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Cell2Fire is a new cell-based wildland fire growth simulator designed to integrate

data-driven landscape management planning models. The fire environment is modeled

by partitioning the landscape into cells characterized by fuel, weather, moisture content,

and topographic attributes. The model can use existing fire spread models such as

the Canadian Forest Fire Behavior Prediction System to model fire growth. Cell2Fire is

structured to facilitate its use for predicting the growth of individual fires or by embedding

it in landscape management simulation models. Decision-making models such as fuel

treatment/harvesting plans can be easily integrated and evaluated. It incorporates a

series of out-of-the-box planning heuristics that provide benchmarks for comparison.

We illustrate their use by applying and evaluating a series of harvesting plans for forest

landscapes in Canada. We validated Cell2Fire by using it to predict the growth of both

real and hypothetical fires, comparing our predictions with the fire scars produced by

a validated fire growth simulator (Prometheus). Cell2Fire is implemented as an open-

source project that exploits parallelism to efficiently support the modeling of fire growth

across large spatial and temporal scales. Our experiments indicate that Cell2Fire is able

to efficiently simulate wildfires (up to 30x faster) under different conditions with similar

accuracy as state-of-the-art simulators (above 90% of accuracy). We demonstrate its

effectiveness as part of a harvest planning optimization framework, identifying relevant

metrics to capture and actions to mitigate the impact of wildfire uncertainty.

Keywords: forest fire spread, FireSmart forest management, fire growth simulation, wildfire, cellular-automata,

data-driven decision making

1. INTRODUCTION

The effects of global warming on temperature, precipitation, soil moisture, and other forest and
wildland fire regime drivers have increased and are expected to continue to increase in terms of
both the number of and area burned by wildfires around the globe (Westerling, 2016). Wildfires
have burned large areas and important infrastructure, thousands of homes and forest resources have
been destroyed, andmany lives have been lost in recent years. Recent examples include catastrophic
incidents in the United States, Canada, Chile, Portugal, and southwestern Australia (Kramer et al.,
2018; Radeloff et al., 2018; Bowman et al., 2019).Wildfire occurrences have also resulted in increases
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in expenditures by forest and wildland fire management agencies
(see, e.g., Stocks and Martell, 2016; Tymstra et al., 2020). Despite
concerted efforts, wildfire growth remains a complex and difficult
to model process.

Two of the most important characteristics of a wildfire are
its rate of spread (ROS) and intensity, which are influenced by
fuel type, fuel moisture, wind velocity, and slope. The Canadian
Forest Fire Behavior Prediction (FBP) System includes empirical
fire spread rate models that can be used to predict the ROS
and the intensity of wildfires based on weather, fuel moisture,
time of year, and topographical variables for specified fuel
types; e.g., for individual grid cells that contain homogeneous
fuel types (Forestry-Canada, 1992). However, the FBP System
alone cannot be used to predict how a fire will grow across
a heterogeneous landscape/grid over time. Spatial fire growth
models like Prometheus, a deterministic fire growth simulator,
are designed to use FBP spread rate functions to do so (Tymstra
et al., 2010). Prometheus is a vector-based fire growth model
that is based on an adaptation of Huygens principle of wave
propagation, i.e., the propagation of the fire front is modeled
similar to a wave, shifting and moving forward continuously in
time and space. It uses spatially explicit fire environment input
data concerning topography (slope, aspect, and elevation) and
FBP fuel types along with a weather stream and corresponding
fire danger rating codes and indices to model wildfire growth
(VanWagner and Pickett, 1987). FARSITE is another widely used
fire growth simulator (Finney, 2005). It is based on the U.S. Forest
Service’s BEHAVE fire behavior prediction system and it is also
a vector-based Huygens’ type model. A review of 23 simulators
that can be used to predict forest fire growth can be found in
Papadopoulos and Pavlidou (2011) and a review of newmodeling
techniques are analyzed in Bakhshaii and Johnson (2019). The
two models found to best model the growth of historical fires
were FARSITE in the United States and Prometheus in Canada.

Large portions of the western United States, the southern
interior of the Canadian province of British Columbia, the
northwestern portion of the Canadian province of Ontario, parts
of Russia and several Mediterranean countries were very severely
impacted by wildfires during the 2021 fire season and in some
cases, the suffering continues as we write. Wildfire management
has been characterized as a “wicked” problem to which there are
no simple solutions (e.g., Matthew et al., 2007). That being said,
there is widespread recognition of the need to treat hazardous
fuel buildups near communities and infrastructure (Beverly et
al., 2021) and across the larger extensive flammable landscapes
in which those communities and infrastructure are embedded
(e.g., Hirsch et al., 2001). Unfortunately, fuel management is very
expensive (Peter et al., 2016).

However, forest companies are involved in the management
of timber production on many flammable forest landscapes.
They construct and maintain roads and harvest and regenerate
forest stands and establish landings and sorting yards, the costs
of which are underwritten by their commercial operations.
Hirsch et al. (2001) recognized that it might be possible for
such companies to modify some of their road building, timber
harvesting and regeneration activities such that they might
reduce the flammability of the landscape while satisfying their

timber production objectives and coined the phrase “FireSmart
forest management” to describe their novel paradigm.

Such companies could, for example, when scheduling the
timing and location of harvest blocks and the roads required
to access the stands to be harvested, look beyond delivered
wood costs and also consider the extent to which they could
plan their harvesting and road building activities to strategically
fragment and thereby reduce the flammability of the landscape.
It is reasonable to assume at least some of the marginal
cost of modifying their road building and harvesting activities
to FireSmart the landscape could to some extent, be offset
by reductions in fire losses and increases in their annual
allowable cut.

In order to develop and evaluate integrated FireSmart timber
production strategies one must develop integrated landscape
management planning models that include estimates of the
probability that each forest stand will burn given the current
structure of the landscape (i.e., its vegetation or fuel and
topography), future weather, the fires that might be ignited,
fought and grow and how the subsequent growth of those fires
might be influenced by the timing and placement of roads and
harvesting activities. Put simply, such strategic forest landscape
management planning models must include endogenous burn
probability models.

Endogenizing burn probability estimation complicates forest
landscapemanagement enormously because harvesting decisions
should be influenced by stand-specific burn probabilities but any
harvesting and road construction that takes place will fragment
the landscape and may impact future stand specific burn
probabilities. Acuna et al. (2010) developed a heuristic approach
to addressing that problem and applied their methodology to
a 12,964 ha portion of a forest management unit in the boreal
forest region of the province of Alberta in western Canada. They
found that for their study area, integrated fire forest management
planning based on their methodology could result in an 8.1%
increase in net present value of the timber production when
compared with traditional planning in which fire loss is treated
as an exogenous factor.

Both traditional burn probability modeling (e.g., Parisien
et al., 2005b; Finney, 2006; Finney et al., 2011a) and the
incorporation of endogenous burn probability models in
landscape management planning models (e.g., Acuna et al., 2010)
call for simulating many spatially explicit fire ignition and fire
growth scenarios which is very computationally challenging. Our
objectives were to develop an open source fire growth model
in which fire spread is based on existing fire spread models
developed by others (in our case, the Canadian Fire Behavior
prediction system) that is designed such that users can exploit
parallel processing computer architecture to speed processing
when available, that can be incorporated in integrated FireSmart
forest management planning models and “stand alone” burn
probability models, and to illustrate how it can be used for
such purposes.

This paper is organized as follows.We begin ourMaterials and
Methods section with a brief description of the basic structure
of wave-propagation Huygens type vector models and cell-based
models, and a brief review of the fire growth modeling literature.
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We then describe the structure of our fire growth model, its
requisite inputs and outputs and the methods we use to compare
fire scars predicted by Prometheus and Cell2Fire. We then
describe how fire growth models can be used to generate burn
probability maps which can be incorporated in FireSmart forest
management planning decision support systems. We describe
the experimental instances (landscapes with associated fuel-
type maps and weather scenarios) for which we generated and
compared Prometheus and Cell2Fire fire scars and evaluated
three harvest schedules for a 1,600 ha landscape in Alberta. We
then present and discuss those experimental results and conclude
by suggesting that Cell2Fire can be used to support FireSmart
landscape management planning research and expressing our
hope and expectation that our open source approach will
facilitate its use for such purposes.

2. MATERIALS AND METHODS

2.1. Background
Fire growth simulation requires an understanding of fire
behavior. This knowledge is captured in empirical fire
behavior models (e.g., non-linear systems) describing the
main characteristics of fires as a function of environmental
conditions, fuel cover type, and time, among others. Outputs
generated by these models are then used as the main inputs of
fire growth models, allowing us to simulate wildfires. The two
methods that have most often been used to simulate fire growth
across heterogeneous landscapes are the wave propagation
and the cellular-automata approaches. We therefore begin by
providing an overview of the most prominent fire behavior
prediction system in Canada and a brief summary of the main
characteristics of the two fire growth simulation approaches.

2.1.1. Canadian Fire Behavior Prediction System: FBP
The Canadian FBP System is a set of empirical models that
can be used to predict fire spread rate, fuel consumption, and
fire intensity within homogeneous spatial units (i.e., cells) as
functions of fuel type, slope, fuel moisture, and current weather
expressed in terms of the Canadian Forest Fire Weather Index
System (FWI) codes and indices (Forestry-Canada, 1992). It
includes fuel models that are used to classify vegetation into 17
fuel types that collectively represent most of the major forest
cover types in Canada. In the context of landscape management,
outputs generated from the FBP system can be used to inform
the development of landscapemanagement plans. This allows the
planner to incorporate fire behavior outputs like the average ROS,
expected flame length, and fire intensity, among other features, to
evaluate the impact of proposed plans to mitigate potential effects
of future wildfires on the area of interest.

2.1.2. Wave-Propagation Model: Huygens
Huygens considered every point on a wavefront of light as a
source of individual wavelets and described the new wavefront
as the surface tangential to the circumferences of the secondary
waves. The use of Huygens Principle to simulate fire growth
is based on the assumption that the shape of a fire can be
represented by a polygon, a plane figure composed of a sequence

of straight-line segments forming a closed path whose vertices
are a tangential envelope of the elliptical “firelets.” Huygens
principle was first used to model fire growth by Sanderlin and
Sunderson (1975). Anderson et al. (1982) later developed a simple
elliptical model based on Huygens principle of wave propagation
to simulate the growth of grass fires. Richards (1990) then
extended the Anderson et al. (1982) model by deriving a set of
partial differential equations to model the growth of fires across a
heterogeneous landscape.

Both FARSITE and Prometheus use Richards’ partial
differential equations to propagate each vertex on a fire’s
perimeter (Finney, 2004; Tymstra et al., 2010). However, these
models differ with respect to the fire danger rating systems and
fuel models they use to model fire spread rates. FARSITE uses
the fire behavior prediction fuel models developed by Rothermel
(1972) and extended by Anderson (1982) and Scott and Burgan
(2005), whereas Prometheus uses the Canadian Forest Fire
Behavior Prediction System (Forestry-Canada, 1992).

2.1.3. Cell-Based Fire Growth Models
Cellular-automata models that employ a raster-grid of square or
hexagonal cells are widely used to model wildfire growth. Fuel
and terrain conditions are usually assumed to be homogeneous
within each cell in order to simplify basic fire spread rate
calculations. The fire propagates through the grid-cells, typically
from a cell’s center to the center of an adjacent cell. Each ignited
cell behaves as an ignition source that is independent of any
adjacent burning cells. To spread the fire from one cell to another,
a search mechanism based on an adjacency or spread template
is required.

Kourtz and O’Regan (1971) developed the first computer
simulation model to spatially simulate the growth of a small fire.
Their model was based on a heterogeneous and discontinuous
fuel-type grid but did not account for the effects of terrain and
wind. Their deterministic model predicted how long it would
take a fire to burn through one square area or cell within a fuel
grid when the location of the fire, the starting time, and the grid
resolution were known. Travel times were calculated using fixed
rates of spread (based on the fuel type and the spread index for
the day) and fixed spread directions from the burning cell. Later,
O’Regan et al. (1973) developed a method for using directional
rates of spread to predict fire growth. They also rewrote the
original model for use on what was then a large computer, to
simulate the growth of fires of up to 15,000 ha in size.

O’Regan et al. (1976) developed a model for average
directional rates of spread and Kourtz et al. (1977) modified
that model to accommodate variation in hourly wind conditions.
Todd (1999) adapted the Kourtz et al. (1977) model to create
an eight-point symmetric fire growth model called Wildfire,
which incorporates FBP System spread rates. The features
and functionalities of the Wildfire model were assessed and
considered during the design of the Prometheus model (Tymstra
et al., 2010). Boychuk et al. (2009) developed a stochastic model
of fire spread using a lattice Markov chain model in which they
associated probabilistic transition functions with each cell. Each
of these cells interacts with its four nearest neighbors and a
cell transitions from unburned to burning depending on the
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state of its neighboring cells. The use of a simplified cellular-
automata model describing the dynamics of fire spread on a
heterogeneous landscape accounting for weather factors (wind
speed and direction) as well as the type and density of vegetation
was used to successfully model the Spetses Island fire (Greece)
after tuning the main parameters of the simulator (Alexandridis
et al., 2008).

Arca et al. (2019) recently released a fire growth simulator
designed to assist civil protection and fire management agencies
with a case study in the island of Sardinia, Italy. Their model uses
the level set technique (see Ghisu et al., 2015) and the Rothermel
(1972) fire behavior model. Such models are designed to be used
in near real-time to inform the on-going management of specific
fires that are subject to active suppression action.

One alternative to the cell-based approach calls for
probabilistic spatially explicit fire scenarios in the form of
burn scar maps that describe what portions of the forest might
burn in the future and the probability that each of those scenarios
might be realized using, for example, methodologies like the one
described by Kuhlmann et al. (2014). Such scenarios could be
provided to planners engaged in traditional scenario planning
exercises (e.g., Moats and Dooley, 2008) and incorporated in
stochastic programming models (e.g., Kabli and Ntaimo, 2015)
designed to support such planning.

2.2. Cell2Fire Growth Simulator
Cell2Fire is an open-source cell-based fire growth simulator
developed using Python and C++ for laptop or desktop
computers as well as on High-Performance Computer systems. It
allows a user to simulate fire growth across a grid that represents
a real forest landscape using fire environment variables such
as the fuel type, topographic features of each cell, fire ignition
points, and weather scenarios. It is composed of three main
steps (Figure 1): i) Raw fuel, topography and fire weather
data is pre-processed into Cell2Fire’s format. ii) Cell2Fire
calls an independent fire spread model (e.g., FBP), running
multiple simulations including proposed treatment/harvesting
plans provided by the user to modify the landscape (i.e., cell fuel
types). These plans are then evaluated and results inform forest
harvesting and fuel management decision-making. iii) Finally,
outputs are generated and returned to the user.

A forest landscape is divided into a rectangular region
comprised of rows and columns partitioned into a series of square
cells, all of which are the same size. This generates a grid in
which the cell size depends on the desired spatial resolution
and the granularity of the available data. Each cell represents
a specific portion of the landscape and has two information
layers that pertain to its topographic and fuel characteristics.
Those layers define the characteristics of each cell, allowing the
simulator to treat them as individual objects that can interact
to model fire growth in highly-scalable parallel implementation.
Algorithmically, Cell2Fire simulates the growth of fire by
tracking the state of all cells as the model progresses through
discrete equally-spaced time steps (e.g., seconds, minutes). The
status of the fire and all the cells on the landscape are updated (see
Supplementary Section 1 for more details) at the end of every
time step. Once an ignition point has been specified, the fire is

ignited. During each time step, the fire may spread along the
axes emanating from the center of each burning cell to its eight
neighboring cells with the rate on each axis imputed from an
ellipse that has characteristics and orientation dictated by the fire
behavior prediction system and the current weather conditions,
respectively. The predicted FBP system Head Rate of Spread
(HROS), Flank Rate of Spread (FROS), and Back Rate of Spread
(BROS) are used to model elliptical fire growth within each cell
with the focus of the ellipse at the center of the cell (details in
Supplementary Section 2). The geometry of the ellipse for every
burning cell is computed and used to predict fire spread rates
along the axes emanating from the center of each cell at each time
step. In Figure 2, we observe the elliptical fire spread distribution
scheme using the ellipses defined by the Canadian FBP System.
At any time t, the backfire will be BROS × t behind the point
of ignition and the head fire will be HROS × t ahead of the
point of ignition of the fire, expanding the ellipse. Then, if the
fire spreading from cell i reaches the center of an adjacent cell
j (e.g., cell j = i5 at time t(j)), a new ellipse is generated at
time t′ > t(j), which triggers a new set of calculations. In this
example, the wind direction is assumed to be from the West (i.e.,
to the right of the main horizontal axis) for simplicity of the
exposition. In practice, ellipses are oriented in the main wind
direction and are perturbed (in magnitude and orientation) by
environmental conditions. Given its dynamic generation at each
time step, the model efficiently handles non-uniform conditions
such as temporal (e.g., changing wind speed and direction) and
environmental (e.g., changes in slope/elevation or fuel type) by
perturbing the direction and size of the ellipse according to these
conditions. This is translated into different HROS, FROS, and
BROS values obtained from the FBP system (and thus, spread
rates to any other direction), modifying the fire propagation
patterns according to the observed conditions.

If it is determined that fire would spread to the center of
an adjacent cell during a simulated time step, the software
sends a signal to the adjacent cell, which causes that cell to
process a potential ignition, which means that it initiates the
calculation of the ROS toward its eight neighboring cells based
on its characteristics and the current fire weather (i.e., fire
danger rating indices, wind velocity, and slope). In the present
implementation, it is assumed that each cell has at most eight
adjacent cells (rectangular grid). These are the only neighbors
considered because the simulation time step is set small enough
to ensure that the fire cannot spread beyond adjacent cells in one
time step. Shorter simulation time steps result in longer running
times but more accurate spatial (and thus, with incidence in
temporal evolution) simulations - see Supplementary Section 4.
We note that there is also a simplifying assumption because
when fire enters a cell from one of its neighbors, that neighbor’s
cell characteristics are used to model fire spread within the
destination cell until the fire reaches its center. At that point, the
characteristics of the destination cell are used to model further
fire spread within the destination cell. This approximation results
in computational efficiencies because a cell does not have to
recognize multiple fuel types.

The main ROS values are calculated by the FBP System
module and fire progress is predicted along the available
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FIGURE 1 | Cell2Fire simulation and optimization framework.

FIGURE 2 | Elliptical fire spread distribution schematic.

axes. Then, the fire’s progress is updated at the end of
each fire time period by examining the state of all active
burning cells. Once no adjacent cells are available or

a burn-out criterion (See assumption (A5) in section
2.2.1) has been satisfied, the cell becomes inactive and
is excluded from further simulation steps. This process
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is repeated until a fire weather-related fire-ending event
state is reached, i.e., the total number of fire burning
periods (e.g., hours) have passed or there are no more cells
available to burn.

The simulation logic is presented in Figure 3 which
illustrates a forest with 9 cells where no fire has taken
place (Initial State). A fire is ignited in cell 4 and it can
spread to other cells during the following fire growth
periods. If no messages are sent to neighboring cells
based on the current environmental conditions (burned-
out conditions) or the maximum simulation time for the
current fire has been exceeded, the simulation advances to the
time the next fire is ignited on the landscape (randomly
generated or user-provided) or stop the simulation. A
general pseudo-code of the simulation steps is provided in
Supplementary Algorithm S1.

2.2.1. Modeling Assumptions
We can summarize the main simplifying assumptions upon
which Cell2Fire is based as follows:

A1) The growth of the fire depends on the ROS from burning
cells toward their neighboring cells. We assume that a cell
is ignited when the fire reaches its center and conditions
for burning are met (see A5). Each cell has at most
eight neighbors.

A2) The ROS along the eight principal axes of each burning
cell are calculated using the Canadian FBP System as
functions of the weather, slope, and fuel characteristics of
each cell. The major axis of each ellipse is aligned in the
HROS direction and the BROS is the opposite direction.
The FROS is perpendicular to the HROS/BROS axis. We
note that alternative fire spread models could be used
in lieu of the Canadian FBP system, as discussed in our
Conclusions section.

A3) Each cell that burns serves as a new source of fire. Fire
spread occurs at the cellular level and cell size depends on
the spatial resolution and corresponding availability of fuel
and topography data.

A4) The effect of fire suppression action is not modeled as it is
beyond the scope of this paper.

A5) There are two sets of conditions for modeling the
termination of fire growth in Cell2Fire: the cellular level and
general fire evolution conditions. At a cellular level, each cell
becomes unavailable (i.e., burned and can no longer serve as
a source of fire) if (i) the cell does not have any adjacent cells
that are available to burn; (ii) the residual fuel available in a
cell is not sufficient to support fire spread (implicit in the
FBP system), or (iii) a user-defined head fire intensity (HFI)
threshold is provided and the HFI is below that threshold.
Regarding the general fire dynamics, the total duration
of the simulated wildfire event is determined by (1) the
maximum number of hours of burning per day—a season-
dependent constant (Parisien et al., 2005a), or drawn from
a probability distribution—and (2) the total fuel remaining
(available cells) in the forest (i.e., when it burns out).

2.2.2. Main Inputs and Outputs
As is the case with other state-of-the-art fire growth simulators,
the Cell2Fire model requires a number of inputs including a
minimum set of data layers that define an instance/forest. The
relevant inputs needed to simulate the growth of a fire using
Cell2Fire are as follows:

i) Forest raster data: gridded forest attribute files that specify
the number of cells in the forest, their geographical
coordinates and information concerning each cell including
its fuel type, elevation, slope (% and azimuth), and the degree
of curing of grass.

ii) Fuel type dictionary: Fuel type codes and descriptions
that match the Canadian FBP System fuel types. Custom
dictionary files including user-defined fuel types matching an
alternative fire spread model can be provided.

iii) Ignition points: An optional file that specifies the cell(s) in
which fires are to be ignited during the simulation, paired
with their corresponding ignition times.

iv) Weather stream: Interpolated hourly weather records from
one or more fire weather stations located near the area of
interest. Weather scenarios using the FBP system include the
date-time, precipitation, temperature, wind speed/direction,
relative humidity, scenario ID, as well as the hourly fire
danger rating codes and indices (FFMC, DMC, DC, ISI, BUI,
and FWI) of the Canadian Forest Fire Danger Rating System
(Taylor and Alexander, 2006) (see Supplementary Table S1

for reference).

Once a simulation run has been completed, the following outputs
are available (see sections 2.3 and 3 for examples):

i) Burn-Grids: Files in which 1s indicate burned cells and 0s
indicate those cells that have not burned. That data can be
used to compare our fire growth predictions with predictions
produced by other fire growth simulators as well as to
generate burn probability maps, or to generate confidence
intervals for cell-specific burn probability estimates.

ii) Plots: Initial forest state, fire scar evolution, and message
sending/receiving can be visualized by a series of plots
generated after the simulation run has been completed.

iii) Statistics: Final status of the forest with relevant information.
This includes shortest propagation paths between burned
cells, fire behavior data by time step (e.g., average
ROS values, fire length/intensity), expected fire scar
perimeter/size/location, and a series of statistics across all
tested scenarios (e.g., including multiple ignition points,
weather streams).

2.2.3. Comparison Methodology: Fire Growth

Validation
In this study, we compare predicted burn scars/perimeters by
measuring the difference between fire perimeters generated by
Prometheus (baseline) and Cell2Fire simulations using three
metrics. The simplest and most widely used full-reference quality
metric is the mean squared error (MSE), which objectively
quantifies the deviation from a known pattern. However, two
distorted images with the same MSE may have very different
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FIGURE 3 | Simulation scheme. The send/receive messages structure facilitates natural parallelization by processing each cell independently. Messages are sent from

burning cells (gray squares) to adjacent available cells (white squares) during the fire periods (FPeriods).

types of errors, some of which are much more visible than
others. Thus, as we are interested not only in the difference of
the MSE but also in structural information, we use a measure
of similarity suggested in Zhou et al. (2004) and denoted by
SSIM (structural similarity index). Finally, we also include the
Frobenius norm of the difference between two perimeters X, Y ,
δnorm = ||X − Y||, focusing on the spatial comparison between
fire perimeters.

We compare the evolution of Cell2Fire and Prometheus
fire perimeters on a period-to-period basis (where a period
represents 1 h) in order to measure the differences in fire
propagation rates. We denote by PromGridt a 0-1 Matrix at
time t, which represents the fire scar obtained with Prometheus,
where PromGridtij is equal to 1 if the cell

(

i, j
)

was burned

by time t and 0 otherwise. Analogously, we define the
fire scar obtained by Cell2Fire as Cell2Gridt . We use the
Prometheus fire perimeters as references to validate our fire
growth simulation model, comparing it to an acknowledged
state-of-the-art simulation model. However, its outputs do
not necessarily match historical fire perimeters due to a
series of approximations/limitations (e.g., land cover data
availability, not incorporating suppression efforts applied during
the wildfire, etc.).

Below, µXt , µY t , σXt , σY t and σXtY t represent the means,
standard deviations, and cross-covariance for fire scars Xt and Y t

respectively, and C1, C2, and C3, are internal parameters of the
metric (Zhou et al., 2004). The methodology is as follows:

1. Choose an ignition point for each instance and run
Prometheus for T time periods (e.g., hours). Thus, we obtain
Xt = PromGridt , t = 1, ...,T.

2. Choose the same ignition point as above and run Cell2Fire for
T time periods obtaining Y t = Cell2Gridt , t = 1, ...,T.

3. Calculate, for all t:

(a) Mean Squared Error Measure:

MSE
(

Xt ,Y t
)

=
1

nm

n
∑

i=1

m
∑

j=1

(

Xt
ij − Y t

ij

)2
,

to measure average of the squares of the pixel differences
of the fire scars (with Xt

ij the (i, j) component of the matrix

Xt).
(b) Structural Similarity Measure:

SSIM
(

Xt ,Y t
)

=
(2µXtµY t + C1) (2σXtY t + C2)

(

µ2
Xt + µ2

Y t + C1

) (

µ2
Xt + µ2

Y t + C2

) ,

to measure the change in structural information between
the fire scars obtained from the two simulators: Cell2Fire
and Prometheus.

4. Measures analyses: MSE and SSIM over time, t, and δnorm for
the final fire scars.

Based on the previous definitions, we observe that larger values of
MSE and δnorm indicate larger discrepancies between the pixels of
both binary fire scars. A maximum value of 1 (MSE) indicates
that one fire perimeter is the negative of the other (i.e., all 0s
are 1s and vice versa): no match between the simulations. This is
the opposite for SSIM, where the maximum value of 1 indicates
perfect similarity between both fire perimeters, i.e., they are
identical. However, no single metric is able to completely capture
the complexity of comparing images. The evaluation of several
complex metrics would be required to capture each relevant
aspect, a research topic by itself that it is out of the scope of this
research. Therefore, we also rely on a visual analysis to evaluate
the performance of the model.
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2.3. Wildfire Management
One way to mitigate the impact of fire and protect our
communities and natural resources is through Forest Fuel
Management (FFM). Activities such as harvesting, prescribed
burning, the construction of firebreaks, commercial harvesting,
and thinning can reduce the detrimental impact of fire (Loehle,
2004; Agee and Skinner, 2005; Moudio et al., 2021; Pais et al.,
2021). In addition, these actions could also benefit the diversity
of species (Shinneman et al., 2019) and improve the health of
the forest ecosystem, among many other benefits (Finney, 2001;
Hirsch et al., 2001; Moghaddas and Craggs, 2008). Land planners
face difficult questions concerning what, where, when, and how
tomanage fuels. Moreover, there are few computational tools that
address this challenging problem (Chung, 2015).

In general, for a given planning horizon, planners must decide
where to locate a treatment depending on the state of the forest.
The condition of the forest depends on the previous efforts of
the land managers (e.g., the actions taken during previous years)
and possible modifications of the vegetation due to wildfires.
Now, where and when the fires will occur and what will be
their severity are stochastic events. Therefore, the question we
propose to answer is: What fuel management activities might
best minimize expected future losses? However, regardless of who
or how we make the decisions, we require an efficient modeling
framework and computational tool to test the effectiveness of
alternative plans.

In the next subsections, we show how Cell2Fire can be used
to support the development and evaluation of FireSmart forest
management plans, focusing on fuel treatment decision-making.
We first indicate how the system works to perform multiple
stochastic simulations on the study area, with the purpose of
calculating relevant outputs such as Burn Probabilitymaps. Then,
we show how the integrated decision-making model is capable
of modifying the state of the treated cells (with some predefined
policy) and measure the impact on cells affected by fires in
multiple replications, allowing the evaluation of the effectiveness
of different policies in a quantitative framework. Finally, we
discuss how the different outputs of the system can support the
decision-making process.

2.3.1. Burn Probability Maps
Burn probability maps (BP-maps) are commonly used to
assess the likelihood of burning (Moritz et al., 2005; Parisien
et al., 2005b; Ager et al., 2007, 2010; Finney et al., 2011b).
Software such as Burn-P3, FSPro, and FlamMap (Parisien
et al., 2005b, 2011; Finney et al., 2011b) can calculate these
values using fire growth algorithms to produce high-resolution
spatial estimates. Burn probability maps of managed landscapes
(e.g., landscapes on which simulated fuel treatments have been
implemented) can be used to generate baseline estimates of
the impact of such treatments that can be compared with fuel
treatment plans generated by using more complex approaches
such as network-based prioritization metrics and simulation-
optimization techniques (Acuna et al., 2010; Russo et al., 2016;
Moudio et al., 2021; Pais et al., 2021). We describe how Cell2Fire
can be used for such purposes.

The general procedure for calculating a BP-map consists of
generating multiple simulations on a landscape, in which on each
replication a cell/area is selected at random, and from that point,
a simulated fire is generated following given or randomly selected
meteorological conditions. For example, Burn-P3 (Probability,
Prediction, and Planning) (Parisien et al., 2005a) combines a
deterministic fire growth model (Prometheus) and spatial data
for forest fuels and topography with probabilistic fire ignitions
and spread events derived from historical fire and weather data.
The components of the model include the location and frequency
of ignitions, the rate at which fires escape the initial attack
and become large wildfires, the number of days on which each
fire achieves a significant spread rate, the weather conditions
associated with these spread event days, and the deterministic
fire spread evolution. Other tools with similar features include
FlamMap (Finney, 2006) and Fire Spread Probability (FSPro)
(Finney et al., 2011a).

In order to produce the BP-maps with our system shown
in Figure 4, we use similar methods to the systems just
described. The three different sources of uncertainty included
are: (1) Ignition point(s) selected via a user-defined probability
distribution or a simple uniform approach for each period of
the planning horizon. (2) A coefficient of variation (cvROS)
capturing the stochastic aspects of the ROS predicted by the
fire spread model and accounting for its inherent approximation
error, allowing the user to obtain different fire scars by including
uncertainty in the fire dynamic. (3) A set of user-generated
weather stream files (scenarios) with specific probabilities that
can be provided to Cell2Fire, obtaining simulations with different
weather conditions such as wind direction/speed, precipitation,
among others (Figure 5).

The general scheme is shown in Figure 5. First, we use the
ignition locations as a user-defined parameter, giving control
over the pattern of ignitions on the landscape. These points can
be selected randomly or deterministically before the simulation
begins. The latter can model, for example, the lightning strikes
over the forest. When lightning strikes a cell i at time t,
there is an “ignition probability” (defined by the user) that
fire will be ignited. On the other hand, Cell2Fire incorporates
a stochastic weather module that draws a weather scenario ω

from a set provided by the user, �. In addition, users can
assign a probability to each scenario in order to generate
relevant statistical outputs while providing more flexibility when
analyzing the impact of potentially extreme but rare (with low
probability) events.

Although the methodologies differ somewhat, all tools
incorporate the main components included in our study: random
selection of ignition points, selection of weather scenarios,
recording of burned cells, and repeating the process a number of
times (Figure 5). The main difference with our approach is that
these tools do not consider uncertainty in the ROS, therefore,
in the event of randomly selecting the same ignition point and
the same weather scenario, they produce the same fire scar. In
addition, our system can record the cells burned in previous
iterations/simulations, since cells have states, unlike Burn-P3
where this information is not recorded as the fire moves on a
continuum over the landscape.
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FIGURE 4 | Burn probability maps were generated after 100 independent wildfire replications in a 40× 40 cells landscape located in the province of Alberta. Maps

were generated using random weather scenarios and ignition points (RW-RI, left) and a deterministic ignition (RW-DI, right) illustrate the impact of the stochasticity in

the fire growth dynamic. Darker areas indicate higher burn probabilities.

FIGURE 5 | Framework for the inclusion of the different sources of uncertainty in the new system for multiple replications R. The ignition cell j can be specified by the

user or generated using a spatial probability distribution. A set of ω ∈ � weather scenarios is provided by the user to simulate scenarios for the study area.

2.4. Experimental Instances
We used three sets of fire instances to compare the Cell2Fire
simulations with those generated by Prometheus (Table 1). We
wanted to avoid introducing comparison bias with respect to
real fire scars where the intensity of suppression efforts could
be uncertain. The instances are: (1) Dogrib fire landscape in
Alberta province, (2) Dogrib fire sub-instances set, and (3) real
landscapes in province of British Columbia with hypothetical
wildfires. The largest instance from the second set is also used to

illustrate the applications of the proposed management module.
For the experiments, we used a simulation time step of 1 min.

2.4.1. Dogrib Fire Instance
We chose to model this particular September-October 2001
fire in the province of Alberta due to the vast amount
of documentation and observed data available (e.g., weather
conditions recorded fromThe Yaha Tinda Automatic station, and
demographic/topographic data collected from the area). It also
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TABLE 1 | Fire instance descriptions.

Instance Area [ha] Elev. range [m] Mean elev. [m] Mean slope [%] Dominant fuel (Code) Fuel types

Dogrib 79,611 [1,299, 2,825] 1,693 21.04 Boreal spruce (C-2) 11

AH 159,963 [430, 2,894] 1,329 42.96 Red/white pine (C-5) 11

RT 350,956 [429, 2,997] 1,494 45.91 Red/white pine (C-5) 11

MC 304,781 [516, 2,895] 1,523 48.41 Red/White pine (C-5) 11

GNP 464,664 [300, 3,000] 1,701 45.79 Boreal spruce (C-2) 11

CK 399,401 [300, 3,000] 1,811 51.64 Boreal spruce (C-2) 11

NP 350,956 [429, 2,997] 1,494 45.91 Red/white pine (C-5) 12

Details of the study areas including total area in hectares, topographic characteristics, and dominant fuel behavior model following the Canadian FBP System for Dogrib, AH, Arrowhead;

RT, Revelstoke; MC, Mica Creek; GNP, Glacier National park; CK, Central Kootenay; NP, Neptune Peak are summarized.

contained a representative set of different fuel-types documented
in the Canadian FBP system (see Figure 6). We divided the
landscape into 79,611 1 ha. (100 × 100m) cells, used the Dogrib
fire’s ignition point located at (51.652876◦, –115.477908◦) and
started growing the fire at 13:00 hrs on October 16, 2001 so as to
capture the major fire run (ninety percent of the total 10,216 ha
of area burned). The original ignition point is translated into an
ignition area (cell) in Cell2Fire at its coordinates. This instance
is provided with Prometheus (http://www.firegrowthmodel.ca/
prometheus/downloads/Dogrib_v624.zip).

2.4.2. Dogrib Sub-instances
In order to have moderate sized examples available for repetitive
testing, we used subsets of the Dogrib landscape data (see
section 3.1.3). We generated two sub-instances that we labeled
Sub-1 and Sub-2 with a cell resolution of 100 × 100 meters. The
first one represents a sub-forest from the Dogrib landscape that
is 20 × 20 cells (400 ha) and the second a 40× 40 cell (1,600 ha)
instance. Both consist of heterogeneous landscapes that include
different fuel types and non-flammable cells (e.g., mountains
or rivers).

An ignition point was selected for each instance as a starting
point for the fire growth validation experiments. Three weather
stream files: Weather-1, Weather-2, and Weather-3 of 6, 14, and
22 h respectively, were used as inputs. The first file contains
data for the 6 h during which the real Dogrib fire made a
run (extreme weather conditions). The second and third files
contain additional meteorological measurements from the same
day of the fire, before and after that spread event. After the
ignition point was fixed for both instances, we proceeded to run
the simulation in Prometheus and the deterministic version of
Cell2Fire, generated the hourly fire perimeters, and calculated the
similarity metrics (1-MSE and SSIM).

2.4.3. British Columbia Instances
The British Columbia instances set contains fuel and topography
data for five different areas—ArrowHead (265,536 ha),
Revelstoke (391,314 ha), Mica Creek (348,404 ha), Glacier
Natural Park (559,746 ha), and Central Kootenay (494,665
ha)—of the province. In order to validate our fire growth model,
we defined two fires with random ignition points and 24-h
weather stream based on the historical weather dataset from the
Climate Information Section of the Agriculture and Forestry

site for each area and random weather streams generated for
comparison purposes. These instances are provided with BurnP3
(http://www.firegrowthmodel.ca/burnp3/software_e.php). We
generated subsets of the large forests and simulated fire growth
using both Prometheus and Cell2Fire.

2.5. Computational Details
Analysis of the running times reveals that the initial ignition
stage is very quick. The sending-messages stage updates the fire
progress in every burning cell. Because a large number of cells can
be burning at the same time and there are no direct dependencies
on neighboring cells, updating the fire progress for each burning
cell is easily parallelizable because the calculations for each cell
can be done independently. Each cell, in addition to updating
its current status, can also “send a burn message” to an adjacent
cell. In the receiving messages stage, we analyze the “burn
messages” sent to non-burning cells and mark them as burning
if the fire start conditions are met. This part is also potentially
parallelizable, but because the number of newly burned cells at a
single time-step is dwarfed by the number of currently burning
cells, we found that a speedup here is of lower priority.

Due to the easily parallelizable structure of our algorithm, the
most suitable approach for parallelizing its execution consists
of a shared-memory approach using the well-known OpenMP
API (Dagum andMenon, 1998). Using OpenMP is advantageous
because the code is also optimized for execution on personal
computers. It is important is to note that some instances may
potentially experience poor parallel performance. The reason
behind this behavior is that some combinations of fuel types
and forests distributions may lead to a significantly smaller
set of simultaneous burning cells per simulation, and thus,
the parallelization will not significantly impact the overall
execution times.

Comparing the running times of our pure Python prototype
and C++ serial implementations with the results obtained using
Prometheus on randomly generated homogeneous forests (up
to 100M cells), we can see in Figure 7, how Cell2Fire (C++) is
significantly faster than Prometheus (up to 30x speedups). We
also note that Prometheus is not able to solve our three largest
instances (80, 90, and 100 M, due to an “out of memory” error).

Focusing on the parallel execution of Cell2Fire, we analyze the
speedup and strong-scaling efficiency plots for the experimental
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FIGURE 6 | Map of the Dogrib fire instance. The legend indicates the color of the different fuel behavior models (fuel types) characterizing the terrain of the area. A

hillshade effect has been applied to depict the elevation of the terrain.

FIGURE 7 | Running time comparisons using Cell2Fire serial versions (pure Python and C++) on a desktop and laptop computers and Prometheus on a desktop

computer.

instances. We observe that our model is able to obtain up to 15x
and 20x speedups for the small and large instances respectively,
as well as averages strong efficiency factors between 75 and 82%,
depending on the size of the forest. In Figure 8 we present the
results obtained for the average values among 20 instances with
500,000 cells using our parallel implementation. Similar results
were obtained for larger instances.

Based on all our experiments, adding more threads leads
to better execution times following a flat pattern w.r.t. the
strong-scaling efficiency. Thus, Cell2Fire is able to obtain
a great strong scaling performance (see more details in
Supplementary Section 5).

3. RESULTS AND DISCUSSION

We begin by describing experiments we carried out to validate
our model. This is followed by illustration of the management
capabilities and research issues.

3.1. Propagation Validation
In this section we compare the predicted burn perimeters
produced by Cell2Fire and Prometheus for several hypothetical
fire instances (described in section 2.4) created for this purpose.
We did not compare either simulator with the actual fire scars in
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FIGURE 8 | Strong-scaling and speedup factors for Cell2Fire’s parallel version n = 500, 000.

FIGURE 9 | Fire growth visualization for sub-instance 1 using Prometheus and Cell2Fire across a heterogeneous landscape with non-flammable cells (gray cells) and

different fuel-types (green and yellow cells).

our study because it is difficult to determine the extent to which
the final shapes were influenced by suppression actions.

3.1.1. Sub-instances
Based on the results shown in Figure 9 and Table 2 we can see
that Cell2Fire produced results that are similar to the fire scars
produced by Prometheus with respect to the hourly fire growth
and final fire perimeter. When testing the 6 critical hours of the
Dogrib fire, the level of difference (MSE) is <5% for the first sub-
instance and <6% for the second sub-instance. For the full day

simulation, the differences are slightly larger, reaching average
MSE levels values close to 6% and 7 % for the Sub-2 and the
Dogrib instance, respectively.

On the other hand, we do sometimes observe a decrease in
the structural similarity measurement (Table 2). The differences
are more pronounced when using the 22 h fire weather stream.
These deviations indicate that the fire growth predicted by
Cell2Fire differs from the one predicted by Prometheus due to:
(1) the approximation of the elliptical model using a cellular-
automata approach implies a different fire dynamic, increasing
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TABLE 2 | Comparison of Cell2Fire with prometheus measured by the

complement of the mean squared error (MSE) expressed as percentage and

structural similarity index measure (SSIM) values per hour (6 h growth) for two

sub-instances.

Sub-1 Sub-2

Hour 100 × (1 −MSE) [%] SSIM [%] 100 × (1 −MSE) [%] SSIM [%]

1 99.75 93.59 99.98 95.44

2 96.75 77.40 99.94 95.01

3 97.75 74.03 95.56 85.53

4 97.50 78.70 95.38 84.41

5 96.75 79.61 96.50 82.25

6 96.00 73.96 94.03 75.01

AVG [%] 97.42 79.55 96.90 86.25

Lower values of the SSIM highlight the differences between the cellular-automata and

wave propagation approaches as well as the definition of a burned cell between Cell2Fire

and Prometheus.

the differences in every time step compared to the wavefront
model and (2) differences in the calculations/approximations of
the effective ROS values.

The wave-propagation model based on the Huygens’ principle
implemented in Prometheus performs a series of approximations
with respect to the burning area. Therefore, a cell is classified as a
Burned cell in the Burn Grid output (0–1 Matrix) only if more
than 50% of its area has been covered by fire (i.e., belongs to
the interior of the approximated ellipse) whereas in Cell2Fire a
cell is always either completely available or burned. In addition,
an ignition point represents a complete cell in Cell2Fire (an
area) while it is just a vertex/point for Prometheus, defining two
different (but consistent) starting points for the fire’s growth. This
approximation based on discrete cells improves as the cell size
decreases (i.e., higher resolution data).

3.1.2. The Hypothetical British Columbia Wildfires
The final fire scars and similarity metrics, focusing on the affected
area of each fire instance for easier visualization, obtained
for the 10 hypothetical British Columbia wildfires using both
Prometheus (columns 1 and 3) and Cell2Fire (columns 2 and 4)
can be seen in Figure 10. Those results exhibit a high similarity
between the scars across the main three metrics for hypothetical
fire instances, as demonstrated in Table 3. From the results, we
note an averageMSE of 9%, with amaximumMSE andminimum
SSIM of only 18 and 46%, respectively (Revelstoke 1 instance).
High-performance average SSIM and δnorm values of 68 and
27.4% are obtained across all forests, respectively, reflected in
very similar final perimeters on all landscapes. The best results
were obtained on theMica Creek 1 instance, with a 3.3%MSE and
an SSIM of 85%, means they were almost identical hypothetical
wildfires. We note that, in general, Cell2Fire tends to burn more
cells than Prometheus. As previously noted, this was expected
due to the different approximations used by both approaches to
defining a burned cell as well as the ignition point/area.

These results indicate that Cell2Fire approximates the results
of a state-of-the-art simulator like Prometheus for different
fuel types, landscapes, and weather scenarios. Different ignition

points and weather scenarios were tested on these landscapes,
and produced similar similar results in terms of the main
similarity metrics. A similar pattern was observed with respect
to the hourly evolution of the fire perimeters.

3.1.3. Dogrib Fire Instance
The comparison of the similarity metrics after 22 h of
fire growth is shown in Supplementary Figure S1 and
Supplementary Table S2, where both (1 − MSE) and SSIM
values can be seen for each simulated hour. We observe that
Cell2Fire predicted growth very similar to the Prometheus
wave-front approach, obtaining good performance when
compared with Prometheus, not exceeding a 12% and 18%
of difference in both measurements. An average of 87.91% of
structural similarity and a global average of 91.82% of accuracy
(1-MSE) were obtained during the 22 h of active fire growth.
A clear pattern can be seen where both similarity metrics start
high and remain stable during the first 4 h of simulated fire
growth, then they show a significant negative slope between
4 and 11 h, and finally reach a steady state for the rest of the
simulation. The explanation behind these results is clear: during
the initial 4 h of the fire, similar fire growth occurs due to
weather conditions that are not extreme; however, weather
factors between 4 and 11 h exhibit the most extreme conditions
(strong wind speed, high temperatures, etc.) magnifying the fire
growth differences/approximations between both approaches
in terms of the number of burning cells per hour (fire scar).
After 11 h, differences between fire scars tend to be stable due
to the lack of new extreme weather episodes. However, the
structural differences remain in the fire perimeters obtained in
the previous hours.

In addition, some of the structural differences between the
generated fire scars can be explained in part by modeling features
included in Prometheus but not in Cell2Fire such as Breaching,
where non-fuel grid cells or linear fuel breaks fail to stop an
advancing fire front, a feature that is not currently included in
Cell2Fire. We conclude that Cell2Fire produces results that are
similar to those produced by Prometheus. The final fire scars
are also similar as seen in Figure 11, where the simulated fires
(left and right) and the satellite (center) images of the real fire
are shown.

3.2. Managing the Landscape
To illustrate the use of the management module we focus on
the evaluation of harvesting plans in the 1,600 ha landscape
(sub-instance 2) located in the province of Alberta (see
Figure 12). This area is characterized by a fragmented land
cover distribution, including the same fuel types as in the
Dogrib instance (grass, conifers, and non-flammable fuels). For
evaluation purposes, we selected the ignition cell randomly
for each replication and simulated multiple wildfires using
representative weather scenarios obtained from the closest
weather stations for a total of 12 h. A second set of experiments
using a fixed ignition point is also included for comparison
purposes. We compare the outputs and wildfire behavior
variables obtained before and after applying three different
harvesting schedules to 10% of the available cells: (1) baseline
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FIGURE 10 | British Columbia hypothetical fire instances. From the final scars and statistics (left side Prometheus and right side Cell2Fire), we see how the Cell2Fire

perimeters compare to the fire scars produced by Prometheus, reaching 1−MSE = 0.901, SSIM = 0.6863, δnorm = 27.372.
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approach harvesting cells completely at random; (2) focus the
harvesting on cells with higher burn probability estimated
from 100 simulations conducted on the original landscape;
and (3) a myopic plan focusing its attention on those cells
with higher economic value. We explicitly incorporated wildfire
uncertainty by running 100 independent replications for the pre
and post-treatment landscapes.

Multiple outputs are generated to evaluate the performance of
the management plans (Figures 13, 14). These outputs include
burn probability maps representing the wildfire susceptibility
of each cell under the ignition and weather conditions used;
ROS heatmaps indicating the average rate of spread over the
simulated period as well as highlighting areas of the landscape
experiencing high/low propagation rates; a consolidated shortest-
path tree (directed network flow graph representing the fire
spread dynamics where nodes are the cells of the landscape
and edges indicate fire propagation statistics between them)
representing the critical, fastest, and most frequent propagation
paths of the wildfire on the landscape; and multiple plots
and statistics comparing the performance of pre-treatment and
post-treatment landscapes given a performance metric such as
expected area burned.

From the outputs of the simulations with random weather
(RW) on the original pre-management landscape using random
ignition (RI) and deterministic ignition (DI) points (Figure 13),
we observe areas with higher burn probability values on the top
right section of the landscape according to the historical wind

TABLE 3 | British Columbia simulations summary statistics obtained by

comparing the simulated final fire perimeters from prometheus and Cell2Fire.

100 × (1 −MSE)[%] SSIM[%] δnorm

Mean 91 68 27.36

Std 96 9 8.88

Max 82 85 42.64

Min 97 46 10.10

Mean squared error complement (1-MSE) and structural similarity index (SSIM) are

reported as percentages across all instances. We observe low δnorm = ||X − Y || where X

and Y are the binary BurnGrids matrices produced by both simulators, indicating the high

similarity between the results of both simulation approaches.

direction distribution (northeast). This pattern is exacerbated
in the fixed ignition experiments. In this case, we observe that
wildfires are not able to reach the western side of the landscape,
focusing the spread on the eastern and north-eastern areas. In
addition, we note the non-flammable section of the landscape at
the top center area of the instance characterized by a chain of
mountains, preventing the spread of the fire. Therefore, fixing
the ignition point (RW-DI) is translated into a very focused
wildfire dynamic on the eastern side of the landscape, with no
fires escaping to the western region of the instance. This results
in higher ROS average values in several cells on the east given
the dominant land cover in the area and a denser shortest-path
tree than the one observed in the random ignition (RW-RI)
experiments since all fires are condensed in a unique side of the
land. Observing the ROS heatmaps, we notice that wildfires reach
their maximum ROS on the areas covered by conifers (Boreal
Spruce) obtaining average ROS values close to 5 [m/min] and
30 [m/min]; and peak values of 34 [m/min] and 118 [m/min]
for the RW-RI and RW-DI experiments, respectively. Finally,
the consolidated shortest-path trees highlight the areas where
fire tends to propagate (darker zones) observing how the area
covered by conifers tends to be actively involved in spreading fire
to adjacent regions.

Focusing on the most interesting RW-RI experiments
(Figure 14), we observe how these outputs are perturbed after
applying different harvesting plans. Burn probability maps
(center) and average ROS heatmaps (right) are generated from
100 independent replications to evaluate and compare different
metrics for the selected treatment plans. In the case of the
random management approach (top row), the uncorrelated
fragmentation introduced in the landscape is not an effective
measure to reduce fire spread. This is reflected in the expected
area burned, which is reduced by only 22.3% compared to the
non-treated landscape. In addition, the average ROS is reduced
by 17.5% but reaches significant peaks (32.9 [m/min]) in the
northeast areas. Moreover, it is not practical (e.g., to move the
harvesting equipment across the whole landscape “at random”)
and clearly not profitable for the landscape manager. The BP-
based plan (center row) improves the impact on the expected
area burned, decreasing it by 40%. In addition, it effectively
reduces the average ROS by a 37% compared to the non-managed
land (with peaks up to 24.5 [m/min]). Still, it may not produce

FIGURE 11 | (A) Prometheus fire scar obtained for the region of the Dogrib fire, contrasted with (B) the real fire scar projected into grid format in 2002 and (C)

Cell2Fire final output.
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FIGURE 12 | Map of the Alberta Sub-instance. The legend indicates the color of the different fuel behavior models (fuel types) characterizing the terrain of the area. A

hillshade effect has been applied to depict the elevation of the terrain.

a feasible plan from an economic perspective as it does not
consider the revenue layer when selecting the cells to harvest.
Finally, we observe how the myopic approach (bottom row) that
focuses the harvesting plan on the areas where themost profitable
cells are located. However, this may become a limitation of the
plan as it does not incorporate wildfire behavior features when
selecting the treated areas. Although it decreases the expected
area burned by 31%, its limitations are reflected in a limited
impact on the peak ROS (30.1 [m/min]) only decreasing it by
10% compared to the pre-treatment state. On the other hand,
it has a significant impact on the average ROS 3.1 [m/min],
decreasing it by a 38%. This is explained because, in this instance,
the most profitable cells match the land covers experiencing
higher ROS during the simulations, thus allowing the treatment
to be effective in reducing the average ROS values. However,
this management plan results in larger variance than the BP-
based treatment, exposing the landscape to higher risk levels.
Using this framework, planners can easily compare some of the
most relevant outputs and evaluate alternative treatment plans in
an effective and efficient way (less than one minute) to develop
robust and objective management plans.

In addition, given the graph structure of the wildfire
propagation patterns generated by the simulator, we can apply
a series of complex network algorithms on top of the generated

outputs (shortest-path trees) to evaluate the wildfire behavior in
the original landscape and the impact of the management plan.
As an example, decision makers could calculate metrics such
as the average betweenness centrality (BC) (Brandes, 2001) of
each cell in the landscape across all replications to identify which
nodes have a more active role in the propagation of wildfire
to other parts of the land (Figure 15). Alternatively, a degree
heatmap indicating the average outgoing degree of each node
can be generated, among several others useful metrics. Using this
information, managers could decide to modify their initial plans
to focus on those critical areas where wildfire tends to propagate
faster and more frequently.

Observing the BC-based treatments for the RW-RI and RW-
DI experiments (Figure 15), we notice how nodes located in
the northeast section of the landscape are selected. They tend
to be frequently involved in the fire propagation dynamics,
potentially playing a fundamental role tomitigate future expected
losses due to large wildfire events in the area. Comparing the
pre- and post-treatment simulation results, we observe how the
distribution of both heatmaps is impacted: shifting the areas with
highest/lowest weights across the landscape; reducing average
ROS values by 42% (RW-RI) and 46% (RW-DI); and decreasing
the expected area burned by 36% (RW-RI) and 93% (RW-DI).
This information could play a crucial role in selecting which
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FIGURE 13 | Pre-treatment analysis. Burn probability maps (left), average ROS heatmaps (center), and consolidated shortest-tree paths (right) are generated for the

random weather-random ignition (RW-RI) and random weather-deterministic ignition (RW-DI) experiments. Darker areas indicate higher values (normalized).

areas to allocate future wildfire suppression resources, focusing
the efforts on those unprotected or fire-prone areas detected from
the generated outputs.

Therefore, we observe how Cell2Fire can be a valuable tool
to assist decision-makers when defining landscape management
plans. It helps them understand and generates relevant
managerial insights regarding which areas of the landscape are
more/less prone to future wildfires, the most likely areas to which
the fire can propagate after ignition in the treated-landscape, the
expected rate of spread/burned area across the available cells,
among other relevant information. Perhaps more important, is
the support that Cell2Fire can provide to researchers studying
methods for forest management planning [practical examples for
the interested reader can be found in Moudio et al. (2021) and
Pais et al. (2021)]. All this, to support and improve the whole
decision-making process, providing an opportunity to analyze
the complex and significant trade-offs involved in landscape
management under wildfire uncertainty.

4. CONCLUSIONS

Researchers can use Cell2Fire to incorporate fire ignition and
growth in their strategic harvest planning and fuel management
planning models. They can easily test and modify their models to
enhance their management plans and identify relevant metrics to

capture and actions tomitigate the impact of wildfire uncertainty.
In addition, it incorporates a series of out-of-the-box planning
heuristics that provide baselines to the decision-makers and a
series of complex network algorithms to evaluate the wildfire
behavior on the original landscape and the impact of the
management plan. We are currently using it in ongoing projects
to evaluate harvest planning optimization models.

We used the FBP fire spread model to compare our
Cell2Fire simulated fire perimeters (i.e., fire scars) with fire
scars produced by a state-of-the-art simulator (Prometheus)
for validation purposes. Other fire spread models can also
be employed to extend the range of environments in which
Cell2Fire can be used. In addition to supporting stochastic
ignition and weather, our simulator also supports random
sampling of the ROS. Stochastics are a major area of further
research. We also plan to initiate research concerning slow
fire growth at night as well as spotting which allows fires
to jump across unburnable barriers. The software provides
support for harvesting and treatment plans to facilitate
future research.

The software provides multiple options to evaluate harvesting
and fuel treatment plans, including (1) external input of the set
of cells to treat every simulated period; (2) selecting one of the
heuristics provided by our simulation-optimization model; or
(3) implementing their own algorithm. Using the first and third
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FIGURE 14 | Post-treatment RW-RI experiments. Management plans (left) are generated using different policies to select which cells to harvest (blue dots).

Non-flammable cells are represented by white cells for visualization purposes.

approaches, researchers can evaluate their algorithms for creating
management plans under wildfire uncertainty. Given a fixed
plan or custom logic, they can simulate multiple wildfires using
historical data from the region of interest to evaluate the potential
impact of future wildfires in the area, observing the pre and post-
treatment results. Alternatively, Cell2Fire incorporates a series of
out-of-the-box planning heuristics to provide quick evaluation
baselines to the decision makers as well as a guide for users to
implement their own logic within the decision-making module.

Starting from one of the simplest and most studied methods
(Parisien et al., 2005b), Cell2Fire can generate automatic
treatment plans selecting those cells with highest wildfire
susceptibility (burn probability maps, Figure 4) based on
multiple wildfire replications under the given conditions. It can
also select those cells that experience the highest ROS during
the simulations, in an attempt to minimize the average ROS
within the landscape to decrease the out-of-control wildfire
propagation risk. Given an input layer representing the economic
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FIGURE 15 | Post-treatment BC plans. Management plans (left) for the RW-RI and RW-DI experiments are generated using BC as the main metric to select which

cells to harvest (represented with blue dots). Non-flammable cells are represented by white cells for visualization purposes. Burn probability maps (center) and average

ROS heatmaps (right) are generated from 100 independent replications to evaluate and compare different metrics for the selected treatment plans.

value of each cell, e.g., the value of the timber after harvesting
a cell, Cell2Fire can generate harvesting plans that select those
cells that maximize the total expected revenue based on a set
of preliminary simulations. This revenue model can explicitly
incorporate wildfire uncertainty by weighting it with a wildfire
behavior metric (e.g., burn probability) or it can completely
ignore its potential impact (a myopic approach). Alternatively,
managers can provide custom metrics as input layers to generate
optimal harvesting plans following this same logic. In addition,
our decision module is integrated with a powerful network
flow package (Hagberg et al., 2008), allowing us to generate
a series of management plans based on network/centrality
metrics and combine them with user-provided layers to establish
landscape utility functions (heatmaps) to be optimized during
the simulations. These metrics, that aim to identify the most
relevant nodes within a network, could play a crucial role in
the development of effective management plans by identifying
those critical nodes where the fire tends to propagate faster,
more frequently, with the higher intensity, or that maximize
the propagation of the fire to multiple areas of the network,
amongmany other relevantmeasurements. In addition, Cell2Fire
provides access to node influence metrics aiming to assess
the influence of each node in the network and the potential

impact of removing/treating them, sharing concepts of previous
works such as Acuna et al. (2010) and Troncoso et al. (2016).
Examples of mathematical models to identify and optimize
fuel treatment locations, incorporate the role of land-owners
in fuel treatment activities via a cost-share approach, and
maximize the effectiveness of the initial attack in the context
of wildfire suppression can be found in Rashidi et al. (2017),
Rashidi et al. (2018), and Bhuiyan et al. (2019). Finally,
a random treatment heuristic is included where available
cells are selected at random in the landscape, establishing a
baseline for comparison purposes. These management plans
are flexible, meaning that decision makers can easily modify
their main input parameters and add specific constraints to
obtain realistic plans. This includes budgetary or maximum area
treated constraints, satisfy adjacency/connectivity constraints
(selecting a set of continuous or fragmented set of cells to
treat), prioritize specific areas (e.g., protected habitats), as
well as custom ones provided by the landscape manager (see
Moudio et al., 2021; Pais et al., 2021 for an application of
this framework).

Because the software is open-source and modular, it lends
itself to customization as needed. The simulator is fast and
it scales well in parallel computing environments, so it is

Frontiers in Forests and Global Change | www.frontiersin.org 19 November 2021 | Volume 4 | Article 692706

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org
https://www.frontiersin.org/journals/forests-and-global-change#articles


Pais et al. A Forest Fire Growth Simulator

well-suited for use with large, flammable landscapes and in
studies that require many simulations. By adding a highly
parallelizable, open-source fire growth simulator to the tool
set available, we hope to provide transparent support for
ongoing research.
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