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TIME-DEPENDENT MONTE CARLO IN FISSILE SYSTEMS WITH
BETA-DELAYED NEUTRON PRECURSORS

In the field of nuclear reactor physics, transient phenomena are usually studied using
deterministic or hybrids methods. These methods require many approximations, such as:
geometry, time and energy discretizations, material homogenization and assumption of dif-
fusion conditions, among others. In this context, Monte Carlo simulations are specially
adequate to study these problems. Challenges presented when using Monte Carlo simula-
tions in space-time kinetics in fissile systems are the immensely di�erent time-scales involved
in prompt and delayed neutron emission, which implies that results obtained have a large
variance associated if an analog Monte Carlo simulation is utilized. Furthermore, in both
deterministic and Monte Carlo simulations delayed neutron precursors are grouped in a 6-
or 8- group structure, but nowadays there is not a solid reason to keep this aggregation.

In this work, and for the first time, individual precursor data is implemented in a Monte
Carlo simulation, explicitly including the time dependence related to the —-delayed neutron
emission. This was accomplished by modifying the open source Monte Carlo code OpenMC.
In the modified code – Time Dependent OpenMC or OpenMC(TD) – time dependency re-
lated to delayed neutron emission originated from —-decay was addressed. The variance of the
expected values of observables, such as neutron flux, associated to the di�erent time scales
between prompt and delayed neutrons was reduced by forcing the decay of a new Monte
Carlo particle-like added to the code, the precursor, within each time interval, intentionally
increasing the number of delayed neutrons in the simulation. Since there is a continuous pro-
duction of delayed neutrons, population control had to be enforced. This was accomplished
by using the combing method at the end of each time interval.

Continuous energy neutron cross-sections data used comes from JEFF-3.1.1 library. In-
dividual precursor data was taken from JEFF-3.1.1 (cumulative yields) and ENDF-B/VIII.0
(delayed neutron emission probabilities and delayed neutron energy spectra).

OpenMC(TD) was tested in: i) a monoenergetic system; ii) an energy dependent unmoder-
ated system where the precursors were taken individually or in a group structure; and finally
iii) a light-water moderated energy dependent system, using 6-groups, 50 and 40 individual
precursors.
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MONTE CARLO TIEMPO DEPENDIENTE EN SISTEMAS FÍSILES CON

PRECURSORES DE NEUTRONES BETA-RETARDADOS

En el campo de la física de reactores nucleares, los fenómenos transientes suelen estudiarse
usando métodos deterministas o híbridos. Estos métodos requieren de variadas aproxima-
ciones, tales como: discretizaciones de la geometría, del tiempo y de la energía; homo-
geneización de materiales; y suposición de condiciones de difusión, por mencionar algunas.
En este contexto, las simulaciones Monte Carlo son especialmente adecuadas para estudiar
estos problemas. Los retos que se presentan al usar simulaciones Monte Carlo en cinética
espacio-temporal de sistemas fisibles son las escalas de tiempo inmensamente distintas involu-
cradas en la emisión de neutrones inmediatos y retardados, lo que implica que los resultados
obtenidos tienen asociada una gran varianza si se utiliza una simulación Monte Carlo análoga.
Además, tanto en simulaciones deterministas como en Monte Carlo, los precursores de neu-
trones retardados están agrupados en una estructura 6 u 8 grupos, pero hoy en día no hay
una razón sólida para mantener esta agrupación.

En este trabajo, y por primera vez, se han implementado los datos de precursores indi-
viduales en una simulación Monte Carlo, incluyendo explíctamente la dependencia tempo-
ral relacionada con la emisión — retardada de neutrones. Esto fue logrado modificando el
código abierto Monte Carlo OpenMC. En el código modificado –Time Dependent OpenMC
u OpenMC(TD) – se abordó la dependencia temporal relacionada con la emisión retardada
de neutrones originada de la desintegración —. La varianza del valor esperado de observables,
como el flujo neutrónico, asociada a las diferentes escalas de tiempo entre los neutrones
inmediatos y retardados, fue reducida forzando la desintegración de una nueva partícula
Monte Carlo añadida al código, el precursor, dentro de cada intervalo temporal, incremen-
tando intencionalmente el número de neutrones retardados en la simulación. Dado que hay
una producción continua de neutrones retardados, se tuvo que imponer control de población.
Esto se logró usando el método de combing al final de cada intervalo temporal.

Los datos de secciones eficaces dependientes de la energía vienen de la biblioteca JEFF-
3.1.1. Los datos de los precursores individuales fueron tomados de las bibliotecas JEFF-3.1.1
(yields cumulativos) y ENDF-B/VIII.0 (probabilidades de emisión de neutrones retardados
y espectros de energía de neutrones retardados).

OpenMC(TD) fue probado en: i) un sistema monoenergético; ii) un sistema sin mod-
eración y dependiente de la energía donde los precursores se tomaron individualmente o en
grupos; y finalmente iii) un sistema moderado por agua liviana dependiente de la energía,
usando 6-grupos de precursores, 50 precursores y 40 precursores individuales.
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Chapter 1

Introduction

Nuclear fission is a process where the atomic nucleus splits in two or three fission products
(lighter weight nuclei) and neutrons. In heavy nuclei this process can happen as a spontaneous
desintegration (252Cf), or it can be induced by the reaction with a neutron. If fission is induced
in a nucleus by a thermal energy neutron, then the nucleus is said to be fissile (235U or 239Pu).
If the nucleus requires neutrons with a certain threshold energy to be fissioned, then it is
said to be a fisssionable nucleus (238U or 232Th).

In fission reactions two types of neutrons are emitted: prompt and delayed neutrons.
Prompt neutrons are emitted almost instantaneously (≥ 10≠14 s) after fission occurs with
energies of the order of a few MeV. On the other hand, delayed neutrons are emitted from
milliseconds to tens of seconds after fission with energies of the order of hundreds of keV.
Delayed neutron emission is associated to the decay of isotopes from the decay chain of fission
products. These nuclei emitters of —-delayed neutrons, are called precursors. For example,
for 235U there are about 540 fission products and 270 precursors [1].

If there is enough fissile material, a neutron can induce fission in other nucleus and initiate
a chain reaction. This chain reaction can be sustained in time depending on the density of
fissile material, neutron energy at the moment of fission, fission reaction rate and geometry
of the system. The Neutron Transport Equation models the propagation of neutrons in a
fissile system.

The Neutron Transport Equation is a linear, integro-diferential equation for the neutron
flux which depends of seven variables: three for position in space, two for directions, one for
energy and one for time [2]. Solving this equation is a complex task, for which there are two
possible approaches: deterministic and stochastic methods. Deterministic methods resort to
the discretization of the transport equation with respect to its variables and converting the
problem into a system of algebraic equations to be solved. One of the main disadvantages of
these methods, is that they are very limited because they require to discretize the phase space
(mesh or grid resolution). On the other hand, stochastic methods simulate the physical trans-
port problem randomly sampling the physical interaction of neutrons in a material according
to its reaction cross sections. Observables such as neutron flux, reaction rates, currents,
among others are obtained by the expected value of N realizations of the random sampling.
The advantage of this method lies in the fact that does not resort to any approximation or
discretization; its disadvantage is that the associated statistical uncertainty converges slowly
as 1/

Ô
N , with N the number of particles simulated. In this thesis, stochastic Monte Carlo

method was used to solve the Neutron Transport Equation in fissile systems, approaching to
be used in a complete nuclear reactor model.
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While Monte Carlo methods are widely used in criticality and fixed source calculations,
where the system is supposed to be in stationary state, only recently there have been studies
to include time dependence in neutron transport, taking advantage of the better computing
capabilities available. Some examples of these studies are the work of Snejitzer [3], Mylon-
akis [4] and Faucher [5], all of them focused in the inclusion of time dependence together
with the coupling of feedback from thermal-hydraulics calculations.

These investigations have in common the use of the customary group structure for all
the precursors. Each precursor group, which contains a number of di�erent isotopes, is
characterized by a grouped: i) decay constant; ii) relative yield; and iii) energy spectrum for
the delayed neutron emission. This structure was proposed in 1957 by Keepin [6], and it is
based in the assumption that the decay of the delayed neutron activity can be represented
by a linear superposition of exponential decay periods. Although this grouping is routinely
used when performing deterministic or Monte Carlo simulations, it limits the possibility of
studying the e�ect of changes in quantities such as the time evolution of the neutron flux,
stimulated by new and improved nuclear data on individual precursors.

There has been a renewed interest in the measurement of nuclear decay properties of the
most neutron-rich nuclei, such as decay half-lives, neutron emission probabilities and produc-
tion yields [7], along with e�orts from the International Atomic Energy Agency Coordinated
Research Project on a Reference Database for —-delayed Neutron Emission [8]. This sce-
nario brings the opportunity to explore how the new individual precursor data impacts on
simulations of fissile systems individually or in di�erent precursor groupings.

The objective of this work is to explicitly include the time dependence related to the
—-delayed neutron emission from individual precursors in a Monte Carlo simulation. This
entails two challenges: to simulate the delayed emission from precursors, and the inclusion of
individual precursor data in the simulation. To include these modifications, the open source
Monte Carlo code OpenMC was chosen [9].

This work is divided in 5 chapters and 5 appendices. In Chapter 2, the theoretical frame-
work behind this work is presented. In particular, the Neutron Transport Equation (NTE)
is examined, including the k-eigenvalue form and the point kinetics equation approximation.
After that, the main features and di�erences between prompt and —-delayed neutrons are
discussed, along with the important role of —-delayed emission for nuclear reactor operation.
The N -group structure for delayed neutron precursors is also examined. Afterwards, the
nuclear parameters needed to understand the —-delayed neutron emission from individual
precursors are described, together with the nuclear data libraries used in this work, JEFF-
3.1.1 [10] and ENDF/B-VIII.0 [1]. Finally, two of the approaches used to solve the NTE are
discussed: deterministic and Monte Carlo methods. Related to the latter, a description of
variance reduction techniques is presented.

In Chapter 3, methods used and developed to include the —-delayed neutron emission
from individual precursors in a Monte Carlo simulation are discussed. The first point ad-
dressed is about OpenMC, the code chosen to include the modifications needed to achieve
the objectives of this work. This modified code will be known as Time-dependent OpenMC
or OpenMC(TD). Afterwards, details on the methodology to include time dependence in a
Monte Carlo simulation are explained. The next part shows that time delay of —-delayed
neutron emission, in an analog Monte Carlo simulation, entails large variance in the results
obtained, due to the di�erent time scales between the emission of prompt and delayed neu-
trons. To solve this problem, forced decay of precursors is implemented in OpenMC(TD), but
this strategy requires population control of the neutron and precursor population. Regard-
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ing the inclusion of individual precursors, the steps taken to include them in OpenMC(TD)
are: defining a precursor importance, so in the event of delayed neutron emission in the
simulation, it can be chosen which precursor will decay. This decay will have its respective
precursor decay constant associated and the corresponding delayed neutron energy will be
the average energy from the precursor delayed neutron spectrum.

In Chapter 4, first the OpenMC(TD) code is tested in the context of time dependence
and inclusion of individual precursors. With the tests successfully passed, OpenMC(TD)
is used to obtain the neutron flux as a function of time in di�erent systems, with di�er-
ent configurations and using di�erent precursor structures. The first system studied was
a monoenergetic fissile system with 1-group precursor structure, in subcritical, critical and
reactivity insertion configurations. Afterwards, an energy dependent, unmoderated 235U sys-
tem was studied. This case was no longer monoenergetic, but energy dependent, using cross
sections from JEFF-3.1.1 nuclear database. Two configurations were considered, subcritical
and supercritical, and for each the —-delayed neutron energies simulated were JEFF-3.1.1 and
ENDF-B/VIII.0 databases, in 1-group, 6-group, 8-group and 50 individual precursor struc-
tures. The last part of this chapter was related to simulations conducted in a light-water
moderated, energy dependent system in a critical configuration with —-delayed neutron emis-
sion from 6-group, 50 individual, and 40 individual precursors.

Finally, in Chapter 5 the conclusions and future perspectives of this work are presented.
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Chapter 2

Theoretical Framework

In this chapter the theoretical framework behind this work is summarized. In Section 2.1
the Neutron Transport Equation (NTE) is examined, including the k-eigenvalue form (see
Sec. 2.1.3) and the point kinetic equation approximation (see Sec. 2.1.4). Then, in Section 2.2
characteristics and di�erences between prompt and —-delayed neutrons are described, along
with their important role for nuclear reactor operation and the N -group structure for delayed
neutron precursors (see Sec. 2.2.1). Afterwards, in Section 2.3 the nuclear parameters needed
to describe the —-delayed neutron emission from individual precursors are shown, including
the nuclear data libraries used in this work (See Sec. 2.3.2). Finally, in Section 2.4 two of
the approaches used to solve the NTE are discussed, namely, deterministic (See Sec. 2.4.1)
and Monte Carlo methods (See Sec. 2.4.2), where also a description of variance reduction
techniques is presented (See Sec. 2.4.3). Emphasis is given to time dependent phenomena,
which are central to the challenges met throughout this work.

2.1. The Neutron Transport Equation (NTE)
2.1.1. General form
The determination of the neutron distribution is the main problem of nuclear reactor theory
because it determines the rate at which several nuclear reactions occur within a fissile system.
Knowledge of the neutron distribution also gives information about the stability of the fission
chain reaction. This distribution is characterized by the angular neutron flux Â(r, E, �̂, t)
given by

Â(r, E, �̂, t) = vn(r, E, �̂, t), (2.1)

where v is the average neutron speed and n(r, E, �̂, t) is the neutron density.
The most general equation that governs the process of neutron transport through a

medium, this is, the motion of neutrons as they stream through a system, is the Neutron
Transport Equation (NTE) equation [2]

C
1
v

ˆ

ˆt
+ �̂ · Ò + �tot(r, E)

D

Â(r, E, �̂, t)

=
⁄ Œ

0
dE Õ

⁄ 4fi

0
d�̂Õ�S(E Õ æ E, �̂Õ æ �̂)Â(r, E Õ, �̂Õ, t) + S(r, E, �̂, t). (2.2)

In this equation the quantity to be determined is the neutron flux Â, with E the neutron
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kinetic energy, �̂ the flux angular direction and v is an average neutron speed. In this
equation �tot and �s are the macroscopic total and scattering cross sections, respectively.
Any external neutron source, such as fission neutrons, are represented by S.

2.1.2. NTE with fission neutrons as an external source
When including fission neutrons explicitly in Eq. (2.2), two contributions to the source should
be accounted for. The first term accounts for the prompt neutrons produced in the nuclear
fission process and is given by

‰p(E)(1 ≠
ÿ

i

—i)
⁄ Œ

0
dE Õ

⁄ 4fi

0
d�̂Õ‹(E Õ)�f (r, E Õ)Â(r, E Õ, �̂Õ, t). (2.3)

Here, �f (r, E) is the macroscopic fission cross section, ‹(E) is the average number of neutrons
produced per fission, —i is the e�ective delayed neutron fraction per precursor group i, and
‰p(E) the fast fission neutron spectrum. The second contribution to the source term accounts
for the delayed neutrons produced after the fission reaction and it reads

ÿ

l

‰l(E)⁄lCl(r, t), (2.4)

where the precursors are grouped in l groups according to their decay constant ⁄l, Cl(r, t)
represents the l-th precursor concentration and ‰l(E) is the delayed neutron energy spectrum
for the l group. The precursor concentration, Cl(r, t), changes in time as

ˆ

ˆt
Cl(r, t) =

ÿ

i

—i
l

⁄
dE Õ

⁄
d�̂ ‹(E Õ)�f (r, E Õ)Â(r, E Õ, �̂Õ, t) ≠ ⁄lCl(r, t), (2.5)

where the first term on the right hand of Equation (2.5) stands for the produced precursors
while the left hand of the equation stands for decayed precursors. Taking Eqs. (2.3), (2.4)
and (2.5) into account, Eq. (2.2) for the neutron flux is reduced to [11]
C
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=
⁄ Œ

0
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⁄ 4fi

0
d�̂Õ�S(E Õ æ E, �̂Õ æ �̂)Â(r, E Õ, �̂Õ, t)

+ ‰p(E)(1 ≠
ÿ

i

—i)
⁄ Œ

0
dE Õ

⁄ 4fi

0
d�̂Õ‹(E Õ)�f (r, E Õ)Â(r, E Õ, �̂Õ, t)

+
ÿ

l

‰l(E)⁄lCl(r, t).

(2.6)

It is important to remark that this equation relies on some assumptions: (i) neutrons are
point-like; (ii) between two collisions neutrons travel in a straight line; (iii) neutrons do not
interact with each other; (iv) collisions are instantaneous; and (v) materials do not change in
time. Since the NTE features derivatives, appropriate initial and boundary conditions must
be specified for the neutron flux. The initial condition can be the specification of the initial
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value for the neutron flux for all positions, energies and directions:

Â(r, E, �̂, 0) = Â0(r, E, �̂) (2.7)

The boundary condition will depend on the problem being studied, but usually the boundary
conditions are: i) vacuum boundary condition; ii) reflective boundary condition; and iii)
known surface source.

2.1.3. K-eigenvalue form
One of the most useful notations of the NTE is the steady-state form associated with the
criticality of the system. In this problem the objective is the determination of the k-eigenvalue
(ke� ) that describes the state of neutron multiplication in a fissile system or nuclear reactor
without external sources. If ke� = 1, then the system is said to be in a critical state, if
ke� < 1 the system in a sub-critical state and if ke� > 1 the system is in a super-critical
state. In Eq. (2.6) if a stationary solution is required, then it reads:

Ë
�̂ · Ò + �tot(r, E)

È
Â(r, E, �̂)

=
⁄ Œ

0
dE Õ

⁄ 4fi

0
d�̂Õ�S(E Õ æ E, �̂Õ æ �̂)Â(r, E Õ, �̂Õ)

+ ‰p(E)(1 ≠
ÿ

i

—i)
⁄ Œ

0
dE Õ

⁄ 4fi

0
d�̂Õ‹(E Õ)�f (r, E Õ)Â(r, E Õ, �̂Õ)

+
ÿ

l

‰l(E)
ÿ

i

—i
l

⁄
dE Õ

⁄
d�̂ ‹(E Õ)�f (r, E Õ)Â(r, E Õ, �̂Õ).

(2.8)

By defining the net disappearance operator L as

Lf = �̂ · Òf + �tot(r, E)f ≠
⁄ Œ

0
dE Õ

⁄ 4fi

0
d�̂Õ�S(E Õ æ E, �̂Õ æ �̂)f(r, E Õ, �̂Õ), (2.9)

and the total fission operator F as

Ff = ‰p(E)(1 ≠
ÿ

i

—i)
⁄ Œ

0
dE Õ

⁄ 4fi

0
d�̂Õ‹(E Õ)�f (r, E Õ)f(r, E Õ, �̂Õ)

+
ÿ

l

‰l(E)
ÿ

i

—i
l

⁄
dE Õ

⁄
d�̂ ‹(E Õ)�f (r, E Õ)f(r, E Õ, �̂Õ),

(2.10)

Eq. (2.8) can be rewritten as

LÂ(r, E Õ, �̂Õ) = FÂ(r, E Õ, �̂Õ). (2.11)

By imposing that the system should be critical, the k-eigenmodes can be found

L Âk(r, E Õ, �̂Õ) = 1
ke�

F Âk(r, E Õ, �̂Õ). (2.12)

2.1.4. Point kinetics equations
One theoretical approximation used to study the transient behaviour of a nuclear reactor
is the point kinetic approximation [12]. In this case, the flux is assumed to be a separable
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function of space and time and the equations are obtained by weighting the transport equation
by the adjoint flux.

To obtain the pertinent equations first Eq. (2.6) can be written as

1
v

ˆ

ˆt
Â(r, E, �̂, t) + L Â(r, E, �̂, t) = Fp Â(r, E, �̂, t) +

ÿ

l

‰l(E)⁄lCl(r, t), (2.13)

where the prompt fission operator, Fp, is defined as

Fp f = ‰p(E)(1 ≠
ÿ

i

—i)
⁄ Œ

0
dE Õ

⁄ 4fi

0
d�̂Õ‹(E Õ)�f (r, E Õ)Â(r, E Õ, �̂Õ, t) f. (2.14)

The adjoint equation to the k-eigenmodes Equation (2.12) is

L† Â†
k(r, E, �̂) = 1

ke�
F † Â†

k(r, E, �̂), (2.15)

where Â†
k is the adjoint eigenmode for the neutron flux and the L† is the adjoint of the

operator.
To derive the point kinetic equations, the transport Eq. (2.13) is multiplied by Â†

k and
Eq. (2.15) is multiplied by the neutron flux Â(r, E, �̂, t). The resulting equations are inte-
grated over space, energy and angle and then are substracted from each other, obtaining

ˆ

ˆt
È Â†

k,
1
v

ÂÍ = k ≠ 1
k

ÈÂ†
k, F ÂÍ ≠ ÈÂ†

k, Fd ÂÍ +
ÿ

l

⁄lÈÂ†
k, ‰l

d ClÍ. (2.16)

It is assumed that the neutron flux can be factorized as an amplitude factor that only depends
on time and a time-independent flux shape factor:

Â(r, E, �̂, t) = s(t) Âk(r, E, �̂), (2.17)

where Âk(r, E, �̂) is the fundamental k eigenmode and s(t) is an amplitude factor that only
depends on time. Thus, Eq. (2.16) the amplitude of the neutron population satisfies

ˆ

ˆt
s(t) = fl ≠ —e�

�e�
s(t) +

ÿ

l

⁄lcl(t), (2.18)

where fl is the reactivity given by
fl = k ≠ 1

k
, (2.19)

the e�ective delayed neutron fraction is

—e� = ÈÂ†
k, Fd ÂkÍ

ÈÂ†
k, F ÂkÍ

, (2.20)

the e�ective mean generation time is

�e� =
ÈÂ†

k, 1
v ÂkÍ

ÈÂ†
k, F ÂkÍ

, (2.21)
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and the e�ective precursor concentration

cl(t) = ÈÂ†
k, ‰l

d ClÍ
ÈÂ†

k, 1
v ÂkÍ

. (2.22)

By proceeding in a similar way, an equation for the precursor concentration can be derived,
which is coupled to Eq. (2.18),

ˆ

ˆt
cl(t) = —l

�e�
s(t) ≠ ⁄lcl(t), (2.23)

where —l is the e�ective delayed neutron fraction for the precursor family l.
Parameters —e� and �e� are called e�ective because they have been weighted by the ad-

joint flux Â†
k, which can be interpreted as the neutron importance. Physically, the neutron

importance at a given point in phase space is proportional to the asymptotic neutron popu-
lation caused by an hypotetical neutron introduced into a critical reactor at the same point
in phase space.

2.2. Prompt and delayed neutrons
In section 2.1 the transport equation was presented. For nuclear fission present in a fissile
system, the source term is comprised by two terms, the prompt and the delayed fission term.
In fission events, two types of neutrons are released: prompt and delayed neutrons.

Prompt neutrons are released almost instantaneously (≥ 10≠14 s) after fission and are
emitted with an average energy of 2 MeV [13]. Since the fission cross section for reactor fuel
is higher for thermal energies, as it can be seen in Fig. 2.1, prompt neutrons must be slowed
down before they can induce fission in a thermal system. The average number of prompt
neutrons produced per fission is denoted by ‹̄p.
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Figure 2.1: Fission Cross sections for 235 U. Data was retrieved from the
JEFF-3.1.1 nuclear database.

On the other hand, delayed neutrons are emitted between 10≠3 s and 102 s after a nuclear
fission event and made up about 1 % of the total neutrons released during fission. This
delayed emission is produced when a fission product (Z, N) decays through a —≠ process with
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a father-daughter atomic mass di�erence Q—. If Q— is greater than the neutron separation
energy Sn, then excited states in the daughter nucleus (Z + 1, N ≠ 1) can be populated. This
nucleus can in turn decay to the nucleus (Z + 1, N ≠ 2). Although the neutron emission
is instantaneous, the time scale of the emission is related to the half-life of the —≠ decay
corresponding to the (Z, N) nucleus. This parent —-decay nucleus (Z, N) is known as delayed

neutron precursor or precursor. To illustrate this process, in Fig. 2.2 the decay scheme of
the precursor 87Br is shown. In this scheme it can be seen that 87Br can decay through —≠

to a state in 87Krú, followed by the subsequent decay of 87Krú to a state in 86Kr via neutron
emission. The delayed time of this process is given by the parent half life, which is 55.7 s.
The average number of delayed neutrons emitted per fission is denoted by ‹̄d. The fraction
of total fission delayed neutrons is denoted by — and is defined as

— = ‹̄d

‹̄
. (2.24)

Figure 2.2: Decay of the 87Br delayed neutron precursor .

In a fission chain reaction a large number (about 270 for 235U) of delayed neutron precursor
isotopes can be produced [14]. It has been customary to group these precursors in 6 groups,
characterized by its half-lives. Each precursor group contains a number of di�erent isotopes.
These groups are described in Table 2.1 for 235U, where for each group is shown: i) the group
mean energy, Ē, ii) its half-life, T1/2 and, iii) its relative yield, given by —i/—, where —i is
the delayed fraction considering only the i-th group and the total delayed delayed fraction
is q

i —i = —. This group structure was proposed by Keepin [6], who assumed that the
decay of delayed neutron activity with time could be represented by a linear superposition
of exponential decay periods.

2.2.1. Importance of delayed neutrons
Delayed neutrons are important in the operation of a nuclear reactor due to the time delay
that they introduce to the system, needed to control the state of the reactor through me-
chanical means, such as control rods. To illustrate this point, the variation of the neutron
density without taking into account delayed neutrons is

dn

dt
= k ≠ 1

¸
n(t) = �k

¸
n(t), (2.25)

9



Neutron Fissile
material

Fission

Fission product

Precursor

Prompt neutrons

Emitter

Delayed neutron

Stable nucleus

Figure 2.3: Schematic representation of the prompt and —-delayed neutron
emission.

Table 2.1: 6 delayed neutron precursor groups for 235U fission. In 6-th group
several isotopes of Br, As, Rb are included.

Group Precursors Ē (MeV) T1/2 (s) —i/—

1 87Br, 142Cs 0.40 54.51 0.038
2 137I, 88Br 0.47 21.84 0.213
3 138I, 89Br, 93Rb, 94Rb 0.44 6.00 0.188
4 139I, 143Xe, 93Kr, 94Kr, 90Br, 92Br 0.55 2.23 0.407
5 140I, 145Cs 0.51 0.496 0.128
6 Br, As, Rb. 0.54 0.179 0.026

where n(t) is the neutron density, k is the multiplication factor and ¸ is the prompt neutron
lifetime, taken as the average time a neutron stays in the system before leaking or being
absorbed. The solution to this Eq. is

n(t) = n0 exp
A

�k

¸
t

B

© n0 exp
3

t

·

4
, (2.26)

with n0 the initial neutron density. The rate at which the reactor power increases is given
by �k/¸. The reciprocal of this quantity is the reactor period, · = ¸/�k, namely the time
needed for the reactor power to grow by a factor of e.

If there are no delayed neutrons, then the mean neutron lifetime is the mean prompt
neutron lifetime (i.e. ¸ = ¸p) which in a light-water reactor is about 10≠5 s [2]. Then, if
there is a positive reactivity insertion of 10 pcm1, the multiplication factor would change
from k = 1.0000 to k = 1.0001 (�k = 0.0001 or a 0.01% of k) and the reactor period is
· = 10≠5/0.0001 = 0.1 s. With this period, in one second the reactor power would rise by a
1 Per-cent mille: one-thousandth of a percent.
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factor of ¥ 20000, making impossible to control the reactor using mechanical control systems.
When taking into account the delayed neutrons, the neutron lifetime changes because now a
fraction (1≠—e� ) of the total neutrons have the prompt neutron lifetime ¸p, while the delayed
neutrons, a fraction of —e� the neutrons, live longer with a lifetime (Tavg + ¸p). This implies
that the neutron lifetime in this case is

¸ = ¸p(1 ≠ —e� ) + (Tavg + ¸p)—e� ¥ —e� Tavg, (2.27)

and if Eq. (2.27) is used in Eq. (2.26) the reactor period in this case would be · = 0.08/0.0001 ¥
100 s. With this reactor period, in a second the power would rise by a factor of ¥ 0.1, making
easier to control the behavior of the reactor in the face of reactivity insertions.

Then, due to the e�ect of delayed neutrons, the period of the reactor increases and the rise
in reactor power slows down, making possible to control the reactor by mechanical means.

2.3. Nuclear data
In this section the quantities of interest needed to characterize individual precursor nuclides
are presented. Then, the two nuclear databases considered in this work, ENDF/B-VIII.0 and
JEFF-3.1.1, are briefly described along with some of the di�erences found in the course of
this work.

2.3.1. Quantities of interest
Although the 6- or 8- group structure is widely used in reactor calculations [15], nowa-
days there is not a solid reason to keep this aggregation. More and better nuclear data
for the individual precursor nuclei has been available using high luminosity accelerator such
as RIKEN [16], exploring neutron rich part of the nuclide chart. These data, combined
with high e�ciency neutron detector systems would allow to increase the knowledge of the
individual parameters relevant for each precursors, such as fission yields or emission probabil-
ities. To this end the quantities that characterize each precursor must be known: the fission
yield (FY ), the precursor decay constant (⁄) and the precursor delayed neutron emission
probability (Pn). To study the e�ect of individual precursors in a Monte Carlo simulation,
information related to the energy distribution of the emitted neutrons is also needed. Now
each of this quantities will be reviewed [17]:
Fission Yield (F Y ): Two yields can be defined, one is the Independent Fission Yield (IY),
which is the average number of atoms of a specified nucleus produced by one fission, after the
emission of prompt neutrons and excluding radioactive decay. For example, 87Br is one of the
most prominent delayed neutron precursor and its IY is 0.0127, according to the ENDF/B-
VIII.0 library. This means that for 10000 fissions, 127 atoms of 87Br are produced directly.
The other is the Cumulative Fission Yield (CY), which is the number of atoms of a specific
nuclide produced directly and via decay of precursors per one fission reaction.
Precursor Decay Constant (⁄): The decay constant represents the probability for a
nucleus to decay per time unit. The decay probability of a precursor is proportional to the
number of nuclei.

⁄ = ≠dN/dt

N
(2.28)

Precursor delayed neutron emission probability (P n): For —-delayed neutron emission
to occur, the —≠ decay energy (Q—) must be larger than the neutron separation energy (Sn)

11



of the decay daughter. The precursor delayed neutron emission probability represents the
probability of one or more neutron emission.
Precursor delayed neutron spectrum: the energy distribution of neutrons emitted by
each precursor is characterized by its spectrum. At this moment, the ENDF/B-VIII.0
database has only 34 evaluated experimental spectra while the others come from QRPA
calculations [14]. In this work the “mean energy” of the delayed neutrons emitted was used.
Average delayed neutron yield (‹d): Also known as the average number of delayed neu-
trons produced per fission, it can be either measured [6], or calculated using the cumulative
yield and the precursor delayed neutron emission probability,

‹d =
Nÿ

i

CYi Pn,i (2.29)

where, N is the number of precursors. In 1990 the Nuclear Energy Agency established a
Working Party on International Nuclear Data Evaluation Co-operation (WPEC) to “promote
the exchange of information on nuclear data evaluations, validation and related topics. Its
aim is also to provide a framework for co-operative activities between members of the major
nuclear data evaluation projects”. The Subgroup 6 (WPEC-6) in particular had the objective
of reducing the uncertainties on delayed nuclear data and in this context, the recommended
value for the average delayed neutron yield for 235Uthermal is 1.62 ◊ 10≠2 [15].

2.3.2. Nuclear data libraries
A nuclear data library is a dataset of stored nuclear data in a certain format [18]. Nuclear
data derived from the combination of experimental data and nuclear physics models are
known as evaluated nuclear data libraries. The standard format for the storage of nuclear
data is the ENDF-6 format (Evaluated Nuclear Data File) [19]. In the course of this work
nuclear data from two libraries was studied, the JEFF and ENDF/B libraries. The JEFF
(Joint Evaluated Fission and Fusion File) library is created by the OECD/NEA and the
version used in this thesis was JEFF-3.1.1 [10]. The ENDF/B (Evaluated Nuclear Data File

/ B) library is created by the Cross Section Evaluation Working Group and the version used
was ENDF/B-VIII.0 [1]. Both libraries contain radioactive decay data sub-libraries, where
the yields, branching ratios and delayed neutron spectra can be found.

It was found that the data from both libraries do not agree with each other and that
there are important di�erences between quantities of interest. To show this, the independent
yield, cumulative yield and branching ratio is shown for some of the main precursors from
the 6-group structure [20], as it is shown in Table 2.2.

A summary of the di�erences between both libraries is shown in Table 2.3. It can be
seen that even for important precursors such as 87Br the di�erence in the values for the
independent yield is the order of 10% and in extreme cases this di�erence can take values up
to 170%, as in the case of 85As.

Given these di�erences between quantities of interest, in this work the CY ’s used were
taken from JEFF 3.1.1, while the Pn were taken from ENDF-B/VIII.0. This pairing is
the recommended when comparing the ‹d calculated using the summation method given by
Eq. (2.29) with the experimental value [17]. The precursor decay constants used were taken
from ENSDF [21].
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Table 2.2: Independent yields, cumulative yields and branching ratio values
found in JEFF 3.1 and ENDF-B/VIII.0 nuclear libraries for some selected
precursors.

IY (% per fission) CY (% per fission) —n (% per fission)
Group Nucleus ENDF/B-VIII.0 JEFF-3.1 ENDF/B-VIII.0 JEFF-3.1 ENDF/B-VIII.0 JEFF-3.1

1 87Br 1.270(36) 1.41(21) 2.030(41) 2.140(49) 2.60(4) 2.51(8)

2
88Br 1.390(28) 1.48(30) 1.780(50) 1.82(16) 6.58(18) 6.7(2)
137I 2.62(10) 2.95(54) 3.070(86) 3.57(25) 7.14(23) 6.5(4)

3
89Br 1.040(42) 1.29(33) 1.090(30) 1.36(24) 13.8(4) 14.1(4)
92Rb 3.130(63) 2.87(51) 4.820(67) 4.83(14) 8.1017(5) 0
138I 1.420(40) 1.38(42) 1.490(42) 1.47(33) 5.56(22) 5.3(3)

4
85As 0.121(78) 0.141(47) 0.22(14) 0.143(42) 59.40(24) 22(3)
90Br 0.553(33) 0.48(17) 0.564(23) 0.49(15) 25.2(9) 24.6(7)
94Rb 1.570(44) 1.40(41) 1.650(46) 1.50(32) 10.5(4) 10.1(2)
139I 0.771(62) 0.59(20) 0.778(62) 0.60(19) 10.0(3) 9.8(4)

5–6
91Br 0.224(25) 0.151(53) 0.224(25) 0.152(52) 0 20(2)
95Rb 0.764(31) 0.65(22) 0.770(31) 0.66(20) 8.7(3) 8.6(2)
96Rb 0.168(13) 0.067(24) 0.206(33) 0.101(26) 13.3(7) 13.4

Table 2.3: Independent yields, cumulative yields and branching ratio values
found in JEFF 3.1.1 and ENDF-B/VIII.0 nuclear libraries for some selected
precursors.

Group Nucleus �IY (%) �CY (%) �—n(%)
1 87Br 10 5 ≠3.6

2
88Br 6 2 1.8
137I 11 14 ≠9.8

3
89Br 20 20 2.1
92Rb 8 1 ≠100
138I 3 1 ≠4.9

4
85As 14 35 ≠170
90Br 14 14 ≠2.4
94Rb 11 9 ≠4
139I 24 23 ≠2

5–6
91Br 32 32 100
95Rb 15 15 ≠1.2
96Rb 60 50 0.7

2.4. Approaches to solve the Neutron Transport Equa-
tion

Basically there exists two di�erent approaches to solve the Neutron Transport Equation:
deterministic and stochastic (Monte Carlo) techniques. Although they aim to study the
same physical problem, they are di�erent in their approach and techniques used to solve the
problem. They have complementary advantages and disadvantages.
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2.4.1. Deterministic Methods
Deterministic methods solve the NTE by discretizing these equations with respect to each
of its variables and converting the problem into a system of algebraic equations that has to
be solved [11]. One of the strategies used to calculate the neutron flux use the quasi-static
method, developed in the 1950s [22]. This method resorts to an approximation where the
flux is factored as a product between a shape function and an amplitude function. The shape
function can be obtained through stationary state calculations, using discrete ordinates [23,
24] or Monte Carlo [25, 26]. To solve the time dependence in detail, angular discretization
methods such as di�usion [27] or Sn methods [28] can be used. One feature of all of these
methods is that they discretize the phase space: difussion theory assumes that neutrons
di�uses through the medium following Fick’s law and ignores the angular dependence of the
flux. More advanced methods such as the Sn method does take into account the angular
dependence of the flux, but this dependence is discretized and neutrons are transported
though discrete angles. With the use of these techniques it can be possible to refine the
modelling of the angular dependence of the flux, but it can be complex to use the necessary
number of angles to obtain a good solution for the flux. One of the main disadvantages of
these methods is the constraints in the resolution of the discretization grid, since memory is
required to store the unknown variables. With a coarser grid, higher discretization errors are
obtained, so limitations in memory limit the accuracy of deterministic methods [29].

2.4.2. Monte Carlo Method for solving the Transport Equation
Unlike the methods described in the preceding section, the Monte Carlo method (which is an
stochastic method) do not solve the Neutron Transport Equation explicitly, but simulate the
physical problem by transporting the neutrons through the medium. The physical processes
involved in the evolution of the neutron population are governed by probability distributions.
In the application of the Monte Carlo method to neutron transport, a stochastic model is
simulated, and then the expected value of some random variable is equivalent to the value
of a physical quantity that is to be determined. This quantity is estimated using the average
of independent samples that represent the random variable.

To illustrate this point, the procedure to carry out a Monte Carlo simulation will be
outlined [29]. For simplicity a time-independent fixed source problem in a homogeneous
medium will be considered. In this problem a source and a detector in the phase space must
be simulated, and the detector response will be the quantity to be estimated, this is, the
contributions of neutrons reaching the detector will be collected. The idea is to simulate N
neutrons, sampling the source distribution to find initial energy, position and direction for
each neutron. The emitted neutrons are then transported. The distance d that each neutron
of energy E travels between two interactions is exponentially distributed and given by

d = ≠ ln(›)
�t(E) , (2.30)

where › is a random number, sampled from a uniform distribution between [0, 1], and �t is
the total macroscopic cross section. If d is larger than the distance to the boundary of the
next volume, then the particle is stopped at that boundary and a new path is sampled using
Eq. (2.30). At the new position the interacting nucleus i needs to be sampled, which will be
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chosen with probability
pi = �t,i(E)

�t(E) , (2.31)

where �t,i(E) is the total cross section for nucleus i. Once the interacting nucleus is sampled,
the specific interaction occurs with a probability

pi,x = ‡i,x

‡i,t
, (2.32)

where ‡i,x is the microscopic cross section for the interaction x and nucleus i.
After the interaction the neutron can be eliminated if absorbed. Otherwise a new path

is sampled and the process starts again. Neutron contributions are accumulated when they
reach the detector. After the N particles are transported the process is repeated M times
with a di�erent random seed each time.

The tallies collected are averaged over the M ensembles. The associated uncertainty is
calculated using the variance and its inversely proportional to the square root of the number
of particles simulated. This means that the uncertainty of the result obtained in a simulation
can be improved by simulating a larger number of particles. Although the number of particles
required is problem dependent, it is usually quite large and this implies that Monte Carlo
simulations are very time consuming. Fortunately, Monte Carlo algorithms are specially
suited for parallel computing [30], which allows to speed up, in principle, by the order of the
processor availables. The idea is that each processor simulates its own number of particles,
and when each processor have completed the transport, the final results are collected.

2.4.3. Variance reduction methods
A Monte Carlo simulation as described in section 2.4.2 requires knowledge of the probability
distribution that governs the physical process that is used to calculate the expected value.
In other words, in this method the computation describes how a particle would behave in an
equivalent physical experiment. This method is known as analog Monte Carlo simulation [11].
There are some experimental setups where, for example, the detector counting rate could be
too low or, for a shielding problem, there are too few initial particles that reach the region of
interest. In those cases, longer detection times or several repetitions of the experiment might
be necessary to achieve an acceptable uncertainty. If one of these physical systems would be
simulated using Monte Carlo, large number of particles would be required in order to achieve
a reliable estimate of the quantity being studied. But the simulation time is governed by
the number of particles simulated, which means that the simulation would require very long
computation times. One way to overcome this problem is through a non-analog Monte Carlo
simulation [31], which is a modification of the analog Monte Carlo simulation where the
physical probability distribution is modified in order to promote the occurrence of a given
event (for example, to make that more particles can reach the detector). To keep the results
unbiased, a compensation has to be applied elsewhere. For this purpose a statistical weight is
defined and assigned to each particle at the beginning of the simulation. Then, this weight can
evolve along the simulation to counterbalance the changes that occur when the probability
of a physical process is altered. One of the variance reduction techniques used in this work
is survival biasing, which must be used in conjunction with a population control technique
called Russian roulette. In survival biasing (also known as implicit absorption), absorption
reactions are prohibited to occur and instead at every collision the statistical weight of the
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particle, wnew is reduced by the probability that the absorption occurs:

wnew = w

A

1 ≠ ‡a(E)
‡t(E)

B

, (2.33)

where ‡a(E) and ‡t(E) are the absorption and total microscopic cross sections, respectively,
and w is the statistical weight of the particle before the collision. It is important to notice
that survival biasing can reduce the weights of the particles to very low values. In that case,
particles of low statistical value slow down the calculation, while contributing very little to
the statistics. This means that this method must be combined with another method capable
of stochastically killing

2 particles. This method is called Russian roulette. If a particle falls
below some threshold weight, then a random number is generated. If the random number is
below the initial weight, then the particle is killed. Otherwise, it survives and its weight is
set to a value that preserves the average weight.

2 In the context of Monte Carlo simulations, to kill a particle is to remove it from the simulation.
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Chapter 3

Methodology

In this chapter, the methodology used to include the —-delayed neutron emission from in-
dividual precursors in transient Monte Carlo simulation is discussed. Firstly, in Section 3.1
the Monte Carlo OpenMC code is described, along with explanation why it becomes suitable
for this work, and a benchmark calculation result is presented (See Sec. 3.1.1). After that,
in Section 3.2 a discussion on how the time dependence is treated. Following, Section 3.3
addresses precursors, including consequences of —-delayed neutron emission in the context
of a Monte Carlo simulation (see Sec. 3.3.1). This comprises how individual precursors are
implemented in the code (see Sec. 3.3.2), and the strategy to overcome large variances asso-
ciated with the di�erent time scales between prompt and delayed neutrons (see Sec. 3.3.4).
Afterwards, in Section 3.4 the issue of how to sample a proper initial source to start a Monte
Carlo transient simulation is discussed. Finally, in Section 3.5 the method chosen to enforce
population control is described.

3.1. Monte Carlo simulations with OpenMC
The OpenMC [9] code is relatively new, an open-source code for particle transport developed
originally at the Massachusetts Institute of Technology in 2013 and is currently being devel-
oped and maintained by a community of researchers across multiple institutions. This code
is capable of simulating neutrons in fixed source, k-eigenvalue, and subcritical multiplica-
tion problems. The geometry is built using a constructive solid geometry and OpenMC also
supports CAD-based geometries through the DAGMC package. The code supports both
continuous-energy and multigroup transport. The continuous-energy nuclear cross section
data follows the HDF5 format [32] and is generated from ACE files produced by NJOY [33].
This code is open source and its license allows its use with no restrictions on modifications,
developments and addition of new capabilities.

3.1.1. Benchmarks
As a first step before beginning the development of new capabilities for OpenMC, benchmark
calculations were performed to further validate the code. In order to do this, and during the
author’s first doctoral internship at the Bariloche Atomic Center, the OpenMC code was used
to model and calculate the E�ective Multiplication Factor of the RA-6 research reactor. This
reactor was chosen because of its similarity with the Chilean Nuclear Energy Commision’s
MTR RECH-1 reactor. The result obtained was compared with the experimental values
from the ICSBEP International Handbook of Evaluated Criticality Safety Benchmark Exper-
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iments [34, 35], and with the result obtained when modeling the reactor using the Monte
Carlo transport code MCNP [36].

Another parameter that can be calculated is the E�ective Delayed Neutron Fraction, —e� ,
which was mentioned in Sec. 2.1.4. Formally, the adjoint neutron flux is required to calculate
this parameter, but it can be estimated using the prompt method [37]. This method assumes
that the value of —e� is given by

—e� ≥ 1 ≠ kp

ke�
, (3.1)

where kp is the e�ective multiplication factor obtained from a criticality calculation, but with-
out taking into account the contribution from —-delayed neutron emission. The advantage of
this method is that the adjoint flux is not needed to calculate the e�ective delayed neutron
fraction. Thus, the capability to run a criticality calculation without delayed neutrons was
added to OpenMC, which enabled the estimation of —e� in two steps. In MCNP6 the same
feature can be achieved by using the TOTNU NO card to perform a criticality calculation
only with prompt neutrons.
Description of the RA-6 reactor

The RA-6 (Spanish acronym for Argentina Reactor, Number 6 ) is an open pool research
reactor with a nominal power of 3 MW, located at Bariloche Atomic Center, a nuclear
research center in San Carlos de Bariloche, Río Negro, Argentina. The core of the reactor
is made up of an array of flat plates MTR-type fuel elements with 20 % enriched uranium
located inside a stainless steel tank filled with demineralized water that acts as a coolant,
moderator, reflector and shielding in the axial direction. Four Ag-In-Cd absorber elements are
the control elements. The model was the one included for the ICSBEP benchmark evaluation
(Configuration 2), with added graphite reflectors [35] and –since in Monte Carlo codes it is
possible to model the reactor geometry in detail– fuel elements were modeled explicitly, such
as cadmium wires, water gaps, guides and nozzles. The model also included the supporting
grid for the core and BNCT filter.
Simulation parameters and results for ke� calculation

In OpenMC and MCNP the criticality calculation was peformed using 8050 batches3,
50 skipped4 and 10000 particles per batch. The neutron cross section database used was
ENDF/B-VII.1. Results obtained are summarized in Table 3.1

Table 3.1: Results obtained for the e�ective multiplication factor and the
e�ective delayed neutron fraction for the RA-6 reactor.

Magnitude OpenMC MCNP Benchmark
ke� 1.0050(1) 1.0045(1) 1.0026(25)
kp 0.9975(1) 0.9971(1) ≠
—e� 746(15) 737(13) 782(7)

3.2. Details on the inclusion of time dependence
As stated in the Introduction, the main objective of this thesis is to study the inclusion of
time-dependence in a Monte Carlo simulation, considering the delayed emission from the
3 the total number of source particle simulated is broken up into a number of batches.
4 skipped cycles will be discarded before data accumulation begins.
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neutron precursors present in a fissile system. To this end several issued must be addressed,
which will be discussed in the remainder of this chapter.

3.2.1. Time evolution of the neutrons
In a stationary Monte Carlo transport simulation time is not explicitly present. The first
step to perform Monte Carlo kinetic simulations is to add a new label t to the particles,
serving as a clock with value updated using the kinetic energy and the distance traveled by
the neutron between events. This time is set to zero (t=0) at the beginning of the simulation
and is updated as the particle is transported in the simulation.

3.2.2. Simulation time boundary
To simulate transient events in fissile systems the evolution was divided in discrete time
intervals. There are two reasons for this: First, the variance reduction and population
control techniques require a time grid to be applied. The second reason is that changes in
the geometry or reactivity of the system can take place in a transient simulation, changes
that can be introduced at the end of a time interval. It is important to notice that the size
of the time intervals can be choosen freely and they do not a�ect the validity or accuracy
of the results obtained from the simulation. When a particle crosses a time boundary, its
trajectory is stopped exactly at the boundary, saving the phase space point that corresponds
to the time boundary, then the particle is stored to continue the simulation at the next time
step.

3.2.3. Time tally
In order to tally the measured quantities in time, the tallies in OpenMC were modified and
a new filter was added. This time filter added the capability to monitor the time evolution
of any of the tallies already present in the code.

3.3. Delayed neutron precursors
In this section the time delay of the —-delayed neutron emission and its consequences in
the context of a Monte Carlo simulation are explored. A key point of this discussion is the
large variance in the simulation results if an analog Monte Carlo method was used, issue
that will be dealt with at the end of the section. Then the inclusion of —-delayed neutron
emission from individual precursors, one of the main objectives of this work, is addressed.
Following this discussion, the precursor particle defined in this work, for the simulation was
presented. In the last part of this section, techniques chosen to solve the problem caused by
time di�erences between prompt and delayed emission of neutrons are described.

3.3.1. The time delay of the precursors and its consequences
The delayed neutron precursor decay is a stochastic process, which can be described by

pi(t) = ⁄i e≠⁄i(t≠t0) ◊(t ≠ t0), (3.2)

where pi(t) is the probability the i-th precursor decay at a given time t, ⁄i is the decay con-
stant, t0 is the time when the precursor was created and ◊ the Heavyside function. Given this
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probability, an analog Monte Carlo simulation could be performed to, in principle, describe
what happens in a fissile system: at time tf of the fission event, ‹p prompt neutrons are
produced and then, at a time t= tf +td, ‹d delayed neutrons are inserted into the simulation.
Time td is sampled from Eq. (3.2) and the energy is determined from the precursor delayed
neutron energy distribution (see Section 2.3.1).

Although this strategy emulates what happens in a nuclear reactor, a large variance in the
results obtained due to the di�erence in the time scales associated with prompt and delayed
events. Indeed, as it was mentioned in Section 2.2.1 there exists a time delay between the
nuclear fission event and the emission of a delayed neutron from the decay of a precursor.
The average lifetime of a prompt neutron in a light water reactor is ≥10≠4 s and the average
length of a fission chain in a system close to critical is ≥150 neutrons [3]. This implies that
the average lifetime of a neutron chain is ≥10≠2 s. At the same time, a prompt fission chain
will produce on average one precursor, which in turn will decay to a delayed neutron and
then produce a new fission chain in a few seconds. During this time there would be no new
neutrons produced in an analog Monte Carlo simulation, as it is shown in Fig. 3.1. This lack
of particles would in turn lead to large variance in the quantities scored. In an actual fissile
system this does not happen because of the large number of neutrons produced so the e�ect
is averaged out. Of course, due to limitations imposed by computer calculation power and
memory, it is not possible to simulate this many fission chains. Due to this fact, and in order
to obtain results with acceptable statistics, delay of precursors decay must be simulated in
another way.
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Figure 3.1: Schematic representation of the time scales associated to the
delayed neutron emission and the lifetime of the prompt chains. This dif-
ferent time scales produce large variance in the quantities scored.
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3.3.2. Individual precursors
In 1957, Keepin measured the periods, relative abundances and yields of delayed neutrons
from fission. He had the idea of grouping the —≠ delayed neutron emitters into groups
according to their half-lives and assuming that the total emission rate could be represented
as a sum of exponential functions [6]. It is important to note that the number of groups is
arbitrary, considering that the total number of precursors produced in 235U fission is more
than 270. Nonetheless, Keepin found that a six group representation properly fitted the
measured experimental activity.

At the time of the writing of this thesis, there were no published Monte Carlo codes for
neutron transportation in fissile systems which include the delayed neutron emission from
individual precursors, i.e. all of the existing codes use the group structure to take into account
—-delayed neutron emissions and insert a delayed neutron directly into the simulation. In
the case of this work a precursor is created, and then this precursor can decay, emitting a
delayed neutron which is inserted into the system. To further illustrate this point, the steps
needed to take into account —-delayed neutron emissions will be outlined using, i) the group
structure or, ii) the individual precursors.
i) —-delayed neutron emission with group structure

If a delayed fission is sampled, the next step is to choose which precursor group will be
sampled. Here, the relative yield, is utilized. If the j-th group is chosen, then the delayed
time associated with the delayed emission will be sampled using the group decay constant
and Eq. (3.2). Finally, the delayed neutron energy will be chosen from the j-th delayed
neutron energy group spectra [1].

21



ii) —-delayed neutron emission with individual precursors
On the other hand, if a delayed fission is sampled and the delayed neutron emission from

individual precursors is being simulated, instead of directly inserting a delayed neutron, a
precursor is produced. The next step is to choose which precursor nuclide will decay. In
order to do this, the precursor importance or relative yield of the individual precursor i-th,
Ii, is defined as [17]:

Ii © CYi Pn,i

‹d
, (3.3)

with CYi the cumulative fission yield, Pn,i the precursor delayed neutron emission probability,
and ‹d the average delayed neutron yield. In this work the cumulative fission yield is used be-
cause the initial transient source distribution is constructed from a converged source obtained
from an eigenvalue calculation, thus assuming an equilibrium state. Once the precursor has
been chosen, the delayed time associated with this emission is sampled using the precursor
decay constant and Eq. (3.2). Finally, the delayed neutron energy will be the average energy
from the corresponding precursor delayed neutron spectrum.

Another point to consider is the number of precursors to include in the simulation, for
which the precursor importance is useful because it shows the fraction of the total delayed
neutron yield that the precursor represents (i.e. how important it is). As an example, when
using the cumulative yields from JEFF-3.1.1 library and the —-delayed neutron emission
probabilities from ENDF/B-VIII.0, the average delayed neutron yield obtained is 1.57◊10≠2.
Then from the values presented in Table 2.2, the importance for any given precursor can be
calculated. For example, for 137I, the precursor importance obtained is 16.26%, which means
that the delayed neutrons emitted from the 137I decay account for 16.26% of the total —-
delayed neutron emission.

So, although there are data for 269 precursors, in this work only 50 will be included in the
simulation. To justify this choice the precursors were ordered by importance using Eq. (3.3)
and then the cumulative importance (q

i Ii), was calculated. It was found that the first
50 precursors account for 99.16% of the total delayed neutron yield, which means that the
remaining 219 precursors have a combined importance of 0.84%. This small contribution in
comparison to the contribution of the first 50 precursors was judged to be negligible for the
purpose of this work. The delayed neutron yield was renormalized to the emission from the
50 selected precursors.

Table 3.2 summarizes the di�erences when comparing between the simulation of the —-
delayed neutron emission using the group structure and the delayed neutron emission when
using individual precursors.

Table 3.2: Summary of the di�erences when including the —-delayed neutron
emission using the precursor group structure or the individual precursors

Quantity N-group structure This work

Relative abundance —i/— with 1 < i < 6 or 8 (CYi Pn,i)/‹d with 1 < i < 50
Decay constants Precursors in 6- or 8- groups 50 individual precursors
Energy spectra Precursors in 6- or 8- groups 50 individual precursors

Finally, it is worth mentioning that the choice of including 50 out of the 269 precursors
was made taking into account the calculation time and the cumulative importance of these 50
precursors, but should need arise, the code developed can handle the whole set of precursors.
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3.3.3. The precursor particle
The first step to include the precursor decay in the simulation involves adding the precursors
in the simulation. So a new particle type is defined in the code, the precursor particle. All
precursors (or precursor groups) are combined into a single precursor particle [3]. The decay
probability for this particle is given by

pcombined(t) =
ÿ

i

�i ⁄i e≠⁄i(t≠t0) ◊(t ≠ t0), (3.4)

with, t0 the time when the precursor was created, and �i a factor that depends on whether
precursor groups or individual precursors are being considered:

�i =

Y
]

[

—i

— , for precursor group
Ii, for individual precursor.

(3.5)

Here —i is the delayed fraction for the i-th precursor and q
i —i = —, with — the total delayed

neutron fraction. Ii is the precursor importance for the i-th precursor. Fractions �i must be
defined di�erently in some cases, as will be shown in Section 3.4. In principle, the statistical
weight of a delayed neutron emitted from the —-decay of a precursor is given by

wd(t) = wc

ÿ

i

�i ⁄i e≠⁄i(t≠t0) ◊(t ≠ t0), (3.6)

with wc the main precursor weight. This weight is the number of physical precursors that this
precursor particle represents at the time of its creation in the simulation. It must be noted
that this weight does not change with time and it can only be altered by means of variance
reduction techniques, as it will be explained in Section 3.5. After the precursor decay is
produced, the energy of the emitted delayed neutron must be chosen from the corresponding
precursor or precursor group. The probability of choosing the i-th group or precursor is a
function of time given by

Pi(t) = �i ⁄i e≠⁄i(t≠t0)
q

i �i ⁄i e≠⁄i(t≠t0) . (3.7)

This means that this probability must be evaluated at the time of decay to select the correct
group or precursor for the energy spectrum.

Aside from the main precursor weight wc, there is another statistical weight which will be
utilized during this work. This is the weight of the precursor at a time t and it represents
the number of physical precursors that a precursor particle represents at a given time t and
is given by

wp(t) = wc

ÿ

i

�ie
≠⁄i(t≠t0). (3.8)

The last statistical weight that can be utilized is the expected delayed neutron weight. The
precursor interacts with the system through delayed neutrons, so the weight of the delayed
neutrons can be used for variance reduction. The problem is that the decay time is not
known a priori, so this weight is defined as [3]

wd,av = 1
�t

⁄ t1+�t

t1
wd(t)dt, (3.9)
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where t1 is the start of the next interval. Using Eq. (3.6), the expected delayed neutron
weight becomes

wd,av = wc

ÿ

i

�i(e≠⁄i(t≠t0) ≠ e≠⁄i(t1+�t≠t0)). (3.10)

3.3.4. Precursor forced decay
As explained in Section 3.3.1, a direct simulation of delayed neutron precursor decay would
lead to significant variance in the system, so that another way to simulate the precursors
must be utilized. Since this variance is caused by the fact that there are too few fission
chains per unit of time caused by delayed neutron decays, one strategy would be to modify
the precursor decay probability, forcing the decay of all the precursors in each interval and
thus having more delayed neutrons present. In this technique, called “forced decay” [38], the
sampling of the delayed neutrons is biased and the Monte Carlo fair game is preserved by
altering the statistical weight of the emitted delayed neutrons. Regarding the biased decay
probability, the simplest choice would be a uniform decay probability, forcing the decay of all
of the precursors in each one of the time intervals defined in Section 3.2.2. With this choice
the biased decay probability is

p̄(t) = 1
tj+1 ≠ tj

= 1
�t

, (3.11)

where t is the time when the forced decay happens and �t is the size of the time bin. To
ensure an unbiased result the weight of the delayed neutrons produced by forced decay is
adjusted to

wd(t) = p(t)
p̄(t) = wc �t

ÿ

i

�i⁄ie
≠⁄i(t≠t0) with tj < t < tj+1 (3.12)

where wc is the statistical weight of the precursor. The delayed neutron produced will be
transported and may in turn cause new fissions. Once the delayed neutron of weight wd(t)
has been created during the corresponding time interval between tj and tj+1, the precursor
is not eliminated from the simulation. Instead, it is added to a precursor bank with weight

wp(t) = wc

ÿ

i

�ie
≠⁄i(ti+1≠ti), (3.13)

where it will undergo forced decay, producing more delayed neutrons. It is important to note
that the precursor is not being transported in the simulation and only a�ects the simulation
through the delayed neutrons that emits.

3.4. Initial transient particle source
To begin a transient Monte Carlo, an initial transient source distribution will be constructed
using the converged source distribution from an eigenvalue calculation, with ke� ≥ 1. To
assess the convergence of the source distribution in the criticality calculation, OpenMC code
has the capability of define a suitable spatial mesh and monitor the Shannon entropy. There
are two methods to create an initial particle source. The first method is to transform the
converged neutron source into a mix source comprised of neutrons and precursors. The second
method consists of sampling the initial neutrons and precursors using appropriate tallies after
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Figure 3.2: Schematic representation of the forced decay scheme for the
precursors, where the precursor is forced to decay at the beginning of each
time bin, so there are scored in every time interval.

the eigenvalue calculation. For the first stage in the development of this work, when a 1-group
and monoenergetic system was studied, the first method is an acceptable choice. As it was
shown in Section 2.1.2 and according to Eq. (2.5), the precursor concentration for one group
at stationary state given by (ˆC/ˆt = 0) is

C0(r) = —i

⁄i
‹�fÂ(r). (3.14)

To determine the fraction of neutrons in position r the following relation is useful

n0(r)
n0(r) + C0(r) =

1
v Â(r)

1
v Â(r) + —i

⁄i
‹�fÂ(r)

= 1
1 + —i

⁄i
‹v�f

. (3.15)

This relation is valid only for constant neutron energy. For the mono-energetic system studied
in this work and using the parameters shown in Table C.1, it is obtained that for every neutron
there are about 104 precursors and that the fraction of prompt neutrons in steady state is
0.08 %.

For the second method [3] the energy dependent initial source is sampled from an eigen-
value calculation. For the number of neutrons, the estimator used was

n0(r, E) =
⁄

4fi

Â0(r, �, E)
v(E) d�, (3.16)

while for the precursors the estimator utilized was

Ci,0(r) =
⁄

4fi

⁄ Œ

0

—i(r, E)‹(r, E)�f (r, E)
⁄i

Â0(r, �, E) dEd�, (3.17)

25



where Â0 is the flux sampled by an already existing flux tally in OpenMC.
It is important to mention that the probability distribution for a precursor created in a

fission event (shown in Sec. 3.3.3) is di�erent than the one for a precursor created from the
steady state distribution. This is because the precursors have undergone a portion of its
decay before t = 0. The di�erent precursors with di�erent decay constants result in a steady
state group distribution given by

Pi =

Y
____]

____[

⁄b

⁄i

—i

—
, for precursor group

⁄b

⁄i
Ii, for individual precursor,

(3.18)

where ⁄b is the inversely weighted decay constant defined as

⁄b =

Y
_______]

_______[

—
q

i

—i

⁄i

, for precursor group

1
q

i
Ii

⁄i

, for individual precursor,
(3.19)

This di�erence in the probability distributions is implemented in the code according to the
time of creation of the precursor.

3.5. Population control
When using the “forced decay” method the precursors always survive after they decay into
delayed neutrons. This means that the population of precursors is continuously increasing,
so population control for precursors must be implemented. The method implemented in
the OpenMC code in this work is the Combing method [39], which was originally developed
for stationary Monte Carlo simulations. The idea of this method is to preserve the total
statistical weight while maintaining a fixed number of particles. In the context of this work,
keeping constant the number of particles serves for two purposes: i) variance reduction and
ii) reduced computing time by keeping the population size approximately constant. If the
system is super-critical, combing prevents the unlimited growth of the population, while if
the system is sub-critical, keeps the simulation running by preventing the population from
dying. If the system is critical, combing prevents the divergence of the population due to
fluctuations of fission chains [40].

If there are K particles at the end of a time interval and the objective is to comb them to
M particles. These K particles will be combed into M using a comb with M teeth. Figure 3.3
shows an example situation with K = 4 and M = 3. The length of the comb is the sum of
the particle weights

W =
Kÿ

i=1
= wi. (3.20)

The comb teeth are equally spaced with the position of the teeth randomly selected as

tm = ›
W

M
+ (m ≠ 1)W

M
. (3.21)
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Figure 3.3: Diagram of the application of the combing method for 4 particles
of total weight W combed into M = 3. The particles kept by the comb are
particle 1, particle 3 and particle 4, each with weight W/3.

Each time a tooth hits interval i, the i-th particle is duplicated and assigned a weight

wÕ
i = W

M
, (3.22)

where wÕ
i is the weight after combing. Defining the integer j by

j <
wi

W/M
Æ j + 1, (3.23)

it can be seen that either j or (j +1) teeth of a comb with a pitch of W/M will hit an interval
of length wi. In particular, the probability of j teeth fall in an interval i is

pi,j = j + 1 ≠ wi
M

W
, (3.24)

while the probability that j + 1 teeth fall in interval i is

pi,j+1 = wi
M

W
≠ j. (3.25)

The expected weight for a single particle after combing is

wÕ
i = pi,jj

W

M
+ pi,j+1(j + 1)W

M
= wi

W/M

W

M
= wi, (3.26)

this implies that the combing preserves the total weight because after combing each particle
is asigned a weight wÕ

i = W/M and since there are M particles, the total weight is preserved.
In this work both the neutron and precursor populations are combed separately and for the
monitoring of the precursor population the timed precursor weight (Eq. (3.8)) or the expected
delayed neutron weight (Eq. (3.10)) can be used.
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Chapter 4

Results and discussion

The time dependence in neutron transportation, including —-delayed neutron emission from
fission products, added in this work to the original OpenMC code were tested and the results
are discussed in this chapter. This modified version of the mentioned code will be named
Time-Dependent OpenMC or OpenMC(TD).

In Section 4.1, the inclusion of time dependence and individual precursors in OpenMC(TD)
was evaluated. Related to time dependence, the tests made were: i) time tally (see Sec. 3.2.3),
by scoring time dependent quantities in a fixed source calculation in a subcritical configu-
ration for the RA-6 reactor (see Sec. 4.1.1), ii) time boundary Monte Carlo simulation (see
Sec. 3.2.2 and Sec. 3.2.1), by transporting neutrons in a fixed source calculation and in a
Monte Carlo simulation divided in time intervals (see Sec. 4.1.2), and iii) scoring of time
dependent quantities in a simulation divided in time intervals (see Sec. 4.1.3). The inclusion
of individual precursors lead to a discussion about the —-delayed neutron activity comparing
the standard 6-group precursor structure and the 50 individual precursor structure studied
in this work (see Sec. 4.1.4). Likewise, the —-delayed average neutron energy for the 8-group
precursor structure in OpenMC(TD) was compared with the neutron spectrum energy for
the JEFF-3.1.1 8-group precursor structure (see Sec. 4.1.5).

In Section 4.2 a monoenergetic fissile system was simulated considering 1-group precursor
structure. Three configurations were studied and discussed: subcritical (See Sec. 4.2.1),
critical (Sec. 4.2.2) and reactivity insertion (See Sec. 4.2.3).

In Section 4.3 an energy dependent system using 235U was simulated considering di�er-
ent precursor structures. Two configurations were studied and discussed: subcritical (see
Sec. 4.3.1) and supercritical (see Sec. 4.3.2).

In Section 4.4 an energy dependent and light-water moderated system using 235U was
simulated using di�erent precursor structures and criticality configurations. Afterwards, the
6-group precursor structure e�ective multiplication factor was compared to the 50 individual
precursor structure e�ective multiplication factor (see Sec. 4.4.1). Finally, the following cases
were studied and discussed: i) comparison between 6-group and 50 individual precursor
structure in a critical configuration (see Sec. 4.4.2), and ii) comparison between 6-group, 50
individual and 40 individual precursor structure in a critical configuration (see Sec. 4.4.3).

Simulations were run at CSICCIAN (Spanish acronym for Simulation and Calculation
Center in Nuclear Sciences and Applications) clusters from the Chilean Nuclear Energy Com-
mission, its specifications are shown in Appendix D, along with a summary of the simulations
presented in this work.
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4.1. Inclusion of time dependence and individual pre-
cursors in OpenMC(TD)

As explained in Sec. 3.2, there were some starting points that needed to be addressed in order
to include time dependency in a Monte Carlo transport code. In short: i) time is explicitly
added by means of time label to the particles, ii) the total simulation time is divided in discrete
time intervals and, iii) a new filter is added, so the code has the capability to score time-
dependent quantities. In order to check the correct implementation of these characteristics
into the code, three tests were conducted prior to the inclusion of the precursors and delayed
neutrons.

At the time of the writing of this thesis, measured —-delayed neutron energy spectra in
databases [1, 10] were available only for 34 precursors [14]. In this work the average energy
of the —-delayed neutron was used for each individual precursor (see Sec. 4.1.5).

4.1.1. Scoring of time dependent quantities in a fixed source cal-
culation
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Figure 4.1: Time evolution of the neutron flux in a subcritical configuration
for the RA-6 reactor, obtained from running a fixed source simulation in
both OpenMC(TD) and MCNP. Results were scored for 10 ms. Both codes
are in good agreement with the experimental benchmark result.

The tallying capabilities of OpenMC were expanded and a time filter was added to monitor
the time evolution of any of the tallies already present in the code. In order to examine the
proper functioning of this filter, MCNP and OpenMC(TD) were used to estimate the time
evolution of the neutron flux in the RA-6 reactor using the pulsed method [41]. In this
method, a burst of neutrons is injected into a subcritical system and then the decay of the
prompt neutron flux as a function of time is observed. Since the phenomena being studied
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is the prompt neutron decay the contribution from delayed neutrons can be neglected from
point kinetics Eq. (2.18), which in that case reads,

ˆ

ˆt
s(t) = fl ≠ —e�

�e�
s(t). (4.1)

The solution to Eq. (4.1) is given by

s(t) = s0e
– t, with – = fl ≠ —e�

�e�
(4.2)

where s0 is the initial flux density and the decay constant – is the decay constant of the
neutron population.

MCNP and OpenMC(TD) were used to simulate the neutron source and then the prompt
neutron decay was scored during 10 ms. The flux as a function of time obtained with both
codes was then compared with the experimental results for the decay constant from the
graphite reflected RA-6 benchmark from [34, 35]. Fig. 4.1 shows results obtained, where
blue (red) crosses (x marks) denote OpenMC(TD) (MCNP) results. Dashed curve denote
the benchmark value. It can be observed good agreement between the decay constants from
fit parameters and the result from the benchmark.

Table 4.1: Decay constants obtained for the time evolution of the neutron
flux obtained using the pulsed method in the RA-6 reactor.

OpenMC MCNP Benchmark

– [s≠1] ≠370(1) ≠354(3) ≠378(3)

As it can be seen in Table 4.1, the values obtained for the decay constant are in reasonable
agreement between each other. In conclusion, the time filter implemented works as expected
and OpenMC(TD) can score time dependent quantities in fixed source calculations.

4.1.2. Transport logic in a simulation divided in time intervals
Another modification needed to be the implemented in the code is the division of the total
simulation time in discrete time intervals. It is important to check that there are no errors
in the crossing of time intervals. To do this, neutron transport in the monoenergetic fissile
system described in Appendix C was studied. Since the purpose of this test was only to
check for errors in the particle transport when dividing the simulation in time intervals,
fission reactions were not considered. Results obtained are shown in Fig. 4.2, where it can be
seen that the neutron flux obtained when the simulation is divided in discrete time intervals
is the same when a regular fixed source calculation is performed, thus, the transport logic is
correct and OpenMC(TD) correctly transports neutrons across time intervals.

4.1.3. Scoring of time dependent quantities in a simulation di-
vided in time intervals

Test 3 was a combination of tests 1 and 2, i.e., flux scoring as a function of time in a
subcritical configuration when the simulation was divided in time intervals. The transport
problem studied was the monoenergetic fissile system detailed in Appendix C. The advantage
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Figure 4.2: Neutron flux as a function of time in a simple transport problem.
In red, the neutron flux obtained for a non-transient fixed source simulation
is shown. In blue the neutron flux obtained from a transient simulation
divided in time intervals is shown. Both results are equivalent.

of studying a system like this one is that the time evolution of the neutron flux can be
described by an analytical expression, making direct its validation.
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Figure 4.3: Time evolution of the neutron flux for the monoenergetic system
studied. Results obtained using OpenMC(TD) are shown in blue, while the
fit to the point kinetics solution given by Eq. (4.2) is shown in red.
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First, the configuration was made subcritical by increasing the absorption cross section to
�a =0.5854 cm≠1, while maintaining the total cross section constant. A criticality calculation
with 106 neutrons, 5000 batches and 300 skipped cycles for this configuration gives ke� =
0.99344±0.00003. Then test 3 was conducted transporting 106 neutrons for 300 ms using a
time interval of 1 ms and 10 batches. Fig. 4.3 shows a comparison between prompt neutron
flux obtained from the Monte Carlo simulation and the analytical solution obtained using
Eq. (4.2) and the parameters for this system given in Table C.1. The fitted time constant
parameter obtained for the decay of the prompt neutron flux is –fitted =≠89.08(3) s≠1, while
the calculated value is given by –teo = ≠90.20(1) s≠1. A summary of the obtained results is
shown in Table 4.2. Both values are in excellent agreement with each other (1.2% di�erence).
Therefore, the scoring of time dependent quantities when the simulation is divided in time
intervals works correctly.

Table 4.2: Decay constants obtained for the time evolution of the neutron
flux of the monoenergetic system corresponding to Test 3.

Calculated Fitted �
Decay constant Decay constant

– [s≠1] ≠90.20(1) ≠89.08(3) ≠1.12(3)

4.1.4. Activity of individual precursors
The purpose behind the activity calculation for individual precursors and its comparison to
the 6-group activity was to verify the suitability of the 50 individual precursors chosen for
the emission of the —-delayed neutrons as part of the new capabilities OpenMC(TD) code.
This test was necessary because if there were di�erences in results obtained for the time
evolution of the neutron flux using the N -group structure or in the individual precursors, it
was relevant to know if the activity of the —-delayed neutron emission was the cause of these
eventual discrepancies.

The calculated activity for the 6-precursor groups, denoted by A6(t), is given by

A6(t) =
6ÿ

i=1
ai exp(≠⁄it), (4.3)

where ai =—i/— is the i-th group relative abundance and ⁄i is the i-th group decay constant
(see Table E.1). Conversely, the calculated activity for the 50 individual precursors, denoted
by A50(t) reads

A50(t) =
50ÿ

i=1
Ii exp(≠⁄it), with Ii = CYi Pn,i

‹d
, (4.4)

where Ii is the i-th precursor importance as defined in Eq. (3.3) (see Table E.2) and ⁄i is the
i-th precursor decay constant (See Sec. 2.3.1). The calculated activity for 6 precursor groups
and 50 individual precursors is shown in Fig. 4.4. In blue, A6(t) is shown, while A50(t) is
shown in red. As it can be seen, both activities are equivalent. Quantitatively, comparing
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—-delayed neutron emission for A50(t) and A6(t) up to 100 s, it is obtained that
s 100

0 A50(t)dt
s 100

0 A6(t)dt
= 0.9916. (4.5)

This indicates that adding the remaining 219 precursors only contributes to 0.84% of delayed
neutron emission.
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Figure 4.4: —-delayed neutron activity for 6 precursor groups and 50 indi-
vidual precursors is shown. In blue, A6(t) is shown, while A50(t) is shown
in red. As it can be seen, both activities are equivalent.

4.1.5. Discussion about the use of average energies from precur-
sor delayed neutron spectra

At the time of the writing of this work there exists experimental measurements for only
34 —-delayed neutron energy spectra. This data was compiled and completed by Brady in
1989 [14]. The remaining —-delayed neutron energy spectra present in ENDF/B-VIII.0 comes
from QRPA calculations [1]. Given that the capabilities added to the OpenMC code allows
to run simulations using up to 269 individual precursors and with the intention of having
these precursors on the same footing regarding the —-delayed neutron emission energies,
it was decided that the average energy for the delayed neutron emission would be used.
Nevertheless, if the —-delayed neutron energy spectra databases were updated in the future,
its inclusion could be easily implemented in the code.

Since the average energy for the —-delayed neutron emission was used, it was important
to verify that the results obtained for the time evolution of the neutron flux when using the
delayed neutron average energies were equivalent to sampling the delayed neutron energy
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from the corresponding spectra. To this end, a transient simulation using OpenMC(TD)
in a subcritical configuration was run. Subcriticality was achieved by decreasing the 235U
density from nU235 =3.2675◊10≠2 (atoms/b cm) to nU235 =3.19◊10≠2 (atoms/b cm), while
maintaining the dimensions of the box constant, obtaining an e�ective multiplication system
of ke� = 0.98663±0.00004 for the system. The simulation was run using 3 batches and the
total simulation time was 10 ms divided in 10000 time intervals of 1 µs each. Population
control was applied at the end of each interval.

Results obtained from transient Monte Carlo simulation using OpenMC(TD) for the time
evolution of the neutron flux when the delayed neutron energy was sampled from spectra are
shown in red in Fig. 4.5, while results obtained when using the average energy for the delayed
neutron emission are shown in blue. From Fig. 4.5 it can be seen that the time evolution of
the neutron flux obtained with transient Monte Carlo code OpenMC(TD) using the average
delayed neutron energy and delayed energy sampled from spectra are equivalent.
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Figure 4.5: Time evolution of neutron flux for a subcritical configuration
with ke� =0.98663±0.00003 Both simulations were run for 3 batches, total
simulation time was 10 ms divided in 10000 time intervals of 1 µs each.
Results of neutron flux when delayed neutron energy was sampled from
spectra are shown in red (behind the blue curve), while results obtained
when using the average energy for delayed neutron emission are shown in
blue. It can be seen that both results are equivalent.

4.2. Monoenergetic fissile system with 1-group pre-
cursor structure

Once the preliminary work described in Section 4.1 was completed, the new capabilities added
to the OpenMC code, namely division of the simulation in discrete time intervals, scoring of
time dependent quantities, forced decay of precursors and population control, were tested in
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the monoenergetic fissile system described in Appendix C. The objective of this section is to
lay the groundwork for the study of the delayed neutron emission from individual precursors
for transient calculations using OpenMC.

Prior to transient simulations with Monte Carlo code OpenMC(TD) presented in this sec-
tion, a non-transient standard steady state criticality calculation was done with 106 neutrons,
3000 batches and 200 skipped cycles, using OpenMC. The e�ective multiplication factor ob-
tained was ke� = 1.00010 ± 0.00003. Afterwards, the initial transient source was created
as described in Sec. 3.4, with 105 neutrons and 9 ◊ 105 precursors. This initial transient
source was used in subcritical (See Sec. 4.2.1), critical (See Sec. 4.2.2) and reactivity inser-
tion (See Sec. 4.2.3) configurations, presented in the following subsections, in order to start
the transient simulation.

In this section, the code input was the macroscopic absorption cross section, �a, which was
suitably modified in order to produce reactivity changes in the monoenergetic fissile system
(critical, subcritical or supercritical configurations). Thus, the output values (observables)
were the e�ective multiplication factor ke� and the time evolution of the neutron flux „(t),
which were compared with point kinetics calculations.

4.2.1. Subcritical configuration
The code was firstly tested in a subcritical configuration. Subcriticality was achieved by
increasing the absorption cross section from �a = 0.5882 cm≠1 to �a = 0.5952 cm≠1. Total
cross section �t was kept constant, then the e�ective multiplication of the system ke� =
0.98821±0.00003. This increasing in the absorption cross section �a is equivalent to decrease
the density of the fissile material nf of the system.

The simulation was run using 60 batches and the total simulation time was 50 s, divided
in 500 time intervals of 100 ms each one. At the end of each time interval population control
was applied, using the technique explained in Sec. 3.5. Results obtained from transient
Monte Carlo simulation using OpenMC(TD) are shown in blue in Fig. 4.6, meanwhile the
point kinetic solution of the neutron population as a function of time is shown in red. From
Fig. 4.6 it can be seen that the time evolution of the neutron population calculated using
transient Monte Carlo code OpenMC(TD) and point kinetics solution using Eq. (B.4) are
equivalent.

Quantitatively, from Fig. 4.6 the reactivity value fl can be obtained as a fitted parameter
of Eq. (B.2). This flfit = ≠0.01193(626) was compared to the reactivity from the criticality
calculation using OpenMC(TD), fl=(ke� ≠ 1)/ke� =≠0.01193(3).

It is important to notice that in this case the population control prevents the dying out
of the neutron population5. This new time dependent capability added to OpenMC allows
the observation of the slow decay of the neutron population due to the —-delayed neutron
emission.

The reactivity value is usually obtained by running a criticality Monte Carlo calculation.
In this work, using OpenMC(TD), this value can be obtained by fitting Eq. (B.4) to the
time evolution of the neutron population. A summary of the results obtained is shown in
Table 4.3.
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Table 4.3: Results obtained for the reactivity of the monoenergetic simu-
lated system in a subcritical configuration using 1-group precursor structure.

Calculated Fitted
reactivity reactivity

fl [pcm] ≠1193(3) ≠1193(626)
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Figure 4.6: Time evolution of the neutron population for a monoenergetic
system in a subcritical configuration (ke� =0.98821±0.00003 obtained using
OpenMC(TD) code. The initial transient source is prepared in a critical
configuration and at the beginning of the transient simulation the system
is made subcritical. The result is compared to the analytical solution from
the point kinetics equations.

4.2.2. Slightly supercritical configuration
In the second test, transient analysis was done in a slightly supercritical configuration, with
ke� = 1.00010±0.00003. The simulation was run using 4 batches and the total simulation
time was 25 s, divided in 250 time intervals of 100 ms each. Population control was applied
at the end of each interval.

Results obtained from transient Monte Carlo simulation using OpenMC(TD) are shown in
blue in Fig. 4.7, meanwhile the point kinetic solution of the neutron population as a function
of time is shown in red. From Fig. 4.7 it can be seen that the time evolution of the neutron
population calculated using transient Monte Carlo simulation using OpenMC(TD) and point
kinetics solution using Eq. (B.4) are equivalent.

5 See for instance Fig. 4.3 where in a non-transient standard Monte Carlo fixed source calculation, using
both MCNP or OpenMC, the neutron population extinguishes in ≥ 50 ms.
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Figure 4.7: Time evolution of the neutron population for a monoenergetic
system in a critical configuration (ke�=1.00010±0.00003 obtained using the
OpenMC(TD) code. The result is compared to the analytical solution from
the point kinetics equations.

Neutron population remains practically constant in time, as it is expected for a slightly
supercritical system. It can also be noted that since this is a close to critical configuration,
the fission chains tend to diverge as it was mentioned in Sec. 3.5, but population control
prevents this from happening and the simulation remains stable.

Quantitatively, from Fig. 4.7 the reactivity value fl can be obtained as a fitted parameter
of Eq. (B.2). This flfit = 0.00013(70), was compared to the reactivity from the criticality
calculation using OpenMC, fl=(ke� ≠ 1)//ke� =0.00010(3).

The reactivity value is usually obtained by running a criticality Monte Carlo calculation.
In this work, using OpenMC(TD), this value can be obtained by fitting Eq. (B.4) to the
time evolution of the neutron population. A summary of the results obtained is shown in
Table 4.4.

Table 4.4: Results obtained for the reactivity of the monoenergetic simu-
lated system in a slightly supercritical configuration using 1-group precursor
structure.

Calculated Fitted
reactivity reactivity

fl [pcm] 10(3) 13(70)
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Figure 4.8: Time evolution of the neutron population for a monoenergetic
system obtained using OpenMC(TD). The system is initially in a slightly
supercritical configuration, then, at t = 10 s a reactivity of 211 pcm is
inserted. After 30 s the system is brought back to its initial slightly super-
critical configuration.

4.2.3. Reactivity insertion
The last case studied was a mixture of the two cases previously presented. First, the configu-
ration was slightly supercritical, then reactivity is inserted and afterwards, the configuration
is brought back to slightly supercritical by a negative reactivity insertion. This system is a
first approximation to simulate the operation of a nuclear reactor. Concretely, these reac-
tivity insertions were simulated by changing the absorption cross section while keeping the
total cross section constant.

In Fig. 4.8 the reactivity insertion case is shown. For the first 10 s the configuration was
kept slighlty supercritical with �a = 0.5882 cm≠1. Then, for 10 s < t < 40 s the absorption
cross section was reduced from �a = 0.5882 cm≠1 to �a = 0.5870 cm≠1, inserting a positive
reactivity of 211 pcm, thus making the configuration supercritical. This fast increase in
neutron population is known as prompt jump. In t = 40 s the system is brought back to
�a = 0.5882 cm≠1. The neutron population stops growing and decreases rapidly. This fast
change in neutron population is known as prompt drop. In t = 40 s the neutron population
is almost three times the initial neutron population. The final state of the configuration is
slightly supercritical.

The simulation was run for 25 batches and the simulation time was divided in 5000 time
intervals of 10 ms each and population control was applied at the end of every interval.
Results obtained are shown in Fig. 4.8, where the time evolution of the neutron population
calculated from point kinetic equations is also shown. From Fig. 4.8 it can be seen that the
time evolution of the neutron population calculated using transient Monte Carlo simulation
using OpenMC(TD) and point kinetics solution using Eq. (B.4) are equivalent.
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It is important to notice that in the reactivity insertion case, both prompt jump and
prompt drop can be studied in detail given that short time intervals of 10 ms were used
in the simulation. This new Monte Carlo capabilitity, implemented in this work, allows to
reduce time windows as much as desired, so parameters as the Rossi-– [42] can be calculated.

4.3. Energy-dependent 235U system
After the new capabilities added to the code were successfully tested for the monoenergetic
system described in the previous Section 4.2, the following study involved testing the code
in a system with continuous, energy-dependent cross sections (i.e. not monoenergetic). The
objective of this section is to simulate a more realistic system, but at the same time keeping
it simple enough to compare to the point kinetics model, whenever is possible. In order to
do this, the material of the box from the preceding section was made of pure 235U, using the
continuous energy cross sections from JEFF-3.1.1 [10] nuclear data library and the geometry
was surrounded by vacuum.

Prior to the transient simulations with Monte Carlo code OpenMC(TD) presented in this
section, a non-transient standard steady state criticality calculation was done with 106 neu-
trons, 5000 batches and 300 skipped cycles, using OpenMC. The e�ective multiplication
factor obtained was ke� = 1.00015 ± 0.00003. Afterwards, the initial transient source was
sampled as described in Sec. 3.4, with 105 neutrons and 9 ◊ 105 precursors. This initial
transient source was used in subcritical and supercritical tests, presented in the following
subsections, in order to start the transient simulation. Intentionally, the critical configura-
tion was not considered in this set of tests because the main objective of this part of the work
was to examine whether the code had the capability to resolve fast changes in the neutron
flux.

In this section, the code input was the density of the fissile material, which will be denoted
as nU235. Since the box made of pure 235U, the only two ways to insert reactivity to the system
are: i) by changing the box dimensions or, ii) by changing the density of the fissile material.
The latter method was chosen and the dimensions of the box were kept constant throughout
the di�erent cases. Thus, the output value (observable) was the e�ective multiplication factor
ke� and the time evolution of the neutron flux „(t), like in the previous section. Since this
is not a monoenergetic system, Eq. (C.1) for the e�ective generation time no longer holds.
In consequence, for the calculation of � and —e� , a simulation of the system in MCNP was
made, given that this code can estimate these parameters using the weighted adjoint flux.
These two quantities were then compared with the fitted parameters from Eq (B.4), which
is the solution to the point kinetics equations. The continuous energy cross sections used for
MCNP simulations were from JEFF-3.1.1 [10] nuclear data library.

Di�erent group structures were simulated in this section. When it was possible, the energy
of the —-delayed neutrons was taken from a distribution (JEFF-3.1.1). Otherwise, the average
energy was used for each precursor or group (ENDF-B/VIII.0). For comparison purposes,
a simulation using the energy distribution and the average energy from the first group were
also studied.

4.3.1. Subcritical configuration
The first case studied was a subcritical configuration. The system was made subcritical
by decreasing the 235U density from nU235 = 4.496 ◊ 10≠2 (atoms/b cm) [3] to nU235 =
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4.4362 ◊ 10≠2 (atoms/b cm), while maintaining the dimensions of the box constant, making
the e�ective multiplication factor of the system ke� =0.98956 ± 0.00003.

4.3.1.1. i) First group with energy distribution from JEFF-3.1.1

The first precursor group, characterized by a half-life T1/2 = 55.6 s, was simulated. The
delayed neutron energy was sampled from its neutron energy distribution, reported from
JEFF-3.1.1. Group 1 —-delayed neutron energy spectrum from JEFF-3.1.1. is shown in
Fig. 4.9. In Appendix A, the —-delayed neutron energy spectra for all 8 groups can be found.
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Figure 4.9: Group 1 —-delayed neutron energy spectrum from JEFF-3.1.1.

This simulation was run using 22 batches and the total simulation time was 0.1 ms divided
in 1000 time intervals of 100 ns each. Population control (see Sec. 3.5) was applied at the
end of each interval.

Results obtained from the transient Monte Carlo simulation using OpenMC(TD) are
shown in blue in Fig. 4.10, while the fit obtained by adjusting the results to Eq (B.4) are
shown in red. In Fig. 4.10 the prompt drop can be seen for the first 5 µs, and then for
t > 5 µs the decay of the neutron flux stabilizes. Results plotted in log-log scale are shown
in Appendix F for the interested reader.

Quantitatively, the fitted e�ective neutron generation time obtained was �fitted =5.45(56) ns.
By comparison, MCNP obtained value was �MCNP = 5.74(1) ns, giving a ≥ 5.1% di�er-
ence between both quantities. The fitted e�ective delayed neutron fraction obtained was
—(fitted)

e� = 0.00648(38). By comparison, MCNP obtained value was —(MCNP)
e� = 0.00644(6).

Table 4.5 shows a summary of results obtained in this section.

4.3.1.2. ii) First group with average energy from JEFF-3.1.1

The first precursor group was simulated, but in this case the delayed neutron was emitted
with the average energy of the first group energy distribution reported from JEFF-3.1.1. This
energy is Ē1g = 212.31 keV and it was calculated as the weighted average per eV from the
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Fit parameters
� 0.00038±0.00648 
� 10�5.63e±09 �5.45e
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Figure 4.10: Study i). Time evolution of the neutron flux in the studied
subcritical configuration. The initial transient source is prepared in a critical
state and at the beginning of the transient Monte Carlo simulation using
OpenMC(TD), the system is made subcritical by decreasing nU235. The
time evolution of the neutron flux is shown in blue, while the fit obtained
is shown in red. Between 0 < t < 5 µs the prompt drop can be observed,
and then the decay of the neutron population slows. Inset figure shows the
prompt drop zoomed for the first 5 µs.

Table 4.5: Study i). Values of the parameters obtained from running an
OpenMC(TD) transient simulation in a subcritical configuration. The cal-
culated values for the parameters were calculated using MCNP, while the
OpenMC(TD) parameters were obtained by fitting Eq. (B.4) to the time
evolution of the neutron flux.

Parameter Calculated Fitted �
Unit MCNP OpenMC

� [ns] 5.74(1) 5.45(56) 5.1%
—e� [pcm] 644(6) 648(38) 1%

distribution shown in Fig. 4.9.
This simulation was run using 3 batches and the total simulation time was 0.05 ms divided

in 500 time intervals of 100 ns each. Population control (see Sec. 3.5) was applied at the end
of each interval.

Results obtained from the transient Monte Carlo simulation using OpenMC(TD) are
shown in blue in Fig. 4.11, while the fit obtained by adjusting the results to Eq (B.4) are
shown in red. In Fig. 4.11 the prompt drop can be seen for the first 5 µs, and then for
t > 5 µs the decay of the neutron flux stabilizes. Results plotted in log-log scale are shown
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in Appendix F for the interested reader.

Fit parameters
� 0.00034±0.00666 
� 10�4.20e±09 �5.45e
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Figure 4.11: Study ii). Time evolution of the neutron flux in the studied
subcritical configuration. The initial transient source is prepared in a critical
state and at the beginning of the transient Monte Carlo simulation using
OpenMC(TD), the system is made subcritical by decreasing nU235. The
time evolution of the neutron flux is shown in blue, while the fit obtained
is shown in red. Between 0 < t < 5 µs the prompt drop can be observed,
and then the decay of the neutron population slows. Inset figure shows the
prompt drop zoomed for the first 5 µs.

Quantitatively, the fitted e�ective neutron generation time obtained was �fitted =5.45(42) ns.
By comparison, MCNP obtained value was �MCNP = 5.74(1) ns, giving a ≥ 5.1% di�er-
ence between both quantities. The fitted e�ective delayed neutron fraction obtained was
—(fitted)

e� = 0.00666(34). MCNP obtained value was —(MCNP)
e� = 0.00644(6). Table 4.6 shows a

summary of results obtained in this section.

Table 4.6: Study ii). Values of the parameters obtained from running an
OpenMC(TD) transient simulation in a subcritical configuration. The cal-
culated values for the parameters were calculated using MCNP, while the
OpenMC(TD) parameters were obtained by fitting Eq. (B.4) to the time
evolution of the neutron flux.

Parameter Calculated Fitted �
Unit MCNP OpenMC

� [ns] 5.74(1) 5.45(42) 5.1%
—e� [pcm] 644(6) 666(34) 3.4%
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4.3.1.3. iii) 1-group with average energy from ENDF-B/VIII.0

A 1-group precursor structure was simulated. Delayed neutrons were emitted with the
average energy of the 6-group precursor structure from ENDF-B/VIII.0. This energy is
Ē6g = 501.31 keV and was calculated as the weighted average of the reported average ener-
gies per group, according to

Ē6g =
6ÿ

i=1

—i

—
Ēi, (4.6)

where Ei is the average energy for i-th group, see Table 2.1.
This simulation was run using 3 batches and the total simulation time was 0.05 ms divided

in 500 time intervals of 100 ns each. Population control (see Sec. 3.5) was applied at the end
of each interval.

Results obtained from the transient Monte Carlo simulation using OpenMC(TD) are
shown in blue in Fig. 4.12, while the fit obtained by adjusting the results to Eq (B.4) are
shown in red. In Fig. 4.12 the prompt drop can be seen for the first 5 µs, and then for
t > 5 µs the decay of the neutron flux stabilizes. Results plotted in log-log scale are shown
in Appendix F for the interested reader.
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Figure 4.12: Study iii). Time evolution of the neutron flux in the studied
subcritical configuration. The initial transient source is prepared in a critical
state and at the beginning of the transient Monte Carlo simulation using
OpenMC(TD), the system is made subcritical by decreasing nU235. The
time evolution of the neutron flux is shown in blue, while the fit obtained
is shown in red. Between 0 < t < 5 µs the prompt drop can be observed,
and then the decay of the neutron population slows. Inset figure shows the
prompt drop zoomed for the first 5 µs.

Quantitatively, the fitted e�ective neutron generation time obtained was �fitted =5.53(52) ns.
By comparison, MCNP obtained value was �MCNP = 5.74(1) ns, giving a ≥ 3.7% di�er-
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ence between both quantities. The fitted e�ective delayed neutron fraction obtained was
—(fitted)

e� = 0.00602(36). By comparison, MCNP obtained value was —(MCNP)
e� = 0.00644(6).

Table 4.7 shows a summary of results obtained in this section.

Table 4.7: Study iii). Values of the parameters obtained from running
an OpenMC(TD) transient simulation in a subcritical configuration. The
calculated values for the parameters were calculated using MCNP, while the
OpenMC(TD) parameters were obtained by fitting Eq. (B.4) to the time
evolution of the neutron flux.

Parameter Calculated Fitted �
Unit MCNP OpenMC

� [ns] 5.74(1) 5.53(52) 3.7%
—e� [pcm] 644(6) 602(36) 6.5%

4.3.1.4. iv) 8-group with energy distribution from JEFF-3.1.1

An 8-group precursor structure was simulated. Delayed neutrons energies were randomly
sampled from one of the energy distributions from JEFF-3.1.1, shown in Appendix A.

This simulation was run using 3 batches and the total simulation time was 0.05 ms divided
in 500 time intervals of 100 ns each. Population control (see Sec. 3.5) was applied at the end
of each interval.

Results obtained from the transient Monte Carlo simulation using OpenMC(TD) are
shown in blue in Fig. 4.13, while the fit obtained by adjusting the results to Eq (B.4) are
shown in red. In Fig. 4.13 the prompt drop can be seen for the first 5 µs, and then for
t > 5 µs the decay of the neutron flux stabilizes. Results plotted in log-log scale are shown
in Appendix F for the interested reader.

Quantitatively, the fitted e�ective neutron generation time obtained was �fitted =5.45(45) ns.
By comparison, MCNP obtained value was �MCNP = 5.74(1) ns, giving a ≥ 5.1% di�er-
ence between both quantities. The fitted e�ective delayed neutron fraction obtained was
—(fitted)

e� = 0.00660(60). By comparison, MCNP obtained value was —(MCNP)
e� = 0.00644(6).

Table 4.8 shows a summary of results obtained in this section.

Table 4.8: Study iv). Values of the parameters obtained from running
an OpenMC(TD) transient simulation in a subcritical configuration. The
calculated values for the parameters were calculated using MCNP, while the
OpenMC(TD) parameters were obtained by fitting Eq. (B.4) to the time
evolution of the neutron flux.

Parameter Calculated Fitted �
Unit MCNP OpenMC

� [ns] 5.74(1) 5.53(52) 5.1%
—e� [pcm] 644(6) 660(60) 2.5%
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Fit parameters
� 0.0006±0.0066 
� 10�4.47e±09 �5.45e
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Figure 4.13: Study iv). Time evolution of the neutron flux in the studied
subcritical configuration. The initial transient source is prepared in a critical
state and at the beginning of the transient Monte Carlo simulation using
OpenMC(TD), the system is made subcritical by decreasing nU235. The
time evolution of the neutron flux is shown in blue, while the fit obtained
is shown in red. Between 0 < t < 5 µs the prompt drop can be observed,
and then the decay of the neutron population slows. Inset figure shows the
prompt drop zoomed for the first 5 µs.

4.3.1.5. v) 6-group with average energy from ENDF-B/VIII.0

A 6-group structure was simulated. Delayed neutrons energies were randomly sampled ac-
cording to —i/—, from the listed average energies of the six precursor groups (see Table 2.1).

This simulation was run using 3 batches and the total simulation time was 0.05 ms divided
in 500 time intervals of 100 ns each. Population control (see Sec. 3.5) was applied at the end
of each interval.

Results obtained from the transient Monte Carlo simulation using OpenMC(TD) are
shown in blue in Fig. 4.14, while the fit obtained by adjusting the results to Eq (B.4) are
shown in red. In Fig. 4.14 the prompt drop can be seen for the first 5 µs, and then for
t > 5 µs the decay of the neutron flux stabilizes. Results plotted in log-log scale are shown
in Appendix F for the interested reader.

Quantitatively, the fitted e�ective neutron generation time obtained was �fitted =5.68(29) ns.
By comparison, MCNP obtained value was �MCNP = 5.74(1) ns, giving a ≥ 1% di�er-
ence between both quantities. The fitted e�ective delayed neutron fraction obtained was
—(fitted)

e� = 0.00602(57). By comparison, MCNP obtained value was —(MCNP)
e� = 0.00644(6).

Table 4.9 shows a summary of results obtained in this section.
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Fit parameters
� 0.00057±0.00602 
� 10�2.88e±09 �5.68e
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Figure 4.14: Study v). Time evolution of the neutron flux in the studied
subcritical configuration. The initial transient source is prepared in a critical
state and at the beginning of the transient Monte Carlo simulation using
OpenMC(TD), the system is made subcritical by decreasing nU235. The
time evolution of the neutron flux is shown in blue, while the fit obtained
is shown in red. Between 0 < t < 5 µs the prompt drop can be observed,
and then the decay of the neutron population slows. Inset figure shows the
prompt drop zoomed for the first 5 µs.

Table 4.9: Study v). Values of the parameters obtained from running an
OpenMC(TD) transient simulation in a subcritical configuration. The cal-
culated values for the parameters were calculated using MCNP, while the
OpenMC(TD) parameters were obtained by fitting Eq. (B.4) to the time
evolution of the neutron flux.

Parameter Calculated Fitted �
Unit MCNP OpenMC

� [ns] 5.74(1) 5.68(29) 1%
—e� [pcm] 644(6) 602(57) 6.5%

4.3.1.6. vi) 50 individual precursors with average energies from ENDF-B/VIII.0

A 50 individual precursor structure was simulated. Delayed neutrons were randomly sampled
according to its importances Ii=(CYi Pn,i)/‹d, from the calculated average energies of the 50
individual precursors used in this work (see Table E.2).

This simulation was run using 3 batches and the total simulation time was 0.05 ms divided
in 500 time intervals of 100 ns each. Population control (see Sec. 3.5) was applied at the end
of each interval.
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Results obtained from the transient Monte Carlo simulation using OpenMC(TD) are
shown in blue in Fig. 4.15, while the fit obtained by adjusting the results to Eq (B.4) are
shown in red. In Fig. 4.15 the prompt drop can be seen for the first 5 µs, and then for
t > 5 µs the decay of the neutron flux stabilizes. Results plotted in log-log scale are shown
in Appendix F for the interested reader.

Fit parameters
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Figure 4.15: Study vi). Time evolution of the neutron flux in the studied
subcritical configuration. The initial transient source is prepared in a critical
state and at the beginning of the transient Monte Carlo simulation using
OpenMC(TD), the system is made subcritical by decreasing nU235. The
time evolution of the neutron flux is shown in blue, while the fit obtained
is shown in red. Between 0 < t < 5 µs the prompt drop can be observed,
and then the decay of the neutron population slows. Inset figure shows the
prompt drop zoomed for the first 5 µs.
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Quantitatively, the fitted e�ective neutron generation time obtained was �fitted =5.45(31) ns.
By comparison, MCNP obtained value was �MCNP = 5.74(1) ns, giving a ≥ 5.3% di�er-
ence between both quantities. The fitted e�ective delayed neutron fraction obtained was
—(fitted)

e� = 0.00602(62). By comparison, MCNP obtained value was —(MCNP)
e� = 0.00644(6).

Table 4.10 shows a summary of results obtained in this section.

Table 4.10: Study vi). Values of the parameters obtained from running
an OpenMC(TD) transient simulation in a subcritical configuration. The
calculated values for the parameters were calculated using MCNP, while the
OpenMC(TD) parameters were obtained by fitting Eq. (B.4) to the time
evolution of the neutron flux.

Parameter Calculated Fitted �
Unit MCNP OpenMC

� [ns] 5.74(1) 5.45(31) 5.3%
—e� [pcm] 644(6) 602(57) 6.5%

It is important to notice that in this fast, unmoderated system, the prompt drop can be
studied in detail given that short time step of 100 ns are used in the simulation. This new
Monte Carlo capability was shown to work in a monoenergetic system and here it is shown
that also works in a continuous energy dependent system. Lastly, OpenMC(TD) code also
correctly predicts the behavior of the system after the prompt drop, when the neutron flux
changes slowly.

4.3.2. Supercritical configuration
Now a supercritical configuration was studied. The system was made supercritical by increas-
ing the 235U density from nU235 =4.496◊10≠2 (atoms/b cm) to nU235 =4.511◊10≠2 (atoms/b
cm), while maintaining the dimensions of the box constant, making the e�ective multiplica-
tion factor of the system ke� =1.00271±0.00003. MCNP calculated e�ective delayed neutron
fraction was —(MCNP)

e� =0.00651(6), thus the excess reactivity of this configuration was $0.42.

4.3.2.1. i) First group with energy distribution from JEFF-3.1.1

The first precursor group, characterized by a half-life T1/2 = 55.6 s, was simulated. The
delayed neutron energy was sampled from its neutron energy distribution, reported from
JEFF-3.1.1. Group 1 —-delayed neutron energy spectrum from JEFF-3.1.1. is shown in
Fig. 4.9, and the remaining delayed neutron group spectra can be found in Appendix A.

The simulation was run using 10 batches and the total simulation time was 0.1 ms divided
in 1000 time intervals of 100 ns each. Population control (see Sec. 3.5) was applied at the
end of each interval.

Results obtained from the transient Monte Carlo simulation using OpenMC(TD) are
shown in blue in Fig. 4.16, while the fit obtained by adjusting the results to Eq (B.4) are
shown in red. In Fig. 4.16 the prompt jump can be seen for the first 1 µs, and then for
t > 1 µs the growth of the neutron flux stabilizes. Results plotted in log-log scale are shown
in Appendix F for the interested reader.

Quantitatively, the fitted e�ective neutron generation time obtained was �fitted =5.45(57) ns.
By comparison, MCNP obtained value was �MCNP = 6.00(1) ns, giving ≥ 9.2% di�er-
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Fit parameters
� 0.00056±0.00666 
� 10�2.89e±09 �5.45e
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Figure 4.16: Study i). Time evolution of the neutron flux in the studied
supercritical configuration. The initial transient source is prepared in a
critical state and at the beginning of the transient Monte Carlo simulation
using OpenMC(TD) the configuration is made supercritical by increasing
nU235. The time evolution of the neutron flux is shown in blue, while the
fit obtained is shown in red. Between 0 < t < 1 µs the prompt jump can be
observed, an then the growth of the neutron population slows. Inset figure
shows the prompt jump zoomed for the first 10 µs.

ence between both quantities. The fitted e�ective delayed neutron fraction obtained was
—(fitted)

e� = 0.00666(56). MCNP obtained value was —(MCNP)
e� = 0.00651(6). Table 4.11 shows a

summary of results obtained in this section.

Table 4.11: Study i). Values of the parameters obtained from running
an OpenMC(TD) transient simulation in a supercritical configuration. The
calculated values for the parameters were calculated using MCNP, while the
OpenMC(TD) parameters were obtained by fitting point kinetics solution
to the time evolution of the neutron flux.

Parameter Calculated Fitted �
Unit MCNP OpenMC

� [ns] 6.00(1) 5.45(57) 9.2%
—e� [pcm] 651(6) 666(56) < 1%

4.3.2.2. ii) First group with average energy from JEFF-3.1.1

The first precursor group was simulated, but in this case the delayed neutron was emitted
with the average energy of the first group energy distribution reported from JEFF-3.1.1. This
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energy is Ē1g = 212.31 keV and it was calculated as the weighted average per eV from the
distribution shown in Fig. 4.11.

This simulation was run using 3 batches and the total simulation time was 0.05 ms divided
in 500 time intervals of 100 ns each. Population control (see Sec. 3.5) was applied at the end
of each interval.

Results obtained from the transient Monte Carlo simulation using OpenMC(TD) are
shown in blue in Fig. 4.17, while the fit obtained by adjusting the results to Eq (B.4) are
shown in red. In Fig. 4.17 the prompt jump can be seen for the first 1 µs, and then for
t > 1 µs the growth of the neutron flux stabilizes. Results plotted in log-log scale are shown
in Appendix F for the interested reader.
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Figure 4.17: Study ii). Time evolution of the neutron flux in the studied
supercritical configuration. The initial transient source is prepared in a
critical state and at the beginning of the transient Monte Carlo simulation
using OpenMC(TD) the configuration is made supercritical by increasing
nU235. The time evolution of the neutron flux is shown in blue, while the
fit obtained is shown in red. Between 0 < t < 1 µs the prompt jump can be
observed, an then the growth of the neutron population slows. Inset figure
shows the prompt jump zoomed for the first 10 µs.
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Quantitatively, the fitted e�ective neutron generation time obtained was �fitted =5.45(31) ns.
By comparison, MCNP obtained value was �MCNP = 6.00(1) ns, giving ≥ 9.2% di�er-
ence between both quantities. The fitted e�ective delayed neutron fraction obtained was
—(fitted)

e� = 0.00666(63). By comparison, MCNP obtained value was —(MCNP)
e� = 0.00651(6).

Table 4.12 shows a summary of results obtained in this section.

Table 4.12: Study ii). Values of the parameters obtained from running
an OpenMC(TD) transient simulation in a supercritical configuration. The
calculated values for the parameters were calculated using MCNP, while the
OpenMC(TD) parameters were obtained by fitting point kinetics solution
to the time evolution of the neutron flux.

Parameter Calculated Fitted �
Unit MCNP OpenMC

� [ns] 6.00(1) 5.45(31) 9.2%
—e� [pcm] 651(6) 666(63) 2.3%

4.3.2.3. iii) 1-group with average energy from ENDF-B/VIII.0

A 1-group precursor structure was simulated. Delayed neutrons were emitted with the
average energy of the 6-group precursor structure from ENDF-B/VIII.0. This energy is
Ē6g = 501.31 keV and it was calculated as the weighted average of the reported average
energies per group, according to

Ē6g =
6ÿ

i=1

—i

—
Ēi, (4.7)

where Ei is the average energy for i-th group, see Table 2.1.
This simulation was run using 3 batches and the total simulation time was 0.05 ms divided

in 500 time intervals of 100 ns each. Population control (see Sec. 3.5) was applied at the end
of each interval.

Results obtained from the transient Monte Carlo simulation using OpenMC(TD) are
shown in blue in Fig. 4.18, while the fit obtained by adjusting the results to Eq (B.4) are
shown in red. In Fig. 4.18 the prompt jump can be seen for the first 1 µs, and then for
t > 1 µs the growth of the neutron flux stabilizes. Results plotted in log-log scale are shown
in Appendix F for the interested reader.

Quantitatively, the fitted e�ective neutron generation time obtained was �fitted =5.45(57) ns.
By comparison, MCNP obtained value was �MCNP = 6.00(1) ns, giving ≥ 9.2% di�er-
ence between both quantities. The fitted e�ective delayed neutron fraction obtained was
—(fitted)

e� = 0.00637(35). By comparison, MCNP obtained value was —(MCNP)
e� = 0.00651(6).

Table 4.13 shows a summary of results obtained in this section.
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Fit parameters
� 0.00035±0.00637 
� 10�5.68e±09 �5.45e
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Figure 4.18: Study iii). Time evolution of the neutron flux in the studied
supercritical configuration. The initial transient source is prepared in a
critical state and at the beginning of the transient Monte Carlo simulation
using OpenMC(TD) the configuration is made supercritical by increasing
nU235. The time evolution of the neutron flux is shown in blue, while the
fit obtained is shown in red. Between 0 < t < 1 µs the prompt jump can be
observed, an then the growth of the neutron population slows. Inset figure
shows the prompt jump zoomed for the first 10 µs.

Table 4.13: Study iii). Values of the parameters obtained from running
an OpenMC(TD) transient simulation in a supercritical configuration. The
calculated values for the parameters were calculated using MCNP, while the
OpenMC(TD) parameters were obtained by fitting point kinetics solution
to the time evolution of the neutron flux.

Parameter Calculated Fitted �
Unit MCNP OpenMC

� [ns] 6.00(1) 5.45(57) 9.2%
—e� [pcm] 651(6) 637(35) 2.2%

4.3.2.4. iv) 8-group with energy distribution from JEFF-3.1.1

An 8-group precursor structure was simulated. Delayed neutrons energies were randomly
sampled from one of the energy distributions from JEFF-3.1.1, shown in Appendix A.

This simulation was run using 3 batches and the total simulation time was 0.05 ms divided
in 500 time intervals of 100 ns each. Population control (see Sec. 3.5) was applied at the end
of each interval.

Results obtained from the transient Monte Carlo simulation using OpenMC(TD) are
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shown in blue in Fig. 4.19, while the fit obtained by adjusting the results to Eq (B.4) are
shown in red. In Fig. 4.19 the prompt jump can be seen for the first 1 µs, and then for
t > 1 µs the growth of the neutron flux stabilizes. Results plotted in log-log scale are shown
in Appendix F for the interested reader.
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Figure 4.19: Study iv). Time evolution of the neutron flux in the studied
supercritical configuration. The initial transient source is prepared in a
critical state and at the beginning of the transient Monte Carlo simulation
using OpenMC(TD) the configuration is made supercritical by increasing
nU235. The time evolution of the neutron flux is shown in blue, while the
fit obtained is shown in red. Between 0 < t < 1 µs the prompt jump can be
observed, an then the growth of the neutron population slows. Inset figure
shows the prompt jump zoomed for the first 10 µs.
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Quantitatively, the fitted e�ective neutron generation time obtained was �fitted =6.00(43) ns.
By comparison, MCNP obtained value was �MCNP = 6.00(1) ns, giving ≥< 1% di�er-
ence between both quantities. The fitted e�ective delayed neutron fraction obtained was
—(fitted)

e� = 0.00665(56). By comparison, MCNP obtained value was —(MCNP)
e� = 0.00651(6).

Table 4.14 shows a summary of results obtained in this section.

Table 4.14: Study iv). Values of the parameters obtained from running
an OpenMC(TD) transient simulation in a supercritical configuration. The
calculated values for the parameters were calculated using MCNP, while the
OpenMC(TD) parameters were obtained by fitting point kinetics solution
to the time evolution of the neutron flux.

Parameter Calculated Fitted �
Unit MCNP OpenMC

� [ns] 6.00(1) 6.00(43) < 1%
—e� [pcm] 651(6) 665(35) 2.2%
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4.3.2.5. v) 6-group with average energy from ENDF-B/VIII.0

A 6-group structure was simulated. Delayed neutrons energies were randomly sampled ac-
cording to —i/—, from the listed average energies of the six precursor groups (see Table 2.1).
This simulation was run using 3 batches and the total simulation time was 0.05 ms divided
in 500 time intervals of 100 ns each. Population control (see Sec. 3.5) was applied at the end
of each interval.

Results obtained from the transient Monte Carlo simulation using OpenMC(TD) are
shown in blue in Fig. 4.20, while the fit obtained by adjusting the results to Eq (B.4) are
shown in red. In Fig. 4.20 the prompt jump can be seen for the first 1 µs, and then for
t > 1 µs the growth of the neutron flux stabilizes. Results plotted in log-log scale are shown
in Appendix F for the interested reader.
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Figure 4.20: Study v). Time evolution of the neutron flux in the studied
subcritical configuration. The initial transient source is prepared in a critical
state and at the beginning of the transient Monte Carlo simulation using
OpenMC(TD), the system is made subcritical by decreasing nU235. The
time evolution of the neutron flux is shown in blue, while the fit obtained
is shown in red. Between 0 < t < 1 µs the prompt drop can be observed,
and then the decay of the neutron population slows. Inset figure shows the
prompt drop zoomed for the first 10 µs.
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Quantitatively, the fitted e�ective neutron generation time obtained was �fitted =5.45(57) ns.
By comparison, MCNP obtained value was �MCNP = 6.00(1) ns, giving ≥ 9.2% di�er-
ence between both quantities. The fitted e�ective delayed neutron fraction obtained was
—(fitted)

e� = 0.00635(38). By comparison, MCNP obtained value was —(MCNP)
e� = 0.00651(6).

Table 4.15 shows a summary of results obtained in this section.
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Table 4.15: Study v). Values of the parameters obtained from running
an OpenMC(TD) transient simulation in a supercritical configuration. The
calculated values for the parameters were calculated using MCNP, while the
OpenMC(TD) parameters were obtained by fitting point kinetics solution
to the time evolution of the neutron flux.

Parameter Calculated Fitted �
Unit MCNP OpenMC

� [ns] 6.00(1) 5.45(57) 9.2%
—e� [pcm] 651(6) 635(38) 2.5%
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4.3.2.6. vi) 50 individual precursors with average energies from ENDF-B/VIII.0

A 50 individual precursor structure was simulated. Delayed neutrons were randomly sampled
according to its importances Ii = (CYi Pn,i)/‹d, from the calculated average energies of the
50 individual precursors used in this work (see Table E.2).

This simulation was run using 3 batches and the total simulation time was 0.05 ms divided
in 500 time intervals of 100 ns each. Population control (see Sec. 3.5) was applied at the end
of each interval.

Results obtained from the transient Monte Carlo simulation using OpenMC(TD) are
shown in blue in Fig. 4.20, while the fit obtained by adjusting the results to Eq (B.4) are
shown in red. In Fig. 4.21 the prompt jump can be seen for the first 1 µs, and then for
t > 1 µs the growth of the neutron flux stabilizes. Results plotted in log-log scale are shown
in Appendix F for the interested reader.

Fit parameters
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� 10�4.85e±09 �5.45e
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Figure 4.21: Study vi). Time evolution of the neutron flux in the studied
subcritical configuration. The initial transient source is prepared in a critical
state and at the beginning of the transient Monte Carlo simulation using
OpenMC(TD), the system is made subcritical by decreasing nU235. The
time evolution of the neutron flux is shown in blue, while the fit obtained is
shown in red. Between 0 < t < 1 µs the prompt drop can be observed, after
which the decay of the neutron flux slows. Inset figure shows the prompt
drop zoomed for the first 10 µs.

Quantitatively, the fitted e�ective neutron generation time obtained was �fitted =5.45(49) ns.
By comparison, MCNP obtained value was �MCNP =6.00(1) ns, giving ≥ 9.2% di�erence be-
tween both quantities. The fitted e�ective delayed neutron fraction was —(fitted)

e� =0.00621(36).
By comparison, the MCNP value was —(MCNP)

e� =0.00651(6). Table 4.16 shows a summary of
results obtained in this section.
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Table 4.16: Study vi). Values of the parameters obtained from running
an OpenMC(TD) transient simulation in a supercritical configuration. The
calculated values for the parameters were obtained using MCNP, while the
OpenMC(TD) parameters were obtained by fitting point kinetics solution
to the time evolution of the neutron flux.

Parameter Calculated Fitted �
Unit MCNP OpenMC

� [ns] 6.00(1) 5.45(49) 9.2%
—e� [pcm] 651(6) 621(36) 4.6%

As for the subcritical case, it is important to notice that in this fast, unmoderated system,
the prompt jump can be studied in detail given that short time step of 0.1 µs are used in the
simulation. This new Monte Carlo capability was shown to work in a monoenergetic system
and here it is shown that also works in a varying energy system. Lastly, the OpenMC(TD)
code also correctly describes the behaviour of the system after the prompt jump, when the
neutron flux changes slowly.

In this section, values for: i) nuclear cross sections, ii) mean energies, iii) cumulative yields,
iv) probability of delayed neutron emission and, v) decay constants were taken from nuclear
databases JEFF-3.1.1 and ENDF-B/VIII.0. In this regard, JEFF-3.1.1 has reported the
neutron energy spectra for each of the eight groups, but it does not have the delayed neutron
energy spectra for the 269 individual precursors. As it was seen in Section 2.3.2, there are
discrepancies between both databases. In this work, it was necessary to use the cumulative
yields from JEFF-3.1.1, and the probability of delayed neutron emission and average delayed
neutron energy from ENDF-B/VIII.0. These discrepancies are finally reflected in the value
obtained for the e�ective delayed neutron fraction (—̄e� = 658(26) pcm for JEFF-3.1.1 and
—̄e� =602(29) pcm for ENDF-B/VIII.0, for the subcritical configuration; —̄e� = 666(34) pcm
for JEFF-3.1.1 and —̄e�=631(21) pcm for ENDF-B/VIII.0, for the supercritical configuration).
This shows how important is that every database counts with good and better nuclear data
for individual precursors, either average energies or energy spectra.

4.4. Light-water moderated energy dependent system
with individual precursor structure

In this section the fast system studied in Section 4.3 was modified by including a neutron
moderator surrounding the 235U. The —-delayed neutron emission now was produced by
individual precursors and results obtained were compared when emission is from the 6-group
precursor structure.

Comparisons were made between simulations using the 6-group structure and 50 individual
precursors, such as i) e�ective multiplication factor for a critical system (see Sec. 4.4.1), and
ii) time evolution of the neutron flux in a transient simulation (see Sec. 4.4.2).

As a final test the 10 most important6 precursors were removed from the 50 individual
precursors, in order to account for its e�ect on the time evolution of the neutron flux in
comparison with the 6-group structure (see Sec. 4.4.3).
6 Importance was defined in Eq. (3.3), see Sec. 3.3.2.
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The configuration was surrounded with a 4.29 cm-thickness water moderator and made
slighlty supercritical by setting the 235U density to nU235 = 3.2671 ◊ 10≠2 (atoms/b cm).
The continuous energy cross sections used were from JEFF-3.1.1 [10]. The dimensions of
the box remained the same. Prior to the transient simulations presented in this section,
a non-transient standard criticality calculation was run with 106 neutrons, 5000 batches
and 300 skipped cycles using OpenMC. The e�ective multiplication factor obtained was
ke� =1.00025 ± 0.00001.

In this section, the code input were the density of the fissile material, which will be denoted
as nU235, the delayed neutron energy (sampled or averaged from spectra) and the number
of precursors used (50 or 40). Reactivity was inserted using the same method described in
Sec. 4.3. The output values (observables) were the e�ective multiplication factor ke� and
the time evolution of the neutron flux „(t), like in the previous section. Since this is no
longer a 1-group precursor problem, there are no analytical solutions to the point kinetics
equations. Nevertheless, resorting to the point kinetics approximation, a good estimation to
the asymptotic decay constant for the neutron flux [6] can be found using the equation

–D = ⁄̄fl

—e� ≠ fl
, (4.8)

where –D is the asymptotic decay constant, ⁄̄ is the average —-weighted decay constant7, —e�
is the e�ective delayed neutron fraction and fl is the system reactivity. Regarding the choice
of the e�ective delayed neutron fraction, the average delayed neutron yield obtained when
using the data from JEFF-3.1.1 in Eq. (2.29) is ‹d = 1.48 ◊ 10≠2, while the value obtained
when using ENDF/B-VIII.0 is ‹d = 1.90 ◊ 10≠2. If the average neutron yield is taken to be
‹ = 2.4355 [43], then the delayed neutron fraction, — = ‹d/‹, ranges from — = 607 pcm to
— =780 pcm. In view of this, the value for the e�ective delayed neutron fraction was chosen
to be —e� = 700 pcm. The decay constant was ⁄̄ = 0.0784 s≠1. The reactivity of the system
was obtained as fitted parameter, and then compared to the reactivity obtained from the
initial non-transient criticality calculation (fl=(ke� ≠ 1)/ke� ).

4.4.1. Criticality calculation using individual precursors
As it was shown in Section 4.2 and Section 4.3, prior to every transient simulation with Monte
Carlo code OpenMC(TD), a non-transient, standard steady state criticality calculation with
OpenMC must be done in order to create the initial transient source, and assess the reactivity
of the system. Since during the writing of this thesis there are no codes able to perform a
criticality calculation using individual precursors as the source of —-delayed neutrons, in this
work the capability to run criticality calculations using individual precursors instead of the
N -group structure was also added to the OpenMC(TD) code. Criticality was achieved by
maintaining 235U density at nU235 =3.2671 ◊ 10≠2 (atoms/b cm) obtaining ke� =1.00025(3)
for the 6-group precursor structure and ke� = 1.00032(3) for the 50-individual precursor
structure.

Results obtained using the 6-group structure and 50 individual precursors are shown in
Table 4.17.

The e�ective multiplication factor obtained for this system shows that this configuration is
slightly supercritical and both results are in good agreement with each other, with a di�erence

7 The average —-weighted decay constant is given by ⁄̄=
q —i

— ⁄i
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Table 4.17: E�ective multiplication factors obtained for the 235U cube when
is thermalized by surrounding it with a water moderator of a 4.29 cm thick-
ness. Results for 6-group structure and 50 individual precursors.

6-groups 50 precursors Di�erence

ke� 1.00025(3) 1.00032(3) 7(4)

of 7 pcm among them.

4.4.2. Slightly supercritical configuration with 50 individual pre-
cursor structure

A transient simulation using OpenMC(TD) was ran for the previous system (see Sec. 4.4.1)
in a slighlty supercritical configuration comparing the time evolution of the neutron flux
obtained when 6-group and 50 individual precursor structures were used. Both simulations
were run using 2 batches. Total simulation time was 4 s divided in 400 time intervals of 10 ms
each. Population control was applied at the end of each interval. The wall-clock time for
the 6-group precursor simulation was about 260.05 h, while for the 50 individual precursor
simulation was 410.76 h.

Results obtained from transient Monte Carlo simulation using OpenMC(TD) for the time
evolution of the neutron flux, for the 6-group structure, are shown in blue in Fig. 4.22, while
results obtained for the 50 individual precursor structure are shown in red. From Fig. 4.22
it can be seen qualitatively that both results show a slightly supercritical system, where the
neutron flux increases slowly in time, which is consistent with the e�ective multiplication
factor of a near critical configuration.
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Figure 4.22: Time evolution of neutron flux in a water moderated box made
of pure 235U, simulated with OpenMC. Results for 6 groups are shown in
blue, and results for 50 individual precursors are shown in red. Both results
show a slightly supercritical system, where neutron flux increases slowly in
time, consistent with the ke� of a near critical configuration.

Now, analyzing Fig. 4.22, from a quantitative point of view, the reactivity value fl can be
obtained as fitted parameter of „(t) ≥ e≠–Dt, for both 6-group and 50 individual precursor
structure8. These fl(6)

fit = 0.00017(368) and fl(50)
fit = 0.00036(347) fitted reactivity values were

compared to the reactivity from the criticality calculation using OpenMC(TD), fl(6) =(k(6)
e� ≠

1)/k(6)
e� =0.00025(3) and fl(50) =(k(50)

e� ≠ 1)/k(50)
e� =0.00032(3). The reactivity value is usually

obtained by running a criticality Monte Carlo calculation. In this work, using OpenMC(TD),
this value can be obtained by fitting „(t) ≥ e≠–Dt to the time evolution of the neutron
population. A summary of the results obtained can be seen in Table 4.18.

Table 4.18: Results obtained for the reactivity of the water moderated en-
ergy dependent simulated system in a critical configuration using 6-group
and 50 individual precursor structure.

6-group 50 individual
structure structure

fl [pcm] 25(3) 32(3)
flfit [pcm] 17(368) 35(347)

From examining the results obtained for the fitted parameters, it can be noticed that
even when they are in good agreement with the calculated values, they possess quite large
uncertainties. This is due to the fact that neutron population for ke� > 1 (fl > 0) shows
an exponential growing behaviour. Simulations ran for 4 s which was not enough time to
8 The asymptotic decay constant –D was defined in Eq. (4.8).
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reveal the exponential growing. To reduce the fitted uncertainties, the simulation time should
increase to tens of seconds. This would increase the wall-clock time of the simulation. For
instance, a simulation time of 50 s, would take 216 days (7 months and 6 days), beyond reach
for the purposes of this thesis.

Nevertheless, to further explore these uncertainties issues related to the simulation time,
the fitted reactivities from the subcritical (where the neutron population was scored for 50 s,
see Sec. 4.2.1) and critical (where neutron population was scored for 25 s, see Sec. 4.2.2)
configurations of the monoenergetic fissile system from Sec. 4.2, were obtained by taking into
account the time evolution of neutron population only for the first 4 s.

For the monoenergetic system with a subcritical configuration (see Sec. 4.2.1), the pre-
viously fitted reactivity was fl(50s)

fit = ≠0.01193(626), while the calculated value was fl =
≠0.01193(3). When taking into account the neutron population decay for only the first
4 s, the obtained reactivity was fl(4s)

fit =≠0.01159(28906). Meanwhile fl(50s)
fit and fl are in excel-

lent agreement with each other, fl(4s)
fit shows a di�erence of 2.85% with fl. But the uncertainty

of the calculated reactivity is 0.25%, while the uncertainty of fl(4s)
fit is almost 25 times its

value.
For the monoenergetic system with critical configuration (see Sec. 4.2.2), the previously

fitted reactivity was fl(25s)
fit =0.00013(70), while the calculated value was fl=0.00010(3). When

taking into account the neutron population decay for only the first 4 s, the obtained reactivity
was fl(4s)

fit =0.00009(597). In this case, the uncertainty of fl(4s)
fit is almost 66 times its value.

It is important to remark that OpenMC(TD) is stable for both configurations and the
rate of change for the neutron flux is consistent with the reactivities from the criticality
calculations, considering that: i) continuous energy-dependent cross sections, ii) addition of
a neutron moderator to the system and, iii) implementation of individual precursors.

In summary, the time evolution of neutron flux in a water moderated box of 235U was
obtained using 50 individual precursors and the results were consistent with the initial cal-
culated reactivities. The simulation was stable, and there was no divergence of the neutron
fission chains, which means that population control worked as expected.

4.4.3. Slightly supercritical configuration without the 10 most
important precursors

The final study was a slightly supercritical configuration, but in this case the 10 precursors
with the largest importances Ii (see Eq. (3.3)) were removed from the previous individual
precursor structure, to study the impact of this removal on the time evolution of the neutron
flux. This means that a 40 individual precursor structure was used for this calculation. As in
Sec. 4.4.2, the simulation was run using OpenMC(TD) for 2 batches and the total simulation
time was 4 s, divided in 400 time intervals of 10 ms each. Population control was applied at
the end of each time step. The wall-clock time for this simulation was about 319.65 h.

Fig. 4.23 shows results obtained from transient Monte Carlo simulation using OpenMC(TD)
for the time evolution of the neutron flux. Results in blue are when 6 individual precursor
structure was used, in red, when 50 individual precursor structure was used, while in green
when 40 individual precursor structure was used. In this case it can be seen that the time
evolution of the neutron flux calculated using 40 precursors clearly diverges from the previ-
ous results. The reason for this behaviour, is because by removing the 10 most important
precursors, the number of delayed neutrons emitted decreased, thus the period of the fissile
system increased as explained in Sec. 2.2.1.
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Figure 4.23: Time evolution for the neutron flux in a water moderated
box made of pure 235U, simulated with OpenMC. When the 6 groups are
used results shown in blue. Results obtained when 50 individual precursors
are used are shown in red, and results obtained when using 40 precursors
are shown in green. In this case it can be seen that the time evolution of
the neutron flux calculated using 40 precursors clearly diverges from the
previous results, showing that the neutron flux grows more rapidly in time.

This deviation from criticality for the case when 40 precursors were used can be quantified
by calculating the fitted reactivity. Indeed, the value of this parameter for the 40 precursors
calculation was fl40 = 0.00111(270), showing that this system is no longer close to critical,
but supercritical. A summary of the results obtained can be seen in Table 4.19, where, for
completeness, results for the 6-precursor group and 50 individual precursor structures are
also shown.

Table 4.19: Results obtained for the reactivity of the water moderated en-
ergy dependent simulated system in a critical configuration using 6-group,
50 individual and 40 individual precursor structures.

6-group 50 individual 40 individual
structure structure structure

flfit [pcm] 17(368) 35(347) 111(270)



Table 4.20: Summary of all results obtained with OpenMC(TD).(*) Error was obtained only from the calculated result
using point kinetics equations or criticality calculation using OpenMC, given that OpenMC(TD) error could be improved
as explained in Sec. 4.4.2.

System Configuration Precursor Delayed Simulation Wall-clock OpenMC(TD) Compared Calculated Di�erence Error
structure neutron energy time time parameter result with result

Monoenergetic fis-
sile

Subcritical 1-group Monoenergetic 50 s 12.35 h fl=≠1193(626) pcm Point kinetics fl=≠1193(3) pcm |�fl| = 0 pcm ”fl = 3 pcm (*)
Critical 1-group Monoenergetic 25 s 52.97 h fl=13(70) pcm Point kinetics fl=10(3) pcm |�fl|=3 pcm ”fl=3 pcm (*)

Energy dependent
U235

Subcritical 1-group ‰1(E) from 100 µs 44.32 h �e� =5.45(56) ns Adjoint flux �e�=5.74(1) ns |��e� |=0.29 ns ”�e� =0.56 ns
JEFF-3.1.1 —e� =648(38) pcm MCNP —e� =644(6) pcm |�—e� |=4 pcm ”—e� =38 pcm

1-group Ē1g =212.31 keV 50 µs 3.51 h �e� =5.45(42) ns Adjoint flux �e� =5.74(1) ns |��e� |=0.29 ns ”�e� =0.42 ns
from JEFF-3.1.1 —e� =666(34) pcm MCNP —e� =644(6) pcm |�—e� |=22 pcm ”—e� =34 pcm

1-group Ē6g =501.31 keV 50 µs 3.49 h �e� =5.53(52) ns Adjoint flux �e� =5.74(1) ns |��e� |=0.21 ns ”�e� =0.52 ns
from ENDF/B-VIII.0 —e� =602(36) pcm MCNP —e� =644(6) pcm |�—e� |=42 pcm ”—e� =36 pcm

8-group ‰(E) from 50 µs 4.32 h �e� =5.45(45) ns Adjoint flux �e� =5.74(1) ns |��e� |=0.29 ns ”�e� =0.45 ns
JEFF-3.1.1 —e� =660(60) pcm MCNP —e� =644(6) pcm |�—e� |=16 pcm ”—e� =60 pcm

6-group Ēi from 50 µs 4.27 h �e� =5.68(29) ns Adjoint flux �e� =5.74(1) ns |��e� |=0.06 ns ”�e� =0.29 ns
ENDF/B-VIII.0 —e� =602(57) pcm MCNP —e� =644(6) pcm |�—e� |=22 pcm ”—e� =57 pcm

50 individual Ēi from 50 µs 6.43 h �e� =5.45(31) ns Adjoint flux �e� =5.74(1) ns |��e� | = 0.29 ns ”�e� =0.31 ns
ENDF/B-VIII.0 —e� =602(57) pcm MCNP —e� =644(6) pcm |�—e� |=42 pcm ”—e� =57 pcm

Supercritical 1-group ‰1(E) from 100 µs 52.45 h �e� =5.45(29) ns Adjoint flux �e� =6.00(1) ns |��e� |=0.55 ns ”�e� =0.29 ns
JEFF-3.1.1 —e� =666(56) pcm MCNP —e� =651(6) pcm |�—e� |=15 pcm ”—e� =56 pcm

1-group Ē1g =212.31 keV 50 µs 7.84 h �e� =5.45(31) ns Adjoint flux �e� =6.00(1) ns |��e� |=0.55 ns ”�e� =0.57 ns
from JEFF-3.1.1 —e� =666(63) pcm MCNP —e� =651(6) pcm |�—e� |=15 pcm ”—e� =63 pcm

1-group Ē6g =501.31 keV 50 µs 7.81 h �e� =5.45(57) ns Adjoint flux �e� =6.00(1) ns |��e� |=0.55 ns ”�e� =0.57 ns
from ENDF/B-VIII.0 —e� =637(35) pcm MCNP —e� =651(6) pcm |�—e� |=14 pcm ”—e� =35 pcm

8-group ‰(E) from 50 µs 11.19 h �e� =6.03(43) ns Adjoint flux �e� =6.00(1) ns |��e� |=0.03 ns ”�e� =0.43 ns
JEFF-3.1.1 —e� =665(56) pcm MCNP —e� =651(6) pcm |�—e� |=14 pcm ”—e� =56 pcm

6-group Ēi from 50 µs 11.03 h �e� =5.45(57) ns Adjoint flux �e� =6.00(1) ns |��e� |=0.55 ns ”�e� =0.57 ns
ENDF/B-VIII.0 —e� =635(38) pcm MCNP —e� =651(6) pcm |�—e� |=16 pcm ”—e� =38 pcm

50 individual Ēi from 50 µs 17.24 h �e� =5.45(49) ns Adjoint flux �e� =6.00(1) ns |��e� |=0.55 ns ”�e� =0.49 ns
ENDF/B-VIII.0 —e� =621(36) pcm MCNP —e� =651(6) pcm |�—e� |=30 pcm ”—e� =36 pcm

Light-water moder-
ated energy depen-
dent U235

Critical 6-group Ēi from 4 s 260.05 h fl=17(368) pcm OpenMC fl=25(3) pcm |�fl|=8 pcm ”fl=3 pcm (*)
50 individual ENDF/B-VIII.0 410.76 h fl=35(347) pcm Criticality |�fl|=10 pcm
40 individual 319.65 h fl=111(270) pcm |�fl|=86 pcm
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With these results, OpenMC(TD) code shows its potential as a Monte Carlo tool with the
capability to explore how precursor data from nuclear databases impacts on results obtained
in fissile systems. For instance, since the code can use, in principle, an arbitrary precursor
structure, it could be studied how the kinetic parameters of a given system responds to
changes in the cumulative yield, probability of neutron emission, delayed neutron yield or
average delayed neutron energy emitted. In that sense OpenMC(TD) could become a reliable
tool to prompt new experimental data on individual —-delayed neutron emitters.

Finally, as it was discussed in Sec. 4.4.2, in order to reduce the associated uncertainties
from results obtained, increased simulation times would be required. Regarding this, two
possible solutions are proposed: i) use of high computing power to run the simulations: since
the code is already parallelized, it would benefit by having a greater number of cores available.
Of course, this would require access to infrastucture, such as supercomputer clusters and ii)
implement the variance reduction technique known as “implicit fission” in OpenMC(TD),
here, the neutron either has a scattering interaction or a fission interaction, and the weight
of the neutron is multiplied by the mean number of fission neutrons produced in the event.
By using this technique, there is no production of new neutrons during fission, thus reduc-
ing the calculation time; this would require modifications and testings of the code, but it
would be feasible and it could positively impact the current calculation times using the same
infrastucture used in this thesis.
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Chapter 5

Summary and conclusions

The objective of this work was to explicitly include, in a Monte Carlo simulation, the time
dependence related to the —-delayed neutron emission from individual precursors. In order to
achieve this, a modified version of OpenMC Monte Carlo simulation code was developed to
include transient capabilities in neutron transport and the option to use individual precursors
as —-delayed neutron emitters. This code has been named OpenMC(TD) or Time-Dependent
OpenMC.

OpenMC(TD), in addition to the original OpenMC, includes: i) neutron time labeling and
tracking; ii) monitoring of time dependent parameters in the simulation such as neutron flux,
reaction rates, neutron current, and total neutron population; iii) simulation time interval
division depending on the detail required for the studied physics case; iv) a new particle
called precursor, which is not transported and acts as a —-delayed neutron emitter; v) in-
dividual precursor properties from nuclear databases such as precursor cumulative neutron
yield, delayed neutron emission probability, —-delayed decay constant and average number of
delayed neutrons produced per fission ‹d; vi) either precursor N -group grouping capabilities
or individual precursor treatment; vii) forced decay of precursor within each time interval;
viii) population control at the end of each time interval using the combing method; and ix)
a transient source routine to initialize transient simulations.

To approach the time modelling of neutron transport and interactions in a experimental
nuclear reactor, a fissile system was simulated. OpenMC(TD) was tested in successively
complex systems. Di�erent observables such as reactivity fl, e�ective delayed neutron fraction
—e� and e�ective prompt generation time �e� , obtained with OpenMC(TD) were compared
with calculated results, either with exact point kinetics solutions (1-group, 6-group, 8-group
and 50 individual precursor structure) or asymptotic decay constant –D (6-group and 50 and
40 individual precursor structure). A summary of the OpenMC(TD) results obtained for the
systems, configurations and precursor structures studied in this work is shown in Table 4.20.

For the monoenergetic system, using the 1-group precursor structure, di�erences between
OpenMC(TD) and the compared results using point kinetics equations were within the error
of the point kinetics result. Nevertheless, large uncertainties were obtained for the reactivity
of the subcritical and critical configurations, using OpenMC(TD).

For the light-water moderated energy dependent 235U system, using the 6-group, 50 and 40
individual precursor structure, di�erences between OpenMC(TD) and the compared results
using criticality calculations with the standard 6-group precursor structure, were greater than
the error of the criticality calculation. The simulation time of 4 s was too short to describe
the asymptotical critical behaviour of the system, when the time evolution of the neutron
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flux increases gradually.
For the energy dependent 235U system, discrepancies were found in the value obtained

for the e�ective delayed neutron fraction using JEFF-3.1.1 and ENDF-B/VIII.0 nuclear
databases, showing the importance of appropriate nuclear data for individual precursors.
In this case, the simulation time was 100 µs, with a time interval of 100 ns, describing neu-
tron flux prompt changes (prompt drop or prompt jump for the subcritical or supercritical
configuration, respectively) within the first 10 µs. Both total simulation time and time in-
terval chosen for these cases were adequate to properly describe the transient behaviour of
the neutron flux in these systems.

Results and its errors can be improved in accuracy by running the simulation with longer
wall-clock times at CSICCIAN cluster; by applying to computing time outside the institution
or by implementing an implicit fission scheme in OpenMC(TD).

Resuming the discussion about the possibility of using OpenMC(TD) to simulate a full
system, such as a nuclear reactor core, according to what has been learned and developed
in this thesis, this would require i) a complete model of the core geometry materials, its
densities, nuclear cross sections, and to replicate this process with another code, such as
MCNP, for its subsequent comparison with respect to ke� ; ii) to read a geometry file at the
beginning of each time interval, simulating in this way the insertion or extraction of the
control rods9; and iii) a comparison with experimental measurements of reactivity changes.

The OpenMC(TD) code, developed in this thesis, shows its potential as a Monte Carlo
tool with the capability to explore how precursor data from nuclear databases impacts on
results obtained in fissile systems. In that sense, OpenMC(TD) could become a reliable tool
to prompt new experimental data on individual —-delayed neutron emitters.

9 This geometry file will contain the control rods positions at di�erent time.
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Future work
Results obtained with OpenMC(TD) could be compared not only to results obtained from

other codes, but also with experimental results from transient measurements in nuclear re-
actors. In the current state of the code, results obtained with simulation times of the order
of tens of seconds, including individual precursors, would require computational times of the
order of months. To decrease this time, reduction variance methods additional to forced de-
cay, combing, and implicit absorption need to be implemented. One of the possible reduction
variance methods that could be implemented, is implicit fission [44]. The implementation of
this method would allow to increase the simulation time, as well as decreasing the time in-
tervals, reducing the associated uncertainties of the obtained results from the OpenMC(TD)
simulation. Some future problems to study could be reactivity insertion in: i) moderated
energy dependent system with individual precursors, to quantitatively assess the relative im-
portance of precursors and thus, prompt experimental measurements of —-delayed emitter
nuclei, and then; ii) reactor fuel and core model, in order to obtain its kinetic parameters and
compare with reactivity measurements in a region of the reactor core, using a reactivimeter.

There exists other types of time-dependent problems of special interest in reactor physics,
such as burn-up fuel calculations. Although this is a time-dependent calculation, it requires
knowledge of the isotopic abundance of fissile material present in fuel elements during the
fuel period of use, which for an experimental nuclear reactor, is of the order of a few years.
Another problem to study could be the coupling of the time evolution of isotopic abundance
obtained using reaction rates calculated with the Bateman equations, with the OpenMC(TD)
code, validated with experimental measurements during the time when the fuel is used.

Nonetheless, the study of the inclusion of time dependence in Monte Carlo methods,
would allow to explore other problems where the fuel materials and precursors are not fixed
in space, but in movement during the operation time of the nuclear reactor, like fuel in IV-th
generation nuclear reactors, such as Molten Salt Fast Reactors, where the salt (fuel) moves
through the circuit in about 4 s [45] and transient calculations are needed to take into account
this circulation.
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Glossary

• —-delayed neutron emitter Nuclei that emits a —-delayed neutron.

• Analog Monte Carlo simulation Monte Carlo simulation which follows the natural
(i.e. physical) probability distribution function for random sampling (See Sec. 2.4.3).

• Batch In a Monte Carlo simulation, a batch is a single realization of a tally random
variable. In the simulation both the number of batches as well as the number of particles
per batch must be specified.

• Configuration In this work, it refers to the state of neutron multiplication of the
system. Configuration can be either subcritical, critical or supercritical.

• Criticality calculation Also called eigenvalue calculation. Monte Carlo simulation
where the objective is the determination of the state of neutron multiplication in a
fissile system. If ke� = 1 the system is in a critical configuration. While if ke� < 1
(ke� > 1) the system is in a subcritical (supercritical) configuration (See Sec. 2.1.3).

• Delayed neutron fraction Denoted as —. Represents the fraction of total fission
neutrons which are delayed (See Sec. 2.2).

• E�ective delayed neutron fraction Denoted as —e� . Represents the fraction of fis-
sions caused by delayed neutrons. Its defined as the delayed neutron fraction — weighted
by the neutron importance, which represents how e�ective the neutron is in causing fis-
sion (See Sec. 2.1.4).

• E�ective multiplication factor Parameter that shows the state of neutron multipli-
cation in a fissile system. If ke� = 1 the system is in a critical configuration. While
if ke� < 1 (ke� > 1) the system is in a subcritical (supercritical) configuration (See
Sec. 2.1.3).

• Fixed-source calculation Monte Carlo simulation where the initial particle source is
known and the resulting neutron distribution is determined.

• MCNP MCNP is a general-purpose Monte Carlo N-Particle code that can be used for
neutron, photon, electron, or coupled neutron/photon/electron transport. Developed
and by Los Alamos National Laboratory.

• N-group structure Scheme that groups all the —-delayed neutron precursors into N -
groups. Each precursor group contains a number of di�erent isotopes. In ENDF/B.VIII.0
database, N = 6. In JEFF-3.1.1, N = 8 (See Sec. 2.2).
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• Non-analog Monte Carlo simulation Monte Carlo simulation which follows a modi-
fied (i.e. non-physical) probability distribution function for random sampling in order to
reduce the variance of the result obtained when using an analog Monte Carlo simulation
(See Sec. 2.4.3).

• OpenMC OpenMC is a community-developed Monte Carlo neutron and photon trans-
port simulation code. It is capable of performing fixed source, k-eigenvalue, and subcriti-
cal multiplication calculations on models built using either a constructive solid geometry
or CAD representation. It was originally developed by members of the Computational
Reactor Physics Group at the Massachusetts Institute of Technology starting in 2011
(See Sec. 3.1).

• OpenMC(TD) Time-dependent OpenMC. OpenMC code with added capabilities shown
in this work, that is: explicit presence of time, scoring of time dependent quantities,
non-analog simulation scheme to simulate the —-delayed neutron emission, population
control to keep the number of particles constant and option to use either the N -group
precursor structure (with N = 1, 6, or 8) or M -individual precursor structure (with
1 Æ M Æ 269). See Chapter 4.

• pcm Per-cent mille one-thousandth of a percent.

• Point kinetics approximation Theoretical approximation used to study the kinetic
behaviour of a fissile system, where the flux is assumed to be a separable function of
space and time (See Sec. 2.1.4).

• Prompt drop Fast decrease in neutron population or flux caused by a reduction in the
system reactivity. The timescale of this process is of the order of the prompt neutron
generation time (Sec. 4.3.1).

• Prompt jump Fast increase in neutron population or flux caused by an increase in the
system reactivity. The timescale of this process is of the order of the prompt neutron
generation time (See Sec. 4.2.3 and Sec. 4.3.2).

• Prompt neutron generation time At ke� = 1, average time between two generations
of prompt neutrons.

• Precursor structure In this work, it refers to the organization of the —-delayed neu-
tron emitters. Precursor structure can be either a N -group precursor structure or a
N -individual precursor structure. In the latter, —-delayed neutrons are emitted from
individual precursors, not groups (See Sec. 3.3.2 and Sec. 4.4).

• Precursor Fission product (Z, N) which decays through a —-delayed process to another
nuclei (Z + 1, N ≠ 1), which in turn decays to the (Z + 1, N ≠ 2) nucleus, emitting a
—-delayed neutron (See Sec. 2.2).

• Skipped cycles Batches discarded before scores begin to accumulate in a Monte Carlo
calculation.

• System In this work, it refers to the simulated structure, characterized by its geometry,
materials, moderation, and so on.
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• Transient source In this work, it refers to the initial particle source, comprised of
neutrons and precursors, needed to start a transient calculation (See Sec. 3.4).

• Weight, statistical Number that represents how many real (i.e. physical) particles a
Monte Carlo particle represents. If the statistical weight of a neutron is 2, then that
neutron represents 2 neutrons.
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Appendix A

Delayed neutron group spectra

In this appendix the 8-group —-delayed neutron spectra are shown.
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Figure A.1: Group 1, —-delayed neutron energy spectrum from JEFF-3.1.1.
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Figure A.2: Group 2, —-delayed neutron energy spectrum from JEFF-3.1.1.
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Figure A.3: Group 3, —-delayed neutron energy spectrum from JEFF-3.1.1.
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Figure A.4: Group 4, —-delayed neutron energy spectrum from JEFF-3.1.1.
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Figure A.5: Group 5, —-delayed neutron energy spectrum from JEFF-3.1.1.
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Figure A.6: Group 6, —-delayed neutron energy spectrum from JEFF-3.1.1.
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Figure A.7: Group 7 —-delayed neutron energy spectrum from JEFF-3.1.1.
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Figure A.8: Group 8 —-delayed neutron energy spectrum from JEFF-3.1.1.
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Appendix B

Solutions of the Point Neutron
Kinetics Equations for 1-group
precursor approximation

If the 6-group precursor groups are replaced by 1-group precursor with an e�ective yield
fraction — and an e�ective decay constant given by

⁄̄ =
ÿ

i

—i⁄i

—
, (B.1)

then the point kinetics equations become

dn

dt
= fl ≠ —

� n + ⁄C, (B.2)

and
dC

dt
= —

�n ≠ ⁄C. (B.3)

The solutions to Eq. (B.2) and Eq. (B.3) are the time evolution of the neutron and precursor
population, n(t) and C(t), given by

n(t) = n0

C
fl

fl ≠ —
exp{(–P t)} ≠ —

fl ≠ —
exp{(–D t)}

D

, (B.4)

and
C(t) = n0

C
fl—

(fl ≠ —)2 exp{(–P t)} ≠ —

�⁄
exp{(–D t)}

D

, (B.5)

where the term –P defined as
–P = fl ≠ —

� , (B.6)

is related to the fast readjustement of the prompt neutron population, which happens on the
neutron generation timescale, given a change in the reactivity. On the other hand, the term
–D, defined as

–D = ⁄fl

fl ≠ —
, (B.7)
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corresponds in general to the slower change in the neutron population due to the delayed
source of neutrons, characterized by the precursor decay constant ⁄.
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Appendix C

Monoenergetic fissile system with
1-group precursor structure

The system described in Sec. 4.1 and in Sec. 4.2 of this work consists of a rectangular box of
10 cm ◊ 12 cm ◊ 20 cm (see Fig. C.1) surrounded by vacuum. All neutrons have the same
velocity, making this a mono-energetic problem. Total neutron yield is fixed, the material
cross-sections are constant and there is one precursor group. The system parameters are
shown in Table C.1.

Figure C.1: Box of 10 cm◊12 cm◊20 cm simulated in Sec. 4.2 and Sec. 4.3.

84



Table C.1: Material cross sections and parameters of the monoenergetic
system.

Parameter Value

—e� 0.00685
⁄ (s≠1) 0.0784

‹ 2.5
�t (cm≠1) 1.0
�f (cm≠1) 0.25
�a (cm≠1) 0.5882
�s (cm≠1) 0.4118
v (cm/s) 2.2 ◊ 104

The mean neutron generation time � is given by

� = (�f v ‹)≠1. (C.1)

Here, �f is the macroscopic fission cross section, v is neutron speed and ‹ is the average
number of neutrons produced per fission. In general, this expression for the neutron gener-
ation depends on the energy, but for a monoenergetic system with constant cross sections,
this value is exact.
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Appendix D

Summary of the simulations
performed in this work

Simulations presented in this work were run either in the CSICCIAN cluster from the Chilean
Nuclear Energy Commission, which is comprised of 32 cores of Intel(R) Xeon(R) CPU E5-
2640 v2 @ 2.00GHz processors, and 8 Gb RAM, or in the LIN cluster from the Chilean Nuclear
Energy Commission, which is comprised of 48 cores of Intel(R) Xeon(R) CPU E5-2670 v3 @
2.30GHz processors, and 64 Gb RAM.

Tables presented in this Appendix summarize the details of each transient simulation
presented in this work.
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Section 4.2: Monoenergetic fissile system with 1-group precursor structure
All simulations presented in Table D.1 were ran in the CSICCIAN cluster.

Table D.1: Summary of simulation parameters for monoenergetic fissile
system in subcritical, critical, and reactivity insertion configurations, using
1-group precursor structure.

Configuration Number Number Number Number Time interval Simulation Wall-clock
neutrons precursors batches time intervals length (ms) time (s) time (h)

Subcritical 105 9 ◊ 105 60 500 100 50 12.35
Critical 105 9 ◊ 105 4 250 100 25 52.97
Reactivity insertion 105 9 ◊ 105 25 5000 10 50 66.18

Section 4.3.1: Energy dependent system - Subcritical configuration
All simulations in Table D.2 were simulated in CSICCIAN cluster, except for study vi, which
was simulated in LIN cluster.

Table D.2: Summary of simulation parameters for energy dependent system
in a subcritical configuration, using di�erent precursor structures.

Study Number Number Number Number Time interval Simulation Wall-clock
neutrons precursors batches time intervals length (ns) time (ms) time (h)

i 105 9 ◊ 105 22 1000 100 0.1 44.32
ii 105 9 ◊ 105 3 500 100 0.05 3.51
iii 105 9 ◊ 105 3 500 100 0.05 3.49
iv 105 9 ◊ 105 3 500 100 0.05 4.32
v 105 9 ◊ 105 3 500 100 0.05 4.27
vi 105 9 ◊ 105 3 500 100 0.05 6.43
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Section 4.3.2: Energy dependent system - Supercritical configuration
All simulations in Table D.3 were simulated in CSICCIAN cluster, except for the study vi,
which was simulated in LIN cluster.

Table D.3: Summary of simulation parameters for energy dependent system
in a supercritical configuration, using di�erent precursor structures.

Study Number Number Number Number Time interval Simulation Wall-clock
neutrons precursors batches time intervals length (s) time (ms) time (h)

i 105 9 ◊ 105 10 1000 100 0.1 52.45
ii 105 9 ◊ 105 3 500 100 0.05 7.84
iii 105 9 ◊ 105 3 500 100 0.05 7.81
iv 105 9 ◊ 105 3 500 100 0.05 11.19
v 105 9 ◊ 105 3 500 100 0.05 11.03
vi 105 9 ◊ 105 3 500 100 0.05 17.24

Section 4.4: Energy-dependent system with individual precursors and neutron
moderator
All simulations in Table D.4 were simulated in LIN cluster.

Table D.4: Summary of simulation parameters for light-water moderated,
energy dependent system in a critical configuration, using 6-group, 40 indi-
vidual, and 50 individual precursor structures.

Precursor Number Number Number Number Time interval Simulation Wall-clock
structure neutrons precursors batches time intervals length (ms) time (s) time (h)

6-group 105 9 ◊ 105 2 400 10 400 260.05
40 individual 105 9 ◊ 105 2 400 10 400 410.75
50 individual 105 9 ◊ 105 2 400 10 400 319.65
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Appendix E

Individual precursor data

In this appendix the di�erent precursor structures used in this work are presented.
6-group precursor structure

Group ⁄ (s≠1) —i/— Ē (eV)
1 0.0127 0.038 400318
2 0.0317 0.213 466542
3 0.1156 0.188 437634
4 0.311 0.407 552428
5 1.397 0.128 513201
6 3.872 0.026 535234

Table E.1: 6-group precursor structure used in this work.

89



50 individual precursor structure

Number Z Symbol A ⁄ (s≠1) Ii Ē (eV)
1 53 I 137 0.0282917 0.1617 624755
2 35 Br 89 0.1575335 0.1125 512800
3 37 Rb 94 0.2565312 0.0915 437334
4 35 Br 88 0.0425505 0.0740 246533
5 35 Br 90 0.3610142 0.0733 643126
6 33 As 85 0.3429724 0.0478 701816
7 53 I 138 0.1112596 0.0471 373547
8 39 Y 98m 0.3465736 0.0417 214585
9 53 I 139 0.3040119 0.0401 406239
10 37 Rb 95 1.8351792 0.0357 524538
11 37 Rb 93 0.1186896 0.0317 400904
12 35 Br 87 0.0124555 0.0314 209628
13 35 Br 91 1.2812332 0.0279 886967
14 39 Y 99 0.4715287 0.0247 437844
15 51 Sb 135 0.4128333 0.0244 879204
16 52 Te 136 0.0396084 0.0157 286456
17 55 Cs 143 0.3870169 0.0151 256420
18 53 I 140 0.8059851 0.0102 414845
19 52 Te 137 0.2783724 0.0086 373558
20 37 Rb 96 3.4145181 0.0084 415322
21 55 Cs 145 1.1808299 0.0073 335719
22 33 As 86 0.7334891 0.0071 553183
23 55 Cs 144 0.6973312 0.0061 312643
24 36 Kr 93 0.5389947 0.0060 448103
25 35 Br 92 2.0208373 0.0042 1117783
26 37 Rb 97 4.0990371 0.0040 513170
27 53 I 141 1.6119702 0.0038 274291
28 52 Te 138 0.4951051 0.0037 661109
29 36 Kr 94 3.2695622 0.0034 431444
30 34 Se 89 1.6906029 0.0033 588763
31 51 Sb 136 0.7509720 0.0030 948910
32 39 Y 101 1.5403271 0.0024 426877
33 39 Y 100 0.9430574 0.0022 423207
34 39 Y 98 1.2648671 0.0019 218506
35 55 Cs 142 0.4116076 0.0016 257130
36 34 Se 87 0.1260268 0.0016 145104
37 38 Sr 98 1.0614811 0.0015 245100
38 41 Nb 105 0.2349651 0.0014 183361

Continued on next page
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Table E.2 – continued from previous page
Number Z Symbol A ⁄ (s≠1) Ii Ē (eV)

39 54 Xe 142 0.5635343 0.0014 220063
40 50 Sn 134 0.6601402 0.0014 574126
41 33 As 88 6.1888141 0.0014 538995
42 55 Cs 141 0.0279045 0.0011 214649
43 32 Ge 84 0.7265694 0.0011 561448
44 33 As 87 1.2377628 0.0011 382320
45 57 La 149 0.6601402 0.0009 458595
46 35 Br 93 6.7955606 0.0008 602909
47 55 Cs 146 2.1593370 0.0007 426509
48 39 Y 97 0.1848392 0.0006 182608
49 31 Ga 81 0.5695540 0.0006 369630
50 41 Nb 106 0.7453195 0.0006 294738

Table E.2: 50 individual precursor structure used in this work. Precursors
are ordered by importance.

40 individual precursor structure

Number Z Symbol A ⁄ (s≠1) Ii Ē (eV)
2 37 Rb 93 0.1186896 0.1155 400904
1 35 Br 87 0.0124555 0.1144 209628
3 35 Br 91 1.2812332 0.1016 886967
4 39 Y 99 0.4715287 0.0898 437844
5 51 Sb 135 0.4128333 0.0887 879204
7 52 Te 136 0.0396084 0.0571 286456
6 55 Cs 143 0.3870169 0.0550 256420
8 53 I 140 0.8059851 0.0370 414845
9 52 Te 137 0.2783724 0.0312 373558
10 37 Rb 96 3.4145181 0.0304 415322
11 55 Cs 145 1.1808299 0.0268 335719
12 33 As 86 0.7334891 0.0260 553183
13 55 Cs 144 0.6973312 0.0224 312643
14 36 Kr 93 0.5389947 0.0220 448103
15 35 Br 92 2.0208373 0.0154 1117783
16 37 Rb 97 4.0990371 0.0147 513170
17 53 I 141 1.6119702 0.0139 274291
18 52 Te 138 0.4951051 0.0136 661109
19 36 Kr 94 3.2695622 0.0125 431444
20 34 Se 89 1.6906029 0.0121 588763
21 51 Sb 136 0.7509720 0.0110 948910

Continued on next page
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Table E.3 – continued from previous page
Number Z Symbol A ⁄ (s≠1) Ii Ē (eV)

22 39 Y 101 1.5403271 0.0088 426877
23 39 Y 100 0.9430574 0.0081 423207
24 39 Y 98 1.2648671 0.0070 218506
26 55 Cs 142 0.4116076 0.0059 257130
25 34 Se 87 0.1260268 0.0059 145104
27 38 Sr 98 1.0614811 0.0055 245100
28 41 Nb 105 0.2349651 0.0051 183361
29 54 Xe 142 0.5635343 0.0051 220063
30 50 Sn 134 0.6601402 0.0051 574126
31 33 As 88 6.1888141 0.0051 538995
32 55 Cs 141 0.0279045 0.0040 214649
33 32 Ge 84 0.7265694 0.0040 561448
34 33 As 87 1.2377628 0.0040 382320
35 57 La 149 0.6601402 0.0033 458595
36 35 Br 93 6.7955606 0.0029 602909
37 55 Cs 146 2.1593370 0.0026 426509
38 39 Y 97 0.1848392 0.0022 182608
39 31 Ga 81 0.5695540 0.0022 369630
40 41 Nb 106 0.7453195 0.0022 294738

Table E.3: 40 individual precursor structure used in this work. Precursors
are ordered by importance.
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Appendix F

Results of the energy dependent 235U
system: Log-log plots

In this appendix the log-log plots of the results corresponding to the subcritical and super-
critical configurations for the energy dependent 235U system from Sec. 4.3.1 are presented.
Subcritical configuration

Fit parameters

    β  0.00038± 0.00648 

     Λ 10− 5.63e±09 − 5.45e

10−10 9−10 8−10 7−10 6−10 5−10 4−10Time [ms]

1

N
or

m
al

iz
ed

 n
eu

tro
n 

flu
x

OpenMC(TD)

Fit

Figure F.1: Study i). Time evolution of the neutron flux in the studied
subcritical configuration. The initial transient source is prepared in a critical
state and at the beginning of the transient Monte Carlo simulation using
OpenMC(TD), the system is made subcritical by decreasing nU235. The
time evolution of the neutron flux is shown in blue, while the fit obtained
is shown in red. Between 0 < t < 5 µs the prompt drop can be observed,
and then the decay of the neutron population slows.
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Fit parameters
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Figure F.2: Study i). Time evolution of the neutron flux in the studied
subcritical configuration. The initial transient source is prepared in a critical
state and at the beginning of the transient Monte Carlo simulation using
OpenMC(TD), the system is made subcritical by decreasing nU235. The
time evolution of the neutron flux is shown in blue, while the fit obtained
is shown in red. Between 0 < t < 5 µs the prompt drop can be observed,
and then the decay of the neutron population slows.
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Fit parameters
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Figure F.3: Study i). Time evolution of the neutron flux in the studied
subcritical configuration. The initial transient source is prepared in a critical
state and at the beginning of the transient Monte Carlo simulation using
OpenMC(TD), the system is made subcritical by decreasing nU235. The
time evolution of the neutron flux is shown in blue, while the fit obtained
is shown in red. Between 0 < t < 5 µs the prompt drop can be observed,
and then the decay of the neutron population slows.
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Fit parameters
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Figure F.4: Study i). Time evolution of the neutron flux in the studied
subcritical configuration. The initial transient source is prepared in a critical
state and at the beginning of the transient Monte Carlo simulation using
OpenMC(TD), the system is made subcritical by decreasing nU235. The
time evolution of the neutron flux is shown in blue, while the fit obtained
is shown in red. Between 0 < t < 5 µs the prompt drop can be observed,
and then the decay of the neutron population slows.
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Fit parameters
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Figure F.5: Study i). Time evolution of the neutron flux in the studied
subcritical configuration. The initial transient source is prepared in a critical
state and at the beginning of the transient Monte Carlo simulation using
OpenMC(TD), the system is made subcritical by decreasing nU235. The
time evolution of the neutron flux is shown in blue, while the fit obtained
is shown in red. Between 0 < t < 5 µs the prompt drop can be observed,
and then the decay of the neutron population slows.
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Fit parameters
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Figure F.6: Study i). Time evolution of the neutron flux in the studied
subcritical configuration. The initial transient source is prepared in a critical
state and at the beginning of the transient Monte Carlo simulation using
OpenMC(TD), the system is made subcritical by decreasing nU235. The
time evolution of the neutron flux is shown in blue, while the fit obtained
is shown in red. Between 0 < t < 5 µs the prompt drop can be observed,
and then the decay of the neutron population slows.
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Supercritical configuration
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Figure F.7: Study i). Time evolution of the neutron flux in the studied
supercritical configuration. The initial transient source is prepared in a
critical state and at the beginning of the transient Monte Carlo simulation
using OpenMC(TD) the configuration is made supercritical by increasing
nU235. The time evolution of the neutron flux is shown in blue, while the
fit obtained is shown in red. Between 0 < t < 1 µs the prompt jump can be
observed, an then the growth of the neutron population slows.
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Fit parameters
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Figure F.8: Study i). Time evolution of the neutron flux in the studied
supercritical configuration. The initial transient source is prepared in a
critical state and at the beginning of the transient Monte Carlo simulation
using OpenMC(TD) the configuration is made supercritical by increasing
nU235. The time evolution of the neutron flux is shown in blue, while the
fit obtained is shown in red. Between 0 < t < 1 µs the prompt jump can be
observed, an then the growth of the neutron population slows.
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Fit parameters
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Figure F.9: Study i). Time evolution of the neutron flux in the studied
supercritical configuration. The initial transient source is prepared in a
critical state and at the beginning of the transient Monte Carlo simulation
using OpenMC(TD) the configuration is made supercritical by increasing
nU235. The time evolution of the neutron flux is shown in blue, while the
fit obtained is shown in red. Between 0 < t < 1 µs the prompt jump can be
observed, an then the growth of the neutron population slows.
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Fit parameters
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Figure F.10: Study i). Time evolution of the neutron flux in the studied
supercritical configuration. The initial transient source is prepared in a
critical state and at the beginning of the transient Monte Carlo simulation
using OpenMC(TD) the configuration is made supercritical by increasing
nU235. The time evolution of the neutron flux is shown in blue, while the
fit obtained is shown in red. Between 0 < t < 1 µs the prompt jump can be
observed, an then the growth of the neutron population slows.
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Fit parameters
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Figure F.11: Study i). Time evolution of the neutron flux in the studied
supercritical configuration. The initial transient source is prepared in a
critical state and at the beginning of the transient Monte Carlo simulation
using OpenMC(TD) the configuration is made supercritical by increasing
nU235. The time evolution of the neutron flux is shown in blue, while the
fit obtained is shown in red. Between 0 < t < 1 µs the prompt jump can be
observed, an then the growth of the neutron population slows.
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Fit parameters
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Figure F.12: Study i). Time evolution of the neutron flux in the studied
supercritical configuration. The initial transient source is prepared in a
critical state and at the beginning of the transient Monte Carlo simulation
using OpenMC(TD) the configuration is made supercritical by increasing
nU235. The time evolution of the neutron flux is shown in blue, while the
fit obtained is shown in red. Between 0 < t < 1 µs the prompt jump can be
observed, an then the growth of the neutron population slows.
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