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FIJACIÓN DE PRECIOS ÓPTIMA CON CONSUMIDORES CON
VALORACIONES DEPENDIENTES DEL TIEMPO

En este trabajo se estudian tres problemas. Primero, se resuelve el problema de un vendedor
dotado de infinitas unidades de cierto producto homogéneo para la venta en un horizonte
finito y discreto con el fin de maximizar sus ingresos esperados. En segundo lugar, se estudian
condiciones para garantizar que la poĺıtica de precios que fija el precio monopólico para cada
instante o peŕıodo de tiempo sea no decreciente. Bajo esta condición de monotońıa de los
precios se muestra que una gran cantidad de problemas puede ser resuelta, aún considerando
consumidores estratégicos. Finalmente se resuelve el problema del consumidor frente a una
restricción de capacidad esperada y consumidores miopes. Para este problema se encuentran
las soluciones óptimas de manera expĺıcita y se estudia como cambian estas soluciones al
variar la capacidad de inventario.
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OPTIMAL PRICING WITH TIME-DEPENDENT CONSUMER
VALUATIONS

In this work, three problems are explored. First, we solve the problem of a seller facing
infinitely patient consumers. The seller owns infinitely many units of a certain homogeneous
product for sale over a finite and discrete horizon in order to maximize his expected rev-
enue. Secondly, conditions are studied to guarantee that the pricing policy that sets the
monopoly price for each instant or period of time is non-decreasing. Under this condition of
price monotony it is shown that a large number of problems can be solved, even considering
strategic consumers. Finally, the problem of the consumer facing an expected capacity con-
straint and myopic consumers is addressed. For this problem the optimal solutions are found
explicitly and it is studied how these solutions change when varying the inventory capacity.
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estuvimos juntos en el mismo proceso. Los que ya han estado conmigo much́ısimos años:
Nachorro, Seba e Ibits. A mis amigos del DIM, Mato, P., Rodrigo, Rola, Pinguino, Iván,
Choco y Jipi. También el apoyo en estos últimos años de los Chacras; Magali, Azócar, Vivi,
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Chapter 1

Introduction

Dynamic pricing and revenue management are a set of tactics and strategies that companies
use to manage the allocation of their capacity to different fare classes over time in order to
maximize revenues. Currently its applications are widely used by a variety of industries such
as airlines, hotels, car rental companies, art performances, and sports events.

The main problem that will be studied could be described as follows. Suppose a seller
has infinite items to sell, where sales take place over a finite selling horizon. An expected
number of consumers arrive at fixed periods to purchase the object. The seller before the
sales season posts a series of prices which will be fixed throughout the periods. Consumers,
depending on the model, may wait and buy at a later instance of the period they arrive or be
highly impatient and buy on arrival if their value for the item is higher than the posted price.
The seller’s problem is to maximize his expected revenue by trying to choose the best pricing
policy considering consumer behavior. Although the literature on revenue management and
dynamic pricing is vast, recent models that solve problems considering distinct variations of
the above setting are [2], [4], [12]. For further reading in revenue management see [5].

This work makes two contributions to the area of revenue management and dynamic
pricing. First, we find sufficient conditions for the pricing policy that charges monopolistically
according to the consumers’ valuation to be non-decreasing and therefore optimal in a variety
of problems. Second, two finite horizon pricing problems are solved. The first problem tries
to find the best pricing policy given infinitely patient consumers that arrive over T periods.
The second one deals with the previous problem with myopic consumers and an expected
capacity constraint. For both problems the optimal solutions (or pricing policies) are found
explicitly.

Before starting, we need to introduce some notation. We denote [T ] := {1, . . . , T} the set
of the first T natural numbers, 1A the indicator function of a set A and R+ the set of positive
reals including zero. For a random variable V we will usually denote F (p) = P(V ≤ p)
its cumulative distribution function. The support of F is the smallest closed set SF (also
denoted as suppF ) such that P(V ∈ SF ) = 1. Throughout this thesis, we will consider only
positive random variables, i.e., with support in R+. Finally, all functions considered will be
Lebesgue-measurable functions.
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Chapter 2

Pricing with Infinitely Patient Buyers

In this chapter we will study optimal pricing policies in a setting in which a seller posts a
price over T periods and sequentially arriving consumers strategically respond to these prices.
In simple terms, a seller faces the problem of pricing for different periods as different types
of consumers arrive. We will find the optimal solution of the problem constructively and
provide a simple algorithm to find this optimal pricing policy.

The easiest way to visualize the model is to think of a seller with infinite homogeneous
items trying to sell the objects to a continuum of consumers whose total mass of is normalized
to 1 and value the item according to a different distribution depending on the time they arrive.
With this in mind and thinking in only one period, if the seller posts the price p, 1 − F (p)
is just how many consumers will buy the item at price p, at a normalized mass of 1. We will
immediately formalize the model and consumer behavior over time.

2.1 Model definition

In its simpler form, we study the problem faced by a monopolist of setting prices prior to
the consumer’s arrival. The seller sells items over T periods, in which he has to set T prices
for the different periods, where T > 1. After announcing a pricing path (pt)

T
t=1 prior to the

arrival of consumers, the seller is fully committed to this path and cannot change any of
the prices. In each of the T periods t = 1, 2, . . . , T , a deterministic number of buyers αt

(and known to the seller) arrive with a private random valuation Vt for the item distributed
according a distribution Ft with support contained in R+. Customers behave strategically
and take the current and the future prices into consideration when deciding to buy early or
late. Specifically, given a pricing path (pt)

T
t=1, a buyer arriving in period τ with valuation v

solves

max
t

v − pt (BP)

s.t. t ∈ {τ, . . . , T},

provided that there is a price pt such that v > pt, otherwise the consumer will not purchase
the item and will receive 0 utility. The objective of the seller is to set prices p1, . . . , pT for
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each period in order to maximize its expected revenue. The monopolist has a production
cost c per item that without loss of generality is normalized to zero. Given a pricing path
p = (pt)

T
t=1 and a consumer arriving in period τ , its demand in any period t ≥ τ is given by

dτ (p, t) = (1− Fτ (pt))1{pt<pk, ∀k≥τ}.

The revenue this consumer generates to the seller is then Rτ (p) =
∑T

t=τ ptdτ (p, t). Note that
this value is exactly pt(1 − Fτ (pt)) for some t ≥ τ . Consequently, the formulation of the
seller’s problem is

max
p1,...,pn

T∑
t=1

αt ·Rt(p) (SP)

The above problem can be relaxed under a non-decreasing pricing policy. Since the seller
knows that a consumer will buy if and only if there will not be a lower price in the future,
the problem that the seller solves under any non-decreasing pricing path is

max
p1,...,pn

T∑
t=1

αt · pt(1− Ft(pt)) (RSP)

s.t. p1 ≤ · · · ≤ pn.

An important observation is that if the non-decreasing constraint were not in place, then the
seller could clearly announce prices that maximize each summand independently. We will
focus on studying solutions to SP. The first thing to consider is how SP relates to RSP.

2.2 Structure of the optimal solution

We start by defining general notions and hypotheses to solve the relaxed seller’s problem.
Define the monopoly price for a cumulative distribution function Ft as any price p∗t that
satisfies

p∗t ∈ argmax
p

Rt(p) = argmax
p≥0

αt · p(1− Ft(p)),

which is motivated by the price that maximizes the seller’s revenue when confronted with
buyers with valuation Ft, when he can do make price discrimination. A naive approach
for the seller to solve SP might be to announce the prices p∗1, . . . , p

∗
T , but nothing assures

that it can be non-decreasing. The idea of making the previous pricing path non-decreasing
motivates us to define the monopoly price of an set I ⊆ [T ] as any price p∗I such that

p∗I ∈ argmax
p

RI(p) = argmax
p≥0

∑
t∈I

αt · p(1− Ft(p)).

We will assume that the set argmaxpRI(p) consists of only one element for each I ⊆ [T ],
and consequently denote the set as p∗I and write without ambiguity p∗I = argmaxpRI(p).
Note that this also implies that p∗t = argmaxpRt(p) for all t ∈ [T ]. In order to solve SP, one
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strong condition that we could assume is that the revenue functions are concave, i.e. for each
t ∈ [T ], Rt(p) = αt · p(1− Ft(p)) is concave. This hypothesis is quite restrictive and fails for
most common distributions, such as exponential and normal distributions [10, 19]. For this
reason, we can restrict ourselves to the family used for future proofs in this section. We will
need two conditions over the family of distributions {Ft}Tt=1:

(C1) For all t ∈ [T ], Rt(p) is increasing in (0, p∗t ) and decreasing in (p∗t ,∞).

(C2) The family is closed under sums of revenue functions. This is, for all I ⊆ [T ], RI(p) is
increasing in (0, p∗I) and decreasing in (p∗I ,∞).

The above conditions are less restrictive than concavity. In fact, when all the distributions Ft

have finite expectactation, condition (C1) and the set of maximizers being a singleton for each
revenue function is equivalent to strict quasiconcavity of the revenue functions. Moreover,
we will see that condition (C2) is only sufficient and can be relaxed. For now we will consider
all families in the set F , defined as

F =
{
{Ft}Tt=1 : {Ft}Tt=1 is a family of distributions that satisfies (C1) and (C2)

}
.

Assumption 1 The family of distributions of consumers’ valuation {Ft}Tt=1 is an element of
F .

An important property about the set of families F is that it satisfies a property about
the ordering of maximizers. Consider R1(p) and R2(p) revenue functions satisfying (C1) and
(C2), with respective maximizers p1 and p2 and without loss of generality p1 ≤ p2. Then
the maximizer of (R1 + R2)(p) belongs to the interval [p1, p2]. This is simple to check, since
(R1 + R2)(p) is increasing in (0, p1) and decreasing in (p2,∞). In addition, since R1(p) and
R2(p) satisfy (C2), then this implies the maximizer of (R1 + R2)(p) is necessarily in the
interval [p1, p2]. As R1 and R2 were arbitrary revenue functions, then any family {Fi}Tt=1 ∈ F
satisfy the previous property on any arbitrary sum of their revenue functions. We have proven
the following lemma.

Lemma 2.1 Suppose Assumption 1 holds. Then, for any pair of disjoint intervals Ii, Ij ⊆ [T ]
such that pIi ≤ pIj , argmaxp(RIi +RIj)(p) ∈ [pIi , pIj ].

The first proposition we will show will be to verify that in fact by solving RSP we also
solve SP, since any feasible pricing path in RSP is feasible in SP and both problems have the
same optimal value.

Proposition 2.2 There exists an optimal pricing scheme {pt}Tt=1 that is non-decreasing, i.e.,
p1 ≤ p2 ≤ · · · ≤ pT . Furthermore, SP is equivalent to RSP.

The proof of the lemma is simple. It is based on choosing any optimal price path in
[SP] and taking the higher increasing pricing policy that goes below the optimal price path
(see Figure 2.2). Because of strategic consumer behaviour, both policies generate the same
revenue and the lemma follows. In the proof of the lemma we show how to construct the
above mentioned pricing policy.

4
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Figure 2.1: Two pricing paths that produce the same revenue for the seller.

Proof. Take any optimal pricing path (p̂t)
T
t=1 in SP. If it is non-decreasing, there is nothing

to prove. Otherwise, let p̂min = min{p̂t | t ∈ [T ]} the lowest price in the T periods and tmin

the lowest index on which this price is set. Since buyers are strategic, those who arrived on
an earlier period will purchase in tmin. Set pj = p̂min for every index j < tmin. Continue
this procedure with the indices {tmin +1, . . . , T}. Clearly the resulting pricing policy is non-
decreasing, and the revenue from the policies (pt)

T
t=1 and (p̂t)

T
t=1 is identical by the behaviour

of the buyers: both policies produce an expected revenue of
∑

j<tmin
p̂min · (1 − Fj(p̂min))

before the period tmin, and subsequent changes in prices by maintaining this procedure do
not decrease the revenue in later periods as we have just mentioned.

The equivalence between the problems follows as any feasible pricing path in RSP is
feasible in SP, and by the construction of the non-decreasing pricing policy given an optimal
solution in SP that provides the same revenue.

Due to the previous proposition, from now on we will focus on finding the optimal solution
to RSP. We will refer to a interval I as a subset of [T ] which has only consecutive integers. For
instance, {1, 2} and {4, 5, 6} are intervals, but {1, 3} is not. Similarly, we define a partition
of [T ] through intervals (or just a partition) a collection of disjoint intervals I1, I2, . . . such
that their union is [T ].

The following proposition shows that the optimal pricing policy has a partition structure.
Moreover, the price announced in any interval Ij is set as pIj which is to be expected, since
the prices in those periods respond to the aggregate demand dIj(p) =

∑
i∈Ij αi · (1− Fi(p)).

Proposition 2.3 Suppose Assumption 1 holds. Then, the optimal pricing policy has a par-
tition structure: there are m ≤ T disjoint intervals I1, . . . , Im in which in every period t such
that t ∈ Ij satisfies pt = p∗Ij .

Proof. For any pricing policy (p̂t)
T
t=1 which is non-decreasing, define the m different intervals

as the different sets of indices where a price is maintained. Formally, define I1 = {t ∈ [T ] | pt =
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p̂1} which is clearly an interval since the policy (p̂t)
T
t=1 is non-decreasing. If this is not the

only price fixed through all periods, let p̂2 the lowest price set different from p̂1 and define
I2 = {t ∈ [T ] | pt = p̂2}. Inductively we continue defining the intervals Ij = {t ∈ [T ] | pt = p̂j}
until there are no more periods left to cover. This procedure clearly ends as there are at
most T different prices.

It remains to check that in the optimal policy, that every index t such that t ∈ Ij satisfies
pt = p∗Ij . To show this, take any optimal pricing policy (p̂t)

T
t=1 that is minimal in the number

of intervals defined as before, and Ij any interval with j ∈ [m]. Let p̂Ij the price set in the
interval Ij. There are three cases to consider:

1. j = 1. Focusing only in this interval, by definition of the intervals we can think of
maximizing p̂I1 without changing consumer behavior, that is

max
p̂I1

RI1(p̂I1)

s.t. p̂I1 ≤ p̂I2 .

If m = 1 (that is, there is only one interval and hence only one price set) then p̂I2 is
not defined but in that case we set p̂I2 = ∞. If the price set in this interval is not
p∗I1 , by Assumption 1 then by setting a price closer to p∗I1 increases the revenue. If
the restriction is binding, then this pricing policy is setting the same price as another
interval, which contradicts the minimality of the pricing path on intervals.

2. j = m. This case is analogous to the previous one.

3. 1 < j < m. Focusing only in this period and given p̂Ij−1
and p̂Ij+1

, we maximize

max
p̂Ij

RIj(p̂Ij)

s.t. p̂Ij−1
≤ p̂Ij ≤ p̂Ij+1

.

Again, if the price set in this interval is not p∗Ij , then by setting a price closer to this
price increases the revenue. Furthermore, if some restriction is binding, say p̂Ij−1

= p̂Ij
or p̂Ij+1

= p̂Ij then it contradicts the minimality of the chosen pricing path on intervals.

The proposition follows.

The previous proposition is fundamental to relaxing hypothesis (C2) in Assumption 1.
This tells us that the optimal solution follows an interval structure, so it is not necessary
to verify that the entire family is closed under sums of revenue functions, just closed over
intervals. This reduces the number of conditions to check from 2T to the number of partitions
of T , which has no explicit solution but is significantly less. Take for example, the problem
with 10 periods and distinct distributions {Ft}10t=1. Condition (C2) must check that 210 = 1024
functions are strictly quasiconcave while the number of partitions of [10] by intervals is only
42. We now set the relaxed condition on the families of valuations.

Assumption 1’ The family of distributions {Ft}Tt=1 is an element of F∗, where

F∗ =
{
{Ft}Tt=1 : {Ft}Tt=1 is a family of distributions that satisfies (C1) and (C2’)

}
.

6



(C1) For all t ∈ [T ], Rt(p) is increasing in (0, p∗t ) and decreasing in (p∗t ,∞).

(C2’) The family is closed under sums over intervals of revenue functions. This is, for all
I ⊆ [T ] an interval, RI(p) is increasing in (0, p∗I) and decreasing in (p∗I ,∞).

In what follows we will prove the key proposition to formulate an algorithm that finds
the optimal price policy. Recall that is the monopoly prices are increasing, then the pricing
path (p∗t )

T
t=1 is optimal in SP. Consider the case in which there is only one decrease in the

pricing policy (see Figure 2.2). The optimal pricing policy should include consecutive periods
of decreasing prices in a single interval to make the optimal pricing policy non-decreasing.
This turns out to be true.
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Figure 2.2: Monopoly prices (p∗t )
5
t=1 and their respective optimal pricing policy (blue).

Proposition 2.4 Suppose Assumption 1’ holds. Let (p∗t )
T
t=1 be the monopoly prices. If there

exists a period j such that p∗j > p∗j+1 then {j, j + 1} ⊆ I for some interval I.

Proof. Let (p̂t)
T
t=1 any optimal non-decreasing pricing policy minimal in the number of in-

tervals. We proceed by contradiction. Let I and I ′ the different intervals in which j and j+1
belong, respectively. Since (p̂t)

T
t=1 is non-decreasing and j, j + 1 are in different intervals, it

must be the case that p∗I < p∗I′ . There are two cases to consider in which we will find contra-
dictions increasing or decreasing a price in a period in direction to the respective monopoly
price and hence increasing the seller’s revenue in virtue of Assumption 1 (see Figure 2.3)
while all other prices in the pricing policy remain unchanged.

1. p∗j+1 ≥ p∗I′ : Define a new pricing policy (pt)
T
t=1 as

pt =

{
p̂t t ̸= j,

p∗I′ t = j.

By construction (pt)
T
t=1 is non-decreasing and produces a higher than (p̂t)

T
t=1, since in

this case p̂j = p∗I < p∗I′ = pj < p∗j .
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2. p∗j+1 < p∗I′ : Define a new pricing policy (pt)
T
t=1 as

pt =

{
p̂t t ̸= j + 1,

max{p∗j+1, p
∗
I} t = j + 1.

Once again by construction (pt)
T
t=1 is non-decreasing and produces a higher produces

than the (p̂t)
T
t=1 policy, since in this case p̂j+1 = p∗I′ > max{p∗j+1, p

∗
I} = pj+1 ≥ p∗j+1.
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Figure 2.3: Contradictions during the proof of Proposition 2.4, case 1 (left) and case 2 (right).
The pricing path (p̂t)

T
t=1 is represented as the blue line and the red line as the constructed

policy (pt)
T
t=1 which yields a contradiction.

An immediate corollary is that every decreasing sequence of monopoly prices is contained
in an interval. This is because the interval I in the previous proposition will be fixed between
decreasing pairs of monopoly prices.

Corollary 2.5 Suppose Assumption 1’ holds. Let (p∗t )
T
t=1 the monopoly prices and k > 1. If

there exists a sequence of periods such that p∗j ≥ p∗j+1 ≥ . . . ≥ p∗j+k then {j, . . . , j + k} ⊆ I
for some interval I.

In particular, the previous corollary implies that every maximal decreasing subsequence
of monopoly prices is in an interval.

2.2.1 Algorithm

We present an algorithm that computes the prices that solve SP under Assumption 1’. The
construction is based on Corollary 2.5.
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Algorithm 1: Optimal pricing policy of T periods.

Input: F1, . . . , FT distributions satisfying Assumption 1’ and α1, . . . , αT masses of
arrival.

1 Initialize p1 = 0, p2 = 0, . . . , pT = 0, pT+1 =∞, J ← ∅
2 for t = 1, . . . T do
3 Compute p∗t = argmaxp αt · p(1− Ft(p))

4 Set pt = p∗t
5 end
6 while exists some j ∈ [T ] such that pj > pj+1 do
7 for t = 1, . . . , T do
8 J ← J ∪ {t}
9 if pt < pt+1 then

10 Compute p∗J = argmaxp
∑

i∈J αi · p(1− Fi(p))
11 Set pi = p∗J for every i ∈ J
12 J ← ∅
13 end

14 end

15 end
16 return p1, p2, . . . , pT

The main issue with Corollary 2.5 arises after grouping the maximal decreasing sequences
in an interval, since nothing implies that in a given interval a period outside a decreasing
sequence is not in that interval in the optimum solution. We can solve this issue by doing a
reduction technique on the number of periods. Consider I1, . . . Im the m intervals containing
maximal decreasing sequences. For any interval Ij, we have that

∑
i∈Ij

αi · p(1− Fi(p)) =

∑
i∈Ij

αi

 · p(1− ∑i∈Ij αi · Fi(p)∑
i∈Ij αi

)
. (2.1)

Thus we can group periods we know to be in the same interval, and reduce the intervals
I1 through Im as new and equivalent problem with m periods, with mass of arrival αj and
distribution function F j defined as

αj =
∑
i∈Ij

αi, F j(p) =

∑
i∈Ij αi · Fi(p)∑

i∈Ij αi

.

In the reduced (and equivalent) problem, there are m monopoly prices (pt)
m
t=1 which can

contain decreasing sequences. Continue the previous procedure as in Corollary 2.5 until
there are no more decreasing sequences. By construction, this is the optimum of the reduced
problem and by identifying the respective indices of the solution we can recover the optimal
solution to the original problem.

Although the proof of why the solution achieved by Algorithm 1 is optimal is based on
the reduction of periods, the algorithm does not employ this reduction. It simply takes the
information about the prices (pt)

T
t=1 being stored and uses the aggregate demand to calculate

the monopoly prices for each maximal decreasing interval as in equation 2.1.

9



Observation 2.6 A natural question that arises is how many iterations does the while loop
do in Algorithm 1. In each iteration, at least one maximal decreasing sequence is eliminated.
The worst case scenario for the cycle is that it eliminates exactly one sequence in each iter-
ation, and then another decreasing sequence is created with the updated prices. This is the
case of a very high price in period one and an increasing sequence of low prices thereafter.
Hence, the while loop iterations is bounded by T . Moreover, assuming that there is a subrou-
tine that computes a good approximation of monopoly prices in logarithmic time complexity
(such as binary search), Algorithm 1 has a worst time complexity of O(T 2 log(N)R(N)) where
R(N) is the cost of calculating R(p)/R′(p) for some revenue function, with N -digit precision.
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Chapter 3

Families of distributions and
monopoly prices

In this chapter we will study different stochastic orders to study the optimality of setting the
monopoly price at all times. We observe different conditions known in the literature that do
not guarantee optimality, while the decreasing hazard rate order property (DHR) condition is
sufficient to guarantee optimality under buyers with or without time discounting. Moreover,
the DHR condition can be restated for random variables of all types (continuous, discrete
and mixed).

The relevance behind the fact that the monopoly price policy is increasing is that all
opportunities for buyers to strategize are nullified. That is, a buyer with valuation v observes
an increasing price policy, so his only rational choice is to buy immediately. The fact that the
seller can set monopoly prices is particularly interesting since it indicates that he is earning
as much as possible from each consumer in expectation. We will formalize these notions in
the following section.

3.1 Preliminaries

Consider the same setting as in Chapter 2 in which a seller interacts with a mass of buyers, in
which the seller is trying to sell an item to various consumers arriving in enumerated periods.
A natural modification of the previous model is where buyers can now arrive randomly over
a set in R+. An ideal scenario for the seller would be to set the monopoly prices in each
period, but this price path is not necessarily increasing, so consumers wait for the lowest
price to make their purchase. If the monopoly prices are non-decreasing, then consumers
have no choice but to buy when they arrive (a later purchase obtains less utility) and the
seller obtains the maximum expected revenue.

In this way, we formalize this modifications of the model in Chapter 2 (specifically, con-
sumer behavior). Denote T as a subset of the non-negative real numbers, which will indicate
the times in which the buyer will be able to arrive. Specifically consumers arrive according
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to an arbitrary distribution over T , and if he arrives at time t ∈ T , he has a private random
valuation Vt over the item with distribution Ft with its support contained in R+. The seller
knowing all the distributions Ft, posts a price policy of his own choice pt for all t ∈ T . A
mass of costumers perform their arrival and valuation through a realization of the associated
random variables, and decides whether to buy in the period in which he arrived or later ac-
cording to his utility function u(v, t) = v−pt. In simpler words, a consumer (with arrival time
and valuation τ and v respectively) chooses the period to purchase t ∈ T that maximizes his
utility u(v, t), subject to t ≥ τ . The seller’s problem is to maximize his expected revenue. We
will not focus for now on the seller’s problem (and its different continuous-discrete variations
depending on the arrival of consumers) but on conditions that make the monopoly prices p∗t
non-decreasing.

We will refer to the monopolistic pricing policy (p∗t )t∈T as the one that announces at
any time t ∈ T the price p∗t . The goal is to characterize when the monopolistic pricing
policy is non-decreasing, through properties over the family of distributions {Ft}t∈T . The
non-decreasing property over the monopoly prices is very important, since it implies that
buyers will not deviate to any other period and will buy at the instant t they arrive if their
valuation is above p∗t .

3.2 Stochastic Orderings

We introduce different notions of order of random variables taking values in R. In this
manner, we will see the effect of providing the family of distributions {Ft}t∈T with certain
properties.

Definition 3.1 A family of cumulative distribution functions {Ft}t∈T is said to be increasing
in terms of first-order stochastic dominance (SD) if

Ft1(p) ≤ Ft0(p) for all p ∈ R and t1 > t0.

In particular for t1 > t0, we say that Ft1 dominates Ft0 in the sense of first-order stochastic
dominance.

It is also found in the literature as the usual stochastic order [17]. In the case of two
random variables X and Y , the condition that Y dominates X can be written as

P(X > p) ≤ P(Y > p), for all p ∈ R. (3.1)

In simple words the SD condition says that X is less likely to take values higher than Y ,
where higher means any value larger than p, for any p ∈ R. An interesting property is
noted by integrating on both sides of the inequality (3.1). Since we are dealing with positive
random variables, it is straightforward to verify that E(X) ≤ E(Y ). In particular, for a
family {Ft}t∈T the first-order stochastic dominance condition indicates that valuations are
increasing in expectation. That is, for any choice of t1 ≤ · · · ≤ tn of times in T ,

E(Vt1) ≤ · · · ≤ E(Vtn).
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We introduce another notion of stochastic order. Consider a positive random variable V
with an absolutely continuous distribution F , with density f . We define the hazard rate λ
as follows.

λ(p) :=
f(p)

1− F (p)
, for all p in supp F. (3.2)

The hazard rate is strongly related to the virtual value function, which has much relevance in
the theory of optimal auctions. Recall that the virtual value of the random variable V ∼ F
is defined as

ϕ(p) = p− 1− F (p)
f(p)

= p− 1

λ(p)
.

Note that the condition ϕ(p) = 0 is exactly the first order conditions for the revenue function
Π(p) = p(1 − F (p)). That is, ϕ(p) can be interpreted as the marginal revenue of the seller.
Introduced by Myerson [15] in his seminal work, the following condition is sufficient for a
second-price auction with reserve price ϕ−1(0) to be optimal in the symmetric buyer case.

Definition 3.2 An absolutely continuous distribution function F with density f has mono-
tone hazard rate (MHR) property if its hazard rate λ satisfies that

λ(p) =
f(p)

1− F (p)
is non-decreasing in p.

We will denote λF (p) to make explicit that the hazard rate of the cdf F is being used. A
family of distribution functions {Ft}t∈T is said to satisfy the MHR property if each Ft has
the MHR property.

In practice, there are many distributions that have an increasing hazard rate, such as the
uniform, exponential and normal distributions. In particular, the exponential distribution
has a constant hazard rate equal to the parameter of the exponential distribution.

The next stochastic order we will introduce is widely used in several areas of statistical
theory, such as in hypothesis testing to produce uniformly most powerful tests (UMP). Con-
sider the following experiment. Suppose we have two absolutely continuous random variables
X and Y with probability densities f and g respectively. Moreover, suppose that the quotient
f(p)/g(p) is increasing in p. Knowing the previous probability densities, a realization of X
or Y is observed, and the goal is to decide from which distribution the realization came. The
monotonicity condition provides us with information once the realization has been observed.
High values suggest that the realization came from density f , while low values from g. In
fact, there is a critical value to decide from which distribution the realization came from by
the Karlin-Rubin theorem (see Theorem 8.3.17 in [3]). We define the generalization of the
previous experiment for a family of distributions.

Definition 3.3 A family of distribution functions {Ft}t∈T with T ⊆ R+ is said to satisfy the
monotone likelihood ratio (MLRP) property if for every t ∈ T , Ft is absolutely continuous
and

ft1(p1)

ft0(p1)
≥ ft1(p0)

ft0(p0)
for all p1 > p0 and t1 > t0, p1, p0 ∈ R, t1, t0 ∈ T .

For certain values of p, it may happen that ft(p) = 0. To avoid these complications we can
use a natural and equivalent definition as in [8]: a family of distribution functions {Ft}t∈T
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satisfy MLRP if the following inequality holds

ft1(p1)ft0(p0) ≥ ft1(p0)ft0(p1), for all p1 > p0 and t1 > t0, p1, p0 ∈ R, t1, t0 ∈ T .

The next proposition gives a relation between MLRP, SD and a connection to hazard rates.

Proposition 3.4 Assume the family {Ft}t∈T satisfies MLRP. Then, the following conditions
hold:

1. The family {Ft}t∈T satisfy SD.

2. The family has decreasing hazard rates in t, i.e. ht2(p) ≤ ht1(p) for all p ∈ R and for
all t1, t2 ∈ T such that t1 < t2.

Proof. Since the inequality ft1(p1)ft0(p0) ≥ ft1(p0)ft0(p1) holds for all p1 > p0 and t1 > t0,
fixing p0 and integrating from p0 to ∞ with respect to p1 we arrive at

ft0(p0)

∫ ∞

p0

ft1(p1)dp1 = ft0(p0)(1− Ft1(p0))

≥ ft1(p0)(1− Ft0(p0)) = ft1(p0)

∫ ∞

p0

ft0(p1)dp1.

Now fix p1 and integrate from −∞ to p1 with respect to p0,

ft1(p1)

∫ p1

−∞
ft0(p0)dp0 = ft1(p1)Ft0(p1) ≥ ft0(p1)Ft1(p1) = ft0(p1)

∫ p1

−∞
ft1(p0)dp0.

Noting that p0 as well as p1 were arbitrary, rearranging terms we conclude that

1− Ft1(p)

1− Ft2(p)
≤ ft1(p)

ft2(p)
≤ Ft1(p)

Ft2(p)
, for all p ∈ R.

In particular, the above inequalities imply that Ft2(p)(1 − Ft1(p)) ≤ Ft1(p)(1 − Ft2(p)) for
all p ∈ R, and this implies Ft2(p) ≤ Ft1(p) for all p ∈ R. It follows that the family {Ft}t∈Θ
is SD. Taking the left-hand side of the above inequality and rearranging we obtain that
ht2(p) ≤ ht1(p) for all p ∈ R. The second claim follows.

The second point of the previous proposition will be key in the proof of the theorem in
the next section. This motivates us to define the families that fulfill this condition.

Definition 3.5 A family of cumulative distribution functions {Ft}t∈T is said to have the
decreasing hazard rate order property (DHR) if

ht2(p) ≤ ht1(p) for all p ∈ R and for all t1, t2 ∈ T such that t1 < t2.

In the next section we will see how these notions of order for probability distributions
relate to the monopolistic pricing policy.
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3.3 Monopolistic Pricing

As mentioned previously, in this section we will focus on the monopolistic pricing policy,
which sets the price p∗t = argmaxp p(1−Ft(p)) in every time t ∈ T . In particular, we provide
a series of examples in which it can be observed that certain conditions on their own fail
to guarantee that p∗t is non-decreasing in t. This implies that by adding a discount on the
utility function of the buyer that heavily penalizes waiting between periods, in some instances
a strategic consumer with high valuation over the item will deviate from buying in the period
they arrive, to buy in a later period. As a result we obtain sufficient conditions on the family
{Ft}t∈T to ensure that p∗t is non-decreasing in t and hence nullify the strategic behaviour of
a consumer.

Focusing only on a single period, if the seller announces a non-decreasing price policy we
can think about a posted price setting, where the seller sets a price p over an item and then
the buyer buys the item if his valuation is higher than or equal to p. In the case where the
distribution F is differentiable with density f and has finite expectation, the revenue function
is also differentiable and we can find its maximum among its stationary points, i.e., those
that satisfy the equation d

dp
Π(p) = 0. Via Markov’s inequality it is easy to notice that the

seller’s expected revenue is also bounded by the expectation of the buyer’s valuation. The
following lemma summarizes what have been stated.

Lemma 3.6 (Lemma 2.10 in [16]) In a posted price setting, the seller revenue is given by
Π(p) = p(1 − F (p)) where F is the distribution of the buyer’s valuation (which is a positive
random variable). Assume that F is differentiable and has finite expectation. Then,

lim
p→∞

Π(p) = 0.

Furthermore, Π is upper bounded by EV∼F (V ) and the monopoly price p∗ is a solution of

f(p∗)

(
p∗ − 1− F (p∗)

f(p∗)

)
= 0.

The above lemma states that in the differentiable case the first order conditions are
sufficient to find the monopoly price.

3.3.1 Insufficient conditions for the monopoly prices to be non-
decreasing

In all the following counterexamples we set T = {0, 1}. That is to say, there are only two
periods on which we will focus.

We start with only the SD condition. Let ε1, ε2 > 0 such that 1/3 > ε1, ε2. We will
start by defining the piecewise distribution functions and then connect the pieces by linear
interpolation. Let F0(p) = 1 − ε1 for p ∈ [0, 2/3], F0(p) = 1 for p ∈ [2/3 + ε2,+∞) and in
the missing interval (2/3, 2/3 + ε2) we will consider a linear interpolation with the values of
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F0(2/3) and F0(2/3 + ε2). Specifically, the function F0 is defined as

F0(p) =


0 p < 0,

1− ε1 0 ≤ p < 2/3,
ε1
ε2
(p− 2/3) + 1− ε1 2/3 ≤ p < 2/3 + ε2,

1 2/3 + ε2 ≤ p.

Now let F1(x) = p for p ∈ [0, 2/3], F1(p) = 1 for p ∈ [2/3 + ε2,+∞) and linear interpolation
in the missing interval. Once again we can explicitly define F1 as follows

F1(p) =


0 p < 0,

p 0 ≤ p < 2/3,
1

3ε2
(p− 2/3) + 2/3 2/3 ≤ p < 2/3 + ε2,

1 2/3 + ε2 ≤ p.

In Figure 3.1 we consider ε1 = 10−1 and ε2 = 10−3. By construction F1(p) ≤ F0(p)
for all p ∈ R so the stochastic dominance condition holds in this case. Furthermore, one
can check that p∗0 = 2/3 > 1/2 = p∗1. This counterexample is interesting because although
valuations are increasing in expectation, counter intuitively the monopolistic pricing policy
is decreasing.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

F0

F1

Figure 3.1: The monopolistic pricing policy values can be decreasing having only SD as
hypothesis (ε1 = 10−1, ε2 = 10−3).

Now, if we only rely on the MHR property then we do not have that the monopolistic
pricing policy is increasing either. Le F0, F1 the probability distributions of two exponential
random variables with mean 1 and 2 respectively. That is, F0(p) = (1 − e−p)1{p≥0} and
F1(p) = (1−e−p/2)1{p≥0} (see Figure 3.2). Since the hazard rate of an exponential distribution
is constant and equal to the exponential distribution parameter, both distributions verify non-
decreasing hazard rates, but p∗0 = 1 > 1/2 = p∗1. This is not surprising due to the fact that
MHR is a property of the distribution and not of the family to which the function belongs.
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Figure 3.2: The monopolistic pricing policy values can be decreasing having only MHR as
hypothesis.

Finally, if we consider both MHR and SD we cannot conclude monoticity of the monopo-
listic pricing policy either. Consider F1 the cdf of an uniformly distributed random variable
between 1/2 and 1, and F0 defined as follows

F0(x) =


0 x < 0,

(β/α)x 0 ≤ x < α,

F1(x) α ≤ x.

where α and β are such that 2(α − 1/2) = β, for α, β > 0. This is simply a linear function
with slope β/α in the interval [0, α], which then coincides with F1 in a continuous fashion.
For β < 1, it is straightforward to verify SD and MHR (F0 is in fact convex, and thus f0
is non-decreasing if we choose f0(α) = f1(α), or any value in [β/α, f1(α)]. Since 1 − F0(p)
is decreasing, it is ensured that hF0 is non-decreasing). Letting β = 1/10, we obtain that
p∗0 = 11/20 > 1/2 = p∗1.
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Figure 3.3: The monopolistic pricing policy values can be decreasing having SD and MHR
as hypothesis (α = 11/20, β = 10−1).
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This counterexample tells us that even if the variables are stochastically dominated and
we have a notion of regularity (according to Myerson) we still cannot ensure the monoticity
of the monopoly pricing policy.

3.3.2 Sufficient conditions for the monopoly prices to be non-
decreasing

We now return to the usual setting, where T is any subset of R+. The goal of this section is
to prove the following theorem.

Theorem 3.7 Let {Ft}t∈T be a family of distributions satisfying DHR. Then the monopolistic
price policy p∗t is non-decreasing.

For completeness, we will write a result in which having the MHR and DHR hypotheses
on the family of distributions gives us the desired monotonicity result using the first order
conditions, providing an alternative simple proof.

Proposition 3.8 If the family of cdfs {Ft}t∈T satisfy DHR and MHR conditions, then the
monopolistic price policy p∗t is non-decreasing.

Proof. In search of a contradiction, let us suppose that p∗t is decreasing. Then, there exists
t1 and t2 both in T , t1 < t2 such that p∗t2 < p∗t1 . The first-order conditions associated with
the maximization problem state that the optimum satisfies the following equation

1− Ft(p
∗
t )− ft(p∗t )p∗t = 0, t = t1, t2.

Then for t = t1, t2, p
∗
t satisfies ht(p

∗
t ) = 1/p∗t . Thus,

1

p∗t2
= ht2(p

∗
t2
) ≤ ht1(p

∗
t2
) ≤ ht1(p

∗
t1
) =

1

p∗t1

where in the first inequality we used DHR and in the second one we used MHR by our
assumption p∗t2 < p∗t1 . Therefore, rearranging terms we arrive at p∗t2 ≥ p∗t1 , a contradiction.

At first glance, it would appear that the MHR property was key in the above demonstra-
tion. We will now present a rather surprising result, in which we will not use MHR. In what
follows, we will state two lemmas that will be key to the proof of the Theorem 3.7.

Lemma 3.9 Let F and G be distributions such that mF,G(p) =
1−F (p)
1−G(p)

is non-decreasing in

p. Then pG = argmaxp p(1−G(p)) ≤ argmaxp p(1− F (p)) = pF .

Proof. Assume that pF < pG. By definition of pF , for all p ∈ R,

p(1− F (p)) < pF (1− F (pF )).
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In particular we obtain pG(1 − F (pG)) < pF (1 − F (pF )). Since pF < pG and mF,G(p) is
non-decreasing

1− F (pF )
1−G(pF )

≤ 1− F (pG)
1−G(pG)

⇐⇒ pG(1−G(pG))
pF (1−G(pF ))

· pF (1− F (pF )) ≤ pG(1− F (pG)).

By definition of pG we know that pG(1−G(pG)) > pF (1−G(pF )), thus

pF (1− F (pF )) <
pG(1−G(pG))
pF (1−G(pF ))

· pF (1− F (pF ))

and putting the last two inequalities together we obtain that pF (1−F (pF )) < pG(1−F (pG)),
which contradicts the definition of pF .

Lemma 3.10 Let F,G be absolutely continuous distributions, and let f, g be their respective
probability density functions. Then mF,G(p) is non-decreasing if and only if hF (p) ≤ hG(p)
for all p ∈ R.

Proof. It is straightforward to verify the following equivalences.

mF,G(x) is non-decreasing in p⇐⇒ d

dp

(
1− F (p)
1−G(p)

)
≥ 0

⇐⇒ −f(p)(1−G(p)) + g(p)(1− F (p)) ≥ 0

⇐⇒ f(p)

1− F (p)
≤ g(p)

1−G(p)
⇐⇒ hF (p) ≤ hG(p).

With these lemmas, we are ready to see that MHR hypothesis was not necessary in the
proof of Proposition 3.8.

Proof of Theorem 3.7. Let t1, t2 ∈ T , such that t1 < t2. By definition of an DHR family,
ht2(p) ≤ ht1(p) for all p ∈ R. Using Lemma 3.10, mFt2 ,Ft1

(p) is non-decreasing in p. Finally,
by Lemma 3.9, pt1 < pt2 .

Since we have already seen that MLRP implies DHR, we easily obtain the following
corollary.

Corollary 3.11 Let {Ft}t∈T be a family of distributions satisfying MLRP. Then p∗t is non-
decreasing.

Table 3.1 summarizes which properties are sufficient for monotony to be satisfied. Note
that in the proof of the above theorem the key element was that mFt2 ,Ft1

(p) is non-decreasing
in p. Therefore, we can extend the result to any type of random variable (continuous, discrete
and mixed) if the family of distributions {Ft}t∈T satisfies that for any t1 < t2, the quotient
mFt2 ,Ft1

(p) is non-decreasing in p.
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MHR No property
DHR ✓ ✓

MLRP ✓ ✓

SD ✗ ✗

No property ✗ ✗

Table 3.1: Properties under which the family {Ft}t∈T make the monopolistic pricing policy
non-decreasing.

It can be checked directly that mFt2 ,Ft1
(p) being non-decreasing in p for all t1 < t2 is

equivalent to (1− Ft(p1))/(1− Ft(p2)) is non-increasing in t, for all p1 > p2. This condition
has already been studied by Zhao and Zheng [18] in their dynamic programming model. The
interpretation of this last ratio is the conditional probability that a customer, given that he
or she is willing to pay a lower price p2, would buy at a higher price p1. In other words, this
condition holds if the probability that a customer is willing to pay a premium decreases over
time.

3.3.3 Further generalizations

Theorem 3.7 can be used in a variety of models. An example of this can be for different
utility functions for buyers, and adding intertemporal discounts for the buyers and the seller
utility.

Consumer’s utility functions The buyer’s utility function u(v, t) = v − pt can be gen-
eralized to any positive utility function u increasing in v − pt, If a consumer observes an
increasing pricing policy, then a consumer that has a valuation v for the item and arrives on
t, will purchase if and only if

u(v, t) = u(v − pt) ≥ 0⇐⇒ v − pt ≥ u−1(0), (3.3)

where u−1 is the inverse of u, which exists and is increasing since u is increasing. The seller’s
revenue of posting the price pt at time t is pt · 1{v−pt≥u−1(0)}. It follows that the expected
revenue of the seller in the period t is pt(1− Ft(pt + u−1(0))). Thus, the goal of the seller is
to solve

max
p

p(1− Ft(p+ u−1(0))).

Via the one-to-one change of variables p = y − u−1(0), the previous problem is equivalent to
solving

max
y

(y − u−1(0))(1− Ft(y)) = max
p

(p− u−1(0))(1− Ft(p)).

Hence, the reserve value u−1(0) of the buyer produces an artificial valuation (or a cost of
production per item) for the seller. Remember that we normalized the seller’s valuation
of the item to 0, and the proof of Theorem 3.7 is the same with the revenue functions
(p − c)(1 − Ft(p)) for a constant c ∈ R+. Hence if {Ft}t∈T has the DHR property the
optimal pricing policy is exactly the monopolistic pricing policy, which is increasing. The
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explanation behind this behaviour is that the consumer has a reserve value u−1(0) in the case
of not buying the item, thus inducing a negative effect on the seller’s revenue. We will see in
Chapter 4 (Proposition 4.8) that a greater reserve value produces an increase in prices.

Intertemporal discounts The importance of nullifying strategic behavior allows us to
incorporate any positive non-increasing intertemporal discounts α(t) and β(t) for the con-
sumer’s and seller’s utility function. Specifically, the following consumer function is consid-
ered as

u(v, t) = α(t) · u(v − pt)

where u is a positive and increasing function that without loss of generality u−1(0) = 0. The
seller’s objective function can be considered for random1 consumer arrivals, but for simplicity
let us consider the objective function of SP with β(t) as a discount factor. For the case of an
non-decreasing pricing policy, the objective functions becomes

Rev(p) =
T∑
t=1

β(t) · pt(1− Ft(pt)).

The monopolistic pricing policy (p∗t )
T
t=1, if feasible, it is clearly optimal because it maximizes

each summand independent of the discount factor β(t). Furthermore, a similar argument as
in inequality 3.3 leads to a consumer with valuation v and arriving in period t, buying the
item if and only if v ≥ u−1(0) + pt and this condition is independent of the intertemporal
discount α(t).

1’Random’ here means any distribution of arrival G. To make this clear, see the objective function of
GFCP(K) in Section 4.
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Chapter 4

Finite Capacity Problem

In this section we will study the effect that capacity has with respect to prices and revenue for
the seller in the problem of Chapter 2. There are two ways of approaching at this problem,
viewing capacity as a decision variable or as a constraint either exogenously or endogenously
derived. Our results focus on the latter variation of the problem. There are several examples
where an interpretation can be given to the above problem, such as limited storage capacity
and budget constraints.

First we will start by focusing on the difficulty of the rationing problem as a decision
variable with strategic consumers since the price curves may be decreasing. After this, we
will then study the seller’s problem under a capacity constraint in depth, characterize its
optimal solutions by means of the dual problem, and analyze the properties that they satisfy
when varying the capacity.

4.1 Capacity as a decision variable

Consider the following setting: there are two periods, in the first period 1000 neutral to risk
consumers arrive with a deterministic value of 100 for the object, and in the second period
3000 neutral to risk consumers arrive with a deterministic value of 50 for the object. The
seller decides the prices p1, p2 in each of the two periods and how many items K he will sell.
On one hand, it is simple to note that the optimal non-decreasing price policy (setting infinite
capacity) is the constant price equal to 50, with optimal revenue equal to RevNC = 2 · 105.
On the other hand, if we consider capacity and decreasing sequences, we can obtain a higher
revenue than in the previous case.

Let us take the pricing policy that sets p1 = 60 in the first period and p2 = 50 in the
second. The seller also announces the public availability of only K = 2000 units for sale and
completely commits to this availability. First-period consumers know that second-period
consumers will buy all units left, so they anticipate and react to this behaviour so they have
two options; the first is to buy on the period on they arrive and obtain 40 utils, or deviate and
purchase on the second period. It is easy to see that the probability π of getting the item in
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the second period is upper bounded by 2/3, the best case for consumers in the second period
(assuming that there are zero consumers in period 1). Thus, comparing expected utilities of
a consumer of the first period of purchasing in period 2 and period 1 respectively:

50 · π ≤ 100

3
< 40.

Hence is always better for a consumer in the first period to buy when they arrive. With
this we can compute the revenue of the seller. Let RevC the optimal revenue in the previous
problem with capacity as a decision variable. Obviously, the pricing policy (60, 40) may be
not optimal but is sufficient to bound RevNC . More precisely,

RevNC = 2 · 105 < 60 · 1000 + 50 · 3000 = 2.1 · 105 ≤ RevC .

Therefore capacity can be used to generate more revenue, as long as the capacity is public
information for consumers. In general, the problem with more periods becomes harder and
it is necessary to study the expected continuation payment of the game for consumers, who
depend on the action of the rest of the consumers. This problem is particularly difficult to
solve and go beyond the scope of this thesis. For further reading in this topic, see [11].

4.2 Capacity as a constraint

We will now study the finite capacity problem as a constraint imposed on the seller, which is
only information available to the seller. For now, we will assume that consumers are myopic
and therefore buy as soon as they arrive as long as the price they set in the period is above
their valuation, otherwise leave and receive zero utility. An analogous way of thinking about
myopic consumers is for the seller to have the power to do discriminate pricing. That is, for
consumers arriving in period t he offers the product at price pt as a take-it-or-leave-it offer
(after the seller announces the price path (pt)

T
t=1). The process of arrival of consumers is the

same as in Chapter 2, except that the quantity of consumers that arrive in period t can be
generalized to a random variable At with finite mean αt independent of their valuation Vt.
The good is infinitely divisible, and in each period a random mass of consumers At demand
the object according to their distribution of valuation Ft and the price set. The seller wants
to maximize his expected revenue subject to an expected capacity/supply constraint of K
units. That is, if he announces a pricing policy (pt)

T
t=1 the expected capacity constraint is

(using independence of At and Vt)

E

[
T∑
t=1

At · 1{Vt≥pt}

]
≤ K ⇐⇒

T∑
t=1

αt · [1− Ft(pt)] ≤ K.

And his objective function is E[
∑T

t=1At · pt1{Vt≥pt}] =
∑T

t=1 αt · pt[1 − Ft(pt)]. Thus, the
problem of revenue maximization under the capacity constraint of K units for sale, and
myopic buyers is stated as

max
p1,...,pT

T∑
t=1

αt · pt[1− Ft(pt)] FCP(K)

s.t.
T∑
t=1

αt · [1− Ft(pt)] ≤ K.
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Certainly, if the value of K is high the constraint may not be active. Specifically, if the
value of K is greater than

∑T
t=1 αt · [1 − Ft(p

∗
t )] where p

∗
t is the monopoly price under the

distribution Ft then the constraint is non-binding and the optimal solution of FCP(K) is
(p∗t )

T
t=1.

Throughout this section we will use the term strategic consumers for consumers who
maximize their utility given the price path announced by the seller. That is, a utility-
maximizing consumer is who choose the optimal time t ≥ τ at which to buy the item, given
his arrival at time τ . Naturally, if there is no price at which they receive positive utility,
consumers in this condition receive zero utility and do not make any purchase.

Without loss of generality, we normalize the sum of arrival masses to 1, i.e.
∑T

t=1 αt = 1
and assume that every αt is strictly positive. In the following we will use lagrangian duality
and monotone comparative statics to study the optimal solutions of FCP(K).

4.2.1 Dual problem and sufficient conditions

We introduce the dual problem of FCP(K). In this way, we introduce the lagrange multiplier
z ∈ R+ associated with the expected capacity constraint. The Lagrangian function L :
RT × R→ R is given by

L(p, z) =
T∑
t=1

αt · pt[1− Ft(pt)] + z

(
K −

T∑
t=1

αt · [1− Ft(pt)]

)

= zK +
T∑
t=1

αt · (pt − z)[1− Ft(pt)].

Define the Lagrangian dual function ψK : R→ R as

ψK(z) = sup
p1,...,pT

L(p, z) = zK +
T∑
t=1

αt · Rt(z)

where Rt(z) = supp(p − z)[1 − Ft(p)]. Note that, for z ≥ 0, (pt)
T
t=1 feasible in FCP(K) and

by definition of supremum

ψK(z) ≥
T∑
t=1

αt · pt[1− Ft(pt)] + z

(
K −

T∑
t=1

αt · [1− Ft(pt)]

)

≥
T∑
t=1

αt · pt[1− Ft(pt)]

By the previous inequality, it follows that for any z ≥ 0 the lagrangian dual function yields
upper bounds on the optimal value val(FCP(K)). That is to say,

val(FCP(K)) ≤ ψK(z), for all z ≥ 0.
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Hence, the Lagrangian dual problem of FCP(K) is

inf
z

ψK(z) = zK +
T∑
t=1

αt · Rt(z) Γ(K)

s.t. z ≥ 0.

We now present a sufficient condition under the family of distributions Ft, in order to solve
Γ(K). Moreover, with the solution of the dual problem we can find an explicit solution to
the primal problem.

Assumption 2 For each z ≥ 0 and t ∈ [T ], the function Rt(z) = supp(p − z)(1 − Ft(p)) is
differentiable as a function of z. In addition, as least one of the following three conditions is
satisfied for each t ∈ [T ]:

1. The support of Ft is contained in [0, vt], for some constant vt. This is, suppFt ⊆ [0, vt].

2. EV∼Ft [V ] <∞.

3. The supremum of the revenue in period t is upperly bounded by a constant vt. That
is, supp p(1− Ft(p)) ≤ vt.

The goal of Assumption 2 is to bound ψK(0) and to use the well known envelope theorem.
Under this assumption, define v := maxt{vt | t ∈ [T ]}. Clearly, the first point leads directly
of bounding the expectation EV∼Ft [V ] of each periods via an application of Hölder inequality.
If EV∼Ft [V ] is finite, we can bound the revenue of each period by a constant vt and hence by
v (See Lemma 3.6).

Now we prove under these conditions, the existence of an optimal solution to the la-
grangian dual problem.

Lemma 4.1 Suppose Assumption 2 holds. Then, for all K > 0, there exists z(K) < ∞ an
optimal solution to the dual problem Γ(K).

Proof. Since for each t and z ≥ 0 the function Rt(z) is differentiable, it is also continuous for
each t and z ≥ 0. Hence, by the algebra of continuous functions ψK(z) is also a continuous
function. We will prove that

inf
z≥0

ψK(z) = inf
0≤z≤zK

ψK(z)

where zK = v/K. In fact, consider z′ ≥ zK , then

ψK(z
′) ≥ Kz′ > K · v

K
= v ≥ ψK(0),

where we used the positivity of Rt(z) and assumption 2 to bound ψK(0):

ψK(0) =
T∑
t=1

αt · Rt(0) ≤ v

T∑
t=1

αt ≤ v.
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The latter inequality follows from noting that the sum of masses of arrival is normalized to 1.
We conclude that the infimum value of the continuous function ψK has to lie in the interval
[0, zK ], which is a compact set. Finally, by Weierstrass extreme-value theorem ψK attains a
minimum z(K) ∈ [0, zK ].

Theorem 4.2 Suppose that Assumption 2 holds. Then, there is a pair of
(
(pt(K))Tt=1, z(K)

)
primal-dual optimal solutions to FCP(K) and Γ(K).

Proof. Take z(K) as in Lemma 4.1, and define p(K) = (pt(K))Tt=1 as pt(K) = argmaxp(p−
z(K))(1−Ft(p)) for each t ∈ [T ]. By Proposition 5.1.5 in [1] we have to check four conditions
to assure optimality of some primal-dual solutions. That is, we need to check primal and
dual feasibility, Lagrangian optimality and complementary slackness.

1. Primal and dual feasibility: Dual feasibility follows because by construction z(K) ≥ 0.
By the envelope theorem (see, by e.g. Theorem 1 in [13]), we have that R′

t(z(K)) =
−(1− Ft(pt(K))) and then

ψ′
K(z(K)) = K +

T∑
t=1

αtR′
t(z(K)) = K −

T∑
t=1

αt(1− Ft(pt(K))).

Since z(K) is dual optimal solution, and the feasible region is convex in the dual
problem, by Proposition 2.1.2 in [1] the first order conditions of ψK can be written as

ψ′
K(z(K))(z − z(K)) ≥ 0, ∀z ≥ 0. (4.1)

Taking z > z(K), it must be that ψ′
K(z(K)) ≥ 0. Thus,

ψ′
K(z(K)) = K −

T∑
t=1

αt(1− Ft(pt(K))) ≥ 0.

Primal feasibility follows.

2. Lagrangian optimality: By definition,

argmax
p

L(p, z(K)) = argmax
p1,...,pT

z(K)K +
T∑
t=1

αt · (pt − z(K))[1− Ft(pt)]

= argmax
p1,...,pT

T∑
t=1

αt · (pt − z(K))[1− Ft(pt)]

Since the masses of arrival αt are fixed and positive, and noting that each p∗t maximizes
its respective summand, thus argmaxp L(p, z(K)) = (pt(K))Tt=1.

3. Complementary slackness: We must check that

z(K)

(
K −

T∑
t=1

αt · [1− Ft(p
∗
t )]

)
= 0.
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If z(K) = 0 complementary slackness follows. Otherwise, z(K) must be positive. We
can take ε > 0 small enough with z(K)+ε and z(K)−ε belonging to R∗

+, and plugging
in this values in equation (4.1) we obtain that ψ′

K(z(K)) = 0. This is

T∑
t=1

αt · [1− Ft(pt(K))] = K,

and complementary slackness follows, which completes the proof.

This result indicates an interesting connection between the capacity and prices in each
period. A naive approach to the FCP(K) problem may be to raise the prices of the periods
where less revenue is produced until the expected capacity constraint is met, maintaining the
revenue in the periods where more revenue is earned. Theorem 4.2 implies that this is not
optimal. Capacity becomes a production cost or item valuation for the seller, affecting all
periods with this value given by the optimal dual variable z(K).

The previous problem allows us to solve the period capacity problem easily; consider the
same setting as FCP(K), except for the expected capacity constraint, which is replaced by
T capacity constraints for each period. The formulation is as follows.

max
p1,...,pT

T∑
t=1

αt · pt[1− Ft(pt)] FCP(K1, . . . , KT )

s.t. αt · [1− Ft(pt)] ≤ Kt, for each t ∈ [T ].

One way to use Theorem 4.2 to solve the problem is as follows. First, let us note that

max
p1,...,pT

{
T∑
t=1

αt · pt[1− Ft(pt)]

∣∣∣∣∣αt · [1− Ft(pt)] ≤ Kt, ∀t ∈ [T ]

}

≤
T∑
t=1

max
pt

{
αt · pt[1− Ft(pt)]

∣∣∣∣∣αt · [1− Ft(pt)] ≤ Kt

}
.

Focusing on the latter T problems, in each period t the solution is to set a price such that
pt = argmaxp(p − z(Kt))(1 − Ft(p)), for some dual optimal solutions z(Kt) associated with
each period capacity restriction. The pricing policy (pt)

T
t=1 is feasible in FCP(K1, . . . , KT )

and optimal because that pricing policy makes the previous inequality hold as an equality.

Observation 4.3 If we drop the hypothesis of consumers being myopic the FCP(K) problem
changes drastically. The main issue is that the objective function does not capture strategic
behaviour such as in SP. However, a non-decreasing pricing policy nullifies the strategic
behaviour as seen in Chapter 2. In virtue of Theorem 3.7, if the family of distributions
{Ft}Tt=1 satisfies the DHR property, then

pt(z(K)) = argmax
p

(p− z(K))(1− Ft(z(K)))
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is non-decreasing in t, leading to an optimal non-decreasing pricing policy in the FCP(K)
problem.

However, the pricing policy pt(z(Kt)) = argmaxp(p− z(Kt))(1−Ft(p)) is not necessarily
non-decreasing since the dual optimal solutions z(Kt) are not necessarily the same. Therefore,
even under DHR the previous pricing policy may not be optimal in FCP(K1, . . . , KT ).

4.2.2 Generalized Capacity Problem

The model introduced at the beginning of this section can be generalized considering con-
tinuous time, where buyers arrive according to a known distribution G with support over
the interval [0, T ]. The goal of this subsection, is to describe and to prove that, under mild
conditions under the family of distributions {Ft}t∈[0,T ], results stated in Theorem 4.4 still
hold. Formally, we consider the measurable space ([0, T ],B([0, T ])) equipped with the mea-
sure induced by G, dG. In this variation the seller commits to a price function p : SG → R+

knowing the arrival distribution G and the distributions of valuation Ft, where SG ⊆ [0, T ]
is the support of G. Consumers are still assumed myopic, and the value of the item for the
seller is zero. In any time t, conditional on a consumer arrival and a borel measurable pricing
policy p(·), the instantaneous expected revenue is given by p(t)[1 − Ft(p(t))]. Hence, the
generalized finite capacity problem of capacity K can be stated as

max
p(·)

∫ T

0

p(t)[1− Ft(p(t))] dG(t) (GFCP(K))

s.t.

∫ T

0

[1− Ft(p(t))] dG(t) ≤ K,

where both integrals are in the Lebesgue–Stieltjes sense with respect to the induced measure
dG. For instance, we can recover FCP(K) setting G as the distribution of a random variable
Y such that P(Y = t) = αt for every t ∈ [T ] and

∑
t∈[T ] αt = 1. Under assumptions on the

family of distributions {Ft}t∈SG
, we can derive analogous results in which the proofs are also

analogous, exchanging the summation sign for an integral sign.

Assumption 3 For each z ≥ 0, Rt(z) = supp(p− z)(1− Ft(p)) is measurable as a function
of t and for each t ∈ SG, Rt(z) differentiable as a function of z. In addition, at least one of
the following three conditions is satisfied:

1. For each t ∈ SG, the support of Ft is contained in [0, v], for some constant v independent
of t.

2. supt∈SG
EV∼Ft [V ] = v <∞. This is, suppFt ⊆ [0, v] for all t ∈ SG.

3. For each t ∈ SG, the supremum of the revenue at time t is upperly bounded by a
constant v independent of t. That is, supp p(1− Ft(p)) ≤ v, t ∈ SG.

Under a continuity or measurability assumption, we can also derive the Lagrangian dual
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problem in a similar manner to the previous section:

inf
z

ψK(z) = zK +

∫ T

0

Rt(z) dG(t) (GΓ(K))

s.t. z ≥ 0.

For the dual problem to take the above form, it is necessary that

sup
p(·)

∫ T

0

(p(t)− z)[1− Ft(p(t))] dG(t) =

∫ T

0

sup
p(t)

{(p(t)− z)[1− Ft(p(t))]} dG(t),

where the first supremum is taken over all borel measurable functions. This equality holds
if for every t ∈ [0, T ], the function Rz(p) = (p − z)[1 − Ft(p)] is upper-semicontinuous (see
Section 2 in [7]). Since the LHS is always less than or equal to the RHS, another condition
for this inequality to hold is that the function p(t) = argmaxp(p − z)[1 − Ft(p)] is borel
measurable. From now on, we will assume this latter condition.

It is again verified that every point in Assumption 3 implies the following one, and that
these conditions are to prove an analogue of Lemma 4.1, the existence of a solution z(K)
for GΓ(K). Although the proof is similar, we need the continuity of ψK . After this, if we
continue the steps to prove that z(K) and pt(z(K)) are optimal solutions of the dual and
primal problem, to verify primal feasibility it is necessary to differentiate the function ψK ,
which depends on a Lebesgue-Stieltjes integral. Under Assumption 3, ψK is differentiable
(and then continuous) as a function of z but the proof is technical and is based on the measure
theory statement of the Leibniz integral rule (see Theorem 6.28 in [9]). Three hypotheses
need to be verified:

1. For any z ≥ 0, the map t→ Rt(z) is integrable with respect to dG: By Assumption 3
and the inequality

0 ≤ Rt(z) ≤ Rt(0) = sup
p
p(1− Ft(p)) ≤ v, for all z ≥ 0.

Integrating yields the result.

2. For almost all t ∈ [0, T ], the map t→ Rt(z) is differentiable: This comes from Assump-
tion 3, since SG is a set with measure 1 with respect to dG.

3. There is an integrable map h with respect to dG, such that | ∂
∂z
Rt(z)| ≤ h(z) almost

surely for all z ≥ 0: For each t ∈ SG, by the envelope theorem∣∣∣∣ ∂∂zRt(z)

∣∣∣∣ = | −[1− Ft(pt(z(K)))]| ≤ 1.

Then, the constant map equal to 1 bounds | ∂
∂z
Rt(z)| and it is clearly integrable with

respect to dG.

Therefore ψK is differentiable, there is a dual optimal solution z(K) and ψK
′(z(K)) can be

computed in the same way as in Theorem 4.2. Repeating the steps in the proof of Theorem
4.2, we arrive at the following theorem for the general case (proof is omitted).
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Theorem 4.4 Suppose that Assumption 3 holds. Then, there is a pair of ((pt(K))t∈SG
, z(K))

primal-dual optimal solutions to GFCP(K) and GΓ(K). Furthermore, for each t ∈ SG

pt(z(K)) = argmax
p

(p− z(K))(1− Ft(p)).

Likewise, Observation 4.3 remains true for the general case if we endow families with the
DHR property. That is, pt(z(K)) as defined in Theorem 4.4 is increasing and therefore in
a setting where consumers are strategic and there is an expected capacity restriction of K
units, pt(z(K)) is optimal.

4.2.3 Properties of the optimal solutions

As we constructed the optimal solutions of each problem, we can analyze its monotonic-
ity properties. Milgrom and Shannon in 1997 [14] established the necessary and sufficient
conditions for argmaxx∈S f(x, t) to be non-decreasing in t given a set S. The usual theory
considers X as a lattice and T as a partially ordered set. In our setting, X and T are subsets
of R.

Definition 4.5 A function f : X × T → R satisfies the single-crossing condition in (x, t) if,
for all x, x′ ∈ X and t, t′ ∈ T such that x′ > x′′ and t′ > t′′

f(x′, t′′) > f(x′′, t′′) =⇒ f(x′, t′) > f(x′′, t′),

f(x′, t′′) ≥ f(x′′, t′′) =⇒ f(x′, t′) ≥ f(x′′, t′).

We can simplify the above condition in the case of having only two functions. Consider
f, g : X → R such that

f(x′) > f(x′′) =⇒ g(x′) > g(x′′),

f(x′) ≥ f(x′′) =⇒ g(x′) ≥ g(x′′).

Then we say that g dominates f by the single-crossing property and we denote g ⪰sc f .
This is useful to avoid overloading notation with many parameters to just focus on two
functions, and the single crossing conditions reduces to proving f(·, t′) ⪰sc f(·, t′′) for every
t′ > t′′. Since we are dealing only with subsets of R, we can get rid of certain conditions
that are necessary in any other case such as a property known as quasi-supermodularity.
The only necessary and sufficient condition in our setting for the argmaxx∈S f(x, t) to be
non-decreasing in t is the so-called single-crossing property. Under these conditions, we state
a special case of Theorem 4 in [14].

Theorem 4.6 (Milgrom-Shannon) Suppose X ⊆ R, and f, g real valued functions. Then
argmaxx∈S g(x) ≥ argmaxx∈S f(x) for any S ⊆ X if and only if g ⪰sc f .

Consider the dual optimal solution of the problem Γ(K), given K > 0 (when it is unique).
It is natural to expect that the more restrictive the capacity constraint, i.e. lower values of
K, the dual variable will increase by the way it acts in the optimal pricing policy. For K > 0,
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we define the dual application z : R+ → R+ as the function that takes a positive number K
(a capacity) and returns the optimal solution of the dual problem Γ(K). This application is
well-defined if the solution of the dual problem is unique. This definition can also be extended
to the generalized problem GΓ(K). We show the aforementioned monoticity property of z(·)
in the following proposition.

Proposition 4.7 If well-defined, the dual application is non-increasing in R+ for both prob-
lems Γ(K) and GΓ(K). Furthermore, supposing Assumption 2 holds, the dual application is
continuous.

Proof. The proof is the same for both problems, considering the respective dual function
ψK . Consider K2 ≥ K1 ≥ 0. We must prove that z(K1) ≥ z(K2). Note that by definition of
z(·), this is equivalent to

z(K1) ≥ z(K2)⇐⇒ argmin
z≥0

ψK1(z) ≥ argmin
z≥0

ψK2(z)

⇐⇒ argmax
z≥0

−ψK1(z) ≥ argmax
z≥0

−ψK2(z)

We prove the latter. By Theorem 4.6 it suffices to prove that −ψK1 ⪰sc −ψK2 . Let z′ >
z′′ ≥ 0 and assume that −ψK2(z

′) + ψK2(z
′′) ≥ 0. It is straightforward to verify equality

ψK1(z) = ψK2(z)− z(K2 −K1), for all z ≥ 0. In view of this,

ψK1(z
′′) = ψK2(z

′′)− z′′(K2 −K1)

≥ ψK2(z
′)− z′′(K2 −K1)

≥ ψK2(z
′)− z′(K2 −K1)

= ψK1(z
′).

Analogously, assuming that −ψK2(z
′) + ψK2(z

′′) > 0 leads to −ψK1(z
′) + ψK1(z

′′) > 0. This
proves that −ψK1 ⪰sc −ψK2 and then z(·) is non-increasing.

The fact that z(·) is continuous is a simple application of Berge Maximum Theorem
(Theorem 17.31 in [6]). We have already seen in Lemma 4.1 that z(K) is a solution of

min
z∈[0,zK ]

ψK(z) = − max
z∈[0,zK ]

−ψK(z).

Since the correspondence φ : R+ ⇒ R+ defined by φ(K) = [0, zK ] for all K ∈ R+ is
clearly continuous with non-empty compact values, then the argmax correspondence is upper-
hemicontinuous. If z(·) is well-defined, then the argmax correspondence is singleton-valued
and thus continuous1. Noting that

{z(K)} = argmin
z∈[0,zK ]

ψK(z) = argmax
z∈[0,zK ]

−ψK(z),

it follows that the dual application is continuous in K.

1This a simple fact of singleton-valued correspondences. See Lemma 17.6 in [6].
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One related question comes with the dual application being decreasing. Let us denote as
pt(z(K)) the optimal price of period t of the FCP(K) problem (or GFCP(K) problem), given
the capacity K. The question that arises is how optimal pricing policies are ordered while
increasing capacity.

Proposition 4.8 If z(K) > 0, then pt(z(K)) ≥ p∗t for all t ∈ [T ]. Furthermore, if K1 ≤
K2 then pt(z(K2)) ≤ pt(z(K1)) for all t ∈ [T ]. The proposition also holds in GFCP(K)
exchanging [T ] with SG.

In other words, optimal price curves stack on top of each other if we consider more
restrictive inventories.

Proof. Again, the proof is the same for both statements. Fix any t, and consider Rz(K)(p) =
(p− z(K))(1−Ft(p)) the revenue function that takes into account the artificial value for the
item that produces the capacity K. Since z(K) is decreasing in K, it suffices to prove that
Rz(K1) ⪯sc Rz(K2). Let p

′ > p′′ and assume that Rz(K1)(p
′)−Rz(K1)(p

′′) ≥ 0. Note that

Rz(K2)(p
′)−Rz(K2)(p

′′) = (p′ − z(K2))(1− Ft(p
′))− (p′′ − z(K2))(1− Ft(p

′′))

= (p′ − z(K1))(1− Ft(p
′))− (p′′ − z(K1))(1− Ft(p

′′))

+ (z(K2)− z(K1))(Ft(p
′)− Ft(p

′′))

=Rz(K1)(p
′)−Rz(K1)(p

′′) + (z(K2)− z(K1))(Ft(p
′)− Ft(p

′′)) ≥ 0.

Where in the last inequality we used that Ft is a cumulative distribution function and thus
increasing, Proposition 4.7 and the hypothesis that Rz(K1)(p

′)−Rz(K1)(p
′′) ≥ 0. Analogously,

assuming that Rz(K1)(p
′) − Rz(K1)(p

′′) > 0 leads to Rz(K2)(p
′) − Rz(K2)(p

′′) > 0. This proves
that Rz(K1) ⪯sc Rz(K2) and consequently that pt(z(K2)) ≤ pt(z(K1)) for all t ∈ [T ]. An
identical procedure shows that R0 ⪯sc Rz(K), proving that pt(z(K)) ≥ p∗t for all t ∈ [T ].

4.3 Numerical experiments

In this small subsection we will illustrate the results of the previous sections using two families
of distributions. Let us consider the families

F
(1)
t (p) = 1− e−p/t, F

(2)
t (p) =

p

t
1[0,t)(p) + 1[t,+∞)(p),

this is, {F (1)
t }Tt=1 is a family of exponential families indexed with a parameter 1/t and

{F (2)
t }Tt=1 a family of uniform [0, t] families. A direct computation shows that these families

have the MLRP property and hence optimal pricing policies will be non-decreasing. We will
consider discrete periods with T = 8, and α = (αt)

8
t=1 = (0.1, 0.2, 0.1, 0.1, 0.3, 0.05, 0.05, 0.1)

although the arrival masses have almost no influence in the results if we vary the parameters
slightly.
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Figure 4.1: ψK(z) for the family {F (1)
t }8t=1.
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Figure 4.2: ψK(z) for the family {F (2)
t }8t=1.

Figures 4.1 and 4.2 show the ψK functions for families 1 and 2 respectively, for different
values of K. It is straightforward to note from the definition that as K increases, the function
increases its values. Moreover, the asymptotic behavior of the function is noticeable. This
is because the term R(i)

t (z) goes to 0 as z → ∞, for i = 1, 2. The reason for this is Lemma
3.6, as both families have finite expectation fixing a value of t (and hence the sum has finite
expectation too). We proceed to compute the values for z(K). The behavior of the dual
application is clear; as K goes to 0 then z(K)→∞ and as K increases then z(K)→ 0. The

explanation for this is as follows: for any fixed t, as R(i)
t (z) can be made arbitrarily close to 0
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then for low values of K the argminz≥0 ψK(z) can be made arbitrarily high, and vice-versa:
for high values of K the term zK becomes more significant to minimize than the sum of the
functions R(i)

t (z).
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Figure 4.3: z(K) for the exponential and uniform families.
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Figure 4.4: Optimal pricing policies varying
K for the exponential family.
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Figure 4.5: Optimal pricing policies varying
K for the uniform family.

Figures 4.3, 4.4 and 4.5 empirically show Propositions 4.7 and 4.8. We note that as
K decreases, prices do not rise regularly: although the distances between capacities are
equispaced, large jumps are observed between the smallest inventory capacities (this is more
notorious in Figure 4.5 and can be checked in the values of Table 4.1).
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Uniform family Exponential family
K 0.01 0.12 0.22 0.33 0.44 0.10 0.13 0.16 0.20 0.23
z(K) 6.62 3.24 1.84 0.98 0.36 5.05 3.79 2.87 2.15 1.58
p1(K) 3.81 2.12 1.42 0.99 0.68 6.05 4.79 3.87 3.15 2.58
p2(K) 4.31 2.62 1.92 1.49 1.18 7.05 5.79 4.87 4.15 3.58
p3(K) 4.81 3.12 2.42 1.99 1.68 8.05 6.79 5.87 5.15 4.58
p4(K) 5.31 3.62 2.92 2.49 2.18 9.05 7.79 6.87 6.15 5.58
p5(K) 5.81 4.12 3.42 2.99 2.68 10.05 8.79 7.87 7.15 6.58
p6(K) 6.31 4.62 3.92 3.49 3.18 11.05 9.79 8.87 8.15 7.58
p7(K) 6.81 5.12 4.42 3.99 3.68 12.05 10.79 9.87 9.15 8.58
p8(K) 7.31 5.62 4.92 4.49 4.18 13.05 11.79 10.87 10.15 9.58
Rev(K) 0.07 0.54 0.8 0.95 1.03 1.05 1.19 1.29 1.37 1.43

Table 4.1: Optimal pricing policies with their respective dual variable, for some values of
K.

Finally, we can plot how the optimal revenue evolves as a function of K. Figure 4.6 shows
how volatile the seller’s revenue is as capacity declines. We notice that for small variations
from the critical K value (the expected capacity setting the monopoly prices), the optimal
revenue does not have much variation but as this value decreases even more, the changes are
more abrupt and decrease in logarithmic fashion with respect to K.
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Figure 4.6: Optimal revenues in function of K.
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