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Abstract: In this study, we report a low cost, fast and unexplored electrochemical synthesis strategy
of copper oxide nanoneedles films as well as their morphological and chemical characterization.
The nanostructured films were prepared using electrochemical anodization in alkaline electrolyte
solutions of ethylene glycol, water and fluoride ions. The film morphology shows nanoneedle-
shaped structures, with lengths up to 1–2 µm; meanwhile, high-resolution X-ray photoelectron
spectroscopy (HRXPS) and spectroscopy Raman analyses indicate that a mixture of Cu(II) and Cu(I)
oxides, or only Cu(I) oxide, is obtained as the percentage of water in the electrolyte solution decreases.
A preliminary study was also carried out for the photocatalytic degradation of the methylene blue
(MB) dye under irradiation with simulated sunlight in the presence of the nanoneedles obtained,
presenting a maximum degradation value of 88% of MB and, thus, demonstrating the potential
characteristics of the material investigated in the degradation of organic dyes.

Keywords: electrosynthesis; CuO/Cu2O nanoneedles; photodegradation

1. Introduction

The obtention of the nanostructures of different materials has been a subject of increas-
ing interest in the last decade due to their novel physicochemical properties that allow
their application in fields such as medicine, acoustics, optoelectronics, photonics, sensors
and electrocatalysts [1–4]. Commonly, nanostructures can be present in various geometries
such as wires, rods, points, pores and tubes, among others [4,5].

In addition, nanomaterials produce interesting physical phenomena such as pho-
toluminescence, which make them attractive for the manufacture of electronic devices.
The high surface area of these materials could improve the performance of luminescent
modules, piezoelectric transducers, semiconductor electrodes, chemical sensors and electro-
catalysts [2,5,6]. The most studied nanostructures in the last few years correspond to carbon
nanotubes [6], titanium dioxide nanotubes [7] and copper oxides nanostructures [8–10].
Among them, copper oxide-based nanomaterials attract attention due to its non-toxic
nature, low cost and their low bandgap values of 1.2 to 1.8 eV and 1.8 to 2.5 eV for CuO
and Cu2O, respectively [11]. Additionally, their conduction and valence bands are close
to the water reduction and oxidation potentials, respectively, thus allowing the oxide film
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to produce hydrogen by direct water photolysis without the need for the application of
an external potential. These properties make CuO and Cu2O very promising materials for
use in converters of solar energy into electrical energy through the design of CuO-based
solar cells [12,13] as well as in water photolysis. However, the absorption profile of CuO is
rather weak in most of the visible range [14], which implies that if an electrode formed by a
smooth CuO film is subjected to solar irradiation, a significant part of the photogenerated
charge carriers within the material are lost in recombination processes [15,16]. Neverthe-
less, as has been demonstrated for other materials such as GaP and SiC [17,18], the use of
electrodes composed of nanostructured CuO or Cu2O films, could solve this problem. For
nanoporous structures, the charge carriers are photogenerated at a small distance from
the semiconductor/electrolyte interface, which, in turn, promotes the separation of charge
carriers more efficiently [18], while light absorption is reinforced through dispersion [17].

Currently, several methods for obtaining copper oxide-based nanostructures have
been widely reported in the literature. In this, the thermal oxidation of metallic copper
at high temperatures stands out [19,20], the growth assisted by templates [21,22], the use
of colloidal methods [23,24] and using electrochemical anodization techniques. However,
high-temperature processes generally limit the control over the interfacial characteristics of
copper oxides thin films, which significantly affect their optical and photoelectrochemical
properties [25]. Furthermore, the use of templates and routes of colloidal synthesis are
generally characterized by obtaining copper oxides that have a low adhesion on the con-
ductive substrates, which limits their use or integration in electronic devices. Conversely,
electrochemical anodization is a surface treatment process that has been successfully used
to synthesize a wide variety of nanostructures using various metal substrates, such as
titanium, zinc, thallium and copper [26–31], and employing these films in various applica-
tions [32–36]. In particular, the preparation of copper oxide films by anodizing the metallic
copper used as a substrate is also the source of the copper ions that are subsequently
oxidized by the presence of water molecules composing the electrolyte solution and the
voltage applied to the medium [37]. In this context, various morphologies of anodized
copper oxide nanostructures, such as nanoneedles, nanorods, nanopores, nanowires and
nanoparticles, have been reported [38]. Among these reported morphologies, nanowires
stand out due to their high surface area, which increases the reactivity area of the ma-
terial [13,31]; this offers potential advantages for their integration in electronic devices
since they have a much more efficient electrical contact with the metal [13,31], for bio-
material applications or as a non-toxic photocatalyst, low cost and easy to obtain, for the
photodegradation of organic molecules, such as dyes and wastewater pollutants [13,31].
Although it has been reported to obtain copper oxide nanoneedles by anodization using an
electrolytic medium composed of KOH [31,39–41], in no case has an ethylene glycol-based
electrolyte medium been used in conjunction with fluoride ions [11,31,39–43]. Tello et al.,
during 2021, have reported that an electrolytic medium based on the mentioned chemical
compounds benefit the morphological order of anodized nanostructures, due to the high
viscosity of the solvent and the interference generated by the fluoride ions on the surface of
the copper layer during anodization [13,31]. In addition, only one of these studies has used
the anodization technique without subsequent heat treatment to dehydrate the Cu(OH)2
nanoneedles to CuO [41].

Effluents from the textile, plastic and paper industries contain colorants such as
methylene blue (MB) [44], which is a well-known toxic, mutagenic and carcinogenic dye.
For this reason, its elimination from wastewater is essential to minimize the effects on
aquatic life and the associated problems. In this regard, many conventional methods have
been developed for the removal of dyes from wastewater, such as ozonation, liquid–liquid
extraction, photodegradation, precipitation, membrane filtration, ion exchange, coagulation
and adsorption [45]. However, the advantage of photodegradation compared to these
techniques and others used to degrade dyes, such as degradation by algae, enzymes, metal
nanoparticles and electrochemistry, is that solar energy is used to produce the reaction
that will degrade the dye, which significantly reduces operating costs [46]. To perform the
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photocatalytic process, a semiconductor material with bandgap energy values Eg < 4 eV is
used, which favors the excitation of its valence electrons (VB) toward the conduction band
(CB) by means of a light energy source [47].

In this work, we report an unexplored electrochemical strategy synthesis of CuO/Cu2O
nanoneedles films as well as their chemical and morphological characterization. The an-
odization was performed in alkaline electrolyte mixtures of ethylene glycol, water and
fluoride ions. The film characterization was performed by means of Raman spectroscopy,
field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM),
transmission electron microscopy (TEM) and HRXPS. Additionally, the previously ob-
tained copper oxide nanostructures were used to perform a study of the photocatalytic
degradation of MB in aqueous solution.

2. Materials and Methods

Copper anodization was performed in an electrochemical cell with a two-electrode
configuration. The anode electrodes consisted of polycrystalline copper foils (Sigma Aldrich
(Spruce Street, LA, USA), 99.99% purity) of 250 µm in thickness (0.5 cm2 of exposed
geometric area) mounted in Teflon holders. A 0.5-centimeter-thick carbon sponge of
3.0 × 3.5 cm2 was used as a cathode electrode. Prior to anodization, the samples were
mechanically polished using a 0.05-micrometer alumina aqueous suspension and then,
degreased by sonication in a 50:50% acetone/ethanol mixture for 15 min. After cleaning,
the foils were rinsed with deionized water and dried under N2 flux. The anodization
was carried out at 5 ◦C by applying a voltage of 10 using a high-power source, for 180 s.
The electrolyte solution was prepared from analytical grade reagents and was based on
ethylene glycol + [0.5; 10]% v/v water, 0.1 M NaOH or 0.1 M KOH and 0.1% w/v NH4F
Merck (Darmstadt, Germany).

The morphology features of the nanostructured layers were characterized by FE-SEM
using a Carl Zeiss Sigma microscope (Oberkochen, Germany). Raman experiments were
performed ex situ (in air) using a Horiba LabRAM HR spectrometer (Sunnyvale, CA,
USA), employing a He/Ne laser (632.8 nm wavelength). Using an XPS-Auger Perkin
Elmer Model PHI 1257 spectrometer (Waltham, MA, USA) was employed to determine the
chemical composition of samples, by means of HRXPS and using the method described
previously [48–50]. For AFM measurements, a Nanonics Multi View MV1000 was em-
ployed using n-type silicon cantilevers (tip radius ≈ 20 nm; f = 39.4 kHz; Q = 1576) for
the intermittent mode. TEM was performed using LEO 1420VP equipment (Oberkochen,
Germany). Prior to the TEM measurements, a dispersion of copper oxide nanoneedles
was obtained by sonication during 15 min of the oxide films in isopropyl alcohol. The
analysis of images was performed with the image processing software Gwyddion 2.37.
The photocatalytic activity was carried out using a 1000 W Xe/Hg lamp (Oriel 6295) as a
simulation of a source of sunlight. In order to avoid the overheating of the MB solution,
the infrared radiation was eliminated through a water filter. The copper oxide nanoneedles
were immersed in a quartz cell containing 15 mL of a 2.5 mM dye solution. In order
to reach the adsorption equilibrium, the samples were held one hour in the dark with
permanent air bubbling for also assuring dissolved oxygen saturation at the beginning
of the photocatalytic degradation process. The experiments were performed in triplicate
for 120 min, and the dye concentration measurements were taken at λmax = 660 nm every
30 min in comparison to a previously recorded calibration curve.

3. Results and Discussion

Figure 1a shows the j/t potentiostatic profile applying a constant potential of 10 V
during 3 min in a 0.1 M KOH + 10%v/v H2O + 0.1%w/v NH4F dissolved in ethylene glycol
solution. After an abrupt initial current density increase, the current profile shows a rapid
diminution in current density within the first milliseconds and then a slight variation from
around 5 to 3 mA/cm2 for the subsequent 3 min due to the passivation of the copper
surface [51]. The presence of ethylene glycol and hydroxyl ions in the electrolytic medium
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may stabilize the current density during the anodization due to its density and polarity
as well as the alkaline pH employed [13,31]. On the other hand, the Raman spectrum for
the anodized copper foil (see Figure 1b) shows typical intense signals at around 284 and
335 cm−1, indicating the presence of CuO species [52,53]. Additionally, signals at 150, 545.6
and 625.6 cm−1, which are characteristic of Cu2O, are obtained. It should be mentioned
that these signals are less intense than those for CuO, which would indicate a low presence
of Cu (I) on the surface of the copper foil [52].
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Figure 1. j/t potentiostatic profile (a) and Raman spectrum (b) for Cu foils anodized at 5 ◦C applying
constant potential of 10 V during 3 min in a 0.1 M KOH + 10%v/v H2O + 0.1%w/v NH4F electrolyte
and dissolved in ethylene glycol.

Additionally, the chemical analysis performed using XPS measurements indicates
the presence of a Cu2O/CuO oxides mixture in the anodized surfaces [37,54]. The high
resolution Cu2p spectrum (see Figure 2a) shows important contributions at a binding of
932.2 and 933.9 eV; these signals are attributed to Cu + Cu2O, CuO and [49], for the case
of the Cu-Auger signal, the Cu + CuO and Cu2O contributions are identified at binding
energy of 567.0 and 569.3 eV, respectively (see Figure 2b). Additionally, high resolution
O1s spectrum (see Figure 2c) evidences the presence of both CuO and Cu2O oxides as well
as hydrated species in the sample, which are in agreement with the above showed Raman
results. Such hydrated species are also identified in the Cu2p main signal at 936.2 eV in
binding energy.
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of 10 V during 3 min in a 0.1 M KOH + 10%v/v H2O electrolyte + 0.1%w/v NH4F and dissolved in ethylene glycol.

Table 1 shows a summary of the results obtained from the XPS measurements; from
these values and by using the formulation of Platzman, we estimate the percent for each
copper oxidation state [50]. It can be observed that the formation of Cu(I) species predomi-
nates in electrode surfaces (46%) after the synthesis process. However, the minor proportion
of oxidized Cu(II) species (22%) may be attributed to an excessive amount of H2O in the
electrolytic bath as well as the high voltage applied during the anodization, given also
a high amount of hydrated species, 25%. A small amount of metallic copper (6%) was
identified. From the values of this table, the alpha parameter can be determined, which is in-
dependent of charge effects, alpha = KE(LMM) + BE(2p) = 917.3 eV + 932.2 eV = 1849.5 eV
and 917.3 eV + 933.9 eV = 1851.2 eV. These values are in agree with the literature [55], and
in the Wagner plot, can be labeled as Cu2O and CuO, respectively.

Table 1. Cu-2p and O-1s data table of XPS spectra, for Cu foils anodized at 5 ◦C applying a con-
stant potential of 10 V during 3 min in a 0.1 M KOH + 10%v/v H2O electrolyte and dissolved in
ethylene glycol.

Cu-2p3/2

Chemical Composition eV Area %At Conc

Cu + Cu2O 932.2 251,548 42

CuO 933.9 104,503 18

Cu(OH)2 936.2 120,911 20

Cu-Auger

Chemical Composition eV Area %At Conc

Cu + CuO 567.0 48,456 14

Cu2O 569.3 103,025 31

O-1s

Chemical Composition eV Area %At Conc

OH + Cu(OH)2 529.6 17,556 16

Cu2O + CuO 531.0 30,615 28

H2O 532.5 61,589 56

In order to study the morphology of the obtained films, several microcopy techniques
were employed. Figure 3a,b show a top view FESEM micrography of the CuO/Cu2O film
obtained, which shows a highly homogeneous self-assembled nanoneedles array. The
main length of the needles is between ca. 1 and 2 µm. A more detailed study morphology
was performed using TEM measurements of a CuO/Cu2O nanoneedles dispersion (see
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Figure 3c). Long and thin structures with lengths ranging between 200 and 500 nm corre-
sponding to the entire and fragmented nanoneedles are observed (see Figure 3c and inset).
In addition, Figure 3d shows a 3D AFM image for the anodic films obtained, showing a
similar morphology as those obtained from FESEM (see Figure 3a,b).
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Figure 3. Morphology of anodic CuO/Cu2O nanoneedles obtained for Cu foils anodized at 5 ◦C applying
a constant potential of 10 V during 3 min in a 0.1 M KOH + 10%v/v H2O electrolyte + 0.1%w/v NH4F
and dissolved in ethylene glycol film obtained by means of (a) and (b) FESEM, (c) TEM and (d) AFM.

On the other hand, by decreasing the percentage of water in the electrolyte solution
below 10%v/v during anodization, CuO/Cu2O or Cu2O nanoneedles are obtained on a
flake surface and the nanoneedles have a smaller average length as the percentage of water
decreases. The Raman spectra of the nanoneedles obtained using 5%v/v water in their
synthesis show signals at 146.2, 540.3 and 621.4 cm−1, which are characteristic of Cu2O, to-
gether with the signals at 286.7 and 345.5 cm−1, which further indicate the presence of CuO
in the sample (see Figure 4) [37,52,53,56], whereas, when further reducing the percentage of
water in the synthesis, only characteristic signals for the presence of Cu2O in the samples
are observed [57]. The formation of these nanostructures is explained by the basic medium
in which it is found, since the presence of OH−, H2O and ethylene glycol ions tend to the
formation of CuO nanostructures from metallic copper (Equation (1)) [38,40,56]. Moreover,
the presence of fluoride ions tends to the redissolution of the CuO previously obtained and
the subsequent formation of Cu2O (Equations (2) and (3)). Finally, a higher presence of
hydroxyl ions when using higher percentages of water again produces CuO from the previ-
ously formed Cu2O, obtaining a mixture of copper (I) and (II) oxides (Equation (4)) [40,50].
On the other hand, the FESEM images obtained show a highly rough surface made up of
a thin film of nanoneedles with diameters apparently below 100 nm. The homogeneity
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and chemical composition of the synthesized material varies according to the increase in
the quantity of water in the electrolytic medium, showing an apparent length diminishing
as the water content augments (see Figure 4I–IV). Figure 5 shows a summary diagram of
the morphology, diameter and chemical composition of the copper oxide nanostructures
obtained as a function of the percentage of water used in their respective anodizations.

Cu(s) + 2OH−(aq) → CuO(s) + H2O(l) + 2e− (1)

Cu(sup) + F−(aq) → Cu-F(ad) + e− (2)

2Cu-F(ad) + 2OH−(aq) → Cu2O(s) + H2O(l)+ 2F− (3)

Cu2O(s) + 2OH−(aq) → 2CuO(s) + H2O(l) +2e− (4)
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Based on the discussion of the figures above, it can be deduced that during anodiza-
tion, a layer of Cu2O flakes is generated on the surface of the copper foil, and Cu2O or
Cu2O/CuO nanowires start to emerge on them, depending on the percentage of water
used in the synthesis (see Figure 5). This interface, generated between the flakes adhered
to the anode surface and the nanowires, allows the nanowires to reach longer lengths as
the percentage of water in the synthesis increases [31,37,39–41].
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Figure 5. Schematic diagram of the morphology, diameter and chemical composition of the copper oxide nanostructures
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The photocatalytic activity was evaluated by performing a preliminary study (without
adjusting the conditions, such as the amount of xerogel, solution pH, dye concentration and
volume) on the degradation of the MB dye, evaluating as a function of the simulated solar
irradiation time of CuO/Cu2O nanoneedles obtained by anodization with 10 or 3.0%v/v
water in the electrolyte solution during their synthesis, and Cu2O nanoneedles obtained
by anodization with 1.0% water in the electrolyte solution during their synthesis (see
Figure 6a). It is observed that the photocatalytic activity of the CuO/Cu2O nanoneedles
photocatalysts reaches maximum values of 88 and 82% for the syntheses with 10 and
5% water, respectively; while, for the Cu2O nanoneedles obtained with 1% water, in the
synthesis it reaches a maximum value of 74%, which indicates that the photocatalytic
activity of the materials decreases as a function of the percentage of water used during
the synthesis of each photocatalyst, that is, the photocatalytic activity of CuO/Cu2O
nanoneedles is higher than that of Cu2O. This is attributed to the chemical nature of the
photocatalyst, since upon irradiation with solar energy (Equation (5)), the electrons (e−)
and holes (h+) generated in the CuO/Cu2O heterojunction network have a longer lifetime
than those of a Cu2O photocatalyst, because the VB and CB of CuO have a lower energy
level than the VB and CB of Cu2O, respectively, generating a transfer of photoinduced
e− from the CB of Cu2O to that of CuO and h+ from the VB of CuO to that of Cu2O
and, in turn, increasing the lifetime of the promoted electrons and the photocatalytic
activity of the material (see Figure 6b) [11]. Subsequently, these e−/h+ pairs can react
with water molecules in the vicinity of the semiconductor, generating reductive reactions
between the promoted electrons and the O2 in the water, producing superoxide (O2

−•)
(Equations (6) and (7)) and hydroxyl (OH•) radicals (Equation (8)), and oxidative reactions
between the holes formed and the OH− coming from the water (Equation (9)) or with the
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water molecules themselves (Equation (10)), also producing hydroxyl (OH•) radicals [11].
In addition, it has been reported in the scientific literature that the Eg values for Cu2O/CuO
nanostructures estimated from their UV–Vis absorbance spectra are between 1.5 and
1.9 eV [11], while, for Cu2O, it reaches values of between 1.8 and 2.5 eV, i.e., a higher
amount of energy is needed to photoinduce e− from VB to CB in a semiconductor composed
of Cu2O than in a semiconductor composed of a mixture of copper oxides, which also
justifies the lower photocatalytic activity obtained for the Cu2O nanoneedles [11].

On the other hand, when comparing the photocatalytic activity at lower irradiation
times, it is observed that the percentage of MB degradation for the Cu2O/CuO nanoneedles
obtained with 10% water during the synthesis is lower than those obtained with 5% water
during the synthesis, which is attributed to the fact that the photoinduced e− and h+

generated in the Cu2O/CuO nanoneedles obtained with 10% water have a longer lifetime,
but need a longer interaction time between the photocatalyst and the dye to present a
significantly higher photocatalytic activity [11].

Semiconductor + hv > Eg→ e−(VB) + h+
(CB) (5)

e− + O2 → O2
−• (6)

2O2
−• + 2H+ → H2O2 + O2 (7)

H2O2 + e− + H+ → H2O + OH• (8)

h+ + OH− → OH• (9)

h+ + H2O→ H+ + OH• (10)

The structural decomposition of MB is mainly caused by the effect of the hydroxyl rad-
icals generated between the reactions of the water molecules with the e− and mainly the h+

generated in the photocatalyst. It has been reported that the first thing that is detached from
the MB molecules during degradation are the methyl groups attached to the amine group;
subsequently, several unstable intermediates are formed with minimum existence periods,
until obtaining compounds less complex than the dye, such as SO4

2−, NO3
−, Cl−, NH4

+

and mainly H2O and CO2 [58]. The level of the highest energy occupied molecular orbital
(HOMO) and the lowest energy unoccupied molecular orbital (LUMO) of MB have values
of 4.25 and 6.11 eV, respectively. MB, when irradiated with an energy higher than 6.11 eV
(1.48 × 1015 Hz), causes an electron to be promoted from the HOMO to the LUMO, leading
to the breaking of a bond and the subsequent degradation of MB [59]. The simulated
sunlight used fulfills this characteristic, as it is mainly composed of infrared, visible and, to
a lesser extent, UV light (7.5 × 1014—3 × 1015 Hz), producing a synergistic effect between
the degradation of MB due to the UV light portion (approximately 5% of the sunlight) and
the free radicals generated in the semiconductor during photodegradation [58]. In repeated
photocatalytic degradation tests, the recycling stability of the copper oxide nanoneedles
was evaluated for the synthesized system under the experimental conditions of 10 V, 3 min,
10% H2O (see Figure 6c). After each repeated cycle, the Cu2O/CuO nanostructures were
filtered, washed rigorously several times and dried. After five cycles of experiments, the
photocatalytic activity of the material continues to show a high degradation index, demon-
strating the high stability of this type of copper oxides nanostructures over time, in addition
to having all the attributes of reusable materials, to promote sustainable development.
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cycles of MB degradation.

As mentioned above, in this study a maximum photocatalytic activity of 86% was
achieved in the degradation of MB using Cu2O/CuO nanowires and solar energy. This
obtained value is lower than the values previously reported in the scientific literature
for various photocatalysts composed of mixtures of metal oxides photo exposed with
visible light (see Table 2) [60–63]. These are attributed to the formation of a heterojunc-
tion network between the VB and CB of the metal oxides of different chemical nature,
which benefits the lifetime of the photogenerated reactive species [60–63]. Specifically,
Li et al., in 2021, reported the highest photocatalytic activity for MB degradation (99%)
using a Cu2O/Ag/TiO2/polyacrylonitrile nanofiber composite system; however, when
studying the material composed only of Cu2O nanoparticles stabilized on polyacrylonitrile
nanofibers (Cu2O/NFs-PAN), a photocatalytic activity of only 60% was reported, which
is lower than those obtained in this study [63]. While comparing the materials studied
in this research with the standard P25 TiO2 degussa applied in the photodegradation of
MB, higher or equal photocatalytic activity values were obtained in the preliminary study
carried out with anodized Cu2O/CuO nanowires, which shows that this material presents
potential characteristics to be applied in the photodegradation of organic dyes [43]. On
the other hand, the application of CuO nanowires in the photodegradation of various
dyes, such as methyl orange (MO), direct red 81 (DR) and victoria blue (VB), have been
reported [31,39–42]. However, these photocatalysts have been obtained by solution chem-
istry in basic media or by anodization with an electrolytic medium of only KOH [31,39–41],
and in no case has an electrolytic medium based on ethylene glycol together with fluoride
ions been used [11,31,39–43]. The electrolytic medium benefits the morphological order of
the anodized nanostructures due to the high viscosity of the solvent and the interference
generated by the fluoride ions on the surface of the copper layer during anodization [13,31].
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Table 2. Comparison of copper oxide nanoneedles with other metal oxide based photocatalysts previously reported in the scientific literature, their applications and their photocatalytic
activity in dye degradation.

Oxides Copper Oxide
Morphology Copper Oxide Synthesis Type Composition of the

Electrolyte Solution Application Light Source Degradation (%) Dye Refs.

Fe2O3/Cu2O

Nanoparticles

Hydrothermal –

Photocatalysis

Visible light

90 MB [60]
Cu2O/Ag/TiO2 93 MB [61]

Cu2O/Ag/TiO2 electrodeposition Cu(NO3)2 + NaOH + lactic
acid 98 MB [62]

Cu2O/Ag/TiO2/NFs PAN Electrospinning

–

99 MB [63]
Cu2O/NFs PAN 60 MB [63]

P25-TiO2
(commercial standard) – – UV light 81 MB [43]

CuO

Nanoneedles

Solution chemistry in basic media 95 DR and VB [42]
Cu2O/CuO Chemical-thermal oxidation Visible light 80 MB [11]

CuO Anodization and
thermal treatment KOH Anticorrosive surface

– – –
[39]

CuO Anodization and
thermal treatment KOH – [31]

Cu2O

Anodization

KOH [40]
CuO KOH

Photocatalisis

Visible light 93 MO [41]

Cu2O/CuO KOH + 10% H2O + NH4F +
ethylene glycol Sunlight

88 MB This study

Cu2O/CuO NaOH + 5% H2O + NH4F +
ethylene glycol 82 MB This study

Cu2O NaOH + 1% H2O + NH4F +
ethylene glycol 74 MB This study
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4. Conclusions

Based on the results obtained in this research, we conclude that it is possible to
synthesize CuO and/or Cu2O nanostructures (nanoneedles) using a very simple, one-step
and low-cost method. The anodization of copper electrodes in a hydroxyl containing
aqueous electrolytic medium, unlike other known methods for the formation of CuO or
Cu2O nanostructures, does not require special electrolytes, chemicals or surfactants. The
chemical characterization of the samples showed that nanowires of Cu2O or CuO/Cu2O
are obtained depending on the conditions of synthesis carried out; in addition, it was
determined that nanowires are up to 1–2 µm in length. In the photocatalytic degradation of
the methylene blue dye (MB) in the presence of the prepared copper oxide nanostructures,
an 88% degradation of MB was obtained for the optimal morphologies. The photocatalytic
activity of the material continues to show a high rate of degradation after five cycles
of photodegradation, demonstrating the high stability of copper oxide nanostructures
over time and the fundamental characteristics of reusable materials. These results are
promising for the application of these types of nanostructured copper oxide films for
designing new electronic devices with an easy-to-obtain and non-toxic photocatalyst for
the photodegradation of organic molecules, such methylene blue dye.
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