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ABSTRACT  Inflammatory bowel diseases (IBDs), which include ulcerative colitis 
(UC) and Crohn’s disease (CD), cause chronic inflammation of the gut, affecting 
millions of people worldwide. IBDs have been frequently associated with an alter-
ation of the gut microbiota, termed dysbiosis, which is generally characterized by 
an increase in abundance of Proteobacteria such as Escherichia coli, and a de-
crease in abundance of Firmicutes such as Faecalibacterium prausnitzii (an indica-
tor of a healthy colonic microbiota). The mechanisms behind the development of 
IBDs and dysbiosis are incompletely understood. Using samples from colonic bi-
opsies, we studied the mucosa-associated intestinal microbiota in Chilean and 
Spanish patients with IBD. In agreement with previous studies, microbiome com-
parison between IBD patients and non-IBD controls indicated that dysbiosis in 
these patients is characterized by an increase of pro-inflammatory bacteria (most-
ly Proteobacteria) and a decrease of commensal beneficial bacteria (mostly Fir-
micutes). Notably, bacteria typically residing on the mucosa of healthy individuals 
were mostly obligate anaerobes, whereas in the inflamed mucosa an increase of 
facultative anaerobe and aerobic bacteria was observed. We also identify poten-
tial co-occurring and mutually exclusive interactions between bacteria associated 
with the healthy and inflamed mucosa, which appear to be determined by the 
oxygen availability and the type of respiration. Finally, we identified a panel of 
bacterial biomarkers that allow the discrimination between eubiosis from dysbio-
sis with a high diagnostic performance (96% accurately), which could be used for 
the development of non-invasive diagnostic methods. Thus, this study is a step 
forward towards understanding the landscapes and alterations of mucosa-
associated intestinal microbiota in patients with IBDs. 
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INTRODUCTION 
The intestinal microbiota plays a key role in human health, 
providing important metabolic functions, stimulating the 
immune system, acting as a barrier for pathogenic organ-
isms, and regulating body composition [1, 2].  

Microorganisms colonize the mammalian intestine im-
mediately after birth. In humans, the adult-like configura-
tion of the gut microbial composition is established over 
the first three years of life [3]. However, the gut microbiota 
remains largely stable thereafter [4, 5], although it is influ-
enced by various environmental factors, including diet, 
lifestyle, and medication [6]. Moreover, a study conducted 
on human subjects with a wide age range, specifically 0 –
104 years, showed that the gut microbiota composition 
changes sequentially with age and that nutrients may play 
a key role in such changes [7].Therefore, changes in micro-
biota structure or dysbiosis have been associated with al-
terations in diet [8], in addition to chronic stress [9], anti-
biotic use and a number of gastrointestinal disorders [10–
15], such as inflammatory bowel disease (IBD) [16, 17].  

Within IBD phenotypes, ulcerative colitis (UC) and 
Crohn’s disease (CD) have a clinical impact worldwide, with 
UC characterized by inflammation of the rectum, extending 
diffusely towards the colon, whereas CD is characterized by 
systemic inflammation and ulcers affecting any part of the 
gastrointestinal tract and thickening of the intestinal wall. 
Since 1990, the incidence of IBD has increased in Africa, 
Asia and South America [18]; although no data are availa-
ble in Chile, clinical experience shows an increase in recent 
years in the number of consultations by IBD patients [19, 
20]. 

While the etiological causes of UC and CD remain uni-
dentified, several factors are known to increase susceptibil-
ity, including: i) genetic polymorphisms [21–23]; ii) altered 
immune response [24, 25] iii) environmental factors [26–
28]; and (iv) alteration of the gut microbiota composition 
[29–34].  

In general, studies of the gut microbial composition of 
patients with UC and CD have shown an increase in the 
phylum Proteobacteria and a decrease in the phylum Fir-
micutes [35, 36]. Most of these studies have mainly ana-
lyzed stool samples. However, many differences between 
the microbial communities from fecal and mucosal samples 
have been reported, indicating that fecal microbial com-
munities do not accurately represent the local communi-
ties that live in specific regions of the gut (colon, ileus and 
small intestine) [25, 37–39]. In addition, most of these 
studies are based on the massive sequencing of amplicons 
of the 16S rRNA gene and the clustering of reads into op-
erational taxonomic units (OTUs), using short sequences of 
variable regions of the gene [40, 41]. The short size of the 
amplicons (<300 nt) only allows the identification up to the 
family level or in some cases genus.  

In the present study, we investigated the mucosa-
associated intestinal microbiota in Chilean and Spanish 
patients with IBD. For this, we amplified the 16S rRNA gene 
and obtained sequence libraries from colonic mucosa biop-
sies using high-quality reads of more than 300 nucleotides 

for the bacterial affiliation process. In addition, we used 
the OPU (Operational Phylogenetic Unit) approach for tax-
onomic assignment, as this allows for better bacterial iden-
tification, in most cases reaching the species level [42]. 
OPU analysis is not based on strict identity thresholds; in-
stead, sequences are affiliated with a phylogenetic tree 
using the parsimony algorithm followed by manual super-
vision of the tree to design meaningful phylogenetic units 
[43]. Since identification is based on phylogenetic inference, 
OPUs are based on the genealogical signal of the sequenc-
es, which minimizes the influence of errors and size differ-
ences. An OPU is the smallest monophyletic group of se-
quences containing OTU representatives together with the 
closest reference sequence, including the sequence of a 
type strain when possible [44]. To date, there have been 
no reports on the microbiome of patients with UC at the 
OPU level.  

Our results indicate that some IBD patients have an in-
testinal dysbiosis, while some others showed a microbiota 
profile similar to that of control individuals. In dysbiotic 
patients, we found an increase in pro-inflammatory bacte-
ria (mostly Proteobacteria) and a decrease in beneficial 
commensal bacteria (mostly Firmicutes). We also identified 
potential co-occurring and mutually exclusive interactions 
between bacteria associated with the healthy and inflamed 
mucosa, which appear to be determined by oxygen availa-
bility and the type of respiration. Importantly, these results 
were consistent with the “Oxygen Hypothesis”, which 
states that chronic inflammation induces increased oxygen 
levels in the gut, leading to an imbalance between obligate 
and facultative anaerobes [33]. Finally, we identified bacte-
rial biomarkers that could be used for the development of 
non-invasive diagnostic methods, such as real-time PCR. A 
future goal is that an early detection of changes in the gut 
microbiota could allow the initiation of IBD treatment or 
preventive measures. 

 

RESULTS 
Here we focused on two independent cohorts of patients 
with IBD from Chile and Spain. Both cohorts were adults 
and included patients diagnosed with UC or CD. In addition, 
control individuals (CTL; Non-IBD controls) who underwent 
colonoscopy due to a family history of colon cancer were 
included. All samples were colonic mucosal biopsies. Pa-
tients who received antibiotic treatment within one month 
prior to the colonoscopy were excluded. The Chilean co-
hort included 20 and 21 patients with UC and CD, respec-
tively, and five control individuals. The Spanish cohort was 
previously reported by Vidal et al., 2015 [42], of which we 
included 13 patients with CD and also seven control indi-
viduals. The clinical features of the patients are described 
in Table S1. For both cohorts, microbial composition in 
colonic biopsies were assessed by DNA extraction followed 
by 16S rRNA gene pyrosequencing, as described in the Ma-
terials and Methods section.  

Pyrosequencing of Chilean samples generated 331,677 
reads, which together with the Spanish samples generated 
a total of 483,818 reads with a mean of 5,506 reads per 
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sample (Table S2). The average read length for 16S rRNA 
sequences was 649 bp. The OTUs from Chilean samples 
were clustered and inserted into the tree by Vidal et al., 
2015 [42]. OTUs that were not clustered as part of known 
OPUs were re-evaluated and designated anew. This result-
ed in a total of 608 OPUs, with a mean of 88 OPUs per 

sample (Table S2). Notably, our results show that the OPU 
rarefaction curves approached saturation with a signifi-
cantly lower number of reads than necessary for the OTU 
curves, indicating an overestimation of taxonomic units 
(diversity) when using a traditional OTU approach (Fig. 1A). 

 

FIGURE 1: Landscape of mucosa-associated intestinal microbiota of Chilean and Spanish patients with IBD. (A) Rarefaction curves based 
on OTUs and OPUs detected in colonic biopsies from patients with ulcerative colitis (UC; orange lines) and Crohn’s Disease (CD; red lines), 
and control individuals (CTL; green lines). (B) Alpha diversity between patients and control individuals determined by the observed OPUs 
(Richness) and the Shannon index (Diversity). Significance: * p < 0.05, Kruskal-Wallis & Dunn’s tests. (C) Relative abundances (%) of the most 
prevalent phyla. Phyla with abundances < 1% are represented as other taxa. (D) Comparison of the relative abundances (Log10) of the four 
most common phyla. Each data point corresponds to a sample and horizontal lines to the means. Significance: ** p < 0.005, Kruskal-Wallis & 
Dunn’s tests. (E) A set of principal coordinate analysis (PCoA) plots based on Bray-Curtis distances showing the overall composition (beta 
diversity) of the microbiota in patients and controls. For a better visualization, individual PCoA plots are shown for the analysis of UC pa-
tients versus controls (left panel), CD patients versus controls (middle panel) and dysbiotic UC versus dysbiotic CD patients. Each data point 
corresponds to a sample, which is colored according to the disease phenotype and the microbiota status (dysbiotic or eubiotic). Ellipses 
represent a 95% CI around the cluster centroid. 
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Gut microbial dysbiosis among IBD patients 
Differences in the gut microbiota of IBD patients compared 
to healthy individuals have been widely reported [45–48]. 
Among IBD patients there may be several degrees and pro-
files of dysbiosis, which have been correlated with the 
phenotype and severity of the disease [40, 42, 49], and 
gastrointestinal surgery [50, 51]. Therefore, we first as-
sessed the landscape, richness, and diversity of the muco-
sa-associated intestinal microbiota among patients and 
non-IBD controls. In general, we found that UC and CD 
patients have a significantly lower richness (Observed 
OPUs) than the controls. Despite, no significant differences 
in the alpha diversity (Shannon diversity) were observed 
(Fig. 1B). IBD patients studied for a long time in relation to 
the composition of their microbiota in biopsies showed the 
existence of temporary structure changes, even with mi-
crobiota profiles similar to healthy controls, probably asso-
ciated with treatment [46] and to the remission of the dis-
ease [47]. Therefore, we cannot rule out that a similar al-
pha diversity between some patients and control individu-
als in our work could be a consequence of treatments 
and/or disease remission at the time the biopsies samples 
were taken. 

Four major bacterial phyla (Firmicutes, Bacteroidetes, 
Proteobacteria and Actinobacteria) dominate the gut mi-
crobiota of humans [38]. Accordingly, almost all OPUs iden-
tified were affiliated with one of these phyla. In general, 
we observed that UC and CD patients had a lower abun-
dance of Firmicutes and a higher abundance of Proteobac-
teria (Fig. 1C and 1D). Interestingly, a principal coordinate 
analysis (PCoA) based on the Bray-Curtis dissimilarity 
showed that only some patients had a significant shift in 
beta diversity (dysbiosis) compared to the controls (Fig. 1E). 
This result suggests that some patients (dysbiotic UC and 
CD patients) but not all (eubiotic UC and CD patients) had 
an alteration in their mucosa-associated intestinal microbi-
ota. Of note, there were no significant differences in beta 
diversity between dysbiotic patients that clustered away 
from control individuals, suggesting they had a similar im-
balance in their microbiota. 

Based on the PCoA analysis and the IBD phenotype, pa-
tients were subdivided into four groups: UC1, UC2, CD1 
and CD2 (Table S1). Consistent with this subclassification, 
hierarchical clustering using the relative abundances of the 
608 OPUs across all samples showed that UC1, CD1 and 
controls clustered together but away from UC2 and CD2 
(Fig. 2A). Moreover, relative abundances per patient at the 
phylum level clearly showed that while UC1, CD1 and con-
trols had a similar taxonomic composition, UC2 and CD2 
had a dysbiosis characterized by an increase in Proteobac-
teria and a decrease in Firmicutes (Fig. 2B). As expected, 
UC1 and CD1 showed a richness and diversity similar to the 
controls. By contrast, UC2 and CD2 had significantly lower 
richness than the controls, but only CD2 showed a lower 
alpha diversity (Fig. 2C). Thus, collectively these results 
indicate variability in the mucosa-associated intestinal mi-
crobiota among IBD patients: while some patients have a 
dysbiotic microbiota, others have a microbiota composi-
tion similar to that of the non-IBD controls. 

Dysbiosis in Crohn's patients is correlated with disease 
severity 
We then asked whether patient groups correlated with 
demographic and clinical variables. Regarding demographic 
features, no significant correlations were found with re-
spect to age, sex, or origin of the patients (not shown). 
Similarly, there were no significant correlations of the UC1 
and UC2 groups with clinical variables. By contrast, while 
the CD1 group correlated with colonic location (L2) and an 
inflammatory disease behavior (B1), the CD2 group corre-
lated with ileal location (L1), the stricturing (B2) and pene-
trating (B3) phenotypes, and surgery (Fig. 2D). Thus, pa-
tients in the CD2 group were associated with an advanced 
stage of the disease, which suggests a clinically relevant 
link between gut microbiota dysbiosis and disease severity. 

 
Dysbiosis in IBD is characterized by an increase in patho-
bionts and a decrease in anti-inflammatory commensal 
bacteria  
Although it is not known whether dysbiosis is a cause or a 
consequence of IBD, the identification of specific taxa and 
bacteria (biomarkers) associated with these patients may 
contribute to understand the dynamics of this disease 
(progression or remission), as well as the development of 
diagnostic aids [54]. Therefore, we sought to characterize 
the variation in the gut microbiota at different taxonomic 
levels among the IBD patients and controls. We found that 
the relative abundances at the phylum and class levels 
were similar between the UC1, CD1 and control groups, 
further confirming that these IBD patients had a non-
dysbiotic gut microbiota (eubiotic status; Fig. 3). Converse-
ly, in the UC2 and CD2 groups, the phylum Firmicutes was 
decreased, mainly attributed to a lower abundance in Clos-
tridia, while the phylum Proteobacteria was increased, 
mainly attributed to a higher abundance in Alpha- and 
Gammaproteobacteria (Fig. 3A and 3B).  

At the family level, we found that the UC2 and CD2 
groups had a greater abundance of Enterobacteriaceae and 
Pseudomonadaceae. Additionally, Shewanellaceae was 
increased in UC2. The shift in the gut microbiota composi-
tion in the UC2 and CD2 groups was also characterized by a 
decreased abundance of Ruminococcaceae, Lachnospori-
raceae, Eubacteriaceae, Porphyromonadaceae and Bac-
teroidaceae (Fig. 3C and 3D). On the other hand, differ-
ences between the UC2 and CD2 groups were only ob-
served in Fusobacteriaceae and Veillonellaceae, with both 
taxa being decreased in the UC2 group. Hence, the dysbi-
otic profile of UC2 and CD2 patients was in general very 
similar. 

To further investigate the microbial imbalance in the 
IBD, we used the LEfSe algorithm to identify which OPUs 
were differentially abundant in the dysbiotic patients (UC2 
and CD2 groups) compared to the eubiotic patients (UC1 
and CD1 groups) and controls. As a result, 24 OPUs were 
found to be significantly increased in dysbiotic patients, 
including several potential pathogens (pathobionts) such as 
Escherichia coli, Klebsiella oxytoca, Ruminococcus gnavus, 
Enterococcus faecalis, several Rhizobium, Pseudomonas 
and Clostridium species, and members of the tribe Protee-
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ae (Providencia/Morganella) (Fig. 4A, Table S3). By con-
trast, 25 OPUs were found to be decreased, including sev-
eral symbionts known to provide important functions for 
gut health, mainly through the production of butyrate [55, 
56]. For instance, butyrate producers such as Faecalibacte-
rium prausnitzii, Blautia, Gemmiger formicilis, Eubacterium 
rectale, Ruminococcus torques, Roseburia inulinivorans and 
Coprococcus catus were significantly decreased. Other 
commensal bacteria such as Alistipes and Dorea were also 

decreased in these patients. Thus, collectively these results 
indicate that the dysbiosis in these IBD patients is charac-
terized by an increase in pathobionts and a decrease in 
beneficial commensal bacteria. 
 
 
 

FIGURE 2: Compositional differences in the mucosa-associated intestinal microbiota among IBD patients. (A) Clustering of patients and 
controls and heatmap of OPU abundances. Patients (Columns) were grouped based on a hierarchical cluster analysis using relative abun-
dances of 608 OPUs. OPUs of the four most abundant phyla are shown in the rows, and their relative abundances are shown on a log scale 
according to the legend. The clinical and demographic features of the patients are shown at the top and are colored according to the legend. 
Note that in general, patients belonging to the UC2 and CD2 groups clustered together and away from patients in the UC1 and CD1 groups 
and the controls (Non-IBD). (B) Relative abundances (%) per patient of the four most abundant phyla. (C) Alpha diversity between IBD 
groups (UC1, UC2. CD1, and CD2) and control individuals determined by the observed OPUs (Richness) and the Shannon index (Diversity).  
Significance: * p < 0.05, ** p < 0.005, Kruskal-Wallis & Dunn’s tests. (D) Radar chart showing association of IBD groups with clinical features. 
Pairwise association between patient groups and clinical features was performed in contingency tables by odds ratios. Significance: * p < 
0.05, Pearson's chi-squared test or Fisher's exact test. The figure was prepared using the Plotly package [52] in R [53]. 



N. Chamorro et al. (2021)   Mucosa-associated intestinal microbiota in IBD 

 
 

OPEN ACCESS | www.microbialcell.com 228 Microbial Cell | SEPTEMBER 2021 | Vol. 8 No. 9 

Pathobionts increased in dysbiotic IBD patients have co-
occurring relationships and do not co-exist with the core 
bacteria of the eubiotic state 
In the context of IBD, unraveling potential interactions 
between bacteria associated with a healthy or an affected 
mucosa can contribute to understand how the microbiota 
responds and adapts to an inflammatory environment. The 
correlation network analysis has been used to predictively 
model the interplay between the microbiota and the envi-
ronment [58]. Consequently, in the following we explored 
the potential interactions among the OPUs that were dif-
ferentially abundant in IBD patients using the SparCC algo-
rithm [57].  

Notably, this analysis revealed that pathobionts in-
creased in dysbiosis form three clusters (I, II and III) of posi-
tive co-occurring relationships (Fig 4B). In particular, Clus-

ter I (OPU21, OPU54 and OPU323) and Cluster III (OPU8, 
OPU17, OPU18, OPU20, OPU22, OPU64, OPU69, OPU336 
and OPU525) include facultative anaerobic and aerobic 
bacteria, and Cluster II (OPU1, OPU4, OPU12, OPU67, 
OPU70-2, OPU85, OPU142, OPU206, OPU212 and OPU225) 
includes obligate anaerobic, facultative anaerobic and aer-
obic bacteria (Table S3). Furthermore, these three clusters 
have negative correlations (mutual exclusivity) with Cluster 
IV, which is formed by obligate anaerobic bacteria that 
were significantly abundant in patients without dysbiosis 
and the controls. Overall, this result indicates that bacteria 
of Clusters I and III and the majority of Cluster II can survive 
in a niche with a high level of oxygen. Therefore, oxygen 
levels at the intestinal mucosa could be an environmental 
characteristic that determines the type of relationship (co-
existence or mutual exclusivity) between these bacteria. 

FIGURE 3: Phylogenetic composition of bacterial taxa at the phylum, class, and family level among IBD patients and non-IBD controls. 
Relative abundances (%) of common bacterial taxa (> 1% abundance) at phylum (A), class (B), and family (C) levels. (D) For a better analysis 
and visualization, comparisons in the relative abundances at the family level between groups were performed using Log-transformed values. 
Each data point corresponds to a sample and horizontal lines to the means. Only taxa in which significant differences were found are shown. 
Significance: * p < 0.05, ** p < 0.005, *** p < 0.0005, Kruskal-Wallis & Dunn’s tests. 
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Dysbiosis in IBD patients is characterized by a shift from 
obligate to facultative anaerobes and to aerobic bacteria 
The healthy intestinal mucosa has low levels of oxygen and 
thereby allows the survival and establishment of bacterial 
communities of obligate anaerobes. By contrast, dysbiosis 
in IBD is characterized by an increase in facultative anaer-
obes from the phylum Proteobacteria. Furthermore, it has 
been hypothesized (Oxygen Hypothesis) that chronic in-
flammation leads to an increased oxygen levels in the gut, 
which in turn creates a microenvironment that favors fac-
ultative anaerobes or even aerobic bacteria [33]. In light of 
these observations, we evaluated the oxygen hypothesis 
by investigating the microbial respiration of mucosa-
associated intestinal microbiota among the IBD patients. 
Interestingly, consistent with the oxygen hypothesis and 
previous studies [59, 60], we found that the IBD patients 

with dysbiosis (UC2 and CD2) had a decreased abundance 
of obligate anaerobes and an increased abundance of fac-
ultative anaerobes and aerobic bacteria (Fig. 5A-B). Thus, 
this result, together with the correlation network analysis, 
strongly suggests a key role for oxygen in the intestinal 
dysbiosis of IBD patients. 

 
Bacterial biomarkers make it possible to discriminate 
dysbiosis and eubiosis in IBD patients and between UC 
and CD patients with dysbiosis 
Currently, IBD has no clear etiology, and due to non-
specific symptoms, diagnosis in some patients can be de-
layed or missed [61]. In this sense, diagnostics is a promis-
ing application of the microbiota association studies. It is 
important to note that instead of classifying IBD patients 
based on the overall gut microbiota composition, the use 

FIGURE 4: Differently abundant OPUs in dysbiotic IBD patients and their co-existence networks. (A) The LEfSe algorithm with a linear dis-
criminant analysis (LDA) score >2 enabled the identification of OPUs that differed significantly in abundance between the dysbiotic patients 
(UC2 and CD2 groups) and eubiotic patients (UC1 and CD1) and non-IBD controls (B) Correlation networks of differently abundant OPUs. This 
analysis was performed using SparCC [57] (see methods). The nodes (pie charts) represent OPUs, with size reflecting the relative abundance 
in IBD patients and controls, as described in the legend. The links between nodes correspond to significant interactions (positive or negative 
correlations), with line width reflecting the strength of the correlation. Clusters (I to IV) of highly correlated OPUs are indicated. Unconnected 
nodes were omitted. 
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of a small set of bacterial biomarkers would be more feasi-
ble and economical in clinical practice. Moreover, since 
dysbiosis was not observed among all IBD patients at the 
time of sampling, we rationalize that as a first approach, 
discriminating dysbiosis from eubiosis in these patients 
could be a valuable diagnostic aid. 

Therefore, we evaluated the 49 differentially abundant 
OPUs as biomarkers using the ROC curve analysis. This 
analysis showed that some of these OPUs could discrimi-
nate dysbiosis from eubiosis but with a fair to poor diag-
nostic performance (Figure S1). The best performance as 
biomarkers were achieved by F. prausnitzii (OPU290), Blau-
tia luti (OPU220), C. catus (OPU244), Eubacterium hadrum 
(OPU246) and E. coli (OPU1), with an area under the curve 
(AUC) ranging from 0.87 to 0.94.  

Next, to improve the diagnostic performance achieved 
by individual biomarkers, we used a combinatorial panel of 
OPUs and implemented five machine learning classification 
methods (Neural Network, Naïve Bayes, Logistic regression, 
Random Forest, and Support Vector Machines; see meth-
ods). For this, we selected ten biomarkers for eubiosis and 
ten biomarkers for dysbiosis based on their AUC. As a re-
sult, we found that this panel of 20 biomarkers enabled 
dysbiosis to be distinguished from eubiosis with a high 
discriminatory power, with an AUC ranging from 0.96 to 
0.99 (Fig. 6, Table 1). In particular, the Neural Network and 
Naïve Bayes models were the best performing classifiers, 
both with an overall accuracy of 96% (Table 1).   

Finally, because the microbiota composition between 
the UC and CD patients with dysbiosis was remarkably 
similar, we sought to clarify whether bacterial biomarkers 
can discriminate between these groups of patients. For this, 
we implemented the same prediction pipeline shown 
above, that is, the LEfSe algorithm followed by a ROC curve 
analysis and machine learning classification methods. In 
this case, we selected a panel of four biomarkers of UC 
patients with dysbiosis and seven biomarkers for CD pa-
tients with dysbiosis (Fig. 6C). By using these eleven bi-
omarkers, the Naïve Bayes model was the best classifier, 
achieving an AUC and accuracy of 0.83 and 77%, respec-
tively (Fig. 6D, Table 1). Collectively, these results highlight 

the potential use of these bacterial markers as a diagnostic 
aid in IBD. 

 
DISCUSSION 
Several studies have investigated the gut microbiota com-
position in patients with IBD, but most have mainly ana-
lyzed stool samples [47–49]. Fecal samples are readily 
available and easily collected, allowing easy longitudinal 
sampling within individuals with no major methodological 
complexities. However, fecal microbial communities do not 
accurately represent the mucosa-associated microbiota 
that live in the gastrointestinal tract (e.g. colon, ileus and 
small intestine) [37–39]. Moreover, characterization of the 
microbiota at mucosal lesion sites provides relevant in-
sights and more accurate conclusions regarding taxonomic 
composition and dysbiosis in gastrointestinal disorders 
such as IBD [28, 62]. For instance, Gevers et al. [41] investi-
gated the composition of the microbiota in IBD patients 
using different sample types (stool samples and tissue bi-
opsies of the ileum and rectum) and found that the rectal 
mucosa-associated microbiota has the potential for an 
early and accurate diagnosis of CD. By contrast, the com-
position of the fecal microbiota was less informative with a 
poor diagnostic performance in IBD. 

In this work, we determined the landscapes and bacte-
rial signatures of mucosa-associated microbiota in two 
independent cohorts of Chilean and Spanish patients diag-
nosed with IBD. For this, we used the OPU concept for tax-
onomic assignment [42], which allowed us to reach the 
species level with a lower number of reads than needed for 
the traditional OTU-based approach (Fig. 1A). Our results 
showed that while some IBD patients had an imbalance in 
the mucosa-associated microbiota, other patients had a 
microbial composition that was similar to that of non-IBD 
controls (Fig. 1B-E), probably as a consequence of treat-
ments and/or remission of the disease at the moment of 
the sampling.  Hence, we decided to subdivide the patients 
(based on the microbiota composition and the IBD pheno-
type) into four groups: two eubiotic groups (UC1 and CD1) 
and two dysbiotic groups (UC2 and CD2). Importantly, this 
subclassification was consistent  with  the hierarchical clus- 

FIGURE 5: Microbial respiration of mucosa-associated intestinal microbiota among the IBD patients. (A) Relative abundances (%) of OPUs 
classified as obligate anaerobes, facultative anaerobes, or aerobes. (B) Differences in the relative abundances (Log10) of obligate anaerobes, 
facultative anaerobes, or aerobes. Each data point corresponds to a sample and horizontal lines to the means. Significance: * p < 0.05, ** p < 
0.005, Kruskal-Wallis & Dunn’s tests. ND: Unclassified bacteria with unknown respiration type. 
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tering of patients in which the UC1, CD1 and non-IBD con-
trols clustered together but away from UC2 and CD2 (Fig. 
2A). Our results showed that dysbiosis in UC2 and CD2 was 
characterized by an increase in Proteobacteria and a de-
crease in Firmicutes (Fig. 2B and Fig. 3). Previous studies 
have also shown the same alteration in the abundance of 
these phyla in the mucosa-associated microbiota of IBD 
patients [35, 63, 64]. Moreover, differences between the 
UC2 and CD2 groups were only observed at the family level, 
with a decreased abundance of Fusobacteriaceae and Veil-
lonellaceae in the UC2 group (Fig. 3D). Despite the similari-
ties in the microbial composition of UC2 and CD2 groups, 
dysbiosis was correlated with disease severity only in the 
latter group (Fig. 2D). 

Several bacteria (pathobionts) that were found to be 
increased in the mucosal samples of dysbiotic IBD patients 
are known to have the potential to exacerbate inflamma-
tion (Fig. 4A and Table S3). For instance, pathogenic E. coli 
strains with the ability to adhere and invade the intestinal 
mucosa have been isolated with a high frequency from 
biopsies of CD patients  [31, 32]. K. oxytoca causes antibi-
otic-associated hemorrhagic colitis [65, 66]. Ruminococcus 
gnavus produces an inflammatory polysaccharide and an 
increased abundance of this bacterium in IBD patients has 
been linked to an increase in disease activity [67–69]. E. 
faecalis metalloprotease GelE disrupts the epithelial barrier 
and increased intestinal inflammation in interleukin-10 
knockout mice [70–72]. An increased abundance of Rhizo-
bium spp has been shown in CD patients with recurrence 

after surgery compared to those who remain in remission 
[51]. Similarly, an increased abundance of Pseudomonas 
spp has been reported in IBD patients [49, 73]. Moreover, 
Pseudomonas spp. can attach to intestinal epithelial cells 
and deliver toxins to host cells through a type 3 secretion 
system, thereby causing epithelial cell damage [74, 75]. 
Clostridium ramosum has been reported to be increased in 
pediatric patients with CD and induces ulcerative colitis in 
the DSS-colitis mouse model [76, 77].  

Dysbiosis in IBD patients was also characterized by a 
decreased abundance of several commensal bacteria with 
anti-inflammatory properties, including several butyrate 
producers such as F. prausnitzii, Blautia, G. formicilis, E. 
rectale, R. torques, R. inulinivorans and C. catus [78]. This 
result is in agreement with previous studies showing a re-
duced abundance of multiple butyrate-producing bacteria 
in dysbiotic IBD patients [46, 50, 79]. Butyrate is a short-
chain fatty acid that plays an important role in maintaining 
the integrity of colonic mucosa and regulating cell prolifer-
ation and differentiation [55, 56]. Studies on biopsies from 
patients with CD cultured with butyrate showed a dose-
dependent decrease in the expression of proinflammatory 
cytokines [80]. In particular, F. prausnitzii is known to be a 
core bacterium of the gut microbiota of healthy adults, 
representing around 5% of the total bacterial population. 
This bacterium plays an important role in butyrate produc-
tion and has a strong anti-inflammatory effect [78]. Many 
studies have shown a decreased abundance of this bacte-
rium in IBD patients, this reduction being a bacterial signa-

TABLE 1. Cross-validation of bacterial biomarkers and machine learning methods for diagnostic aids in IBD. 

Method Average 
AUC 

CA IBD-Dysbiotic profile Eubiotic profile 

F1 Precision Recall F1 Precision Recall 

TOP 20 indicator OPUs (IBD Dysbiosis vs. Eubiosis) 

SVM 0.97 0.92 0.92 0.96 0.87 0.93 0.89 0.97 

Random Forest 0.96 0.88 0.87 0.89 0.84 0.89 0.87 0.91 

Neural Network 0.99 0.96 0.95 1.00 0.903 0.96 0.92 1.00 

Naïve Bayes 0.99 0.96 0.95 0.97 0.94 0.96 0.94 0.97 

Logistic Regression 0.97 0.89 0.89 0.90 0.87 0.90 0.89 0.91 

Method Average 
AUC 

CA UC-Dysbiotic profile CD-Dysbiotic profile 

F1 Precision Recall F1 Precision Recall 

Top 11 indicator OPUs (UC2 – CD2 groups) 

SVM 0.68 0.74 0.429 0.60 0.33 0.83 0.77 0.91 

Random Forest 0.82 0.68 0.38 0.43 0.33 0.78 0.75 0.82 

Neural Network 0.75 0.74 0.56 0.56 0.56 0.82 0.82 0.82 

Naïve Bayes 0.83 0.77 0.72 0.56 1.00 0.81 1.00 0.68 

Logistic Regression 0.80 0.71 0.53 0.50 0.56 0.79 0.81 0.77 

SVM, Support Vector Machine. AUC, Area under the curve. CA, Classification accuracy measures the ratio of the correct predictions to the 
total number of instances evaluated. F1-measure denotes the harmonic mean between recall and precision values, where an F1 score 
reaches its best value at 1 and the worst score at 0. 
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ture of dysbiosis as well as the severity and activity of the 
disease [29, 81, 82]. Additional studies are needed to in-
vestigate whether the increased abundance of the patho-
biont and the depletion of butyrate-producing bacteria 
may trigger pro-inflammatory signals that contribute to the 
development or progression of IBD. 

An interesting finding of this study was the identifica-
tion of potential co-occurring relationships between 
pathobionts associated with the inflamed mucosa (Fig. 4B). 
In turn, these pathobionts showed mutually exclusive rela-
tionships with the core bacteria of the healthy mucosa. In 
an ecological context, a cluster network of highly correlat-
ed organisms could be supported by synergistic, related, or 
shared biological function, including metabolism, respira-
tion, trophic chains, specific bacterial features (immune 
evasion, aggregation / biofilm formation) and habitat char-
acteristics (pH, salinity, immune recognition, mucins, 

among others). In line with this idea, we found that most 
of the OPUs that form Clusters I, II and III are facultative 
anaerobic or aerobic bacteria. Conversely, the OPUs of 
Cluster IV are obligate anaerobic bacteria (Table S3). Thus, 
pathobionts belonging to Clusters I, II and III could be fa-
vored by the inflammation and thickness reduction of the 
mucus layer, which leads to a higher oxygen level in the 
intestinal epithelium. Moreover, this result is consistent 
with the study by Hughes et al., 2017 [59], in which for-
mate oxidation and oxygen respiration were identified as 
metabolic signatures for inflammation-associated dysbiosis. 

Importantly, we observed an increased abundance of 
facultative anaerobes and aerobic bacteria in dysbiotic IBD 
patients (Fig. 5), which is consistent with the oxygen hy-
pothesis. This hypothesis states that chronic inflammation 
in IBD patients leads to a greater release of hemoglobin 
(which carries oxygen) and reactive oxygen species to the 

FIGURE 6: Evaluation of OPUs as biomarkers for IBD. (A) Heatmap showing the number of reads (log scale) of the best 20 indicator OPUs 
for dysbiosis and eubiosis in IBD. Rows represent OPUs and columns the patients ordered by groups. (B) Evaluation of five machine learning 
models and the above panel of twenty indicator OPUs to discriminate dysbiosis from eubiosis in the IBD patients. (C) Heatmap showing the 
number of reads (log scale) of the best 11 indicator OPUs for the UC (UC2) and CD (CD2) patients with dysbiosis. Rows represent OPUs and 
columns the patients ordered by groups. (D) Evaluation of five machine learning models and the above panel of 11 indicator OPUs to dis-
criminate UC2 patients from CD2 patients. The diagnostic performance of each classifier model is represented by ROC curves and the area 
under the curve is indicated in Table 1. 
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intestinal lumen. Thus, the increase in oxygen levels causes 
a disruption in anaerobiosis that confers selective ad-
vantages to facultative anaerobes and aerobes, allowing 
them to become more competitive and able to overgrow 
[33]. 

Cost-effective, rapid, and reproducible biomarkers 
would be helpful for patients and clinicians in the diagnosis 
of IBD. Several bacterial biomarkers for IBD diagnosis have 
been evaluated in previous studies with promising results 
[47, 61, 83–85]. The panel of bacterial biomarkers identi-
fied in the current study made it possible to discriminate 
dysbiosis from eubiosis in IBD with a high discriminatory 
power (96% accurately) (Fig. 6A). Likewise, our bacterial 
biomarkers discriminated between the dysbiotic UC pa-
tient from the dysbiotic CD patients, although with a lower 
diagnostic performance (77% accurately) (Fig. 6B). The 
cross-validation of these bacterial biomarkers in different 
cohorts will confirm their potential use as a diagnostic aid. 
Finally, these biomarkers could be combined with imaging 
techniques and calprotectin levels to improve the diagnosis 
of IBD, thereby facilitating clinical decision-making. 
 
MATERIALS AND METHODS 
Patients  
Two independent cohorts of patients with IBD from Chile and 
Spain were included in this study (Table S1). Both cohorts 
were adults and included 20 Chilean patients diagnosed with 
ulcerative colitis (UC_CH), 21 Chilean patients diagnosed with 
Crohn’s disease (CD_CH) and five Chilean non-IBD control 
individuals (CTL_CH) who underwent a colonoscopy due to a 
family history of colon cancer. The Spanish cohort was previ-
ously reported by Vidal et al., 2015 [42], of which we included 
13 patients with CD and seven non-IBD control individuals. 
Patients who received antibiotic treatment within one month 
prior to the colonoscopy were excluded.  
 
Ethics approval  
The study was approved by the Institutional Review Board of 
Clínica Las Condes, Faculty of Medicine, Universidad de Chile; 
Ethics Committee of the Northern Metropolitan Health Service, 
Santiago, Chile; and the Balearic Islands' Ethics Committee, 
Spain. Study participants provided written informed consent 
before entering the study. All records and information were 
kept confidential and all identifiers were removed prior to 
analysis.  

 
Nucleic acid extraction, 16S rDNA amplification and pyrose-
quencing  
Total DNA was extracted from biopsy samples using the 
E.Z.N.A. DNA/RNA Isolation kit (Omega-Bio-Tek) following the 
manufacturer’s recommendations. The rRNA 16S gene was 
amplified from the extract using the universal primers GM3 
(5´-AGAGTTTGATCMTGGC-3´) and 907r (5´-
CCGTCAATTCMTTTGAGTTT- 3´). A nested PCR with the ampli-
fied product was performed using 454 primers. The primer 
sequences for the nested PCR are listed in Table S4. This puri-
fied product was sequenced using the 454 GS-FLX+ platform 
(Macrogen, Seoul, South Korea). The datasets of Spanish sub-
jects generated during the current study are available in the 
ENA sequence repository under the project accession num-
bers PRJEB6107 and ERP005574. 

Sequence trimming, chimera verification and OTU grouping  
Data were processed using a Mothur pipeline [86]. We elimi-
nated low-quality sequences, defined as: sequences under 300 
bp, those with a window size and average quality score of 25, 
a maximum homopolymer of eight nucleotides, without ambi-
guities and reading mismatches with barcodes primers. Chi-
meras were eliminated using Chimera Uchime implemented in 
Mothur. Sequences were grouped into OTUs with 99% [42] 
identity using the UCLUST package in QIIME [87]. The most 
abundant reading of each OTU was chosen as its representa-
tive.  

 
Phylogenetic affiliation and OPU determination.  
Representative OTUs, grouped into OPUs in a previous study 
[42] on samples from Spanish patients, were added to the 
LTP111 database. These samples were aligned using SINA [88, 
89] and incorporated into ARB [43] using the maximum parsi-
mony model. The sequences were grouped into OPUs based 
on a manual inspection of their genealogy. Note that an OPU 
is the smallest monophyletic group of sequences containing 
OTU representatives and their closest reference sequence, 
including a type strain when possible, and is the result of a 
phylogenetic inference by inserting the new sequences in a 
preexisting tree using the parsimony tool implemented in the 
ARB program package [43]. This OPU approach allows combin-
ing 16S rRNA gene fragments of distinct length and position 
within the gene, and therefore obtain comparable results 
between the amplicon of different samples even with differ-
ent sequencing strategies. The OPU approach reduces the 
diversity measures as groups sequences in lineages that ap-
proach the species thresholds [42] and therefore gives a more 
robust view of the microbiome diversity. 

 
Compositional, comparative, and statistical analysis 
For the statistical analysis and visual exploration, the microbi-
ome data were uploaded to the MicrobiomeAnalyst server 
[90]. An alpha diversity analysis was calculated based on ob-
served OPUs (Richness) and Shannon Index (Diversity). Beta 
diversity was calculated based on the principal coordinate 
analysis (PCoA) using the Bray-Curtis dissimilarity. A hierar-
chical cluster analysis based on the relative abundances of 608 
OPUs was performed using the Bray-Curtis dissimilarity metric 
and Ward's linkage. Heat maps showing OPU abundances 
were drawn using the gplots package [91] in R [53].  

Statistical differences in the abundance of specific taxa be-
tween groups were determined using the Kruskal-Wallis test 
followed by Dunn’s multiple comparisons test. The variation in 
the read counts and relative abundances across patients can 
hamper and bias the identification of disease-associated taxa 
[45] Indeed, as the taxonomic level decreases, there are fewer 
taxonomic units and therefore, the subject-to-subject varia-
tion can lead to the loss of statistical power. To overcome this 
problem, logarithmic transformation has been implemented in 
several microbiome studies, allowing better association anal-
yses compared to the linear scale [45, 92]. Consequently, 
analysis at family level and below were made on data that was 
transformed using the log(X+1) method.  

To determine differentially abundant taxa in different 
groups, a linear discriminant analysis effect size (LEfSe) [93] 
was performed in the MicrobiomeAnalyst server [90]. For this, 
a p-value cut off at 0.05 and linear discriminant analysis (LDA) 
score threshold 2.0 were used. The LEfSe is an algorithm that 
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detects species and functional characteristics that are differ-
entially abundant between two or more environments with 
statistical significance, effect relevance, and biological con-
sistency. The LEfSe uses the LDA to estimate the effect size of 
each differentially abundant feature. To explore the potential 
interactions among OPUs, a correlation network analysis was 
performed by using the SparCC algorithm [57].  

 
Bacterial biomarkers and classifier validation 
We defined as biomarkers those OPUs identified by the LEfSe 
algot which were present in more than half of the samples of 
the corresponding group (i.e., dysbiosis vs. eubiosis and dysbi-
otic UC patients vs. dysbiotic CD patients). In order to evaluate 
the performance of each indicator OPU in discriminating be-
tween groups, we first performed a receiver operating charac-
teristic (ROC) curve analysis in the easyROC server [94]. Next, 
we selected the best discriminating OPUs and implemented 
several classification algorithms, including Naive Bayes (NB), 
Random Forest (RF), Logistic Regression (LR) and Support Vec-
tor Machine (SVM) and Neural Network (NN) using the Orange 
data mining suite, V.3.27.0 (http://orange.biolab.si) [95]. NB is 
a generative model, RF is an ensemble method using decision 
trees, whereas SVM, LR and NN are discriminative models. We 
used 70% of samples as the training set, and the rest were 
used as the test set with the five-fold cross-validation method. 
The results of the cross-validation (classification accuracy, 
sensitivity, and specificity) were registered and depicted by 
ROC curves. 
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