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MEAN DIMENSION AND A NON-EMBEDDABLE EXAMPLE

FOR AMENABLE GROUP ACTIONS

LEI JIN, KYEWON KOH PARK, AND YIXIAO QIAO

Abstract. For every infinite (countable discrete) amenable group G and every positive

integer d we construct a minimal G-action of mean dimension d/2 which cannot be

embedded in the full G-shift on ([0, 1]d)G.

1. Introduction

Mean dimension, which was introduced by Gromov [Gro99] in 1999, is a numerical

topological invariant of dynamical systems. As an analogue of topological dimension,

its advantage has now been shown in the study of dynamical systems whose topological

entropy equals infinity and whose phase space has infinite topological dimension. In

particular, mean dimension is intimately involved in the embedding problem.

We say that a dynamical system can be embedded in another if the former is topolog-

ically conjugate to a subsystem of the latter (see Subsection 2.1 for a formal definition).

Let G be an infinite countable discrete amenable group and d a positive integer. The full

G-shift σ on ([0, 1]d)G (or the shift on ([0, 1]d)G for short) is defined by

σ : G× ([0, 1]d)G → ([0, 1]d)G, (g, (xh)h∈G) 7→ (xhg)h∈G.

In general, the embedding problem is to decide if a G-action can be embedded in the full

G-shift on ([0, 1]d)G.

For a (possibly) simpler picture, we may consider G = Z tentatively. An easy observa-

tion is that if a Z-action can be embedded in the shift on [0, 1]Z then it cannot possess too

many (in the sense of topological dimension) periodic points. The first successful attempt

on the embedding problem for Z-actions was made by Jaworski [Jaw74] in 1974, whose

result states that if a dynamical system (X,Z) has no periodic points and if the space

X is finite dimensional, then (X,Z) can be embedded in the shift on [0, 1]Z. However,

for the case that X is an infinite dimensional space, the situation becomes much more

complicated. In particular, embeddability of minimal dynamical systems in the shift on

[0, 1]Z attracts extensive attention1. In 2000, Lindenstrauss and Weiss [LW00] developed
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1Notice that a minimal Z-action must have no periodic points unless its phase space is a finite set.
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mean dimension theory in dynamical systems, and especially, in connection with the em-

bedding problem. They asserted that if a Z-action can be embedded in the shift on [0, 1]Z

then its mean dimension must be at most 1; and meanwhile, they constructed a minimal

Z-action of mean dimension strictly greater than 1. It follows immediately that not every

minimal Z-action can be embedded in the shift on [0, 1]Z.

In the theory of topological dimension, the celebrated Menger–Nöbeling theorem asserts

that any compact metric space of topological dimension strictly less than n/2 can be

topologically embedded into [0, 1]n, where n ∈ N (see [HW41] for details). This theorem

is sharp, and naturally motivates a converse question for minimal dynamical systems. Let

us state it precisely in the context of general group actions:

Question 1.1. Let G be an infinite countable discrete amenable group and d a positive

integer. Determine the optimal value of constants C ∈ [0,+∞] such that the following

assertion is true: If a minimal G-action has mean dimension strictly less than C, then it

can be embedded in the full G-shift on ([0, 1]d)G.

Remark 1.2. As an analogue of the Menger–Nöbeling embedding theorem, the assump-

tion of amenability of G in Question 1.1 is to guarantee that mean dimension of any

G-action is situated in [0,+∞] (see [Li13]). The optimal value of such constants C exists

in [0,+∞] as well, because C = 0 is in fact a trivial constant that makes the assertion

true.

An amazing result in this direction was due to Lindenstrauss [Lin99] in 1999, who

showed that if a minimal Z-action has mean dimension strictly less than d/36 then it

can be embedded in the shift on ([0, 1]d)Z. In 2014, Lindenstrauss and Tsukamoto [LT14]

constructed a nice example of a minimal Z-action of mean dimension equal to d/2, which

cannot be embedded in the shift on ([0, 1]d)Z. This construction indicates that the answer

to Question 1.1 is not larger than d/2 in the setting of G = Z. In 2015, going through

harmonic and complex analysis, Gutman and Tsukamoto [GT20] proved a significant

result: If a minimal Z-action has mean dimension strictly less than d/2, then it can be

embedded in the shift on ([0, 1]d)Z. Thus, the solution to Question 1.1 for Z-actions is

d/2.

However, if we proceed to a further stage G = Z
k (k ∈ N), then we encounter seri-

ous difficulties. We refer to [GLT16] and [GQT19] for detailed explanations, ideas and

techniques. Nevertheless, it turns out [GQT19] that d/2, as anticipated, is still the exact

solution to Question 1.1 for the case G = Z
k (where k ∈ N).2

In contrast to Z
k-actions, there has been no essential progress with Question 1.1 in

general settings. Crucial problems will definitely arise due to geometric structures of

general groups different from Z
k. However, it is reasonable to expect d/2 to be the

2For related results see [Gut15, GQS18, GT14].
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solution to Question 1.1 for amenable group actions. The main result of the present

paper is to confirm this assertion from above: The solution to Question 1.1 does not

exceed d/2.3

Theorem 1.3. Let G be an infinite countable discrete amenable group and d a positive

integer. Then there is a minimal G-action (X,G) whose mean dimension is equal to d/2

such that (X,G) cannot be embedded in the full G-shift on ([0, 1]d)G.

This paper is organized as follows. In Section 2, we gather basic notions in amenable

group actions and mean dimension; to prepare our proof we also collect fundamental tools

and necessary propositions, especially including tilings of amenable groups. In Section 3,

we provide a constructive proof of Theorem 1.3.
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2. Preliminaries

2.1. Group actions. Throughout this paper, by a G-action we always understand a

triple (X,G,Φ), where X is a compact metric space, G is an infinite countable discrete

amenable4 group with the identity element e, and

Φ : G×X → X, (g, x) 7→ Φ(g, x)

is a continuous mapping satisfying that

Φ(e, x) = x, Φ(gh, x) = Φ(g,Φ(h, x)), ∀x ∈ X, ∀g, h ∈ G.

Usually, (X,G,Φ) and Φ(g, x) are abbreviated to (X,G) and gx, respectively.

Let (X,G) be a G-action. For a subset F of G and a point x ∈ X , we set

Fx = {gx : g ∈ F} ⊂ X.

We say that (X,G) is minimal if for every x ∈ X , its orbit Gx is dense in X . A subset

S of G is called syndetic if there exists a finite subset F of G such that G = FS, where

FS = {fs : f ∈ F, s ∈ S}. A point x ∈ X is said to be almost periodic if for each

3We would like to remind the reader that it is still unknown yet whether d/2 is the optimal.
4The terminology of amenability is planned to be presented in the next subsection.
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neighborhood U of x, there is a syndetic subset S of G such that Sx ⊂ U . We recall that

minimality can be equivalently characterized as follows.

Lemma 2.1 ([Aus88, Chapter 1]). A G-action (X,G) is minimal if and only if X is the

orbit closure of an almost periodic point.

Let K be a compact metric space and d a metric on K. We equip KG with the product

topology. A compatible metric ρ on KG is defined by

(2.1) ρ(x, y) =
∑

g∈G

αgd(xg, yg), ∀x = (xg)g∈G, y = (yg)g∈G ∈ KG,

where (αg)g∈G ⊂ (0,+∞) satisfies

αe = 1,
∑

g∈G

αg < +∞.5

The full G-shift σ on KG is the G-action (KG, σ) defined by

σ : G×KG → KG, (g, (xh)h∈G) 7→ (xhg)h∈G.
6

A subshift of (KG, σ) means a subsystem of the full G-shift on KG.

For x = (xg)g∈G ∈ KG and F ⊂ G we denote by

x|F = (xg)g∈F ∈ KF

the restriction of x on F , and

πF : KG → KF , x 7→ x|F

the canonical projection mapping. For p ∈ K we set

x(F, p) = {g ∈ F : xg = p} ⊂ G.

Let (X,G) and (Y,G) be two G-actions. We say that (X,G) can be embedded in

(Y,G) if there is a continuous injective mapping7 f : X → Y such that f(gx) = gf(x)

for all g ∈ G and all x ∈ X . Such a mapping f is called an embedding of (X,G) into

(Y,G).

5Note that G is countable.
6Notice that the notation σ may be kept in different full shifts if there is no ambiguity.
7Note that this mapping is indeed a homeomorphism of X into Y in our setting.
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2.2. Tilings of amenable groups. For a group G we denote by F(G) the collection of

all nonempty finite subsets of G. For T ∈ F(G) and ǫ > 0 we say that a subset F of G is

(T, ǫ)-invariant if
|B(F, T )|

|F |
< ǫ,

where

B(F, T )8 = {g ∈ G : Tg ∩ F 6= ∅, T g ∩ (G \ F ) 6= ∅}

and | · | denotes the cardinality of a set.

A countable group G is called amenable if there exists a sequence {Fn}
∞
n=1 ⊂ F(G)

such that for any g ∈ G we have

lim
n→∞

|Fn△gFn|

|Fn|
= 0.

We call such a sequence {Fn}
∞
n=1 a Følner sequence of the group G.

An easy observation is that {Fn}
∞
n=1 is a Følner sequence of G if and only if for any

T ∈ F(G) and any ǫ > 0, Fn is (T, ǫ)-invariant for n sufficiently large if and only if for

any T ∈ F(G) and any ǫ > 0, |Fn△TFn|/|Fn| < ǫ for n sufficiently large.

Now let G be an infinite countable discrete amenable group.

We say that T is a tiling of G if T ⊂ F(G),
⋃

T∈T T = G and T ∩ T ′ = ∅ holds for

any two distinct T, T ′ ∈ T . Every element in the tiling T is called a T -tile (or a tile). A

tiling T of G is said to be finite if there is a finite collection ST ⊂ F(G) such that every

T -tile is a translation of some element in ST , i.e., for each T ∈ T there exist S ∈ ST and

c ∈ G such that Sc = T . Every element in ST is called a shape of T . For every shape

S ∈ ST the center of S is defined by

C(S) = {c ∈ G : Sc ∈ T } ⊂ G.

The translation of a tiling T by g ∈ G is

T g = {Tg : T ∈ T },

which is also a tiling of G. For F ∈ F(G) we set

T |F = {T ∩ F : T ∈ T }.

A finite tiling T of G is called syndetic if for every shape S ∈ ST the center C(S) is

syndetic. A sequence {Tk}
∞
k=1 of finite tilings of G is called primely congruent if for

every k ≥ 1, Tk is a refinement of Tk+1 (i.e. every Tk+1-tile is a union of some Tk-tiles)

and each shape of Tk+1 is partitioned by shapes of Tk in a unique way (i.e. for any two

Tk+1-tiles Sc1 and Sc2 of the same shape S ∈ STk+1
we have Tk|Sc1 = (Tk|Sc2)c

−1
2 c1).

8This notation will be used in the sequel.
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We list some propositions of tilings as follows, which are going to be used in our main

proof. Some of these propositions may be found in [Dou17]. Here we reproduce their

proofs for completeness.

Proposition 2.2. Suppose that T is a finite tiling of G. Then for any ǫ > 0 there exist

K ∈ F(G) and δ > 0 such that for each g ∈ G and each (K, δ)-invariant F ∈ F(G), the

union of those T g-tiles which are contained in F has proportion larger than 1− ǫ, namely

|
⋃

T∈T g,T⊂F T |

|F |
> 1− ǫ.

Proof. We assume that ST is a set of shapes of T . Put

K =
⋃

S∈ST

S.

For any F ∈ F(G) and g ∈ G,
⋃

T∈T g,T⊂F

T =
⋃

S∈ST ,Sc∈T ,Scg⊂F

Scg.

Set

δ =
ǫ

|K|
.

We claim that for any (K, δ)-invariant F ∈ F(G),

F \KB(F,K) ⊂
⋃

T∈T g,T⊂F

T.

In fact, if we take h ∈ F \ KB(F,K), then by the definition of B(F,K) we see that

KK−1h ⊂ F . Since T g is a tiling of G, we have h ∈ Scg for some S ∈ ST and some

c ∈ C(S). This implies cgh−1 ∈ S−1. It follows that Scg = S(cgh−1)h ⊂ SS−1h ⊂

KK−1h ⊂ F . So we get h ∈ Scg ⊂ F . Therefore h ∈
⋃

T∈T g,T⊂F T . This proves our

claim. Thus, by this claim we deduce
∣∣∣

⋃

T∈T g,T⊂F

T
∣∣∣ ≥ |F \KB(F,K)| ≥ |F | − |K| · |B(F,K)| > (1− ǫ)|F |.

�

Proposition 2.3. Suppose that T is a syndetic finite tiling of G and ST is a set of shapes

of T . Then for any n ∈ N there exist K ∈ F(G) and ǫ > 0 such that for every S ∈ ST

and every (K, ǫ)-invariant F ∈ F(G), F contains at least n T -tiles of the shape S.

Proof. Without loss of generality, we assume that every shape S ∈ ST contains the identity

element e of G (replacing S by Ss−1 for some s ∈ S if necessary).

We claim that there exist K ′ ∈ F(G) and ǫ′ > 0 such that every (K ′, ǫ′)-invariant finite

subset of G contains a T -tile of the shape S for each S ∈ ST . In fact, since ST is a

finite set, there exists R ∈ F(G) with e ∈ R, which does not depend on S, such that

RC(S) = G, and therefore RSC(S) = G, for all S ∈ ST . Set T =
⋃

ST
S. Let 0 < ǫ′ < 1
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and K ′ = RTT−1R−1. Since e ∈ K ′, for any (K ′, ǫ′)-invariant F ∈ F(G) there is g ∈ F

with K ′g ⊂ F . Thus, for any S ∈ ST we have g ∈ RSc for some c ∈ C(S), and hence

Sc ⊂ RSc ⊂ RSS−1R−1g ⊂ K ′g ⊂ F.

This shows the claim.

Now let us fix n ∈ N. We take A ∈ F(G) which is (K ′, ǫ′)-invariant and choose

g1, g2, . . . , gn ∈ G such that Ag1, Ag2, . . . , Agn are pairwise disjoint. Let K =
⋃n

j=1Agj

and 0 < ǫ < 1. We may assume that K contains the identity element of G. Then for

any (K, ǫ)-invariant F ∈ F(G) there exists some g ∈ F such that Kg ⊂ F , and hence

Agjg ⊂ F for all 1 ≤ j ≤ n. Since A is (K ′, ǫ′)-invariant, we have for every 1 ≤ j ≤ n

that Agjg is (K ′, ǫ′)-invariant as well, and hence contains a T -tile of the shape S for each

S ∈ ST . Thus, F contains at least n T -tiles of the shape S for every S ∈ ST . �

2.3. Topological dimension and mean dimension. LetX be a compact metric space,

ρ a metric on X , and P a polyhedron. For ǫ > 0, a continuous mapping f : X → P

is called an ǫ-embedding with respect to ρ if f(x) = f(y) implies ρ(x, y) < ǫ, for all

x, y ∈ X . Let Widimǫ(X, ρ) be the minimum dimension of a polyhedron P such that

there is an ǫ-embedding f : X → P . Recall that the topological dimension of X may

be recovered by

dim(X) = lim
ǫ→0

Widimǫ(X, ρ).

Let K be a compact metric space with a metric d. For every n ∈ N we equip the space

Kn with the product topology and define a compatible metric dl∞ on Kn by

(2.2) dl∞ ((x1, x2, . . . , xn), (y1, y2, . . . , yn)) = max
1≤i≤n

d(xi, yi).

We include here a practical theorem.

Theorem 2.4 ([LW00, Lemma 3.2]). For any 0 < ǫ < 1 and any n ∈ N we have

Widimǫ ([0, 1]
n, dl∞) = n.

In particular, dim ([0, 1]n) = n.

Let (X,G) be a G-action and d a metric on X . For F ∈ F(G) and x, y ∈ X we set

dF (x, y) = max
g∈F

d(gx, gy).

The mean dimension of (X,G) is defined by

mdim(X,G) = lim
ǫ→0

lim
n→∞

Widimǫ(X, dFn
)

|Fn|
,
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where {Fn}
∞
n=1 is a Følner sequence of G. It is well known that the limit in the above

definition always exists9, and the value mdim(X,G) is independent of the choice of a

Følner sequence of G.

3. A constructive proof of Theorem 1.3

The proof of Theorem 1.3 consists of four parts. Part 1 is dedicated to the construction,

while Parts 2,3,4 are devoted to the argument that the G-action we constructed satisfies

all the required conditions. The title of each part indicates the precise aim of the part.

Let us start with necessary settings. We denote by D3 the discrete space consisting of

three points and by P the cone of D3, namely,

P = ([0, 1]×D3)/ ∼,

where (0, a) ∼ (0, b) for all a, b ∈ D3. Obviously, dim(P ) = 1. Throughout this section,

we let d be the graph distance on P with all three edges having length one and dl∞ the

metric on P n defined by (2.2) for n ∈ N. We include a topological embedding result as

follows.

Theorem 3.1 ([LT14, Proposition 2.5]). For every ǫ ∈ (0, 1), there does not exist an

ǫ-embedding of (P n, dl∞) into R
2n−1 for any n ∈ N.

We make use of a recent result on tilings of amenable groups.

Theorem 3.2 ([DHZ19, Theorem 5.2],[Dou17, Theorem 3.6]). Let G be an infinite count-

able amenable group with the identity element e, {Tk}
∞
k=1 ⊂ F(G) an increasing sequence

with
⋃∞

k=1 Tk = G, and {ǫk}
∞
k=1 a decreasing sequence of positive numbers converging to

zero. Then there exists a primely congruent sequence {Tk}
∞
k=1 of syndetic10 finite tilings

of G satisfying the following conditions:

(1) e ∈ S1,1 ⊂ S2,1 ⊂ · · · ⊂ Sk,1 ⊂ · · · ⊂
⋃∞

k=1 Sk,1 = G;

(2) for every k ∈ N and every 1 ≤ i ≤ mk, Sk,i is (Tk, ǫk)-invariant;

where for each k ∈ N, {Sk,i : 1 ≤ i ≤ mk} is the set of all shapes of Tk.

Let G = {gk : k ∈ N} be an infinite countable discrete amenable group whose iden-

tity element is denoted by e. Take a decreasing sequence {ηn}
∞
n=1 of positive numbers

converging to zero and an increasing sequence {An}
∞
n=1 ⊂ F(G) with

⋃∞
n=1An = G. By

9The existence of the inner limit is due to the Ornstein–Weiss theorem (see [LW00, Theorem 6.1]).

The outer limit exists because Widimǫ(X, dFn
) is monotone with respect to ǫ.

10The term “syndetic” here corresponds to the term “irreducible” in [Dou17].
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Theorem 3.2, there exists a primely congruent sequence {Tn}
∞
n=1 of syndetic finite tilings

of G with the sets of shapes STn = {Sn,i : 1 ≤ i ≤ mn} satisfying that

e ∈ S1,1 ⊂ S2,1 ⊂ · · · ⊂ Sn,1 ⊂ · · · ⊂
∞⋃

n=1

Sn,1 = G, e ∈ C(Sn,1),

and that Sn,i is (An, ηn)-invariant for every n ∈ N and every 1 ≤ i ≤ mn.

Without loss of generality, we may assume d = 1 in the statement of Theorem 1.3

(otherwise, we replace P by P d in our argument). We are going to construct a required

G-action, which is a subshift of the full G-shift on PG. We denote it by (X, σ).

Let ρ and ρ′ be the metrics on PG and [0, 1]G, respectively, defined by (2.1). Let

{δn}
∞
n=1 be a strictly decreasing sequence of positive numbers converging to zero. Take

an increasing sequence {Pn}
∞
n=1 of finite subsets of P such that for each n ∈ N, Pn is

δn-dense in P . Let {Fn}
∞
n=1 ⊂ F(G) be an increasing sequence with

⋃∞
n=1 Fn = G.11 We

take a symbol ∗ /∈ P and set P̂ = P ∪ {∗}.

Part 1: Construction of (X, σ). The construction of (X, σ) will be completed by

induction.

Step 1. We choose n1 ∈ N sufficiently large so that for every 1 ≤ i ≤ mn1 there is

x1,i ∈ P̂ Sn1,i with

1 + δ1
2

<
|x1,i(Sn1,i, ∗)|

|Sn1,i|
≤

1 + δ1
2

+
1

|Sn1,i|
.

Let

B1,i =
{
x = (xg)g∈Sn1,i

∈ P Sn1,i : xg = (x1,i)g, ∀g ∈ Sn1,i \ x1,i(Sn1,i, ∗)
}
.

We define x1 ∈ P̂G by

x1|Sn1,i
c = x1,i, ∀1 ≤ i ≤ mn1 , ∀c ∈ C(Sn1,i).

We set

X1 =
{
x ∈ PG : x|Sn1,i

c ∈ B1,i, ∀1 ≤ i ≤ mn1 , ∀c ∈ C(Sn1,i)
}
.

Step 2. Applying Proposition 2.3, we choose l1 ∈ N sufficiently large such that we can

find a finite subset R1 ⊂ C(Sn1,1) and h1 ∈ C(Sn1,1) satisfying

e ∈ R1, h1 /∈ R1, Sn1,1R1 ∪ Sn1,1h1 ⊂ Sl1,1, |R1| = |P1|
|x1,1(Sn1,1,∗)|.

We select w1 ∈ P̂ Sl1,1 such that Conditions (A.2.1), (A.2.2), (A.2.3) are satisfied:

(A.2.1) w1|Sn1,1r\x1,1(Sn1,1,∗)r
= x1,1|Sn1,1\x1,1(Sn1,1,∗)

, ∀r ∈ R1;

11Note that {Fn}
∞

n=1 will play a role in the proof different from {An}
∞

n=1, although {Fn}
∞

n=1 could be,

of course, the same as {An}∞n=1.
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(A.2.2) w1|x1,1(Sn1,1,∗)r
∈ P

|x1,1(Sn1,1,∗)|
1 (r ∈ R1) are pairwise distinct, i.e.12

{
w1|x1,1(Sn1,1,∗)r

: r ∈ R1

}
= P

|x1,1(Sn1,1,∗)|
1 ;

(A.2.3) if Sn1,ic ⊂ Sl1,1 \ Sn1,1R1 for some 1 ≤ i ≤ mn1 and some c ∈ C(Sn1,i) then

w1|Sn1,i
c = x1,i.

Clearly,

w1|Sn1,1h1 = x1,1, w1|Sn1,1
∈ B1,1 ⊂ P Sn1,1 .

We pick n2 ∈ N sufficiently large such that Conditions (B.2.1), (B.2.2), (B.2.3), (B.2.4)

are satisfied:

(B.2.1) g1h1 ∈ Sn2,1;

(B.2.2) |F1Sn2,1| < (1 + δ2) · |Sn2,1|;

(B.2.3) for every 1 ≤ i ≤ mn2 , there is c1,i ∈ C(Sl1,1) such that Sl1,1c1,i ⊂ Sn2,i, and

moreover, c1,1 = e;

(B.2.4) for every 1 ≤ i ≤ mn2 , |Sl1,1| is negligible compared with |Sn2,i|, more precisely,

|x1(Sn2,i \ Sl1,1c1,i, ∗)|

|Sn2,i|
>

1 + δ1
2

, ∀1 ≤ i ≤ mn2.

For every 1 ≤ i ≤ mn2 we choose x2,i ∈ P̂ Sn2,i such that Conditions (C.2.1), (C.2.2),

(C.2.3) are satisfied:

(C.2.1) x2,i|Sl1,1
c1,i = w1;

(C.2.2) if Sn1,jc ⊂ Sn2,i \ Sl1,1c1,i for some 1 ≤ j ≤ mn1 and some c ∈ C(Sn1,j) then

(x2,i)gc = (x1,j)g, ∀g ∈ Sn1,j \ x1,j(Sn1,j, ∗);

(C.2.3) on the rest of coordinates in Sn2,i \ Sl1,1c1,i, there are appropriately many ∗’s such

that
1 + δ2

2
<

|x2,i(Sn2,i, ∗)|

|Sn2,i|
≤

1 + δ2
2

+
1

|Sn2,i|
.

Let

B2,i =
{
x = (xg)g∈Sn2,i

∈ P Sn2,i : xg = (x2,i)g, ∀g ∈ Sn2,i \ x2,i(Sn2,i, ∗)
}
.

We define x2 ∈ P̂G by

x2|Sn2,i
c = x2,i, ∀1 ≤ i ≤ mn2 , ∀c ∈ C(Sn2,i).

We set

X2 =
{
x ∈ PG : x|Sn2,i

c ∈ B2,i, ∀1 ≤ i ≤ mn2 , ∀c ∈ C(Sn2,i)
}
.

12Precisely speaking, here (as well as in (A.k.2)) when we compare two “vectors”, say, w1|x1,1(Sn1,1
,∗)

and w1|x1,1(Sn1,1,∗)r, we agree that their “coordinates” correspond synchronously under the right-

multiplication with r taken within R1, i.e. w1|x1,1(Sn1,1
,∗) = w1|x1,1(Sn1,1,∗)r if and only if (w1)g =

(w1)gr ∈ P1 for all g ∈ x1,1(Sn1,1, ∗).
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To proceed, we assume that xk−1,i, Bk−1,i (1 ≤ i ≤ mnk−1
), xk−1 and Xk−1 have been

already generated in Step (k − 1). Now we generate xk,i, Bk,i (1 ≤ i ≤ mnk
), xk and Xk

in Step k (k ≥ 2).

Step k. By Proposition 2.3, we take lk−1 ∈ N large enough such that we can find a

finite subset Rk−1 ⊂ C(Snk−1,1) and hk−1 ∈ C(Snk−1,1) satisfying

e ∈ Rk−1, hk−1 /∈ Rk−1, Snk−1,1Rk−1 ∪ Snk−1,1hk−1 ⊂ Slk−1,1,

|Rk−1| = |Pk−1|
|xk−1,1(Snk−1,1

,∗)|.

We select wk−1 ∈ P̂ Slk−1,1 such that Conditions (A.k.1), (A.k.2), (A.k.3) are satisfied:

(A.k.1) wk−1|Snk−1,1
r\xk−1,1(Snk−1,1

,∗)r = xk−1,1|Snk−1,1
\xk−1,1(Snk−1,1

,∗), ∀r ∈ Rk−1;

(A.k.2) wk−1|xk−1,1(Snk−1,1
,∗)r ∈ P

|xk−1,1(Snk−1,1
,∗)|

k−1 (r ∈ Rk−1) are pairwise distinct, i.e.
{
wk−1|xk−1,1(Snk−1,1

,∗)r : r ∈ Rk−1

}
= P

|xk−1,1(Snk−1,1
,∗)|

k−1 ;

(A.k.3) if Snk−1,ic ⊂ Slk−1,1 \ Snk−1,1Rk−1 for some 1 ≤ i ≤ mnk−1
and some c ∈ C(Snk−1,i)

then

wk−1|Snk−1,i
c = xk−1,i.

Obviously,

wk−1|Snk−1,1
hk−1

= xk−1,1, wk−1|Snk−1,1
∈ Bk−1,1 ⊂ P Snk−1,1.

We pick nk ∈ N sufficiently large such that Conditions (B.k.1), (B.k.2), (B.k.3), (B.k.4)

are satisfied:

(B.k.1) gk−1h1h2 · · ·hk−1 ∈ Snk,1;

(B.k.2) |Fk−1Snk,1| < (1 + δk) · |Snk,1|;

(B.k.3) for every 1 ≤ i ≤ mnk
, there is ck−1,i ∈ C(Slk−1,1) such that Slk−1,1ck−1,i ⊂ Snk,i,

and moreover, ck−1,1 = e;

(B.k.4) for every 1 ≤ i ≤ mnk
, |Slk−1,1| is negligible compared with |Snk,i|, more precisely,

|xk−1(Snk,i \ Slk−1,1ck−1,i, ∗)|

|Snk,i|
>

1 + δk−1

2
, ∀1 ≤ i ≤ mnk

.

For every 1 ≤ i ≤ mnk
we choose xk,i ∈ P̂ Snk,i such that Conditions (C.k.1), (C.k.2),

(C.k.3) are satisfied:

(C.k.1) xk,i|Slk−1,1
ck−1,i

= wk−1;

(C.k.2) if Snk−1,jc ⊂ Snk,i \ Slk−1,1ck−1,i for some 1 ≤ j ≤ mnk−1
and some c ∈ C(Snk−1,j)

then

(xk,i)gc = (xk−1,j)g, ∀g ∈ Snk−1,j \ xk−1,j(Snk−1,j, ∗);

(C.k.3) on the rest of coordinates in Snk,i \ Slk−1,1ck−1,i, there are appropriately many ∗’s

such that
1 + δk

2
<

|xk,i(Snk,i, ∗)|

|Snk,i|
≤

1 + δk
2

+
1

|Snk,i|
.
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Let

Bk,i =
{
x = (xg)g∈Snk,i

∈ P Snk,i : xg = (xk,i)g, ∀g ∈ Snk,i \ xk,i(Snk,i, ∗)
}
.

We define xk ∈ P̂G by

xk|Snk,ic = xk,i, ∀1 ≤ i ≤ mnk
, ∀c ∈ C(Snk,i).

We set

Xk =
{
x ∈ PG : x|Snk,ic ∈ Bk,i, ∀1 ≤ i ≤ mnk

, ∀c ∈ C(Snk,i)
}
.

So far we have already generated xk,i, Bk,i (1 ≤ i ≤ mnk
), xk and Xk in Step k for

all k ∈ N. It follows from our construction that {Xk}
∞
k=1 is a decreasing sequence of

nonempty subsets of PG, and

xk+1|Snk,1 = xm|Snk,1 , ∀k ∈ N, ∀m ≥ k + 1.

Now by the fact
⋃∞

k=1 Snk,1 = G we observe that if a point x belongs to the intersection⋂∞
k=1Xk then the value xg ∈ P (g ∈ G) for all its coordinates must be determined

eventually according to our construction. Thus, the intersection
⋂∞

k=1Xk contains in fact

only one point. We set
∞⋂

k=1

Xk = {z}.

Finally, we let X ⊂ PG be the orbit closure of z, i.e.

X = Gz = {gz : g ∈ G}.

Since X is a closed subset of PG and is invariant under the G-shift, (X, σ) becomes a

subshift of (PG, σ). This eventually finishes the construction of (X, σ). Now we check

that (X, σ) satisfies all the required properties.

Part 2: Minimality of (X, σ). To show that (X, σ) is minimal, it suffices to prove that

the point z ∈ X is almost periodic, i.e. for any ǫ > 0 there exists a syndetic subset S = Sǫ

of G with

ρ(z, cz) < ǫ, ∀c ∈ S.

To see the latter statement, we fix ǫ > 0 arbitrarily. Since Sk,1 is increasing over k ∈ N

and eventually covers the group G, there exists m ∈ N such that

x|Snm,1 = x′|Snm,1 implies ρ(x, x′) < ǫ.

Since the tiling Tnm+1 is syndetic, C(Snm+1,1) is syndetic. By the definition of z in the

construction, we have

z|Snm,1 = z|Snm,1c, ∀c ∈ C(Snm+1,1)

i.e.

z|Snm,1 = (cz)|Snm,1, ∀c ∈ C(Snm+1,1).
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It follows that

ρ(z, cz) < ǫ, ∀c ∈ C(Snm+1,1).

Thus, we end this part with taking S = C(Snm+1,1).

Part 3: Mean dimension of (X, σ). The aim of this part is to prove

mdim(X, σ) =
1

2
.

The following well-known proposition is a useful tool for an upper bound of mean

dimension of subshifts. We reproduce its proof for completeness.

Proposition 3.3. Let K be a finite dimensional compact metric space and (X, σ) a sub-

shift of (KG, σ). Then

mdim(X, σ) ≤ lim inf
n→∞

dim(πFn
(X))

|Fn|

for any Følner sequence {Fn}
∞
n=1 of G.

Proof. Let ρ be the metric on KG defined by (2.1). Fix a Følner sequence {Fn}
∞
n=1 of G

and take ǫ, δ > 0. We choose A ∈ F(G) containing the identity element of G such that if

two points x, y ∈ KG satisfy x|A = y|A then ρ(x, y) < ǫ. It follows that for any x, y ∈ KG

and n ∈ N, if x|AFn
= y|AFn

(i.e. πAFn
(x) = πAFn

(y)) then ρFn
(x, y) < ǫ. Thus, for any

n ∈ N,

(πAFn
)|X : X → πAFn

(X)

is an ǫ-embedding with respect to the metric ρFn
, and therefore

Widimǫ(X, ρFn
) ≤ dim(πAFn

(X)).

By noting that

πAFn
(X) ⊂ πFn

(X)×KAFn\Fn

we have

Widimǫ(X, ρFn
) ≤ dim(πAFn

(X)) ≤ dim(πFn
(X)) + |AFn \ Fn| · dim(K)

for all n ∈ N.

Take a sufficiently large N ∈ N such that

|AFn \ Fn|

|Fn|
<

δ

dim(K) + 1
,

for all n ≥ N . Then

lim
n→∞

Widimǫ(X, ρFn
)

|Fn|
≤ lim inf

n→∞

dim(πFn
(X))

|Fn|
+ lim sup

n→∞

|AFn \ Fn|

|Fn|
dim(K)

≤ lim inf
n→∞

dim(πFn
(X))

|Fn|
+ δ.
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Since δ > 0 is arbitrary,

lim
n→∞

Widimǫ(X, ρFn
)

|Fn|
≤ lim inf

n→∞

dim(πFn
(X))

|Fn|
.

Letting ǫ → 0, we end the proof. �

To estimate mdim(X, σ) from above, we fix k ∈ N and ǫ > 0 arbitrarily. We denote by

X̃k the subshift of PG generated by Xk, namely,

X̃k = GXk =
⋃

g∈G

gXk.

Take a Følner sequence {En}
∞
n=1 of G. By Proposition 2.2, there exists N0 ∈ N sufficiently

large such that for any n ≥ N0, the union of Tnk
g-tiles which are contained in En has

proportion larger than 1− ǫ for all g ∈ G, i.e.

|
⋃

T∈Tnk
g,T⊂En

T |

|En|
> 1− ǫ, ∀n ≥ N0, ∀g ∈ G.

For any n ≥ N0 we divide G into Ln,k classes Q1, Q2, . . . , QLn,k
such that if g, h ∈ Qi for

some 1 ≤ i ≤ Ln,k then

Tnk
g|En

= Tnk
h|En

,

where Tnk
g|En

= {Tg∩En : T ∈ Tnk
}. Since En is finite, Ln,k is a finite number. For each

1 ≤ i ≤ Ln,k we take qi ∈ Qi. For every n ≥ N0 and every 1 ≤ i ≤ Ln,k, there is jn,i ∈ N

such that

Tnk
qi|En

=
{
Snk,pn,1cn,1qi, Snk,pn,2cn,2qi, . . . , Snk,pn,jn,i

cn,jn,i
qi, An,i

}

for some 1 ≤ pn,l ≤ mnk
, cn,l ∈ C(Snk,pn,l

) (1 ≤ l ≤ jn,i) and some An,i ⊂ En with

|An,i|/|En| < ǫ. By the construction of X̃k,

πEn
(X̃k) ⊂

⋃

1≤i≤Ln,k

Bk,pn,1 × Bk,pn,2 × · · · × Bk,pn,jn,i
× PAn,i, ∀n ≥ N0.

Thus, we have

dim(πEn
(X̃k))

|En|
≤ max

1≤i≤Ln,k

dim(Bk,pn,1 × Bk,pn,2 × · · · ×Bk,pn,jn,i
× PAn,i)

|En|

≤ max
1≤i≤Ln,k

∑
1≤l≤jn,i

dim(Bk,pn,l
) + |An,i|

|En|

≤ max
1≤i≤Ln,k

∑
1≤l≤jn,i

(
(1 + δk)/2 + 1/|Snk,pn,l

|
)
· |Snk,pn,l

|

|En|
+ ǫ

<
1 + δk

2
+

1

min{|Snk,j| : 1 ≤ j ≤ mnk
}
+ ǫ
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for all n ≥ N0. By Proposition 3.3, we obtain

mdim(X̃k, σ) ≤
1 + δk

2
+

1

min{|Snk,j | : 1 ≤ j ≤ mnk
}
+ ǫ.

Since k ∈ N and ǫ > 0 are arbitrary, and since

mdim(X, σ) ≤ mdim(X̃k, σ)

for all k ∈ N, it follows that

mdim(X, σ) ≤ lim
k→∞

(
1 + δk

2
+

1

min{|Snk,j| : 1 ≤ j ≤ mnk
}

)
=

1

2
.

In order to show

mdim(X, σ) ≥
1

2
,

we need more preparations. Set

T1 = Sn1,1, Tk = Snk,1h
−1
k−1 · · ·h

−1
1 , ∀k ≥ 2.

Since {Snk,1}
∞
k=1 is a Følner sequence of G, so is the sequence {Tk}

∞
k=1. According to the

choice of lk, we have

Snk,1 ⊂ Slk,1h
−1
k ⊂ Snk+1,1h

−1
k , ∀k ∈ N.

It follows that

Tk = Snk,1h
−1
k−1 · · ·h

−1
1 ⊂ Snk+1,1h

−1
k h−1

k−1 · · ·h
−1
1 = Tk+1, ∀k ∈ N.

By (B.k.1),

gk ∈ Snk+1,1h
−1
k · · ·h−1

1 = Tk+1, ∀k ∈ N.

Therefore {Tk}
∞
k=1 is an increasing Følner sequence of G with

∞⋃

k=1

Tk = G.

Set

J1 = {g ∈ Sn1,1 : (x1,1)g = ∗},

Jk = {g ∈ Snk,1 : (xk,1)g = ∗}h−1
k−1 · · ·h

−1
1 , ∀k ≥ 2.

It follows from (A.k.3), (B.k.3), (C.k.1) that

{g ∈ Snk,1 : (xk,1)g = ∗}hk ⊂
{
g ∈ Snk+1,1 : (xk+1,1)g = ∗

}
, ∀k ∈ N.

Thus,

Jk ⊂ Jk+1, ∀k ∈ N.

Let

J =

∞⋃

k=1

Jk.
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Lemma 3.4. For any u, v ∈ P J we can find x, y ∈ X such that

x|J = u, y|J = v, x|G\J = y|G\J .

Proof. Take u = (ug)g∈J ∈ P J . For every k ∈ N we define uk ∈ Bk,1 ⊂ P Snk,1 by

(uk)g =




(xk,1)g, g ∈ Snk,1 \ Jkh1 · · ·hk−1,

ugh−1
k−1···h

−1
1
, g ∈ Jkh1 · · ·hk−1.

For each m ∈ N we take um = (um
g )g∈J ∈ P J

m such that

lim
m→∞

um
g = ug,

13 ∀g ∈ J.

For every k ∈ N and every m ∈ N we define um
k ∈ Bk,1 ⊂ P Snk,1 by

(um
k )g =




(xk,1)g, g ∈ Snk,1 \ Jkh1 · · ·hk−1,

um

gh−1
k−1···h

−1
1

, g ∈ Jkh1 · · ·hk−1.

Clearly,

lim
m→∞

um
k = uk, ∀k ∈ N.

Since

xk,1 = xk+1,1|Snk,1hk
= xk+2,1|Snk,1hkhk+1

= · · · = xm,1|Snk,1hkhk+1···hm−1 , ∀m > k ≥ 1,

we have

xk,1(Snk,1, ∗)hkhk+1 · · ·hm−1 ⊂ xm,1(Snm,1, ∗), ∀m > k ≥ 1.

It follows that

P
xk,1(Snk,1,∗)

k ⊂
{
xm+1,1|xk,1(Snk,1,∗)hkhk+1···hm−1r : r ∈ Rm

}
, ∀m > k ≥ 1.

Thus, for every m > k ≥ 1 there is some rk,m ∈ Rm such that

um
k = xm+1,1|Snk,1hk···hm−1rk,m

= z|Snk,1hk···hm−1rk,m

= (hk · · ·hm−1rk,mz)|Snk,1 .

Notice that for any k ∈ N, the limit of the sequence {hk · · ·hm−1rk,mz}
∞
m=1 exists. We

assume

lim
m→∞

hk · · ·hm−1rk,mz = z′k, ∀k ∈ N.

Clearly,

z′k ∈ X, uk = z′k|Snk,1, ∀k ∈ N.

Note that

(h1 · · ·hk−1z
′
k)|Jk = z′k|Jkh1···hk−1

= uk|Jkh1···hk−1
= u|Jk , ∀k ∈ N.

13We mean limm→∞ d(um
g , ug) = 0.
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Let

x = lim
k→∞

h1 · · ·hk−1z
′
k ∈ X.

We have

x|J = u.

For the moment let us take an arbitrary g ∈ G\J . We recall here that Snk,1h
−1
k−1 · · ·h

−1
1 =

Tk and Jk are increasing over k ∈ N, and eventually cover G and J , respectively. So there

is some l(g) ∈ N satisfying

g ∈ Snk,1h
−1
k−1 · · ·h

−1
1 \ Jk, ∀k ≥ l(g).

Since for every k ≥ l(g) it holds that

(h1 · · ·hk−1z
′
k)|Snk,1h

−1
k−1···h

−1
1 \Jk

= z′k|Snk,1\(Jkh1···hk−1)

= uk|Snk,1\(Jkh1···hk−1)

= xk,1|Snk,1\(Jkh1···hk−1)

= z|Snk,1\(Jkh1···hk−1),

by letting k → ∞ we get

xg = zgh1···hl(g)−1
.

Since g ∈ G \ J is arbitrary,

x|G\J = (zgh1···hl(g)−1
)g∈G\J .

Now we take v ∈ P J . Following the same procedure, we find y ∈ X such that y|J = v

and

y|G\J = (zgh1···hl(g)−1
)g∈G\J = x|G\J .

This completes the proof. �

Lemma 3.5. For every k ∈ N there is a continuous mapping

fk : (P Jk , dl∞) → (X, ρTk
)

such that

dl∞(u, v) ≤ ρTk
(fk(u), fk(v)), ∀u, v ∈ P Jk .

Proof. We fix k ∈ N. We take a point p ∈ P . For every u = (ug)g∈Jk ∈ P Jk we define

u′ ∈ P J by

(u′)g =




ug, g ∈ Jk,

p, g ∈ J \ Jk.

Applying Lemma 3.4 to u′ ∈ P J , there exists x(u′) ∈ X such that

x(u′)|J = u′.



18 LEI JIN, KYEWON KOH PARK, AND YIXIAO QIAO

We define a mapping as follows:

fk : P
Jk → X, u 7→ x(u′).

Notice that for any u, v ∈ P Jk ,

fk(u)|G\J = fk(v)|G\J , fk(u)|Jk = u, fk(v)|Jk = v,

fk(u)|J\Jk = u′|J\Jk = v′|J\Jk = fk(v)|J\Jk .

Thus, fk is continuous. Moreover,

ρTk
(fk(u), fk(v)) = max

h∈Tk

ρ (hfk(u), hfk(v))

= max
h∈Tk

∑

g∈G

αgd (fk(u)gh, fk(v)gh)

≥ max
h∈Tk

d (fk(u)h, fk(v)h) (since αe = 1)

≥ max
h∈Jk

d (fk(u)h, fk(v)h) (since Jk ⊂ Tk)

= max
h∈Jk

d (uh, vh)

= dl∞ (u, v) .

�

We are now able to deal with mdim(X, σ) from below. By Lemma 3.5, we know that

for any ǫ > 0 and any k ∈ N,

Widimǫ (X, ρTk
) ≥ Widimǫ

(
P Jk , dl∞

)
.

By Theorem 2.4 and the fact that [0, 1] ⊂ P 14, we have

mdim(X, σ) = lim
ǫ→0

lim
k→∞

Widimǫ (X, ρTk
)

|Tk|

≥ lim
ǫ→0

lim
k→∞

Widimǫ

(
P Jk , dl∞

)

|Tk|

≥ lim
ǫ→0

lim
k→∞

Widimǫ

(
[0, 1]Jk , dl∞

)

|Tk|

= lim
k→∞

|Jk|

|Tk|
.

It follows from (C.k.3) that

1 + δk
2

<
|xk,1(Snk,1, ∗)|

|Snk,1|
=

|Jk|

|Tk|
≤

1 + δk
2

+
1

|Tk|
.

14Strictly speaking, [0, 1] is topologically embedded in P .
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Since k ∈ N is arbitrary, we obtain

lim
k→∞

|Jk|

|Tk|
=

1

2
.

Thus, mdim(X, σ) ≥ 1/2.

So we finally conclude

mdim(X, σ) =
1

2
.

Part 4: (X, σ) cannot be embedded in the full G-shift on [0, 1]G. We shall denote

by ([0, 1]G, σ′) the full G-shift on [0, 1]G. To complete the whole proof, it remains to show

that (X, σ) cannot be embedded in ([0, 1]G, σ′).

Recall that ρ and ρ′ are the metrics on PG and [0, 1]G, respectively. We assume that

there is an embedding

f : (X, σ) → ([0, 1]G, σ′).

The paper will end with a contradiction.

As f−1 : f(X) → X is a homeomorphism, we fix ǫ > 0 such that

ρ′(f(x), f(y)) < ǫ implies ρ(x, y) <
1

3
, ∀x, y ∈ X.

Since f ◦ σ = σ′ ◦ f , we deduce that

ρ′Tk
(f(x), f(y)) < ǫ implies ρTk

(x, y) <
1

3
, ∀k ∈ N, ∀x, y ∈ X.

We take N ∈ N sufficiently large such that

x|FN
= y|FN

implies ρ′(x, y) < ǫ, ∀x, y ∈ [0, 1]G.

It follows that

x|FNTk
= y|FNTk

implies ρ′Tk
(x, y) < ǫ, ∀k ∈ N, ∀x, y ∈ [0, 1]G.

For any k ∈ N we let

πFNTk
: [0, 1]G → [0, 1]FNTk

be the canonical projection mapping. Consider the mapping

πFNTk
◦ f : (X, ρTk

) → [0, 1]FNTk .

Clearly, πFNTk
◦f : (X, ρTk

) → [0, 1]FNTk is a (1/3)-embedding for every k ∈ N. By Lemma

3.5, we deduce that

πFNTk
◦ f ◦ fk : (P

Jk , dl∞) → [0, 1]FNTk

becomes a (1/3)-embedding for every k ∈ N. It follows from Theorem 3.1 that

|FNTk| ≥ 2|Jk|, ∀k ∈ N.
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However, by (B.k.2) and (C.k.3) we have

(1 + δk) · |Snk,1| < 2|Jk| ≤ |FNTk| = |FNSnk,1| ≤ |Fk−1Snk,1| < (1 + δk) · |Snk,1|

for all k > N , a contradiction. Thus, we conclude.
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