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Light–like propagation of self–interacting Klein–Gordon fields in cosmology
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It is showed that complex scalar fields with a self-interaction potential may propagate along null
geodesics on flat Friedmann–Lemâıtre–Robertson–Walker universes with different time-dependent
scale factors. This occurs provided they self interact adequately, for different forms of potentials,
and even for the massive case.
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Light-rays propagate in null geodesics, with four–
wavevectors kµ that satisfy the relation kµk

µ = 0 on
any curved spacetime background. Massless scalar fields
share the same feature, having similar light-like four–
wavevectors. However, are massless scalar fields the only
ones that may propagate with light–like wavevectors?
In a cosmological scenario, we approach this ques-

tion by showing that scalar fields with specific self–
interactions have null geodesic like propagation for dif-
ferent kinds of evolving cosmological isotropic flat Uni-
verses. This behavior is exhibited by complex scalar fields
φ propagating in the presence of self–interaction (real)
potentials, given by

V = V (φ∗φ) = λ (φ∗φ)
n
, (1)

where λ and n are constants.
Consider an isotropic flat cosmology, described by the

Friedmann–Lemâıtre–Robertson–Walker (FLRW) metric
written in spherical coordinates ds2 = −dt2 + a2dr2 +
a2

(

dθ2 + sin2 θdφ2
)

, with a time–dependent scale fac-
tor a = a(t). In this cosmological scenario, radial null
geodesic motion (ds2 = 0) is defined by

dr

dt
=

1

a
. (2)

This equation may be used, for instance, to compute the
cosmological redshift of light in a FLRW Universe [1].
The essence of this work is to determine what kinds

of self–interactions allow complex scalar fields to prop-
agate with four–wavevectors that are characterized by
null geodesic behavior (kµk

µ = 0) satisfying Eq. (2) in
a FLRW cosmology. As we will show, scalar fields ex-
hibit light–like propagation due to the non-local feature
of fields that balances the self-interacting phenomena in-
troduced by potential (1). The non-locality of the field
is caused by the (non–vanishing) Bohm potential of the
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scalar field. For example, the non-local effects of Bohm
potential in the propagation of fields have been shown
(both theoretically and experimentally) to produce mod-
ifications to the null-geodesic propagation of light [2–7]
and scalar fields [8], to the non-diffracting features of
gravitational waves [9, 10], and to quantum [11–14] and
optical [15, 16] behavior of different systems, among oth-
ers.
Let us start with the dynamics of a complex scalar field

φ in the FLRW background, following the equation ✷φ−
∂V /∂φ∗ = 0, where ✷ is the D’Alambertian operator
in curved spacetime, and V is the potential (1). The
complex scalar field satisfies the equation

✷φ− λn (φ∗φ)
n−1

φ = 0 . (3)

A massless scalar field is obtained when λ = 0. On the
contrary, the massive scalar field is recovered when n = 1,
and λ = m2. This equation is not conformally invariant,
in general. Now, we can write the scalar field using a
polar representation as

φ = ϕ exp (iS) , (4)

where ϕ represents a real time–dependent amplitude of
the scalar field, and S is its real phase. Then, the equa-
tions of motion for the field are now

kµkµ + λnϕ2n−2 =
✷ϕ

ϕ
, (5)

∇µ

(

kµϕ2
)

= 0 , (6)

where the wavevector is given by kµ = ∇µS, where ∇µ is
the covariant derivative. The right-hand side of Eq. (5)
is the Bohm potential of the scalar field, which is the
responsible for the scalar field non-locality.
The above equations are general. Now, let us focus on

a background given by an isotropic flat cosmology. We
require that the above general complex scalar field prop-
agates in a light–like fashion, i.e. along a null geodesic.
This is achieved by requiring

kµk
µ = 0 . (7)
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Consider a field that propagates radially and assume that
the phase S depends on r and t only, with constant kr.
Then the above equation translates to 0 = −k20 + k2r/a

2,
implying

1

a
=

k0
kr

=
∂0S

∂rS
=

dr

dt
. (8)

This is equivalent to the null geodesic propagation of
light, given by Eq. (2), which allows us to determine the
phase as S(t, r) = krr + kr

∫

dt/a. Then, Eq. (6) can be
used to find the amplitude of the scalar field, giving rise
to

ϕ(t) =
ϕ0

a
. (9)

where ϕ0 is an arbitrary constant.
In this way, we have been able to fully determine the

general condition for light–like propagation of a complex
scalar field in terms of the potential (1) only. This is
expressed through Eq. (5), now written as

λnϕ2n−2 =
✷ϕ

ϕ
, (10)

where the effects of the self-interaction are balanced by
the Bohm potential. This equation becomes in

nλ

a2n−2
=

ä

a
+

ȧ2

a2
, (11)

where ϕ0 has been absorbed in λ. If solutions for λ and
n can be found in Eq. (11) for different cosmologies, then
the complex scalar field propagates along null geodesics
in such cosmologies.
The simplest form that we can consider for the time

dependence of the scale factor is a = tβ , where β is a con-
stant. This form for a describe several kinds of different
cosmological scenarios [1]. Thereby, Eq. (11) becomes
nλ t2+2β(1−n) = 2β2 − β, which is solved by

n =
1

β
+ 1 ,

λ =
β2(2β − 1)

β + 1
, (12)

and thus, β determines completely the self–interaction
potential.
For a radiation-dominated spatially flat universe we

have a = t1/2 [1]. Thus, β = 1/2, λ = 0, and the poten-
tial is

V = 0 . (13)

Consequently, in this cosmological scenario, only a mass-
less complex scalar field can propagate in null geodesics.
In a more general scenario, we may study a general

spatially flat universe, where the scale factor evolves as
β = 2/(3 + 3w) [1], where w = P/ε determines the equa-
tion of state of a cosmological fluid with pressure P and
energy density ε (−1 < w ≤ 1). In this way, from
Eq. (12) we obtain

n =
3w + 5

2
,

λ =
4(1− 3w)

9(1 + w)2(5 + 3w)
. (14)

Notice that in solution (14), λ > 0 for w < 1/3. For
other w > 1/3, λ is negative.

For instance, for a matter-dominated universe, with
w = 0, a complex scalar field propagates in this cos-
mology along a null geodesic in the presence of the self-
interaction potential

V =
4

45
(φ∗φ)

5/2
. (15)

On the other hand, for a negative energy density fluid,
with the equation of state w = −1/3, a complex scalar
field propagates in this cosmology if it has the potential

V =
1

2
(φ∗φ)2 . (16)

Finally, for the case with w = 1 the potential acquires
the form

V = − 1

36
(φ∗φ)

4
. (17)

On the other hand, the dark energy cosmological case,
with w = −1, deserves a separate study. In this case,
this exponentially expanding spatially flat universe has
a scale factor a = exp (Ht), with a Hubble constant H
[1]. Using this in Eq. (11), we find that n = 1 and λ =
2H2. Therefore, the scalar field self–interacts through
the potential

V = 2H2 (φ∗φ) . (18)

This implies that a massive complex scalar field, with a
mass with the specific value of

m =
√
2H . (19)

may propagate along null geodesics in a dark energy cos-
mology. This result was first found by Molski [17], estab-
lishing that a massive particle can indeed propagate in a
light-like fashion in a cosmological context.

The above results show that any complex scalar field,
with a proper self–interaction potential, can follow null
geodesics in different cosmological scenarios. This is due
to the balance of the effects of a self-interaction poten-
tial and the non–local features of the field as described by
the non–vanishing Bohm potential. It is that non-locality
which forces the scalar field to have the light–like propa-
gation, with kµk

µ = 0.

Along this work we have used a potential with the form
(1). However different forms of self-interaction may be
considered to produce these kinds of behavior [9]. Be-
sides, any field is non-local and, consequently, this form
of null geodesic behavior may be present for other self–
interacting fields in curved spacetime backgrounds.
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