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MEZCLAS ACTIVAS INTERACTUANDO CON PAREDES
Y OBSTACULOS ASIMÉTRICOS

RESUMEN

La materia activa se compone de un gran número de part́ıculas autopropul-

sadas, con ejemplos incluyendo colonias de bacterias, manadas de animales y coloides

autoforéticos. En esta tesis, estudiamos una mezcla de part́ıculas autopropulsadas

“rápidas” y “lentas” en dos escenarios: (i) en presencia de dos paredes planas par-

alelas y (ii) en presencia de un arreglo regular de grandes obstáculos asimétricos

(con forma de medio disco). Para ello, se realizaron simulaciones 2D con part́ıculas

activas Brownianas. El sistema tiene dos tipos de part́ıculas, cada uno caracterizado

por su propia velocidad de autopropulsión. Para aislar los efectos de la diversidad

en las velocidades, el promedio de las velocidades de autopropulsión se mantiene

constante mientras el grado de diversidad es variado. Debido a su movimiento

persistente, las part́ıculas se acumulan cerca de los objetos en un fenómeno cono-

cido como mojado. Dado que las part́ıculas rápidas tienen mayor probabilidad de

ocupar los espacios disponibles, surge segregación espacial. Cuando la diversidad

de velocidades es mayor al 30%, se observa una transición donde la velocidad de

autopropulsión de las part́ıculas lentas se vuelve demasiado débil y comienzan a

acumularse sobre la “capa” de part́ıculas rápidas en vez de cerca de la pared. Para

las paredes planas, encontramos que el proceso de segregación evoluciona en dos eta-

pas: una dinámica rápida, donde la capa de mojado crece a través de la agregación

de particulas rápidas y lentas a diferentes tasas, y una dinámica lenta, caracterizada

por la relajación de la capa de mojado hacia el estado estacionario. Además, se

extendió una teoŕıa cinética previamente usada para separación de fases inducida

por motilidad para incluir mojado por mezclas activas. Con una excelente concor-

dancia cuantitativa, nuestras simulaciones y teoŕıa muestran que, al incrementar la

diversidad de velocidades, el espesor de la capa de mojado decrece fuertemente y su

composición se comporta de manera débilmente no-monótona. Para los obstáculos

asimétricos, las part́ıculas viajando desde el lado curvo hacia el lado plano del ob-

staculo con forma de medio disco pasan menos tiempo atrapadas por el obstáculo

que las que viajan en sentido contrario. Como resultado, un movimiento dirigido

emerge espontáneamente. Encontramos que surge una corriente de rectificación que

se amplifica cuando se aumenta el grado de diversidad entre los tipos. En el ĺımite

activo-pasivo, las part́ıculas pasivas siguen participando del movimiento dirigido de-

bido a que son arrastradas por las part́ıculas activas. Debido a la segregación, los

perfiles de acumulación en el lado plano y en el lado curvo tienen formas distintas.

Cerca de las esquinas del obstáculo, se generan dos pares de vórtices que contribuyen

a la rectificación. La vorticidad también aumenta con la diversidad de velocidades.

Nuestros resultados entregan información útil sobre el comportamiento de la materia

activa en entornos complejos.
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ACTIVE MIXTURES INTERACTING WITH WALLS
AND ASYMMETRIC OBSTACLES

ABSTRACT

Active matter is composed of a large number of self-propelled particles, with

examples encompassing bacterial swarms, animal flocks, and autophoretic colloids.

In this thesis, we study a mixture of “fast” and “slow” self-propelled particles in two

scenarios: (i) in the presence of two parallel flat walls and (ii) in the presence of a

regular array of large asymmetric (half-disk shaped) obstacles. For this purpose, 2D

simulations of active Brownian particles were carried out. The system has two types

of particles, each one characterized by its own self-propulsion speed. To isolate the

effects of speed diversity, the system-average self-propulsion speed is kept unvaried

as the degree of speed diversity is varied. Due to their persistent motion, particles

accumulate around the objects in a phenomenon known as wetting. Stationary segre-

gation arises since faster particles are more likely to occupy new available spaces. For

degrees of speed diversity ≥ 30%, we observe a transition where the self-propulsion

of the slower particles becomes too weak and thus these particles start to accumulate

more easily over a “layer” of faster particles rather than near the wall. For the walls,

we find that the segregation process evolves in two stages: a fast dynamics, where the

wetting layer grows via aggregation of fast and slow particles at different rates, and

a slow dynamics, characterized by the relaxation of the thickness and the composi-

tion of the wetting layer towards the stationary state. Also, we extended a kinetic

theory previously used for motility-induced phase separation in one-component sys-

tems in order to include wetting by active mixtures. With excellent quantitative

agreement, our simulations and theory show that, by increasing speed diversity, the

wetting layer thickness decreases strongly, whereas its composition is weakly non-

monotonic. For asymmetric obstacles, particles traveling from the curved to the flat

side of the half-disk obstacle spend less time trapped than in the opposite direction.

As a result, directed motion emerges spontaneously. We find that the corresponding

rectification current is amplified when the degree of speed diversity is increased. In

the active-passive limit, the passive particles still undergo directed motion dragged

by the active ones. Due to rectification, segregation profiles are different between

the curved and flat sides. Near the obstacle corners, pairs of vortices that further

contribute to rectification are observed. Their vorticities also increase with speed

diversity. Our results provide useful insights into the behavior of active matter in

complex environments.
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Chapter 1

Introduction

1.1 Active Matter

The study of Active Matter focuses on systems of self-propelled particles and their

emergent phenomena [1]. Many of its new behaviors are relevant to applications

ranging from biology to industry [2]. Examples of Active Matter are abundant,

including herds and flocks of animals [3–5], cell tissues [6], bacterial colonies [7]

and autophoretic colloids [8]. These systems show complex organized behavior and

have one feature in common: each self-propelled entity is an independent agent

that processes information from its surroundings and consumes energy locally to

generate movement. As a result, these systems are intrinsically out-of-equilibrium

as each particle has an irreversible dynamics.

1.2 Microswimmers

In this thesis, we are interested in modelling Active Matter systems on the mi-

croscopic scale, particularly microswimmers, such as bacteria, plankton, and algae.

Nevertheless, the results presented here are expected to be also valid for analogous

systems on other scales. Microswimmers are not restricted to living organisms. In

the artificial world, a famous example is that of Janus particles [9]. The surface

of each of these microparticles is designed to have two distinct physical proper-

ties, allowing them to self-propel by generating local gradients of a solute in their
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surrounding fluid. Another example are light sailboats [10], which are microscopic

swimmers with a wedge shape covered with a reflective surface, so that the momen-

tum change during reflection provides self-propulsion. Microswimmers are one of

the main focuses of Active Matter since they are are relatively easy to control. Also,

artificial microswimmers offer exciting opportunities for biomedical applications [11]

such as drug delivery [12,13]. As further discussed below, microswimmers typically

exhibit persistent motion (more clearly defined in Section 1.4 below) and active dif-

fusion, the latter commonly being orders of magnitude larger than thermal diffusion.

They may also be subject to self-propulsion alignment forces.

1.3 Modelling

There are two main frameworks to model active particles (see Fig. 1.1). The first

is called Run-and-Tumble particle (RTP), where the swimmer moves in a straight

line until it randomly resets its motion direction (i.e., “tumbles”). The tumbles

occur stochastically at some rate α and correspond to abrupt changes of direction.

Examples of microswimmers that are typically modelled as RTPs include E. Coli

and Salmonella. The second model is called Active Brownian particle (ABP). Here

the particle changes its motion direction via angular diffusion, characterized by

a diffusion constant η. In this case, the change of direction is smooth, but also

stochastic. ABPs are commonly employed to model artificial microswimmers as

well as several “smooth-swimming” bacteria and other microorganisms. Using the

common assumption that RTPs spend zero time tumbling, i.e., that tumbles are

instantaneous, it has been shown in Ref. [14] that the collective behaviors of RTPs

and ABPs are equivalent and can be mapped onto one another through α ↔ (d −

1)η, where d is the spatial dimension. In our work, we will use ABPs, since their

implementation is simpler.
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Figure 1

Simulated paths of a run-and-tumble (Left) and an active Brownian (Right) particles of length

τ = 5α−1 = 5D−1
r . Each is diffusive at large length and time scales.

In what follows we review (Sec. 2) the general physics of motile particles, focusing on

two simple models, inspired respectively by bacteria and by synthetic colloidal swimmers.

We then address their many body physics in general (Sec. 3), and MIPS in particular,

first within a local approximation whereby the swim speed depends on density but not its

gradients (Sec. 4). After exploring the aspects of MIPS for which this approximation is

sufficient (Secs. 5,6) we move beyond it, showing in Sec. 7 that a careful consideration of

nonlocal or gradient terms gives dynamics that is, after all, not equivalent to any form of

passive phase separation. We conclude briefly in Sec. 8.

2. MOTILE PARTICLES

2.1. Run-and-Tumble Bacteria and Active Brownian Particles

We start by considering two limiting models of the stochastic dynamics of a single active

particle (Fig.1). The first is a so-called ‘run-and-tumble particle’ (RTP), whose motion

consists of periods of persisent swimming motion, called ‘runs’, punctuated by sudden

changes of direction, called ‘tumbles’ (38, 41). This is a canonically simplified model of the

dynamics of bacteria such as E. coli. It supposes the runs to be straight lines, traversed

with fixed speed v, and punctuated at random by instantaneous tumbles, occurring at some

fixed rate α, each of which completely decorrelates the swimming direction. At time- and

length-scales much larger than α−1 and ` ∼ v/α, this motion is a diffusive random walk. 1

It is a simple exercise to calculate its diffusivity in d dimensions as D = v2/αd.

RTP:
Run-and-Tumble
Particle

ABP: Active

Brownian Particle

PBP: Passive

Brownian Particle

Our second model is called an active Brownian particle (ABP) (10). This also has a

fixed swim speed v, but its direction decorrelates smoothly via rotational diffusion, with

angular diffusivity Dr. This rotation is typically thermal, hence the ‘Brownian’ label: an

instance is self-phoretic colloids, which asymmetrically catalyze conversion of a surrounding

fuel to create self propulsion along an axis that slowly rotates by angular Brownian motion.

(Another instance is E. coli mutants, called ‘smooth swimmers’, which have lost the ability

to tumble.) At large length- and time-scales the motion is again a diffusive random walk;

finding the diffusivity is another easy exercise with the result D = v2/d(d− 1)Dr.

1As so far described, this model is nothing but the Lorentz gas introduced to model electron
transport in metals. Under the assumption that background atoms are random immobile scatterers
and that the electron-atom interactions amount to elastic scattering, electrons indeed undergo run-
and-tumble motion (42).

www.annualreviews.org • Motility-Induced Phase Separation 5

Figure 1.1: Simulated paths of an RTP (left) and an ABP (right). From Ref. [14].

1.4 Collective phenomena

Active particles may interact via alignment forces and/or excluded volume. As a

result, interesting fundamental collective behaviors arise. For sufficiently large per-

sistence times or densities, particles do not have time to find an escape route and

thus become trapped between other particles. As a result of this trapping mech-

anism, clusters of active particles surrounded by dilute regions are formed. This

phenomenon is called motility-induced phase separation (MIPS) [14]. A phase sepa-

ration that consists in the formation of clusters of active particles. The key variables

that control the presence of MIPS are the persistence of the swimmers, which de-

pends on the reorientation rate and the self-propulsion velocity, and the packing

fraction φ of the system. Studying a system of ABPs, Ref. [15] showed that φ is

required to be above φ ≈ 0.3 to allow for MIPS. Active matter can also sponta-

neously accumulate around obstacles even in the absence of attractive forces [16].

This phenomenon arises because active particles normally have a direction of mo-

tion that evolves stochastically but slowly, i.e., their direction of motion is persistent.

Importantly, persistent microswimmers also accumulate in the presence of walls at

densities lower than the required to develop MIPS [16]. This is known as active

wetting [17–19] and is one of the main subjects of study in this work. Active wet-

ting is interesting since it helps control surface adhesion and capillary properties of

bacterial biofilms [20–22], whose formation makes bacterial colonies more resilient

3



against antibiotics [23]. Although alignment forces are responsible for the emergence

of flocking [24], they are not required to generate wetting and are thus neglected

here for simplicity. Simulating identical active particles interacting with flat walls,

three wetting phases have been identified [25]: complete wetting, incomplete wet-

ting, and complete evaporation (or “unwetting”). On the more theoretical side, a

system of ABPs (also one-component) has been studied in Ref. [17] using an effective

equilibrium (density functional theory) approach.

In the case of interactions with asymmetric obstacles, i.e., when the interaction

is different if the particle moves towards one side or the other, simulations and ex-

periments show that active particles undergo directed motion [26], in addition to

accumulation. The spontaneous emergence of net particle transport due to environ-

mental asymmetries, i.e., “rectification” currents, has constituted a central topic in

both conceptual and technological contexts for decades [27]. More recently, research

on the rectification of self-propelled particles has gained momentum [28–32]. In

Ref. [33], an initially homogeneous collection of active Brownian particles in 2D was

simulated in a regular array of half-disk rigid obstacles oriented in the same fixed

direction. The stationary average speed of the particles was found to be nonzero:

instead, an effective rectification current emerges since particles traveling from the

curved side to the flat side of the obstacle spend less time trapped than those in the

opposite direction. Similar behavior was observed for an irregular array of randomly-

located obstacles oriented in the same fixed direction [34]. The sizes of the obstacle

and accumulation layers directly affect the intensity of such rectification currents.

Rectification by half-disk obstacles shows that no cavity is needed to trap parti-

cles [35], meaning that the existence of convex surfaces with distinct curvatures is

sufficient to generate currents (see Fig. 1.2).
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Figure 1.2: A system of identical active Brownian particles accumulating on a convex
asymmetric obstacle. Left: Snapshot. Right: Velocity field. From Ref. [33].

1.5 Diversity

Studying active matter interactions with walls and asymmetric obstacles, one typi-

cally considers identical active particles, i.e., particles with the same self-propulsion

speed, rotational diffusion coefficient, and size. To the best of our knowledge, wetting

by active mixtures has not been previously considered in the literature. Similarly, a

generalization to active mixtures of the rectification problem shown in Fig. 1.2 has

been considered only preliminarily in Ref. [36].

However, diversity is ubiquitous in Nature. For example, in natural colonies

of bacteria and other microorganisms, a broad dispersion of motility parameters

exists due to different ages, reproduction stages, shapes, sizes, and running modes

[35, 37–39]. For either passive or active fluids, it is known that the “diversity” of

some particle attribute generates several new phase behavior phenomena, including

changing the nature and loci of phase diagram boundaries, and introducing particle-

type spatial segregation [18, 24, 40–56]. Therefore, considering diversity in Active

Matter systems does not only make our models more accurate but also allows for

new associated phenomena.
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1.6 Motivation

It remains unclear what are the effects of particle diversity on flat-wall wetting as

well as on active rectification by convex asymmetric obstacles. This is important

because, in complex biological environments, active matter commonly interacts with

obstacles like those, as for example bacteria swimming around the internal structures

of the host body where they live [57]. In this work, we give a particular focus to how

diversity affects the collective behavior of active matter interacting with surfaces.

1.7 This work & Goals

We will use simulations to investigate a mixture of “fast” and “slow” active Brownian

particles, that is, a binary mixture where each particle type is characterized by its

own self-propulsion speed, first in the presence of flat walls and then of a regular

array of half-disk obstacles. To isolate the effects of such “speed diversity”, the

system-average self-propulsion speed is kept unvaried as the degree of speed diversity

is varied. No external fields, hydrodynamic effects, or imposed alignment rules are

present.

Our main objective is to understand how “self-propulsion speed diversity” (here-

after just speed diversity) couples with surface interactions in both of our systems.

For the flat walls, we want to understand how the thickness and the composition of

the wetting layer are affected. For our second model, we will look into how speed

diversity affects rectification currents as well as accumulation profiles. In particular,

we discuss how these effects are connected with the emergence of segregation in a

spectrum of active-active mixtures.
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Chapter 2

Model

In experiments with microorganisms, swimming is commonly restricted to 2D due

to hydrodynamic attraction in the surrounding fluid towards surfaces [58]. Also, a

number of experiments regarding the collective behavior of bacteria are performed

in quasi-2D setups [59]. Therefore, since models in two dimensions allow for spatial

segregation and are easier to visualize and build intuition on than 3D ones, in this

thesis we will work only in 2D. We expect our main qualitative results to be valid

in 3D as well.

In this chapter, we describe the key components of our simulations. We will ad-

dress how we implemented active mixtures, the necessary components to implement

the ABP model, and how these active particles interact with each other as well as

with the flat walls and the half-disk obstacle.

2.1 Active mixtures

We consider a binary mixture in 2D composed of N active Brownian disks la-

beled by i, where N/2 of them are “fast” particles, with self-propulsion speed

vi = vf ≡ v0(1 + δ), and the other N/2 are “slow” particles, with vi = vs ≡ v0(1− δ).

From now on we will use the subscripts f and s for fast and slow particles respec-

tively . The parameter δ ∈ [0, 1] thus corresponds to the degree of speed diversity.

For δ = 0, all particles have identical self-propulsion speed and the system is called

“monodisperse”. In the opposite limit, when δ = 1, the mixture is active-passive.
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For simplicity, global compositions other than 50-50% are not considered, but gener-

alization is straightforward. On varying δ, the system-average self-propulsion speed

is kept at v0, which is constant and independent of δ. By doing so, the effects of

speed diversity can be isolated. To avoid undesired artificial crystallization [60], each

particle is randomly assigned one of two diameters, dsmall = d0 and dlarge = 1.4d0,

uncorrelated with particle types. Therefore, there are four particle types, but we

focus on the effects of speed diversity. The system is said to be just binary or

“bidisperse”.

The dynamics of each particle’s position ri is governed by the ABPs equations

[61]

∂tri = vi ν̂i + µF i + ξi, ∂tθi = ηi(t), (2.1)

where ν̂i = (cos θi, sin θi) determines the self-propulsion force direction and µ is

the mobility. Also, F i =
∑

j 6=i F ij + F surface
i is the net force on particle i due to

interactions with other particles and with flat walls (Chapter 3) or with half-disk

shaped obstacles (Chapter 4). The noise terms ξi(t) and ηi(t) are Gaussian and

white, with zero mean and correlations 〈ξiα(t)ξjβ(t′)〉 = 2ξδijδαβδ(t− t′) (the Greek

letters denote Cartesian coordinates ) and 〈ηi(t)ηj(t′)〉 = 2ηδijδ(t− t′), where ξ and

η are the translational1 and rotational diffusion coefficients respectively.

The interparticle interactions are taken as a soft repulsive WCA-like potential [62]

defined in terms of the interparticle distance rij as2

U =

2
3
2

(
σij

rij

)3

− 3

(
σij

rij

)6

+

(
σij

rij

)12

− 3

4
, rij ≤ 2

1
6σij,

0, rij > 2
1
6σij

(2.2)

with σij ≡ 1
2
(di + dj), where di is the particle diameter of particle i.

The parameter distinguishing the particle types is the self-propulsion speed. We

choose units and fixed parameters such that v0 = 1 and the diameter scale is d0 = 1.

1Besides rotational diffusion, the flat wall problem also includes translational diffusion, which
in turn does not affect the qualitative collective behavior. It is included in the model only to make
it more suitable for (future) theoretical developments and comparisons.

2For similar reasons, the modified WCA potential used here has a smooth second derivative.
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For the diffusion coefficients and simulation time step, we use ξ = 5 × 10−4, η =

5 × 10−3 and ∆t = 5 × 10−4. Initially, particles are distributed homogeneously at

random positions with random velocity directions, independent of their types. To

prevent errors associated with initial overlapping, the inter-particle force is bounded

for the first 2 units of simulation time.

2.2 Active mixtures interacting with walls

For our first model we consider mixtures in the presence of two flat walls. For

the particle-wall interaction between particle i and any of the sides, dj is replaced

by zero. The simulation is performed in a rectangular box of sides Lx = 400 and

Ly = 100. The walls are located parallel to the y-axis at x = 195 and x = 205,

leaving a space of 10 units of length between them. We consider periodic boundary

conditions. The simulation space corresponds to an infinite stripe with soft walls

on the sides. The average persistence length of the particles is ` ≡ v0/η = 200,

which is comparable to the system size but sufficiently small so that particles are

not able move ballistically from one wall to the other, allowing us to treat each

wall independently and thus averaging the data from both walls. The occupied area

fraction φ is defined as the total area occupied by particles divided by the area of

the simulation box minus the area between the walls, i.e.,

φ =
N

2
×

π
4

(
d2small + d2large

)
LxLy − 10Ly

. (2.3)

2.3 Active mixtures interacting with asymmetric

obstacle

For our second model, we study the behavior of a mixture in the presence of a half-

disk obstacle of radius D/2, located at the center of the simulation box with the flat

side parallel to the y-axis (as shown in Fig. 1.2). We consider the same type of mix-

ture (without translational diffusion) and time step ∆t = 10−3. For the interaction

9



with the walls, we use the same potential so that, for the flat side, dj is replaced by

zero and, for the curved wall dj = D/2. Simulations were carried out inside a square

box with side L = 200 (such that D = L/2) and with periodic boundary conditions,

simulating therefore an infinite regular array of identical obstacles. Here one has

φ =
N

2
×

π
4

(
d2small + d2large

)
L2 − π

2

(
D
2

)2 . (2.4)
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Chapter 3

Active mixtures interacting with
walls

The simple model described in Chapter 2 provides a powerful tool to study wet-

ting and segregation in mixtures of active persistent particles. Because of its out-of

equilibrium nature, Active Matter shows non-equilibrium steady states (NESS). We

divided our analysis for this system into two parts. The first is dedicated to under-

standing how the system approaches the NESS (transient), and how this is affected

by δ; in particular, we will comment on the composition of the wetting layer, its thick-

ness, and the evolution of the orientations of the particles. In the second we study

the NESS properties, where we discuss the “equilibrium” composition of the system,

its associated concentration profiles, and measure a global segregation parameter,

among other analyses. We complement our simulation results with a theoretical ap-

proach obtained by extending a kinetic theory previously used for motility-induced

phase separation [15] in one-component systems in order to include wetting by active

mixtures.

3.1 Transient

Particles start to accumulate quickly on the walls, as shown for δ = 0 and φ = 0.18

in Fig. 3.1 and in our supplementary Movie 3.1. Similarly, Fig. 3.2 and Movie 3.2

show the accumulation for δ = 0.5. The resulting wetting layers are not static:

at the interface, particles are constantly being absorbed and emitted; in the inte-
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rior, particles are constantly exchanging positions, which can be attributed to their

persistent movement.

(a) t = 50 (b) t = 250

(c) t = 500 (d) t = 1000

Figure 3.1: Time evolution snapshots for δ = 0 and φ = 0.18. Only a portion of the
simulated rectangular box is shown. Values for the other parameters are given in
Chapter 2.

We are interested in understanding what sets the size and composition of these

two wetting layers (one for each wall). These are the only clusters in the system

since far from the walls the system is gaseous (the lower-density phase outside the

layer is denoted “gas”) with a density that is not sufficient to generate MIPS. Us-
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(a) t = 50 (b) t = 250

(c) t = 500
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(d) t = 1000

Figure 3.2: Time evolution snapshots for δ = 0.5 and φ = 0.18. Only a portion of
the simulated rectangular box is shown. Values for the other parameters are given
in Chapter 2.
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Figure 3.3: Left: Mean thickness of the wetting layer for various values of speed
diversity δ (from 0 to 1 in steps of 0.1). We can see that increasing the diversity
decreases the thickness of the layer. Right: Composition curve, i.e., evolution of the
composition of the wetting layer for the same values of δ, measured in terms of the
number of fast and slow particles in it. The diagonal corresponds to compositions
with the same number of fast and slow particles. As δ increases, segregation emerges:
the layer contains more fast particles than slow ones. For all values of δ, the behavior
of the composition is separated into two stages, a fast dynamics and a slow one. In
both plots, star symbols indicate results for the steady state (t > 2000). Here
φ = 0.18, corresponding to 6000 particles. The colorbar shows the time evolution
and is scaled with a power law of exponent 1/2 to display evolution more clearly.

ing a standard graph approach based on the relative distance among particles and

their respective radii, we found the two biggest connected components of particles

in contact. Having identified the clusters, we used the layer particles located the

farthest away from their respective wall to define the border of the wetting layer.

We then calculated the mean distance of these borders to their corresponding wall

and denoted it the mean thickness of the wetting layer 〈h〉.

Fig. 3.3(left) shows our simulation results for the mean thickness. The steady

state values are shown with black stars through all this chapter. Far from the

steady state, the wetting layer growth occurs at the same rate for all values of δ, in

agreement with our theory below (see Section 3.3). For 0.3 ≤ δ ≤ 0.8, the size of

the layer increases monotonically until it reaches its steady state value. For δ < 0.3

and δ > 0.8, on the other hand, the layer grows thicker than the stationary value,

i.e., there is an overshoot, and then it relaxes by evaporating more particles than

14



absorbing. To complement and better understand this result, Fig. 3.3 (right) shows

composition curves for various δ, i.e., the evolution of the wetting layer composition,

measured in terms of the number of fast and slow particles in it. Each composition

curve shows that the evolution occurs in two stages. First, there is a fast dynamics,

where the ratio of the number of fast over slow particles is constant and different

for each δ. Then, there is a slow dynamics, whose behavior depends qualitatively

on δ as follows. In the range 0.3 ≤ δ < 0.8, the slow dynamics shows additional

aggregation of slow particles (the composition curves move to the right), which

replace fast particles to balance emission and absorption rates (more below) while

the total amount of particles in the layer is already stationary since the end of the

fast dynamics process. This makes sense as equilibration of slow particles well inside

the crowded layer (see the stationary state in Fig. 3.5 left) is expected to take longer

than for fast particles. In the ranges δ < 0.3 and δ > 0.8, the slow dynamics of

the wetting layer is characterized by evaporation (more than absorption) of both

fast and slow particles. In these cases, during the fast transient dynamics the layer

absorbed more particles in total than what is needed to reach the stationary state.

For the active-passive mixture (δ = 1), the number of passive particles in the wetting

layer is zero in the steady state, meaning that the slow particles present in the layer

during the fast dynamic are there because of a “wind” of active particles towards

the wall, which traps slow particles until the layer relaxes in the slow dynamics, as

shown in Movie 3.2. Such enhancement in the participation of passive particles in

clustering phenomena as promoted by active ones has been observed in Ref. [46] in

the context of MIPS.

The behavior shown in Fig. 3.3 can be explained as follows. Initially, there are

no wetting layers, so the rate of evaporation of particles is zero and the rate of

absorption is at its maximum. As time elapses, particles will start to accumulate,

as shown in Fig. 3.1, and be able to escape after reorientation time 1/η. If the layer

has too many particles (more than the steady state size), the gas will have too few
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particles, so the rate of absorption will decrease and eventually get lower than the

evaporation rate, meaning that the layer will stop growing and start to lose particles

until the rate of absorption increases again. This behavior will dump over time,

until eventually the system relaxes to the NESS, as seen in Fig. 3.3 for t > 1750 for

all of our mixtures.

Fig. 3.4 shows a spatiotemporal diagram of an orientation parameter used to

study MIPS clusters in Ref. [63]. It is defined as α(x) = 〈−n̂(x)·ν̂〉, where the unitary

vector n̂ is normal to the wall (outwards) and ν̂ is the self-propulsion direction, and

averaged in y for each position x. Notice that it can independently capture the

evolution of the mean wetting layer thickness shown in Fig. 3.3 (left), as drawn with

a dashed black line in Fig. 3.4. Initially, orientations are random, so the number of

particles pointing towards and away from the wall are the same, leading to α ≈ 0

everywhere. At later times, since particles have a persistent motion and take time to

reorient, particles that were initially pointing away will be further from the wall and

particles pointing inwards will accumulate near the wall. In this process, we observe

a “cleanup” of particles pointing away from the wall. This cleaning “signal” will

have a propagation velocity equal to the mean velocity in the x-axis for each particle

type. Assuming random orientations, one obtains 〈vf,s〉 =
2vf,s
π

shown in Fig. 3.4 with

dashed red and blue lines for fast and slow particles respectively. Again, there is an

excellent agreement with the spatiotemporal orientation data from the simulations.

Looking more closely at the interior of the wetting layer in Fig. 3.4, we notice that

α takes more uniform values for the fast particles than for the slow ones. This is

presumably due to the ability of fast particles to penetrate more as they are more

persistent. This is a first sign that fast particles will accumulate closer to the wall

and slow particles will be located nearer the interface, as further discussed below.
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Figure 3.4: Spatiotemporal diagram of the orientation parameter α = 〈−n̂(x) · ν̂〉,
where the unitary vector n̂ is normal to the wall (outwards) and ν̂ is the self-
propulsion direction, for δ = 0 (top row), δ = 0.5 (middle row) and δ = 1 (bottom
row), with φ = 0.18. The black dashed lines correspond to the mean thickness data
shown in Fig. 3.3 (left). The dashed red and blue lines are the cleaning “signal” for
fast and slow particles respectively. For δ = 0 the cleaning “signal” curve is solid
black.
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Figure 3.5: Snapshots of the system within the steady state for δ = 0.5 (left) and
δ = 1 (right) and φ = 0.18.

3.2 Stationary state

Once the wetting layer stops growing and the number of particles of each type

fluctuates only weakly, we say that the system is within the NESS. The averaged

NESS data shown in this section corresponds to t > 5×103. Fig. 3.5 shows snapshots

within the steady state for δ = 0.5, where there are more fast particles near the wall

whereas the slow ones are located near the interface. For δ = 1, there are almost no

slow particles in the wetting layer. To characterize this change of behavior we plot

in Fig. 3.6 the concentration profiles nf(x) and ns(x) for the fast and slow particles

respectively. They are defined as a local area packing fraction and are calculated

by counting the number of particle centers in stripes parallel to the wall of width 1.

These profiles provide information on where fast and slow particles accumulate. As

shown in Fig. 3.5, fast particles tend to accumulate closer to the wall. This has two

contributions: a kinetic one, which comes from the fact that fast particles are more

likely to occupy newly available spaces first, and a dynamic one, which arises because

faster particles can penetrate, i.e., open the way towards the wall by displacing other

particles. On the other hand, slow particles tend to accumulate further from the
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Figure 3.6: Concentration profiles within the steady state for fast (left) and slow
(right) particles. Here φ = 0.18.

wall. For δ ≥ 0.3, the slow-particle profile develops a local maximum: it becomes

easier to accumulate over the layer of fast particles than near the wall. We also

notice the presence of small oscillations in such concentration profiles near the walls.

They do not correspond to poor-statistics effects. Instead, they can be attributed to

the fact that, near the walls, particles accumulate in a series of stable one-particle

layers, so that the concentration profile cannot be flat there.

To measure the global degree of spatial segregation, we calculate a segregation

parameter that takes into account the overlapping between the concentration profiles

[64], that is,

ζ = 1−
∫
ns(r)nf(r)dxdy√∫

n2
s (r)dxdy

∫
n2
f (r)dxdy

. (3.1)

As such, ζ = 1 implies complete segregation and ζ = 0 means complete mixing,

which in turn occurs only if ns(r) ∝ nf(r). Fig. 3.7 (left) shows that the degree

of segregation increases with speed diversity, but complete segregation is never ob-

tained, not even in the active-passive limit. One might think that this is because

for δ = 1 passive particles may remain trapped near the wetting interface even at

long times due to active dragging. While this does occur, we will see below that on

average almost all passive particles are eventually expelled from the wetting layer

in this limit, with only a couple of them showing up at some time instants. The
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Figure 3.7: Segregation parameter (left) and concentration profiles ratio (fast over
slow) within the steady state. Here φ = 0.18.

more significant reason why complete segregation is not achieved is that there are

fast particles in the bulk even for δ = 1, i.e., the profiles do overlap. Fig. 3.7 (right)

shows that near the wall the ratio between the fast and slow particles profiles in-

creases one order of magnitude between δ = 0.8 and δ = 0.9, and then, since there

are almost no slow particles in the wetting layer for δ = 1, the ratio increases yet

more than one order of magnitude between δ = 0.9 and δ = 1. This shows that the

case δ = 0.9 is not as close to an active-passive mixture (δ = 1) as one might expect.

This will be further discussed in Chapter 4.

Fig. 3.8 shows that the mean wetting layer thickness decreases with speed diver-

sity. That is, systems that are more diverse in self-propulsion speeds form smaller

wetting layers. This corroborates the behavior found for a one-dimensional lattice

model of RTPs undergoing motility-induced clustering without wall facilitation [65].

The explanation is similar. Cluster (or wetting layer) sizes are ultimately set by the

average time that an arbitrary particle takes to cross a gas region between clusters

(compared with the reorientation time of the interface particles). That average time

is the arithmetic average of the travel time for slow particles and the travel time for

fast particles. This average is proportional to the inverse of the harmonic average of

the fast and slow speeds, which increases with δ. If the average travel time is high,
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Figure 3.8: Mean thickness of wetting layer in the NESS for φ = 0.18. The stars
correspond to the simulation results and the solid line corresponds to the theory
from Section 3.3.

interface particles can reorient and escape, thus leading to small wetting layers.

The stationary composition of the wetting layer is shown in Fig. 3.9, where N
(f/s)
c

correspond to the number of fast and slow particles in the wetting layer (detailed in

Section 3.3). By increasing diversity, the number of fast particles is almost constant,

with a only weakly non-monotonic behavior that peaks at intermediate values of δ.

On the other hand, the amount of slow particles decreases strongly up to zero in the

active-passive limit. As a result, the ratio of slow to fast particle number decreases

to zero as well. To build additional insight into the stationary composition of the

whole system, we divided it into rectangular boxes of dimensions 5×20 and counted

the number of centers of fast and slow particles in each box. Then we divided this

quantity by the area of the box to obtain the occupied area fraction. Fig. 3.10

shows the resulting 2D histogram of the local area fraction for each particle type.

The histogram has two peaks, one corresponding to the composition of the wetting

layer (high total area fraction, i.e., far from the plot origin) and another one to the

composition in the gas (low total area fraction, i.e., near the plot origin). Between

them one has the compositions found by crossing the interface between the dense

and dilute phases. For the relatively small value δ = 0.3, the dense phase is close

to the complete mixing and the interface and gas are almost totally well mixed.
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show the simulation results.
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Figure 3.10: Composition histogram of the whole system for δ = 0.3 (left) and
δ = 0.8 (right) within the NESS. It is a contour plot obtained from histograms of
the compositions for various configurations within the NESS. The diagonal line that
starts at the origin indicates compositions with the same number of fast and slow
particles, whereas the perpendicular diagonal indicates the maximum area density.
Contour levels are spaced logarithmically.

This behavior changes for δ = 0.8, where the dense phase moves towards the upper-

left corner and thus only a few slow particles are present in the dense phase (high

segregation). Also, most locations near the interface now have compositions that

are far from complete mixing.

3.3 Kinetic Theory

To further develop our insights, we apply the kinetic approach by Redner et al. [15] to

wetting. After presenting its derivation (including the details omitted in Ref. [15]),

we generalize it to mixtures.

Consider a monodisperse system of active Brownian particles with self-propulsion

speed v and rotational diffusivity η. In the steady state, let us assume that a

single macroscopic motility-induced cluster forms. Moreover, consider it to be close

packed and large enough so that its interface can be treated as flat. Without lack

of generality, we take the dense phase to be on the right and a dilute gas of non-

interacting particles on the left. The flat interface is located along the y-axis in
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between the two phases. The gas particles travel at the self-propulsion speed v with

an angle θ with the x-axis. Kinetic equilibrium is achieved when kin = kout, where

kin (kout) is the rate of absorption (emission) of particles per unit length, i.e., the

flux. For kin, one can write

kin = ρg

π/2∫
−π/2

1

2π
v cos θdθ =

ρgv

π
, (3.2)

where ρg is the gas number density, i.e., particles per area. The angle integral takes

into account only those particles in condition to be absorbed, that is, those moving

from left to right. Since particles escape from the cluster once θ = ±π/2. The

outgoing flux kout can be calculated by solving the diffusion equation in angular

space for P, the time-dependent distribution of orientations for the particles at the

interface, i.e.,

∂tP (θ, t) = η∂2θP (θ, t), (3.3)

with absorbing boundaries at ±π/2 and initial condition given by the distribution of

incident particles, that is, P (±π/2, t) = 0 and P (θ, 0) = cos θ/2. The corresponding

solution is

P (θ, t) =
e−ηt cos θ

2
, (3.4)

For particles of diameter σ, one can write

kout ≡ −
Ṅinterface

σNinterface

, (3.5)

where Ninterface is the number of particles at the interface and the dot represents the

time derivative. Considering only the above, one would obtain

kout = −

∂t

π/2∫
−π/2

P (θ, t)dθ

σ

π/2∫
−π/2

P (θ, t)dθ

=
η

σ
(3.6)

However, each time a particle escapes from the interface towards the gas, other

particles pointing towards the gas will follow it in an avalanche-like effect. The
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average number of particles leaving the cluster per escape event is denoted κ and

is treated as a fitting parameter (Ref. [15] found that κ ≈ 4.5 works well for all

studied self-propulsion speeds and global concentrations). Thus, one corrects kout

by multiplying it by κ. The final balance equation is

ρgv

π
=
κη

σ
. (3.7)

Knowing the gas density, one can now proceed to obtain the number of particles in

the dense phase and thus its size.

Additional equations are needed. First, there is conservation of area, A = Ag +

Ac, where Ag and Ac, where the subindices c and g refer to the cluster (or wetting

layer) and the gas respectively. There is also particle conservation, N = Nc + Ng,

where N denotes number of particles. This can be rewritten as ρA = ρgAg + ρcAc,

considering the number densities multiplied by the area of each corresponding region.

We now use that φc = ρcap, where ap = π(σ/2)2 is the particle’s area, so that for

the global and cluster area fraction we have φ = ρap and φc = π
2
√
3
, where we assume

that the cluster is close packed. Using these equations and the equilibrium condition

kin = kout, we close the system of equations. Finally, applying this to wetting via

h ≡ Ac/Ly gives the wetting layer thickness.

We now generalize to speed-diverse mixtures. Detailed balance per particle type

is assumed. A somewhat similar derivation has been discussed in Ref. [46] in the

context of MIPS (no walls) for active-active mixtures at global ratios other than

50-50%, where the authors considered the approximation that the emission rate for

each type is proportional to the global fraction of that type. Since we know that the

system segregates fast and slow particles, and our system has the same number of

each type, we go beyond that approximation and say instead that the emission rate

of each type should be proportional to the ratio of particles of the same type in the

wetting layer (not globally) divided by the total number of particles in it. That is,
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we now have

k
(f)
out =

κη

σ̄

N
(f)
c

N
(f)
c +N

(s)
c

(3.8)

k
(s)
out =

κη

σ̄

N
(s)
c

N
(f)
c +N

(s)
c

(3.9)

where σ̄ = 1.2d0 is the mean particle diameter.

The absorption rates are according to the corresponding velocities: (3.10). Notice

that in the dilute gas regime studied here (low and intermediate global φ) one does

not need to worry about the interactions between types in the gas and thus

k
(f/s)
in =

vf/sρ
(f/s)
g

π
(3.10)

In order to close the equations, we use particle conservation per type, Aρ(f/s) =

Acρ
(f/s)
c +Agρ

(f/s)
g and ρg = ρ

(s)
g +ρ

(f)
g , leading to a total of 7 equations and 7 unknowns.

As can be seen in Section 3.2, the quantitative agreement between this theory and

the simulations is excellent, with numerical deviations being smaller than 5%. The

only fitted parameter across all data and physical parameters is κ = 4.7. Qualitative

non-monotonic behaviors are also captured. For the number of fast particles in

Fig. 3.9, good agreement is also obtained, but the intense zoom-in makes it look less

accurate.

We also used this approach to predict the evolution of the system. We write two

master equations for the number of particles in the layer based on the difference

between the rates of emission and absorption per unit length for each particle type,

i.e.,

dN
(f/s)
c

dt
=
(
k
(f/s)
in − k(f/s)out

)
Ly. (3.11)

Fig. 3.11 shows the theoretical results for the wetting layer thickness as a function

of time, for which we used a conventional Euler scheme to solve (Eq. 3.11). Our

dynamical theory reaches the steady state at somewhat similar times but in the

simulations this occurs after an overshoot which is not captured by the theory,

presumably because it does not consider dragging or “wind”.
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Figure 3.11: Evolution of the mean thickness of the wetting layer for three values of
δ. Solid lines correspond to the numerical solution of Eq. (3.11) whereas the points
are the simulation data. Left: Complete evolution. Right: Early-time data.
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Chapter 4

Active mixtures interacting with
asymmetric obstacles

In this chapter, we analyze the behavior of mixtures of active particles in the presence

of an array of half-disk shaped obstacles. We start by reviewing the wetting behavior

of active mixtures, but now on the curved and flat obstacle walls rather than on

infinite flat walls. In doing so, we calculate concentration profiles and the global

segregation parameter and compare them with the ones obtained in the previous

chapter. Next, we study the effects of speed diversity on the stationary rectification

currents that arise due to the obstacle’s shape. We also observe the appearance of

two pairs of vortices in the corners of the obstacle, which complement the explanation

given in Ref. [33] for the rectification currents by noticing how particles move over

the flat side.

4.1 Wetting and segregation

Movie 4.1 shows the dynamics between the initial state and the stationary state for

φ = 0.26 and δ = 0.8. Snapshots of the initial and stationary states are shown

in Fig. 4.1 for the monodisperse (i.e., one-component δ = 0) case. After particles

quickly accumulate around the obstacle, the average thickness of the wetting layer

stabilizes once the concentration of the “gas” (i.e, outside the layer) becomes suf-

ficiently low that absorption and emission rates for the layer are equal. Because

available spaces are more likely to be occupied by the faster particles (as they arrive
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(a) t = 1 (b) t = 8000

Figure 4.1: Snapshots of the system for δ = 0 (monodisperse case) and φ = 0.13.
Left: initial configuration. Right: configuration within the steady state.

there typically before the slower ones), segregation emerges. For larger area frac-

tions, the wetting layer increases in size, as shown in Fig. 4.2 for φ = 0.26. In all

cases studied below (φ = 0.08, 0.13, and 0.26 for various values of δ), the stationary

gas concentration is sufficiently low such that no stationary clusters appear in the

gas. That is, the residual gas density after the wetting layer has been formed is

smaller than the necessary to produce MIPS [14]. Also, in the transient regime, the

condensation by heterogeneous nucleation on the obstacle is faster than an eventual

MIPS. Hence, the only condensed phase in the system is the wetting layer on the

obstacle. Movies 4.2 and 4.3 show, respectively, the transient and the steady state

for φ = 0.26 with δ = 0.8.

Due to crowding, the dynamics inside the wetting layer is much slower than that

in the gas. Movie 4.1 also shows that the interface between the wetting layer and

the gas fluctuates strongly. Presumably, this is a consequence of active capillary-like

effects [66, 67] enhanced by the fact that particles can escape from the cluster not

only by rotational diffusion but also by reaching the end of the obstacle wall.

Fig. 4.3 shows the stationary concentration fields for the total, “slow”, and “fast”
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Figure 4.2: Snapshots of the system for δ = 0.8, with the faster particles in red and
the slower ones in blue. The gray area corresponds to the obstacle. Configurations
within the steady state for φ = 0.13 (left) and φ = 0.26 (right).

particles concentrations, denoted respectively by n(r), ns(r), and nf(r), for selected

values of φ and δ. They are defined similarly to the concentration profiles for the wall

but are calculated locally using coarse-graining square boxes of side 2.5. We counted

the number of particle centers in each box, multiplied by the area of the correspond-

ing particle, and then divided the result by the area of the coarse-graining box. For

boxes that include a fraction of the obstacle, the available area was calculated using

standard Monte Carlo integration.

Fig. 4.3 (top row) shows the monodisperse (δ = 0) scenario studied in Ref. [33].

The stationary accumulation is more pronounced for higher φ and decays smoothly

towards the gas. For δ > 0, we observe that ns(r) and nf(r) are significantly differ-

ent from each other as the faster particles once again dominate the occupation closer

to the obstacle, whereas the slower particles accumulate less sharply. Concentration

profiles were obtained by averaging the concentration fields along the direction par-

allel to each wall. Fig. 4.4 (left column) shows concentration profiles of the slow

particles for both sides and several values of δ. For the curved side, the concentra-

tion is plotted against the radial distance to the wall. In this case, a peak located
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Figure 4.3: Concentration fields for δ = 0 (top row) and, per particle type, for
δ = 0.2 (middle row) and δ = 0.8 (bottom row). Here φ = 0.13.
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Figure 4.4: Stationary concentration profiles of slow (left) and fast (right) particles
for various δ and φ = 0.13 and for the curved (top) and the flat (bottom) sides.

further away from the obstacle is observed for δ ≥ 0.4. As before, this transition

occurs when the slower particles become sufficiently slow that they accumulate more

easily on the boundary of the “layer” of faster particles than closer to the obstacle

wall. Notice that the peak is less pronounced on the curved side. The concentration

of faster particles decays monotonically towards the gas irrespective of δ, just like

in the flat-wall case of Chapter 3, for both the curved and flat sides, as shown in

Fig. 4.4 (right column). This accumulation of fast particles can be explained with

the same reasoning described in Chapter 3.

To measure the degree of spatial segregation, we calculated the segregation pa-

rameter (Eq. 3.1). Fig. 4.5 shows that the degree of segregation increases with

speed diversity, but complete segregation is again not obtained, not even in the
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Figure 4.5: Segregation parameter for two values of φ (left) and concentration profiles
ratio (fast over slow) for the curved (center) and the flat (right) side. Here φ = 0.13.

passive-active limit. In this case too, this is because profiles also overlap and also

some passive particles remain trapped inside the wetting layer by the active ones.

Furthermore, Fig. 4.5 (left) shows that the degree of segregation in the low global

concentration limit is almost independent of φ. Just like in the flat-wall case of

Chapter 3, we calculated the ratio between the concentration profiles nf/ns. This

is shown in Fig. 4.5 for the curved and the flat sides, providing information on the

local proportions between the two particle types in the different parts of the system.

For δ = 1, there are almost no passive particles near the wall and the curved side

concentration ratio is more than one order of magnitude bigger than for δ = 0.9.

Again, this shows that the case δ = 0.9 is not as close to a active-passive mix-

ture as one might expect. In fact, Figs. 3.6 and 4.4 show a significant difference

in the behavior of the concentration profile between δ = 0.9 and δ = 1. This can

be understood by noticing that for δ = 0.9 the slow particles persistence length

vs/η = v0(1 − δ)/η = 20 is still comparable to other relevant length scales such as

the wetting layer thickness, the obstacle size, and the system size. We also notice

that there is more segregation on the curved side than on the flat side as particles

are less capable to penetrate and settle inside that layer. For slow particles, such

“expulsion” effect becomes more pronounced. It is almost impossible for a particle

with weak self-propulsion to remain near the wetting interface without being wiped

out into the gas by the rectification “wind” (see Section 3.3 above). Conversely,

particles on the flat side can accumulate closer to the wall since the particle current
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Figure 4.6: Total stationary current field for φ = 0.13 and δ = 0.8. All arrows have
the same size and only indicate the direction of the current j. The magnitude of j
is given via the color legend.

on the flat side near the interface is not sufficient to wipe them out. This can be

confirmed by looking once again at the passive particles profile (δ = 1) in Fig. 4.4,

where the concentration near the wall is practically zero on the curved side but not

so on the flat side.

4.2 Rectification and vorticity

The asymmetric shape of the obstacle implies that particles travelling from the

curved to the flat side will spend less time to overcome it than those in the opposite

direction. In the monodisperse case (δ = 0), a rectification current arises in the

stationary state [33]. We now focus on the behavior for δ > 0.

Fig. 4.6 shows the total stationary current (vector) field j(r) ≡ n(r)v(r), where

v(r) is the actual velocity field (not the self-propulsion velocity field). Global rec-

tification along the +x direction is indicated by the fact that most current arrows

point to the right or have a large +x component. Particles slide on the curved side

towards the right and are subject to higher current than in the gas. The highest

local current is observed near the corners. For the flat side, the local current is in

the opposite direction, i.e., the −x direction (reflecting the appearance of vortices,
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Figure 4.7: Stationary mean (actual) velocity averaged over particles and realizations
as a function of δ for φ = 0.08 and φ = 0.13. Total mean velocity in x and in y (left).
Mean velocity in x for slow and for fast particles (right). The case φ = 0.26 has been
included only for δ = 1, avoiding an overcrowding of the figure. The dashed lines
present the naive δ-dependence for the mean velocity of the fast and slow particles.

as discussed below), but near the obstacle, it is constrained to the y-axis only. Far

from the obstacle, the current field changes to the +x direction again.

To investigate how rectification is affected by speed diversity, we show in Fig. 4.7

(left) the mean of the actual velocity in x, 〈vx〉, averaged over particles and time

instants within the steady state, as a function of δ. As a control, we also show

that 〈vy〉 is essentially zero, as expected. More importantly, 〈vx〉 increases with

δ, indicating an amplification of rectification currents that are induced solely by

speed diversity (remember that each type corresponds to 50% of all particles and

the system-average self-propulsion speed does not change with δ). By looking at

〈vx〉 for each particle type in Fig. 4.7 (right), we see that, indeed, as δ increases, the

faster particles undergo a rectification increase which is larger than the rectification

decrease of the slower particles, even though their self-propulsion speeds were varied

by the same amounts, in magnitude. Indeed, the average speed of fast particles is

larger than the naive dependence proportional to 1+δ, a manifestation of significant

interaction effects. The slow particles for low φ do follow the naive dependence

proportional to 1− δ, but as the density increases interactions take over, and their

rectified velocity increases.
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This rectification amplification induced by speed diversity can be understood as

follows. First, 〈vx〉(δ) must be an even function of δ since δ → −δ just relabels

particle types and thus should have no physical consequence. Now, consider the

monodisperse case of Ref. [33]. Fig. 3a therein suggests that the rectification cur-

rent obeys 〈vx〉 ≈ exp(−ηd0/v0), where we remind that η is the rotational diffusion

coefficient and we incorporated the self-propulsion speed v0 and the particles’ diam-

eter by dimensional analysis. This makes sense: by increasing the active speed v0,

activity-induced rectification ought to increase as well.

We now assume that the qualitative behavior of 〈vx〉(δ) can be obtained sim-

ply from an arithmetic average between exp(−ηd0/vs) and exp(−ηd0/vf) (On the

other hand, the quantitative behavior should require a more complicated analysis,

as indicated, for example, by the δ-dependence of motility-induced cluster sizes in a

system of slow and fast RTPs studied in Ref. [65].) Expanding in δ, indeed no linear

δ dependence survives, as anticipated. Also, for sufficiently high η, 〈vx〉(δ) indeed

increases with δ as observed numerically. (The same qualitative analytical exami-

nation indicates that a transition for much lower η might exist in the simulations,

through which 〈vx〉(δ) would become a decreasing function of δ. That is beyond our

scope because the corresponding persistent lengths would be extremely large.)

Furthermore, Fig. 4.7 (right) shows that 〈vx〉 for the slower particles does not

vanish completely at the active-passive limit δ = 1. The passive particles continue

to contribute positively to the total 〈vx〉. Such behavior where the motion of passive

particles is “enhanced” by active ones has been previously reported in the context of

motility-induced phase separation: the presence of active particles induces clustering

for the passive ones [44, 46, 68], as found also in Chapter 3. Here what we find is

that the active particles induce a finite degree of rectification for the passive ones,

which increases with φ.

Revisiting the current field in the active-active mixture case, we notice that the

flat side has a non-vanishing total local current moving away from the obstacle center
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Figure 4.8: Vorticity-like field defined by the z-component of ω(r) ≡ ∇× j(r), i.e.,
ωz, for δ = 0.7 and φ = 0.13. The color scheme is shown on the left in symmet-
ric logarithmic scale with positive values indicating counter-clockwise rotation and
clockwise for the negative values. The arrows show the total particle current field.

along the y-axis. This behavior is connected to the appearance of vortices. We define

ω(r) ≡ ∇× j(r) (4.1)

as a vorticity-like field (not exactly the vorticity since it is the curl of the current

field, not of the velocity field) and plot its z component in Fig. 4.8. We observe that

one pair of vortices is formed around each obstacle corner. The vortices strengthen

with δ with no qualitative change.

For each pair, one of the vortices is produced by the particles that slide on the

curved side and the other by those that slide on the flat side. As a consequence,

velocities become reoriented, thus generating the corresponding vortices. To see how

vorticity changes with speed diversity, Fig. 4.9 shows the global vorticity magnitude,

defined as Ω ≡
∫
ω(r) dx dy, where we keep the signs in ωz. The intensity of the

vorticity also increases with δ: the particles that participate more in the vortices are

those close to the obstacle and, as discussed above, these correspond to the faster

particles.
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Figure 4.9: Added vorticity as a function of the δ for φ = 0.13. The partial
vorticities, for fast and slow particles, are obtained from the partial current fields
jf/s(r) ≡ nf/s(r)vf/s(r).
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Chapter 5

Conclusions

In this work, we considered an active mixture of fast and slow swimmers in the

presence of flat walls and asymmetric obstacles (with a curved and a flat side). We

identified wetting and segregation in both systems, and rectification and vorticity

for the asymmetric obstacles. Using simulations and theory, we showed how the

degree of diversity of self-propulsion speeds, alters these phenomena, both quanti-

tatively and qualitatively. We use δ to quantify the degree of speed diversity. For

δ = 0, all particles have identical self-propulsion speed and the system is called

“monodisperse”. In the opposite limit, when δ = 1, the mixture is active-passive.

In the flat-wall case, we found that segregation is present throughout the dy-

namical evolution and that it consists of two stages. First, there is a fast dynamics,

which occurs while particles are accumulating on the walls, and is characterized

by a difference in the rate of absorption between the two particle types. In the

active-passive case, a wind of active particles moving towards the wall pushes pas-

sive particles onto the layer. Second, a slow segregation dynamics, characterized by

the relaxation of the layer. For 0.3 ≤ δ ≤ 0.8, it consists mostly of evaporation of a

few fast particles and their substitution via absorption of slow particles. For δ < 0.3

and δ > 0.8, it consists of evaporation of both fast and slow particles.

Also, we determined via simulations the mean thickness of the layer by finding

the biggest connected component of particles in contact and calculating the corre-

sponding mean interface-wall distance as well as by using an orientation parameter
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together with the fact that the particles point towards the wall at the interface of

the wetting layer. We found excellent agreement between the two methods. In the

steady state, we find that the mean thickness of the wetting layer decreases with

δ. This is similar to previous results in the literature for analogous but distinct

systems where active mixtures clusterize [18]. We developed a kinetic theory that

captures that behavior. This approach allowed us to predict also the composition

of the layer within the steady state and how it is affected by speed diversity. We

applied the theory to obtain the transient and identified the need to incorporate

“wind” or dragging effects in order to properly account for an overshoot in the mean

thickness during its evolution.

In both systems, we found that the fast particles accumulate closer to the

wall/obstacle and slow particles tend to accumulate farther from the wall/obstacle

and, for sufficiently high δ, even on the layer of fast particles, provided that their

low persistence do not allow them to penetrate further. The segregation parameter

increases with δ but we find that total segregation is never achieved since in all

cases there is an overlap of the fast and slow concentration profiles in the gas. The

concentration profiles for δ = 0.9 are significantly different from the passive-active

case δ = 1 since the persistence length for δ = 0.9 is still comparable to the relevant

sizes of the system such as the wetting layer and the obstacle size.

Regarding interactions with the asymmetric obstacle and the corresponding rec-

tification, our results complement the explanation given in Ref. [33] for monodisperse

systems: particles coming from the left side become rectified when sliding along the

curved side of the obstacle, whereas those coming from the right side are oriented

due to the formation of vortices which rotate favorably to the global current near

the corners. Also since complete segregation is not achieved in the active-passive

case, passive particles continue to rectify as they are pushed by the active ones. The

mean current increases with δ since for fast particles the response to increasing their

velocity is stronger than linear.
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In the future, one could also investigate the above behaviors for distinct obstacle

shapes or types of mixtures. For instance, the case of particle types with identical

self-propulsion speeds but diverse in terms of rotational diffusivities would probably

generate an amplification of wetting layers with diversity [18]. Another interesting

research avenue is to include alignment forces, which, in principle, would make

the rate of emission of particles decrease since it would be harder for particles to

reorient towards the gas (although avalanche effects would be more pronounced and

the behavior might depend non-trivially on that too). This thesis and these future

investigations are expected to be useful to researchers studying the behavior of more

realistic active matter systems such as bacterial fluids interacting with real surfaces.
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Marconi, and Carlos A Condat. Quantifying the sorting efficiency of self-

propelled run-and-tumble swimmers by geometrical ratchets. Central European

Journal of Physics, 11(12):1653–1661, 2013.

[36] Jessé Pereira de Oliveira. Transporte em um sistema binário de part́ıculas

autopropelidas. 2015.

[37] Emiliano Perez Ipiña, Stefan Otte, Rodolphe Pontier-Bres, Dorota Czerucka,

and Fernando Peruani. Bacteria display optimal transport near surfaces. Nature

Physics, 15(6):610–615, 2019.

[38] Howard C Berg. E. coli in Motion. Springer Science & Business Media, 2008.

[39] Javier Sparacino, Gastón L Miño, Adolfo J Banchio, and VI Marconi. Solitary

choanoflagellate dynamics and microconfined directed transport. Journal of

Physics D: Applied Physics, 53(50):505403, 2020.

[40] Pablo de Castro and Peter Sollich. Phase separation dynamics of polydisperse

colloids: a mean-field lattice-gas theory. Phys. Chem. Chem. Phys., 19:22509–

22527, 2017.

[41] Pablo de Castro and Peter Sollich. Critical phase behavior in multi-component

fluid mixtures: Complete scaling analysis. The Journal of Chemical Physics,

149(20):204902, 2018.

[42] Pablo de Castro and Peter Sollich. Phase separation of mixtures after a second

quench: composition heterogeneities. Soft Matter, 15(45):9287–9299, 2019.

46



[43] Pablo Souza de Castro Melo. Phase separation of polydisperse fluids. King’s

College London, 2019.

[44] Joakim Stenhammar, Raphael Wittkowski, Davide Marenduzzo, and Michael E

Cates. Activity-induced phase separation and self-assembly in mixtures of active

and passive particles. Physical Review Letters, 114(1):018301, 2015.

[45] Naveen Kumar Agrawal and Pallab Sinha Mahapatra. Alignment-mediated

segregation in an active-passive mixture. Physical Review E, 104(4):044610,

2021.

[46] Thomas Kolb and Daphne Klotsa. Active binary mixtures of fast and slow hard

spheres. Soft Matter, 16(8):1967–1978, 2020.
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