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Abstract: Water pollution by heavy metals has significant effects on aquatic ecosystems. Copper is
one of the heavy metals that can cause environmental pollution and toxic effects in natural waters.
This encourages the development of better technological alternatives for the removal of this pollutant.
This work explores the application of ZnO nanoparticles (ZnO-NPs) for the removal of Cu(II) ions
from acidic waters. ZnO NPs were characterized and adsorption experiments were performed under
different acidic pHs to evaluate the removal of Cu(II) ions with ZnO NPs. The ZnO NPs were
chemically stable under acidic conditions. The adsorption capacity of ZnO NPs for Cu(II) was up to
47.5 and 40.2 mg·g−1 at pH 4.8 and pH 4.0, respectively. The results revealed that qmax (47.5 mg·g−1)
and maximum removal efficiency of Cu(II) (98.4%) are achieved at pH = 4.8. In addition, the surface
roughness of ZnO NPs decreases approximately 70% after adsorption of Cu(II) at pH 4. The Cu(II)
adsorption behavior was more adequately explained by Temkin isotherm model. Additionally,
adsorption kinetics were efficiently explained with the pseudo-second-order kinetic model. These
results show that ZnO NPs can be an efficient alternative for the removal of Cu(II) from acidic
waters and the adsorption process was more efficient under pH = 4.8. This study provides new
information about the potential application of ZnO NPs as an effective adsorbent for the remediation
and treatment of acidic waters contaminated with Cu(II).

Keywords: adsorption; copper; zinc-oxide nanoparticles; nanomaterials; acid mine drainage

1. Introduction

Surface and groundwater contamination by heavy metals is a growing concern. One
of the major sources of heavy metals is the contamination derived from acid mine drainage
(AMD) release [1–3]. AMD is characterized by low pH and high concentrations of sulfate
and dissolved metals and metalloids, causing severe damage to aquatic ecosystems [1,2].
Among the metals that are commonly released are iron, copper, lead, zinc, silver, arsenic,
aluminum, manganese, antimony, selenium, among others [4]. Heavy metals and met-
alloids affect the quality of surface and groundwater resources, mainly because they are
non-biodegradable, toxic at low concentrations, and easy to accumulate in the tissues
of various living organisms [5,6]. They can cause serious harm to human health from
cancer to nervous system problems [7–9]. Thus, the study and development of sustainable
technologies to remove these pollutants have gained attention in recent years.

One of the metals that are most widely present in surface waters is copper, mainly
because of its multiple industrial applications [10–12]. In addition, many mining operations
release acid runoff with high Cu concentrations, affecting unique ecosystems [13,14]. In
native systems, Cu is usually found as a divalent cation (Cu(II)) and is quite mobile at
low pH values, which makes the treatment of copper-enriched AMD more and more
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relevant [15]. Copper is quite toxic even at low concentrations and its antimicrobial effects
can cause substantial damage to the biodiversity of both microorganisms and higher
organisms [16]. Thus, polluted waters with copper must be treated to reduce their impact
on the environment [16]. The World Health Organization (WHO) establishes that the
maximum limit of the concentrations of copper ions in drinking water should not exceed
2 mg·L−1. In recent years, significant efforts have been made to develop technologies
for the treatment and removal of copper from polluted waters, in order to respond to
the environmental effects of copper and the projected scarcity of water resources. In this
context, technologies based on adsorption, ion exchange, photocatalysis, filtration and
reverse osmosis methods have been extensively studied [16–27]. However, adsorption
methods are the most cost-effective and have been the subject of various studies. The
costs associated with adsorption technologies for water treatment vary from USD 10 to 200
per million liters [28,29] while the other conventional technologies such as ion exchange,
reverse osmosis, ultrafiltration and electrodialysis have costs ranging from USD 15 to 450
per million liters [29] (Appendix A). Despite this, in recent years improvements in the
removal process based on the use of nano-adsorbents have emerged as an alternative that
can improve the adsorption capacity because of characteristic properties of nanomaterials
such as higher surface area and greater potential for functionalization.

Various materials have been studied for the removal of Cu from wastewaters. The
use of adsorbent materials based on carbon, such as activated carbon and graphene, has
shown to be a suitable alternative for the removal of Cu, with adsorption capacities over
30 and 40 mg/g, respectively [30,31]. Other adsorbents studied at low pH have presented
variable efficiency, with adsorption capacities of 20.97 and 31.7 mg/g for waste slurry
and pecan shells activated carbon, respectively [32,33]. In addition, some nanomaterials
that have shown high efficiency to remove copper from polluted waters are graphene ox-
ides [34], biopolymers-based adsorbents [35,36], organic polymers [37], magnetic nanopar-
ticles [38,39] carbon nanotubes [40–42], silica-based nanomaterials [43], metallic NPs [44].
Among the metallic nanoparticles that have been studied for the removal and adsorption
of heavy metals, Zinc oxide (ZnO) has shown excellent results because of its catalytic
properties. ZnO nanoparticles (NPs) have a high potential to be used as nano-adsorbents
since they have a large specific surface area and various functional groups that favor their
interaction and removal of heavy metals from aqueous solutions [45]. It has other advan-
tages, such as high resistance to chemical and optical corrosion, high chemical stabilization,
biocompatibility, environmentally friendly and is non-toxic in nature [46,47]. On one hand,
ZnO NPs have antibacterial properties that inhibit the growth of both Gram-positive and
Gram-negative bacteria, which may be optimal as an antifouling mechanism in sorbent
media [48,49]. ZnO NPs are cheap compared to carbon-based nanomaterials, can be pro-
duced on a large scale, have a good photocatalytic performance and have a high removal
efficiency of various inorganic pollutants such as heavy metals [47,48,50]. Li et al., 2014 [51]
reported that ZnO NPs can adsorb heavy metals by the various kinds of hydroxyl groups
present on their surface. Several studies have used ZnO for the removal of toxic pollu-
tants, such as Cr (VI), Ni(II), Pb(II) [52–56]. However, few studies have focused on the
removal of Cu(II) [57,58]. Wang et al. [59] showed that ZnO particles encapsulated in
hollow microspheres are more efficient for the removal of Cu(II), Cd(II) and Pb(II) cations
than commercial ZnO particles. Meanwhile, Primo et al., 2020 [60] showed a high removal
of Cu(II) ions with ZnO NPs synthesized using the Aloe vera green synthesis route. Despite
this, there are very few studies that have focused on the removal of Cu(II) from acidic
waters where Cu(II) ions can be found in higher concentrations. Indeed, the adsorption of
Cu(II) ions onto ZnO NPs is poorly covered in the literature, and there are practically no
studies in acidic waters. Hence, the relevance of pH in the adsorption efficiency of Cu(II)
should be studied to evaluate the potential scaling of ZnO nano-adsorbents in acidic water
treatment technologies.

In this work, we presented our preliminary results about the use ZnO NPs as nano-
adsorbents of Cu(II) ions from AMD waters. Cu(II) removal rates were evaluated in
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batch adsorption tests under different pHs. Experimental data were fitted using different
isotherms models in adsorption experiments. Using ZnO NPs has the advantage of having
a good cost-effectiveness ratio compared to other nanomaterials such as graphene, CNTs
and magnetic nanoparticles (Appendix B). The study of the adsorption capacity under
different pHs will allow exploring potential uses as emerging and sustainable technologies
for the removal of Cu(II) from AMD waters. In addition, knowing the removal effectiveness
in AMD waters allows determining its chemical and functional stability under more
aggressive conditions, which can give it a comparative advantage compared with other
commercial adsorbents and can promote effective scaling in real conditions.

2. Materials and Methods
2.1. Materials

Commercially produced ZnO NPs (≤100 nm) were purchased from SigmaAldrich
(St. Louis, MO, USA) and in this study were used without further purification. Cooper-
enriched synthetic acid wastewater was prepared by adding NaNO3 and CuSO4·5H2O
to deionized (DI) water. Sulfuric acid (H2SO4), hydrochloric acid (HCl), and absolute
ethanol (C2H5OH) were purchased from Merck. All the reagents and solvents used were
of analytical reagent grade and all solutions were prepared with deionized (DI) water.

2.2. Preparation of ZnO Nanoadsorbents

ZnO NPs with an average size of 100 nm were used in batch adsorption experiments.
The ZnO NPs suspension was obtained through the dispersion into absolute ethanol
(0.33 mg·mL−1), and then the solution was sonicated for 40 min. Finally, the ZnO NPs were
separated from the liquid by centrifugation (4000 rpm, t = 30 min), washed three times
with ethanol and kept hermetically sealed until their use in adsorption studies.

2.3. Characterization Techniques

Prior to adsorption experiments, ZnO NPs were characterized using Raman spec-
troscopy, scanning electron microscope (SEM) coupled with energy-dispersive X-ray spec-
troscopy (SEM-EDX), field emission scanning electron microscopy (FESEM) and Brunauer–
Emmett–Teller analysis.

Raman spectra were recorded using WITec Alpha 300 RA confocal Raman microscope
with AFM (WITec GmbH, Ulm, Germany). The scanning electron micrographs were
determined by using a scanning electron microscope (SEM) (JSM-IT300LV, JEOL, Tokyo,
Japan) coupled with energy-dispersive X-ray spectroscopy (Oxford Instruments, High
Wycombe, UK) (SEM-EDX). The scanning electron micrographs (SEM-EDX) were used
to confirm the nanoparticle size and elemental mapping on the nanometer scale of ZnO
NPs. On the other hand, field emission scanning electron microscopy (FESEM) images of
the ZnO NPs were obtained using a scanning electron microscope (Quanta 250 FEG, FEI
Co., Hillsboro, OR, USA) equipped with an EDX (XFlash 5010; Bruker AXS Microanalysis,
Berlin, Germany). The FESEM images were used to analyze the surface topography and
fine morphology of the ZnO NPs.

The specific surface area and pore volume of the ZnO NPs were determined by
Brunauer–Emmett–Teller analysis (BET) N2 adsorption–desorption analysis (Micromeritics
Instruments Corp., Norcross, GA, USA). Finally, the pH of the point of zero charge (pHPZC)
and zeta potential for ZnO NPs was determined by adjusting 0.01 M NaCl solutions to
different pH values from 2 to 12 using 0.1 M NaOH and 0.1 M HCl added dropwise. Then,
30 mg of ZnO NPs were added to test tubes with 40 mL of the different pH solutions and
shaken at 380 rpm at room temperature for 24 h. The final pH and zeta potential were
measured using a pH meter (PHC301, HACH, Loveland, CO, USA) [41,61].

2.4. Batch Adsorption Studies

Equilibrium isotherms for Cu(II) were obtained in batch adsorption studies using
ZnO NPs as nano-adsorbents. Experiments were performed Cu(II) concentrations ranging
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between 3.0 and 24.0 mg·L−1. The Cu(II) solution was prepared by adding CuSO4·5H2O
to deionized (DI) water.

The experiments were performed under two pHs: (1) with the resulting pH of the
prepared solutions (Cu(II) solution + ZnO NPs) (pH = 4.8), and (2) with the pH adjusted to
4 by adding 0.01 M HCl (pH = 4.0) drop-wise and with continuous pH measurement until
pH 4.0 was reached. For batch experiments, 20 mg of the ZnO NPs were added into 40 mL
tubes with variable concentrations of Cu(II). The experiments were conducted in triplicate
with shaking (380 rpm) in the dark at room temperature for 20 h for adsorption/desorption
equilibrium. After the solutions reached equilibrium, they were centrifuged (6000 rpm,
5 min) to separate the solution from the ZnO NPs. The resulting supernatant was then
filtered using 0.22 µm membranes to analyze the residual Cu(II) concentrations. Scanning
electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (SEM-EDX)
was used to analyze the morphology and elemental composition of the surface of ZnO NPs
before and after Cu(II) adsorption in batch experiments.

The sorption capacity at equilibrium Ce (mg·g−1 sorbent) was calculated using Equa-
tion (1):

qe =
(C0 − Ce)·V

m
, (1)

where C0, Ce, V, and m correspond to the initial concentration (mg·L−1), the aqueous-phase
equilibrium metal concentration (mg·L−1), the volume of suspension (L), and the mass of
the adsorbent (g), respectively.

Similarly, the Cu(II) ions removal efficiency (η) of ZnO particles was calculated using
Equation (2):

η (%) =

(
C0 − Ct

C0

)
·100, (2)

where C0 and Ct were the concentration of metal ions at the initial and time t, respectively.
To study the effect of other ions on adsorption efficiency, multimetallic water was

prepared at three different concentrations: (1) 3 mg·L−1 of Cu (Added as CuSO4·5H2O),
Mn (Added as MnSO4·H2O) and Al (Added as KAl(SO4)2·12H2O); (2) 12 mg·L−1 of Cu,
Mn and Al; and (3) 22 mg·L−1 of Cu, Mn an Al. In this way, it is sought to emulate more
realistic wastewater, with the presence of other ions in the solution.

2.5. Adsorption Isotherms

From data obtained experimentally in batch configurations, the Langmuir, Freundlich
and Temkin isotherm models were fitted. The Langmuir model assumed that the ad-
sorption surface sites have identical energy and each adsorbate molecule (Cu(II) in this
study) is positioned in a single place, forming a monolayer of sorption on the adsorbent
surface [62,63]. On the contrary, the Freundlich model describes reversible heterogeneous
adsorption without restricting the adsorption process to a single monolayer [64]. For this
reason, the Freundlich isotherm predicts that the adsorbate concentration on the adsorbent
will increase without saturation according to how to increase the adsorbate concentration
in the liquid solution [65].

The sorption capacity q (mg·g−1 sorbent) was obtained using Langmuir, Freundlich
and Temkin models. Temkin Model was used to evaluate if the adsorption behavior can
be better described for another model [66]. For this, Equations (3)–(5) were used for each
model, respectively [63].

Langmuir model:

q =
qLKlCe

1 + KLCe
, (3)

where qL is the amount of adsorption corresponding to a monolayer coverage, KL is
the Langmuir constant associated with the energy of adsorption, and Ce is the metal
concentration at the equilibrium in an aqueous solution (mg·L−1).
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Freundlich model:
q = KFC

1
n
e , (4)

where KF is the constant related to adsorption capacity, n corresponds to the constant
associated with adsorption intensity, and Ce is the metal concentration at the equilibrium
in aqueous solution (mg·L−1).

Temkin model:
q = BInAtCe, (5)

where B is an abbreviation of RT(bt)−1, where R, T and bt represent the gas constant
(8.314 J·mol−1·K−1), absolute temperature (K) and Temkin isotherm constant, respectively,
At corresponds to the Temkin isotherm equilibrium binding constant (L·g−1) and Ce is the
metal concentration at the equilibrium in aqueous solution (mg·L−1).

2.6. Surface Roughness Analysis

The surface roughness of the ZnO NPs was analyzed before and after Cu(II) adsorption.
Specifically, Gwyddion software was used to examine the surface characteristics of SEM
images of ZnO NPs [67]. Several surface roughness representative parameters were selected
according to Zhao et al., 2019 [68]. The parameters selected were mean roughness (Ra), the
mean square roughness (Rq), the surface skewness (Rsk) and the kurtosis coefficient (Rku).

Roughness average (Ra) is the average deviation of all points roughness profile from
a mean line over the evaluation length and is used to represent the mean value of the
surface roughness of the sample [68]. Ra is calculated using Equation (6):

Ra =
1
N ∑N

j=1

∣∣rj
∣∣, (6)

where the N are the number of scanning points on the sample.
Root mean square roughness (Rq) is defined as the average of the measured height

deviations taken within the evaluation length and measured from the mean line [68]. Rq
is used to determine the degree of change in the surface roughness of a sample and is
calculated using Equation (7):

Rq=

√
1
N ∑N

j=1 r2
j , (7)

The surface skewness (Rsk) is a measure of the asymmetry of the amplitude distribution
function of the sample and quantifies the symmetry of the variation in a profile about its
mean line [68]. Specifically, Rsk represents the integrity of the surface roughness of a specific
sample [68]. Thus, a value of Rsk equal to zero shows that the surface height distribution is
normal. A negative Rsk value shows that the surface height distribution is biased to the
left, which represents that there is more area where the sample surface height is above the
mean value. On the contrary, a positive Rsk value shows that the distribution is biased to
the right and therefore there is more area where the sample surface height is below the
mean value [68]. Rsk is calculated using Equation (8):

Rsk =
1

NR3
q

∑N
j=1 r3

j , (8)

Kurtosis (Rku) is related to the uniformity of the amplitude distribution function of
the sample [68]. A value of Rku equal to zero shows that the surface height distribution
of the sample follows a normal distribution. A negative value shows that the waveform
associated with the surface height distribution is flat, so the surface height of the sample is
distributed throughout the sample, while a positive value of Rku shows the waveform has
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a peak, and the surface height of the sample is concentrated at the mean value of one or
several peaks [68]. Rku is calculated using Equation (9):

Rku =
1

NR4
q

∑N
j=1 r4

j , (9)

2.7. Kinetic Experiments

The kinetic behavior of Cu(II) adsorption with ZnO NPs was studied using 20 mg
of ZnO NPs in 40 mL of Cu(II) solution. Cu(II) concentration used was 25 mg·L−1. The
solutions were shaken at 380 rpm at room temperature (22–25 ◦C) and sampling was
performed at 10 min, 30 min, 1 h, 2 h, 4 h, and 24 h. The Cu(II) removal was plotted in
function of time. In order to analyze the uptake rates of Cu(II) ions, a kinetic analysis using
pseudo-first-order and pseudo-second-order kinetic equations was performed.

The pseudo-first-order kinetic model was represented by Equation (10) according to
Ding et al. [69].

log(qe − qt) = log qe −
k1

2.303
t, (10)

where k1 corresponds to first-order adsorption constant (min−1), qe is the adsorption
capacity at equilibrium (mg·g−1), qt is the adsorption capacity at the time t (mg·g−1).

The pseudo-second-order kinetic model was represented by Equation (11) according
to Ho and McKay [70].

t
qt

=
1

k2q2
e
+

t
qe

, (11)

where k2 is the second-order adsorption constant (g·mg−1·min−1), qe is the adsorption
capacity at equilibrium (mg·g−1), qt is the adsorption capacity at the time t (mg·g−1).

The linearized form of these kinetic models was plotted. From the trend line of the
experimental data, the kinetic constants and parameters were determined using the slope
and intercept values obtained in each case.

The approaching equilibrium factor (Rw) was calculated to characterize the kinetic curve
behavior of the pseudo-second-order model using Equation (12) according to Wu et al. [71]

Rw =
1

1 + k2qetre f
, (12)

where k2 is the second-order adsorption constant (g·mg−1·min−1), qe is the adsorption capacity
at equilibrium (mg·g−1) and tre f is the longest operation time (based on kinetic experiments).

Finally, the Gibbs free energy (∆G0) was determined as a thermodynamic parameter
that indicates the degree of the spontaneity of an adsorption process where a higher
negative value indicates a more energetically favorable adsorption process [72]. The ∆G0

parameter was determined as follows [73,74].

∆G0 = −RT ln K (13)

where R, T and K is the gas constant (8.314 J·mol−1·K−1), absolute temperature (K) and the
equilibrium constant (L·g−1).

2.8. Chemical Analyzes

Cu(II) cations concentrations were measured using a UV-vis spectrophotometer
(DR3900, Hach, Loveland, CO, USA) and pH (PHC301, Hach, Loveland, CO, USA) was
measured to adjust pH of experimental solutions before batch adsorption experiments of
second pH (pH adjusted to 4.0) and immediately after sample collection using a multi-meter
(Hq40d Multi, Hach, Loveland, CO, USA).
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2.9. Quality Assurance/Quality Control (QA/QC)

Quality assurance/quality control (QA/QC) procedures were performed for all the
analyzes carried out in this study, to ensure the quality, reproducibility, and accuracy of the
obtained results. All equipment was calibrated prior to its use in this study and periodically
during its development according to the instrument guidelines. All the chemical reagents
used in this study were analytical grade. Additionally, all materials used in the experiments
and sampling were neatly cleaned and rinsed with Milli-Q water.

The accuracy and precision of the measurements of Cu(II) were checked and compared
against blank samples and synthetic standard samples of known concentration. The batch
adsorption isotherms were carried out in triplicate and the analytical measurements of pH
and Cu(II) were verified by performing triplicate readings.

3. Results and Discussion
3.1. Adsorbent Characterization
3.1.1. Raman Spectroscopy

Raman spectrum of ZnO NPs is shown in Figure 1. The main peaks are identified in the
figure. There was no detectable variation in the peaks frequency of different points analyzed
in different areas of the sample. The main peaks at 95 cm−1 and 438 cm−1 are characteristic
of ZnO and correspond to phonon frequencies E2

low and E2
high, respectively [75,76]. The

peak at 330 is associated with the process E2
high − E2

low [77]. Therefore, the peaks obtained
in the Raman analysis are consistent with the characteristic peaks of ZnO. In summary, the
analysis of this spectrum indicates that the NPs used in this study effectively correspond to
ZnO NPs.
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Figure 1. Raman spectrum of the ZnO NPs.

3.1.2. Brunauer–Emmett–Teller (BET) Analysis

Figure 2 shows adsorption/desorption curve of ZnO NPs. A hysteresis loop with
typical characteristics of type H3 can be observed in isotherms, typical of type 3 and
5 isotherms. In addition, from the analysis, it can be observed that ZnO NPs showed higher
values for BET surface area, reaching a value of 45.58 m2·g−1. The pore size distribution
curve was determined using the Barrett–Joyner–Halenda (BJH) method. The average
pore volume (Vp) and pore diameter (Dp) were found to be 30.87 nm and 0.3 cm3·g−1,
respectively. Similar results were observed by Zafar et al. [78] reaching values 0.211 cm3·g−1

for Vp and 27.44 nm for Dp. These data show that ZnO NPs have a large exposed surface,
which can favor surface adsorption processes of heavy metals.
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3.1.3. Scanning Electron Microscopy (SEM)

The morphology of ZnO NPs can be observed in Figure 3a,b. The ZnO NPs show
small spherical particles with uniform shapes (Arrows). The different sizes of NPs could
be a consequence of the formation of interconnected agglomerates between NPs, which
could cause a decrease in the available surface area. The field emission scanning electron
microscopy (FESEM) (images not shown) confirmed that the ZnO NPs are nano in size
(<100 nm).
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The surface chemical composition of ZnO NPs was determined by EDX analysis.
The energy peaks of Zn and O are clear in EDX spectrum of ZnO NPs (Figure 3c). From
the elemental analysis, it is observed that ZnO NPs, as expected, are composed of Zinc
(59.6% wt) and Oxygen (40.4% wt). Furthermore, the absence of other peaks suggests that
the purity of the NPs used in this study was high.

The pHpzc value was obtained for ZnO NPs through the plot of initial pH values and
final pH (Figure 4a). A value of 6.21 for ZnO NPs was determined. Other studies have re-
ported higher pHpzc values. For example, Kataria and Garg [79] reported pHpzc values of
6.9. Meanwhile, Chauhan et al. [80] reported pHpzc values of 7.5. The differences observed
with other studies may be a consequence of the method of synthesis, the aggregation of the
NPs, the presence of impurities, among other factors. The pHpzc corresponds to the pH
in which the positive and negative charges are equal on the surface of an adsorbent [81].
Therefore, the surface of ZnO NPs will be positively charged if pH < pHpzc, while it will
have a net negative charge if pH > pHpzc. This parameter is important for the heavy
metal adsorption process by ZnO NPs, since at values higher than pH = 6.21 the ZnO NPs
surface will be negatively charged enhanced electrostatic attraction between heavy metal
cations (such as Cu(II)) and ZnO surface. On the contrary, at lower pH values (<pHpzc)
the adsorption process will not be as effective as there are higher repulsive forces. Even so,
the adsorption process is not determined solely by this parameter, but will also depend
on the surface area, the density of pores, the presence of competitors, among other factors.
Conversely, the measurement of the zeta potential reveals that the pH where the surface
potential of the material is zero, the isoelectric point (IEP) [82] (Figure 4b), is 10.2, a value
higher than that obtained at the pHPZC. The values of pHPZC and IEP must be equal if
H+ and OH- are the only potential determining ions. Therefore, the difference obtained
between these two values may be because other specific adsorptions are occurring [83,84].
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3.2. Adsorption Experiments

Adsorption experiments were carried out at two pHs, to study the effect of pH in
adsorption capacity at pH values typical of AMD waters in northern Chile. The sorption
capacity qe at different equilibrium Cu(II) concentrations (Ce) are presented graphically
in Figure 5. According to experimental data, the maximum sorption capacity for Cu at
pH1 (pH = 4.8) was 47.5 mg·g−1 (Figure 5a), reaching a maximum removal rate of 98.4%
(Figure 5c), while at pH2 (pH = 4.0), the maximum sorption capacity was 40.2 mg·g−1

(Figure 5b) and the maximum removal rate was 93.7% (Figure 5d). Furthermore, it is
possible to observe that at pH = 4.8, removal rates close to 100% are reached even at
low concentrations of the metal ion, while at pH = 4.0, the sorption capacity reaches the
maximum values at initial concentrations higher than 8 mg·L−1. Previously, Gu et al. [85]
studied the adsorption of Cu and other metals onto ZnO NPs. They reported a maximum
sorption capacity of around 16 mg·g−1 in a multimetallic solution, where Cu is the second
with more affinity with the adsorbent after Cr, which demonstrates the effectiveness of
ZnO NPs for copper adsorption.
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The effect of pH on the removal efficiency of Cu was studied (Appendix C). According
to the results obtained, it is possible to observe that in the pH range of 4 to 10, the removal
percentage was higher than 90%. At pH 2, the removal efficiency decreases considerably,
reaching an average of 29%. Therefore, the removal percentage increases with increasing
pH A substantial increase is observed between pH 2 and 5, and then it stabilizes around
99%, with a maximum value of 99.7% at pH 8. These results are consistent with the previous
study of Yoshida [86] who observed leaching of ZnO at pH below 3. Although there are
no previous studies on the effect of pH on Cu adsorption by ZnO NPs, some studies have
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reported the effect of pH in the adsorption of different metals using ZnO. Sheela et al. [87]
Sheela reported that the removal rates of Zn, Cd and Hg increased when the pH of the
solution increased in a range of 4 to 8, and particularly, an increase between 5 and 15% in
the removal rates was observed with increasing the pH from 4 to 5. Gu et al. [85] observed
that the Cr adsorption capacity in ZnO NPs remained practically constant, with a slight
tendency to decrease, between pH 3 and 7. The predominant factor that determines the
effect of pH on adsorption corresponds to pHPZC, which could explain the differences
between the results reported by the previous studies. In our study, the pHPZC value for
ZnO NPs was 6.21, which indicates that at a pH higher than the pHPZC, the adsorbent
surface is negatively charged, so the affinity for metal ions such as Cu is improved [88–90].
Therefore, the slight increase in adsorption capacity at higher pH observed in our study
can be explained because of the pHPZC value.

The study carried out using multimetallic water with equal concentrations of Cu(II),
Mn(II) and Al(III) shows that the removal efficiency of Cu is not affected by the presence
of other ions in the solution. In the range of concentrations studied, the removal of Cu
remained above 95% both in the tests carried out without pH adjustment and at pH 4.0
(Figure 6). Likewise, it is possible to observe that the ZnO NPs also showed a great affinity
for the removal of Al, with removal efficiencies above 94%. Finally, Mn did not show
significant adsorption on ZnO. Therefore, for the range of concentrations studied, the effect
of the competition is not significant for the sorption capacity of Cu (II).
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Because at low pH the ZnO NPs dissolve in the aqueous solution, the desorption
process is not feasible by acidifying the adsorbent medium, as has been reported for
many other materials [41,91,92]. For the recovery of ZnO, it is possible to consider ultra-
sonication methods to promote the desorption process and thus allow the reuse of the
material. Previous studies have shown the efficiency of this method for activated carbon,
among others [93–96]. There are no previous studies that account for the effectiveness of
ultra-sonication for the desorption of ZnO NPs, remaining as a future perspective from
this work.

SEM images of ZnO NPs at 500×, 2000×, 4000× and 5000× magnifications before
adsorption of Cu(II) ions are shown in Figure 7 a–d. As seen, the ZnO NPs before contacting
with Cu(II) solution are shown as clusters of aggregate particles with a rough surface and
flat and irregular shapes. It has been reported that the surface energy of the photocatalyst
materials, such as ZnO and TiO2 NPs increases due to its smaller particle size [97]. This
may support the agglomeration observed in the ZnO NPs. The specific morphologies
observed in the highly porous structure of ZnO NPs support their use as nano-adsorbents
for metal cations such as Cu(II) ions. Figure 7e shows the EDX spectra of ZnO NPs before
adsorption of Cu(II) ions. As seen in Figure 3c, it is observed that the atomic ratio (Zn/O)
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of ZnO NPs is near to 1.5:1, which confirms the chemical nature of the ZnO NPs used for
the adsorption process of Cu(II) ions.
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Figure 7. (a–d) Scanning electron micrographs before adsorption of Cu(II) ions (pH = 7.0) (e) SEM-EDX spectra and
elemental mapping (atomic percentage %) of ZnO NPs before adsorption of Cu(II) ions. The magnifications shown in SEM
images were 500× (a), 2000× (b), 4000× (c) and 5000× (d).

Figure 8 a–d shows SEM images of ZnO NP at magnifications of 500×, 1000×, 5000×
and 10,000× after adsorption of Cu (II) ions. As can be seen in the SEM images, the
morphology and size of ZnO NPs after reacting with the Cu(II) solution do not change
significantly because of the adsorption of Cu(II) ions. The shape of ZnO NPs has no clear
change after the adsorption of Cu(II) ions. This is consistent with those reported in other
studies that have used ZnO NPs to adsorb metal ions such as Cr(III) [85,98]. Similarly, after
adsorption of Cu (II) ions, the ZnO NPs appear to be aggregated in clusters, which occurs
because of their higher surface energy. For adsorption processes, it has been observed that
microporous materials (pore size < 2 nm) are more selective for adsorption and separation,
while macroporous materials (pore size > 50 nm) and mesoporous materials (pore size
between 2–50 nm) due to their larger pores allow different adsorbates to penetrate through
them [99]. The EDX results (Figure 8e) show the adsorption of Cu(II) ions, which confirms
what was seen in the adoration isotherms (Figure 5). The atomic mapping showed 2.85%
weight percentage of Cu, 25.8% weight percentage of O and 71.4% weight percentage of
Zn. This strongly supports the idea that Cu(II) was adsorbed onto the surface of ZnO NPs,
which shows the key role these NPs play in the uptake of Cu (II) ions from AMD waters.
Interestingly, the removal of Cu(II) ions by ZnO NPs are not significantly affected by acidic
conditions (pH = 4.0). A remarkable aspect is the ability of ZnO NPs to maintain their
structure before and after the adsorption of Cu(II) ions at acidic pH. In fact, it can be seen
that the morphology of ZnO NPs does not change considerably at pH = 4 (adsorption of
Cu(II) ions). Thus, this may be a key factor in promoting and scaling the use of ZnO NPs
in acidic water treatment systems and metal cation removal applications. Even so, it is
necessary to deepen the changes at the nanostructure level of ZnO NPs, which could be
the consequence of the most aggressive acidic conditions.

To complement the adsorption analysis, the experimental data were fitted using
Langmuir, Freundlich and Temkin isotherm models. The parameters for these models are
summarized in Table 1. The Langmuir isotherm presented an R2 value of 0.965 for the
pH1. However, the values of the parameters qm and KL presented negative values, which
cannot be because both parameters represent mass properties. With pH2, the coefficient
of determination showed a poor fit and, again, the model parameters presented negative
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values. In this way, it is ruled out that the adsorption process studied is explained by
a type of monolayer adsorption [100]. For the case of pH1, the best fit corresponds to the
Freundlich model, which describes multilayer adsorption onto a heterogeneous surface of
the adsorbent [101–103]. Here, the stronger binding sites are occupied until the adsorption
energy decreased [104]. At pH2, the model that best describes the adsorption process
corresponds to the Temkin isotherm, in which is assumed that the heat of adsorption of
all the molecules in the layer decreases linearly rather than logarithmically as equilibrium
adsorption capacity increases [101]. Both settings are presented in Figure 5a,b. Although
the best fit model is different in the studied pH values, both have the particularity of
describing a type of multilayer adsorption.
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Figure 8. (a–d) Scanning electron micrographs after adsorption of Cu(II) ions (pH =4.0). (e) SEM-EDX spectra and elemental
mapping (atomic percentage %) of ZnO NPs after adsorption of Cu(II) ions. The magnifications shown in SEM images were
500× (a), 1000× (b), 5000× (c) and 10,000× (d).

Table 1. Parameters for the Langmuir, Freundlich and Temkin isotherm models for Cu(II) adsorption performed under two pHs.

Langmuir Freundlich Temkin

pH Nano-
Adsorbent

qm
(mg·g−1)

KL
(L·mg−1) R2 KF

(L·g−1) n R2 KT
(L·g−1)

BT
(mg·L−1) R2

pH 4.8 ZnO −18.28 −2.1 0.965 264.85 0.56 0.988 8.69 34.45 0.908
pH 4.0 ZnO −6.64 −0.75 0.739 22.75 0.42 0.830 1.89 41.98 0.975

At pH values lower than 5, the dominant copper species is its divalent form Cu(II)
and in the pH range studied in this work (4.0–4.8), copper speciation should be similar in
both pHs [30,105]. Although the differences in the sorption capacity between the two pHs
are slight, the differences are mainly explained by the surface charge of the ZnO NPs as
a function of the pHPZC value. In this way, the chemical interaction between the functional
groups of the NPs and Cu(II) could explain the adsorption mechanism. Although both
pH values are below the pHPZC, and yet the removal rates obtained were close to 100%, it
is possible to deduce that physical adsorption plays an important role in the adsorption
mechanism. This can also be confirmed by the high BET surface area value found for ZnO
NPs (45.58 m2·g−1, Figure 2), which may support the idea that physical adsorption is the
dominant mechanism overcoming the repulsions generated by being below the pHPZC.

The thermodynamic parameter ∆G0 was determined using the equilibrium constant
obtained from Temkin and Freundlich fit for the experiments with and without adjusting
pH, respectively since these isotherm models presented a better fit for each case. The
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results are presented in Table 2. According to the values obtained, the adsorption test at
pH 4.8 presented a higher negative value than in the case at pH 4, so that at a higher pH
the adsorption process is energetically more favorable.

Table 2. Gibbs free energy (∆G0) for adsorption processes under two pHs.

pH K (L·g−1) ∆G0 (kJ·mol−1)

pH 4.8 264.85 −13,829.74
pH 4.0 1.89 −1577.96

3.3. Surface Analysis: Roughness

To analyze changes at the nanostructure level of the ZnO NPs before and after react-
ing with Cu(II) solution, SEM images and their corresponding 3D surface profiles were
determined through image Gwyddion software. SEM images are directly related to their
real relief and therefore these images can be used to determine changes in the surface
roughness of a specific material. Likewise, changes in roughness can be the consequence of
chemical reactions on the surfaces of ZnO NPs. In this way, these analyzes can provide
quantitative data on changes in surface roughness because of the effect of chemical ad-
sorption conditions or interactions with specific adsorbates. Figure 9 shows 3D images of
the ZnO NP before (Figure 9a) and after (Figure 9b) adsorption of Cu(II) ions. It is clearly
observed that the surface roughness of ZnO NPs prior to the adsorption of Cu(II) ions is
greater than after contacting the Cu(II) solution at pH = 4.0. This can be a consequence of
more aggressive pH conditions that wear away the nano-adsorbent surface (ZnO NPs).
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Figure 9. 3-D SEM images and surface roughness parameters of ZnO NPs before (a) and after (b) Cu(II) adsorption. The
3-D SEM images and surface roughness parameters (Ra, Rq, Rsk and Rku) were obtained by the Gwyddion software.

For quantitative analysis, the surface roughness parameters Ra, Rq, Rsk and Rku were
obtained by the Gwyddion software (Figure 9a,b). The Ra values of ZnO NPs before
adsorption of Cu(II) ions shows an average value of 29.997 ± 8.663, while Ra values
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of ZnO NPs after adsorption of Cu(II) ions shows an average value of 9.348 ± 1.281,
evidencing a marked decrease in surface roughness by approximately 70%. This shows that
more aggressive acidic conditions (pH = 4.0) can produce changes at the nanostructural
level, although these changes are not evident in changes in the morphology, shape, and
particle size of the ZnO NPs. The Rq of ZnO NPs before and after adsorption Cu(II) ion
were 37.920 ± 11.077 and 11.877 ± 1.690, respectively. This shows that surface roughness
variation in ZnO NPs before adsorption of Cu(II) ions is higher than that in ZnO NPs
after adsorption of Cu(II) ions, which suggests that acidic solutions enriched in Cu(II)
can homogenize the surface of the ZnO NPs. The Rsk values were very similar for the
samples of ZnO NPs before and after the adsorption of Cu(II) ions. Even so, the Rsk values
were positive for ZnO NPs before the adsorption of Cu(II) ions, which shows that in these
samples there are more troughs than peaks on the surface. On the contrary, Rsk values were
negative for ZnO NPs after adsorption of Cu(II) ions, showing that in these samples that
there are fewer troughs than peaks. Finally, the Rku values were similar for both conditions,
before (3.344 ± 0.284) and after (3.232 ± 0.213) the adsorption of Cu(II) ions. This shows
that the shape of the pore size distribution is concentrated in both conditions. It has been
observed that the joint strength between adhesive and adherent is influenced by the surface
roughness of the adherents [106]. Therefore, the surface roughness of the nano-adsorbent
(e.g., ZnO NPs) could also be critical for adsorbate–adsorbent interactions.

3.4. Kinetic Studies of the Adsorption

The study of the adsorption kinetics showed that after 240 min of contact time, removal
of over 90% of Cu(II) is achieved (Figure 10). The experimental data were fitted with
pseudo-first-order and pseudo-second-order kinetic models. Table 3 summarizes the kinetic
parameters obtained for both models. According to R2 and qe values, it could be determined
that the pseudo-second-order presented a better fit. The pseudo-second-order describes
a sorption process mainly controlled by the adsorption reaction at the liquid/solid interface
at the adsorbent, in contrast to the pseudo-first-order model, which describes a diffusion-
controlled process [41,107]. Previous studies about the use of ZnO NPs for the adsorption
of different pollutants, such as Zn, Cd, Hg, Cr, among others, have shown that the pseudo-
second-order model is the one that best adjusts to the adsorption kinetics [85,87,108,109].
The approaching equilibrium factor (Rw) obtained was 0.024, which is related to a type
of kinetic curve largely curved. This value also shows a well-approaching equilibrium
level [69].
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Table 3. Kinetic adsorption parameters for pseudo-first-order and pseudo-second-order models.

qexp
e

(mg·g−1)

Pseudo-First-Order Pseudo-Second-Order

Nano-
Adsorbent

k1
(1·min−1)

qe1
(mg·g−1) R2 k2 (g·mg−1

min−1)
qe2

(mg·g−1) R2

ZnO 49.94 0.011 28.94 0.922 0.0054 51.28 0.999

4. Conclusions

The results show that ZnO NPs have a great affinity for Cu(II) ions, getting adsorption
capacities even higher than previous studies. The characterization analyzes of the nano-
adsorbent allowed us to observe that the ZnO NPs form agglomerations, which could
decrease the total surface area and give an underestimated result of this value through
the BET analysis. Raman confirmed the presence of ZnO NPs and SEM-EDX and FESEM
confirmed that the ZnO NPs are of nano size (<100 nm).

The study of different pHs demonstrates that even though large variations in adsorp-
tion capacity do not occur when the pH varies between 4.0 and 4.8, a slight improvement is
observed at pH 4.8, which is mainly explained by the value of pHPZC of the nano-adsorbent,
corresponding to 6.21. It is expected that, at pH values higher than pHPZC, the adsorption
capacity will be even higher. In addition, it is possible to observe that at pH 4.8 the removal
rate is higher at low concentrations than at pH 4. The results suggest that the adsorption
process occurs by a physical mechanism rather than by chemical adsorption since at the
evaluated pHs there are higher repulsions than attraction forces on the surface of ZnO NPs.
Likewise, the surface roughness analysis showed a marked decrease in surface roughness
of ZnO NPs by approximately 70% after adsorption of Cu(II) ions at pH 4.0, which shows
that more acidic conditions can produce changes at the nanostructural level. Although
these changes are not clear in the changes in the morphology, shape, particle size of the ZnO
NPs and in the removal rates of Cu(II) ions. Adjustments with isotherm models allowed
determining that adsorption occurs mainly because of the formation of multi-layers on the
surface of the ZnO NPs. The kinetics showed that the pseudo-second-order model better
fit the experimental data.

These findings contribute to a better understanding of the adsorption of Cu metal ions
onto ZnO NPs and the effect of slight variations in pHs. However, additional efforts are
necessary to improve the knowledge of the effect of pH under more extreme conditions and
considering multimetallic waters that represent a more realistic scenario in the composition
of AMD characteristic waters.
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Appendix A

Table A1. Costs of wastewater treatment technologies.

Technology Cost per Million Liters Reference

Adsorption USD 10 to 200
USD 50 to 150 [28,29]

Ion Exchange USD 50 to 200 [29]
Reverse Osmosis USD 200 to 450 [29]

Micro- and ultra-filtration USD 15 to 400 [29]
Electrodialysis USD 15 to 400 [29]

Appendix B

Table A2. Costs of nanomaterials for adsorption treatment technologies.

Nanomaterial Cost per Gram Reference

ZnO nanoparticles USD 7.6 [110]
Graphene USD 632.73 [111]

Carbon nanotubes USD 263 [112]

Appendix C
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