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SOLITON DYNAMICS FOR THE 1D NLKG EQUATION WITH

SYMMETRY AND IN THE ABSENCE OF INTERNAL MODES

MICHA L KOWALCZYK, YVAN MARTEL, AND CLAUDIO MUÑOZ

Abstract. We consider the dynamics of even solutions of the one-dimensional nonlinear
Klein-Gordon equation ∂2

t φ−∂2

xφ+φ−|φ|2αφ = 0 for α > 1, in the vicinity of the unstable
soliton Q. Our main result is that stability in the energy space H1(R) × L2(R) implies
asymptotics stability in a local energy norm. In particular, there exists a Lipschitz graph
of initial data leading to stable and asymptotically stable trajectories.

The condition α > 1 corresponds to cases where the linearized operator around Q has
no resonance and no internal mode. Recall that the case α > 2 is treated in [22] using
Strichartz and other local dispersive estimates. Since these tools are not available for low
power nonlinearities, our approach is based on virial type estimates and the particular
structure of the linearized operator observed in [6].

1. Introduction

1.1. Main results. Consider the one-dimensional focusing nonlinear Klein-Gordon equa-
tion

∂2
t φ− ∂2

xφ+ φ− f(φ) = 0, (t, x) ∈ R× R, f(φ) = |φ|2αφ, (1)

where α > 0. This equation also rewrites as a first order system in time for the function
φ = (φ, ∂tφ) = (φ1, φ2), {

φ̇1 = φ2

φ̇2 = ∂2
xφ1 − φ1 + f(φ1).

Let F (φ) =
∫ φ

0 f(s)ds = 1
2α+2 |φ|

2α+2. Note that (1) is Hamiltonian. The conservation of

energy of a solution (φ, ∂tφ) of (1) writes

E(φ, ∂tφ) =
1

2

∫ {
(∂tφ)

2 + (∂xφ)
2 + φ2 − 2F (φ)

}
= E(φ(0), ∂tφ(0)). (2)

For initial data in the energy space H1 × L2, local well-posedness, as well as global well-
posedness for small solutions, is well-known (see for example [5], Theorem 6.2.2 and Propo-
sition 6.3.3).

Denote by Q the standing wave solution of (1), also called soliton, explicitly given by

Q(x) =
(α+ 1)

1

2α

cosh
1

α (αx)
, Q′′ −Q+Q2α+1 = 0 on R.

The linearized operator L around Q writes

L = −∂2
x + 1− (2α + 1)Q2α = −∂2

x + 1−
(2α + 1)(α + 1)

cosh2(αx)
. (3)
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For any α > 0, the first eigenvalue of L is λ0 = −α(α + 2) = −ν2
0 (ν0 > 0) with

corresponding normalized eigenfunction

Y0(x) = c0 (cosh(αx))
−(1+ 1

α
) , 〈Y0, Y0〉 = 1, LY0 = −ν2

0Y0 (4)

(we denote 〈A,B〉 =
∫
A·B). The second eigenvalue of L is 0 with eigenfunction Y1 = c1Q

′.
In the case α > 1, there is no other eigenvalue in [0, 1), which means that there is no
internal mode for the model (see Section 1.3).

Let

Y± =

(
Y0

±ν0Y0

)
, Z± =

(
Y0

±ν−1
0 Y0

)
.

The functions u±(t, x) = e±ν0tY±(x) are solutions of the linearized problem

{
u̇1 = u2

u̇2 = −Lu2
(5)

illustrating the presence of exponentially stable and unstable modes both relevant in the
dynamics of solutions in the vicinity of a soliton.

In this paper, by global solution of (1), we mean a function φ ∈ C([0,∞),H1 × L2)
satisfying (1) for all t ≥ 0. We only consider solutions with even symmetry.

Our main result is the following conditional asymptotic stability theorem.

Theorem 1. Let α > 1. There exists δ > 0 such that if a global even solution φ = (φ, ∂tφ)
of (1) satisfies

for all t ≥ 0, ‖φ(t)− (Q, 0)‖H1(R)×L2(R) < δ (6)

then, for any interval I of R,

lim
t→+∞

‖φ(t)− (Q, 0)‖H1(I)×L2(I) = 0. (7)

For the sake of completeness, we provide a description of the set of initial data leading
to global solutions satisfying the stability assumption (6) (see also Theorem 4.1 in [2]).

For δ0 > 0, let

A0 =
{
ε ∈ H1(R)× L2(R) such that ε is even, ‖ε ‖H1×L2 < δ0 and 〈ε,Z+〉 = 0

}
. (8)

Theorem 2. Let α > 1. There exist C, δ0 > 0 and a Lipschitz function h : A0 → R with

h(0) = 0 and |h(ε)| ≤ C‖ε‖
3/2
H1×L2 such that denoting

M = {(Q, 0) + ε+ h(ε)Y+ with ε ∈ A0}

the following holds

(i) If φ0 ∈ M then the solution φ of (1) with initial data φ0 is global and satisfies,

for all t ≥ 0,

‖φ(t)− (Q, 0)‖H1(R)×L2(R) ≤ C‖φ0 − (Q, 0)‖H1(R)×L2(R). (9)

(ii) If a global even solution φ of (1) satisfies, for all t ≥ 0,

‖φ(t)− (Q, 0)‖H1(R)×L2(R) <
1
2δ0,

then for all t ≥ 0, φ(t) ∈ M.
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1.2. Related results and comments on the proof. First, we comment on two articles
devoted to soliton dynamics for the one-dimensional nonlinear Klein-Gordon equation (1).

Using techniques based on Strichartz and other local dispersive estimates, Krieger et
al. [22] have completely treated the case α > 2 in the case of even data. Indeed, they
classify all solutions whose energy does not exceed too much that of the ground state Q.
This includes the construction, by the fixed point argument, of a C1 center-stable manifold
around the soliton and the proof of asymptotic stability and scattering (linear behavior)
around the ground state for solutions on the manifold. The method seems limited to α ≥ 2
because of the use of Strichartz estimates to control the nonlinear term, see comment in
Section 3.4 of [22].

By formal and numerical methods, Bizoń et al. [4] have shown that for even solutions
trapped by the soliton, the convergence rate to Q heavily depends on the power α of the
nonlinearity. In the L∞ sense, they conjecture the following trichotomy: (a) fast dispersive
decay for α > 1; (b) slow decay for α = 1; (c) very slow decay for 0 < α < 1. The threshold
value α = 1 corresponds to the emergence of a resonance at the linear level, while α < 1
leads to one or several internal modes (see Section 1.3). Following these observations,
unifying the case α > 1 was the main motivation of the present work.

Our method does not give an explicit decay rate as t → +∞, but we notice as a
by-product of the proof of Theorem 1 that, for any interval I of R, it holds

∫ +∞

0
‖φ(t)− (Q, 0)‖2

H1(I)×L2(I)dt <∞. (10)

This is to be compared with the results obtained in [18] on the (local) asymptotic stability
of the kink for the φ4 model under small odd perturbations. Indeed, in the latter case, the
presence of an internal mode leads to a lower convergence rate since the component z(t) of

the solution along the internal mode only satisfies the weaker estimate
∫ +∞

0 |z(t)|4dt <∞
(see Theorem 1.2 in [18]). Although we do not claim optimality of such results, in the case
of (1) with 0 < α ≤ 1, we do not expect estimates such as in (10) to hold.

The proof of Theorem 1 is mainly based on localized virial type arguments similar to that
used in [18, 25, 27], for example. Unlike in these works, we avoid numerical computations
of certain constants related to the coercivity of the virial functional by using factorization
properties of the linearized operator described in [6] (see also references [29, 37], cited
in [6]). A formal presentation of this approach is given in Section 4.1. We point out that
the same structure was crucially used in the construction of blow-up solutions for the
wave maps, Yang-Mills and O(3) σ-models in [30, 31]. Note that in the present paper, we
compensate the loss of two derivatives due to the change of variables to still work in the
energy space.

We refer to [1, 16, 17, 19, 20, 23, 35, 36] for various results of asymptotic stability for
the nonlinear Klein-Gordon equation and φ4 equation or variants of these models.

Several other conditional asymptotic stability results or classifications in a neighborhood
of the ground state for the nonlinear Klein-Gordon in higher dimensions and for the
nonlinear Schrödinger equation were also obtained in [10, 11, 32, 34], for example. We
also mention [21] where for the mass supercritical Schrödinger equation in one dimension,
a finite co-dimensional manifold of initial data trapped by the soliton was constructed.

Concerning the generalized Korteweg-de Vries equation and related models, studies of
the dynamics of the solutions close to the soliton are presented in [9, 14, 15, 24, 26, 27,
28, 33], in blow-up contexts or for bounded solutions. Note that the method introduced
in [24, 26], using the special structure of a transformed linearized problem, also has some
analogy with our proof.

For global existence results in the case of semilinear and quasilinear wave equations, we
refer to [12, 13].
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Finally, we refer to [2, 3] and references therein for refined descriptions of dynamics of
solutions in various settings.

1.3. Resonances and internal modes. As mentioned before, the absence of any other
eigenvalue in [0, 1) for the operator L when α > 1 is important in our proof. For 0 < α ≤ 1,
we continue the description of the spectrum of L. For α = 1, there is an even resonance
at 1. For any 0 < α < 1, there is a third eigenvalue associated to an even eigenfunction

Y2(x) = c2Y0(x)

(
1−

2

α
sinh2(αx)

)
, λ2 = α(2 − α), ν2 = λ

1

2

2 .

In particular, for any 0 < α < 1, the function

u(t) = (cos(ν2t)Y2,−ν2 sin(γ2t)Y2)

is solution of (5). These solutions are typical of the notion of internal modes and show
that asymptotic stability (even up to the exponential instable mode) cannot be true at the
linear level for such value of α. An important issue is the nature of the interaction of such
internal mode with the nonlinearity. We recall that such an internal mode was treated in
the context of the φ4 equation in [18]. Pioneering results on internal modes were obtained
in [36]. See other references in [18].

For α ∈ (1
2 , 1), there are no other eigenvalue on [0, 1). For α = 1

2 , there is an odd

resonance at 1. For α ∈ (1
3 ,

1
2), there is a fourth eigenvalue, associated to an odd eigen-

function. For α ∈ (1
4 ,

1
3 ), there are five eigenvalues, three of them being associated to even

eigenfunctions. In particular, there are two even internal modes. This procedure can be
continued for all α > 0, showing the emergence of arbitrarily many internal modes (and
sometimes resonances) as α→ 0+.

The above information is taken from Section 3 of [6].

2. Preliminaries

2.1. Decomposition of a solution in a vicinity of the soliton. Let φ = (φ, ∂tφ) be
a solution of (1) satisfying (6) for some small δ > 0. We decompose (φ, ∂tφ) as follows{

φ(t, x) = Q(x) + a1(t)Y0(x) + u1(t, x)

∂tφ(t, x) = a2(t)ν0Y0(x) + u2(t, x)
(11)

where

a1(t) = 〈φ(t) −Q,Y0〉, a2(t) =
1

ν0
〈∂tφ(t), Y0〉,

so that
〈u1(t), Y0〉 = 〈u2(t), Y0〉 = 0. (12)

Setting

b+ =
1

2
(a1 + a2), b− =

1

2
(a1 − a2), (13)

we observe that φ also writes as

φ = (Q, 0) + u+ b−Y− + b+Y+, u = (u1, u2). (14)

From (6), for all t ∈ [0,∞), it holds

‖u1(t)‖H1 + ‖u2(t)‖L2 + |a1(t)|+ |a2(t)|+ |b+(t)|+ |b−(t)| ≤ C0δ. (15)

Moreover, using Q′′ − Q + f(Q) = 0, LY0 = −ν2
0Y0 and (12), the systems of equations

of (a1, a2) and (u1, u2) write





ȧ1 = ν0a2

ȧ2 = ν0a1 +
N0

ν0

equivalently





ḃ+ = ν0b+ +
N0

2ν0

ḃ− = −ν0b− −
N0

2ν0

(16)
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and {
u̇1 = u2

u̇2 = −Lu1 +N⊥ (17)

where
N = f(Q+ a1Y0 + u1)− f(Q)− f ′(Q)a1Y0 − f ′(Q)u1,

N0 = 〈N,Y0〉, N⊥ = N −N0Y0.
(18)

2.2. Notation for virial arguments. Let ρ be the following weight function

ρ(x) = sech
( x
10

)
. (19)

For any function w ∈ H1, consider the norm

‖w‖ρ =

[∫ (
(∂xw)

2 + ρw2
)] 1

2

. (20)

We consider a smooth even function χ : R → R satisfying

χ = 1 on [−1, 1], χ = 0 on (−∞,−2] ∪ [2,+∞), χ′ ≤ 0 on [0,+∞). (21)

For A > 0, we define the functions ζA and ϕA as follows

ζA(x) = exp

(
−

1

A
(1− χ(x))|x|

)
, ϕA(x) =

∫ x

0
ζ2
A(y)dy, x ∈ R.

For B > 0, we also define

ζB(x) = exp

(
−

1

B
(1− χ(x))|x|

)
, ϕB(x) =

∫ x

0
ζ2
B(y)dy, x ∈ R. (22)

and we consider the function ψ defined as

ψB(x) = χ2
B(x)ϕB(x) where χB(x) = χ

( x

B2

)
, x ∈ R. (23)

The notation X . Y means X ≤ CY for a constant independent of A and B.

These functions ζA, ϕA, ζB, ϕB and ψB will be used in two distinct virial arguments
with different scales

A≫ B2 ≫ B ≫ 1. (24)

3. Virial argument in u

Set

I =

∫ (
ϕA∂xu1 +

1

2
ϕ′
Au1

)
u2, (25)

and

w = ζAu1. (26)

We refer to [18] for the use of such virial argument in a similar context. Here, w represents
a localized version of u1, in the scale A (see (24)). We shall prove the following result.

Proposition 1. There exist C1 > 0 and δ1 > 0 such that for any 0 < δ ≤ δ1, the following

holds. Fix A = δ−1. Assume that for all t ≥ 0, (15) holds. Then, for all t ≥ 0,

İ ≤ −
1

2

∫
(∂xw)

2 +C1

∫
sech

(x
2

)
w2 + C1|a1|

4. (27)

Remark 1. Note that estimate (27) does not involve any type of spectral analysis. Its
purpose is to give a simple control of

∫
(∂xw)

2 in terms of
∫
sech(x2 )w

2 and |a1|
4.
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The rest of this section is devoted to the proof of Proposition 1. We compute from (25)

İ =

∫ (
ϕA∂xu̇1 +

1

2
ϕ′
Au̇1

)
u2 +

∫ (
ϕA∂xu1 +

1

2
ϕ′
Au1

)
u̇2.

Replacing u̇1 by u2 and integrating by parts, the first integral in the right-hand side
vanishes. The expression of u̇2 in (17) rewrites

u̇2 = ∂2
xu1 − u1 + f(Q+ a1Y0 + u1)− f(Q)− f ′(Q)a1Y0 −N0Y0,

and so

İ =

∫ (
ϕA∂xu1 +

1

2
ϕ′
Au1

)(
∂2
xu1 − u1

)

+

∫ (
ϕA∂xu1 +

1

2
ϕ′
Au1

)[
f(Q+ a1Y0 + u1)− f(Q)− f ′(Q)a1Y0 −N0Y0

]
.

To treat the first line in the expression of İ, we claim the following.

Lemma 1. It holds
∫ (

ϕA∂xu1 +
1

2
ϕ′
Au1

)
(∂2

xu1 − u1) = −

∫
(∂xw)

2 −
1

2

∫ (
ζ ′′A
ζA

−
(ζ ′A)

2

ζ2
A

)
w2. (28)

Moreover
ζ ′′A
ζA

−
(ζ ′A)

2

ζ2
A

=
1

A

[
χ′′(x)|x| + 2χ′(x) sgn(x)

]
(29)

and ∣∣∣∣
ζ ′′A
ζA

−
(ζ ′A)

2

ζ2
A

∣∣∣∣ .
11≤|x|≤2(x)

A
.

sech(x)

A
. (30)

Proof. Proof of (28). By integration by parts
∫ (

ϕA∂xu1 +
1

2
ϕ′
Au1

)
(∂2

xu1 − u1) = −

∫
ϕ′
A(∂xu1)

2 +
1

4

∫
ϕ′′′
Au

2
1.

We rewrite the above expression using the auxiliary function w. Indeed,
∫

(∂xw)
2 =

∫
(ζA∂xu1 + ζ ′Au1)

2 =

∫
ζ2
A(∂xu1)

2 + 2

∫
ζAζ

′
Au1∂xu1 +

∫
(ζ ′A)

2u2
1

=

∫
ϕ′
A(∂xu1)

2 −

∫
ζAζ

′′
Au

2
1 =

∫
ϕ′
A(∂xu1)

2 −

∫
ζ ′′A
ζA
w2

and so ∫
ϕ′
A(∂xu1)

2 =

∫
(∂xw)

2 +

∫
ζ ′′A
ζA
w2.

Next, ∫
ϕ′′′
Au

2
1 =

∫
(ζ2

A)
′′

ζ2
A

w2 = 2

∫ (
ζ ′′A
ζA

+
(ζ ′A)

2

ζ2
A

)
w2. (31)

Identity (28) follows.

Proof of (29)-(30). By elementary computations, we have

ζ ′A
ζA

= −
1

A

[
−χ′(x)|x|+ (1− χ(x)) sgn(x)

]
,

ζ ′′A
ζA

=
1

A2

[
−χ′(x)|x|+ (1− χ(x)) sgn(x)

]2
+

1

A

[
χ′′(x)|x|+ 2χ′(x) sgn(x)

]
,

which proves (29). Estimate (30) then follows from the definition of χ. �

To treat the second line in the expression of İ, we claim the following.
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Lemma 2.
∣∣∣∣
∫ (

ϕA∂xu1 +
1

2
ϕ′
Au1

)[
f(Q+ a1Y0 + u1)− f(Q)− a1f

′(Q)Y0 −N0Y0

]∣∣∣∣

. |a1|
4 +

∫
sech

(x
2

)
w2

1 +A2‖u1‖
2α
L∞

∫
|∂xw|

2.

(32)

Proof. First, we treat the term −
∫ (
ϕA∂xu1 +

1
2ϕ

′
Au1

)
N0Y0. By Taylor’s expansion, one

has

|N | . a2
1Q

2α−1Y 2
0 +Q2α−1u2

1 + |a1|
2α+1Y 2α+1

0 + |u1|
2α+1, (33)

and thus, by decay estimates on Q and Y0, and by (15), |a1| . 1, ‖u1‖L∞ . ‖u1‖H1 . 1,
A ≥ 4, it holds

|N0| . a2
1 +

∫
sech (x)u2

1 . a2
1 +

∫
sech

(x
2

)
w2. (34)

Using integration by parts,

−

∫ (
ϕA∂xu1 +

1

2
ϕ′
Au1

)
Y0 =

∫
u1

(
ϕA∂xY0 +

1

2
ϕ′
AY0

)
.

Note that for all x ∈ R, |ϕ′
A(x)| ≤ 1 and |ϕA(x)| ≤ |x|, and so

|ϕA(x) sech(x)|+ |ϕ′
A(x) sech(x)| ≤ (|x|+ 1) sech(x) . sech

(
3

4
x

)
, (35)

for an implicit constant independent of A. Thus, by the Cauchy-Schwarz inequality,
∣∣∣∣N0

∫ (
ϕA∂xu1 +

1

2
ϕ′
Au1

)
Y0

∣∣∣∣ . a4
1 +

∫
sech

(x
2

)
w2

1.

Second, we decompose
∫ (

ϕA∂xu1 +
1

2
ϕ′
Au1

)[
f(Q+ a1Y0 + u1)− f(Q)− f ′(Q)a1Y0

]

=

∫
ϕA∂x

[
F (Q+ a1Y0 + u1)− F (Q+ a1Y0)− (f(Q) + f ′(Q)a1Y0)u1

]

−

∫
ϕAQ

′
[
f(Q+ a1Y0 + u1)− f(Q+ a1Y0)− (f ′(Q) + f ′′(Q)a1Y0)u1

]

− a1

∫
ϕAY

′
0

[
f(Q+ a1Y0 + u1)− f(Q+ a1Y0)− f ′(Q)u1

]

+
1

2

∫
ϕ′
Au1

[
f(Q+ a1Y0 + u1)− f(Q)− f ′(Q)a1Y0

]

= I1 + I2 + I3 + I4.

We rewrite I1, I2, I3 and I4 as follows

I1 = −

∫
ϕ′
A

[
F (Q+ a1Y0 + u1)− F (Q+ a1Y0)− F ′(Q+ a1Y0)u1 − F (u1)

]

−

∫
ϕ′
A

[
f(Q+ a1Y0)− f(Q)− f ′(Q)a1Y0

]
u1 −

∫
ϕ′
AF (u1),

I2 = −

∫
ϕAQ

′
[
f(Q+ a1Y0 + u1)− f(Q+ a1Y0)− f ′(Q+ a1Y0)u1

]

−

∫
ϕAQ

′
[
f ′(Q+ a1Y0)− f ′(Q)− f ′′(Q)a1Y0

]
u1,
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I3 = −a1

∫
ϕAY

′
0

[
f(Q+ a1Y0 + u1)− f(Q+ a1Y0)− f ′(Q+ a1Y0)u1

]

− a1

∫
ϕAY

′
0

[
f ′(Q+ a1Y0)− f ′(Q)

]
u1,

and

I4 =
1

2

∫
ϕ′
Au1 [f(Q+ a1Y0 + u1)− f(Q+ a1Y0)− f(u1)]

+
1

2

∫
ϕ′
Au1[f(Q+ a1Y0)− f(Q)− f ′(Q)a1Y0] +

1

2

∫
ϕ′
Au1f(u1).

To control the two terms that are purely nonlinear in u1, we need the following claim.

Claim 1. It holds∫
ζ2
A|u1|

2α+2 =

∫
ζ−2α
A |w|2α+2 . A2‖u1‖

2α
L∞

∫
|∂xw|

2. (36)

Proof of Claim 1. The first equality in (36) corresponds to the definition of w in (26).
Next, by integration by parts and standard estimates, we have

∫ +∞

0
exp

(
2α

A
x

)
|w|2α+2dx

= −
A

2α
|w(0)|2α+2 −

A

2α

∫ +∞

0
exp

(
2α

A
x

)
∂x

(
|w|2α+2

)
dx

≤ −
α+ 1

α
A

∫ +∞

0
exp

(
2α

A
x

)
(∂xw)w|w|

2αdx

≤
α+ 1

α
A‖u1‖

α
L∞

∫ +∞

0
exp

(α
A
x
)
|∂xw||w|

α+1dx

≤

(
α+ 1

α

)2

A2‖u1‖
2α
L∞

∫ +∞

0
|∂xw|

2dx+
1

4

∫ +∞

0
exp

(
2α

A
x

)
|w|2α+2dx.

Thus,
∫ +∞

0
exp

(
2α

A
x

)
|w|2α+2dx ≤

4

3

(
α+ 1

α

)2

A2‖u1‖
2α
L∞

∫ +∞

0
|∂xw|

2dx,

which implies (36). �

In particular, (36) implies that
∫
ϕ′
AF (u1) +

∫
ϕ′
Au1f(u1) .

∫
ζ2
A|u1|

2α+2 . A2‖u1‖
2α
L∞

∫
|∂xw|

2,

which takes care of the last terms in I1 and I4.

By Taylor expansion, α ≥ 1, |a1| . 1 and ‖u1‖L∞ . 1, we have
∣∣F (Q+ a1Y0 + u1)− F (Q+ a1Y0)− F ′(Q+ a1Y0)u1 − F (u1)

∣∣

. |Q+ a1Y0|
2αu2

1 + |Q+ a1Y0||u1|
2α+1 . sech(x)u2

1 . sech
(x
2

)
w2

1.

Similarly, using also (35) and A ≥ 4, we find the following estimates
∣∣ϕAQ

′
[
f(Q+ a1Y0 + u1)− f(Q+ a1Y0)− f ′(Q+ a1Y0)u1

]∣∣ . sech
(x
2

)
w2

1,

∣∣a1ϕAY
′

0

[
f(Q+ a1Y0 + u1)− f(Q+ a1Y0)− f ′(Q+ a1Y0)u1

]∣∣ . sech
(x
2

)
w2

1,

and
∣∣ϕ′

Au1 [f(Q+ a1Y0 + u1)− f(Q+ a1Y0)− f(u1)]
∣∣ . sech

(x
2

)
w2

1.



SOLITON DYNAMICS FOR 1D NLKG 9

Moreover, again by Taylor expansion and (35) (with A > 8), we have
∣∣ϕ′

A

[
f(Q+ a1Y0 + u1)− f(Q)− f ′(Q)a1Y0

]
u1

∣∣

+
∣∣ϕAQ

′
[
f ′(Q+ a1Y0)− f ′(Q)− f ′′(Q)a1Y0

]
u1

∣∣

+
∣∣a1ϕAY

′
0

[
f ′(Q+ a1Y0)− f ′(Q)

]
u1

∣∣

+
∣∣ϕ′

Au1[f(Q+ a1Y0)− f(Q)− f ′(Q)a1Y0]
∣∣

. sech
(x
2

)
|a1|

2|u1| . sech
(x
2

)
w2

1 + sech
(x
4

)
|a1|

4.

Collecting these estimates, (32) is proved.
Taking ‖u1‖L∞ ≤ δA, for δA small enough, we have proved

İ ≤ −

∫
(∂xw)

2 + C

∫
w2 sech

(x
2

)
+ Ca4

1 +A2‖u1‖
2α
L∞

∫
(∂xw)

2.

Using A = δ−1 and ‖u1‖
2α
L∞ . δ2α (from (15)), for δ1 small enough, we obtain (27). �

4. Virial argument for the transformed problem

4.1. Heuristic. We recall results from [6], pages 1086-1087. Let

L = −∂2
x + 1− (2α + 1)Q2α, L− = −∂2

x + 1−Q2α,

and

U = Y0 · ∂x · Y
−1

0 , U⋆ = −Y −1
0 · ∂x · Y0.

(The above notation means Uf = Y0(Y
−1

0 f)′.) Then, the operators L and L− rewrite as
L = U⋆U + λ0, L− = UU⋆ + λ0 and it follows that

UL = L−U.

Now, let

L0 = −∂2
x + 1 +

α− 1

α+ 1
Q2α, (37)

and

S = Q · ∂x ·Q
−1, S⋆ = −Q−1 · ∂x ·Q.

A similar structure L− = S⋆S, L0 = SS⋆, leads to

SL− = L0S and thus SUL = L0SU.

In particular, let (u1, u2) be a solution of (5), and set ũ1 = Uu1, ũ2 = Uu2. Then,
{

˙̃u1 = ũ2

˙̃u2 = −L−ũ1.

Next, set

v1 = Sũ1 = SUu1 and v2 = Sũ2 = SUu2.

Then, (v1, v2) satisfies the following transformed problem:
{
v̇1 = v2

v̇2 = −L0v1.

The key point for our analysis is that for α > 1, the potential in L0 is positive. This
property happens to be the only spectral information needed for the proof of Theorem 1.

Observe that UY0 = 0, UQ′ = −αQ and SQ = 0, which means that the prior decompo-
sition of the solution (φ, ∂tφ) as in Section 2.1 and a coercivity argument as in Section 5
are necessary to avoid loosing information through the transformation. (Here, we work
with even functions and so only the direction Y0 is relevant.)
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4.2. Transformed problem. With respect to the above heuristic, we need to localize
and regularize the functions involved. For γ > 0 small to be defined later, set

{
v1 = (1− γ∂2

x)
−1SU(χBu1),

v2 = (1− γ∂2
x)

−1SU(χBu2),
(38)

where χB is defined in (23). We refer to Section 5 for coercivity results relating u1

and v1. The introduction of the operator (1 − γ∂2
x)

−1 with a small constant γ is needed
to compensate the loss of two derivatives due to the operator SU , without destroying
the special algebra described heuristically. Now, we explain the role of the localization
term χB in the definitions of v1 and v2. Note that Proposition 1 provides an estimate on
the function w, which is a localized version of u (see (26)). To use this information, the
functions v1 and v2 also need to contain a certain localization.

We deduce the following system for (v1, v2) from the one for (u1, u2) in (17)
{
v̇1 = v2

v̇2 = −(1− γ∂2
x)

−1SU(χBLu1) + (1− γ∂2
x)

−1SU(χBN
⊥).

First, we note that

χBLu1 = L(χBu1) + 2χ′
B∂xu1 + χ′′

Bu1.

Moreover, since SUL = L0SU , it holds

−(1− γ∂2
x)

−1SUL(χBu1) = −(1− γ∂2
x)

−1L0SU(χBu1)

= −(1− γ∂2
x)

−1L0[(1− γ∂2
x)v1]

= ∂2
xv1 − v1 −

α− 1

α+ 1
(1− γ∂2

x)
−1

[
Q2α(1− γ∂2

x)v1

]
.

Since

(1− γ∂2
x)

[
Q2αv1

]
= Q2α(1− γ∂2

x)v1 − 2γ(Q2α)′∂xv1 − γ(Q2α)′′v1,

we obtain

−(1− γ∂2
x)

−1SUL(χBu1) = −L0v1 −
α− 1

α+ 1
γ(1− γ∂2

x)
−1

[
2(Q2α)′∂xv1 + (Q2α)′′v1

]
.

Therefore, we have obtained the following system for (v1, v2)




v̇1 = v2

v̇2 = −L0v1 −
α− 1

α+ 1
γ(1− γ∂2

x)
−1

[
2(Q2α)′∂xv1 + (Q2α)′′v1

]

− (1− γ∂2
x)

−1SU
[
2χ′

B∂xu1 + χ′′
Bu1

]
+ (1− γ∂2

x)
−1SU [χBN

⊥].

(39)

For this transformed system we construct a second virial functional, where the spectral
analysis reduces to the fact that the potential in L0 is positive.

4.3. Virial functional for the transformed problem. We set

J =

∫ (
ψB∂xv1 +

1

2
ψ′
Bv1

)
v2,

and (see (22) and (23))

z = χBζBv1. (40)

Here, z represents a localized version of the function v1. The scale of localization B is
intermediate between the one involved in the definition of w from u1 (see (24) and (26))
and the weight function ρ defined in (19) (similar to a localization at the soliton scale).
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Proposition 2. There exist C2 > 0 and δ2 > 0 such that for γ small enough and for any

0 < δ ≤ δ2, the following holds. Fix B = δ−
1

4 . Assume that for all t ≥ 0, (15) holds.

Then, for all t ≥ 0,

J̇ ≤ −C2‖z‖
2
ρ + δ

1

8 ‖w‖2
ρ + |a1|

3. (41)

Remark 2. The objective of estimate (41) is to control the local norm ‖z‖2
ρ up to small

error in terms of ‖w‖2
ρ and |a1|

3.

The rest of this section is devoted to the proof of Proposition 2. As in the computation
of İ in the proof of Proposition 1, we have from (39),

J̇ =

∫ (
ψB∂xv1 +

1

2
ψ′
Bv1

)
v̇2

=−

∫ (
ψB∂xv1 +

1

2
ψ′
Bv1

)
L0v1

−
α− 1

α+ 1
γ

∫ (
ψB∂xv1 +

1

2
ψ′
Bv1

)
(1− γ∂2

x)
−1

[
2(Q2α)′∂xv1 + (Q2α)′′v1

]

−

∫ (
ψB∂xv1 +

1

2
ψ′
Bv1

)
(1− γ∂2

x)
−1SU

[
2χ′

B∂xu1 + χ′′
Bu1

]

+

∫ (
ψB∂xv1 +

1

2
ψ′
Bv1

)
(1− γ∂2

x)
−1SU [χBN

⊥] = J1 + J2 + J3 + J4.

First, using the definition of L0 in (37) and integrating by parts, we have

J1 = −

∫
ψ′
B(∂xv1)

2 +
1

4

∫
ψ′′′
Bv

2
1 −

α− 1

α+ 1

∫ (
ψB∂xv1 +

1

2
ψ′
Bv1

)
Q2αv1.

From (23), we note that ψ′
B = χ2

Bζ
2
B + (χ2

B)
′ϕB and

ψ′′′
B = χ2

B(ζ
2
B)

′′ + 3(χ2
B)

′(ζ2
B)

′ + 3(χ2
B)

′′ζ2
B + (χ2

B)
′′′ϕB .

Thus,
∫
ψ′
B(∂xv1)

2 −
1

4

∫
ψ′′′
Bv

2
1 =

∫
χ2
Bζ

2
B(∂xv1)

2 −
1

4

∫
χ2
B(ζ

2
B)

′′v2
1

−
3

4

∫
(χ2

B)
′(ζ2

B)
′v2

1 −
3

4

∫
(χ2

B)
′′ζ2

Bv
2
1

+

∫
(χ2

B)
′ϕB(∂xv1)

2 −
1

4

∫
(χ2

B)
′′′ϕBv

2
1 .

By the definition of z in (40), proceeding as in the proof of (31) in Lemma 1, we have
∫
χ2
Bζ

2
B(∂xv1)

2 =

∫
(∂xz)

2 +

∫
(χBζB)

′′χBζBv
2
1

=

∫
(∂xz)

2 +

∫
ζ ′′B
ζB
z2 +

∫
χ′′
BχBζ

2
Bv

2
1 +

1

2

∫
(χ2

B)
′(ζ2

B)
′v2

1 ,

and
1

4

∫
χ2
B(ζ

2
B)

′′v2
1 =

1

2

∫ (
ζ ′′B
ζB

+
ζ ′2B
ζ2
B

)
z2.

Thus,

−

∫
ψ′
B(∂xv1)

2 +
1

4

∫
ψ′′′
Bv

2
1 = −

{∫
(∂xz)

2 +
1

2

∫ (
ζ ′′B
ζB

−
(ζ ′B)

2

ζ2
B

)
z2

}
+ J̃1,
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where we have set

J̃1 =
1

4

∫
(χ2

B)
′(ζ2

B)
′v2

1 +
1

2

∫ [
3(χ′

B)
2 + χ′′

BχB

]
ζ2
Bv

2
1

−

∫
(χ2

B)
′ϕB(∂xv1)

2 +
1

4

∫
(χ2

B)
′′′ϕBv

2
1 .

Recalling (40), (23), (22) and integrating by parts,
∫ (

ψB∂xv1 +
1

2
ψ′
Bv1

)
Q2αv1 =

1

2

∫
Q2α∂x

(
ψBv

2
1

)
= −α

∫
ϕB

ζ2
B

Q2α−1Q′z2.

Therefore, setting

V =
1

2

(
ζ ′′B
ζB

−
(ζ ′B)

2

ζ2
B

)
− α

α− 1

α+ 1

ϕB

ζ2
B

Q2α−1Q′,

we have obtained

J1 = −

∫ [
(∂xz)

2 + V z2
]
+ J̃1.

Lemma 3. There exists B0 > 0 such that for all B ≥ B0, V ≥ 0 on R. More precisely,

V ≥ V0 where V0 =
α

2

α− 1

α+ 1
|xQ′|Q2α−1 ≥ 0. (42)

Proof. First, from (30) (with A replaced by B), it holds
∣∣∣∣
ζ ′′B
ζB

−
(ζ ′B)

2

ζ2
B

∣∣∣∣ .
11≤|x|≤2(x)

B
.

Second, since for x ∈ [0,+∞) 7→ ζB(x) is non-increasing, we have for x ≥ 0,

ϕB

ζ2
B

=

∫ x
0 ζ

2
B

ζ2
B

≥ x.

Since Q′(x) ≤ 0 for x ≥ 0, we obtain, for a constant C > 0,

V (x) ≥ −
C

B
11≤|x|≤2(x) + α

α− 1

α+ 1
|xQ′(x)|Q2α−1(x)

≥
α

2

α− 1

α+ 1
|xQ′(x)|Q2α−1(x),

choosing B0 large enough. By parity, this estimate holds for any x ∈ R. �

Using this lemma, and the above computations for J1, we conclude

J̇ ≤ −

∫ [
(∂xz)

2 + V0z
2
]
+ J̃1 + J2 + J3 + J4. (43)

To control the terms J̃1, J2, J3 and J4, we need some technical estimates.

4.4. Technical estimates.

Lemma 4. (i) Estimates on w.
∫

|x|≤2B2

w2 . B4

∫
(∂xw)

2 +B2

∫
w2 sech

(x
2

)
, (44)

‖w‖2
ρ .

∫
(∂xw)

2 +

∫

|x|<1
w2 .

∫
(∂xw)

2 +

∫
w2 sech

(x
2

)
. (45)
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(ii) Estimates on z.

‖z‖2
ρ .

∫
(∂xz)

2 +

∫
V0z

2 . ‖z‖2
ρ, (46)

∫
z2ζB . B2

∫
(∂xz)

2 +B

∫
V0z

2 . B2‖z‖2
ρ. (47)

(iii) Estimates on v1.

‖v1‖L2 . γ−1B2‖w‖ρ, (48)

‖∂xv1‖L2 . γ−1‖w‖ρ. (49)

Proof. Proof of (44) and (45). For any x, y ∈ R, using w(x) = w(y) +
∫ x
y ∂xw and the

inequality (a+ b)2 ≤ 2a2 + 2b2, we have

w2(x) ≤ 2w2(y) + 2

(∫ x

y
∂xw

)2

≤ 2w2(y) + 2|x− y|

∫
(∂xw)

2

≤ 2w2(y) + 2(|x|+ |y|)

∫
(∂xw)

2.

(50)

Integrating (50) in x ∈ [−2B2, 2B2] and y ∈ [−1, 1], we find (44). Multiplying (50) by
sech

(
x
10

)
and integrating in x ∈ R and y ∈ [−1, 1], we find (45).

Proof of (46) and (47). The proof is similar. For any x ∈ R and y ∈ R, we have

z2(x) ≤ 2z2(y) + 2(|x|+ |y|)

∫
(∂xz)

2.

We multiply by sech
(

x
10

)
and V0(y) ≥ 0 and integrate in x ∈ R and y ∈ R. Since

∫
V0 > 0

and
∫
|y|V0(y)dy <∞ from (42), we obtain (46).

We multiply by ζB(x) and V0(y) and integrate in x ∈ R and y ∈ R. Since
∫
ζB . B,

∫
|x|ζB . B2 and

∫
|y|V0 . 1,

we obtain (47).

Proof of (48) and (49). Note by direct computations that

SUf = f ′′ −

[
Q′

Q
+
Y ′

0

Y0

]
f ′ +

[
−

(
Y ′

0

Y0

)′

+
Q′

Q

Y ′
0

Y0

]
f

= f ′′ + (α+ 2) tanh(αx)f ′ + (α+ 1)

(
1 +

α− 1

cosh2(αx)

)
f.

Thus,
‖SUf‖L2 . ‖f‖H2 .

Moreover, using Fourier analysis,

‖(1 − γ∂2
x)

−1f‖H2 . γ−1‖f‖L2 .

As a consequence, it holds

‖(1 − γ∂2
x)

−1SUf‖L2 . γ−1‖f‖L2 . (51)

Using (51), the definition of v1 in (38), the definition of w in (26) and A≫ B2, we obtain

‖v1‖L2 . γ−1‖χBu1‖L2 . γ−1‖u1‖L2(|x|≤2B2) . γ−1‖w‖L2(|x|≤2B2),

and then (44) implies (48).
Moreover, by direct computation

∂x(SUf) = SUf ′ + (α+ 2)α sech2(αx)f ′ + α(α2 − 1) sech2(αx) tanh(αx)f.

Thus, similarly,

‖∂x(1− γ∂2
x)

−1SUf‖L2 . γ−1‖f ′‖L2 + ‖f sech(x)‖L2 . (52)
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Using (52), we obtain

‖∂xv1‖L2 . γ−1‖∂x(χBu1)‖L2 + ‖χBu1 sech(x)‖L2 .

By the definition of w, A≫ B2 and the definition of χB and ζA, we have

|∂x(χBu1)|
2 =

∣∣∣∣∂x
(
χB

ζA
w

)∣∣∣∣
2

.

∣∣∣∣
χB

ζA

∣∣∣∣
2

|∂xw|
2 +

∣∣∣∣
(
χB

ζA

)′∣∣∣∣
2

w2

. |∂xw|
2 +B−4w21|x|≤2B2 ,

and ‖χBu1 sech(x)‖L2 . ‖w sech(x)‖L2 . Thus, estimate (44) imply (49). �

Lemma 5. For any 0 < K ≤ 1 and γ > 0 small enough, for any f ∈ L2,

‖ sech(Kx)(1− γ∂2
x)

−1f‖L2 . ‖ sech(Kx)f‖L2 . (53)

where the implicit constant is independent of γ and K.

Proof. We set g = sech(Kx)(1− γ∂2
x)

−1f and k = sech(Kx)f . We have

cosh(Kx)k = (1− γ∂2
x)[cosh(Kx)g]

= cosh(Kx)g − γK2 cosh(Kx)g − 2γK sinh(Kx)g′ − γ cosh(Kx)g′′.

Thus,

k =
[
(1− γK2)− γ∂2

x

]
g − 2γK tanh(Kx)g′.

For 0 < K ≤ 1 and γ ≤ 1
2 , we apply the operator

[
(1− γK2)− γ∂2

x

]−1
, to obtain

g =
[
(1− γK2)− γ∂2

x

]−1
k + 2γK

[
(1− γK2)− γ∂2

x

]−1 [
tanh(Kx)g′

]
.

For 0 < K ≤ 1 and γ ≤ 1
2 , one has

‖
[
(1− γK2)− γ∂2

x

]−1
‖L(L2,L2) . 1,

‖
[
(1− γK2)− γ∂2

x

]−1
∂x‖L(L2,L2) . γ−

1

2 .

Thus, ‖
[
(1− γK2)− γ∂2

x

]−1
k‖L2 . ‖k‖L2 , and

‖
[
(1− γK2)− γ∂2

x

]−1 [
tanh(Kx)g′

]
‖L2

. ‖
[
(1− γK2)− γ∂2

x

]−1
∂x [tanh(Kx)g] ‖L2

+ ‖
[
(1− γK2)− γ∂2

x

]−1 [
sech2(Kx)g

]
‖L2 . γ−

1

2‖g‖L2 .

We deduce, for a constant C independent of γ,

‖g‖L2 ≤ C‖k‖L2 +Cγ
1

2 ‖g‖L2 ,

which implies (53) for γ small enough. �

4.5. Control of error terms. Now, we are in a position to control the error terms in (43).

Control of J̃1. By the definition of ζB, it holds

ζB(x) . e−
|x|
B , |ζ ′B(x)| .

1

B
e−

|x|
B .

Thus, using the properties of χ in (21), we have
∫ [

|χ′′
B |χBζ

2
B + (χ′

B)
2ζ2

B + |χ′
Bζ

′
B|χBζB

]
v2

1 .

∫

B2≤|x|≤2B2

e−
2|x|
B v2

1 . e−2B‖v1‖
2
L2 .

Next, since |ϕB | . B and |(χ2
B)

′| . B−2, |(χ2
B)

′′′| . B−6, we have
∫

|(χ2
B)

′ϕB |(∂xv1)
2 . B−1‖∂xv1‖

2
L2 and

∫
|(χ2

B)
′′′ϕB |v

2
1 . B−5‖v1‖

2
L2 .



SOLITON DYNAMICS FOR 1D NLKG 15

Using (48)-(49), we conclude for this term

|J̃1| . γ−2B−1‖w‖2
ρ. (54)

Control of J2. By the Cauchy-Schwarz inequality,

|J2| . γ

∥∥∥∥Q
α(1− γ∂2

x)
−1

(
ψB∂xv1 +

1

2
ψ′
Bv1

)∥∥∥∥
L2

(‖Qαv1‖L2 + ‖Qα∂xv1‖L2) .

First, we estimate using (53)
∥∥Q(1− γ∂2

x)
−1 (ψB∂xv1)

∥∥
L2 . ‖QψB∂xv1‖L2

From the definition of z in (40), we have

∂xz = ζBχB∂xv1 + (ζBχB)
′v1,

and so
ζ2
Bχ

2
B |∂xv1|

2 . |∂xz|
2 + |(ζBχB)

′v1|
2.

Using |χ′| . 1, the definitions of χB and ζB and again the definition of z

|(ζBχB)
′v1|

2χ2
B . B−2ζ2

Bχ
2
Bv

2
1 . B−2z2,

and so
ζ2
Bχ

4
B |∂xv1|

2 . |∂xz|
2χ2

B +B−2z2 . |∂xz|
2 + z2. (55)

Thus, using |ψB | . |x|χ2
B ,

|QψB∂xv1|
2 . |x|2Q2χ4

B|∂xv1|
2 . Qζ2

Bχ
4
B |∂xv1|

2 . |∂xz|
2 +Qz2.

It follows that
‖QψB∂xv1‖L2 . ‖z‖ρ.

Second, we also estimate using (53)
∥∥Q(1− γ∂2

x)
−1

(
ψ′
Bv1

)∥∥
L2

.
∥∥Qψ′

Bv1

∥∥
L2

We claim
(ψ′

B)
2 . χ2

B. (56)

Indeed, using |χ′
B | . B−2, |ϕB | . |x|, χB = 0 for |x| ≥ 2B2 and ζB ≤ 1,

(ψ′
B)

2 . [χ′
BχB]

2ϕ2
B + ζ4

Bχ
4
B . χ2

B .

Using (56), we infer that |(ψ′
B)

2v2
1 | . χ2

Bv
2
1 , thus |Q(ψ′

B)
2v2

1 | . z2, and so

‖Qψ′
Bv1‖L2 . ‖Q

1

2 z‖L2 . ‖z‖ρ.

Now, we estimate ‖Qαv1‖L2 and ‖Qα∂xv1‖L2 . From the definition of z in (40), we have

e−|x|v2
1χ

2
B . z2. Thus, from the definition of χB ,

e−2|x|v2
1 . e−2|x|v2

1χ
2
B + e−2B2

v2
1 . e−|x|z2 + e−2B2

v2
1 .

It follows using also (48) that

‖e−|x|v1‖L2 . ‖z‖ρ + e−
1

2
B2

γ−1‖w‖ρ.

Differentiating z = χBζBv1, we have

χBζB∂xv1 = ∂xz −
ζ ′B
ζB
z − χ′

BζBv1.

Thus, as before,

e−2|x|(∂xv1)
2 . e−|x|

[
(∂xz)

2 + z2
]
+ e−2B2 [

(∂xv1)
2 + v2

1

]
.

It follows using (48) and (49) that

‖e−|x|∂xv1‖L2 . ‖z‖ρ + e−
1

2
B2

γ−1‖w‖ρ.
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Collecting these estimates, we conlude

|J2| . γ‖z‖2
ρ + e−B‖w‖ρ‖z‖ρ. (57)

Control of J3. Using Cauchy-Schwarz inequality and (51), we have

|J3| . γ−1
(
‖ψB∂xv1‖L2 + ‖ψ′

Bv1‖L2

) (
‖χ′

B∂xu1‖L2 + ‖χ′′
Bu1‖L2

)
.

First, using |ψB | . B (from its definition and |ϕB | . B) and (49),

‖ψB∂xv1‖L2 . B‖∂xv1‖L2 . γ−1B‖w‖ρ.

Then, since |ϕB | . B and ϕ′
B = ζ2

B,∣∣ψ′
B

∣∣ =
∣∣2χ′

BχBϕB + ζ2
Bχ

2
B

∣∣ . B−1 + ζ2
Bχ

2
B .

Thus, using the definition (40), z = χBζBv1 and then (48),

‖ψ′
Bv1‖

2
L2 . B−2‖v1‖

2
L2 +

∫
ζ2
Bz

2 . γ−2B2‖w‖2
ρ +B2‖z‖2

ρ.

In conclusion,
‖ψB∂xv1‖L2 + ‖ψ′

Bv1‖L2 . γ−1B‖w‖ρ +B‖z‖ρ. (58)

Second, differentiating w = ζAu1, we have ∂xw = ζ ′Au1 + ζA∂xu1, so that (using also
the assumption A≫ B2),

for |x| < A, |∂xu1|
2 . A−2|u1|

2 + |∂xw|
2 . B−4|w|2 + |∂xw|

2.

Thus, using also (44),

‖χ′
B∂xu1‖

2
L2 . B−4

∫

B2<|x|<2B2

|∂xu1|
2

. B−4

[∫
|∂xw|

2 +B−4

∫

|x|<2B2

|w|2

]
. B−4‖w‖2

ρ.

Next, by the definition of χB and (44),

‖χ′′
Bu1‖

2
L2 . B−8

∫

B2<|x|<2B2

|u1|
2 . B−8

∫

|x|<2B2

|w|2 . B−4‖w‖2
ρ.

In conclusion,
‖χ′

B∂xu1‖L2 + ‖χ′′
Bu1‖L2 . B−2‖w‖2

ρ. (59)

Collecting (58) and (59), we obtain

|J3| . γ−2B−1‖w‖2
ρ + γ−1B−1‖w‖ρ‖z‖ρ. (60)

Control of J4. Using the Cauchy-Schwarz inequality, (51) and then N⊥ = N − N0Y0,
we have

|J4| . γ−1
(
‖ψB∂xv1‖L2 + ‖ψ′

Bv1‖L2

)
‖χBN

⊥‖L2

. γ−1
(
‖ψB∂xv1‖L2 + ‖ψ′

Bv1‖L2

)
(‖χBN‖L2 + |N0|) .

By (33), |a1| . 1, ‖u1‖L∞ . 1, and decay properties of Y0 and Q, we have

‖χBN‖L2 . a2
1 + ‖u1‖L∞‖QχBu1‖L2 + |a1|

2α+1 + ‖u1‖
2α
L∞‖χBu1‖L2

. a2
1 + ‖u1‖L∞‖χBu1‖L2 .

Using χB . ζA (since A≫ B2 in (24)) and (44), it holds

‖χBu1‖
2
L2 .

∫

|x|≤2B2

w2 . B4‖w‖2
ρ.

Moreover, from (34),

|N0| . a2
1 + ‖u1‖L∞‖w‖ρ.
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Therefore, using again (58), we obtain

|J4| . γ−2B (‖w‖ρ + ‖z‖ρ)
(
a2

1 +B2‖u1‖L∞‖w‖ρ
)
. (61)

4.6. End of proof of Proposition 2. From (43), (46), (54), (57), (60) and (61), it follows
that there exist C2 > 0 and C > 0 such that

J̇ ≤ −4C2‖z‖
2
ρ + Cγ−2B−1‖w‖2

ρ + Cγ‖z‖2
ρ +Ce−B‖w‖ρ‖z‖ρ

+ Cγ−1B−1‖w‖ρ‖z‖ρ + Cγ−2B (‖w‖ρ + ‖z‖ρ)
(
a2

1 +B2‖u1‖L∞‖w‖ρ
)
.

We fix γ > 0 such that Cγ ≤ 2C2 and also small enough to satisfy Lemma 5.
The value of γ being now fixed, we do not mention anymore dependency in γ. Using

standard inequalities and B large enough, we obtain, for a possibly large constant C > 0,

J̇ ≤ −C2‖z‖
2
ρ + CB−1‖w‖2

ρ + CB3
(
a2

1 +B2‖u1‖L∞‖w‖ρ
)2
.

Choosing (as specified in the statement of Proposition 2)

B = δ−
1

4 ,

and next using the assumption (15), we have

B3(B2‖u1‖L∞‖w‖ρ)
2 . δ−

7

4 ‖u1‖
2
L∞‖w‖2

ρ . δ
1

4 ‖w‖2
ρ.

Therefore, using again (15), for δ small enough (to absorb some constants), we obtain

J̇ ≤ −C2‖z‖
2
ρ + Cδ

1

4 ‖w‖2
ρ +B3a4

1 ≤ −C2‖z‖
2
ρ + δ

1

8‖w‖2
ρ + |a1|

3.

This estimate completes the proof of Proposition 2.

5. Coercivity and proof of Theorem 1

In this section, the constant γ is fixed as in Proposition 2.

5.1. Coercivity results.

Lemma 6. Let B > 2. Let u and v be Schwartz functions related by

v = (1− γ∂2
x)

−1SU(χBu). (62)

Assume

〈u, Y0〉 = 〈u,Q′〉 = 0. (63)

It holds ∫
(χBu)

2 sech
(x
2

)
.

∫ [
(∂xv)

2 + v2
]
ρ2 + e−B

∫
u2 sech

(x
2

)
. (64)

Proof. Using the expression of S and U , we rewrite (62) as

v − γ∂2
xv = Q∂x

(
Y0

Q
∂x

(
χBu

Y0

))
,

and thus

∂x

(
Y0

Q
∂x

(
χBu

Y0

)
+ γ

∂xv

Q

)
=

1

Q

(
v − γ

Q′

Q
∂xv

)
.

Integrating between 0 and x > 0, this yields, for some constant a,

Y0

Q
∂x

(
χBu

Y0

)
+ γ

∂xv

Q
= a+

∫ x

0

[
1

Q

(
v − γ

Q′

Q
∂xv

)]
,

which rewrites as

∂x

(
χBu

Y0

)
= a

Q

Y0
− γ

∂xv

Y0
+
Q

Y0

∫ x

0

[
1

Q

(
v − γ

Q′

Q
∂xv

)]
.
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Integrating on [0, x], x > 0, and multiplying by Y0, it holds, for some constant b,

χBu = bY0 + aY0

∫ x

0

Q

Y0
+ ũ, (65)

where

ũ = Y0

∫ x

0

{
−γ

∂xv

Y0
+
Q

Y0

∫ y

0

[
1

Q

(
v − γ

Q′

Q
∂xv

)]}
.

Let us now estimate
∫
ũ2 sech

(
x
2

)
. First, by the Cauchy-Schwarz inequality,

Y0

∫ x

0

|∂xv|

Y0
. Y0

(∫
(∂xv)

2ρ2

) 1

2

(∫ x

0
(ρY0)

−2

) 1

2

. ρ−1

(∫
(∂xv)

2ρ2

) 1

2

.

Second,

Q

Y0

∫ y

0

|v|

Q
.
Q

Y0

(∫
v2ρ2

) 1

2

(∫ y

0
(ρQ)−2

) 1

2

. (ρY0)
−1

(∫
v2ρ2

) 1

2

Thus,

Y0

∫ x

0

Q

Y0

∫ y

0

|v|

Q
.

(∫
v2ρ2

)1

2

Y0

∫ x

0
(ρY0)

−1 . ρ−1

(∫
v2ρ2

) 1

2

.

Third, since |Q′|
Q . 1, we obtain similarly,

Y0

∫ x

0

Q

Y0

∫ y

0

|Q′∂xv|

Q2
. ρ−1

(∫
(∂xv)

2ρ2

) 1

2

.

Collecting these estimates, we obtain, for all x ≥ 0,

ũ2ρ2 .

∫ [
(∂xv)

2 + v2
]
ρ2.

The same holds for x ≤ 0, and thus
∫
ũ2 sech

(x
2

)
.

∫ [
(∂xv)

2 + v2
]
ρ2.

To complete the proof, we estimate the constants a and b in (65). Using (63) and parity
property, projecting (65) on Y0 yields

〈χBu, Y0〉 = 〈(χB − 1)u, Y0〉 = b+ 〈ũ, Y0〉.

Thus,

b2 .

∫
ũ2 sech (x) +

∫
u2 sech (x) (1− χB)

2 .

∫
ũ2 sech (x) + e−

1

2
B2

∫
u2 sech

(x
2

)
.

Using (63), Y0

∫ x
0

Q
Y0

= −α−1Q′ and projecting (65) on Q′ yields similarly

a2 .

∫
ũ2 sech (x) + e−

1

2
B2

∫
u2 sech

(x
2

)
.

We conclude the proof using again (65). �

The next result is a consequence of the previous general lemma, in the framework of
the time-dependent functions introduced in (12), (26), (38) and (40).

Lemma 7. For B large enough, it holds
∫
w2 sech

(x
2

)
. ‖z‖2

ρ + e−B‖∂xw‖
2
L2 , (66)

and

‖w‖2
ρ . ‖z‖2

ρ + ‖∂xw‖
2
L2 . (67)
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Proof. Recall that the function u1 is even so that it satisfies 〈u1, Q
′〉 = 0 in addition to

the orthogonality (12). Therefore, applying (64),
∫

(χBu1)
2 sech

(x
2

)
.

∫ [
(∂xv1)

2 + v2
1

]
ρ2 + e−B

∫
u2

1 sech
(x
2

)
,

which implies by (26) and (20)
∫
(χBw)

2 sech
(x
2

)
.

∫ [
(∂xv1)

2 + v2
1

]
ρ2 + e−B‖w‖2

ρ. (68)

By (40) and (55), it holds

for |x| < B2, ρ|∂xv1|
2 + ρ|v1|

2 . |∂xz|
2 + z2.

Thus, using (48)-(49),
∫ [

(∂xv1)
2 + v2

1

]
ρ2 .

∫

|x|<B2

[
(∂xv1)

2 + v2
1

]
ρ2 + e−

B
2

5 ‖v1‖
2
H1

. ‖z‖2
ρ + e−

B
2

5 ‖v1‖
2
H1 . ‖z‖2

ρ + e−
B
2

10 ‖w‖2
ρ.

Using (45) and the definition of χB in (23), it holds

‖w‖2
ρ .

∫
(∂xw)

2 +

∫

|x|<1
w2 .

∫
(∂xw)

2 +

∫
(χBw)

2 sech
(x
2

)
.

Inserting these estimates into (68), it follows for B large enough that
∫

(χBw)
2 sech

(x
2

)
. ‖z‖2

ρ + e−B‖∂xw‖
2
L2 .

The last two estimates imply (67).
Finally,

∫
w2 sech

(x
2

)
.

∫
(χBw)

2 sech
(x
2

)
+ e−

B
2

4

∫
w2ρ

.

∫
(χBw)

2 sech
(x
2

)
+ e−B‖w‖2

ρ,

and (66) follows. �

5.2. Proof of Theorem 1. Recall that the constants γ > 0, δ1, δ2 > 0 were defined in
Propositions 1 and 2.

Proposition 3. There exist C3 > 0 and 0 < δ3 ≤ min(δ1, δ2) such that for any 0 < δ ≤ δ3,

the following holds. Fix A = δ−1 and B = δ−
1

4 . Assume that for all t ≥ 0, (15) holds.
Let

H = J + 8δ
1

10

3 I. (69)

Then, for all t ≥ 0,

Ḣ ≤ −C3‖w‖
2
ρ + 2|a1|

3. (70)

Proof. In the context of Propositions 1 and 2, observe that fixing A = δ−1 and B = δ−
1

4 ,
for δ > 0 small is consistent with the requirement A≫ B2 ≫ B ≫ 1 in (24).

Combining (41) with (67) and (27) with (66), for δ3 > 0 small enough and 0 < δ ≤ δ3,
one obtains, for a constant C > 0,

J̇ ≤ −
C2

2
‖z‖2

ρ + δ
1

10

3 ‖∂xw‖
2
L2 + |a1|

3,

İ ≤ −
1

4
‖∂xw‖

2
L2 + C‖z‖2

ρ + |a1|
3.
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Define H as in (69). It follows by combining the above estimates that

Ḣ ≤ −
C2

2
‖z‖2

ρ − δ
1

10

3 ‖∂xw‖
2
L2 + 8Cδ

1

10

3 ‖z‖2
ρ +

(
1 + 8δ

1

10

3

)
|a1|

3.

Possibly choosing a smaller δ3, we obtain

Ḣ ≤ −
C2

4
‖z‖2

ρ − δ
1

10

3 ‖∂xw‖
2
L2 + 2|a1|

3.

This estimate, together with (67), implies (70) for some C3 > 0 (depending on δ3). �

We set
B = b2+ − b2−.

Lemma 8. There exist C4 > 0 and 0 < δ4 ≤ δ3 such that for any 0 < δ ≤ δ4, the following

holds. Fix A = δ−1. Assume that for all t ≥ 0, (15) holds. Then, for all t ≥ 0,

|ḃ+ − ν0b+|+ |ḃ− + ν0b−| ≤ C4

(
b2+ + b2− + ‖w‖2

ρ

)
, (71)

and ∣∣∣∣
d

dt
(b2+)− 2ν0b

2
+

∣∣∣∣+
∣∣∣∣
d

dt
(b2−) + 2ν0b

2
−

∣∣∣∣ ≤ C4

(
b2+ + b2− + ‖w‖2

ρ

) 3

2 . (72)

In particular,

Ḃ ≥ ν0

(
b2+ + b2−

)
− C4‖w‖

2
ρ =

ν0

2

(
a2

1 + a2
2

)
− C4‖w‖

2
ρ. (73)

Proof. From (34) and (13), it holds

|N0| . a2
1 + ‖w‖2

ρ . b2+ + b2− + ‖w‖2
ρ.

Estimates (71) and (72) then follow from (16). Last, estimate (73) is a consequence of (72)
taking δ4 > 0 small enough. �

Combining (70) and (73), it holds

Ḃ − 2
C4

C3
Ḣ ≥

ν0

2
(a2

1 + a2
2) + C4‖w‖

2
ρ − 4

C4

C3
|a1|

3,

and thus, for possibly smaller δ > 0,

Ḃ − 2
C4

C3
Ḣ ≥

ν0

4
(a2

1 + a2
2) + C4‖w‖

2
ρ. (74)

By the choice of A = δ−1, the bound |ϕA| . A, and (15), we have for all t ≥ 0,

|I| . A‖u1‖H1‖u2‖L2 . δ.

Similarly, using also (51), it holds

|J | . B‖v1‖H1‖v2‖L2 . δ and thus |H| . δ.

Estimate |B| . δ2 is also clear from (15).
Therefore, integrating estimate (74) on [0, t] and passing to the limit as t → +∞, it

follows that ∫ ∞

0

[
a2

1 + a2
2 + ‖w‖2

ρ

]
dt . δ.

Since
∫
[(∂xu1)

2 + u2
1] sech(x) . ‖w‖2

ρ, this implies
∫ ∞

0

{
a2

1 + a2
2 +

∫ [
(∂xu1)

2 + u2
1

]
sech(x)

}
dt . δ. (75)

Using (75), we conclude the proof of Theorem 1 as in Section 5.2 of [18]. Let

K =

∫
u1u2 sech(x) and G =

1

2

∫ [
(∂xu1)

2 + u2
1 + u2

2

]
sech(x).
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Using (17), we have

K̇ =

∫
[u̇1u2 + u1u̇2] sech(x)

=

∫ [
u2

2 + u1(−Lu1 +N⊥)
]
sech(x)

=

∫ [
u2

2 − (∂xu1)
2 − u2

1

]
sech(x) +

1

2

∫
u2

1 sech
′′(x)

+

∫ [
f(Q+ a1Y0 + u1)− f(Q)− a1f

′(Q)Y0 −N0Y0

]
u1 sech(x).

We check that∣∣∣∣
∫ [

f(Q+ a1Y0 + u1)− f(Q)− a1f
′(Q)Y0 −N0Y0

]
u1 sech(x)

∣∣∣∣ . a2
1 +

∫
u2

1 sech(x).

(See (33)-(34) in the proof of Lemma 2.) In particular, it follows that
∫
u2

2 sech(x) ≤ K̇ +Ca2
1 + C

∫ [
(∂xu1)

2 + u2
1

]
sech(x).

Using the bound |K| . δ2 and (75), we deduce
∫ ∞

0

[
a2

1 + a2
2 + G

]
dt . δ. (76)

Similarly, we check that

Ġ =

∫
[(∂xu̇1)(∂xu1) + u̇1u1 + u̇2u2] sech(x)

=

∫ [
(∂xu2)(∂xu1) + u2u1 + (−Lu1 +N⊥)u2

]
sech(x)

=−

∫
(∂xu1)u2 sech

′(x)

+

∫ [
f(Q+ a1Y0 + u1)− f(Q)− a1f

′(Q)Y0 −N0Y0

]
u2 sech(x),

and so, as before

|Ġ| . a2
1 + G. (77)

By (76), there exists an increasing sequence tn → +∞ such that

lim
n→∞

[
a2

1(tn) + a2
2(tn) + G(tn)

]
= 0.

For t ≥ 0, integrating (77) on [t, tn], and passing to the limit as n→ ∞, we obtain

G(t) .

∫ ∞

t

[
a2

1 + G
]
dt.

By (76), we deduce that limt→∞ G(t) = 0.
Finally, by (16) and (34), we have

∣∣∣∣
d

dt
(a2

1)

∣∣∣∣+
∣∣∣∣
d

dt
(a2

2)

∣∣∣∣ . a2
1 + a2

2 +

∫
u2

1 sech(x),

and so as before, by integration on [t, tn] and n→ ∞,

a2
1(t) + a2

2(t) .

∫ ∞

t

[
a2

1 + a2
2 + G

]
dt,

which proves limt→∞ |a1(t)|+ |a2(t)| = 0.
By the decomposition (11), this clearly implies (7). The proof of Theorem 1 is complete.
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6. Proof of Theorem 2

6.1. Conservation of energy. Using (3) and (4) and performing a standard computa-
tion, we expand the conservation of energy (2) for a solution (φ, ∂tφ) written under the
form (11) with the orthogonality conditions (12), to obtain

2 {E(φ, ∂tφ)− E(Q, 0)}

=

∫ {
(∂tφ)

2 + (∂xφ)
2 + φ2 − 2F (φ)

}
− 2E(Q, 0)

= a2
2ν

2
0〈Y0, Y0〉+ a2

1〈LY0, Y0〉+ ‖u2‖
2
L2 + 〈Lu1, u1〉+O

(
|a1|

3 + |a2|
3 + ‖u1‖

3
H1

)

= ν2
0(a

2
2 − a2

1) + ‖u2‖
2
L2 + 〈Lu1, u1〉+O

(
|a1|

3 + |a2|
3 + ‖u1‖

3
H1

)
.

Using the notation (13), we have

2 {E(φ, ∂tφ)− E(Q, 0)} =− 4ν0b+b− + ‖u2‖
2
L2 + 〈Lu1, u1〉

+O
(
|b+|

3 + |b−|
3 + ‖u1‖

3
H1

)
.

(78)

Let δ0 > 0 be defined by

δ2
0 = b2+(0) + b2−(0) + ‖u1(0)‖

2
H1 + ‖u2(0)‖

2
L2 .

Then, (78) applied at t = 0 gives |2 {E(φ, ∂tφ)− E(Q, 0)} | . δ2
0 . Thus, by conservation

of energy, estimate (78) at some t > 0 gives
∣∣−4ν0b+b− + ‖u2‖

2
L2 + 〈Lu1, u1〉+O

(
|b+|

3 + |b−|
3 + ‖u1‖

3
H1

)∣∣ . δ2
0 .

Under the orthogonality conditions (12), the parity of u1, from the spectral analysis re-
called in the Introduction (see [6]), it follows that for some µ > 0,

〈Lu1, u1〉 ≥ µ‖u1‖
2
H1 . (79)

Thus, as long as ‖u1‖H1 + ‖u2‖L2 + |b+|+ |b−| . δ
1/2
0 , the following energy estimate holds

‖u1‖
2
H1 + ‖u2‖

2
L2 . |b+|

2 + |b−|
2 + δ2

0 . (80)

6.2. Construction of the graph. By the energy estimate (80), Lemma 8 and a standard
contradiction argument, we construct initial data leading to global solutions close to the
ground state Q.

Let ε = (ε1, ε2) ∈ A0 (see (8)). Then, the condition 〈ε,Z+〉 = 0 rewrites

〈ε1, Y0〉+ 〈ε2, ν
−1
0 Y0〉 = 0.

Define b−(0) and (u1(0), u2(0)) such that

b−(0) = 〈ε1, Y0〉 = −〈ε2, ν
−1
0 Y0〉

and

ε1 = b−(0)Y0 + u1(0), ε2 = −b−(0)ν0Y0 + u2(0).

Then, it holds

〈u1(0), Y0〉 = 〈u2(0), Y0〉 = 0.

This means that the initial data in the statement of Theorem 2 decomposes as (see (14))

φ0 = φ(0) = (Q, 0) + (u1, u2)(0) + b−(0)Y− + h(ε)Y+.

Now, we prove that there exists at least a choice of h(ε) = b+(0) such that the corre-
sponding solution φ is global and satisfies (9).
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Let δ0 > 0 small enough and K > 1 large enough to be chosen. We introduce the
following bootstrap estimates

‖u1‖H1 ≤ K2δ0 and ‖u2‖L2 ≤ K2δ0, (81)

|b−| ≤ Kδ0, (82)

|b+| ≤ K5δ2
0 . (83)

Given any (u1(0), u2(0)) and b−(0) such that

‖u1(0)‖H1 ≤ δ0, ‖u2(0)‖L2 ≤ δ0, |b−(0)| ≤ δ0, (84)

and b+(0) satisfying

|b+(0)| ≤ K5δ2
0 ,

we define

T = sup{t ≥ 0 such that (81)-(82)-(83) hold on [0, t]}.

Note that since K > 1, T is well-defined in [0,+∞]. We aim at proving that there exists
at least one value of b+(0) ∈ [−K5δ2

0 ,K
5δ2

0 ] such that T = ∞. We argue by contradiction,
assuming that any b+(0) ∈ [−K5δ2

0 ,K
5δ2

0 ] leads to T <∞.

First, we strictly improve the estimate on (u1, u2) in (81). Indeed, by (80) and (82)-(83),
it holds

‖u1‖
2
H1 + ‖u2‖

2
L2 ≤ C5(K

10δ4
0 +K2δ2

0 + δ2
0),

for some constant C5 > 0. Thus, under the constraints

C5K
10δ2

0 ≤
1

4
K4, C5K

2 ≤
1

4
K4, C5 ≤

1

4
K4, (85)

it holds ‖u1‖
2
H1 + ‖u2‖

2
L2 ≤ 3

4K
4δ2

0 , which strictly improves (81).

Second, we use (72) to control b−. By (81)-(82)-(83), since ‖w‖ρ . ‖u1‖H1 , it holds
∣∣∣∣
d

dt

(
e2ν0tb2−

)∣∣∣∣ ≤ C6

(
K15δ6

0 +K6δ3
0

)
e2ν0t,

for some constant C6 > 0. Thus, by integration on [0, t] and using (84), we obtain

b2− ≤
C6

2ν0

(
K15δ6

0 +K6δ3
0

)
+ δ2

0 .

Under the constaints

C6

2ν0
K15δ4

0 ≤
1

4
K2, C6K

6δ0 ≤
1

4
K2, 1 ≤

1

4
K2, (86)

it holds b2− ≤ 3
4K

2δ2
0 which strictly improves (82).

By the previous estimates (under the constraints (85)-(86)) and a continuity argument,
we see that if T < +∞, then |b+(T )| = K5δ2

0 .

Third, we observe that if t ∈ [0, T ] is such that |b+(t)| = K5δ2
0 , then it follows from (71)

that

d

dt
(b2+) ≥ 2ν0b

2
+ − 2C4|b+|(b

2
+ + b2− + ‖w‖2

ρ)

≥ 2ν0K
10δ4

0 − C7K
5δ2

0

(
K10δ4

0 +K4δ2
0

)
,

for some constant C7 > 0. Under the constraints

C7K
15δ2

0 ≤
1

2
ν0K

10, C7K
9 ≤

1

2
ν0K

10, (87)

the inequality
d

dt
(b2+) ≥ ν0K

10δ4
0 > 0,
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holds. By standard arguments, such transversality condition implies that T is the first
time for which |b+(t)| = K5δ2

0 and moreover that T is continuous in the variable b+(0)
(see e.g. [7, 8] for a similar argument). Now, the image of the continuous map

b+(0) ∈ [−K5δ2
0 ,K

5δ2
0 ] 7→ b+(T ) ∈ {−K5δ2

0 ,K
5δ2

0}

is exactly {−K5δ2
0 ,K

5δ2
0} (since the image of −K5δ2

0 is −K5δ2
0 and the image of K5δ2

0 is
K5δ2

0), which is a contradiction.
As a consequence, provided the constraints in (85)-(86)-(87) are all fullfilled, there exists

at least one value of b+(0) ∈ (−K5δ2
0 ,K

5δ2
0) such that T = ∞.

Finally, we easily see that to satisfy (85)-(86)-(87), it is sufficient first to fix K > 0 large
enough, depending only on C5, C6 and C7, and then to choose δ0 > 0 small enough.

6.3. Uniqueness and Lipschitz regularity. The following proposition implies both the
uniqueness of the choice of h(ε) = b+(0), for a given ε ∈ A0, and the Lipschitz regularity
of the graph M defined from the resulting map ε ∈ A0 7→ h(ε). It is thus sufficient to
complete the proof of Theorem 2.

Proposition 4. There exist C, δ > 0 such if φ and φ̃ are two even solutions of (1)
satisfying

for all t ≥ 0, ‖φ(t)− (Q, 0)‖H1×L2 < δ, ‖φ̃(t)− (Q, 0)‖H1×L2 < δ (88)

then, decomposing

φ(0) = (Q, 0) + ε+ b+(0)Y+, φ̃(0) = (Q, 0) + ε̃+ b̃+(0)Y+

with 〈ε,Z+〉 = 〈ε̃,Z+〉 = 0, it holds

|b+(0)− b̃+(0)| ≤ Cδ
1

2 ‖ε− ε̃‖H1×L2 . (89)

Proof. We use the decomposition and the notation of Section 2.1 for the two solutions φ
and φ̃ satisfying (88). In particular, from (15), there exists C0 > 0 such that for all t ≥ 0,

‖u1(t)‖H1 + ‖ũ1(t)‖H1 + ‖u2(t)‖L2 + ‖ũ2(t)‖L2 + |b±(t)|+ b̃±(t)| ≤ C0δ. (90)

We denote

ǎ1 = a1 − ã1, ǎ2 = a2 − ã2, b̌+ = b+ − b̃+, b̌− = b− − b̃−,

ǔ1 = u1 − ũ1, ǔ2 = u2 − ũ2, Ň = N − Ñ , Ň⊥ = N⊥ − Ñ⊥, Ň0 = N0 − Ñ0.

Then, from (16), (17), the equations of (ǔ1, ǔ2, b̌+, b̌−) write




˙̌b+ = ν0b̌+ +
Ň0

2ν0

˙̌b− = −ν0b̌− −
Ň0

2ν0

and

{
˙̌u1 = ǔ2

˙̌u2 = −Lǔ1 + Ň⊥.
(91)

We claim that

|Ň0|+ ‖Ň⊥‖L2 ≤ Cδ
(
|b̌+|+ |b̌−|+ ‖ǔ1‖H1

)
. (92)

Indeed, by Taylor formula, for any v, ṽ, it holds (recall that α > 1)
∣∣f(Q+ v)− f(Q)− f ′(Q)v −

[
f(Q+ ṽ)− f(Q)− f ′(Q)ṽ

]∣∣

. |v − ṽ| (|v|+ |ṽ|)
(
Q2α−1 + |v|2α−1 + |ṽ|2α−1

)
. |v − ṽ| (|v|+ |ṽ|) .

Using this inequality for Ň = N − Ñ , where N is defined in (18), and (90), we obtain

|Ň | . (|ǎ1|Y0 + |ǔ1|) (Y0|a1|+ Y0|ã1|+ |u1|+ |ũ1|) .

Using the Cauchy-Schwarz inequality and again (90), we find ‖Ň‖L2 . δ(|ǎ1|+ |ǔ1|) and
estimate (92) follows.
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Let

β+ = b̌2+, β− = b̌2−, βc = 〈Lǔ1, ǔ1〉+ 〈ǔ2, ǔ2〉.

By (91) and (92) (and the coercivity property (79) for ǔ1) we have, for some K > 0,

|β̇c|+ |β̇+ − 2ν0β+|+ |β̇− + 2ν0β−| ≤ Kδ (βc + β+ + β−) . (93)

For the sake of contradiction, assume that the following holds

0 ≤ Kδ (βc(0) + β+(0) + β−(0)) <
ν0

10
β+(0). (94)

We introduce the following boostrap estimate

Kδ (βc + β+ + β−) ≤ ν0β+. (95)

Define

T = sup{t > 0 such that (95) holds} > 0.

We work on the interval [0, T ]. Note that from (93) and (95), it holds

β̇+ ≥ 2ν0β+ −Kδ (βc + β+ + β−) ≥ ν0β+. (96)

In particular, by standard arguments, β+ is positive and increasing on [0, T ].
Next, by (93) and (95),

β̇c ≤ ν0β+ ≤ β̇+

and thus, by integration,

βc(t) ≤ βc(0) + β+(t)− β+(0) ≤ βc(0) + β+(t).

Therefore, by (94), for δ small enough,

Kδβc(t) ≤ Kδ(βc(0) + β+(t)) ≤
ν0

10
β+(0) +Kδβ+(t) ≤

ν0

5
β+(t).

Then, by (93) and (95),

β̇− ≤ −2ν0β− + ν0β+,

and so by integration and (94),

β−(t) ≤ e−2ν0tβ−(0) + ν0β+(t)e
−2ν0t

∫ t

0
e2ν0sds ≤ β−(0) +

1

2
β+(t).

Therefore, for δ small enough,

Kδβ−(t) ≤ Kδ(β−(0) + β+(t)) ≤
ν0

10
β+(0) +Kδβ+(t) ≤

ν0

5
β+(t).

Last, it is clear that for δ small, it holds Kδβ+ ≤ ν0
5 β+.

Therefore, we have proved that, for all t ∈ [0, T ],

Kδ (βc(t) + β+(t) + β−(t)) ≤
3

5
ν0β+(t).

By a continuity argument, this means that T = +∞. By the exponential growth (96) and
β+(0) > 0, we obtain a contradiction with the global bound (90) on |b+|.

Since estimate (94) is contradicted, and since it holds

ε = u(0) + b−(0)Y−, ε̃ = ũ(0) + b̃−(0)Y− with 〈u(0),Y−〉 = 〈ũ(0),Y−〉 = 0,

we have proved (89). �



26 MICHA L KOWALCZYK, YVAN MARTEL, AND CLAUDIO MUÑOZ
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