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JOSÉ RAFAEL CORREA HAEUSSLER

MIEMBROS DE LA COMISIÓN:
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Poĺıticas Públicas (ICS13 002).

SANTIAGO DE CHILE
2022



ii



RESUMEN DE LA MEMORIA PARA OPTAR
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En este trabajo estudiamos el comportamiento asintótico del valor esperado de los dos
estad́ısticos de orden más grandes. Espećıficamente, buscamos describir la tasa de crecimiento
más rápida posible de su valor esperado, cuando las variables aleatorias son independientes
e idénticamente distribuidas. Para el máximo, demostramos de manera simple y directa que
el crecimiento es sublineal y probamos que es imposible mejorar tal resultado. En contraste,
en el caso del segundo estad́ıstico de orden más grande derivamos una cota superior cuyo
crecimiento es estrictamente más lento que el encontrado para el máximo, denotando un
comportamiento asintótico considerablemente distinto en objetos aparentemente similares.
Esta conclusión tiene consecuencias en contextos aplicados donde estos objetos modelan
cantidades de interés, tales como scheduling estocástico, ingenieŕıa de confiabilidad, gestión
de riesgos, teoŕıa de licitaciones, entre otras.
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In this thesis we study the asymptotic behavior of the expected value of the two largest
order statistics. Specifically, we seek to describe the fastest possible growth rate of their
expected value, when the random variables are independent and identically distributed. For
the maximum, we provide a simple and direct proof that the growth is sublinear, and we
prove that it is impossible to improve such result. In contrast, in the case of the second
largest order statistic we derive an upper bound with strictly slower growth rate than the
one of the maximum, concluding considerably different asymptotic behavior in apparently
similar objects. These conclusions have consequences in applied contexts where these objects
model relevant quantities, such as stochastic scheduling, reliability, risk management, auction
theory, among others.
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Chapter 1

Introduction

Years ago the study of order statistics was a curiosity [2]. Of course, it has always been
introduced in any serious statistics course, but it was not until H.A. David published his
first edition of Order Statistics [5] in 1969, that the theory, techniques, and applications of
the subject became of growing recognition. Since that moment both the theory and applica-
tions of order statistics have greatly expanded. They have been widely used in many applied
probability areas, such as stochastic scheduling, reliability, risk management, auction theory,
among many others[10]. In particular, the asymptotic theory of extreme order statistics and
of related statistics has been developed with increased emphasis. It does not only provide
information for the asymptotic regimes, but also approximates probabilistic models for ran-
dom quantities when the extremes govern the laws of interests (e.g. strength of materials,
floods, droughts, etc.) [5, 9].

In this work, we study the asymptotic behavior of the expected value of the two largest
order statistics. Specifically, we aim to describe their fastest growth rate possible in the
setting of an arbitrarily large sample of independent and identically distributed random vari-
ables drawn from a common distribution. Our main results show that these two seemingly
similar objects behave considerably different in the limit, which may be of interest in ap-
plied probability contexts where the expectation of these order statistics represent relevant
quantities.

1.1 Order Statistics

Suppose that X1, . . . , Xn are n random variables. The k-th order statistic, denoted by Xk:n,
is the k-th smallest one of them, that is, they can be arranged in order of magnitude as
follows:

X1:n ≤ X2:n ≤ . . . ≤ Xn:n.

Although this definition does not require the random variables to be independent nor
identically distributed, these assumptions are usually considered, since most of the classical
results dealing with order statistics were originally derived in that setting [2]. For instance,
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in such setting we can easily derive the cumulative distribution function of Xk:n. Let F be
the common parent distribution for X1, . . . , Xn, and consider the event Ei,n(x) that exactly
i of the n i.i.d random variables are less than or equal to x. Then,

Fk:n(x) := P(Xk:n ≤ x)

=
n∑

i=k

P(Ei,n(x))

=
n∑

i=k

(
n

i

)
F (x)i(1− F (x))n−i.

We work in this i.i.d. setting throughout this thesis, and also assuming that the random
variables are non-negative. This last assumption is not restrictive, since the bound Xk:n ≤
|Xk:n| allow us to replicate all the results, provided that E(|X1|) < ∞. Also, the non-
negativity assumption is usually considered in most of the the applied contexts that concern
this thesis work.

1.1.1 Asymptotic Analysis

The asymptotic theory of order statistics is concerned with the properties of Xk:n as n tends to
infinity. In general, it aims to replace or approximate complicated situations in probabilistic
models by a comparatively simple asymptotic model. A lot can be said about the asymptotic
distributions, theory of extremes and even extremal processes, which have been developed at
length by Galambos in [9]. Most of the results depend on p = limn→∞ k/n ∈ [0, 1] and are
fundamentally different among three major categories [5]:

1. Central or quantile case: If p ∈ (0, 1).

2. Extreme case: If p ∈ {0, 1}, for fixed k. Xk:n and Xn−k+1:n are usually called the k-th
lower and upper extremes, respectively.

3. Intermediate case: If p ∈ {0, 1}, with k being a function of n.

The problem we address is to determine the fastest growth rate of the expectation of the first
two upper extremes in the case of finite expectation distributions, that is, for k ∈ {1, 2},

max
F with

finite expectation

E(Xn−k+1:n).

To describe the limiting behavior, we use standard notation for asymptotic analysis. Given
two functions f, g : R→ R+,

• f(x) = O(g(x)) if there exists C > 0, x0 > 0 such that f(x) ≤ Cg(x) for all x ≥ x0.

• f(x) = Ω(g(x)) if there exists C > 0, x0 > 0 such that f(x) ≥ Cg(x) for all x ≥ x0.

• f(x) = o(g(x)) if limx→∞
f(x)
g(x)

= 0.

• f(x) ∼ g(x) if limx→∞
f(x)
g(x)

= 1.
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1.1.2 Some Applications

The theoretical and practical interest in some order statistics is quite natural. This is the case
of the extremes, X1:n (minimum) and Xn:n (maximum), or the median, denoted as Xn+1

2
:n if

n is odd or (Xn
2

:n +Xn
2

+1:n)/2 if n is even, which are common topics in any statistics course.
However, the scope of the applications of order statistics in data-analytic models goes beyond
that.

The expected value of the maximum is a canonical benchmark in many applied probability
subjects. For instance, in the context of stochastic scheduling, it represents the expected
completion time to run n tasks in n parallel processors, each with a random processing time.
In contrast, the expected completion time of these tasks executed sequentially is the sum
of each processor’s expected time, which in the i.i.d. case results in a linear function of the
number of processors n. In this setting, to study the fraction of the time that can be saved
by parallel computation as the number of processors increases, it is important to know how
fast may the expected value of the maximum grow as the number of samples goes to infinity
[6]. Similarly, in the context of prophet inequalities this question is relevant as well. In the
general statement, a gambler faces an ordered sequence of non-negative independent random
variables and must decide online when to stop in order to maximize expected reward. In
the i.i.d. setting, the gambler obtains at least a 1− 1/e fraction of the reward of a prophet
who knows all the values and can choose the largest one [4]. This lower bound can be
achieved even by a specific class of strategies called fixed threshold algorithms (see [7] for
details on FTA). Moreover, this fraction is best possible in this setting, in the sense that
given a sequence of length n, there is a distribution dependent on n for which no FTA can
achieve an approximation factor better than 1 − 1/e. However, this may not hold true if
we consider an arbitrarily large sequence and a distribution that does not depend on n. To
study this question and look for a worst case, the fastest growth rate possible of the expected
maximum is a relevant element.

Another interesting example arises in the study of reliability of systems. In that context,
a k-out-of-n system is a system consisting of n components and normally operating if and
only if at least k of the n components work. Therefore, the lifetime of this system can be
represented by the k-th upper extreme order statistic Xn−k+1:n. As the very popular fault
tolerant structure, the k-out-of-n system has been widely applied in industrial engineering
and electrical systems [10]. Particularly, the n-out-of-n and the 1-out-of-n systems correspond
to the series and parallel systems, respectively. Again, in this context, the growth rate of the
expectation of order statistics is key to understand the expected lifetime of these systems as
the number of components increases.

1.2 Outline and Contributions of Our Work

Motivated by the relevant applications, we study the fastest growth rate of the expected
value of the first two upper extremes, in the independent and identically distributed setting.
In Chapter 2, we elaborate a simple alternative proof of the known fact that the expectation
of the maximum is sublinear, in the sense that it grows slower than any linear function.
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The approach is rather elementary and elegant, requiring only a few lines, in contrast to the
original rather long proof. Additionally, in Section 2.3 we prove an impossibility result that
allow us to conclude that this statement cannot be improved.

In Chapter 3, we continue to study the second upper extreme order statistic. The reduc-
tion in Section 3.1 allows us to identify the differences of the asymptotic properties of the
second upper extreme problem. In fact, in Section 3.2 we specify the properties that are used
in Section 3.3 to conclude that the asymptotic behavior of the expected value of the second
upper extreme is fundamentally different. Specifically, its fastest growth rate is faster than
the one of the maximum, meaning that for some distributions, the fraction that it gets over
the expected maximum goes to zero as the number of samples increases. Finally, in Section
3.4 we adapt the methodology from the previous chapter to obtain a lower bound for the
fastest growth rate possible and leave the improvements of this bound as an open question.
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Chapter 2

Maximum or First Upper Extreme

In this chapter we study the asymptotic behavior of the expectation of the maximum order
statistic Xn:n. We provide an elementary proof for an o(n) upper bound for E(Xn:n), which
only uses the dominated convergence theorem and a basic calculus result. As a corollary,
we also obtain that if moments of high order are finite, the fastest growth rate possible of
E(Xn:n) gets slower. Finally, we construct a distribution with finite expectation that allow
us to conclude that the o(n) bound is indeed best possible.

2.1 Preliminaries

For fixed n > 1, suppose X1, . . . , Xn are independently drawn from a fixed distribution F
with finite expectation, and denote Xn:n = maxi=1,...,nXi. Note that since the maximum is
upper bounded by the sum, we have that E(Xn:n) ≤ nE(X1), so E(Xn:n) = O(n). Similarly
if E(Xp

1 ) < ∞, it is easy to derive that E(Xn:n) = O( p
√
n) using Jensen’s inequality. This

means that for distributions with finite absolute moments of high order, E(Xn:n) grows very
slowly in n. Moreover, for some particular distributions such as the exponential, it is easy to
see that E(Xn:n) = O(log n), and for the Gaussian distribution E(Xn:n) = O(

√
log n).

In general, when the distribution from where X1, . . . , Xn are drawn can depend on n,
explicit upper bounds obtained by e.g. Arnold [1] and Downey [6] can be achieved by a
suitable extremal distribution. However, when F is fixed and does not depend on n a much
stronger and general bound can be obtained. Indeed, Downey [6] established that E(Xn:n) =
o(n).1

To illustrate the difference between this statement and the previous O(n) upper bound,
recall the problem presented in the introduction about the fraction of time that is saved by
parallel computation. Suppose X1, . . . , Xn are i.i.d. processing times of the n processors.
For fixed n, the fraction of the expected time for sequential processing that takes the parallel
computation, that is E(Xn:n)

nE(X1)
can be constant in n if the distribution of the processing times

depends on n. However, there is no reason to think that the distribution of each processing

1More generally Downey establishes that if E(Xp
1 ) <∞ then E(Xn:n) = o( p

√
n).
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time depends on the number of processors. Therefore, as F should be independent of n, the
much stronger result E(Xn:n) = o(n) implies that the fraction becomes arbitrarily small as
the number of processors increases.

To establish that E(Xn:n) = o(n), Downey follows several steps. He first studies the
sequence (Xn:n/ p

√
n)n, and uses a result by Freedman [8] to establish its convergence in

probability, that is, for all ε > 0

lim
n→∞

P(Xn:n >
p
√
nε) = 0.

Then he turns to prove that the sequence also converges in Lp. To this end, he shows that
for p = 1 the sequence is uniformly integrable and thus, by Vitali convergence theorem (see
e.g. [3, Theorem 4.5.4]), obtains L1-convergence.

For general p ≥ 1, and under the assumption E(Xp) < ∞, Downey resorts to Hölder
inequality to reduce to the p = 1 case and concludes that E(Xn:n) = o( p

√
n).

Our proof for the o(n) upper bound relies only on the fact that the arithmetic mean of
a convergent sequence converges to the same limit. This preliminary result can be found in
[11] as a consequence of the Stolz–Cesàro theorem. Here we provide a direct proof of it.

Lemma 2.1 Let (xn)n be a sequence of real numbers which converges to l ∈ R. Then

lim
n→∞

1

n

n∑
k=1

xk = l

Proof. Note first that it is enough to consider l = 0, for otherwise we may take yk = xk − l
which converges to 0 and

1

n

n∑
k=1

yk =

(
1

n

n∑
k=1

xk

)
− l.

Let ε > 0 and take N ∈ N such that |xk| < ε for all k > N . Then for n > N∣∣∣∣∣ 1n
n∑
k=1

xk

∣∣∣∣∣ < N

n
max

k=1,...,N
|xk|+

(n−N)

n
ε,

which becomes less than 2ε for all sufficiently large n.

2.2 Sublinearity of the Expected Maximum

In this section, we present our proof for the o(n) upper bound and use Jensen’s inequality to
state it in Downey’s general form.

Theorem 2.2 Let X1, . . . , Xn be independent random variables drawn from a common dis-
tribution F . Suppose E(X1) <∞, then

lim
n→∞

E(Xn:n)

n
= 0.
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Proof. Since Xn:n is a non-negative random variable with distribution F n, its expectation
can be written as

E(Xn:n) =

∫ ∞
0

1− F n(x)dx =

∫ ∞
0

(1− F (x))
n−1∑
k=1

F k(x)dx.

The linearity of the integral implies that

E(Xn:n)

n
=

1

n

n−1∑
k=1

∫ ∞
0

F k(x)(1− F (x))dx.

To conclude the proof, recall that by Lemma 2.1, it is enough to argue that

lim
n→∞

∫ ∞
0

F n(x)(1− F (x))dx = 0.

This follows by the dominated convergence theorem since the sequence (F n(1−F ))n converges
pointwise to 0 and it is dominated by the integrable function 1− F .2

Note that by Vitali convergence theorem, the L1-convergence of the sequence (Xn:n/n)n,
is equivalent to its convergence in probability, and also to its uniform integrability. Therefore,
the convergence in expectation we just showed also implies the convergence in probability
and the uniform integrability shown by Downey. Furthermore, using Jensen’s inequality for
a convex function h we get

h(E(Xn:n)) ≤ E(h(Xn:n)) ≤ E
(

max
i=1,...,n

h(Xi)

)
.

For instance, if h(x) = xp for any p ≥ 1, then from Theorem 2.2 we get that if E(Xp
1 ) <∞,

then E(Xn:n)p ≤ E(maxi=1,...,nX
p
i ) = o(n). Thus we immediately obtain the following more

general result as a corollary.

Theorem 2.3 For any convex function h, if E(h(X1)) < ∞, then h(E(Xn:n)) = o(n). In
particular, for all p ≥ 1, if E(Xp

1 ) <∞, then E(Xn:n) = o( p
√
n).

2.3 Impossibility Result

Downey [6] stated that the o(n) upper bound is best possible in the following sense. He
showed that for all ε > 0, there exists a distribution F , such that E(Xn:n) = Ω(n1−ε). To
illustrate this, consider X1, . . . , Xn drawn from a Pareto distribution with scale 1 and shape
α = (1− ε)−1 > 1. Then, E(X1) = 1− 1/(α − 1) <∞ and using the fact that for x ≤ n1/α

(1− 1/xα)n ≤ (1− 1/n)n ≤ 1/e we get

E(Xn:n) =

∫ ∞
0

1−
(

1− 1

xα

)n
dx ≥

∫ n1/α

0

1− 1

e
dx =

(
1− 1

e

)
n1−ε.

2Note that the sequence actually decreases to 0, so monotone convergence can also be invoked.
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However, this does not rule out the possibility of having a result stronger than that in
Theorem 2.2, such as E(Xn:n) = O(n/ log(n)). In this section, we prove that it is impossible
to improve the bound from Theorem 2.2.

Theorem 2.4 For any function g with sublinear growth, namely such that g(n) = o(n), there
is a finite expectation distribution F such that if X1, . . . , Xn are independently drawn from
F , then

lim inf
n→∞

E(Xn:n)

g(n)
> 0.

Proof. We establish the statement by constructing a distribution F such that for all suffi-
ciently large n.

E(Xn:n) ≥ g(n).

Without loss of generality, we assume that g is non-decreasing and has non-increasing incre-
ments, that is, g(k + 1) − g(k) ≤ g(k) − g(k − 1) ≥ 0 for all k ≥ 1. For otherwise we may
take

g̃(n) = g(0) +
n∑
k=1

max
m≥k

(g(m)− g(m− 1))

which satisfies such properties, along with g̃(n) ≥ g(n) and g̃(n) = o(n). Indeed, by Propo-
sition 2.1 we get

lim
n→∞

g̃(n)

n
= lim

n→∞

1

n

n∑
k=1

max
m≥k

(g(m)− g(m− 1)) = lim sup
k→∞

g(k)− g(k − 1) = 0,

and it is enough to show E(Xn:n) ≥ g̃(n). Also, as we only need to show the inequality for
sufficiently large n, we may assume that g(0) ≥ 0.

Therefore we construct a distribution F of the form

F (x) =
∑
k≥0

(
1− 1

k

)
1Ik(x),

for some disjoint intervals Ik ⊆ R with length

δk =

(
g(k)

k
− g(k + 1)

k + 1

)
k

To establish that δk ≥ 0 we need to show that (k+ 1)g(k)− kg(k+ 1) ≥ 0. This can be seen
by induction over k ≥ 0: the base case is g(0) ≥ 0, and the non-increasing increments imply
g(k + 1) ≤ 2g(k)− g(k − 1), thus

(k + 1)g(k)− kg(k + 1) ≥ (k + 1)g(k)− k(2g(k)− g(k − 1)) = kg(k − 1)− (k − 1)g(k)

which is non-negative due to the inductive hypothesis.

With the previous choice of δk we immediately get that F has finite expectation. Indeed,∫ ∞
0

(1− F (x))dx =
∑
k≥0

δk
k

=
∑
k≥1

g(k)

k
− g(k + 1)

k + 1
= g(1) <∞.

8



On the other hand, if Y1, . . . , Yn are independent random variables drawn from F , we
have that

E(Y(n)) =

∫ ∞
0

(1− F n(x))dx =
∑
k≥0

(
1−

(
1− 1

k

)n)
δk.

To wrap up the proof we lower bound the latter expression. First recall that (1−1/x)x grows
to e−1 as x → ∞. Also, from the strict convexity of the exponential function, we have that
if x ∈ (0, 1), then exp(−x) < 1− (1− e−1)x. Thus, for all k ≥ n we obtain

(
1− 1

k

)n
=

((
1− 1

k

)k)n/k

≤ exp(−n/k) < 1− (1− e−1)
n

k
.

Putting all together we derive the lower bound

E(Y(n)) > (1− e−1)n
∑
k≥n

δk
k

= (1− e−1)n
∑
k≥n

g(k)

k
− g(k + 1)

k + 1
= (1− e−1)g(n),

which proves the statement by taking Xi = Yi/(1− e−1).
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Chapter 3

Second Upper Extreme

In this chapter study the behavior of the second upper extreme order statistic. We provide
an upper bound for E(Xn−1:n) with a different asymptotic behavior from that of the maxi-
mum. To accomplish that, we reduce the problem to consider only distributions of the form
used for the impossibility result in the previous chapter and study the differences in their
structure. Additionally, we derive a lower bound for the fastest growth rate possible through
the adaptation of the methodology from the previous chapter.

3.1 Reduction

Inspired by the distribution constructed for the lower bound of the previous chapter, we
define the following family of distributions

Definition 3.1 We denote by F the family of distributions F such that

F (x) =
∑
k≥1

(
1− 1

k

)
1Ik(x),

for some disjoint intervals Ik ⊆ R with length δk > 0.

We continue to prove that it is enough to consider only this family in order to find an
upper bound for the expected value of Xn−1:n.

Proposition 3.2 Let F be any distribution with finite expectation and let X1, . . . , Xn be
drawn from F . Then, there is a distribution F̃ ∈ F with finite expectation such that if
Y1, . . . , Yn are drawn from F̃ ,

E(Xn−1:n) ≤ E(Yn−1:n).

Proof. For k ≥ 1 define xk = inf{x : F (x) ≥ 1− 1/k} and

F̃ (x) =
∑
k≥2

(
1− 1

k

)
1(xk,xk+1](x).

10



It is clear that F̃ ≤ F and therefore E(Xn−1:n) ≤ E(Yn−1:n). In addition, we have that∫ ∞
0

F (x)− F̃ (x)dx =
∑
k≥2

∫ xk+1

xk

F (x)−
(

1− 1

k

)
dx

≤
∑
k≥2

(
1

k
− 1

k + 1

)
(xk+1 − xk)

=
∑
k≥2

1

k(k + 1)
(xk+1 − xk)

≤
∑
k≥2

1

(k + 1)
(xk+1 − xk)

=
∑
k≥2

∫ xk+1

xk

1

(k + 1)
dx

≤
∫ ∞

0

1− F (x)dx = E(X1).

where we used that F (x) ≤ 1− 1
k+1

for all x ∈ (xk, xk+1]. Thus,

∫ ∞
0

1− F̃ (x)dx =

∫ ∞
0

1− F (x)dx+

∫ ∞
0

F (x)− F̃ (x)dx ≤ 2E(X1) <∞,

and F̃ has finite expectation. It is easy to see that the previous statement applies for any
other order statistic, since the inequality E(Xk:n) ≤ E(Yk:n) holds for any k.

3.2 Structure, Differences and Asymptotic Properties

Recall from the previous chapter that if F ∈ F and X1, . . . , Xn are drawn from F then

E(Xn:n) =
∑
k≥1

(
1−

(
1− 1

k

)n)
δk =

∑
k≥1

k

(
1−

(
1− 1

k

)n)
δk
k
.

with
∑
δk/k <∞. Similarly, using the fact that the distribution of Xn−1:n is F n+nF n−1(1−

F ), we get that

E(Xn−1:n) =

∫ ∞
0

1− F n(x)− nF n−1(x)(1− F (x))dx

=
∑
k≥1

(
1−

(
1− 1

k

)n
− n

(
1− 1

k

)n−1
1

k

)
δk

=
∑
k≥1

(
k −

(
1− 1

k

)n−1

(k − 1 + n)

)
δk
k
.

This suggests that the key differences of their asymptotic behavior are represented by the
properties of the functions ϕn(x) = x(1− (1−1/x)n) and φn(x) = x− (1−1/x)n−1(x+n−1)
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(see Figure 3.1). The following results summarizes relevant properties that will be useful in
the proof of the main theorem.

0.2 0.4 0.6 0.8 1

·104

200

400

600

800

1,000

1,200

ϕn

φn

Figure 3.1: Plot of φn and ϕn for n = 1000.

Proposition 3.3 Let ϕn(x) = x(1 − (1 − 1/x)n) and φn(x) = x − (1 − 1/x)n−1(x + n − 1)
defined for x ∈ [1,∞) and n ≥ 2.

(i) For all n ≥ 2, ϕn(x) converges to n as x grows to infinity.

(ii) For all n ≥ 2, φn(x) converges to 0 as x grows to infinity.

Proof. By the Binomial Theorem,(
1− 1

x

)n
=

n∑
k=0

(
n

k

)
(−x)−k = 1− n

x
+ o(1/x).

Thus, ϕn(x) = n− xo(1/x) tends to n as x increases. Similarly,

(1−1/x)n−1(x+n−1) = (x+n−1)

(
1− n− 1

x
+ o(1/x)

)
= x− (n− 1)2

x
+(x+n−1)o(1/x).

Therefore φn(x) = (n − 1)2/x − (n − 1)o(1/x) − xo(1/x) converges to zero as x tends to
infinity.

Proposition 3.3 describes the main difference from the problem of the previous chapter.
The impossibility result for the maximum relies on the fact that ϕn(x) ≥ (1 − e−1)n for all
x > n. Not only does this not hold true anymore, but the convergence to zero prevent us
from deriving any useful lower bound up to infinity. This behavior allows us to improve the
o(n) upper bound by dividing the domain of φn in intervals where it can be bounded by some
explicit function of n.
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Proposition 3.4 For n ≥ 3, φn(x) is non-increasing in [n− 1,∞).

Proof. Note that

φn(x) = x−
(
x− 1

x

)n−1

(x+ n− 1) =
(x− 1)n

xn−1

((
x

x− 1

)n
− 1− n

x− 1

)
,

and by the Binomial Theorem(
x

x− 1

)n
=

(
1 +

1

x− 1

)n
= 1 +

n

x− 1
+

n∑
k=2

(
n

k

)(
1

x− 1

)k
.

Hence,

φn(x) =
n∑
k=2

(
n

k

)
(x− 1)n−k

xn−1
.

Now, since for each k = 2, . . . , n, the function x 7→ (x−1)n−k

xn−1 decreases after its critical point
x = n−1

k−1
, we have that φn(x) is decreasing for x ≥ n− 1.

Proposition 3.5 For n ≥ 20, φn(x) is non-decreasing in [1, n/20].

Proof. To prove this statement, note that the derivative of φn(x) can be written as

φ′n(x) = 1−
(

1− 1

x

)n−2
x2 + (n− 2)x+ (n− 1)2

x2
.

We prove that φ′n(x) ≥ 0 in [1, n/20] by showing that the second term, fn(x) = (1 −
1/x)n−2(x2 + (n − 2)x + (n − 1)2)/x2, is non-decreasing in that interval, and fn(n/20) < 1.
Define

hn(x) = log(fn(x)) = (n− 2) log

(
1− 1

x

)
+ log(x2 + (n− 2)x+ (n− 1)2)− 2 log(x),

then the derivative is

h′n(x) =
n− 2

x(x− 1)
+

2x+ (n− 2)

x2 + (n− 2)x+ (n− 1)2 −
2

x
=

−n(n− 1)x+ n(n− 1)2

x(x− 1)(x2 + (n− 2)x+ (n− 1)2)
≥ 0,

for x ≤ n− 1, since the denominator is non-negative and the numerator is a linear function
with negative slope and solution at x = n − 1. Hence, hn(x) and consequently fn(x) is
non-decreasing in [1, n/20]. Finally,

fn(n/20) ≤ 421

(
1− 20

n

)n−2

≤ 421(e−20)1−2/n ≤ 421e−20/3 ≈ 0.53 < 1.
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3.3 Main Theorem

We present the main result as follows:

Theorem 3.6 Let X1, . . . , Xn be independent random variables drawn from a common dis-
tribution F . Suppose E(X1) <∞, then

lim inf
n→∞

E(Xn−1:n)
n

log(log(n))

= 0.

The theorem states that if such limit exists, it must be zero, in which case E(Xn−1:n) is
o (n/log(log(n))). This behavior is fundamentally different from the one of the maximum,
since the latter had no chance to be improved from the o(n) bound.

To illustrate the difference, recall from Theorem 2.4 that for any function with sub-
linear growth, in particular g(n) = n/log(log(n)), we can find a distribution F such that
E(Xn:n) ≥ g(n) when X1, . . . , Xn are draw from F . If the limit in Theorem 3.6 exists for
some distribution G, then if Y1, . . . , Yn are drawn from G we get that

lim
n→∞

E(Yn−1:n)

E(Xn:n)
= lim

n→∞

E(Yn−1:n)

g(n)

g(n)

E(Xn:n)
= 0,

since the second term is bounded. This argument can be replicated with any function g with
sublinear growth and such that g(n) = Ω (n/log(log(n))). This conclusion may be useful
in any applied probability context that benefits from a comparison between the two largest
order statistics. For instance, in the context of reliability, if the number of components is
arbitrarily large, the expected lifetime of a 2-out-of-n system could be arbitrarily shorter
than that of a parallel system.

Proof of Theorem 3.6. Given the reduction of Proposition 3.2, it is enough to work with
X1, . . . , Xn drawn independently from F ∈ F , such that

E(Xn−1:n) =
∑
k≥1

φn(k)
δk
k
,

for an arbitrary sequence (δk)k such that E(X1) =
∑
δk/k <∞.

Let 0 < ε < 1 and consider N1(n) = n1−ε, N2(n) = n1+ε. Recall from Propositions 3.4
and 3.5 that for n ≥ 3, φn(k) is non-decreasing if k ≤ dN1(n)e ≤ n/20 and non-increasing if
x ≥ bN2(n)c ≥ n− 1. Therefore∑

k≥1

φn(k)
δk
k
≤ φn(dN1(n)e)

dN1(n)e∑
k=1

δk
k

+

bN2(n)c∑
k=dN1(n)e

φn(k)
δk
k

+ φn(bN2(n)c)
∑

k≥bN2(n)c

δk
k
.

The sums in the first and third term can be bounded by E(X1). For the middle term,
recall that φn(x) ≤ ϕn(x) ≤ n for all x. Thus,

E(Xn−1:n) ≤ max {φn(dN1(n)e), φn(bN2(n)c)}E(X1) + n

bN2(n)c∑
k=dN1(n)e

δk
k
. (3.1)
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Define bn =
∫∞
n

1−F and note that the sum in (3.1) is bounded by ∆n = bN1(n)− bN2(n),
which converges to 0 as n goes to infinity. In order to study its rate of convergence, we
use the fact that for any non-negative sequence (an)n ⊆ R such that

∑
an < ∞, we have

lim infn→∞ nan = 0.1 Specifically, we find a subsequence (∆n(k))k such that
∑

∆n(k) <∞.

Consider n(k) = 2( 1+ε
1−ε)

k

, then N1(n(k + 1)) = N2(n(k)) and∑
k≥1

∆n(k) =
∑
k≥1

bN1(n(k)) − bN1(n(k+1)) = bN1(n(1)) − lim
k→∞

bN1(n(k)) ≤ E(X1) <∞.

Hence,

lim inf
k→∞

k∆n(k) = 0,

and since (k∆n(k))k is a subsequence of (log(log(n))∆n) we get

lim inf
n→∞

log(log(n))∆n = 0.

To wrap up the proof, recall that φn(x) ≤ x, so φn(N1(n)) ≤ N1(n) = n1−ε. In addition,
since (1− 1/n1+ε)n−1 ∼ e−1/nε ∼ 1− 1/nε, we have that

φn(N2(n)) = φn(n1+ε) ∼ n1−ε − (n1+ε + n+ 1) + (n+ n1−ε + 1/nε) ∼ n1−ε.

Hence, from (3.1) we have that E(Xn−1:n) ≤ E(X1) max{n1−ε, n∆n}, and dividing by n
log(log(n))

we get
E(Xn−1:n)

n
log(log(n))

≤ E(X1) max

{
log(log(n))

nε
, log(log(n))∆n

}
and taking liminf we conclude the statement.

3.4 Lower bound

We adapt the argument made for the impossibility result of the maximum in the previous
chapter. The following straightforward result summarizes the general methodology to obtain
a lower bound.

Lemma 3.7 Suppose there exist functions N1, N2, f : N → R+ and ε > 0 such that for all
sufficiently large n, φn(x) ≥ εf(n) for all x ∈ [N1(n), N2(n)]. Suppose also that there exists
a positive sequence (δk)k ⊆ R+ such that

∑
δk/k <∞ and

N2(n)∑
k=N1(n)

δk
k

= Ω(g(n)),

for some function g : N→ R+. Then, E(Xn−1:n) = Ω(f(n)g(n)).

1Indeed, suppose by contradiction that there exists η > 0 and N ∈ N such that nan ≥ η for all n > N .
Then,

∑
n>N an ≥

∑
n>N

ε
n =∞.
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Now we use Lemma 3.7 to derive a simple lower bound, and leave the improvement of
this bound as an open question.

Theorem 3.8 There exists a distribution F with finite expectation such that if X1, . . . , Xn

are independently drawn from F , then

E(Xn−1:n) = Ω

(
n

log(n)2

)
.

Proof. From Proposition 3.4 we know that φn(x) ≥ φn(2n), for x ∈ [n, 2n]. Furthermore, for
sufficiently large n

φn(2n) = 2n−
(

1− 1/2

n

)n−1

(3n− 1) ≥ 2n− e−1/2(3n− 1) = (2− 3e−1/2)n− 1 ≥ εn,

for some 0 < ε < 2− 3e−1/2 ≈ 0.18. Now, choosing

δk =

(
1

log(k)
− 1

log(k + 1)

)
k

we get that
∑
δk/k = limk→∞ 1/ log(k) = 0, and

2n∑
k=n

δk
k

=
1

log(n)
− 1

log(2n)
=

log(2)

log(n)(log(n) + log(2))
≥ η

1

(log(n))2
,

for some η > 0 and all sufficiently large n. Thus, the statement follows from Lemma 3.7.
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