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CUANTIFICANDO LA INFLUENCIA DE FALLAS GEOLÓGICAS EN LA 
ESTABILIDAD DE TECHOS DE CASERONES ABIERTOS 

 
El método de gráfico de estabilidad de Mathews es usado ampliamente para el diseño 

de minas subterráneas de caserones abiertos. Como método empírico, utiliza variables de 
entrada como la calidad del macizo rocoso y factores de ajuste que representan el impacto 
en la estabilidad de varios parámetros. El método de Mathews tiene varias limitaciones, 
entre ellas la imposibilidad de representar la influencia de las fallas en la integridad del 
caserón. 

 
Este estudio propone dos métodos para la inclusión de fallas en el análisis de 

estabilidad para el diseño de caserones como factor de ajuste del número de estabilidad. 
La primera forma es utilizar la orientación de la falla en el gráfico de valores de factor B. 
El segundo método consiste en crear un nuevo factor de ajuste F para cuantificar la 
influencia de las fallas en la estabilidad de la pared trasera del rebaje. 

 
 Para producir los resultados necesarios para el cálculo del factor de ajuste F se utilizó 

modelado numérico 3D. Se proponen dos formas de cálculo del factor F, ambas utilizando 
los volúmenes de sobre excavación obtenidos en los modelos numéricos. Se incluyeron 
varias configuraciones de orientación de fallas relativa al caserón en los gráficos de factor 
F, que incluyen tres diferentes strikes y cinco diferentes dips, así como dos posiciones de 
intersección para los casos de fallas paralelas y cinco distancias entre la falla y el techo 
del caserón para el caso de fallas horizontales. 

 
Los resultados muestran que el strike juega un papel importante en la influencia que 

tiene una falla sobre la estabilidad del techo de un caserón. El strike paralelo tiene el 
mayor impacto. En tal caso, el manteo de la falla tiene poca importancia ya que todos los 
resultados muestran un gran volumen de sobre excavación generado por la falla. 

 
El punto de intersección del techo del caserón y la falla es relevante para el análisis de 

estabilidad. Las fallas que cruzan el techo del caserón cerca del “borde lejano”; vale decir, 
el borde opuesto a la dirección de manteo de la falla, producen mayor sobre excavación. 
El impacto de la falla en la estabilidad del caserón disminuye a medida que aumenta la 
distancia entre el punto de intersección y el borde cercano del techo del caserón. 

 
Si la falla es horizontal, la distancia entre la falla y el techo del caserón es de gran 

importancia. Los resultados sugieren que existe una distancia crítica que maximiza el 
volumen de sobre excavación producido por la falla. Si se supera esta distancia, la 
influencia de la falla en la estabilidad del techo del caserón disminuye rápidamente hasta 
no tener ninguna influencia. Como solo se utilizó un conjunto de parámetros del macizo 
rocoso para todos los modelos numéricos, se presume que esta distancia crítica depende, 
entre otras cosas, de la resistencia del macizo rocoso. 
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QUANTIFYING THE INFLUENCE OF GEOLOGICAL FAULTS ON THE 
STABILITY OF OPEN STOPES’ BACK WALLS 

 
Mathews’ stability graph method is widely used for open stope mine design. As an 
empirical method, it relies on inputs such as rock mass quality and adjustment factors 
accounting for the impact of key parameters on stability. Mathews’ method has several 
limitations, among them the impossibility of representing the influence of discrete faults 
on stope integrity.  
 
This study proposes two methods for the inclusion of faults in the stability analysis for 
stope design as an adjusting factor of the stability number. The first way is to use the fault 
orientation in the B factor chart. The second method is to create a new adjustment factor, 
“F”, to quantify the influence of faults in the stope back stability. 
 
3D numerical modelling was used to produce the results for the calculation of the 
adjustment factor F. Two ways of calculation of the F factor are proposed, both using the 
overbreak volumes obtained in the numerical models. Several stope-fault orientation 
configurations were included in the F factor charts including three different fault strikes 
and five different dips as well as two intersecting positions for the parallel strike cases 
and five different distances from the stope back, for the case of horizontal faults. 
 
Results show that strike plays a major role on the influence a fault has over the stability 
of the stope back. Parallel strike has the greatest impact. In such case, fault’s dip is of 
little importance as all outcomes show great overbreak volumes attributed to the fault. 
 
The point of intersection between the fault and the stope back is also relevant for the 
stability analysis. Faults intersecting the stope back at its “far edge”; that is, the edge 
towards the fault dip direction, is the worst-case scenario. The fault’s impact decreases as 
the distance between the line of intersection moves towards the stope center. 
 
If the fault is horizontal, the distance between the fault and the stope back is of great 
importance. Results suggest that there is a critical distance that maximizes the overbreak 
volume produced by the fault. If this distance is surpassed, the fault’s influence on the 
stope back quickly diminishes until it has no influence at all. As only one set of rock mass 
parameters was used for the all the numerical models, it is presumed that this critical 
distance is dependent, among other things, on the rock mass strength. 
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Chapter 1 Introduction 
 

1.1 General Introduction 

The stability of rock mass surrounding excavations is of paramount importance for 
underground mining activities. Mineral extraction is done in large stopes which 
dimensions must be optimized considering not only economical perspectives but also 
stope integrity during the mining process. 
 
For the past three decades, the graphical method originally introduced by Mathews (1980) 
has been used as an empirical tool for designing and assessing the stability performance 
of open stopes. Through this method, the stability performance of excavations’ surfaces 
(walls) is compared to an empirically generated database and is plotted in Mathews’ 
stability graph. 
 
The stability graph is generally used as a design tool for underground mines using the 
sublevel stoping (SLS) method, which is selective and seeks to minimize dilution. 
However, stope walls instability can generate the slough of unwanted materials into the 
excavation (dilution) resulting in, among other things, poor blend grade. 
 
Despite being widely used in the industry, mainly because of its simplicity, Mathews’ 
stability graph method has several limitations: 
 

• The results are mainly qualitative as the method has no way of quantifying the 
damage or dilution of the excavation surface.  
 

• The method requires geometrical simplification of sometimes complex stope 
shapes.  
 

• There is no built-in way of estimating the influence of closely located excavations 
as in an array of several stopes (ie. transverse stoping).  
 

• It assumes the same rock mass conditions for the whole extension of the stope as 
it assigns a single stability number N to each stope surface, disregarding the 
variability of the rock mass. 
 

• The possibility of using backfill is not contemplated in the stability number N, 
excluding it from the stability assessment. 
 

• As it uses the modified NGI-Q index, Mathews’ method does not consider the 
impact of underground water on stope performance, even thought it is known to 
have a negative impact. 
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• The original graph was developed by Mathews using 50 case histories. However, 
most of these cases were obtained from excavation of relatively small dimensions, 
with hydraulic radii ranging from 2 to 15 meters, in steeply dipping ore bodies. A 
majority of the case histories of the original database were excavations made in 
medium to good quality rock mass at a depth of over 1000 meters. 
 

• In highly fractured rock masses, such as those common in northern Chile, the 
presence of two or more sub-vertically oriented joint sets, as well a at least one 
sub-horizontal one, is not unusual. Given the method by which it is derived, low 
values of the B factor are common, often leading to an under estimation of the 
stability number N with respect to documented performance. Additionally, even 
though the structural factor B considers a minimum value for spacing and 
persistence of joints, this information is not used for the calculation of B. 
 

• Mathews’ method does not account for the influence of faults on stope stability.  
Geological faults are known to be detrimental for excavation stability as they can 
cause severe overbreak and compromise the stability of the stope.  

 
This study engages the latter limitation and seeks to present alternatives to quantitatively 
introduce the impact of geological faults in the graphical method for stope design. 
 

1.2 Objetives of the Thesis 

1.2.1 General Objective 
 
This study seeks to evaluate the influence of geological faults on the stability of stopes in 
a quantitative fashion in the scope of Mathews’ stability graph method. 
 
 
1.2.2 Specific objectives  

• To generate a stability boundary for a given database using fault orientation to 
calculater the B factor that is used to calculate the stability number.  

 
• To compare the quality of the boundaries obtained calculating the B factor using 

faults and joints (regular B factor). 
 

• To quantify the influence of faults of various orientations over the stability of a 
stope’s back. 

 
• To present a methodology for the calculation of an adjusting factor F which adjust 

the stability number N by accounting for the impact of faults. 
 

1.3 Scope of the research 

• This study was held using the available data from three mines located in the north 
of Chile. No additional in-situ information was collected for this thesis. 
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• As not enough empirical information about the effect of faults for different 

orientation was available, numerical modelling was used to generate the different 
results used for the calculation of the F facor. 
 

• All numerical models were done in Itasca’s three-dimesnional finite difference 
code FLAC3D v6.0. 

 
 

1.4 Thesis contents 

This thesis is based on papers and is structured in three chapters as shown below: 
 
Chapter 1: The general theme of the thesis is presented, including the problems to be 
addressed, general and specific objectives, scope and the state of the art. 
 
Chapter 2: The methodology used to obtain the results presented in chapter 3. 
 
 
Chapter 3: This chapter presents the results and analysis contained in the papers. As the 
thesis is based on two papers, this chapter is devided in two parts: 

• Results from: Use of B factor from major geological faults’ orientation on 
Mathews’ stability graph method. A case study. 

• Results from: F factor: Quantifying the impact of faults on open stope’s back 
stability. 

 
Chapter 4: All the relevant findings of the research for both papers are presented on this 
chapter. The limitations of the results and recommendations for future works are also 
included. 
 

Chapter 5: Bibliography  
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1.5 General Background  
 

1.5.1 Sublevel Stoping (SLS) 
Underground mining methods with self-supporting open excavations are widely used 
around the world. Of these methods, sublevel stoping is highly productive due to the large 
size of the resulting stopes (Zablocki, 2009). It is normally used to mine tabular shaped 
orebodies such as mineralized veins but can also be used in large, massive orebodies with 
vertical to sub-vertical dips, usually surrounded by strong host rock masses.  
 
The sublevel stoping method has several advantages such as low costs and high levels of 
mechanization in drilling and loading operations, which allow the method to achieve high 
production rates with minimum personnel. There are, however, disadvantages to this 
method such as the large amount of development and infrastructure necessary to start and 
maintain production rates. 
 
The success of this mining method depends largely on the stability of the stope walls, 
which are usually unsupported (Milne et al., 1998). If the host rock mass is competent, 
the stopes can reach considerable dimensions.  
 

 
  
 
 
  

1.5.2 Mathews’ stability graph method 
Despite its limitations, Mathews’ graphical method for stope design is widely used and 
accepted in the industry. This method assesses the stability performance of individual 
stope walls by plotting its stability number N versus its hydraulic radius (shape factor) in 
a semi-logarithmic chart.  
 
The graph has different zones defining different ranges of stability performance. 
Mathews’ original stability graph defines three zones of qualitative performance: a stable 
zone, a potentially unstable zone and a zone of potential caving, as shown in Figure 2.  
The stability prediction is defined by the location of the intersection of the wall’s stability 
number N and its hydraulic radius.  

Figure 1 Scheme of Sbulevel Stoping development (Hamrin et al, 2001) 
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Figure 2 Mathews' stability graph. (Mathews, 1981) 

 
The stability number N is comprised of several inputs and it accounts not only for rock 
mass quality, but also for induced stresses, structure and geometric influence. It is 
calculated as shown in equation (1): 
 
 𝑁𝑁 = 𝑄𝑄′ × 𝐴𝐴 × 𝐵𝐵 × 𝐶𝐶 (1) 
   

Where Q’ is the modified NGI-Q Rock mass classification introduced by Barton (1974), 
A, B and C are adjusting factors that represent the potential influence of induced stresses, 
wall and joint set orientation relative to the stope face and gravity effects, respectively. 
These inputs lie outside the scope of the present work and are therefore not discussed in 
depth. They are, however, succinctly explained in the following section. 
 
The modified Q value is mainly a measure of the degree of fracturing of a rock mass. It 
is calculated as follows:  
 
 𝑄𝑄′ =

𝑅𝑅𝑄𝑄𝑅𝑅
𝑗𝑗𝑛𝑛

×
𝑗𝑗𝑟𝑟
𝑗𝑗𝑎𝑎

 (2) 

   
Where RQD is the rock quality designation (Deere, 1972), Jn is the joint set number, Jr 
represents the joint roughness and Ja accounts for the degree of alteration.  
The calculation is typically separated in two fractions which represent different concepts. 
The first fraction is a representation of the quantity of fractures in the surrounding rock 
mass while the second fraction accounts for the general state of the fracture contact 
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surfaces. While very rough fractures are expected to have a positive impact on stability 
due to their greater shear strength, highly altered fractures have the opposite effect.  
 
The unmodified Q value has a third component representing the state of stresses on the 
rock mass, but this is replaced by the A factor in Mathews’ graphical method as explained 
below.  
 
The rock stress factor A accounts for the induced stresses acting on the stope surface in 
relation to rock strength and is obtained by dividing the maximum induced stress by the 
uniaxial compressive strength (UCS) of the intact rock.  The resulting ratio is input in the 
graph shown in Figure 3, thereby obtaining the corresponding value of A. 
 
 

 
Figure 3 A factor chart. (Stewart & Forsyth, 1993 based on Mathews, 1981) 

 
Ideally, the induced stress values should be obtained from local on-site measurements. 
However, this is costly and is often not applied to every stope in an underground mine. If 
on-site measured stress data is not available, elastic numerical modelling can be used to 
estimate the induced stresses at the stope faces.  
 
If geometrical simplification of the stope can be done, a graphical method developed by 
Stewart & Forsyth (1993) can be used for estimating the induced stresses at the excavation 
surface. This method has further simplifications that should be noted: the principal 
stresses are assumed to be vertical and two perpendicular horizontal that are parallel and 
normal to the stope face.  
 
The rock stress factor, B, quantifies the influence of joint sets on the stope walls stability. 
The angle formed between a joint set and the stope face is important as the relative 
orientation of the two planes has a direct impact on the failure mechanism and the extent 
of the dilution this failure can generate.  
 
A joint set that is sub-parallel to a stope face can be very detrimental to stability as it 
allows for easier breaking of rock bridges (the rock located between the joints and the 
exposed surface), facilitated by blasting damage and deconfinement. These broken rock 
bridges become loose blocks that can eventually increase the stope’s dilution.  
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If the joint orientation forms a medium to high angle with a stope face, the main failure 
mechanism becomes sliding along the joint surface and falling into the stope. Rock 
bridges formed by the joint sets with this relative orientation are less likely to break, 
resulting in higher values for the B factor.  
 
Perpendicular or sub-perpendicular joint sets relative to the excavation surface are the 
least detrimental. Compressive stresses acting on the joint surfaces increase frictional 
strength and reduce the likelihood of instability.  
 
There are several criteria for determining if a joint set is eligible for determining the B 
factor. These criteria can vary from case to case but as a basic guideline, these should be 
considered: 
 

• At least three discontinuities of a given set must intersect the excavation surface. 
 

• Potentially unstable blocks formed by the discontinuities and the excavation 
surface must have a minimum edge length between 1/5 and 1/20 of the maximum 
excavation span. 
 

• If multiple joint sets meet the criteria, the most critical one (resulting in the lowest 
B value) is chosen based on persistence and spacing. 

The values of B are estimated following the cases shown in Figure 4. 
 



Chapter 1 
Introduction 

8 

 
Figure 4 Chart for Estimating the B Factor (Stewart & Forsyth, 1993 based on Mathews, 1981) 

 
The final geotechnical factor, C, accounts for the effects of gravity in the stability of a 
stope face. This is the simplest one of the three adjusting factors because it has only one 
input which is the excavation wall inclination. Vertical or steeply dipping walls such as 
end walls are less likely to produce falling rock blocks than sub-horizontal faces such as 
the stope back. It must be noted that foot walls can be expected to have the maximum 
value for C, as rock should not fall from them.  
 
The value of the C factor can be obtained from the graph in Figure 5. The C factor is not 
always used as a design parameter as, normally, the excavation surface inclination follows 
the dip of the ore body.  
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Figure 5 C factor chart (based on Mathews, 1981) 

 
1.5.3 Graphical method over the years  
 
After the compilation of Mathews’ original graph method and empirical database, several 
authors have introduced modifications and additional case histories to expand the graph’s 
database. The authors listed below are by no means the only contributors to the actual 
state of the graphical method; they are, however, the most relevant for this particular 
study.  
 

• Potvin et. Al, (1989) proposed a modified stability graph that considered only 
stable and caved zones based on additional case histories. The new method 
included modifications to the B and C factors and allowed the use of cable bolt 
support on the design assessment. 
 

• Nickson (1992) updated the modified stability graph based on additional case 
histories and introduced graph zones accounting for stable excavation with 
support and a support transition zone. 
 

• Stewart and Forsyth (1993) not only added more case histories to the original 
database, but also updated the original graph by introducing new potentially 
stable, potentially unstable, potential major failure and potential caving zones. 
The same authors presented a graphical method for estimating the induced stresses 
based on stope confinement and shape factor, finding widespread adoption for the 
calculation of the A factor. 
 

• Hadjigerorgiou et al (1995) updated Potvin’s modified graph using statistical 
analysis. This update included modifications to the stable and caving boundary 
and added a new boundary below which ground support is required. Finally, the 
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study proposed modifications to the C factor for it to account for failures caused 
by blocks sliding along joints.  
 

• Clark & Pakalnis (1997) introduced a quantitative version of the stability graph 
by estimating the unplanned dilution based on equivalent linear overbreak/slough 
(ELOS) that can be applied to narrow excavations as the stability curves proposed 
by the authors consider ranges of ELOS going from less than 0.5 m to over 2 m. 
 

• Suorineni (1998) introduced the F factor as an extension to Clark & Pakalnis 
(1997) ELOS based stability graph. Using 2D numerical modeling, the author 
evaluated the effects of a fault in the unplanned dilution of narrow, steeply dippin 
excavations.  Several graphs for the determination of the F factor are presented 
including different geometrical and geomechanical configurations.  
 

• Mawdesley (2003) introduced a significantly larger database of case histories 
from Trueman et al. (2000) and developed an “extended stability graph” which 
considered stable, failure and major failure zones in a log-log space by using 
logistic regression. The author also defined stability contours of isoprobability. 
The extended stability graph is now widely used in the industry and is understood 
to be a powerful tool. 
 

• Capes (2009): Similar to Mawdesley (2003) additions to the original stability 
graph method, Capes updated Clark & Pakalnis (1997) ELOS curves by 
increasing the case history database and using logistic regression. 
 

•  Vallejos et al. (2015) Introduced Mineroc as a computational tool for fast and 
simple stope stability performance back-analysis. 

• Castro (2015) Presented an ELOS based stability chart made using an extended 
data base including 307 case histories of unsupported open stopes from Canadian 
mines and 38 from Chilean mines. 

• Vallejos et al. (2016) suggested that the use of a modified stress factor A 
statistically improves the performance of Mathews’ stable boundary.  

 
1.5.4 Key Structural Features 
 
This study focuses on the effect of key structural features such as joints and faults on the 
stability of stopes. It is important to understand some key differences of theses two kind 
of geological structures. 
 
1.5.4.1 Joints 
 
Fissures of geological origin along which there has been no visible displacement (Brady 
&amp; Brown, 2013). Joints usually form in groups of similar orientation called joint 
sets. Joint system forms when multiple joint sets intersect each other. Joint systems 
produce arrays of rock blocks which in underground mining environment can become 
“Key Blocks” that can slide and fall into the stopes as overbreak (Goodman &amp; Shi, 
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1985). Most rock mass contain one or more vertical or highly inclined joint sets (Giekie, 
1880) which traduces in a low value of B factor for most stopes’ sub-vertical walls. 
 
1.5.4.2 Faults 
Fractures on which identifiable shear displacement has taken place (Brady &amp; Brown, 
2013). Their thickness varies from millimeters in case of small local faults, to several 
meters for major regional ones. Faults can be filled with materials such as fault gauge, 
talc, breccia and other weak minerals. As faults are conceived from relative displacement 
of two rock volumes, rock walls are often slickensided, thus having very low frictional 
strength. This is particularly harmful for stopes’ walls integrity, as rock block slip and 
fall may easily occur. In this study faults were provided as solid triangulations. Only mine 
scale faults were used. If no major fault were to intersect the analyzed stope’s walls, a B 
factor value of one was used. 

 
1.5.5 MineRoc 
 
MineRoc (Vallejos 2015; Vallejos, et al. 2017) is an underground mining software that 
allows mine planers to define the optimal stope size. This software performs an adaptation 
of Mathews’ stability graph method for a specific mining context, based on local case 
studies, geology, operational practices, and different stability criteria. This is possible due 
to the interaction between different modules as shown in Figure 8. 
 
1.5.5.1 Acquisition Module 
 
The required geotechnical information for the stability analysis can be stored in this 
module. Geotechnical units can store information pertaining to intact rock, rock mass and 
structural models. Stress fields can be stored as measurements or an overburden model. 
This information is later used in the Performance or Design modules as inputs to assess 
previously excavated or newly designed stopes. 
The acquisition module can store more information than the other modules need, this 
allows MineRoc to also work as an integrated geotechnical database storage tool. 
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1.5.5.2 Performance Module 
 
Assessment of a stope’s performance is done in this module by means of adding case 
studies to a back-analysis database. The key feature of this module is the automatic 
calculation of performance parameters and Mathews’ adjustment factors per stope face. 
The software calculates the area of the walls, the volume of the stope and the overbreak 
volume (𝑉𝑉𝑂𝑂𝑂𝑂𝑤𝑤𝑎𝑎𝑤𝑤𝑤𝑤, Figure 6) for each individual wall. The overbreak volume is obtained by 
measuring the volume between a wall from the stope’s design and the Cavity Monitoring 
Survey (CMS) triangulation’s limit (Miller, et al. 1992). 
MineRoc can obtain either, the volumetric dilution or Equivalent Linear Overbreak 
Sloughing (ELOS) (Clark & Pakalnis, 1997) per stope face from equations (3) and (4) 
depending on the user’s preferences. 

 
Figure 6 Over break volume interpretation. 

 Vol. DilutionWall =
OverBreak Vol wall

Vol.  of the Stope
 

(3) 

 
 ELOS =

OverBreak Vol wall

Area wall
 

(4) 

 
Once stope performance is evaluated, MineRoc delivers, for each of the stope faces, a 
stability number N based on inputs from the Acquisition module and hydraulic radius 
alongside other information such as rock mass quality (Q’), wall’s orientation (Strike 
and Dip), individual adjustment factors (A, B and C), over break volume and more. 
 
1.5.5.3 Database Manager Module 
 
Results obtained from the Performance module are stored in the Database Manager. It is 
possible to compile and partition data between locally analyzed case studies and others 
found in literature (included as a guide for mines lacking sufficient local case studies) 
allowing new stability boundaries to be adjusted. 
The stability graph is divided in potential stability zones by a logarithmic function curve 
called the Stability Boundary, which typically has the following form: 
 
 𝑁𝑁 = 𝑎𝑎 ∙ 𝑅𝑅𝑅𝑅𝑏𝑏 (5) 

 

Where a and b are constants adjusted in order to maximize the Pierce Skill Score (PSS) 
of the boundary’s data classification. For the stability graph method, a stope that is stable 
and plots above the stability graph boundary is a “true positive” while a stable stope 
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plotting under this boundary would be a “false negative”, and so on. The PSS is obtained 
as shown below using the “Confusion Matrix” in Figure 7 and equations from (6) to (8). 
 

 
Figure 7 Confusion matrix. 

 
 𝑇𝑇𝑇𝑇𝑅𝑅 =

𝑇𝑇𝑇𝑇
𝑇𝑇

 (6) 

 
 𝐹𝐹𝑇𝑇𝑅𝑅 =

𝐹𝐹𝑁𝑁
𝑁𝑁

 (7) 

 
 𝑇𝑇𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇𝑅𝑅 − 𝐹𝐹𝑇𝑇𝑅𝑅 (8) 

 
Where TPR is the “true positive ratio”, FPR is the “false positive ratio”, and PSS is the 
Pierce Skill Score. PSS ranges from 1 for a perfect classification (every single stable stope 
wall plotted over the boundary and every unstable one placed below it) to -1 for a 
“perfectly wrong” classification. In summary, if two curves adjusted using the same 
acceptability criterion have different PSS values, the one curve with the higher PSS 
defines a more representative separation of potential stability zones based on the graph’s 
data.  
 
Stability is defined quantitatively by an acceptability criterion which can be defined as an 
acceptable dilution or ELOS depending on user preference. Multiple boundaries with 
different acceptability criteria can be adjusted for the same database dividing the graph in 
potential dilution zones instead of potential stability zones.  
 
1.5.5.4 Stope Design Module 
 
New stope designs are evaluated in this module. Desired stope dimensions, geotechnical 
units for each face and stress fields are needed in order to plot the potential new stope 
faces in the stability graph. Once these are plotted, newly adjusted stability boundaries 
can be loaded to assess the new stope’s potential performance. 
 
The stope dimensions are determined based on local geotechnical information, in-situ 
stress and stability boundaries. Given a set of geotechnical units and a stope face 
orientation, the design module can calculate the expected stability number N and plot it 
against the hydraulic radius derived from the input dimensions. The plotted point’s 
location in the stability graph indicates the potential stability of the new design. 
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1.5.6 Numerical Modelling 
 
In the past, soil and rock mechanics were considered essentially empirical disciplines. 
The enormous complexities encountered in natural states of geologic media can make 
analytical approaches very difficult.  
 
Pioneering work by Karl Terzaghi in the eighties imparted scientific and mathematical 
bases to many aspects of geotechnical engineering. In these developments, solutions were 
obtained by means of differential equations that were assumed to govern the physical 
systems. A number of simplifications and assumptions were necessary to reach a solution.  
 
Although this approach has provided insight for many practical solutions, it cannot yield 
realistic results for problems involving complex non-homogeneous media, non-linear 
material behavior, in-situ stress conditions, special variations of material properties, 
arbitrary geometries, discontinuities and other factors imposed by geologic 
characteristics.  
 
Newly developing numerical methods can account for many of the mentioned factors and 
are now widely used in engineering applications.  

Figure 8 Interaction between modules and information flow in MineRoc 
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Most numerical methods require discretization of large, complex problems. In the finite 
difference method, the basic governing equation is discretized, whereas in the finite 
element method, the physical continuum is discretized.  
 
Problems in geotechnical engineering can be classified as steady (equilibrium), transient 
(propagation) and eigenvalue. Table 1 show some of the problems in these categories and 
their corresponding differential equations. 
 
Table 1 Types of numerical problems in geotechnical engineering. (Modified from C. Desai, 1977) 

Problem Category Equation 
Static stress-deformation analyses 
for foundations, slopes, tunnels and 
other structures 

Steady 𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑦𝑦2

= 0 

Wave propagation Transient 𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2

=
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2

 

Natural frequencies of foundations 
and structures 

Eigenvalue 
𝑚𝑚
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2

+ 𝑘𝑘𝑢𝑢 = 0 

 
In this study, the finite difference method is used. This document will thus exclude further 
detail on the other numerical methods.  
 
 
1.5.6.1 Finite Difference Method (FDM) 
 
The discretization procedure is based on replacing continuous derivatives in equations 
governing the physical problem by the ratio of changed in the variable, over a finite 
increment as shown in eq. (9) and illustrated by Figure 9. 
 
 𝜕𝜕𝑢𝑢

𝜕𝜕𝑥𝑥
= lim

Δ𝑥𝑥→0

Δ𝑢𝑢
Δ𝑥𝑥

≈
Δ𝑢𝑢
Δ𝑥𝑥

 
 

(9) 

 
As a result of these substitutions, a differential equation is transformed into a difference 
equation in terms of unknowns at grid points or nodes. The solution of the system 
equation is obtained after imposing the necessary initial and boundary conditions.  

 
Figure 9 Finite difference approximation to first derivative. (C. Desai, 1997) 



Chapter 1 
Introduction 

16 

 
The differential equations that need to be approximated involve first, second, third and 
fourth derivatives and are typically approximated using Taylor series. 
 
The conventional finite difference method utilizes a regular grid of nodes, such as a 
rectangular grid as shown in Figure 10. The grid system is a way of generating objective 
function values at sampling points with small enough intervals between them, so that 
introduced errors are small enough to be acceptable (Jing, 2003). 

 
Figure 10 Regular quadrilateral grid for the FDM (after Wheel, 1995) 

 
1.5.6.2 Finite Volume Method (FVM) 
 
The finite volume method is also a direct approximation of partial differential equations, 
but in an integral sense. As a branch of FDM, the FVM can overcome the inflexibility of 
the grid generation and boundary conditions in the traditional FDM with unstructured 
grids of arbitrary shapes. 
 
For both FDM and FVM no global system of equation in matrix form needs to be formed 
and solved. The solutions of the equations are localized, which is more efficient for 
memory and storage handling in computer implementation compared to a finite element 
method (FEM) problem. 
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Chapter 2 Methodology 
The methodology is presented in two stages representing the two articles addressed in this 
thesis.  

2.1 Adapting the B factor to account for major faults 

Mathews’ method for the calculation of the B factor using the orientation of major 
geological faults intersecting the different walls of each stope was used for the later 
calculation of the stability number.  
 
As the procedure of calculating the B factor is straightforward once the relative 
orientation of the fault is defined, this section will focus on the method for the selection 
of faults in cases where multiple faults were present.  
 
This study was developed with the kind collaboration of three mines from northern Chile 
which provided data of stopes (design and CMS) as well as geotechnical information 
about the rock mass, stress measurements, structural fabric and faults in the form of 
mapping charts for the various mine levels, and 3D CAD models. Using this information, 
a unified database of faults per stope was made. 
 
Table 2 presents the number of stopes used to generate both joint-based and fault-based 
databases for each one of the three mines. As the information is confidential, these three 
mines will be called Mine A, B and C. All mines had different sectors which will be 
numerically ordered. 
 
Table 2 Number of stopes used to generate the databases 

Mine Sector Stopes 

A 

1 28 
2 11 
3 29 
4 20 
5 18 

B 

1 30 
2 14 
3 27 
4 8 
5 1 

C 

1 4 
2 9 
3 19 
4 40 

Total  258 
 
 
As the faults’ orientation is the most important feature to be considered for the calculation 
of the B factor, their strike and dip had to be measured for each one of the faults 



Chapter 2 
Methodology 

18 

intersecting stopes. This was done in most cases using the 3D CAD models and directly 
measured. 
 
In case of multiple faults intersecting a stope face, the most critical structure was chosen 
for the calculation of the B factor. The criterion for choosing the most critical fault is 
similar to the one presented in (1.5.2) in which the user must consider the potential effects 
of each fault in the stability of the stope face. Relevant aspects include the fault’s 
orientation relative to the stope face, its point (line) of intersection with the wall, its 
thickness and, if available, the strength of its filling. 
 
An example of this is presented by Figure 11 where multiple faults intersect a stope. In 
this example, the fault marked in red was chosen for the stope’s back wall as it is the most 
critical based on the B charts. 
 

 
Figure 11 Example of stope being intersected by multiple faults. 

 
Once the B factors for each stope face was obtained and the stability number N was 
calculated, a stability boundary was adjusted seeking to maximize the PSS (1.5.5.3). A 
higher PSS implies a better representation of stable and unstable cases.  
 
With the stability boundary adjusted using the B factor from faults, and the stability 
boundary adjusted using the joints, an assessment of the reliability of the boundary can 
be done by comparing the PSS obtained with each boundary.  
 
 

2.2 Obtaining an F factor 

 
2.2.1 F factor calculation 
 
The F factor of a stope back is obtained by comparing the overbreak volume produced in 
a stope that is intercepted by a fault, against a stope that is not. As this is empirically 
impractical, numerical modeling must be used. Numerical modelling allows for the 
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interpretation of multiple stope-fault interaction scenarios. A base case with no fault is 
used as a mean of isolating the overbreak attributed specifically to the fault in the other 
cases. Once the overbreak volume is measured for the base case and for a fault case, the 
F factor can be calculated using two different methods.  
 
The first method is by direct comparison of overbreak volume of the two cases. The F 
factor is calculated as a fraction of the overbreak volumes as shown in equation (10). This 
method is simple, and no previous database is needed. 
 
 𝐹𝐹 =

𝑉𝑉0
𝑉𝑉𝐹𝐹

 (10) 

 
Where V0 is the overbreak volume of the base case (with no fault) and VF is the overbreak 
volume of the fault case. 
 
The second method was originally introduced by Suorineni (1998) as a comparison of 
stability number N. For this method to be used, a dilution-based stability graph such as 
the one introduced by Clark & Pakalnis (1997) must be used. It is preferable to use a 
graph generated with local performance data, so that the estimated F factor better 
represents the influence of local faults as opposed to the results obtained using an 
externally generated stability graph.  
 
The calculation of the F factor using the Suorineni (1998) method is done in four steps: 
 

1. From the results of numerical models, the overbreak volume of base case and fault 
cases must be precisely measured. 
 

2. Knowing the overbreak volume and the designed dimensions of the stope back, 
the Equivalent Linear Overbreak/Slough (ELOS) must be calculated for each case 
using equation (4). 
 
 

3. Using an ELOS based stability graph, one must enter the chart from the hydraulic 
radius axis of each case. A vertical line is traced from each case’s hydraulic radius 
to the ELOS curve representing the ELOS calculated in step 2. From the point of 
interception, a horizontal line is traced to determine the corresponding stability 
number. This is done for both the base case and the fault case, obtaining two N 
values as a result. 
 

4. The F factor is finally calculated as a fraction of the N values obtained in step 3 
as shown in equation (11). 
 

 𝐹𝐹 =
𝑁𝑁𝐹𝐹
𝑁𝑁0

 (11) 

 

Where NF and N0 are the stability number for the fault case and the base case, respectively.  
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An advantage of this method is that it takes into account the exponential nature of the 
stability number N, whereas the first method directly compares the overbreak volumes.  

 
The third step of the second method implies the interception of an ELOS stability curve 
of a certain value obtained in step 2. Since a discrete set of ELOS stability curves can  be 
derived from any given database, an interpolation method must be used if the ELOS value 
calculated in step 2 does not match a specific ELOS curve.  
 
The interpolation method used in this study is shown in equation (12): 
 
 𝑁𝑁 = 𝑎𝑎 ∙ 𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃−𝑐𝑐 ∙ 𝑅𝑅𝑅𝑅𝑏𝑏 (12) 

 
 
Where constants a, b and c must be adjusted to fit the interpolated curves to empirically 
generated ones.  
 
The method allows the possibility of estimating the stability number N of a numerically 
modeled stope face based on its resulting overbreak volume or ELOS and its hydraulic 
radius. 
 
The stability boundaries used for the calculation of constants a, b and c used in this study 
were generated from an empirical database built for the same underground mine as the 
stopes used in the calibration of the numerical models. These stability boundaries and 
further information about their adjustment can be found in Azorin (2019). 
 
2.2.2 Numerical modelling 
 
2.2.2.1 Calibration models 
 
For the F factor to better represent the influence of local faults on stope stability, the 
numerical models must be calibrated to represent the performance of existing stopes. This 
was achieved selecting several existing stopes where the overbreak and the final shape of 
the walls was clearly affected by the presence of faults like the example shown in Figure 
12. Once the stopes with faults were selected, a base case with no fault is also selected 
for reference. For each selected stope, a numerical model is constructed using the stope’s 
original design.  
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Figure 12 Example of stope's overbreak being affected by a fault. 

 
Measurements of in-situ stresses are used as inputs and elasto-plastic constitutive models 
are used to represent the mechanic behavior of the rock mass and fault. While a Mohr-
Coulomb linear failure envelope is used for the faults, a generalized Hoek-Brown 
nonlinear envelope is used for the rock mass.  
 
Plasticity state will be represented by Hoek-Brown's failure envelope. This non-linear 
criterion relates major and minor principal stresses according to the equation shown in 
Figure 13. 

 
Figure 13 Hoek-Brown failure criterion. Modified from W. Wu (2015) 



Chapter 2 
Methodology 

22 

where σci is the unconfined compressive strength of the intact rock, and m, s and n are 
material constants that can be related to the geological strength index and rock damage 
(Hoek et al. 2002). 
If at some point of the modelling instance of the stope, fault and rock mass, if any element 
of the mesh is exposed to principal stresses plotting over the strength envelope, the 
element will yield and become acquire a plastic state. 
 
The numerical model runs in three steps: elastic pre-excavation, elasto-plastic pre-
excavation and elasto-plastic post excavation. Once the final equilibrium is reached, the 
volume of the yielded elements over the stope back is measured and the general shape of 
the overbreak region is visually assessed. The overbreak volume and the shape of the 
overbreak region of the modelled stopes are then compared with the ones obtained for the 
existing stopes using the Cavity Monitoring Survey (CMS) 3D representation. 
 

 
Figure 14 Upper portion: Representation of overbreak as yielded elements after model equilibrium. Lower 

portion: Comparison between modelled overbreak (green and red) vs reference CMS (black line). 

The calibration process iterates changing fault strength properties and measuring the 
resulting overbreak volume. The difference between reference and modelled overbreak 
volume is then calculated and the difference percentage is obtained. The shape of the 
modelled overbreak volume is also visually compared to the CMS seeking a similar shape 
as shown in Figure 14. 
 
2.2.2.2 Synthetic models 
 
Once the strength parameters are calibrated (Table 4 and Table 5), the synthetic models 
can be constructed. The stope used for all the synthetic models is box shaped and is placed 
the center of a cubic box of 400 m side to avoid boundary effects. The stope’s dimensions 
are presented in Table 3 The fault’s thickness is six meters, and its orientation is variable. 
An example of mesh for synthetic model is shown in Figure 15. The stope is in the center 
of the box.  
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Figure 15 Upper portion: Box mesh. Lower portion: Stope mesh. 

 
Table 3 Dimensions of stope used iin synthetic models. 

Dimensions Unit Value 
Length m 100 
Width m 25 
Heigh m 30 

 
 
While the stope is aligned with the N-S axis for all synthetic models, three strikes were 
used for the fault (0°, 45° and 90°). This means the fault is either parallel, diagonal or 
perpendicular to the stope. The fault’s dip is also variable, and for each different strike 
configuration, three dips were assessed: 90°, 60° and 30°. In addition to these nine 
combinations, other models were constructed with a horizontal fault (0° dip). These 
models place the fault at different distances from the stope back to assess the influence of 
vertical distance from the back on the stability and overbreak volume.  
 
Table 4 Strength parameters for the rock mass used in synthetic models. 

Property Unit Value 
Density kg/m3 2600 
σci MPa 200 - 250 

GSI # 50 - 60 
mi # 15 - 20 
D # 0.3 - 0.5 
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Ei GPa 60 - 80 
 
Table 5 Strength parameters for the fault used in synthetic models. 

Property Unit Value 
Density kg/m3 2100 
Cohesion KPa  10 - 20 
Friction Angle (°) 20 - 25 
Erm MPa 200 - 500 

 
In the cases where the fault is parallel to the stope, two intersecting positions were 
modeled.  First, three models (representing the three dip values) intersect along the middle 
of the stope back and second, three models have the intersection at the stope back far edge 
(see Figure 15). 
 

 
Figure 16 Left: Fault intersecting stope's back in the middle. Right: Fault intersecting stope's back on the 

side. 

Finally, a model with no fault was made to use as reference. In total, 17 synthetic models 
were evaluated. As in the calibration models, plasticity state was used as the overbreak 
criterion.  
 
In order to reduce the effects of the in-situ stresses’ orientation, a horizontal to vertical 
stress ratio of 1.6 was used for both horizontal directions (east-west and north-south). The 
stress values used for the synthetic models are shown in Table 6. 
 
Table 6 In-situ stresses used in the synthetic models. 

Direction Unit Value 
xx MPa 14 
yy MPa 14 
zz MPa 9 

 
 
Each model was run in three stages, reaching mechanical equilibrium at the end of every 
stage. The first stage is elastic pre-mining and it starts after stress initialization. The 
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second stage is elasto-plastic pre-mining. Finally, the third stage is elasto-plastic post-
mining. The excavation is done using FLAC3D “relax excavate” command which 
reduces the density and elastic modulus of a certain region over time until zero is reached. 
At this point the excavation is completed. This helps to limit rebound effects from 
unrealistic, instantaneous excavations. 
 
Once mechanical equilibrium is reached, the volume of every yielded element located 
over the stope back is measured and the overbreak is calculated. Finally, with the 
overbreak volume of every case measured, the F factor is calculated using the two 
methods presented earlier. 
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Chapter 3 Results 
 

3.1 Use of b factor from major geological faults’ orientation on Mathews’ stability 
graph method. A case study. 

 
Two databases obtained from the same case studies have been compared. The first 
database was obtained calculating the stability number N using Mathews’ original B 
factor accounting for joint influence on stope integrity, while the second was obtained by 
calculating the stability number using a B factor derived from the relative orientation of 
the stope faces to major faults. It must be noted that even for the second database, the 
same values of B as a function of β (angle between stope face and structure) were used 
and, in cases when no faults intersected the stope face, a B factor value of 1.0 was used.  
 
As the joints emerge from the same geological phenomena that create major geological 
faults, these two types of structures often share the same orientation. This means that if a 
stope face is intersected by both joint and fault it is highly possible that the same β angle 
is formed. As stated previously, the same function of β is used to calculate B factor for 
faults which means a similar distribution of values is expected. Figure 16 presents the 
distribution of B factors values for joints (left) and faults (right). 
 

 
Figure 17 Distribution of B factor values for: (left) Mathews’ original factor;  (right) fault calculated factor. 

 
3.1.1 Original Mathews’ method 
 
The graph in Figure 17 was obtained calculating stability number N using Mathews’ B 
factor, which means the influence of joint orientation was considered. The stability curve 
which attains the best possible classification of stable/unstable cases reaches a PSS value 
of 0.36. 
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Figure 18 Stability graph. N calculated using Mathews' B factor. 

 
3.1.2 Stability graph using B factor from faults 
 
The graph in Figure 18 was obtained calculating stability number N using a B factor that 
accounts for the influence of major geological faults in the stability of the stopes’ walls.  
The stability curve which attains the best possible classification of stable/unstable cases 
reaches a PSS value of 0.44. 
 

 
Figure 19 Stability graph. N calculated using B factor from faults. 

 
 
  



Chapter 3 
Results 

28 

3.1.3 Results comparison 
 
Considering the large amount of cases included in the database, going from a PSS value 
of 0.36 to 0.44 is a considerable improvement. 
A better PSS is obtained mostly because there are fewer false negative cases in the second 
graph meaning that fewer actual unstable cases are located above the stability boundary 
accounting for a lower FPR value as shown in Table 7. 
These results are consistent with engineer’s observation of the stopes’ walls stability, as 
major geological faults have a bigger influence on stability of large stopes than joints and 
as it is less likely for a stope face to be intersected by a fault as is it is by a joint set. 

 
Table 7 Results comparison for Mathews original B factor and B factor from major geological faults 

  TPR FPR PSS 
Mathews’ 0.65 0.29 0.36 
Faults’ 0.57 0.14 0.44 

 

3.2 F factor: Quantifying the impact of faults on open stope’s back stability. 

 
For the purpose of obtaining the overbreak volumes based on the elements’ plasticity 
state, all different plasticity states were aggregated independent of their nature (ie. Shear, 
tension, shear-past, tension-past) as shown in Figure 19Figure 19. The different plasticity 
states can, however, give an idea of the causes of failure, and therefore help interpret the 
actual influence of the fault.  
 

 
Figure 20 Left: Yielded elements separated by state. Right: Stope's back wall yielded elements grouped 
together. 

The results from the different models were computed and plotted. In the cases where more 
than one case of a certain strike-dip configuration was run, such as dip 0, the case with 
the highest overbreak volume was considered.  
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3.2.1 F factor charts 
 
The study presents two plots, one for each method introduced for the calculation of the F 
factor. Each plot has three curves, one for each fault’s strike. The curves present the F 
factor as a function of the faults’ dip. The plots are shown in Figure 20Figure 20 for 
method one and Figure 21 for method two.  
 

 
Figure 21 F Factor chart generated using method one. 

 

 
Figure 22  F Factor chart generated using method two. 

 
Both plots present similar curves. Regarding the impact of fault strike, it can be seen that 
the worst case corresponds to a fault parallel to the stope, while a fault perpendicular to 
the stope proves to be the best scenario. The 45° strike case delivers less favorable results. 
The curves don’t cross one another, and are more or less parallel.  
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For the two curves representing nonparallel faults, the 0° dip case is the least favorable. 
For both plots, all three curves start at the same point as the 0° dip case is the same for 
every strike. The different curves show that, as a rule, steeply dipping faults have less 
detrimental impact on stope back stability.  
 
3.2.2 Effect of fault’s distance to the back 
 
Five cases of 0° dip were modeled, placing the fault at different distances from the stope 
back. The results of these models show that there is a specific distance at which the 
horizontal fault’s influence is maximized. Once this distance is surpassed, faults have 
diminishing effects on the stope’s stability until, eventually, they have no influence at all. 
The plot of Figure 22 show the results of the different 0° dip models. 
 

 
Figure 23 Results for horizontal faults. Method one. 

 
3.2.3 Effect of fault’s place of intersection 
 
For the 0° strike cases, two models were made for each dip, locating the fault either at the 
edge or center of the stope back, as shown in Figure 15. The results of these models are 
shown in the plot presented in the chart of Figure 23 which has two curves, one for each 
position, and where both start at the same point as the 0° dip case is common to both.  

 
Figure 24 Results for Fault intersecting in the middle and side of the stope's back. Method one. 
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Regardless of the dip of the fault, an intersection at the stope back far edge bears greater 
impact than an intersection along the back’s center axis. The difference is small for sub-
horizontal faults and increases with fault dip until reaching a maximum at a dip of 45°, 
after which the effect again begins to decrease as the fault becomes steeper. 
 
3.2.4 Results interpretation 
 
The results used to generate the curves for the F factor only consider the overbreak 
volume to be the sum of yielded elements’ volume regardless of their failure mechanism; 
however, the distribution of these mechanisms can help to understand the causes of the 
results shown in the plots and reveal the failure mechanism controlling the instability in 
each case as shown in Figure 19 (left).  
 
The cases with sub-horizontal dipping faults show concentrations of tension-based 
plasticity over the stope back, which may be caused by the breaking of rock bridges 
extending form the wall to the fault. For sub-horizontal faults, the rock bridges are narrow 
and therefor easily broken by the stress relaxation created by the stope excavation. The 
numerical models are unable to represent the effects of blasting, but its effect on breaking 
rock bridges generated by joint sets is well known. This phenomenon likely occurs in the 
presence of faults as well. 
 
For steeply dipping faults, the plasticity state dominating the overbreak volume is shear. 
The instability is controlled by blocks slipping along the fault and falling in the stope. 
Given the thickness of the rock bridges for these dip configurations, rock bridge breaking 
becomes increasingly more difficult and so overbreak volume decreases. Blasting can 
also promote the slabbing of blocks along the fault, increasing the dilution. 
 
Vertical and sub-vertical dipping faults are the least detrimental to stope back stability. 
As no sub-parallel surface is formed relative to the stope back, the concept of broken rock 
bridges and slabbing does not apply. Slipping along the surface of the fault may still 
occur; however, in a region with horizontal major principal stress – which may be 
concentrated over the stope’s back due to stress redistribution – slipping along the fault’s 
surface becomes difficult. The main effect of the fault on the stope dilution is a 
consequence of the fault disturbing the stable arch of rock blocks formed after the 
excavation of the stope increasing its height and changing its regular shape.  
 
Horizontal faults are approached differently in this study. Horizontal faults can easily 
disturb the stable rock arch which forms above the stope back. The distance between the 
planned back and the fault is of great relevance. The results shown in Figure 22  indicate 
that the overbreak volume is greatly affected by this distance.  
 
The fault tends to redefine the stope back location, as its surface becomes the new 
excavation boundary. Starting exactly at the stope back and increasing the distance, the 
more distance there is between the fault and the stope back, the more overbreak volume 
is generated. However, at a certain critical distance, the rock bridge is thick enough to 
resist under the resulting stress state. At this point, the fault no longer influences the 
stability of the stope back. This critical distance is logically influenced by other 
geotechnical parameters such as rock mass strength, in-situ stresses and blasting damage. 
Possible interactions between the stope back and subhorizontal faults beyond the back 
should be carefully approached in the design process.  
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The F factor plots presented in Figure 20 and Figure 21  consider the worst-case scenario 
for the 0° dip condition.  However, to account for the variability introduced by the 
distance between fault and back wall, the segment between the first and second points of 
the plots (corresponding to faults parallel or subparallel to the back) may be replaced by 
a region as shown in Figure 24. 
 

 
Figure 25 F Factor for the 45° strike case with variable horizontal fault's distance to the back wall. Method 

one. 

The F factor curves show that for a scenario where a fault is parallel to the stope’s strike, 
the fault’s dip is of minor relevance. This is suggested by the minor variations of the F 
factor along this curve. This result may be influenced by the modeled stope dimensions, 
particularly, the back’s shape factor. The place of intersection of the fault and the stope 
back is also relevant and can modify the general shape of the F factor curve. Even though 
only two points of intersection were modelled in this study, results show that if the 
distance between the line of intersection moves opposite to the fault dip direction, its 
impact decreases. 
 
In this study, two scenarios were modelled for each 0° strike case and the worst result 
was always selected to construct the F factor curves. Even though this may not be 
representative of every possible outcome, it is considered a conservative approach and 
can be used if the construction of more representative F factor curves is not feasible. 
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Chapter 4 Conclusions and future works 

4.1 Limitations of F factor 

 
Interaction with multiple faults is common in a highly stressed setting such as near the 
convergence of tectonic plate boundaries. Stopes intersected by more than a single fault 
are not uncommon, and this presents a major limitation to the proposed F factor, which 
considers a single fault. As a general recommendation, in case of more than one fault 
intersecting a stope back, the most critically oriented structure should be used. This 
follows the same logical approach as the determination of Mathews’ B factor for 
structural fabric. In the case of the F factor, the main concern when choosing the most 
critically oriented fault should always be its strike, as a fault that is parallel to the stope 
will have the greatest influence on stability.  
 
The F factor plots presented in this study were generated using numerical models that 
assume rock mass strength parameters typically found in Chilean competent rock masses. 
Even though these plots can be used as a reference in the absence of benchmark data, they 
may not be representative of weaker rock mass environments.  
 
 

4.2 Conclusions 

The conclusions will be separated as to represent the main findings of each paper: 
 
4.2.1 Conclusions of calculating B factor from faults’ orientation 
 
 
The stability graph constructed using B factor from major geological fault’s orientation 
makes a better classification of stable/unstable stopes’ walls than the one made using 
Mathews’ original B factor. This is mainly explained by the fact that in large stopes, major 
geological faults have a greater influence on stope stability than minor structures such as 
joints.  Furthermore: 

• The new guidelines allow the design of optimized large stopes in terms of 
expected stability performance in major geological fault environment. 

• New stability curves have been adjusted using local geological and operational 
information which means it should predict stopes’ walls stability more accurately 
than Mathews’ original stability graph when major faults intercept the stope. 

• Largest over break volumes usually occur on the stope’s back due to their size, 
vertical orientation and rock mass quality. 

• The original B factor used in Mathews’ stability graph does not necessarily reflect 
the failure mechanism produced by minor structures such as joints in large stopes 
in Chilean mines. 

• There are structural features in major geological faults that are not considered for 
the calculation of this new B factor. Further research on the importance of 
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parameters such as a stope’s shape factor, stope face dip, stress orientation, 
vertical to horizontal stress ratio, fault filling and thickness is advised in order to 
get a better grasp of fault influence on stope stability. 

• Mathews’ values for B factor were used in this analysis in order to compare the 
results against the original stability boundaries. Other values for B factor such as 
the ones from Potvin (1988) could also be assessed in future studies. 

 
4.2.2 Conclusions of F factor 
 
The F factor allows the quantification of the damage induced by the presence of a 
geological fault in the integrity of a stope back.  The graphs presented in Figure 20 and 
Figure 21 can be used to obtain the F factor of a fault – stope interactions based on the 
fault strike and dip. 
 
The charts generated using the two methods for the calculation of the F factor show that 
the volume comparison method proposed in this study yields practically the same results 
as the stability number comparison method.  The advantages of the volume comparison 
method for F factor calculation are that it is simpler and faster to calculate and does not 
require an existing database. 
 
A fault parallel to a stope is the worst-case scenario, as it has the greatest impact in the 
stope’s back stability. On the other hand, a fault that is perpendicular to a stope presents 
the most favorable scenario. Intermediate scenarios (e.g., strike difference of 45°) yield 
intermediate results. If a fault’s strike is parallel to a stope, its dip becomes less critical 
as, under this condition, the F factor values range from 0.4 to 0.6 regardless of the dip. 
 
3D numerical model results can be used to interpret the failure mechanism at the stope 
back associated with the fault using yielded elements’ state. A stope back’s main source 
of damage associated with a sub-horizontal dipping fault is the breaking of rock bridges 
due to decompression and blasting, followed by the release of the resulting slabs. As the 
dip of the fault increases (ranging from 45° to 60°), the failure mechanism changes to 
sliding along the fault. Sub-vertical dipping faults don’t generate rock bridges between 
them and the stope surface, so these do not produce overbreak in the same manner. Slip 
along sub-vertical faults is difficult as compressive stresses tend to prevent rock blocks 
from moving or falling. 
 
The line where the fault intersects the stope back is relevant to the estimation of the impact 
the fault may have. Models with the fault intersecting at the edge of a stope back exhibited 
more overbreak volume than the models with the fault intersecting in the middle. 
Presumably, faults intersecting the stope back at a point closer to the “near” edge 
(opposite of the fault’s dip direction) should have even milder influence on sloughing, 
although this needs verification. Sub-horizontal and sub-vertical faults had smaller 
difference in F factor value than medium dipping ones. 
 
In the case of horizontal faults, there is a certain critical distance between fault and stope 
back that maximizes its influence on the stability. This distance is assumed to be 
dependent on rock mass strength and the stress distribution, among other parameters. In 
the case of the models constructed for this study, a distance of five meters resulted in the 
lowest F factor value. After surpassing this distance, the F factor improves until the fault 
has no appreciable effect on the stability of the stope.  
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The results for the horizontal faults suggest that the region of the F factor corresponding 
to subhorizontal faults (dip < 30°) may be interpreted as a band that narrows into a line 
as the dip increases, to account for the variable impact of fault’s distance from the stope 
back. 
 
4.2.3 Possible improvements and future works for the F factor 
 
Future developments of the three-dimensional F factor shall include variability in the rock 
mass properties, with a similar approach to Suorineni’s F factor.  
 
The shape factor of the stope back used in this study played an important role on the 
general form of the F factor curves, particularly on the case of faults parallel to the stope. 
Presumably, a stope back with a shape factor close to 0.5 should produce F factor curves 
with similar values for the different strikes evaluated. The shape factor of the stope back 
should be included as an additional variable in future developments of the F factor. 
 
The horizontal to vertical stress ratio used for the synthetic numerical models was the 
same for both cartesian axes (east-west and north-south). This was done to avoid any 
impacts of the stress orientation on the models results. However, the orientation of the 
principal stresses is known to influence the behavior of the rock mass near faults. In-situ 
stress orientation can either hinder or promote rock blocks sliding along a fault surface 
and, in doing so, influence dilution.  Different ratios of horizontal stresses should be 
included on future developments of the F factor to quantify the influence of stress 
orientation.  
 
The formation and development of a fault can often affect the surrounding rock mass. Be 
it through hydrothermal alteration, development of a shear zone or other geological 
phenomena, faults often weaken the rock mass around them. A weakened rock mass in 
the fault proximity was not considered in the development of the F factor, but it may be 
included in the future. 
 
Rock mass reinforcements such as cable bolts can help maintain stope back stability for 
a given period. This mitigation is also applicable in the presence of faults. Numerical 
modelling codes such as Flac3D allow the inclusion of reinforcement, which could 
potentially alter the shape of the F factor’s curves, especially in the lower dips portion of 
the chart where reinforcement may have a greater impact on stability and dilution.  
 
Develop a new stability boundary using the same database used to generate the stability 
boundaries for the B factor using faults’ orientation.
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The papers presented in this thesis are the following: 

• Use of b factor from major geological faults’ orientation on mathews’ stability 
graph method. a case study. (Presented in arma 2019) 

• Quantifying the damage of faults on open-stope back wall stability using 3D 
elasto-plastic numerical modelling. (Sent to International Journal of Mining, 
Reclamation and Environment) 
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Annexed 
 
In this appendix, section views of the results of the models used for the calculation of 
the F factor are presented. 
 
Reference 
 

 
Figure 26 Reference case model 
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Strike 0° 

 
Figure 27 Strike 0, Dip 30, center intersection case model 

 
Figure 28 Strike 0, Dip 30, border intersection case model 
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Figure 29 Strike 0, Dip 45, center intersection case model 

 
Figure 30 Strike 0, Dip 45, border intersection case model 
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Figure 31 Strike 0, Dip 60, center intersection case model 

 

Figure 32 Strike 0, Dip 60, border intersection case model 
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Figure 33 Strike 0, Dip 90, center intersection case model 

 
Figure 34 Strike 0, Dip 90, border intersection case model 

  



Annexed 

44 

Strike 45° 

 
Figure 35 Strike 45, Dip 30 case model 

 

 
Figure 36 Strike 45, Dip 45 case model 
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Figure 37 Strike 45, Dip 60 case model 

 

 
Figure 38 Strike 45, Dip 90 case mode 
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Strike 90° 

 
Figure 39 Strike 90, Dip 30 case model 

 

 
Figure 40 Strike 90, Dip 45 case model 
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Figure 41 Strike 90, Dip 60 case model 

 

 
Figure 42 Strike 90, Dip 90 case model 
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Dip 0°

 

Figure 43 Dip 0 fault-back distance 0 

 

Figure 44 Dip 0 fault-back distance 5 
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Figure 45 Dip 0 fault-back distance 10 

 

 
Figure 46 Dip 0 fault-back distance 15 
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