〈η(t)η(t′)〉 = δ(t − t′) implies that η has units of s−1/2 so
multiplying by ∆t instead of

√
∆t is dimensionally wrong.

3.2.5 Intensity profiles in simulations

In experiments we construct intensity profiles using the intensity of bacteria fluorescence. In
simulations there is no such thing, we can only measure bacteria positions ri. Therefore, we
have to measure the mean bacteria density. For each particle in the band of a wall w we can
assign a interval in the x-axis defined as [x − ∆x/2, x + ∆x/2] where xi = ri · x̂ − xvalley is
contained. Here xvalley is the position of the nearest valley to the particle, meaning x is on a
interval of one wavelength λ and x = 0 is the position of the valley. This defines the mean
bacteria density over a period nw(x) as the count of bacteria that were in contact with the
wall w in the interval defined by x.

Obviously nw(x) is not the same as intensity profiles. To create a comparable quantity, we
convolve nw(x) with a Gaussian function G(x) = exp(−x2/(2R2)). We call the result the
intensity near a wall w for the simulation:

iwsim(x) = nw(x) ∗G(x). (3.29)

This treatment means we consider particles having a Gaussian intensity in space. This is
not equal to the intensities measured in experiments because bactearia are not spherical.
Nevertheless, treating intensity not spherically in simulations would lead to inconsistencies.
The amplitude of the Gaussian does not matter as we will normalize by the mean
accumulation in the flat wall. If the mean intensity on the flat surface is īfsim = 〈ifsim(x)〉x.
We define the normalized intensity profile in the curved wall as:

Isim(x) =
icsim(x)

īfsim
(3.30)

The normalized intensity profiles of simulations Isim(x) will be compared to the experimental
result I(x) in the chapter 4.
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3.2.6 Algorithm

The algorithm used in the simulations is described in the following steps.

1. Create a random initial condition for all the particles positions and swimming
directions. If a particle is out of boundaries or in contact with a wall, its initial
conditions are generated again. Then start iterating the time steps.

2. Update the closest point of the wall for all particles close to the walls.

3. Integrate the equation for θi.

4. Determine the NN set for all particles.

5. Calculate the force F∗coll.

6. Integrate the equation for ri.

7. Every time interval ∆tr record the relevant data. This avoids high time correlations
between measurements.

8. Stop when a time T = 1200 s has passed.

The algorithm was implemented in a C++ program with object oriented programming. In
figure 3.2 we display trajectories for the parameters K = 5 rad/s, Dr = 0.05 rad/s and
kcell = 0.

Figure 3.2: Example of trajectories obtained with the simulations for the parameters K =
5 rad/s, Dr = 0.05 rad2/s and kcell = 0. The star represents the start of each track and
the triangles the end of them. The values of A and λ are included on the top of the plot.
Trajectories last for 10 s.
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Chapter 4

Results

This chapter is dedicated to the results obtained in experiments and the model. We start
by describing the raw experimental results to get a big picture of the system. Afterward,
we analyze intensity as an indirect measurement of the mean density accumulation, proving
there is a transition in the accumulation near walls. Results of tracking explain further these
observations.

4.1 Observations

In the introduction in Chapter 1, we discussed multiple effects of surfaces on bacteria. These
effects appear depending on the swimming properties, body and flagella shape, and surface
properties. In our experiments, we observe cell adhesion to the frontal wall when not using
BSA, circular trajectories, non-zero contact angles with the flat walls causing trapping of
bacteria in that wall, wall-cell alignment, and cell-cell interactions causing clustering.

4.1.1 Cell adhesion

We observe that cell adhesion to the frontal wall occurs when the surfaces are not coated
with BSA. In figure 4.1 we show four frames of an experiment where BSA was not utilized.
Four bacteria have adhered to the front wall. Adhesion gives rise to the biofilm formation
that we want to avoid. In this case, the adhesion is of electrostatic origin and is therefore
prevented by using BSA. It could be argued that using BSA affects the curved wall results
in preventing adhesion and therefore should not be used. Nevertheless, we measure surface
effects prior to adhesion to design a surface that allows bacteria to leave the wall. Once
adhesion has occurred, bacteria will form biofilm independently of the shape of the surface.
Therefore, this adhesion is not relevant to our measurements. In other terms, we are not
studying cell adhesion mechanisms, so there are no reasons to measure this phenomenon. If
we were measuring cell adhesion, to test our results, we should use wild-type strains where
more adhesion mechanisms are present [13].
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Figure 4.1: Four frames of an experiment where the channel was not coated with BSA. The
four cells enclosed by red circles appear on all frames because they have adhered to the frontal
surface. Adhered bacteria slightly move but never leave the focal plane. No measurements
were made on these experiments. We only used them in this figure to show what happens
when not using BSA.

4.1.2 Circular trajectories

Figure 4.2: Example of three circular
trajectories observed in an experiment. The
star indicates the beginning of a track while
the triangle marks the end. The video used
for this figure had 12 trajectories with circular
sections of a total of 302, which correspond
to 4%. The three shown trajectories are the
longest ones.

We see circular swimming trajectories on
the frontal surface, caused by hydrodynamic
interactions between the cell and the
boundary [44]. In figure 4.2 we display
three example trajectories. The percentage
of trajectories observed that display circular
movement is 4% for the experiment used
for the figure. Thus, the phenomenon is
marginal and, therefore, not implemented in
the model.

4.1.3 Flat wall trapping

Due to the hydrodynamic interactions when
bacteria swim in contact with a flat wall, the
angle of contact is not zero [45] as can be seen
in figure 4.3. This causes bacteria to swim
along the surface in average for 60 s [36]. In
our experiments, we observe this behavior in
the two flat walls of the system, the upper and the frontal wall. Due to this effect, bacteria
barely leave the focal plane, validating the two-dimensional aspect of the model. This effect
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has another interesting consequence. When swimming in contact with the wall, cells may
encounter another cell swimming in the opposite direction, forming a pair of stagnant cells.
Other cells that reach this pair will also become stagnant. After a time, typically in the order
of 10 seconds, the cells manage to separate, and the bacteria that swim in the same direction
leave together. This forms “trains” of cells moving in the same direction as shown in the
figure 4.3. Usually, the observed trains have less than ten cells, and not all cells on the flat
wall move in trains.

Figure 4.3: Observation of a train of bacteria
moving to the right in three different frames
with their respective times t. We also see how
the bacteria swim at a non-zero angle when in
contact with the flat wall. The red line is the
border of the ROI, representing the flat wall.

When a cell swimming in the opposite
direction of a train collides with it, it moves
into the focal plane or away from the upper
wall. This occurs because the train has more
mass and pushes harder than the individual
bacterium displacing it. This effect causes
bacteria to leave the flat wall. However,
it is also possible that the bacteria do not
interact with the train, as the system is
three-dimensional.

4.1.4 Steric alignment with the
wall

When bacteria hit the wall, they experience
a torque that aligns them with the wall,
as described in section 3.1.4. For the flat
wall, this effect means that after about 1
second, the bacteria are aligned with the
wall. Aligned means that the bacterium
swims with a stable non-zero angle, as
mentioned in section 4.1.2. On the other
hand, the effect is much more interesting for the curved wall and it depends on the values
of the amplitude A and the wavelength λ. We remember that A and λ have units of µm. In
figures the units will be omitted for simplicity. The torque allows the bacteria to follow the
profile of the wall. Hydrodynamic interactions can cause bacteria to follow convex walls such
as peaks [45], but for the curvatures we are working with, this is rarely observed. Therefore,
once they reach a peak, they stop feeling the steric torque and leave the wall. Only for A =
2.9 µm and λ = 30 µm some bacteria follow the sinusoidal shape of the wall. However, for high
values of A and low wavelength λ, bacteria could be trapped in the valley for a considerable
time. This entrapment of cells in the curved wall can be due to a couple of reasons. In the
case where there is only a single point of contact, we can understand this phenomenon by
looking at the equation (3.15). For curved walls with high curvature, the vectors t̂w and n̂w
vary significantly in space. This implies that as the bacteria swims parallel to the valley,
the value of the dot product n̂w · p will stay close to zero even if the bacteria rotates. This
causes the bacteria to rotate slowly and stay in the valley for longer times. Also, in the most
extreme cases, corresponding to high A and low λ, the bacteria may have several contact
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Figure 4.4: Four sequences of frames showing an individual bacteria going along the curve
of a wall for λ = 30 µm and two different values of A, in experiments a,b) and simulations
c,d). Each frame has the time t on the bottom. The reference time t = 0 s is exactly when
the bacteria reach the wall. a) In this case, the amplitude is not too high, and therefore the
bacterium can cross the valley in only 1.5 s. In the last frame, two bacteria appear, but it is
clear which bacteria correspond to the previous frames if we consider the logical trajectory.
b) For a higher amplitude, we observe that the bacterium stays in the same position for many
seconds until it leaves. c, d) Results of simulations for K = 3.0 rad/s, Dr = 0.015 rad/s2.
The arrow is the vector p. Trajectories and residence times in the simulations are similar to
the experiments. The red line is the border of the ROI, representing the curved wall.

points with the wall, both with the body and the flagella, resulting in the bacteria being
unable to rotate at all.
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In the figure 4.4 a, b) we show two individual cells whose trajectories illustrate the previously
described phenomena. In sequence a) the amplitude is small enough for bacteria to move
along the valley in 1.5 s. This is precisely what we are looking for. If bacteria can follow the
wall curve and leave it in an interval of time lower than the characteristic adhesion time, we
could reduce biofilm formation. In contrast, sequence b) shows how a bacterium spends too
much time in the valley due to the reasons previously discussed. This will undoubtedly lead
to adhesion in an in vivo environment. In the following sections 4.1.5 and 4.2.4 we will further
investigate the behavior of bacteria on these surfaces by measuring the average density and
speed when in contact with the wall.

In simulations we observe a similar behavior. In figure 4.4 c, d) we show trajectories of
particles with the parameters K∗ = 3.0 rad/s and D∗r = 0.015 rad/s2. In section 4.1.5 we will
compare different values of K and Dr and it will be clear why these values were chosen for
this figure. For now, we can observe that the model replicates the behavior in the valley, and
also quantitatively the times are in the same order of magnitude.

4.1.5 Clustering

The phenomenon of bacteria trapping in the curved wall observed in figure 4.4 b) can be
significantly increased when bacteria collide in the valley. For multiple bacteria colliding
in one valley it is impossible for them to reorient and leave the wall. This will increase
adhesion and the formation of biofilm. In figure 4.5 we show two clusters of bacteria in a
valley that were formed in the most extreme cases of amplitudes. The valley is very narrow,
so bacteria stay in it for around 10 s even if alone. When other bacteria reach the valley,
their movement is further restricted, and they cannot leave the wall. These clusters will last
for several seconds, in some cases even for the entire video duration. We show representative
examples where the clusters grow but also, sometimes, the cluster lose bacteria and even
dissolve. Nevertheless, in a more natural environment, bacteria will adhere and then divide,
and therefore biofilm will form.

It is important to mention that this situation also occurs in walls with smaller amplitude,
only less frequently. In figure 4.6, we show a case where this occurred for A = 2.9 µm and
λ = 27 µm. Two bacteria collide and start a cluster, but shortly after, the cluster is dissolved
when at time t = 13 s two cells approach the cluster. These cells push the cluster causing
all bacteria to align and leave the surface, as seen in t = 14 s. Cell-cell interactions play an
important role in the dynamics of the system. We observe that cell-cell alignments can cause
bacteria to leave or become trapped on the surface. The main difference between the cases of
figures 4.5 and 4.6 is the effect that the cell-wall interaction produces. Cell-wall interactions
could trap bacteria for several seconds if the valley is too narrow. Other bacteria will reach
the valley, and a cluster will form, leading to residence times around 100 s. On the contrary,
if cell-wall alignment contributes to bacteria leaving the wall quickly, cell-cell interactions are
more infrequent and interrupt bacteria for less time, and therefore the accumulation in the
surface will be reduced. The contribution of the steric alignment with the wall is the key to
controlling accumulation on the surface.
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Figure 4.5: Clusters of bacteria formed in narrow valleys. Multiple bacteria collide and
interrupt their movement, causing extremely long residence times. In both cases, t = 0
corresponds to when the cluster was formed. a) The cluster was formed when two bacteria
arrived almost simultaneously at a valley already occupied by a trapped cell. The cluster
does not dissolve as the video ends in t ∼ 130 s and two bacteria remain in the valley. b)
Another example where the cluster lasted for more than 100 s until it dissolved. The red line
is the border of the ROI, representing the curved wall.

Figure 4.6: Example of a collision in a curved wall with a low amplitude. The residence time
of bacteria involved in the collision is about 10 s while in figure 4.4 a) we observe a residence
time of 1.5 s for a even more curved wall. The red line is the border of the ROI, representing
the curved wall.
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Figure 4.7: Comparison in simulations between values of kcell in the high curvature case. a)
case with kcell = 0. In t = 0 s three particles reach the valley, at t = 46 s, more particles
arrived on earlier frames but also particles start leaving the valley, independently of each
other. The valley is empty at t = 65 s. b) case with elastic interactions kcell = 500 s−1. In
t = 0 s an initial bacterium occupies a valley and at t = 16.5 s a second bacterium arrives.
The collision between these two cells fixes the value of the the vector t̂w to which bacteria
align, allowing bacteria to leave only 4 s after the collision.

On the other hand, we consider an elastic interaction between the cells in the simulations.
This interaction makes sense for spherical particles; however, it is not enough to capture
what happens when clusters form in the valleys of the curved wall. The alignment between
cells is relevant to describe cluster formation. When several bacteria collide in a valley, they
disrupt each other and cannot follow the curve of the wall. In the figure 4.7 we show two
simulation results for A = 10 µm, λ = 21 µm for two values of the elastic cell interaction
kcell = 0 and 500 s−1. In the case without interactions, bacteria reach the valley and share
a similar position. The trapping time is large and around 50 s. The moment bacteria leave
the cluster is completely independent of the other cells. Therefore, this is not a cluster of
bacteria, but rather individual bacteria trapped for long times. The problem is that when we
consider an interaction between cells, a meaningless dynamic appears. If two bacteria meet
in the valley, the elastic force immobilizes both bacteria, which means that the vectors t̂w
and n̂w remain constant for each bacterium. In a short time interval, both cells align with
the vector t̂w so they can leave the wall. The situation were p · n̂w ≈ 0 is broken by the
collision of bacteria.

We conclude that the model will underestimate the accumulation in the valley for cases
with high curvature because it does not predict cluster formation. The best scenario for
the model is to consider kcell = 0, so bacteria only accumulate due to the correctly modeled
trapping in the valley. Since we are working on a low-density regime in experiments, we think
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that this simplification is plausible. This means that the optimal values of the model may
not be applicable for high-density regimes where clustering forms more frequently. A more
complicated model should consider cell-cell alignment to reproduce the clustering phenomena
in the valley correctly. We will try to implement those interactions before publishing this
work.

4.2 Mean intensity

The methodology described in section 2.2.1 allows us to consider the signal measured as
coming solely from the fluorescence of the bacteria. Therefore the mean intensity registered
in the experiments is an indirect measurement of bacteria density. We will measure mean
intensity over a period. We begin by showing examples of the two-dimensional mean intensity
and the effects of the previous observations in this quantity. Afterward, we describe intensity
profiles I(x) for the curved wall. These profiles exhibit a transition in their behavior that
corresponds to what was observed in the section 4.1. This will allow us to quantify the
qualitative behavior exhibited by the system due to the alignment with the wall.

4.2.1 Two-dimensional mean intensity

We begin by showing results for Dxj as defined in equation (2.2). Dxj is the mean intensity
over a period. In figure 4.8 we show mean intensities over a period of the curved wall,
for experiments with λ = 21 and 30 µm and three different amplitudes. First, we note
that intensities are not directly comparable between experiments, either because there is a
different number of bacteria or because the bacteria fluoresce less intensely due to prolonged
exposure. It is important to compare considering this aspect.

Nevertheless, it is clear that bacteria accumulate on the flat wall in all cases, but on the
curved wall, the behavior depends on A and λ. For low values of A ≈ 3 µm, the curved
surface presents fewer bacteria than the flat surface, as bacteria leave the wall when they
reach a peak. As we increase the amplitude, we see how bacteria become trapped in the valley
and eventually form clusters with high intensity. We call this transition the accumulation
transition. The value of A at which the bacteria become trapped depends on the wavelength
λ as can be seen when comparing experiments with similar amplitude 4.8 b) and d). For all
λ we can observe the accumulation transition, meaning that at least there is an amplitude
in which bacteria are trapped and another in which they are not.

These graphs also allow us to observe how the bacteria behave once they come out of the
wall. In graphs b), e), and in particular f), it is possible to observe a darker zone near the
valley. This is because once the bacteria leave the valley, they are unlikely to pass through
this zone, as the angle at which they leave the wall is high. In the low amplitude case, a)
and d), the amplitude is such that the bacteria stay close to the wall zone, and therefore this
zone of depletion is not observed. Finally, in figure c) we observe that the curved wall only
presents a high intensity on the valley. This means that clustering occurs, and so bacteria
barely leave the valley, corresponding to the dynamics observed in 4.1.4.
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Figure 4.8: Mean intensity over a period Dxj for different values of A and λ. We choose
the extreme values λ = 21 and 30 µm. The brightness and contrast of the color scale was
adjusted to improve the image display.

We observe that the average intensity captures various effects caused by the dynamics of
the system. Accumulation on the flat wall, valley stagnation, and cluster formation. This
reaffirms the usefulness of analyzing the average intensity to understand the system. The
fact that the average intensity manages to capture the dynamics of the system should not be
a surprise, as this is an indirect measure of bacteria density.

4.2.2 Intensity profiles

The mean intensity matrix Dxj has enough information to describe the system. Nevertheless,
it also has two problems. It is not easy to compare due to differences in intensities between
experiments, and it contains information of the bulk in the system that is not relevant for
the measure of accumulation in the surface. Therefore, we consider the normalized mean
intensity profiles I(x) defined by equations (2.6) and (3.30) for experiments and simulations
respectively. These profiles are an average of the intensity in a zone 4 µm normalized by
the mean intensity in a 4 µm thick zone from the flat wall. Thus, I(x) indirectly measures
the mean bacteria density in contact with the curved wall as compared to the flat wall.
Experiments performed on different days do not show exactly the same profiles, as motility
and density vary slightly, but thanks to this normalization, they are comparable. Therefore
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Figure 4.9: Experimental normalized intensity profiles I(x) for a) λ =30 µm and b) λ =
24 µm with three different amplitudes. The colors were chosen so that curves associated with
similar values of A share color. The amplitudes that are shown allow to see the accumulation
transition. Errorbars are the confidence interval of 95% for the estimation of the mean I(x).

the average profile can be taken over all the experiments with the same curved wall parameters
A, λ.

In figure 4.9, we show examples of experimental intensity profiles for λ = 30 µm and λ =
24 µm for three different amplitudes A. For low values A, the wall is slightly curved, and
bacteria can move along it easily. The curvature makes bacteria leave the wall, therefore, the
normalized intensity values are lower than 1. Also, there is a minimum at x = 0 corresponding
to the valley of the curved wall. This minimum is produced because not all cells touching
the wall will go through the valley. If the contact starts near a peak, the cell will leave the
wall without going through the whole period. Then, we have a critical amplitude, where I(x)
looks flat, which can be seen for A = 8.5 µm and λ = 30 µm. In this case, bacteria are still
moving quickly around the wall, as the intensity is lower than the flat wall. Moreover, the
intensity is lower than the previous case because bacteria leave the wall at a greater angle
with respect to the wall axis. Finally, if the valley is too narrow, the intensity will greatly
increase as bacteria get trapped. The more narrow the valley is, the higher the intensity peak
as bacteria get trapped for longer times.

We can see how the profiles depend on both A and λ and conclude that I(x) captures the
accumulation transition successfully. This is relevant because we are considering less amount
of data, but we are still representing the system correctly. We now present a quantitative
description of the accumulation transition via the intensity profiles.
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4.2.3 The c1 coefficient

Qualitatively, the accumulation transition can be described as going from fewer bacteria in
the valley of the wall to bacteria accumulating in there. This is represented by going from a
minimum to a maximum at x = 0. To quantify that aspect, we used the Fourier coefficient
c1 of the mean normalized intensity profile I(x), calculated as:

c1 =
2

λ

∫ λ/2

−λ/2
I(x) cos

(
2πx

λ

)
dx =

2

λ

∑
i

I(xi) cos

(
2πxi
λ

)
∆x, (4.1)

where ∆x = 0.32 µm is the spatial resolution of the profiles and xi is the i-th position in the
profile. Negative values of c1 indicate a minimum on x = 0 and positive c1 the opposite.

Figure 4.10 shows color plots of experiments and simulations for c1 in the (λ, A) parameter
space, with red points representing an accumulation of bacteria in the valleys of the wall and
blue points representing depletion of bacteria from the valleys. The transition from negative
to positive values is seen in gray. The dashed line represents a two-dimensional interpolation
of the curve where c1 = 0, using an adapted version of the marching squares algorithm for
irregular grids. This interpolation should be taken as a guide to the eye as it is not a real
measurement. We call the curve where c1 = 0 the critical curve. In experiments, we can
see how the accumulation transition occurs near A = 8.5 µm, λ = 30 µm and A = 5.6 µm,
λ = 27 µm, but for the other wavelengths we lack the resolution in the amplitude to observe
the critical amplitude A. We only know that it happens between A = 3 µm and 5 µm as the
dashed line indicates.

In simulations, we show results for five different pairs of parameters K, Dr. We remember
that units of Dr and K are rad2/s and rad/s, respectively. Units will not explicitly accompany
values of the parameters for simplicity. In figure 4.10 b) the pair of parameters K∗ = 3.0
and D∗r = 0.015 is the best fit for the values of c1. We calculated the best fit as the set
of parameters with the least square error compared to the experiments, without considering
the experiments with A ≈ 9 µm. We excluded those experiments because they have the least
amount of realizations and show strange values of c1 specially for A = 7.9 µm, λ = 21 µm.
We only have experiments performed on a single day for those values of A. Unfortunately,
our camera suffered a technical problem that produces condensation due to air infiltration
into the sensor chamber. The camera is not available for new experiments in the mid-term.
If these experiments are considered in the fit, the optimal pair only changes Dr to D∗r = 0.01,
but the fit is clearly worse.

Figures 4.10 c) to f) demonstrate that not all pairs of parameters K, Dr represent the
accumulation transition trivially and also provide a notion of what results when varying the
parameters. In c) and d) we use the same value of D∗r = 0.015 and change K. The case
c) where K = 1.5 predicts the critical curve for lower amplitudes than b), while d) the
opposite. The interpretation is direct because K controls the intensity of the alignment.
Higher K means bacteria move more easily along the valley and therefore are trapped less
time, meaning the critical curve occurs at higher curvature. In contrast, figures e) and f)
show what happens when K∗ = 3.0 is fixed and Dr changes. When we increase the value
of Dr the transition occurs for lower amplitudes. This is because a higher thermal noise
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Figure 4.10: Color plots of the c1 coefficient in the A, λ parameter space. The colors are such
that c1 = 0 corresponds to the gray color and extreme negative and positive values are blue
and red, respectively. The dashed black line is an interpolation of the critical curve c1 = 0. a)
Experimental results for c1, where the number above each point represents the total number
N of periods considered in the average of equation (2.6). b)–f) plots correspond to results
from numerical simulations with their respective parameters indicated on the label. See text
for more details.
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interrupts the alignment process. Nevertheless, when comparing the values of c1 in A =
10 µm, λ = 21 µm we observe that increasing Dr reduces that value. When cell trapping in
the valley occurs, the steric torque is almost zero because bacteria are nearly perpendicular
to the surface for a long time. Therefore, thermal noise can contribute to rotating bacteria
more and reduce the residence time. Depending on the values of A and λ, the coefficient Dr

may or may not contribute to the alignment to the wall.

Figure 4.11: Critical curves for different
candidates compared to the experimental
critical curve. The c1 values correspond to the
experimental values. None of the candidates
replicate exactly the critical curve. Also, we
observe a parabolic shape for the critical curve.

We conclude that K and Dr have opposite
effects for the accumulation transition.
Higher values of K mean that bacteria
align with the wall more quickly, but higher
Dr introduces more thermal noise that can
make bacteria rotate bacteria against the
wall alignment. Considering this opposite
effect, many combinations of K and Dr can
replicate the critical curve. We will call
candidates, such pairs of K and Dr that
replicate the critical curve similar to 4.10
b). In figure 4.11 we show the critical
curves for four candidates, compared to the
experiment. None of the candidates exactly
replicate the critical curve, specially due to
the value c1 = 0.02 for A = 8.5 µm and λ =
30 µm in experiments.

To understand this better, figure 4.12 shows
intensity profiles obtained in simulations of
candidates, compared to the measured in
experiments for values of A and λ that are of
interest for the transition. The experiment’s
intensity profiles are subject to various
effects that the simulations do not capture.
For example, some experimental profiles
are asymmetric due to inhomogeneities in
density, causing more bacteria to come from one side, as observed in g), h), and i). However,
this is not the only significant difference. In profiles d), e), and f), we see that the simulations
do not predict a drop in the intensity values when the accumulation transition occurs; only
the shape of the profile is adequately predicted, especially by the K∗ = 3.5, D∗r = 0.015 case.
The experimental intensity profiles reach near-zero negative values for these cases, probably
because we overestimated the mean noise for these cases. Also, in c), the experimental profile
is flat, so K = 5.0 is the closest curve, differing from the previous case.

We conclude that there is no perfect candidate to replicate the exact results of all experiments.
A possible solution is to redefine the parameter of K as a function of A and λ. However,
how exactly will K depend on these parameters and what is the rationale behind that
are important questions. A model with more parameters can fit anything, not necessarily
meaning that the model is better. The simpler version of the model is close in behavior for
all candidates compared to the experiments. We believe that cell-cell alignment is the only
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Figure 4.12: Normalized intensity profiles for experiments and four simulation candidates.
Rows have similar amplitude A, and columns have the same wavelength λ. The horizontal
and vertical scales are adjusted depending on the amplitude and wavelength to pursue a
clear display of the data. We only show representative candidates as many values represent
the transition. Experimental error bars are the 95% confidence interval for estimating the
mean normalized intensity I(x). The complete set of normalized intensity profiles is in the
annexed.
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Figure 4.13: Comparison between c1 values for experiments and simulations with the best
set of parameters. The dots enclosed by red circles correspond to A ≈ 9 µm and were not
considered for the fit. The inset is a close up to the low values of κ. The dashed line of the
inset corresponds to c1 = 0. Errorbars are the confidence interval of 95% for the estimation
of c1.

missing aspect of the dynamics and that may be enough.

The c1 coefficient quantifies the qualitative behavior observed in I(x) with only one scalar, so
it is an oversimplication. Color plots of c1 in the (λ, A) parameter space reveal information
about where the transition occurs. The fact that candidates of parameters replicate the plot
should be interpreted as a qualitative replication of the results in the experiments. Exact
quantitative predictions for all the profiles are not achievable with this model with only two
parameters K, Dr. Due to this, we decided to show many candidates instead of just the
overall better fit.

Finally, we observe an important aspect of c1. All critical curves resemble a parabolic shape,
presuming that there would be a relation between A and λ2 that defines the critical curve.
This is not a coincidence because the maximum curvature in the sinusoidal wall is given by
κ = 4π2A/λ2. The shape of the critical curves indicates that there is a relation between the
curvature κ and c1. To visualize this in figure 4.13 we show c1 as a function of κ for the
experiment and the simulation using the best fit K∗ and D∗r . As mentioned previously, we
neglect the measures for the experiments with A ≈ 9 µm. Without considering these data,
the model quantitatively replicates the measurements. The quantitative agreement indicates
that the model effectively captures the accumulation transition when it is parameterized by
c1.
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Figure 4.14: Comparison of the accumulation
transition curves for experiments and the
optimal set of parameter with the curvature
define by constant curvature κ∗ = 0.3. The c1

values correspond to the experimental values.

Looking at the inset of figure 4.13, the
critical curvature at which c1 = 0 is around
κ∗ = 0.3 µm−1 as the experiments with
A = 5.6 µm and λ = 27 µm indicates. In
figure 4.14 we show a comparison of the
critical curves of the experiment and the
optimal pair of parameters, compared to the
curve defined by fixing the curvature κ∗ =
0.3 µm−1. More resolution on the values of
A and λ will allow to determine the position
of the critical curve and the corresponding
critical curvature better.

The dependence with respect to κ is really
important because it defines a surface
parameter for the accumulation transition
independent of the sinusoidal shape of the
curved surface. Other surface designs with
their own properties may be adapted to have
an optimal curvature that allows a geometric
control of the accumulation. For example,
in the Sharklet design [52] a semicircle
connection between the microscopic structures of the appropriate radius will reduce the
accumulation of cells in the surface. Compared with the natural forms observed in sharkskin,
where there is a curvature, this idea is promising.

4.2.4 Mean of the normalized intensity

While c1 characterizes when the accumulation transition takes place, it does not directly
measure the total accumulation of bacteria. Therefore, we consider the average normalized
intensity 〈I(x)〉 to quantify the total accumulation compared to the flat wall. In figure 4.15
we show 〈I(x)〉 as function of A and λ in the same configuration as figure 4.10. For this case,
we use the gray color for 〈I(x)〉 = 1, meaning there are an equal density of bacteria in the
curved and flat wall. The orange dashed line corresponds to the interpolation of the curve
where 〈I(x)〉 = 1, while the black one is the critical curve of the accumulation transition. In
a) the experimental results show how the average intensity follows a similar pattern as the
coefficient c1 seen in figure 4.10. As the curvature of the wall increases, so does the average
intensity, obviously due to the trapping of bacteria. Nevertheless, there is a minimum of
〈I(x)〉 on the values of A and λ where the accumulation transition occurs. The model fails
to predict this minimum. Instead, the simulations show virtually no variation in the average
intensity in the region with c1 ≈ 0.

Figures 4.15 c)-f) show the comparison for different parameters. This plot supports the idea
previously discussed with the c1 coefficient. Comparing c) with d), we also see that increasing
K the accumulation in the wall is reduced. In d), the value of K produces 〈I(x)〉 < 1 for all
A, λ preventing the orange curve from being seen. Meanwhile, figures e) and f) show how
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Figure 4.15: Mean intensity 〈I(x)〉 as function of A and λ. We used the gray color for
〈I(x)〉 = 1, meaning there is the same accumulation in the flat and curved wall. Therefore,
blue dots mean the curved wall contributes to less accumulation, and red the opposite.
a) In experimental results, there is a decrease in the accumulation not predicted in the
simulations. This reduction corresponds to where the accumulation transition occurs. b)–
f) plots correspond to results from numerical simulations with their respective parameters
indicated on the label.
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Figure 4.16: Comparison of 〈I(x)〉 between experiments and simulations with the best set of
parameters. We observe a minimum in the mean of the normalized intensity for experiments
but such behavior is not captured by the model. Errorbars are the confidence interval of 95%
for the estimation of 〈I(x)〉. The red circles enclose experiments with A ≈ 9 µm

.

the accumulation is decreased for higher values of Dr. Two effects interplay in this situation.
First, as discussed in the previous section, the effect of Dr when bacteria stagnate favors
the release of bacteria from the wall with high curvature. Second, a higher Dr increases
the rate at which particles in the flat wall turn away from it. Therefore, increasing Dr

reduces the accumulation of bacteria in the flat wall as well. This decreases the normalization
constant, and so it increases the relative accumulation in the curved wall measured by 〈I(x)〉.
Nevertheless, comparing e) and f), it appears that the first effect dominates because the
accumulation decreases.

In figure 4.16 we show the mean normalized intensity as a function of the curvature κ. We
observe that the quantitative predictions fail in the region between κ = 0.2 and 0.4 µm−1 as
discussed previously. This is precisely where the accumulation transition occurs; therefore,
the bacteria begin to stagnate in the valley, increasing the accumulation. The only possible
explanation for the decrease in the intensity of the experiments is that for these intermediate
curvatures, bacteria leave the wall at a considerable angle, increasing the probability that
they will move away from the curved wall. This will be confirmed in section 4.3.2. Simulations
do predict the reduction of the mean intensity as the values are slightly smaller at that point,
but not quantitatively. We think that this difference between simulation and experiments
may be due to an overestimation of the average noise in the curved wall for the experiments,
caused by low-intensity bacterial pixels such as those of bacteria swimming out of focus. A
more detailed calculation of the noise may be necessary.
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4.3 Tracking

Following the methodology described in section 2.2.4, we track bacteria movement. The
method determines bacteria position ri for each frame and then form links between detections
to create the trajectories. This is an automatic process subject to errors but mostly gives
correct results. We can calculate the bacteria velocity ṙi by using equation (2.11). In
simulations both, ri and ṙi are numerically calculated on each time step. Statistics of these
vectors will reveal more information about the system’s dynamics.

4.3.1 Speed distribution

We begin by considering the probability density function (pdf) of the speed V . Caution
is required when comparing that quantity for different experiments. Cell motility is not
always the same. It is affected by the use of the micropipette, the presence of oxygen, and
centrifugation. In figure 4.17 we show normalized histograms representing the pdfs of speed
for experiments with λ = 30 µm and A = 5.6 µm made in two different days. Figure 4.17 a)
shows the pdf for the speed in the bulk of the system, namely far from both walls. The speed
distribution for day 1 is broader, and its mean is higher than on day 2. Figure 4.17 b) shows
the speed distribution in contact with the curved wall and presents the same differences. In
the bulk of the system, bacteria speed distributes Gaussian-like, but when in contact with
the wall, bacteria slow down due to the trapping in the valley.

To avoid differences between experiments of different days, we use the normalized speed
v = V/Vbulk to compare between different experiments, where Vbulk = 〈V 〉bulk is the mean
speed in the bulk of the system for a specific video. In figures 4.17 c) and d) we plot the
pdf of the normalized speed. This normalization ensures that experiments have comparable
distributions similar to the normalization of intensity by the average of the flat wall. We will
compare the normalized dimensionless speed v, so experimental measures can consider all
experiments that share the same A and λ values. The fact that normalization works for the
pdf in contact with the curved wall is not trivial. However, it is explained by the observation
that the interactions with the wall are proportional to the speed of the bacteria, as shown
in equation (3.12). Therefore, if we divide by Vbulk the mean speed of an individual bacteria
when swimming free and redefine the normalized velocity ṙ/Vbulk, the dynamics are rescaled
and independent of the mean speed in bulk.

In figure 4.18 we show experimental results for speeds in contact with the curved wall for
different values of A and λ. For low values of the amplitude A g), h) and i) show that bacteria
move almost at v = 1, and the distribution looks like a trunked Gaussian. When the curvature
increases, the distribution moves towards the v = 0 value for the highest curvatures, a peak
at v = 0 appears, and the distribution looks like an exponential distribution. This is a direct
measure of the trapping of bacteria. Comparing with figure 4.12, it is possible to observe
that the accumulation transition corresponds to this shift of the distribution towards zero
speed values and also the formation of the peak at v = 0. We do not compare experimental
results with simulations because we did not consider a distribution of speeds for particles in
the model.
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Figure 4.17: Probability density functions for the speed in two different experimental videos
for λ = 30 µm and A = 5.6 µm. a) and b) distributions for the non-normalized speed V in
the bulk and the curved wall, respectively. c) and d) distributions for the normalized speed
v = V/Vbulk in the same experiments. a) shows distributions in bulk with different means,
but in c) we can see how the distributions in bulk are comparable, thus justifying the usage
of the normalized speed instead of V .
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Figure 4.18: Experimental probability density functions of speed in contact with the
curved wall. We only display experimental results, as in simulations we do not consider
a distribution of mean speeds for particles, and therefore, simulations are not comparable.
The accumulation transition is represented by a shift of the pdf to the left and an increase
in the probability of having bacteria with v ≈ 0 corresponding to stagnation in the valley.
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4.3.2 Speed profiles

Speed profiles are conceived similarly to intensity profiles. If a particle i is in the band of the
curved wall with position ri = (xi, yi), we can assign an interval where xi is contained in the
x-axis as [x−∆x/2, x+ ∆x/2] defined by its center x. This creates a set of observations Ox
associated with the interval defined by x. For each value x, we define v(x) the mean speed in
the set of observations Ox that are inside the interval. Particles in the band are probably in
contact with the wall, so vertical position does not reveal more information. The definition
is the same for experiments and simulations, but in experiments ∆x = 1 µm is considered,
while in simulations ∆x = 0.32 µm as usual in the intensity profiles. The reason for this
change for the experiments is that in the less frequented positions, by losing resolution, it is
possible to increase the size of Ox in those positions. This is essential for the cases where
bacteria are trapped in the valley. Figure 4.19 h) shows a case where two points have a high
errorbar due to the small size of Ox.

In figure 4.19 we show a comparison between experiments and simulations with the optimal
set of parameters K∗ = 3.0, D∗r = 0.015 for the speed profiles v(x). Experiments indicate
that in the cases with low amplitude, namely plots g), h) and i), v(x) > 1 in the extremes of
the profile. This is probably caused due to the flow induced by bacteria swimming. When
bacteria reach a peak, typically, they swim away from the wall. Therefore the backflow
produced by the no-slip boundary condition may push bacteria to swim faster. To confirm
this hypothesis, a measurement of the flow field is needed. This near-field hydrodynamic effect
is out of the scope of this thesis. Nevertheless, we have confirmed that the measurement of
v(x) is correct.

In the same case of low amplitude, we also observe that bacteria slow down in the valley to
even half of their bulk speed. Simulations predict that bacteria decrease their speed only 25%
in those cases. For simulations, bacteria slow down due to the collision force with the wall, but
in reality, friction and the flagella’s interruption also play a role in that regard. Nevertheless,
this aspect only changes the residence time of bacteria in the wall. If we assume a bulk speed
of 20 µm/s for a trajectory of 30 µm in contact with the curved wall, the residence time in
experiments is around 1 s longer than in the simulation. This is the most extreme case, as
bacteria may make contact with the curved wall near a peak and travel much less distance
in the curved wall. Therefore, this difference is marginal, and it is barely observed in the
profiles of figure 4.12.

Then, as the accumulation transition occurs, we can see how values of v(x) decrease, reaching
a minimum of 0.1 for figure 4.19 a). This means that the measured mean speed of bacteria
trapped in a valley is ∼ 3 µm/s. The measurement of speed is sensitive to errors due to the
noise in the position detection. When multiple bacteria collide, the shape of the detection
changes continuously, so the center fluctuates, which is likely to happen when clustering
on the valley occurs. Since we are measuring speed, this is a strictly positive effect and is
not necessarily small. Therefore, measurements overestimate the real values of speed once
bacteria start to stagnate in the valley.
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Figure 4.19: Speed profiles v(x) for experiments and simulations with the same values of A
and λ than figure 4.12. For experimental data, error bars are the 95% interval of confidence
for the mean speed v(x). The complete set of normalized speed profiles is in the annexed.

More importantly, as the accumulation transition takes place, the simulations appropriately
predict the speed values. We determined the optimal values K∗ and D∗r using intensity
profiles, but they still predict values of other quantities, such as the speed profile. These are
related quantities from an experimental point of view, but it does not mean that any model
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can replicate them. These observations render the model’s qualitative predictions as more
than pure coincidence. Moreover, they imply that the dynamics on the valley are correctly
modeled when the accumulation transition occurs.

Figure 4.20: Minmimum of the speed profile
min(v) as a function of the curvature κ.
Errorbars are the confidence interval of 95%
for the estimation of min(v).

To summarize the results of this section,
in figure 4.20 we plot the minimum of
the speed profile min(v) as a function of
curvature κ. In experiments, we obtain that
min(v) is equal to 0.4 for low curvatures,
while in simulations with the optimal set
of parameters, it reaches values up to
0.8. In the opposite case of higher
curvatures, the experiments reach a value
of min(v) around 0.1 caused by fluctuations
in the detections of bacteria stagnate in
the valley. In contrast, simulations predict
values near 0 for κ = 0.9 µm−1. Nevertheless,
the accumulation transition is correctly
represented by a rapid diminution of min(v)

4.3.3 Characteristic times

The sinusoidal shape of the curved wall has
proven that it reduces the accumulation of
bacteria for low values of the curvature.
We measured the characteristic times of
interaction with the wall to analyze this
aspect further. We consider two times, the contact time tcontact and the escape time tescape.
To define these two times, we consider three relevant frames of the trajectory of a particle
close to the wall. First, the time tin is the moment where the bacterium enters in the band of
the curved surface. This is the reference time for the calculation of the characteristic times.
Then tband

out is the time where the bacterium leaves the region defined by the band of the
curved wall. If a bacterium returns to the band in less than T = 0.5 s it is considered as it
did not leave. The value of T is arbitrary, and obviously, results depend on its value. We
decided that T = 0.5 s was reasonable by looking at the typical trajectories in videos. We
can define the contact time with the surface as tcontact = tband

out − tin. Finally, the time twall
out is

the time at which bacteria cross the line parallel to the curved wall that is 20 µm away from
the peak of the sinusoidal shape. When a bacterium is this far away from the curved wall,
it is not affected by its presence. We define the escape time tescape = twall

out − tin as the time
it takes for bacterium to escape the wall influence. In the diagram 4.21 we represent all the
aspects of this definition.
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Figure 4.21: Diagram of the definition of the times tcontact and tescape. The dashed blue line
represents a possible trajectory of a bacterium represented by a blue ellipse. The arrows
represent the vector p. Each relevant time is included in the diagram. The solid black line is
the sinusoidal wall, and the dashed black line marks the limit of the curved wall band. The
green line marks the 20 µm from the peak of the curved wall.

In figures 4.22 a), b) we show values of the mean characteristic times 〈tcontact〉 and 〈tescape〉.
The average is taken over the ensemble of trajectories that successfully escape the wall. The
number of tracks in this ensemble varies depending on A and λ. For the lowest curvature κ =
0.12 µm−1, this set contains 98 tracks. As the curvature increases, bacteria leave the curved
wall with a higher inclination, and therefore the probability of a particle escaping the surface
increases. This increases the size of the ensemble. Exactly for the critical curvature κ =
0.3 µm−1 the maximum number of 455 tracks is reached. Nevertheless, for higher curvatures,
increased cell collisions due to cluster formation in the valley interrupt bacteria tracking, and
the measurement of the escape of bacteria is impossible. Due to this, we only considered
experiments where the value of the mean normalized intensity satisfies 〈I(x)〉 < 1. In figure
4.15, this corresponds to all pairs (λ, A) below the orange dashed line.

We also note the two observed decrements share an essential property. They occur clearly for
κ = 0.25 µm−1, but only one point shows the transition, the one slightly to the right. Here
we are comparing the pairs (λ, A) given by (21, 2.7) and (30, 5.6). In both cases, the point
with a low value is (30, 5.6). This is logical because a higher amplitude means that bacteria
leave the sinusoidal wall with a higher inclination. We conclude that the curvature κ does
not reveal all the information of this system, but it is still helpful for the description.

Finally, in figures 4.22 c), d) we plot the standard deviations of the characteristic times
σcontact and σescape. Again the quantitative predictions are similar in the contact case but
different for the escape times. We also observe that the standard deviation increases with
the curvature. This happens because bacteria start to stagnate in the valley, but not all
particles in contact with the wall will go through it. Therefore, there is a high variation in
the characteristic times of each cell depending on the trajectory.

These results are promising. In similar conditions, bacteria on flat walls were measured to
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Figure 4.22: Mean and standard deviation of the characteristic times in experiments and
simulations with the best pair of parameters. a, b) Mean contact and escape times,
respectively. The average is taken over the ensemble of cells that leave the wall. In b)
a decrease in the escape time occurs for κ = 0.25 µm−1. c, d) standard deviations of the
characteristic times. Instead of using error bars in a) and b), we decided to show the standard
deviations separately because error bars would overlap. Its dependence on the curvature is
caused by stagnation in the valley.

have an average contact time of 64 s [36]. By considering a sinusoidal surface, we are reducing
this contact time to less than 5 s. Even if bacteria do not escape the wall influence, this is
important because bacteria will only adhere if in contact with the surface. Also, in the case
of the escape times, considering only simulations, bacteria escape in around 10 s. Therefore a
surface with the appropriate curvature will expel bacteria away from it. We conclude that a
geometric control of the surface accumulation and so biofilm formation reduction is possible.
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Chapter 5

Conclusions and perspectives

In this thesis, we studied the swimming of bacteria Escherichia coli (E. coli) near a sinusoidal
boundary. We used low-density suspensions of bacteria to measure their accumulation near
the curved surfaces. Through image analysis and bacterial tracking, we measured bacteria’s
density, speed, and residence times in the region close to the curved wall. We also developed
a model of bacteria swimming, considering steric interactions with the surface.

We observed that bacteria movement in the curved surface depends on the parameters of the
sinusoidal shape, namely the amplitude A and the wavelength λ. Their combined effect can
be largely summarized in the wall maximum curvature κ = 4π2A/λ2. For lower curvatures,
bacteria move along the surface quickly, and when bacteria reach a peak, they may leave the
surface. As the curvature increases, bacteria become trapped in the valleys and eventually
form clusters that last for several seconds. We called this transition the accumulation
transition. To characterize this transition, we measured the mean density of bacteria in
a period of the sinusoidal wall, through the intensity of the fluorescence of bacteria. We
focused on the intensity in the curved wall, which we normalized by the mean intensity in
the flat wall. This normalization ensures experiments are comparable. The accumulation
transition was characterized via the Fourier coefficient c1 associated with the shape of the
intensity profile. We determined that the accumulation transition occurs near a critical
curvature κ∗ = 0.3 µm−1.

The model considered interactions between bacteria and the wall through the steric alignment
intensity K and random reorientations induced by the liquid particles through the rotational
diffusion coefficient Dr. K and Dr were the only non-fixed parameters of the model.
We adjusted the model parameters to replicate the values of c1 resulting in the optimal
values K∗ = 3.0 rad/s and D∗r = 0.015 rad2/s. This values compare well to the reported
measurements in the literature. In a flat surface K = 4.9 rad/s was measured [73], and
a lower value of K is to be expected as bacteria align less with the curved surface. Also
Dr = 0.057 rad2/s was reported for cells swimming far away from boundaries [36]. In our
experiments, bacteria in the focal plane swim in contact with a frontal surface, so it is
reasonable to have a lower value of Dr due to the geometric restrictions that the surfaces
imposes on the liquid and the rotation of the bacteria.

The optimal values of the model parameters were determined only with c1. Nevertheless,
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the model replicates other quantities such as mean accumulation in the curved wall, speed
profiles near the wall, and contact times with it. This is interesting because the model is very
simple. The model does not consider the spherocylindrical shape of cells, the friction with
the wall, the collision and alignment between cells, and the hydrodynamic effects caused by
the flagella movement. There is plenty of physics involved in these experiments, but a model
with minimal ingredients predicts the observed accumulation transition and makes reasonable
predictions for all the measurements we made in the experiments. This can mean only one
thing, the dynamics of cells near sinusoidal walls is dominated by the effects described in
the model. We conclude that the steric alignment of cells with the wall and the rotational
diffusion are the primary physical mechanisms that govern the dynamics of bacteria when
swimming near a curved surface.

Regarding the mean accumulation of bacteria, we discovered that near the critical curvature,
a minimum of the average accumulation along the curved wall is found for the values A =
5.6 µm, λ = 27 µm. Nevertheless, an experiment with almost equal curvature but lower
amplitude showed a higher accumulation. This is because, for these curvatures, bacteria
move around the valley easily, but for higher amplitude, the bacteria leave the wall with
a higher inclination and therefore move away from the surface. This is interesting for
designing surfaces that reduce biofilm formation because it reveals that curvature is not
the only relevant parameter. We believe that semicircular patterns are the best option to
reduce accumulation of bacteria, as they are expelled with the highest inclination possible.
Nevertheless, our characterization as a function of the curvature is helpful because it is
independent of the shape. If we extrapolate the results of this thesis for the semicircular
geometery, we can predict an optimal radius R∗ around R∗ = (κ∗)−1 ≈ 5 µm for semicircular
patterns.

Thanks to the measurments of residence time of bacteria near the walls, we determined that
the average contact time in the sinusoidal wall is an order of magnitude lower than in the flat
surfaces. This decrease could mean that bacteria do not have time to adhere to the surface.
In the future, we believe it is necessary to test this surface in more natural situations to
measure its effectiveness in preventing biofilm formation.

The work done in this thesis still has plenty of room for improvement, as was discussed in
the previous chapter. For example, we only have experiments with A ≈ 9 µm in one day.
Due to technical problems with the camera, it was impossible to generate more experimental
data. We are also lacking resolution in the amplitudes, because for the wavelengths 21 µm
and 24 µm we cannot observe the accumulation transition optimally. Increasing the number
of experiments in this range of amplitudes is crucial to elucidate the differences observed in
this range. Therefore an increase of the resolution in the (λ, A) space will better describe
the accumulation transition. Moreover, the experiments will benefit from data from lower
amplitudes as it is expected that for curvatures near zero the behavior in the curved wall will
recover the behavior of the flat surface, implying that c1 and 〈I(x)〉 have a non-monotonic
behavior with respect to the curvature. We also believe that a tracking-based bacterial
density measure will allow a more direct comparison between experiments and simulations.
Finally, the model should consider cell alignment interactions to correctly reproduce the
bacteria cluster dynamics in the curved wall. The last two aspects were not considered due
to time restrictions, but will be implemented in a future publication.
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In summary, this thesis contributes to understanding how shape alters the accumulation
of bacteria near a surface. We observe a transition in the accumulation depending on the
curvature in the wall. We explain this phenomenon by a simple model that considers an
alignment with the wall and rotational diffusion. By adjusting the model parameters to
replicate the transition, the dependence of bacterial speed and mean density with respect to
the curvature is replicated, indicating that the system’s dynamics are correctly represented.
This implies that the steric alignment dominates other effects typically present in experiments
but not included in the model. In addition, we have shown that these surfaces reduce the
accumulation of bacteria on the wall considerably as the bacteria are in contact for times an
order of magnitude shorter than near flat walls. This study promises that control of biofilm
formation by optimization of surface curvature is possible.
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Annexed

Normalized intensity and speed
profiles for all cases
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Figure A.0: Normalized intensity and speed profiles for all amplitudes and wavelengths for the
experiments and the simulation with the pair of optimal parameters. All profiles are labeled
with the amplitude A, wavelength λ and the associated maximum curvature κ = 4π2A/λ2.
The figures are sorted by the curvatures.
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