
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE INGENIERÍA ELÉCTRICA

DISPARITY ESTIMATION FOR THE STEREO MATCHING PROBLEM
WITH OUTDOOR MOVING TRUCKLOAD IMAGES

MEMORIA PARA OPTAR AL TÍTULO DE INGENIERA CIVIL ELÉTRICA

CAMILA BEATRIZ GÓMEZ NAZAL

PROFESOR GUÍA:
RODRIGO PALMA AMESTOY

PROFESORA CO-GUÍA:
MARIE GONZÁLEZ INOSTROZA

MIEMBROS DE LA COMISIÓN:
MARTIN ADAMS

SANTIAGO DE CHILE
2022

RESUMEN DE LA MEMORIA PARA OPTAR
AL TÍTULO DE INGENIERA CIVIL ELÉCTRICA
POR: CAMILA BEATRIZ GÓMEZ NAZAL
FECHA: 2022
PROF. GUÍA: RODRIGO PALMA AMESTOY

ESTIMACIÓN DE DISPARIDAD PARA EL PROBLEMA DE STEREO
MATCHING CON IMÁGENES DE CAMIONES DE CARGA EN

MOVIMIENTO Y AL AIRE LIBRE

El Stereo Matching (o visión estéreo) es un campo de la visión computacional que ha
estado recibiendo bastante atención durante las ultimas décadas, debido a su gran rango de
aplicaciones y versatilidad. Aborda el problema de la reconstrucción 3D y la estimación de
profundidad (disparidad).

El problema de estimación de disparidad se puede resolver de variadas formas, una de ellas
es una solución de tipo bloques, en la cual el par de imágenes de entrada pasa por distintas
etapas. La primera de ellas, llamada etapa de cálculo del Matching Cost, resulta ser una
de las más importantes, debido a que determina los pares de píxeles que son más similares
entre las imágenes izquierda y derecha. La función de Matching Cost puede ser una función
tradicional que trabaja píxel a píxel o bien una basada en Deep Learning, que es el enfoque
usado en el estado del arte actualmente.

En este contexto, la empresa Woodtech presenta la necesidad de desarrollar un algoritmo
de visión estéreo que sea capaz de resolver el problema de estimación de disparidad, usando
pares de imágenes estéreo, específicamente de camiones de carga en movimiento y en condi-
ciones exteriores. Esta memoria contribuye en la implementación del algoritmo requerido,
incluyendo en la implementación dos tipos de funciones de Matching Cost, con la intención
de comparar un enfoque tradicional versus uno con Deep Learning.

Los algoritmos implementados son numéricamente evaluados con Datasets de interiores
(indoor) y exteriores (outdoor), lo cual provee un buen punto de partida para saber las fort-
alezas y debilidades de cada algoritmo.

Los resultados prueban la superioridad del enfoque con Deep Learning (versus el tradi-
cional escogido) cuando las imágenes están en condiciones outdoor, pero también propone un
desafío para que el tiempo de ejecución sea manejable en el caso de una aplicación en tiempo
real. Sin embargo, el enfoque tradicional usado mostró ser mejorado al aplicar un paso de
pre procesamiento a las imágenes de entrada, logrando ser casi tan bueno como el enfoque
Deep Learning, y con mucho menos tiempo de ejecución.

Los resultados obtenidos son un primer paso para la empresa en la visión estéreo, per-
mitiéndoles tener un algoritmo flexible con dos posibilidades de cálculo de Matching Cost,
además de un registro numérico de la performance de cada algoritmo, lo que les servirá para
tomar buenas decisiones a futuro a la hora de estimar la disparidad de sus imágenes.

i

RESUMEN DE LA MEMORIA PARA OPTAR
AL TÍTULO DE INGENIERA CIVIL ELÉCTRICA
POR: CAMILA BEATRIZ GÓMEZ NAZAL
FECHA: 2022
PROF. GUÍA: RODRIGO PALMA AMESTOY

DISPARITY ESTIMATION FOR THE STEREO MATCHING PROBLEM
WITH OUTDOOR MOVING TRUCKLOAD IMAGES

Stereo matching (or stereo vision) is a field of computer vision that has been getting at-
tention over the last decades, because of its wide range of applications and versatility. It
addresses the problem of 3D reconstruction and depth (disparity) estimation.

The disparity estimation problem can be solved in numerous ways, one them is a block
type solution, in which the input pair passes through stages. The first stage, called the
matching cost computation stage, happens to be one of the most important, because it de-
termines the pairs of pixels that are the most similar between left and right images. The
matching cost function may be a traditional pixel-wise technique, or a deep learning based
function, which is currently the state of the art approach for computing the matching cost.

On this context, the company Woodtech is in need of a stereo vision algorithm that is ca-
pable to solve the disparity estimation problem, using a pair of stereo images, specifically, of
moving truckload images, in an outdoor environment. This memoir contributes in the imple-
mentation of such algorithm, and goes even further by implementing two different matching
cost functions, with the intention of comparing a traditional v/s a deep learning approach.

The implemented algorithms are numerically evaluated with both an indoor and outdoor
dataset, providing a good starting point for knowing each of the algorithms strength and
downfalls.

The results prove the superiority of a deep learning approach (v/s the traditional pixel
wise technique chosen) when the images are in outdoor conditions, but also sets a challenge
to make the execution time manageable for a real time application. Nevertheless, the tra-
ditional approach used, showed to be improved when the input images were pre processed,
being almost as good as the deep learning technique, and much less time consuming.

The obtained results are a first step for the company in the field of stereo vision, allowing
them to have a flexible algorithm with two possible matching functions, and a record of the
measured accuracy of each algorithm, which allows them to make a good decision in the
future when it comes to estimating the disparity of their images.

ii

Dedicado a mis padres, Beatriz y Andrés.

iii

Agradecimientos

Quisiera partir agradeciendo a mi familia, en especial a mi mamá, quien siempre ha es-
tado ahí para mostrarme su apoyo y aliento en todos mis proyectos. A mi papá también, por
ayudarme en el camino del aprendizaje desde muy temprana edad.

En segundo lugar agradecer a mis amigos, Santiago, Trinidad, Ignacia por distraerme en
los momentos necesarios. Y a Nicolás, por darme su apoyo incondicional.

Por último, agradecer a Rodrigo y Marie, quienes me motivaron y ayudaron desde el
inicio, asi como también me dieron la confianza que necesitaba. Por supuesto, muchas gracias
también a los profesores integrantes de la comisión, por brindar disposición en la corrección
de este trabajo.

iv

Table of Contents

1. Introduction 1
1.1. Brief description of Woodtech . 1
1.2. Motivation . 2
1.3. Problem definition . 3
1.4. Goals . 4
1.5. Document structure . 4

2. Basic Concepts 5
2.1. Stereo vision . 5
2.2. Stereo camera and disparity . 5
2.3. Epipolar constraint . 6
2.4. Rectification and Calibration . 7

3. State of the art 10
3.1. Standard stereo algorithm . 10
3.2. Matching cost computation . 10

3.2.1. Absolute differences (AD) . 12
3.2.2. Sum of absolute differences (SAD) 13
3.2.3. BirchField Tomasi (BT) . 13
3.2.4. Pixel dissimilarity with Deep Learning 14

3.3. Cost aggregation . 17
3.3.1. Semi Global Matching (SGM) . 17
3.3.2. Cross Based Cost Aggregation (CBCA) 18

3.4. Disparity selection . 20
3.5. Disparity refinement . 20

3.5.1. Left-Right consistency check . 20
3.5.2. Sub-pixel enhancement . 20
3.5.3. Median filter . 20

3.6. Pre filtering . 21

4. Implementation Methodology 22
4.1. Matching cost computation . 22

4.1.1. BT configuration . 22
4.1.2. CNN configuration . 23

4.2. Cost aggregation . 24
4.3. Disparity selection . 25
4.4. Disparity refinement . 25
4.5. Summary . 25

v

5. Evaluation Methodology 27
5.1. Middlebury dataset . 27
5.2. KITTI dataset . 28
5.3. Truckload images . 29
5.4. Error computation . 30

6. Results and Analysis 33
6.1. Middlebury dataset . 34
6.2. KITTI dataset . 37
6.3. Truck images . 40
6.4. Improved results: pre-filtering of the input images 44
6.5. Summary . 46

7. Conclusion and Future Work 48

Bibliography 50

Annexes . Error tables 52
A.1. Error table for Middlebury dataset . 52
A.2. Error table for KITTI dataset . 53

vi

Table Index

4.1. CNN testing results. 24
6.1. Results for Middlebury dataset. 34
6.2. Average execution time on Middlebury dataset 36
6.3. Results for KITTI dataset. 37
6.4. Average execution time on KITTI dataset . 39
6.5. Average execution time on the truck images 43
6.6. Results for Filtered BT configuration. 44
6.7. Comparison of the three algorithm configurations 46
A.1. Error for each image on Middlebury dataset 52
A.2. Error for each image on KITTI dataset . 53

vii

Illustration Index

1.1. Stereo camera used for Instalog. 1
1.2. Stereo camera placement on Instalog. 2
1.3. Sample of the Middlebury 2006 dataset . 3
1.4. Truck image stereo pair. 3
2.1. Stereo vision system . 6
2.2. Epipolar geometry . 7
2.3. Epipolar geometry after rectification . 7
2.4. Example of rectification. 8
2.5. Raw stereo pair. 8
2.6. Figure 2.5 after rectification and calibration 9
3.1. Taxonomy of Stereo Algorithms . 10
3.2. Illustration of reference and match pixel (Left image as reference) 11
3.3. Illustration of reference and match pixel (Right image as reference) 12
3.4. Computation of I−

r and I+
r . 14

3.5. Illustration of a CNN patch comparison architecture 15
3.6. CNN architecture . 16
3.7. Aggregation of costs in semi global matching 18
3.8. Example of support region in cross based cost aggregation 19
3.9. Result of applying the Sobel X filter. 21
4.1. Matching cost matrix. 22
4.2. Examples of the Multi-view Stereo Correspondence Dataset 23
4.3. Directions used for aggregating the matching cost. 24
4.4. Processing steps of the implemented stereo algorithm 26
5.1. Sample of the Middlebury 2006 dataset . 28
5.2. Sample of the KITTI 2012 dataset . 29
5.3. Left and right Truck images. 30
6.1. OpenCV Jet Colormap . 33
6.2. Comparison of occlusions and mismatches between BT and CNN configuration 34
6.3. Results for Middlebury dataset with BT and CNN configuration 35
6.4. Left and right stereo images of the KITTI dataset 38
6.5. Output disparity maps using KITTI dataset 39
6.6. Truckload image pairs and output disparity maps using them 41
6.7. CNN configuration results using different SGM parameters at daytime images 42
6.8. CNN configuration results using different SGM parameters at nighttime images 43
6.9. Output disparity maps of BT and Filtered BT with a KITTI image 44
6.10. Output disparity maps of BT and Filtered BT with a Truck image 45
6.11. Output disparity maps of BT and Filtered BT with a MIddlebury image. . . . 45
6.12. Results of BT, Pre filtered BT and CNN configurations using Truckload images 47

viii

Chapter 1

Introduction

1.1. Brief description of Woodtech
Woodtech is a company of the forestry and mining industry that develops automatic mea-

surement systems. One of its main products is a system named Logmeter, that is capable
of computing high precision volume measurements and estimate biometrics characteristics of
timber loaded trucks. Their system uses cutting-edge laser technology and delivers a mea-
surement without direct operator intervention [1].

In the need of a less expensive measurement system for timber loaded trucks, the company
decides to develop a new product called Instalog, which is still in a developing stage. One of
its features is that it contains two stereo cameras installed. At the moment, they are mainly
used to obtain images of the timber loaded trucks, and then use them as a dataset to train
a log detector neural network, with the means of counting the number of logs present in a
truckload. A secondary function of those stereo cameras is to provide images to make depth
estimations, with the intention of measuring the logs characteristics, such as their diameter.
The stereo cameras used can be seen in Figure 1.1, and their placement in Figure 1.2.

Figure 1.1: Stereo camera used for Instalog.

1

Figure 1.2: Stereo camera placement on Instalog.

1.2. Motivation
When it comes to the disparity estimation problem, the company has made attempts at

solving it with the use of an external library, in this case, the OpenCV library [2]. The
results led to a point where no more changes could be made to improve them, because the
specific function used only allowed to change certain parameters. This situation ended up
in the idea of implementing a stereo algorithm from scratch, giving the freedom of trying
different algorithms for each step of the stereo algorithm, for example, using a neural network
to find matches between images, because of their growing success at solving the stereo depth
estimation problem [3].

This memoir will contribute in implementing the stereo algorithm required for the truck
images, considering the outdoor environment and illumination issues that they might suffer
from, with the freedom of being able to change every detail needed for better performance. It
will also allow the company to have a base for solving bigger problems like 3D reconstruction
of the truckloads, as well as diameter measuring of the trunks.

2

1.3. Problem definition
Given a pair of grayscale stereo rectified images (i.e objects are row aligned, explained in

chapter 2), the objective of this memoir is to solve the disparity map estimation problem,
in other words, to find how much the pixels have shifted from one image to another, and
therefore be able to obtain depth estimations of the objects in the scene. The main idea is
to get an ouput disparity map like the one shown in Figure 1.3.

Left image Right image Disparity
Figure 1.3: Sample of the Middlebury 2006 dataset [4].

Moreover, two attempts will be made to solve the problem by using different matching
cost functions, considering that the input images are hard by nature. They will be captured
by two stereo cameras (the ones explained in the previous section), and they can be taken
at any time of day. This makes the problem challenging since the images might contain
illumination differences between them, exposure problems, and also some of them might be
in poor lighting conditions. In Figure 1.4 it is possible to see an example of the image stereo
pairs that will be used as input for the stereo algorithm. Note that this example is a raw
image pair, and is not row aligned yet.

Left image Right image
Figure 1.4: Truck image stereo pair.

The performance of the algorithm will be evaluated using stereo datasets, in which a
ground truth disparity is known. The KITTI (Karlsruhe Institute of Technology and Toyota

3

Technological Institute at Chicago) dataset [5] for autonomous driving will be used for this,
as well as the Middlebury dataset [6]. Lastly, it is important to mention that there is no
ground truth disparity for the truck images.

1.4. Goals
The most important goal is to implement an algorithm that is capable to derive a disparity

map, with the timber loaded truck images, without using an external library. In function of
the objective just mentioned, some specific goals will be set in order to achieve the desired
result:

1. To create a benchmark using two types of matching cost functions, specifically, using
traditional match cost functions and also with deep learning. Therefore, depending on
the image characteristics, it can be known which matching function is the best to use.

2. To evaluate the output disparity maps of the algorithms with two datasets, indoor and
outdoor, and realize which one is best for each environment.

3. To train a convolutional neural network (CNN) and use it as matching cost function,
providing a first architecture that can easily be modified to improve the results with the
truck images.

4. To implement the algorithm with an object oriented architecture, making it easy to
apply changes to the algorithm and its parameters. This way, the provided code can be
maintainable and easy to understand for other developers.

1.5. Document structure
First, on chapter 2, a review of the basic concepts of stereo vision will be written, giving

the reader a background to understand the next chapters.

Chapter 3 will deepen the understanding of the problem, by detailing some of the litera-
ture’s proposed solutions on disparity estimation.

On chapter 4 it will be shown what tools have been taken from the previous chapter, to
build the algorithm that will be used to solve the problem just explained.

Next, chapter 5 will describe the datasets used to test the accuracy of the algorithm and
how it will be measured. Also, details of the truckload images will be shown.

Chapter 6 will display the resulting disparity maps on all the datasets used, as well as
giving the error measures for the algorithm, with proper analysis of each section.

Finally, conclusions of the entire work will be drawn, stating what was achieved and what
needs further refinement.

4

Chapter 2

Basic Concepts

2.1. Stereo vision
Stereo Vision (also known as Stereo Matching) is an area of Computer Vision that ad-

dresses the problem of depth estimation and 3D reconstruction. A stereo vision system
consists of a stereo camera, i.e, two cameras placed horizontally. The images captured simul-
taneously by these cameras are then processed for the recovery of visual depth information
[7]. The challenge is to determine the difference in position in the two views of the images,
in other words, to derive a map that shows how much each pixel has shifted between the left
and right image (also known as disparity map).

Its worth mentioning that in the disparity estimation problem, the number of calculations
required increases with an increasing number of pixels per image, which causes the prob-
lem to be computationally complex [8]. Nevertheless, improvements have been made in this
field with recent advances in hardware technology, allowing to achieve real time processing [9].

Stereo Matching is still considered to be an open problem due to the difficulties of match-
ing in outdoor conditions (illumination differences) and textured environments. Furthermore,
real time computations are often required, which makes the problem even more challenging.
Stereo vision applications include autonomous driving, robotic navigation, 3D modeling,
gaming and animation, etc.

2.2. Stereo camera and disparity
A stereo camera is composed of two traditional cameras (in the simple case) placed hor-

izontally, in other words, one on the left and one on the right. The two images captured
simultaneously by these cameras are then processed to obtain the depth information of the
objects within the scene.

Figure 2.1 is a diagram representing a stereo camera. The optical axes of the left and
right camera are parallel and represented by lens 1 and lens 2, respectively. (xl, yl) are the
coordinates of point (x, y, z) represented in the left image plane. Same goes for (xr, yr) but
with the right image plane.

5

Figure 2.1: Stereo vision system [10].

Calculating xl and xr with respect to centers of left and right lenses respectively, it is
possible to obtain:

xl =
f(x + b

2)
z

(2.1)

xr =
f(x − b

2)
z

(2.2)

Then, defining disparity (d) as the difference between image coordinates we obtain:

d := xl − xr = b · f

z
(2.3)

Therefore, knowing the disparity of an object, the baseline b and focal length f of the
stereo system, it is possible to compute its depth (z) with respect to the Global Origin
showed in Figure 2.1. It can also be derived from equation 2.3 that a smaller disparity value
means the object is farther away from the stereo camera, and for bigger values the object is
closer. If the disparity value were to be zero, then the depth would be infinite, so a disparity
of zero is not considered valid.

2.3. Epipolar constraint
Given two cameras with optical centers OL and OR as shown in Figure 2.2, the epipolar

constraint states that for a given point xL in the left image, its corresponding point in the
right image is constrained to lie on a line called the epipolar line of xL, which is the red line

6

showed in the diagram below (represented by eRxR). The epipolar line of xL is obtained by
intersecting the right image plane with the epipolar plane, defined by xL, OL and OR (showed
in green).

Figure 2.2: Epipolar geometry [11].

2.4. Rectification and Calibration
In order to simplify the searching problem of matching points in the epipolar lines to only

one dimension, the input images can be warped in a way so that both left an right image
planes become the same. Consequently, all epipolar lines become horizontally aligned and
therefore parallel to the axis defined by OL and OR (see Figure 2.3). This way, two matching
points will always lie on the same horizontal line (or row). The process just explained is
called Rectification, and it can be implemented by applying 2D projective transforms, or
homographies, to each input image [12] (see Figure 2.4).

Figure 2.3: Epipolar geometry after rectification [7]. Left and right camera
image planes are now the same.

7

Original image pair overlayed with some epipolar lines

Image pair after rectification. Epipolar lines become
horizontally aligned

Figure 2.4: Example of rectification [12].

Calibration will also be applied to the images to eliminate the distortion introduced by the
cameras, which depends on the intrinsic parameters of them (focal length and optical center).
In this memoir, only calibrated and rectified images will be used to test the algorithms. In
Figure 2.6 is an example of a rectified and calibrated stereo image pair that will be used.

Left image Right image
Figure 2.5: Raw stereo pair.

8

Figure 2.6: Figure 2.5 after rectification and calibration. Green lines corre-
spond to the epipolar lines.

9

Chapter 3

State of the art

3.1. Standard stereo algorithm
According to Scharstein and Szeliski [6], the basic structure of a stereo algorithm follows

four steps, as shown in Figure 3.1. The first step, known as the matching cost computation,
determines a similarity value between a pair of pixels and a specific disparity, ending up with
a 3D cost matrix. Then, cost aggregation is implemented to add more information from
neighboring cost, to the cost matrix. The third step is when the best cost is chosen (of the
cost matrix), i.e. the best disparity (among the disparity range) is chosen. Finally, once a
disparity image has been obtained, disparity refinement is done for removing peaks, checking
the consistency and interpolation of gaps.

The input images, obtained from a stereo camera, are assumed to be rectified and cali-
brated. The image pair will pass through all of the blocks sequentially to obtain a disparity
map. In the incoming sections each step will be further detailed.

Figure 3.1: Taxonomy of Stereo Algorithms [6].

3.2. Matching cost computation
In this stage it is determined whether the values of two pixels correspond to the same

point in a scene. It is done by computing a dissimilarity cost that is based on the intensity
of the pixels, between one pixel (or a set of pixels) in the left and in the right image.

In order to compute the dissimilarities, first it is decided which of the two images will be
the reference image, i.e the image which will be taken as reference for looking for the match
pixels on the other image (match image). Considering the input image pair to be rectified

10

and calibrated, x to be the image width (columns), y the image height (rows), d the disparity
chosen, and p = (x, y) the reference pixel, then there are two possible cases:

1. The reference image is the left image: In this case, the match pixel of p will be:

pd = (x − d, y) (3.1)

It is important to note that only the pixels starting at column d on the reference image
will have a possible match pixel, since in the other cases x − d becomes negative. An
illustrative diagram of the reference and match pixel can be found on Figure 3.2. Notice
that this is the case when the disparity is equal to 1 pixel.

Figure 3.2: Illustration of reference and match pixel when left image is
reference and disparity is 1 pixel.

2. The reference image is the right image: In this case, the match pixel of p will be :

pd = (x + d, y) (3.2)

Here, pixels on the reference image can be at most on column x − d, since if they are
at a bigger column x + d surpasses the image width. An illustrative diagram of the
reference and match pixel can be found on Figure 3.3. Notice that this is the case when
the disparity is equal to 1 pixel.

11

Figure 3.3: Illustration of reference and match pixel when right image is
reference and disparity is 1 pixel.

Note that since the input image pair is rectified, the reference and match pixels will always
lie on the same row (y). Once the reference image has been chosen, the dissimilarity cost
will be computed for each pixel pair (p and pd) and disparity under consideration, ending up
with a matching cost matrix: C(p, d).

The disparities under consideration are defined by the disparity range, which is the range
of disparity values that will be considered in the search for the match pixel. It corresponds
to the difference between the maximum and minimum disparity value defined. A disparity
of zero is not considered valid, therefore the minimum disparity must be at least 1 pixel.

Considering equations 3.1 and 3.2, when calculating the matching cost matrix, some pixels
do not have a match pixel depending on the disparity value. In the case of the left image as
reference, this happens at the leftmost columns of the reference, whereas for the right image
as reference, it happens at the rightmost columns. The dissimilarity value assigned to the
matching cost matrix in those pixels is infinite.

There are different approaches for computing the matching cost, some of them will be
explained in the incoming sections, as they are of interest in this memoir. It is important to
remember that from now on, a pair of images is assumed to be rectified, so that the epipolar
lines match the rows of the images.

3.2.1. Absolute differences (AD)
This algorithm uses the absolute difference of the intensities between reference and match

image, as a pixel dissimilarity measure [7]. It is defined by the following equation:.

AD(p, d) = |Iref (p) − Imatch(pd)| (3.3)

The AD(p, d) equation must be calculated for every pixel in the reference image and
every disparity in the disparity range defined, thus, the matching cost matrix is obtained.
The pixels that do not have a match, depending on the disparity, are assigned an infinite

12

value, as mentioned.

3.2.2. Sum of absolute differences (SAD)
The SAD algorithm [7] sums the absolute difference between the intensities of each pixel

in the reference and match support window (w), as stated in equation 3.4. The window size
must be odd and is set by the programmer.

SAD(p, d) =
∑

p ∈ w
|Iref (p) − Imatch(pd)| (3.4)

The SAD(p, d) equation must be calculated for every pixel in the reference image and
every disparity in the disparity range defined, thus, the matching cost matrix is obtained.
The pixels that do not have a match, depending on the disparity, are assigned an infinite
value, as mentioned.

3.2.3. BirchField Tomasi (BT)
In order to establish the dissimilarity between two pixels, the Birchfield Tomasi approach

[13] proposes to use the linearly interpolated intensity functions surrounding the two pixels in
question. Defining a scanline as the epipolar lines to be compared, and considering p = (xl, y)
to be the reference pixel and pd = (xr, y) the match pixel, the following quantity can be
defined:

d̄(xl, xr, Il, Ir) = min
xr− 1

2 ≤x≤xr+ 1
2

∣∣∣Il(xl) − Îr(x)
∣∣∣ (3.5)

where Il corresponds to the intensity function of scanline (row) y of the reference image, Ir

to the intensity function of scanline y of the match image, and Îr as the linearly interpolated
intensity function between the sample points of the match scanline. Considering this, a
symmetric quantity can be obtained:

d̄(xr, xl, Ir, Il) = min
xl− 1

2 ≤x≤xl+ 1
2

∣∣∣Îl(x) − Ir(xr)
∣∣∣ (3.6)

Now, the BT dissimilarity between a pair of pixels is defined symmetrically as the minimum
of the two quantities:

BT (xl, xr) = min{d̄(xl, xr, Il, Ir), d̄(xr, xl, Ir, Il)} (3.7)

To compute d̄(xl, xr, Il, Ir), it is necessary to define the two following terms, I−
r and I+

r ,
which are the linearly interpolated intensities (see Figure 3.4):

I−
r ≡ Îr(xr − 1

2) = Ir(xr) + Ir(xr − 1)
2 (3.8)

I+
r ≡ Îr(xr + 1

2) = Ir(xr) + Ir(xr + 1)
2 (3.9)

Lastly, let Imin = min{I−
r , I+

r , Ir(xr)} and Imax = max{I−
r , I+

r , Ir(xr)} then:

d̄(xl, xr, Il, Ir) = max{0, Il(xl) − Imax, Imin − Il(xl)} (3.10)

13

This computation, along with its symmetric counterpart d̄(xr, xl, Ir, Il) allows to calculate
the final Birchfield Tomasi dissimilarity between a pixel pair, which was defined in equation
3.7. This equation must also be computed for every pixel in the reference image and every
disparity in the disparity range. Pixels that do not have a match are assigned an infinite
value, as well as in the previous dissimilarity measures explained.

Figure 3.4: Computation of I−
r and I+

r [13].

3.2.4. Pixel dissimilarity with Deep Learning
Deep learning in the stereo matching problems has gained attraction and interest of the

computer vision community, due to their remarkable performance, far exceeding traditional
approaches [14], like the ones explained before. In fact, currently the top 10 performing algo-
rithms on the KITTI 2012 dataset [5] are deep learning based [15]. The architecture chosen
to implement in this memoir is a patch comparison neural network, that will be explained
below. Nevertheless, it is important to note that this is not the only approach at solving the
stereo matching problem, as other types of CNN architectures can be used.

When implementing a pixel dissimilarity with deep learning, a Convolutional Neural Net-
work (CNN) architecture is to assign a cost to matching pixels. In the case of patch compar-
ison, the CNN compares two image patches and returns a probability distribution indicating
the similarities and dissimilarities between them. An illustrative diagram is shown in Figure
3.5.

14

Figure 3.5: Illustration of a CNN patch comparison architecture [16].

In order to assign a cost between matching pixels, the input patches must be centered in
pixel p = (x, y) on the reference image and pd on the match image (coordinates of pd depend
on which of the two images is taken to be the reference).

A CNN architecture that is of interest of this memoir is the one presented in Žbontar et al
[17], and is shown in Figure 3.6. It was chosen because of its simplicity and good performance.
The network consists of eight layers, L1 through L8. The first layer is convolutional, while
all others are fully- connected. The inputs to the network are two 9 × 9 gray image patches.
The final layer (L8), projects the output to two real numbers that are fed through a softmax
function, producing a distribution over the two classes: good match (patch similarity) and
bad match (patch dissimilarity).

15

Figure 3.6: CNN architecture [17].

For training, the authors extract patch pairs (negative and positive) from the KITTI
stereo dataset [5], which consist of stereo image pairs with its corresponding ground truth
disparity. Details can be found in a chapter 5.

The matching cost C(x, y, d) is computed directly from the output of the network:

C(x, y, d) = C(p, d) = fneg{PL(p), PR(pd)} (3.11)

Where fneg{PL(p), PR(pd)} corresponds to the output of the network for the negative class
(i.e patch dissimilarity) with input patches PL(p) centered at p = (x, y) on the reference im-
age and PR(pd) centered at pd on the match image.

To compute the match cost, a forward pass is needed for each pixel and disparity under
consideration, which would be a total of width × height × disp range forward passes. Of
course, this is not possible in terms of runtime. To solve this problem, Žbontar et al proposes
the following:

1. Layers L1, L2, and L3 can be computed only once per pixel location, and don’t need to
be recomputed for every disparity d.

2. The output of L3 can be computed in a single forward pass for all locations.

3. Replacing layers L4 to L8 with convolutional filters of sixe 1 × 1.

16

Implementing the steps just detailed will make the runtime manageable, but still not
suited for a real time application.

3.3. Cost aggregation
This stage minimizes matching uncertainties from stage 1, because generally it is not

sufficient for precise matching and robust disparity estimations.

3.3.1. Semi Global Matching (SGM)
Following Hirschmuller’s Semi Global Matching [18], additional constraints are added to

the matching cost matrix in the form of an energy function that depends on the disparity
image D:

E(D) =
∑

p

(
C(p, D(p))

+
∑

q ∈ Np

P1 × 1{|D(p) − D(q)| = 1}

+
∑

q ∈ Np

P2 × 1{|D(p) − D(q)| > 1}
) (3.12)

where 1{·} denotes the indicator function. The first term is the sum of all pixel matching
costs for the disparities of D. The second term adds a constant penalty P1 when the disparity
of neighboring pixels differ by one, and the third term adds a constant penalty P2 (larger
than P1) when the neighboring disparities differ by more than one. Using a lower penalty for
P1 permits an adaptation for inclined or curved surfaces in the image. P2 allows to preserve
discontinuities, because the penalty is constant independent of the size of the disparity change.

The stereo matching problem can now be solved by finding the disparity image D that
minimizes the energy E(D). However, this type of global minimization (i.e in 2D) is a NP-
complete problem, that cannot be solved in a reasonable amount of time. The proposed
solution of [18] is to aggregate matching costs in 1D from all directions equally using a
dynamic programming approach. The aggregated (smoothed) cost S(p, d) for a pixel p and
disparity d is calculated by summing the costs of all 1D minimum cost paths that end in
pixel p at disparity d, as shown in Figure 3.7

17

Figure 3.7: Aggregation of costs [18].

The cost Lr(p, d) along a path traversed in the direction r of pixel p at disparity d is
defined recursively:

Lr(p, d) = C(p, d) + min
{

Lr(p − r, d),

Lr(p − r, d − 1) + P1,

Lr(p − r, d + 1) + P1,

min
i

Lr(p − r, i) + P2

}
− min

k
Lr(p − r, k)

(3.13)

where C(p, d) corresponds to the cost associated to pixel p and disparity d, obtained in the
matching cost computation stage. Parameters i and k of the last two terms belong in the
disparity range defined in the previous stage. The last term is necessary to avoid Lr(p, d) of
becoming to big. It is also worth noting that parameters P1 and P2 are set by the program-
mer, however it needs to be ensured that P1 ≤ P2.

Calculation of equation 3.13 starts with the image borders, initializing all Lr borders with
the values of the cost matrix. Once the borders are set, it is possible to compute all the other
values.

In Hirschmuller’s paper is recommended to compute the cost Lr(p, d) with 16 directions,
as this ensures that the majority of the image is covered. Finally, the aggregated cost matrix
is obtained by summing the cost paths of all directions:

CSGM(p, d) =
∑

r

Lr(p, d) (3.14)

3.3.2. Cross Based Cost Aggregation (CBCA)
The basic idea of cross based cost agreggation [19] is to aggregate the costs from a neigh-

borhood of the pixel, but the neighborhood is adaptively selected so that pixels within it
have similar disparities.

First, an upright cross is constructed for each pixel. The left arm pl at position p extends

18

left as long as the following two conditions hold:

1. The absolute difference in intensities of the image at positions p and pl is smaller than
τ (see equation below):

|I(p) − I(pl)| < τ (3.15)

2. The horizontal distance (or vertical distance, in case of top and bottom arms) between
p and pl is less than η (see equation below):

∥p − pl∥ < η (3.16)

The right, bottom, and top arms are constructed analogously. Once the four arms are
known, the support region U(p) can be defined as the union of the horizontal arms of all
positions q laying on p′s vertical arm (see equation 3.17):

U(p) =
⋃

q ∈ V (p)
H(q) (3.17)

Where V (p) is p′s vertical arm and H(q) are q′s horizontal arms. An illustrative example
of a support region can be seen in the Figure below.

Figure 3.8: Example of support region for pixel p [17].

The authors suggest that aggregation should consider the support regions of both images
in a stereo pair. Let Ud(p) be the combined support region (of left and right images), then
the matching cost is averaged over Ud(p), therefore obtaining the aggregated cost:

CCBCA(p, d) = 1
|Ud(p)|

∑
q ∈ Ud(p)

C(q, d) (3.18)

where C(q, d) corresponds to the cost associated to pixel q and disparity d, obtained in
the matching cost computation stage. This process of aggregating the costs in the support
region Ud(p) can be done iteratively in some cases, to increase the accuracy of the stereo
method [17].

19

3.4. Disparity selection
This is the stage where the best disparity (or the smallest cost) for a pixel is chosen from

the aggregated cost matrix. For this, a Winner Takes All (WTA) approach is used [18]. In
it, the disparity d associated to pixel p in the final disparity image is defined by:

dp = arg min
d ∈ D

CCA(p, d) (3.19)

where D corresponds to the disparity range and CCA(p, d) to the aggregated cost.

3.5. Disparity refinement
After choosing the best disparity with the WTA function, the disparity image can still

contain certain kinds of errors, that can be recovered with post processing. Some of this post
processing algorithms will be explained in the incoming sections.

3.5.1. Left-Right consistency check
Considering DL to be the disparity using the left image as the reference image, and DR

to be the disparity using the right image as the reference image, mismatches can be detected
using a consistency check between left and right disparities [18]. This way, the final disparity
for each pixel can be defined by the following equation:

D(p) =
DL(p), if |DL(p) − DR(q)| ≤ 1

Dmismatch, otherwise
(3.20)

where Dmismatch corresponds to an invalid disparity value, i.e. 0, and q = p − DL(p).

3.5.2. Sub-pixel enhancement
To increase the resolution of a stereo algorithm, a quadratic curve is fitted through the

neighboring costs to obtain a new disparity image [17]:

DSE(p) = d − C+ − C−

2(C+ − 2C + C−) (3.21)

where d = D(p) is the disparity obtained after the Left Right consistency check, and
C+ = CCA(p + 1, d), C− = CCA(p − 1, d), C = CCA(p, d) all correspond to the aggregated
cost.

3.5.3. Median filter
The median filter is used to remove noise from an image and tha basic idea behind it is to

replace every pixel of the image with the median value of its neighbors. The neighborhood
of a pixel is defined by a kernel size, which must be odd. This filter is useful for removing

20

small and isolated mismatches in the final disparity while preserving the edges.

3.6. Pre filtering
For prefiltering the input images, the Sobel X filter can be applied. It computes an

approximation of the gradient of the intensity function in the x or horizontal direction. It is
usually used for edge detection. In the context of stereo algorithms, it is useful when applied
to the input images, as it makes them less prone to illumination and exposure changes [20].
This way the algorithm is able to find more disparities and more accurately. Below is a an
example of the Sobel X filter.

Original Sobel X
Figure 3.9: Result of applying the Sobel X filter.

21

Chapter 4

Implementation Methodology

The stereo algorithm implemented follows the taxonomy of Scharstein and Szeliski [6] ex-
plained in chapter 3. Two configurations have been implemented, and they differ only in the
matching cost computation stage. The first configuration will be referred as the Birchfield
Tomasi (from now on BT) configuration, and the second as the CNN configuration. The
building blocks of the two algorithms will be explained in the incoming sections.

4.1. Matching cost computation
In this memoir, the matching cost matrix will be arranged in a three dimension array of

coordinates (x, y, d), with x being the width of the input image pair and y the height. An
illustration of the cost matrix can be seen on Figure 4.1. In it, it is possible to see that each
depth holds the cost values of a different disparity.

Figure 4.1: Matching cost matrix.

4.1.1. BT configuration
This configuration will have as a matching function the Birchfield Tomasi pixel dissim-

ilarity. It was chosen considering that it gives better results than the absolute differences
dissimilarity, according to [13].

22

4.1.2. CNN configuration
This configuration will have as a matching cost function the CNN architecture explained in

the previous chapter (see Figure 3.6), presented in the paper of Žbontar et al [17]. However,
only one of the three suggested optimizations were implemented for computing the match
cost (also explained in chapter 3). This decision will play a significant role in the execution
time, as it will be shown later.

Also, a change has been made from the dataset used in [17], due to the fact that training
with the Multi-view Stereo Correspondence Dataset [21] was more straightforward than with
KITTI. This is because the Multi-view dataset comes with pre made patches, unlike the
KITTI. The selected dataset consists of corresponding patches sampled from 3D reconstruc-
tions of the Statue of Liberty (New York), Notre Dame (Paris) and Half Dome (Yosemite).
The Notredame patches (Figure 4.2 left) were used for training and evaluation of the CNN,
while the Liberty patches (Figure 4.2 right) for testing the CNN.

Notredame dataset sample Liberty dataset sample
Figure 4.2: Examples of the Multi-view Stereo Correspondence Dataset[21].

The CNN was trained during 20 epochs, using a total of 400.000 patch pairs of the
Notredame dataset. 70% of them were used for training the CNN, and 30% for evaluat-
ing performance in each epoch. Batch size was 128 and learning rate 1−4. The network
training was done with tensorflow and a RTX2080 nvidia GPU.

Once the training and evaluation is done, the Liberty dataset was used to test how well
the CNN is able to predict good and bad matches between patches. The neural network was
tested with 100.000 patch pairs (with class balance). The performance metrics chosen are
the accuracy and precision, defined in equations 4.1 and 4.2, respectively.

Accuracy = TP + TN
TP + TN + FP + FN (4.1)

23

Precision = TP
TP + FP (4.2)

Where:

• TP(True Positive) is when the CNN assigns correctly a positive label to a pair of patches.

• TN(True Negative) is when the CNN assigns correctly a negative label to a pair of
patches.

• FP(False Positive) is when the CNN assigns incorrectly a positive label to a pair of
patches.

• FP(False Negative) is when the CNN assigns incorrectly a negative label to a pair of
patches.

So, in summary, the accuracy is the percentage of correct predictions in the test set, and
the precision is the percentage of correct positive predictions in the test set. Considering
this, the obtained results of the CNN in the test set are shown below.

Accuracy 87,24%
Precision 90,00%

Table 4.1: CNN testing results.

4.2. Cost aggregation
For both configurations, Semi Global Matching will be implemented for this stage. As

mentioned earlier, it is recommended to use 16 directions of optimization , but in this memoir
only 8 will be used, for computational complexity reasons. They are shown in the below
Figure.

Figure 4.3: Directions used for aggregating the matching cost.

When it comes to the parameter setting (P1 and P2), they will be set depending on the
input images and match cost function used.

24

4.3. Disparity selection
Once the cost agreggation step is finished, a WTA aproach will be used to choose the best

disparity. However, some restrictions will be imposed when finding the minimum cost, to
further refine the disparity image:

1. If the minimum found for a pixel is not unique, then the disparity value assigned to the
pixel will be zero.

2. If the minimum found for a pixel is infinite, then the disparity value assigned to the
pixel will be zero (an infinite value on the matching cost matrix can happen because the
reference pixel does not have a matching pixel with a certain disparity).

3. The minimum found must win to the second best value by a certain percentage threshold
(defined by the programmer). If this threshold is not surpassed, then the disparity value
assigned to the pixel will be zero. The value chosen for the threshold was 15%

4.4. Disparity refinement
After the minimum disparity is selected, a Left-Right consistency check is performed. This

implies that the preceding steps must be performed twice: once considering the left image as
reference and a second time considering the right image as reference. When computing the
disparity with the left image as reference it will be addressed as the left to right disparity
(DL−R). The other case will be addressed as the right to left disparity (DR−L). Before feeding
both disparities to the Left Right check step, they will be filtered with the median filter.

After the Left Right check step, an initial disparity map is obtained (D1, see Figure 4.4),
this will be filtered with sub pixel enhancement and the median filter (D2, see Figure 4.4).
Lastly, every pixel of the disparity is multiplied by a scale factor, with the purpose of a
better visualization. It must be so that the maximum disparity allowed multiplied by the
scale factor is at most 255, considering that the disparity images will be stored in a 2D array
of 8 bits.

4.5. Summary
In the Figure below, a summary of the blocks of both algorithms is presented. The second

block (matching cost computation) can be either the Birchfield Tomasi dissimilarity (BT),
or the patch comparison convolutional neural network (CNN). All other blocks are the same
for both configurations, they include the cost aggregation step (SGM), disparity selection
(WTA) and post processing (median filter, L/R check and SE enhancement).

25

Figure 4.4: Processing steps of the implemented stereo algorithm. SGM
stands for semi global matching, WTA for winner takes all, L/R check for
left right check and SE enhancement for subpixel enhancement.

The algorithm will be implemented with an object oriented architecture, meaning it will
be a main disparity estimator class with their own functions or methods, corresponding to
the building blocks detailed in the previous sections. The disparity class is to be placed
inside a bigger library owned by the company, named CalcAgent, which is a big system that
communicates its sub-libraries together to end up with a flux of different algorithms.

26

Chapter 5

Evaluation Methodology

The two configurations mentioned in the previous section will be evaluated with two datasets:
the Middlebury (indoor) and the KITTI (outdoor) datasets. For the Truck images, a visual
or qualitative evaluation will be done.

5.1. Middlebury dataset
The Middlebury Datasets [4] are a set of 6 different datasets. They contain stereo image

pairs that are rectified and without radial distortion, with their corresponding ground truth
disparity.

The dataset chosen was the 2006 datasets. It consists of 21 stereo image pairs with pixel-
accurate correspondence information, obtained using a structured light technique [22]. Each
image set consist of 7 views (0..6) taken under three different illuminations (1..3) and with
three different exposures (0..2). Ground truth disparity maps are only provided for views
1 and 5. They also provide 3 different resolutions for each stereo pair: full size, half size
and third size. For this memoir, the third size resolution has been chosen (width: 413..465
pixels, height: 370 pixels) and the algorithm will only be tested with a single illumination
and exposure.

The ground truth disparities for the third size resolution are encoded using a scale factor of
3, meaning that the real maximum disparity is equal to 85 (255

3). A disparity of zero (black
pixels) is considered an unknown disparity. Below is an example of the 2006 Middlebury
dataset.

27

Left image Right image

Ground truth disparity
Figure 5.1: Sample of the Middlebury 2006 dataset [4].

5.2. KITTI dataset
The KITTI stereo dataset [5] is a collection of gray image pairs taken from two cameras

mounted on the roof of a car, 54 centimeters apart. The images are recorded while driv-
ing around the city of Karlsruhe, in sunny and cloudy weather, at daytime. The dataset
comprises 194 training and 195 test image pairs at a resolution of 1238 ... 1242 × 374 ...
376 pixels. Each image pair is rectified. A rotating laser scanner, mounted behind the left
camera, provides ground truth depth. The true disparities for the test set are withheld by
the authors, allowing submissions only once every three days. The goal of the KITTI stereo
dataset is to predict the disparity for each pixel on the left image. In this memoir, since the
CNN configuration was trained with another dataset, the training images of KITTI will be
used for evaluating the algorithms. Only 20 images will be used, because predicting all 194
images would be extremely time consuming.

For each of the 20 images, a different disparity range will be used (to save computation
time), depending on the ground truth disparity. So, the disparity range will be set according
to the smallest and biggest disparity appearing in the ground truth. The different disparity
ranges of the images will go from 51 to 100 pixels.

28

In contrast with the Middlebury dataset, in the KITTI there is no scale factor, so dispar-
ities are represented “as is”, i.e., intensity 60 means the disparity is 60. Below is an example
of a stereo pair and its corresponding ground truth disparity. For visualization purposes the
ground truth has been scaled, so that disparities appear more bright. A disparity of zero
(black pixels) means the disparity is unknown in that position.

Left image

Right image

Ground truth disparity
Figure 5.2: Sample of the KITTI 2012 dataset [5].

5.3. Truckload images
The truck images that will be used are size 1200x1000 pixels. They are captured by the

two stereo cameras detailed in chapter 1, and they are capturing images the entire day. When
its nighttime, there are artificial lights placed for each camera. Examples of the images can
be seen below.

29

Figure 5.3: Left and right Truck images.

5.4. Error computation
In the sense of computing a measure of accuracy of the algorithm, three types of errors

will be defined. These will be calculated for each disparity image predicted by the algorithm,
using the input images in the two datasets mentioned earlier (KITTI and Middlebury).

Consider Ptotal to be the total amount of pixels whose disparity is greater than zero in the
ground truth disparity image (the pixels whose disparity is zero (i.e black pixels), will not be
added to Ptotal, because a value of zero in the ground truth represents an unknown disparity,
as mentioned). Now, we can define the following quantities:

1. Occlusion error: It is calculated by summing all the occluded pixels in the predicted
disparity image and dividing it by the total amount of pixels defined earlier (Ptotal), as
follows:

Occ Error =
∑

poccluded

Ptotal

(5.1)

30

where poccluded represents an occluded pixel. A pixel p is defined as “occluded” when its
predicted disparity is zero and its ground truth disparity is non zero, therefore:

poccluded ⇐⇒ dpredicted(p) = 0 and dGT (p) > 0 (5.2)

2. Mismatch error: It is calculated by summing all the mismatched pixels in the predicted
disparity image and dividing it by the total amount of pixels (Ptotal), as follows:

Mism Error =
∑

pmismatched

Ptotal

(5.3)

where pmismatched represents a mismatched pixel. A pixel p is defined as “mismatched”
when its predicted disparity and the ground truth disparity differ by more than a specific
threshold, set by the programmer. Therefore:

pmismatched ⇐⇒ |dpredicted(p) − dGT (p)| > τ and dGT (p) > 0, dpredicted(p) > 0 (5.4)

In the literature, the threshold τ varies from 0.5 pixels to 3 pixels, but is usually 1
pixel[18] [17].

3. Overall error: It corresponds to the sum of the two errors previously defined in equations
5.1 and 5.3:

Overall Error = Mism + Occ (5.5)

The threshold τ for correct matches will be set according to the dataset used. In this
memoir, a threshold of 1 pixel will be used for the Middlbury dataset and a threshold of
3 pixels for the KITTI. The threshold for KITTI is looser because it is considered to be a
harder dataset to use for evaluation, since it is in an outdoor environment.

When computing the error measures, in the case of Middlebury, since the ground truth
disparity is scaled by a factor of 3, the predicted disparity map as well as the error threshold
will also be scaled by 3 (error threshold of Middlebury ends up being 3 pixels after scal-
ing). For the KITTI, the ground truth disparity is not scaled, so the error measures will be
computed before scaling the final predicted disparity (therefore the error threshold of KITTI
remains the same, meaning is 3 pixels).

Considering that the output disparity map of both algorithms is when the left image is
the reference (because of the Left Right consistency), some of the leftmost columns of the
left image do not have a match column on the right image, depending on the disparity value.
This is why the disparity value of the first n columns (n ∈ disparity range) will be set to
zero. For example, in the case of a Middlebury image, that have a disparity range of 84 (1
to 85), the first 84 columns of the disparity will have a value of zero. It is worth mentioning
though, that a disparity value has actually been calculated for those columns, but because no
interpolation technique was applied to them, it has been decided not to consider them when
computing the error, and therefore it is better to leave the value to zero. Finally, leaving the

31

first n columns with a value of zero in the final disparity image will not represent a problem
in the truck images, since their size is 1200 x 1000 pixels.

32

Chapter 6

Results and Analysis

In the following sections, the output disparity map for the two algorithm configurations ex-
plained before (BT and CNN) will be shown, divided by each dataset: Middlebury, KITTI
and the truckload images.

The disparity map, originally a grayscale 8 bit image, is transformed to a color image,
to enhance the visualization. This is done by using the Open-CV [2] color map function.
The colormap chosen is the “Jet” colormap (see Figure 6.1). The darkest shade of blue
represents an invalid disparity (i.e zero). Warmer colors represent larger values of disparity,
therefore a smaller value of depth, meaning that the object is closer to the stereo camera
than a blueish color. As explained in chapter 5, the first n columns of the disparity image
(n ∈ disparity range) are set to zero, and hence they are displayed as the darkest shade of
blue in the Jet colormap.

Figure 6.1: Jet Colormap [2].

To show the performance of the configurations, error tables will be shown for each dataset,
indicating the three types of error described in the previous section (mismatch, occlusion and
overall). These were calculated for each image in the respective dataset, hence, only the mean
and standard deviation (SD) of each error will be detailed. The full tables indicating the
errors for each image on both datasets can be found on annexes A.1 and A.2.

33

6.1. Middlebury dataset
Considering a disparity range of 84 (1 to 85), a scale factor of 3 and an error threshold for

correct matches of 1 pixel, in table 6.1 there is a detail of the computed errors for both con-
figurations. Looking at the overall error, it can be said that both configurations have similar
performance on this dataset, with both the mean and standard deviation being very similar.
However, the difference lies on how the mismatch and occlusion errors are distributed, with
the CNN having less occlusions but more mismatches. This gets reflected in that the output
image has more predicted disparities (i.e less holes), but those predictions are not correct. An
example of this can be seen in Figure 6.2, where the output of the CNN configuration looks
more filled compared to the BT, however both images have a similar overall error: 20.47%
(BT) and 19.02% (CNN).

BT configuration CNN configuration
Mean SD Mean SD

Mismatch error (%) 14.27 11.11 18.10 12.66
Oclusion error (%) 17.98 14.97 14.90 10.00
Overall error (%) 32.25 22.52 33.00 21.63

Table 6.1: Results for Middlebury dataset. Error threshold is 1 pixel.

In Figure 6.3, there is a display of the output disparity maps of both configurations, with 5
image pairs from the dataset. The first row is the best evaluated image on the entire dataset
for both algorithms, the same goes for the last row, but its the worst evaluated image. Both
algorithms perform worst when there is a textureless area. Its important to notice there is
no difference in illumination or exposure between left and right input images.

Ouput BT configuration Output of CNN configuration
Figure 6.2: Comparison of occlusions and mismatches between BT and CNN
configuration. Image name is “Baby1”.

34

Figure 6.3: Results for Middlebury dataset with BT and CNN configura-
tion. Left columns: input images, center right column: BT configuration,
righmost column: CNN configuration. Image names are, from top to bot-
tom: “Cloth1”, “Aloe”, “Baby1”, “Bowling1” and “Plastic”.

When it comes to execution time (see Table 6.2), both configurations only differ by the
matching cost computation stage, since all other stages are the same. Considering this, the
BT configuration surpasses the CNN by far, however, it is important to consider that the
CNN predictions are not maximally optimized, as explained in the Implementation Method-
ology chapter.

35

Execution time (sec)
BT CNN

Matching cost ∼4 ∼220
All other stages ∼20

Table 6.2: Average execution time on Middlebury dataset. Input pairs are
size (413...465 x 370) and disparity range is 84.

36

6.2. KITTI dataset
For this dataset, the disparity range has been set according to the disparity range pre-

sented in the ground truth image and its different for every image. This is because it was
necessary to save as much computation time as possible, since the images are much bigger
than in the Middlebury dataset (1200x375 v/s 460x370). The minimum disparity range used
was 51 pixels while the maximum was 100 pixels. Scale factor was also set according to the
disparity range of each image and the error threshold for correct matches is 3 pixels.

In table 6.3 there is a detail of the computed errors for both configurations. It is possible
to note that the CNN configuration is slightly superior, since both the mean and SD of the
overall error are lower than in the BT configuration. The occlusion error is also lower and
does not have a higher mismatch error than BT, like with the Middlebury dataset.

BT configuration CNN configuration
Mean SD Mean SD

Mismatch error (%) 7.32 2.94 7.57 3.53
Oclusion error (%) 28.62 15.29 25.10 13.91
Overall error (%) 35.94 17.61 32.67 15.82

Table 6.3: Results for KITTI dataset. Error threshold is 3 pixels.

In Figure 6.5, there is a display of the output disparity maps of both configurations using
input images of Figure 6.4. The results for the first 5 rows of the image pairs are somewhat
similar for both configurations, however, in the last image pair (last row, image 181), the
images have illumination difference, and the BT configuration fails almost completely to find
any matches, having an overall error of 81% on this particular example. On the contrary,
the CNN maintains its performance having an overall error of 15% on that image pair.
This proofs the theory that deep learning based matching costs are indeed more suitable for
outdoor environments that have no control over the illumination or exposure.

37

Figure 6.4: Left and right stereo images of the KITTI dataset. Image names
are, from top to bottom: “146”, “68”, “110”, “180”, “126” and “181”.

38

Figure 6.5: Output disparity maps using KITTI dataset (see Figure 6.4).
Left column corresponds to the BT configuration output and right column
to the CNN configuration.

As well as in Middlebury, the execution time (see Table 6.4) of the BT configuration is
much smaller, but since the KITTI images are bigger, the time difference between BT and
CNN becomes bigger as well. Still, Žbontar et al [17] reports an execution time on the KITTI
images of 95 seconds (only the matching cost computation stage), so in the best case scenario,
the CNN configuration would still take longer than BT.

Execution time (sec)
BT CNN

Matching cost ∼13 ∼600
All other stages ∼60

Table 6.4: Average execution time on KITTI dataset. Input pairs are size
(1238...1242 x 374 ...376) and disparity range can be from 51 to 100.

39

6.3. Truck images
For the truck images, five input image pairs have been chosen, shown in Figure 6.6 (see left

columns). They showcase the different illumination situations that might be encountered,
since images are captured at any time of day. Not only that, but there can also be an illumi-
nation difference between left and right images of the stereo camera. As well as in the KITTI
example shown in the previous section (see Figure 6.5, last row), the BT configuration does
not perform well when the input pair has illumination difference, hence is not suitable for
this type of application on its own, due to the fact that the timber trunks are not recognised
in most examples, as shown in Figure 6.6.

On the other hand, the CNN is able to find matches on most parts of the trunks (see
Figure 6.6), but the performance its still compromised in some cases, for example in the first
image pair (first row), that suffers from poor illumination conditions. Notice that the CNN
is not disturbed in the case of a night input pair (last row).

40

Figure 6.6: Results using the truckload images. Left columns: input images,
center right column: BT configuration, rightmost column: CNN configura-
tion.

It is important to note that the SGM (P1 and P2) parameters have been changed in the
CNN configuration case, making a distinction between the daytime and nighttime images.
This is because the night images did not perform well with the daytime parameters. The
parameters used for the night images (referred as configuration 1) were P1 = 0, P2 = 0.1 and
for the day images (referred as configuration 2) were P1 = 0.001, P2 = 0.02

In Figure 6.7 there is a display of the daytime images using CNN configuration 1 and 2. It
is observed that with configuration 2, more disparities are recovered. On the contrary, when
using configuration 2 on the night images (see Figure 6.8), the top part of the trunks looses

41

its boundaries, but when using parameters of configuration 1 they remain intact.

Figure 6.7: CNN configuration results with the same matching cost matrix
but different P1 and P2 parameters (of semi global matching algorithm).
Input images were taken at daytime.

42

Figure 6.8: CNN configuration results with the same matching cost matrix
but different P1 and P2 parameters (of semi global matching algorithm).
Input images were taken at nighttime.

At last, in Table 6.5 it is possible to see the average execution time on the truck images.
As expected, the difference in time between BT and CNN grows even more than in the KITTI
dataset, because of the input image size.

Execution time (sec)
BT CNN

Matching Cost ∼20 ∼1270
All other methods ∼100

Table 6.5: Average execution time on the truck images. Input pairs are size
(1000 x 1200) and disparity range is 56.

43

6.4. Improved results: pre-filtering of the input images
In order to make the BT matching cost function less dependent on the intensity of the

pixels, a pre filter step was added to the input images: the Sobel X filter. Unfortunately, it
was only added to the BT configuration, since it was not in the initial objectives to train the
CNN with prefilterd images, and the time left to do it was very restrained.

This prefilter step decreased the overall error (compared to the original BT) in both
datasets (see Table 6.6), reducing it by approximately 15% in the Middlebury dataset and
2% in the KITTI.

Prefiltered BT configuration
Middlebury KITTI
Mean SD Mean SD

Mismatch error (%) 4.20 3.25 2.95 1.31
Occlusion error (%) 13.30 13.27 31.01 10.88
Overall error (%) 17.50 16.22 33.96 11.81

Table 6.6: Results for Filtered BT configuration.

In Figure 6.9 there is a display of an image of the KITTI dataset which did not perform
well in the BT configuration, but with the prefilter step is able to recover more disparities
making the error drop from 81%, approximately, to 27% after the prefilter step is applied.
The same is observed in Figure 6.10, where the disparities recovered after the prefilter step
is increased. In the case of an image pair that has no difference in illumination or exposure
between left and right images, the prefilter step also showed to be useful, as it is seen in
Figure 6.11.

Left image Right image

BT configuration Filtered BT configuration
Figure 6.9: Output disparity maps of BT and Filtered BT with a KITTI
image with illumination difference.

44

Left image Right image

BT configuration Filtered BT configuration
Figure 6.10: Output disparity maps of BT and Filtered BT with a Truck
image with illumination difference.

Left image Right image

BT configuration Filtered BT configuration
Figure 6.11: Output disparity maps of BT and Filtered BT with a MIddle-
bury image.

45

6.5. Summary
The Table below summarises the results mentioned in the previous sections. As stated

before, the Filtered BT configuration surpasses the BT in performance for both datasets,
making a bigger difference in the Middlebury dataset, with 15% overall error difference. When
comparing the Filtered BT configuration with the CNN, it is also better in the Middlebury
dataset. However, in the KITTI dataset has a slightly bigger mean overall error than CNN,
but this gets compensated with the smaller variance, which makes Filtered BT more stable
in terms of the error than CNN.

Overall error
Middlebury KITTI

Configuration Mean SD Mean SD
Filtered BT 17.50 16.22 33.96 11.81
BT 32.25 22.52 35.94 17.61
CNN 33.00 21.63 32.67 15.82

Table 6.7: Comparison of the three algorithm configurations: Filtered BT,
BT and CNN.

A comparison of the three implemented algorithms is shown in Figure 6.12. It is seen
that Filtered BT made a big impact in the result of the truck images, showing that is able
to recover more disparities than the BT configuration on its own, increasing the predicted
disparities specially in the trunks area.

When comparing Filtered BT with the CNN, the CNN is able to predict more disparities
in the trunks area for most images, but not in the background and floor, however, this is
irrelevant to the problem in question (because what matters is the trunks).

Taking a closer look at the input images (Figure 6.12, left column), some of them have
poor illumination conditions, yet the Filtered BT configuration maintains its performance in
all of them, including the worst illuminated image, which is on the first row of Figure 6.12.
The reason for the illumination immunity of Filtered BT is because of the prefilter step of
Sobel X. On the contrary, the CNN configuration’s performance suffers in the first row image,
having a lot of holes on the final disparity.

46

Figure 6.12: [Results of BT, Pre filtered BT and CNN configurations using
Truckload images.

47

Chapter 7

Conclusion and Future Work

In this memoir, a stereo vision algorithm has been implemented, inside the software sys-
tem of the company Woodtech, leaving an easily modifiable, ready to use implementation.
Moreover, it includes two very different approaches for computing the matching cost, one
traditional, and one based on deep learning. The two approaches have been tested using two
datasets with ground truth disparities, and a qualitative test has been made on a third set
of images, of timber loaded trucks, provided by the company.

The two configurations implemented (BT and CNN) have similar performance on the Mid-
dlebury dataset, which is indoor and with controlled illumination. This dataset is far to be
similar to the specific problem presented at first, but provides a good start when evaluating
both algorithms, specially since the ground truth disparities are much fuller than the KITTI
(that has sparse ground truth disparities), making the evaluation more accurate.

The KITTI dataset, on the other hand, has a similarity with the truck problem in the
sense that both are in outdoor conditions. This dataset has showed that the CNN config-
uration is able to estimate better disparities even when the input image pair suffers from
illumination difference. The BT configuration however, fails to estimate a good amount of
disparities in some input images with this issue. Considering this, one can safely assume that
the CNN configuration will perform better on images with an outdoor environment.

After making the qualitative analysis on the truckload images with both algorithms, it
is clear that the BT configuration is not suitable on its own in this kind of problem, due
to its dependency on the intensity of the pixels. This motivated the intention to prefilter
the images and make them immune to the luminary issues. When evaluating BT with the
prefilter, it ended up performing much better in the indoor Middlebury dataset, but it did
not make that much of a difference in the KITTI. Despite this, on the truck images made
a big impact when it came to predicting the disparities of the timber trunks, and is able to
recover more disparities than the CNN in some images.

Now when it comes to the execution time, the cost aggregation and post processing steps
require to be optimized, as well as the CNN matching cost function. It is obvious that none of
the implementations are suitable for real time computations and require an in depth analysis
of the time complexity, which escapes the scope of this memoir.

48

Regarding the algorithm benchmark, it is hard to decide which one is best, since there are
a lot of factors to consider, for example the execution time. In that sense, it will always be
better the Filtered BT approach, that can achieve similar results to the CNN in the KITTI
dataset and in the truck images as well. However, if the accuracy of the algorithm is con-
sidered more important, then the CNN approach is best, because it obtains the best overall
error in the KITTI dataset, and images can easily be downsampled, so that execution time
is not too large.

Considering what has been said, there is a lot of room for improvement. When it comes to
the execution time, there are two possibilities of improvement, first the matching cost com-
putation stage, and then the cost aggregation step (semi global matching algorithm), which
takes the majority of time after the matching cost stage. The CNN case of the matching cost
stage is most critical, and it could be improved with the steps detailed by the authors of the
architecture [17] (also explained in Chapter 3). Implementing this will result, in the best case,
in an execution time of 95 seconds when using the KITTI images, which is still slow for this
type of application. So, this tells us that the architecture itself can be improved, and new,
more recent architectures could be the solution to the execution time issue, for example, the
one detailed in [23], which is able to produce accurate results in less than a second of GPU,
using a matching network. Anyway, it is certain that its hard to find an architecture that has
a good trade off between performance and time complexity. Now, focusing on the Semi Global
Matching algorithm, its execution time can be reduced by making the implementation less
memory consuming [24], and even consider to use other types of hardware (e.g GPU, FPGA).

When it comes to the predicted disparity maps, interpolation techniques could be used
to fill in the gaps that could not be predicted [18], and even recover the leftmost columns of
the final disparity. Also, for the CNN configuration, an additional cost aggregation step is
suggested in the literature [17], for example, a cross based cost aggregation technique [19].
Going even further, the CNN could be trained with the truck images for patch comparison,
therefore expecting a better performance of the matching function. In addition, preprocess-
ing of the images could be done, to make the illumination conditions equal, for example with
histogram equalization of the input images [25].

Last but not least, it has been proven that parameter setting of the Semi Global Matching
algorithm is crucial in the output disparity map result. It is important to develop a way in
which the P1 and P2 parameters are set automatically, using for example the image intensity
gradient [18]. This way, the best result could be obtained immediately, instead of having to
do a trial and error phase.

49

Bibliography

[1] Woodtech: A Red to Green Company, “Logmeter”, 2017, https://www.woodtechms.com
/logmeter.

[2] Open Source Computer Vision (OpenCV), “Opencv modules”, 2021, https://docs.openc
v.org/4.5.2/index.html.

[3] H. Laga, L. V. Jospin, F. Boussaid, and M. Bennamoun, “A Survey on Deep Learning
Techniques for Stereo-based Depth Estimation,” jun 2020.

[4] H. Hirschmüller and D. Scharstein, “Evaluation of cost functions for stereo matching,” in
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2007.

[5] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The KITTI
dataset,” International Journal of Robotics Research, 2013, http://www.cvlibs.net/datas
ets/kitti/.

[6] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms,” International Journal of Computer Vision, vol. 47, no. 1-3,
2002.

[7] R. A. Hamzah and H. Ibrahim, “Literature survey on stereo vision disparity map algo-
rithms,” 2016.

[8] B. Tippetts, D. J. Lee, K. Lillywhite, and J. Archibald, “Review of stereo vision algo-
rithms and their suitability for resource-limited systems,” Journal of Real-Time Image
Processing, 2016.

[9] X. Xiang, M. Zhang, G. Li, Y. He, and Z. Pan, “Real-time stereo matching based on fast
belief propagation,” Machine Vision and Applications, 2012.

[10] M. Adams, Elective Course: “Robotics, Sensing and Autonomous Systems,” Faculty of
Physical and Mathematical Sciences, Universidad de Chile, 2021.

[11] A. Nordmann, “Epipolar geometry,” Wikimedia Commons, 2007, https://commons.wiki
media.org/wiki/File:Epipolar_geometry.svg.

[12] C. Loop and Z. Zhang, “Computing rectifying homographies for stereo vision,” Pro-
ceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 1999

[13] S. Birchfield and C. Tomasi, “A Pixel Dissimilarity Measure That Is Insensitive to Image
Sampling,” Tech. Rep. 4, 1998.

[14] K. Zhou, X. Meng, and B. Cheng, “Review of Stereo Matching Algorithms Based on

50

https://www.woodtechms.com/logmeter
https://www.woodtechms.com/logmeter
https://docs.opencv.org/4.5.2/index.html
https://docs.opencv.org/4.5.2/index.html
http://www.cvlibs.net/datasets/kitti/
http://www.cvlibs.net/datasets/kitti/
https://commons.wikimedia.org/wiki/File:Epipolar_geometry.svg
https://commons.wikimedia.org/wiki/File:Epipolar_geometry.svg

Deep Learning,” Computational Intelligence and Neuroscience, 2020.
[15] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “The KITTI Vision Benchmark Suite,”

2021, http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stereo.
[16] S. Zagoruyko and N. Komodakis, “Learning to Compare Image Patches via Convolu-

tional Neural Networks,” apr 2015.
[17] J. Zbontar and Y. Lecun, “Computing the Stereo Matching Cost with a Convolutional

Neural Network,” tech. rep.
[18] H. Hirschmüller, “Stereo processing by semiglobal matching and mutual information,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008.
[19] K. Zhang, J. Lu, and G. Lafruit, “Cross-based local stereo matching using orthogonal

integral images,” IEEE Transactions on Circuits and Systems for Video Technology, 2009.
[20] S. Hermann and T. Vaudrey, “The gradient - A powerful and robust cost function for

stereo matching,” in International Conference Image and Vision Computing New Zealand,
2010.

[21] M. Brown, “Multi-view Stereo Correspondence Dataset,” 2007, http://matthewalunbro
wn.com/patchdata/patchdata.html.

[22] D. Scharstein and R. Szeliski, “High-accuracy stereo depth maps using structured light,”
in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2003.

[23] W. Luo, A. G. Schwing, and R. Urtasun, “Efficient Deep Learning for Stereo Matching,”
tech. rep

[24] H. Hirschmüller, M. Buder, and I. Ernst, “MEMORY EFFICIENT SEMI-GLOBAL
MATCHING,” in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, 2012

[25] T. T. San and N. War, “Local stereo matching under radiometric variations,” in Pro-
ceedings - 18th IEEE/ACIS International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing, SNPD 2017, 2017.

51

http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stereo
http://matthewalunbrown.com/patchdata/patchdata.html
http://matthewalunbrown.com/patchdata/patchdata.html

Annexes

Error tables

A.1. Error table for Middlebury dataset

Configuration
BT Prefiltered BT CNN

Error (%) -
Image name

mism occ ov mism occ ov mism occ ov

Aloe 5.16 12.49 17.65 4.10 14.20 18.30 9.92 14.98 24.90
Baby1 7.70 12.77 20.47 1.87 5.72 7.59 12.47 6.55 19.02
Baby2 11.63 9.01 20.64 1.52 6.29 7.81 19.65 7.97 27.62
Baby3 15.06 8.71 23.77 3.55 6.82 10.37 14.40 7.86 22.26
Bowling1 31.52 28.92 60.44 6.63 15.71 22.34 27.95 30.70 58.65
Bowling2 23.79 10.29 34.08 2.05 6.74 8.79 21.86 21.29 43.14
Cloth1 0.37 1.10 1.47 0.22 1.05 1.27 1.17 1.43 2.60
Cloth2 5.28 6.48 11.76 2.09 5.90 7.99 7.93 5.39 13.33
Cloth3 2.26 1.57 3.83 1.72 1.91 3.63 4.93 2.80 7.72
Cloth4 3.30 7.34 10.65 1.53 8.08 9.61 3.96 7.70 11.66
Flowerpots 33.78 7.46 41.24 7.06 7.28 14.34 34.41 21.94 56.35
Lampshade1 14.08 19.52 33.60 6.65 18.01 24.66 20.94 22.84 43.78
Lampshade2 35.46 34.04 69.50 5.71 25.02 30.72 26.17 33.30 59.46
Midd1 30.51 24.37 54.88 9.53 37.93 47.47 35.28 26.14 61.43
Midd2 21.02 40.15 61.17 8.89 35.21 44.10 40.92 24.63 65.55
Monopoly 13.02 40.13 53.15 6.84 12.62 19.46 15.18 12.43 27.61
Plastic 18.16 57.68 75.85 11.61 50.26 61.88 44.60 24.63 69.23
Rocks1 4.63 7.11 11.74 1.92 3.81 5.73 6.12 3.43 9.55
Rocks2 3.65 5.76 9.41 1.96 2.11 4.07 5.27 2.35 7.63
Wood1 8.31 17.98 26.29 1.38 10.77 12.16 14.37 18.02 32.39
Wood2 11.00 24.66 35.67 1.44 3.79 5.22 12.62 16.44 29.06
Mean 14.27 17.98 32.25 4.20 13.30 17.50 18.10 14.90 33.00
SD 11.11 14.97 22.52 3.25 13.27 16.22 12.66 10.00 21.63

Table A.1: Error for each image on Middlebury dataset with the three
configurations implemented. “mism” stands for mismatch error, “occ” for
occlusion error and “ov” for overall error. The threshold for correct matches
between ground truth and prediction is 1 pixel (without scaling).

52

A.2. Error table for KITTI dataset

Configuration
BT Prefiltered BT CNN

Error (%) -
Image name

mism occ ov mism occ ov mism occ ov

9 3.73 14.47 18.20 2.20 18.92 21.13 5.04 21.81 26.84
68 6.41 21.32 27.73 1.94 16.50 18.44 7.04 13.72 20.76
89 3.70 11.42 15.12 1.70 20.70 22.40 6.74 25.57 32.31
98 8.46 23.43 31.89 4.61 37.29 41.90 12.92 20.03 32.95
110 5.99 28.85 34.84 2.34 26.13 28.47 3.87 15.43 19.29
116 4.48 15.54 20.01 2.12 19.11 21.23 8.20 13.21 21.41
117 12.59 28.16 40.75 4.13 49.45 53.57 5.01 29.24 34.24
118 8.30 41.13 49.43 3.45 36.84 40.29 9.28 37.07 46.35
126 10.69 61.25 71.94 1.95 33.72 35.68 6.14 64.99 71.12
139 3.36 15.47 18.83 1.70 20.89 22.59 3.14 9.46 12.59
141 7.78 41.61 49.38 3.32 44.19 47.51 12.17 41.26 53.42
146 2.45 10.90 13.35 1.53 15.11 16.64 2.80 5.95 8.75
151 7.43 25.91 33.34 3.22 23.08 26.31 7.54 23.44 30.98
155 7.00 28.54 35.54 2.75 30.99 33.74 8.04 23.66 31.69
162 5.87 20.74 26.61 2.28 41.44 43.72 4.03 19.09 23.12
165 7.84 30.82 38.66 2.16 37.33 39.49 12.23 30.73 42.96
179 7.49 21.38 28.87 6.21 37.46 43.67 10.02 18.39 28.42
180 11.58 33.32 44.90 5.47 49.71 55.18 12.59 42.90 55.49
181 12.13 69.46 81.58 2.20 24.87 27.07 2.55 12.84 15.38
193 9.13 28.70 37.83 3.75 36.48 40.22 12.11 33.22 45.34

Mean 7.32 28.62 35.94 2.95 31.01 33.96 7.57 25.10 32.67
SD 2.94 15.29 17.61 1.31 10.88 11.81 3.53 13.91 15.82

Table A.2: Error for each image on KITTI dataset with the three configura-
tions implemented. “mism” stands for mismatch error, “occ” for occlusion
error and “ov” for overall error. The threshold for correct matches between
ground truth and prediction is 3 pixels.

53

	Resumen
	Resumen
	Agradecimientos
	Table of Contents
	Table Index
	Illustration Index

	1 Introduction
	1.1 Brief description of Woodtech
	1.2 Motivation
	1.3 Problem definition
	1.4 Goals
	1.5 Document structure

	2 Basic Concepts
	2.1 Stereo vision
	2.2 Stereo camera and disparity
	2.3 Epipolar constraint
	2.4 Rectification and Calibration

	3 State of the art
	3.1 Standard stereo algorithm
	3.2 Matching cost computation
	3.2.1 Absolute differences (AD)
	3.2.2 Sum of absolute differences (SAD)
	3.2.3 BirchField Tomasi (BT)
	3.2.4 Pixel dissimilarity with Deep Learning

	3.3 Cost aggregation
	3.3.1 Semi Global Matching (SGM)
	3.3.2 Cross Based Cost Aggregation (CBCA)

	3.4 Disparity selection
	3.5 Disparity refinement
	3.5.1 Left-Right consistency check
	3.5.2 Sub-pixel enhancement
	3.5.3 Median filter

	3.6 Pre filtering

	4 Implementation Methodology
	4.1 Matching cost computation
	4.1.1 BT configuration
	4.1.2 CNN configuration

	4.2 Cost aggregation
	4.3 Disparity selection
	4.4 Disparity refinement
	4.5 Summary

	5 Evaluation Methodology
	5.1 Middlebury dataset
	5.2 KITTI dataset
	5.3 Truckload images
	5.4 Error computation

	6 Results and Analysis
	6.1 Middlebury dataset
	6.2 KITTI dataset
	6.3 Truck images
	6.4 Improved results: pre-filtering of the input images
	6.5 Summary

	7 Conclusion and Future Work
	Bibliography
	Annexes
	Annexes Error tables
	A.1 Error table for Middlebury dataset
	A.2 Error table for KITTI dataset

