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SOLITON DYNAMICS FOR THE 1D NLKG EQUATION WITH
SYMMETRY AND IN THE ABSENCE OF INTERNAL MODES

MICHAL KOWALCZYK, YVAN MARTEL, AND CLAUDIO MUNOZ

ABSTRACT. We consider the dynamics of even solutions of the one-dimensional nonlinear
Klein-Gordon equation 07 ¢p—02¢+¢—|p|>**¢ = 0 for a > 1, in the vicinity of the unstable
soliton Q. Our main result is that stability in the energy space H*(R) x L?*(R) implies
asymptotics stability in a local energy norm. In particular, there exists a Lipschitz graph
of initial data leading to stable and asymptotically stable trajectories.

The condition o > 1 corresponds to cases where the linearized operator around ) has
no resonance and no internal mode. Recall that the case o > 2 is treated in [22] using
Strichartz and other local dispersive estimates. Since these tools are not available for low
power nonlinearities, our approach is based on virial type estimates and the particular
structure of the linearized operator observed in [6].

1. INTRODUCTION
1.1. Main results. Consider the one-dimensional focusing nonlinear Klein-Gordon equa-
tion
Go—0io+o—f(¢)=0, (L) eRxR, [f(¢)=16l"0, (1)

where o > 0. This equation also rewrites as a first order system in time for the function

¢ = (¢a atQS) = (¢1a¢2)’

b1 = oo
b2 = 001 — o1 + [ ().
Let F(¢ fo s)ds = 20}_‘_2|gb|2"‘+2 Note that () is Hamiltonian. The conservation of
energy of a solutlon (¢, Orp) of () writes
E(¢,00) = / {(00) + (0:0)" + &* = 2F(0)} = E(6(0), 016(0)). (2)

For initial data in the energy space H' x L?, local well-posedness, as well as global well-
posedness for small solutions, is well-known (see for example [5], Theorem 6.2.2 and Propo-
sition 6.3.3).

Denote by @ the standing wave solution of (), also called soliton, explicitly given by

Q)= IV a0 o
cosha (ax)

The linearized operator L around () writes

20+ D(a+1)

L=-0+1-2a+1)Q* =-02+1- K
cosh”(ax)

3)
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For any a > 0, the first eigenvalue of L is \g = —a(a +2) = =18 (vp > 0) with
corresponding normalized eigenfunction

Yo(z) = co (cosh(ax) "), (¥p,¥o) =1, LYy = —18Y (4)

(we denote (A, B) = [ A-B). The second eigenvalue of L is 0 with eigenfunction Y7 = ¢;Q’.
In the case o > 1, there is no other eigenvalue in [0,1), which means that there is no
internal mode for the model (see Section [[3]).

Let
_ Yo _ Yo
%= (g ) 2= (i )

The functions u (t,z) = e™0!'Y, (x) are solutions of the linearized problem

(a2 (5)

’[LQ = —LUQ
illustrating the presence of exponentially stable and unstable modes both relevant in the
dynamics of solutions in the vicinity of a soliton.

In this paper, by global solution of (I), we mean a function ¢ € C([0,00), H' x L?)
satisfying (I) for all £ > 0. We only consider solutions with even symmetry.

Our main result is the following conditional asymptotic stability theorem.

Theorem 1. Let a > 1. There exists § > 0 such that if a global even solution ¢ = (P, Opp)
of () satisfies

for allt >0, [|¢(t) = (Q,0) || g1 (ryxr2r) < (6)
then, for any interval I of R,
t_l,iinoo o) — (Q,0)l 1 (ryxL2(r) = 0. (7)

For the sake of completeness, we provide a description of the set of initial data leading
to global solutions satisfying the stability assumption (@) (see also Theorem 4.1 in [2]).
For d9 > 0, let

Ao = {e € H'(R) x L*(R) such that e is even, ||€ ||g1xz2 < do and (e, Z;) =0} . (8)

Theorem 2. Let o > 1. There exist C,0y > 0 and a Lipschitz function h: Ay — R with
h(0) =0 and |h(e)| < C||€H?I)-I/12XL2 such that denoting

M ={(Q,0) + e+ h(e)Yy with e € Ay}

the following holds

(i) If ¢y € M then the solution ¢ of (dl) with initial data ¢ is global and satisfies,
for allt >0,

() — (Q, 0l ryxr2r) < CllPg — (@, 0) |1 (r)x L2 (R)- 9)
(ii) If a global even solution ¢ of (Al satisfies, for all t > 0,
lp(t) = (@, 0) |2 (ryx £2(R) < 560,
then for allt >0, ¢(t) € M.
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1.2. Related results and comments on the proof. First, we comment on two articles
devoted to soliton dynamics for the one-dimensional nonlinear Klein-Gordon equation ().

Using techniques based on Strichartz and other local dispersive estimates, Krieger et
al. [22] have completely treated the case o > 2 in the case of even data. Indeed, they
classify all solutions whose energy does not exceed too much that of the ground state Q.
This includes the construction, by the fixed point argument, of a C!' center-stable manifold
around the soliton and the proof of asymptotic stability and scattering (linear behavior)
around the ground state for solutions on the manifold. The method seems limited to o > 2
because of the use of Strichartz estimates to control the nonlinear term, see comment in
Section 3.4 of [22].

By formal and numerical methods, Bizon et al. [4] have shown that for even solutions
trapped by the soliton, the convergence rate to ) heavily depends on the power « of the
nonlinearity. In the L sense, they conjecture the following trichotomy: (a) fast dispersive
decay for a > 1; (b) slow decay for a = 1; (c) very slow decay for 0 < o < 1. The threshold
value oo = 1 corresponds to the emergence of a resonance at the linear level, while o < 1
leads to one or several internal modes (see Section [[3]). Following these observations,
unifying the case o > 1 was the main motivation of the present work.

Our method does not give an explicit decay rate as ¢ — 400, but we notice as a
by-product of the proof of Theorem [ that, for any interval I of R, it holds

—+o0
| 180 = @0 et < . (10)

This is to be compared with the results obtained in [I8] on the (local) asymptotic stability
of the kink for the ¢* model under small odd perturbations. Indeed, in the latter case, the
presence of an internal mode leads to a lower convergence rate since the component z(¢) of
the solution along the internal mode only satisfies the weaker estimate 0+°° |z(t)|*dt < oo
(see Theorem 1.2 in [I8]). Although we do not claim optimality of such results, in the case
of (@) with 0 < a <1, we do not expect estimates such as in (I0) to hold.

The proof of Theorem [Ilis mainly based on localized virial type arguments similar to that
used in [I8 25| 27], for example. Unlike in these works, we avoid numerical computations
of certain constants related to the coercivity of the virial functional by using factorization
properties of the linearized operator described in [6] (see also references [29] B7], cited
in [6]). A formal presentation of this approach is given in Section LIl We point out that
the same structure was crucially used in the construction of blow-up solutions for the
wave maps, Yang-Mills and O(3) o-models in [30} BI]. Note that in the present paper, we
compensate the loss of two derivatives due to the change of variables to still work in the
energy space.

We refer to [II, [16) 17, 19L 20 23] B85 B6] for various results of asymptotic stability for
the nonlinear Klein-Gordon equation and ¢* equation or variants of these models.

Several other conditional asymptotic stability results or classifications in a neighborhood
of the ground state for the nonlinear Klein-Gordon in higher dimensions and for the
nonlinear Schrodinger equation were also obtained in [10} 11l [32) [34], for example. We
also mention [2I] where for the mass supercritical Schrodinger equation in one dimension,
a finite co-dimensional manifold of initial data trapped by the soliton was constructed.

Concerning the generalized Korteweg-de Vries equation and related models, studies of
the dynamics of the solutions close to the soliton are presented in [9, 14 15, 24, 26 27,
28, [33], in blow-up contexts or for bounded solutions. Note that the method introduced
in [24] 26], using the special structure of a transformed linearized problem, also has some
analogy with our proof.

For global existence results in the case of semilinear and quasilinear wave equations, we
refer to [12] 13].
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Finally, we refer to |2, 3] and references therein for refined descriptions of dynamics of
solutions in various settings.

1.3. Resonances and internal modes. As mentioned before, the absence of any other
eigenvalue in [0, 1) for the operator L when v > 1 is important in our proof. For 0 < a < 1,
we continue the description of the spectrum of L. For o = 1, there is an even resonance
at 1. For any 0 < a < 1, there is a third eigenvalue associated to an even eigenfunction

Ya(z) = c2Yo(2) <1 _2 sinh2(o¢x)> , A=al2-a), =M\

(0%

In particular, for any 0 < a < 1, the function
u(t) = (cos(vat)Ysa, —vo sin(vat)Ys)

is solution of (Bl). These solutions are typical of the notion of internal modes and show
that asymptotic stability (even up to the exponential instable mode) cannot be true at the
linear level for such value of a. An important issue is the nature of the interaction of such
internal mode with the nonlinearity. We recall that such an internal mode was treated in
the context of the ¢* equation in [I8]. Pioneering results on internal modes were obtained
n [36]. See other references in [18§].

For a € (%, 1), there are no other eigenvalue on [0,1). For a = %, there is an odd

11

resonance at 1. For a € (z,3), there is a fourth eigenvalue, associated to an odd eigen-

312
function. For « € (%, %), there are five eigenvalues, three of them being associated to even
eigenfunctions. In particular, there are two even internal modes. This procedure can be
continued for all & > 0, showing the emergence of arbitrarily many internal modes (and
sometimes resonances) as o — 07,

The above information is taken from Section 3 of [6].

2. PRELIMINARIES

2.1. Decomposition of a solution in a vicinity of the soliton. Let ¢ = (¢, 0;¢) be
a solution of (IJ) satisfying (@] for some small § > 0. We decompose (¢, dy¢) as follows

{ o(t,x) = Q(x) + ar(t)Yo(x) + ui(t, x)

0ip(t, ) = as()voYo(w) + ua(t, x) (11)

where
at) = (60~ QY. ax(t) = - (09(t). V),
so that
(ua(t), Yo) = (uz(t), Yo) = 0. (12)
Setting
by — %(al tag), b = %(al — ap), (13)
we observe that ¢ also writes as
¢=(Q,0) +u+b_Y_+0b,Y,, u=(upug). (14)
From (@), for all ¢ € [0, 00), it holds
[ur ()| + luz(®)l 22 + lar(®)] + laz(®)] + [b1(£)] + [b-(£)] < Cod. (15)

Moreover, using Q" — Q + f(Q) = 0, LYy = —13Yy and ([[2), the systems of equations
of (a1,az2) and (u,ug) write

a1 = vpas by = by + —
Ny equivalently

o = — . N,
az = Vpay + 0 b = —wb — No

(16)
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{ = (17)

Uy = —Luj + N+

and

where
N = f(Q+aYo +wu) — f(Q) — f(@)ar1Yo — f(Q)ux,
No = (N,Yp), N =N - NpYp

2.2. Notation for virial arguments. Let p be the following weight function
x
= sech <—) . 19
p(z) =sech (5 (19)

For any function w € H', consider the norm

2

ot = [ [ (@ + 7)) (20
We consider a smooth even function x : R — R satisfying
x=1on[-1,1], x =0 on (—oo, —2] U [2,+0c0), X’ <0 on [0, +0c0). (21)

For A > 0, we define the functions (4 and @4 as follows

@) = exp (~ 0= x@lel) . eale) = [ Gy, ae

For B > 0, we also define

Cule) = oxp (- 1= x@lel) . voe) = [ s, acr @)
0
and we consider the function 1 defined as
Up(@) = Xh(@)en(@) where xp@)=x(75). @R (23)

The notation X <Y means X < CY for a constant independent of A and B.

These functions (4, va, (B, ¢p and ¥p will be used in two distinct virial arguments
with different scales

A> B> B> 1. (24)

3. VIRIAL ARGUMENT IN u
Set
1
1= / <90Aamu1 + 590f4u1> uz, (25)

and
w = CAuq. (26)

We refer to [I§] for the use of such virial argument in a similar context. Here, w represents
a localized version of uy, in the scale A (see (24))). We shall prove the following result.

Proposition 1. There exist C; > 0 and §; > 0 such that for any 0 < § < 61, the following
holds. Fiz A = 61. Assume that for all t > 0, ([5) holds. Then, for all t >0,

.1
I<—5 /(&Cw)2 +Cy /sech (g) w? + Chlar[*, (27)

Remark 1. Note that estimate (27]) does not involve any type of spectral analysis. Its
purpose is to give a simple control of [(9,w)? in terms of [ sech(%)w? and |a|*.
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The rest of this section is devoted to the proof of Proposition[Il We compute from (25])

. . 1, . 1 .
= / (@Aaxul + §SDIAUI> ug + / <SDA8:BU1 + 59014111) ug.

Replacing 17 by us and integrating by parts, the first integral in the right-hand side
vanishes. The expression of gy in (I7) rewrites

g = 02wy — w1 + f(Q + arYo +u1) — f(Q) — f(Q)ar1Yo — NoYo,

and so
I= / <<PA5J:U1 + %cp@;m) (02u1 — 1)
# [ (adoun + gt ) [£Q+arYo + ) = £(Q) — F(Qar¥s — Noxi).

To treat the first line in the expression of Z, we claim the following.

Lemma 1. It holds

[ (au + gt ) @2 = wn) = = (0~ 5 [ (4= %)) W (28)

Moreover

G 1

LG X" (@)]x] + 2x/ (z) sgn ()] (29)

o |

and

é _ (qu)z‘ < 1i<je)<2(T) < sech(x)

Proof. Proof of (28]). By integration by parts

1 1
/ <<pA8$u1 + icp;‘u1> (Bgul —up) = —/<p'A(8xu1)2 + Z/@Z{u%

We rewrite the above expression using the auxiliary function w. Indeed,

/(wa)z N /(CAagﬁu1 +Chur)* = /Ci(axm)z +2/CAC,I4U18$U1 +/(C,/4)2u%
— /<Pf4(0a;u1)2 —/CAC,ZU% = /@14(536%)2 —/%wz

/@24(83511,1)2 = /(8mw)2+ g—ij.

", 2 __ (CE&)H 2 _ (C_ﬁ (Clléx)2> 2
/‘PA% —/ e w —2/ ca + a w”. (31)
Identity (28)) follows.

Proof of (29)-(30). By elementary computations, we have

% = % [X@lal + (1~ x(e)) sen(z)]

and so

Next,

CI/ 1 9 1
= 1z X @lal + (1= x(@)sen@)]” + 7 X' @)le] +2x () sem(@)]
which proves (29). Estimate (30) then follows from the definition of . O

To treat the second line in the expression of Z, we claim the following.
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Lemma 2.

[ (a0 + gt ) 1@+ anti 4) = Q) - a (@)% - Noxi)

x
< ag|* + /sech <§> w? + A%||uy ||2% / |0, w|?.

Proof. First, we treat the term — [ (@Aamul + %go;lul) NoYy. By Taylor’s expansion, one
has

(32)

‘N‘ g G%Q2afly—02 + QQQ*IU% + ‘a1’2a+1Y—02a+1 + ‘U1’2a+1, (33)

and thus, by decay estimates on @ and Yp, and by (I3, |a1| < 1, |luillree S JJurllg S 1,
A >4, it holds

|No| < a2 + /sech (z)u? < a? + /sech <§> w?. (34)

Using integration by parts,

1
/ (@Aa up + @AU1> / <<PA3xY0 + 5@%Yo> .

Note that for all z € R, |¢/4(x)] <1 and |pa(z)| < |z|, and so

loa(z) sech(z)| + |4 (z) sech(z)| < (Jz] + 1) sech(z) < sech <%x> , (35)

for an implicit constant independent of A. Thus, by the Cauchy-Schwarz inequality,

Sat+ /sech (g) w?.

1
No/ <@A3xu1 + §<P/Au1> Yy

Second, we decompose
[ (a0 + ) 1@+ ax¥o+ ) ~ F(Q) - £(@par¥i
= [0ada [FQ+ ar¥ + wr) - FQ+ ar¥h) = (Q) + £/ (QarY)un)
— [aQ Q@+ arYo + w) = FQ+ ar¥e) - (1'(Q) + /(@ Yo)u]
~ o [@a¥ [£(@+ Yo+ w) — F(Q+ a¥e) ~ £/(Qun]

45 [Fhn Q@+ @Yo+ w) - (@ - F(@ari)
=L+ I+ 13+ 14

We rewrite I, Is, I3 and I as follows
I = — /(p;‘ [F(Q +a1Yy + ul) - F(Q + al%) - FI(Q + a1Y0)U1 - F(ul)]

- [ h 1@+ ar¥e) - Q) — QY] — [ Sarn).

b= [aQ [HQ+ arYo+w) = F(Q+ar¥) - F(Q + ar¥o)u]
- / oaQ [F(Q+ arYo) — F'(Q) — 1"(Q)arYo] wi,
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I3 = —ay / eAYy [f(Q+ arYo + u1) — f(Q+ a1Yo) — f/(Q + a1Yo)us |

—a / eaYy [F(Q+ arYo) — f1(Q)] ux,

and

1

Ii=5 [ @ [f(@+ Yo+ w) = £(@+ a¥o) - f(u)

+3 [ Arulf@+ a¥e) - @ - FQaYi] + 5 [ dauns(u).

To control the two terms that are purely nonlinear in w1, we need the following claim.
Claim 1. It holds

[ @hunpesz = [P s 2l [ ol (30

Proof of Claim[1l The first equality in (B@) corresponds to the definition of w in (26]).
Next, by integration by parts and standard estimates, we have

+o0 2
/ exp (%x) lw|?* 2 dx

0
_ A 2otz A [T 20 2042
=5 w(0)] — %/0 oxp | —r@ 9z (|w) ) da

1, [t 2
< _at A/ exp (fﬂ:) (Dpw)w|w|** da
0

«
a+1

IN

+o0 a
AHUlHaoo/ exp (=2 ) |Opw||w|* T dx
L= (A)

1\* o 1 [t 2
< (a;— > A2||U1H%Covo/0 |(9$w|2dx+1/0 exp <Zax> lw[** 2 dz.
Thus,
Heo 2 202 4 (a+1)2 Heo
= do < — | —— ) A7 2%0/ dpw|*d
[ e (3] e < 5 (S8) i [ oo,
which implies (30]). O

In particular, (36]) implies that
[eart)+ [t 5 [ Guper? s 2l [ o

which takes care of the last terms in I; and I4.

By Taylor expansion, a > 1, |a1| < 1 and ||uy||p~ < 1, we have
|F(Q + a1Yp + u1) — F(Q + a1Yp) — F/(Q + a1Yo)uy — F(uy)|
<1Q 4 a1Yo[*u? +1Q + a1 Yy |Jur |**Tt < sech(z)u? < sech <g> w?.
Similarly, using also ([B5) and A > 4, we find the following estimates

l0aQ" [f(Q + arYo + u1) — f(Q + a1Yp) — f'(Q + a1Yo)ur ]| < sech <%> wy,

1Yy [£(Q + ar¥o +u) = (@ + o) = F/(Q + axYo)u] | S sech (5 ) wh,
and

[ [£(@+ Yo+ ur) = F(Q+ arYp) = f ()] S sech (5 ) wi.
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Moreover, again by Taylor expansion and [B5) (with A > 8), we have
|94 [F(Q + a1Yo +u1) — f(Q) — f/(Q)arYo] wi |
+ |eaQ [f(Q + a1Yp) — f1(Q) — f"(Q)a1Yo] ]|
+ Ja1paYy [1(Q + arYo) — f1(Q)] wi
+ | [f(Q + a1Yp) — f(Q) — f'(Q)arYo]|
< sech <g) lay|*|u1| < sech <g) w? 4 sech <§> lay|*.

Collecting these estimates, (32]) is proved.
Taking ||u1]|p~ < 4, for §4 small enough, we have proved

< —/(amw)2 + C’/w2 sech <§> + Caf 4+ A%up 3% /(amw)2.
Using A =61 and ||u;[|?% < 62 (from (I5)), for §; small enough, we obtain @7). O

4. VIRIAL ARGUMENT FOR THE TRANSFORMED PROBLEM
4.1. Heuristic. We recall results from [6], pages 1086-1087. Let
L=-0+1-2a+1)Q*, L =-0+1-Q*,

and
U=Yy-0, Yy ', U =-Y;' 0, Yo

(The above notation means U f = YO(YJ1 f).) Then, the operators L and L_ rewrite as
L=UU+ XNy, L_ =UU* + X\g and it follows that

UL=L_U.
Now, let
Lo=—2+14 2 Lgn (37)
0 — €T a + 1 9
and

§$=Q-9,-Q7", =-Q7"-9-Q
A similar structure L_ = S*S, Ly = S5*, leads to
SL_=LyS andthus SUL = LySU.

In particular, let (u1,us) be a solution of (H), and set @; = Uuy, tig = Uugy. Then,
U = 1o
Uiy = —L_ .

v = Sﬁl = SUu1 and Vo = Sﬁg = SUUQ.

Then, (v1,v9) satisfies the following transformed problem:

1')1 = V9
’[)2 = —L(]Ul.

The key point for our analysis is that for a > 1, the potential in Lg is positive. This
property happens to be the only spectral information needed for the proof of Theorem [I1

Observe that UYy = 0, UQ' = —aQ and SQ = 0, which means that the prior decompo-
sition of the solution (¢, d;¢) as in Section 2] and a coercivity argument as in Section
are necessary to avoid loosing information through the transformation. (Here, we work
with even functions and so only the direction Yj is relevant.)

Next, set
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4.2. Transformed problem. With respect to the above heuristic, we need to localize
and regularize the functions involved. For v > 0 small to be defined later, set

{ v = (1 =193) 71U (xpw),

vy = (1 —~87)"'SU(xpus), (3)

where xp is defined in ([23]). We refer to Section [ for coercivity results relating u;
and v;. The introduction of the operator (1 —v92)~! with a small constant v is needed
to compensate the loss of two derivatives due to the operator SU, without destroying
the special algebra described heuristically. Now, we explain the role of the localization
term xp in the definitions of v; and vs. Note that Proposition [ provides an estimate on
the function w, which is a localized version of u (see (26)). To use this information, the
functions v; and vy also need to contain a certain localization.
We deduce the following system for (vi,vq) from the one for (uy,ug) in (I7)

1')1 = V2
{ by = —(1—402) " 'SU(xpLuy) + (1 —~402) "' SU(xsN").
First, we note that
xBLui = L(xpu1) + 2xpsu1 + Xpu1.
Moreover, since SUL = LySU, it holds
—(1 =03 ISUL(xpu1) = —(1 — v0?) ' LoSU (xpu1)
= —(1=102) " Lo[(1 = ~33)v1]

— Py — vy — Z—:u 02 [Q (L — 40P)un] .
Since
(1 =783) [Q* 1] = @%*(1 = 102)v1 — 29(Q%*) v — (Q*) vy,
we obtain

-1
—(1 —~02)'SUL(xpu1) = —Lovs — Z—H7(1 —02) 7 [2(Q%) 0yv1 + (Q%¥)v1] -

Therefore, we have obtained the following system for (vq,v9)
@1 = V2

vy = —Lovy — 2—17(1 - 'Yag)_l [2(Q2a),axvl + (QQG)”Ul] (39)

— (1 =782)7'SU [2xpdur + Xpua] + (1 = 793) ' SU[xsN*].
For this transformed system we construct a second virial functional, where the spectral

analysis reduces to the fact that the potential in L is positive.

4.3. Virial functional for the transformed problem. We set

1
J = / (1/13393@1 + 51#39@1) vg,

and (see (22 and (23]))
z = xB(BU1. (40)
Here, z represents a localized version of the function v;. The scale of localization B is

intermediate between the one involved in the definition of w from u; (see (24) and (26]))
and the weight function p defined in (I9) (similar to a localization at the soliton scale).
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Proposition 2. There ezist Cy > 0 and dy > 0 such that for v small enough and for any

0 < § < by, the following holds. Fiz B = 571, Assume that for all t > 0, [IB) holds.
Then, for allt >0,

J < —Cs) 2|2

1
1112 + 65 [[w]2 + las . (41)

Remark 2. The objective of estimate (4I) is to control the local norm ||,2H/2) up to small
error in terms of [[w]|3 and |a;[*.

The rest of this section is devoted to the proof of Proposition[2l As in the computation
of Z in the proof of Proposition [, we have from (39)),

. 1
J :/ <¢Ba$’01 + §¢23’U1> U2
1
= — / <¢Bam?)1 + §¢IBU1> Lovy

34_- 17/ (7/)3(99;1}1 + %%301) (1—702)7" [2(Q%*) 0zv1 + (Q°*)"v1]

1
_ / <1,Z)Bamv1 + 51,!)23@1) (1—~03)71sU [2xBOru1 + XBu1]

1
+ / <¢Bam?)1 + 51%31)1) (1 — ’y@i)flSU[XBNJ‘] =J1+ Jo+ J3+ J4.

First, using the definition of Ly in (B7) and integrating by parts, we have

— [wp g gt -2 | (wgamvl ; %w};m) Qv

From (Z3)), we note that 95 = x%(3 + (XB)’ng and
Ui = xB(CE)" +30¢B) (CB) +3(xB)"CE + (xB)" 5.

[ow@m? -1 [t = [xa@m? -1 [yt
-3 fodrard -1 oy
+ [0dYen@n) - § [0 pnt

By the definition of z in (@0), proceeding as in the proof of (31]) in Lemma [T we have

/ Vi (B,0n)? = / (0e2)% + / (x5CB)" XBCH

= [+ [ 2+ [ it +3 [odychy,
=g [ (& i) &
/¢B dpv1)? /W" ? = {/(sz)QJr = / (C—/é — (Cé)z) zz} + i,

Thus,

and

Thus,
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where we have set
Jy = i/(x%)'((%)'vf + % / [3x5)? + XBxB] Chot
- / (xB) 0B (0:01)* + % / (xB)" B0}
Recalling ({@0), 23]), (22) and integrating by parts,

/ <¢Bax?)1 + %1%3?)1) Q* v, = %/Qmax (T/JBU%) = ng Q* 1@’

Therefore, setting

_1 é_((}lg)z . 1yp 2a0—1
V_2<CB C%,) aa+1cBQ <,

we have obtained

Ji = —/ [(8,2)% + V22 + Jh.

Lemma 3. There exists By > 0 such that for all B> By, V >0 on R. More precisely,

V>V, where VO—2 +1 lQ* 1t > 0. (42)
Proof. First, from [B0) (with A replaced by B), it holds
B (B o Ligpjze(@)
(B G|~ B
Second, since for z € [0,400) — (p(x) is non-increasing, we have for x > 0,
GG
Since Q'(z) < 0 for x > 0, we obtain, for a constant C' > 0,

C
V(z) > —§11<\x\<2(x) t+a

Q@)@ @)
e (2)/Q* 7 (x),

choosing By large enough. By parity, this estimate holds for any = € R. O

- 2a+1

Using this lemma, and the above computations for J;, we conclude
jg—/ﬁmahwmﬂ+i+h+h+a. (43)
To control the terms jl, Jo, J3 and J4, we need some technical estimates.

4.4. Technical estimates.

Lemma 4. (i) Estimates on w.

/:v§232 S B /(8;,310)2 * BQ/w2 sech (g) : (44)
lwlly < /(arw)z + /x<1 w? S /(33310)2 + /w2 sech (g) . (45)
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(ii) Estimates on z.

22 5 [@?+ [ Vs 5 I (10
[ s B [@7 + B [Vt < Bl (47)
(iii) Estimates on v;.
lorllze S 5 B2, (48)
10evrle S 7wl (49)

Proof. Proof of (@4) and (@5)). For any z,y € R, using w(z) = w(y) + fyx O,w and the
inequality (a + b)? < 2a% + 2b%, we have

) <2y ) < 20%0) 420 o] [ @ o

< 20%(y) + 2(fal + ly) [ (@,
Integrating (50) in = € [-2B2%,2B?] and y € [~1,1], we find (@4)). Multiplying (50) by
sech({5) and integrating in 2 € R and y € [—1,1], we find (@H).
Proof of ({A6) and [@T). The proof is similar. For any € R and y € R, we have

Aa) <22(0) + 2(lal + o) [ (022"

We multiply by sech( L ) and Vp(y) > 0 and integrate in z € R and y € R. Since [V >0
and [ |y|Vo(y)dy < oo from ([42]), we obtain (4d).
We multiply by (p(z) and Vy(y) and integrate in z € R and y € R. Since

/CB<B /|x|§B§B2 and /|y|V0§1
we obtain (47]).
Proof of [A8) and ({@9). Note by direct computations that

sor- [ 8]+ () 93]

= "+ (a+ 2) tanh(az) f + (o + 1) (1 + af_l) f
cosh”(ax)
Thus,

1SUfllrz S IS N2
Moreover, using Fourier analysis,

11 =~02) " Fllaz S v fll e
As a consequence, it holds
(1 =~702) " SUflle S vl e (51)
Using (51)), the definition of v1 in (B8], the definition of w in (28] and A > B2, we obtain
Jvillze Sy Hxsuallre S v e ey <en2y) S 7wl 2 (e <2p2),

and then (44]) implies (48).

Moreover, by direct computation
0. (SUf) = SUF + (a + 2)asech?(az) f' 4+ a(a? — 1) sech?(ax) tanh(az) f.
Thus, similarly,
0.1 =702 LSUF 12 S AU 12 + 1 sech(z)]| 2. (52)
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Using (52), we obtain

10sv1llz2 < v H10s (xBua)llz2 + [IxBus sech(z)]| 2.

By the definition of w, A > B? and the definition of x5 and (4, we have
2 2

2 ’
o Cmul = [on (X20) | 5 X2 [ Joue + '(X—B> )
Ca Ca Ca
rg |8:Bw|2 + B_4w21|1.|§232,
and ||xpuy sech(x)| 2 < ||wsech(zx)| 2. Thus, estimate (44]) imply (49). 0

Lemma 5. For any 0 < K <1 and v > 0 small enough, for any f € L?,
Jsech(K2)(1 = 402) "4 fll 2 S || sech(Kx) | 2 (53)
where the implicit constant is independent of v and K.
Proof. We set g = sech(Kz)(1 —~02)~!f and k = sech(Kz)f. We have
cosh(Kz)k = (1 — v02)[cosh(Kz)g]
= cosh(Kz)g — yK? cosh(Kx)g — 2yK sinh(Kx)g — ~cosh(Kz)g".
Thus,
k=1[(1- vK?) — 78%] g — 27K tanh(Kx)g'.
For0< K <land~vy< %, we apply the operator [(1 —vK?) - 7(9:%] _1, to obtain
g=[(1—-~K? —~0Z] k4 29K (1 —yK?) — 733]_1 [tanh(Kz)g'] .
For0<K§1and'y§%,onehas
110 =K =02] s S 1.
[ —~vK?) - ’Yag]_l Ocllore,r2) S yE.
Thus, || [(1 —=7K?) =102 k2 < [|k] 2, and
| [(1 = E?) = ~02] " [tanh(K)g'] | 12
S = 7K = 782] 7 0, [tanh(Kw)g] |2
+ 11 [(1 = 7E?) —702] " [sech®(K)g] |22 S 72 gl e
We deduce, for a constant C' independent of ~,
lgllz> < Cllkllzz + Cr2 gl e,
which implies (53] for v small enough. g

4.5. Control of error terms. Now, we are in a position to control the error terms in ([@3)).
Control of J. By the definition of (g, it holds

_l=| 1 =l
@) S [Cpla)] S e B
Thus, using the properties of x in (21), we have
_2lz| _
[ glach + ()G + Cbxnca] of < [ e S 3.
B2<|z|<2B?
Next, since |pgp| < B and |(x3)'| < B72, |(x%)"| < B~°, we have

/\(x%)’wB!(axvl)Q < B7Y0,u]7:  and /\(XZB)’”wB!v% < B9 |2
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Using (48))-(49), we conclude for this term
171 S 72 B fwll. (54)
Control of Jo. By the Cauchy-Schwarz inequality,
o 2\—1 1 !
Q*(1 —~03) Yoy + 51/131)1
First, we estimate using (G3))

Q1 —72) ™" (¥BIev1)|| 12 S 11QYBOV| 2
From the definition of z in ({40]), we have

| Ja] S

\ (@0l + 1Q°0s0nl12)
L2

drz = CBXBOv1 + (CBXB) V1,
and so
CBXBlO01? S 1002 + |(Coxp) v

Using |x/| < 1, the definitions of xp and (g and again the definition of z

‘(CBXB)/W’QXQB S B CBXB v S BT 22,
and so

CBXBIO0|* S 802X + B22 < |00z + 22 (55)
Thus, using V5| < |z|x%,
QuUBdsu1* S [a? QX001 |* S QCEXBI0xn|* S 002> + Q2%
It follows that
1QYBOzv1]| 2 S [l2l,-
Second, we also estimate using (53)
Q1 =)~ (W) || 2 < |QUBuL] -

We claim

(¥B)* S xB- (56)
Tndeed, using [yl < B2, [pal S Jal, X = 0 for [¢] > 257 and (g < 1,
(Ws)* S Waxsl*eh + (X < xb-
Using (56), we infer that |(15)%v?] < x%v?, thus |Q()*0?] < 22, and so
1
IQuUBv1llre S Q2222 < 2,

Now, we estimate ||Q%v1||z2 and ||Q¥0,v1]|r2. From the definition of z in (0), we have

e*|z|v%X2B < 22. Thus, from the definition of x5,
6*2‘5’3‘1}% < o2z, 2X +e*232vf < o7l 2 +e*232v2
It follows using also (48] that
- -1p2_ 1
le™ vl L2 S N1zl + €727 7wl

Differentiating z = xp(pv1, we have
CB

XB(BOzV1 = Oz — C_BZ — XB¢BU1.

Thus, as before,
e_zlgﬁl(&rvl)z < el [(8:,3,2)2 + zz] + 728 [(azvl)Z + vﬂ .
It follows using ([48) and (49) that

— _1lp2 _
le™ 10012 S llzllp + €727 7wl
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Collecting these estimates, we conlude
T2l S Allzl5 + e Fllwllo 2. (57)
Control of Js. Using Cauchy-Schwarz inequality and (51), we have
sl S 77 (lp0svillze + IWpvrllze) (IXpOwurllzz + X Eurll:) -
First, using |¢p| < B (from its definition and |pg| < B) and (49),
[¥50sviliz2 S Blldwvillzz < v~ Bllwll,.
Then, since |¢p| < B and ¢y = (3,
W] = [2XsXBeB + (BXB| S B~ + (BxE.
Thus, using the definition (40)), z = xp(pv1 and then (@8],
IWpuillz: S B2 uull2 + /6%22 S 2B |wll + B2|2f7.

In conclusion,
[¥50z01| 2 + [V 5vill2 S v Bllwll, + Bllz|l - (58)
Second, differentiating w = (au1, we have 9,w = (ju1 + (40zu1, so that (using also
the assumption A > B?),

for |z < A, |0pu1|* < A7 |ur)? + |0,w|?* < B4 w|? + |0,wl?.
Thus, using also (44]),

HX%;azulH%2 <™ |0pup |
B2<|z|<2B2

/ Opwl? + B fol?
|z|<2B?

Next, by the definition of xp and (44),

il 5 57 P SB[ el Bl
B2<|z|<2B? |z|<2B?

< B4

~

< B Hwl.

In conclusion,

IXpOzurll 2 + IXBuillre S B~ |lwlf}- (59)
Collecting (B8) and (BI), we obtain
T3] S v72B 7wl +~7 B 7wl |l (60)

Control of Jy. Using the Cauchy-Schwarz inequality, (5I)) and then Nt = N — NyYy,
we have

[Jal S (Ildeor|l L2 + W5 llL2) IxaN | 2

Sy (IBdev |2 + [0l L2) (IxBN|lz2 + [Nol) -

By B3), |a1] <1, |luil|re < 1, and decay properties of Yj and @, we have
IxBN|z2 < af + [lurll e |Qxputl| 2 + larP* T + ua 7% [ x pua | 22

< af + [lunl|ze< | xpua 22

Using xp < Ca (since A > B? in ([24)) and (@), it holds
bwalta s [ S Bl
| <2B?
Moreover, from (34]),
INol S af + [|ua || o [l
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Therefore, using again (58], we obtain

[Jal S v72B (lwllp + l12]l0) (af + B2 ual| o ll,) - (61)

4.6. End of proof of Proposition 2l From (43)), (0), (54), (57)), (60) and (G1), it follows
that there exist Cy > 0 and C > 0 such that

J < —AC|2l; + Cy2 BT wlf + Cllzlf + Ce™Pllwllolz,
+ Oy BT wll,ll2ll, + OB ([lwll, + l12,) (af + B2 usllzeslwl],) -

We fix v > 0 such that Cv < 2C5 and also small enough to satisfy Lemma [Bl
The value of v being now fixed, we do not mention anymore dependency in . Using
standard inequalities and B large enough, we obtain, for a possibly large constant C' > 0,

. B 2

J < =Colzll; + CB7Hwllp + CB? (af + B?|ur |z [[w]l,) -
Choosing (as specified in the statement of Proposition [2])

B=04"1,
and next using the assumption (I5l), we have
7 1
B (B?||ur| e [[wll)? S 67 ur | Foe |} S 87 [Juol]3.

Therefore, using again ([I3]), for § small enough (to absorb some constants), we obtain

. 1 1

J < =Collz|; + CoT||w|[; + B’ai < —Collz||3 + 85 |wl|3 + |ar[*.

This estimate completes the proof of Proposition 2

5. COERCIVITY AND PROOF OF THEOREM [

In this section, the constant v is fixed as in Proposition 21

5.1. Coercivity results.

Lemma 6. Let B > 2. Let u and v be Schwartz functions related by
v=(1-78;)7'SU(xpu). (62)

Assume
(u, Yo) = (u, Q') = 0. (63)

/(XBu)2 sech <%> < / [(59[:?))2 + vz] pt+e B /u2 sech (g) ) (64)

Proof. Using the expression of S and U, we rewrite (62]) as

D — Yo, (xBu
v yﬁxv—Q(?m<Q&r Yo ,

Yo, (xsu Qo _1( &
8x<czam< Yo )”Q) Q(” ”Qa”””>‘

Integrating between 0 and x > 0, this yields, for some constant a,

Yoo (xpu\, O _ . ["[1( _ &
an(%)ﬂQ ”/o [Q(” ”Q‘(’x”ﬂ’

which rewrites as

xpu\ Q@ v Q [*]1 Q'
Or (W)‘“%‘W*?o/o [a (”‘”aaﬂﬂ”)]

It holds

and thus
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Integrating on [0, ], x > 0, and multiplying by Yy, it holds, for some constant b,

X
xBuszo+aYo/ Q,a (65)
0o Yo

o [ {28 [ (g}

Let us now estimate | @2 sech (5) First, by the Cauchy-Schwarz inequality,

v [ sw (f <axv>2p2)% (/ x(pm?)% < (f <axv>2p2>%
slassl/ ”2P2>é (/ y(p@)?)é <o ( W)%
Yo/om%/oy% S (/U2P2>;Y0/0x(ﬂyo)l <ot (/02,02)%.

Third, since %—/' < 1, we obtain similarly,

o[ 4[5 (fuers)

Collecting these estimates, we obtaln, for all z > 0,

&2/)2 5/[(8331})2 +1)2] p2.

The same holds for x < 0, and thus

/fﬁ sech (%) < / [(9,0)? + %] p2.

To complete the proof, we estimate the constants a and b in (65]). Using (G3) and parity
property, projecting (65]) on Yp yields

(xBu, Yo) = ((xB — Du, Yo) = b+ (a, Yo).

where

Second,

Thus,

Thus,
b2 5 /,&2 sech (CC) +/u2 sech (CC) (1 _XB)2 5 /ﬂQ sech (:C) —|—€_%BQ /u2 sech (g) .

Using (63)), Yo fox % = —a~ Q" and projecting (65]) on Q' yields similarly

a® < /ﬁ2 sech (z) + e 2B /u2 sech (g) .

We conclude the proof using again (65]). O

The next result is a consequence of the previous general lemma, in the framework of

the time-dependent functions introduced in (I2), (26]), (38)) and (40).
Lemma 7. For B large enough, it holds

x
/w2 sech (5) < ||sz + B_BHameiza (66)

and

lwlly < 1215 + 10wl (67)
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Proof. Recall that the function g is even so that it satisfies (u1,Q’) = 0 in addition to
the orthogonality (I2]). Therefore, applying (64)),

/(XBU1)2 sech <§> < / [(812}1)2 + v%] p*+ eB/u% sech (g) ,
which implies by (28) and (20)
/(XBw)2sech BE / [(@on)? + 0] 72 + P 2. (68)
By (40) and (B5), it holds
for || < B2, plOyvi|* + plot|® < |0u2]* + 22
Thus, using (48)-(@49),

_B?
[ @y +:i1 5 [ O P
x|<

< 2 _B? 2 < 2 _B2 2
Szl +em 5 ol S 215 + e fJwll.

Using ([45]) and the definition of xp in (23]), it holds

Jul2 S [ @02+ /|| w5 [@w?+ [w?sen (3).

Inserting these estimates into (68)), it follows for B large enough that

A
[ sect (5) < 212 + ¢ P s

The last two estimates imply (67).

Finally,
2
/w2 sech (%) < /(XBU/)2 sech <%> LT /pr
x
S [ Gem?sech (3) + e Bl

and (66) follows. O

5.2. Proof of Theorem [l Recall that the constants v > 0, 1,2 > 0 were defined in
Propositions [ and 21
Proposition 3. There exist C5 > 0 and 0 < 63 < min(dy1,d2) such that for any 0 < ¢ < d3,

the following holds. Fix A =6"" and B = 5=1. Assume that for allt >0, (IT) holds.
Let

1
H=J+83"L. (69)

Then, for allt >0,
H < —Csllw|2 +2|ar . (70)

Proof. In the context of Propositions [ and ], observe that fixing A = §~! and B = 5_i,
for 6 > 0 small is consistent with the requirement A > B? > B > 1 in ([24)).
Combining (41]) with (€7) and (27) with (G6l), for 63 > 0 small enough and 0 < ¢ < J3,

one obtains, for a constant C > 0,
: C, 1
J < = lI2l5 + 05 10w 7z + laa [,

. 1
I < —l0ewl}s +ClaAE +lar
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Define H as in (69). It follows by combining the above estimates that
y Co iz 515 2 16 |[,[2 16 3
H < =zl = 93° 10wl +8CH° |2l + {1 + 8057 | |an|”.
Possibly choosing a smaller d3, we obtain
< BTN 5% 9wl2 3
< =2} = 00 0wl +2la

This estimate, together with (67]), implies (70) for some C3 > 0 (depending on d3). O

We set
B=b b2

Lemma 8. There exist Cy > 0 and 0 < dq4 < 93 such that for any 0 < § < &4, the following
holds. Fiz A =61, Assume that for all t > 0, (I5) holds. Then, for all t >0,

by — voba| + [b= + 10b_| < Cy (B3 + 0% + |w]?) (71)
and
'%(bi) — 2upb% | + %(b2)+2u0b2 <Oy (B2 402+ w]2)?. (72)
In particular,
B> (b +82) = Cullwll? = 3 (a + a3) — Cillw 2. (73)

Proof. From (34]) and (I3)), it holds
[No| < af + [lwl} < 03 + 62 + [lwlf7.

Estimates ({71]) and (72]) then follow from (I6]). Last, estimate (73] is a consequence of ([2])
taking 64 > 0 small enough. 0
Combining (70) and (73)), it holds
C4 04
B - 2537-1 > — ( 14+a3) + C’4HwH/2) — 463‘611’3,
and thus, for possibly smaller § > 0,
C
B2 % > —( T+ a3) + Cullwl?. (74)
Cs p
By the choice of A = 3§71, the bound |p4| < A, and (H), we have for all ¢ > 0,
Z] S Alluall g [Juzl 2 < 6.
Similarly, using also (&1I), it holds
TS Blloillg[lv2ll2 S0 and thus  [#] < 6.

Estimate |B| < 2 is also clear from (I5]).
Therefore, integrating estimate (74 on [0,¢] and passing to the limit as ¢ — +oo, it
follows that

o0
/0 (02 + a3 + [[w]2] dt S .
Since [[(8yu1)? + ui]sech(z) < [lw]|?, this implies
[e.e]
/ {a% + a3+ / [(0pw1)? + uf] sech(x)} dt < 6. (75)
0
Using (7)), we conclude the proof of Theorem [ as in Section 5.2 of [I§]. Let

K= /uluQ sech(z) and @G = %/ [(0pu1)? + uf + u3] sech(x).
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Using (7)), we have
K= / [i11ug + uiily] sech(x)
= / {u% + uy (—Luy + Nl)} sech(x)
= / [u3 — (9yu1)? — ui] sech(x) + % /u% sech” ()
+ [ 1@+ @Yo+ w) ~ £(@) ~ (@Yo — No¥o] un sech (o).

We check that
/ [f(Q+ a1Yy + u1) — £(Q) — a1 f/(Q)Yo — NoYy] uy sech(z)| < af + /u% sech(z).

(See (B3)-(34)) in the proof of Lemma[2) In particular, it follows that

/u% sech(z) < K + Ca? + C/ [(@Cul)? + uﬂ sech(z).
Using the bound |K| < 62 and (75), we deduce
/OOO [af + a5+ G]dt S 6. (76)
Similarly, we check that

G 2/ [(Opt1)(Opur) + Gyuy + Ggusg] sech(x)

:/ [((%uz)(@xul) + uguy + (—Luy + NL)W] sech(z)

=)
j

(Opu1 )ug sech’ ()

+ [ [f(Q+arYo +u1) — f(Q) — a1 f'(Q)Yo — NoYo] up sech(z),

and so, as before
6] S a?+6. (77)
By (76)), there exists an increasing sequence t,, — 400 such that

7}1_{20 [a%(tn) + a3 (tn) + g(tn)] =0.

For ¢ > 0, integrating (7)) on [¢,t,], and passing to the limit as n — oo, we obtain

G(t) < /OO [af + G] dt.

By (@), we deduce that lim; o, G(t) = 0.
Finally, by (I6) and (34]), we have

d d
D) +| G| ot + b+ [ udsech(a),

and so as before, by integration on [t,,] and n — oo,
o0
al(t) 4+ a3(t) S / [af + a3 + G] dt,
t

which proves limy_, o |a1(t)| + |az(t)| = 0.
By the decomposition (1), this clearly implies (7). The proof of Theorem []is complete.
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6. PROOF OF THEOREM

6.1. Conservation of energy. Using ([B) and (@) and performing a standard computa-
tion, we expand the conservation of energy (2) for a solution (¢, 9;¢) written under the
form (II]) with the orthogonality conditions (I2), to obtain

2{E(¢,0,9) — E(Q,0)}
/ {(00)° + (0.0)° + 0* — 2F(6)} — 2B(@.0)
= a315(Yo, Yo) + ai (LYo, Yo) + [[uallZ> + (Lu,ur) + O (Jaa]” + |azf’ + Jua |[7)
= vg(a3 — ai) + |luz)| 72 + (Lug,u) + O (Jar* + Jaz]® + Jurll3:) -
Using the notation (I3]), we have
2{B(¢,00) — B(Q,0)} = — dvobyb_ + [[uz||F2 + (Lu1, ur)
+ O ([P + [b- + [l -
Let 69 > 0 be defined by
05 = b1(0) + b2(0) + [ur (0) |7 + [luz(0)[[72-
Then, (78) applied at t = 0 gives |2 {E(¢,0:¢) — E(Q,0)}| < §2. Thus, by conservation
of energy, estimate (78)) at some ¢ > 0 gives
| —vobs b+ a2 + (T, ur) + O (b P+ b + un )| < 62.

Under the orthogonality conditions (I2]), the parity of uy, from the spectral analysis re-
called in the Introduction (see [6]), it follows that for some pu > 0,

(Lut,ur) > plluazp. (79)

1/2

Thus, as long as ||ug|| g1 + [|uz||p2 + [b4 |+ |b-| S 0y’ ", the following energy estimate holds

[ + uzllZe < b4 + [o-|* + 8. (80)

6.2. Construction of the graph. By the energy estimate (80), Lemmal[8and a standard
contradiction argument, we construct initial data leading to global solutions close to the
ground state Q.

Let € = (e1,e2) € Ag (see ([8)). Then, the condition (e, Z;) = 0 rewrites
(€1, Y0) + (g2, 'Yo) = 0.
Define b_(0) and (u;(0),u2(0)) such that

b_(0) = (e1,Yp) = —(e2, 15 'Y)
and
1 =b_(0)Yp +ui(0), e2=—b_(0)roYp + u2(0).
Then, it holds
(u1(0), Yo) = (u2(0), Yo) = 0.
This means that the initial data in the statement of Theorem 2] decomposes as (see (I4))
by = ¢(0) = (Q,0) + (u1,u2)(0) + b_(0)Y- + h(e) Yy

Now, we prove that there exists at least a choice of h(e) = b4 (0) such that the corre-
sponding solution ¢ is global and satisfies ().
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Let 09 > 0 small enough and K > 1 large enough to be chosen. We introduce the
following bootstrap estimates

lull g < K% and - [luzlz2 < K6, (81)
b_| < Kb, (2)
byl < K232 (53)
Given any (u3(0),u2(0)) and b_(0) such that
[ur (O} r < b0, [luz(0)]|z2 < b0, [b-(0)] < do, (84)

and b4 (0) satisfying
b (0)] < K52,
we define
T = sup{t > 0 such that (8I)-(82)-(83]) hold on [0,¢]}.

Note that since K > 1, T" is well-defined in [0, 400]. We aim at proving that there exists
at least one value of by (0) € [—~K562, K°§2] such that T = co. We argue by contradiction,
assuming that any b, (0) € [-K°§3, K°§3] leads to T < oo.

First, we strictly improve the estimate on (uq,uz) in (81]). Indeed, by (80) and (82)-(83)),
it holds

a7 + lluzl7 < Cs (K100 + K265 + 63),

for some constant C5 > 0. Thus, under the constraints

1 1
CsK16g < SK*, GsK? < JK*, C5 < S K%, (85)
it holds [luy |21 + [Jus||2, < 3K*62, which strictly improves (RI).
Second, we use (Z2) to control b_. By (BI)-(82)-(83)), since ||wl|, < ||u1]l g1, it holds

|

‘% (62”0%2_)‘ < Cs (K05 + K°63) €',

for some constant Cs > 0. Thus, by integration on [0, ] and using (84]), we obtain
Ce

< =2
— 2

(K368 + KO63) + 62,
Under the constaints
ﬁKlf’(sg <lge CsKO6 < Trro1< 1K2, (86)
219 47 — 47 — 4
it holds b% < 2K?26% which strictly improves (82).
By the previous estimates (under the constraints (85)-(80)) and a continuity argument,
we see that if T < +o0, then |by (T)| = K°53.

Third, we observe that if t € [0, T is such that |b; (t)| = K®832, then it follows from (7))
that
d
D 02) = 207~ 20 |8+ 82+ )
> 2 K065 — C7 K85 (K003 + K*63)

for some constant C7 > 0. Under the constraints

1 1
CrKP6% < 51/0[(10, C-K? < 51/0[(10, (87)

the inequality

d
%(bi) > vy K1063 > 0,
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holds. By standard arguments, such transversality condition implies that T is the first
time for which |by(t)] = K°33 and moreover that T is continuous in the variable b, (0)
(see e.g. [7, 8] for a similar argument). Now, the image of the continuous map

b1 (0) € [~K°05, K°83) = by.(T) € {~K 35, K65}

is exactly {—K562, K33} (since the image of —K°62 is —K°6% and the image of K°83 is
K542), which is a contradiction.

As a consequence, provided the constraints in (85])-(86)- ([87) are all fullfilled, there exists
at least one value of by (0) € (—K%32, K°62) such that T = oo.

Finally, we easily see that to satisfy (85])-(86])-(87)), it is sufficient first to fix K > 0 large
enough, depending only on C5, Cs and C7, and then to choose dg > 0 small enough.

6.3. Uniqueness and Lipschitz regularity. The following proposition implies both the
uniqueness of the choice of h(e) = b, (0), for a given € € A, and the Lipschitz regularity
of the graph M defined from the resulting map € € Ay — h(e). It is thus sufficient to
complete the proof of Theorem

Proposition 4. There exist C,6 > 0 such if ¢ and ¢ are two even solutions of @
satisfying

forallt >0, ||¢(t) —(Q,0)|lgixrz <3, ||@t) — (Q.0)||s1xpz <6 (88)
then, decomposing
#(0) = (Q,0) + e+ b, (0)Ys, ¢(0) = (Q,0) + &+ by (0)Y;
with (e, Zy) = (¢,Z1) =0, it holds
b4 (0) — b4(0)] < C62le — &l g1 2 (89)

Proof. We use the decomposition and the notation of Section 2.1] for the two solutions ¢
and ¢ satisfying (88]). In particular, from (I3]), there exists Cy > 0 such that for all ¢ > 0,

lur (8| g+ [lax (B[ g+ Nua(B)ll 2 + |2 (t) ]| 2 + [b+(8)] + b= (t)] < Cod. (90)
We denote

ai —ai, Gz =as—as, by=by—by, b_=b_—b_,

Q¢

1
1:11,1—211, ﬁ2:u2—a27 N:N—N, NL:NL—NL, NOZNO—NO.

¢

Then, from (I6), (I7), the equations of (i, iy, by, b_) write

b+ = I/QB+ + — U1 = U
1= U2
2VOV and . - (91)
2 < Ny g = —Lug + N
b_ = —I/()b, - —
2V0
We claim that
INol + IN 2 < C8 ([b4] + [b-| + lallz1) - (92)

Indeed, by Taylor formula, for any v, 9, it holds (recall that o > 1)
(@ +v) = F(@) = Qv - [/(Q+7) - (Q) - ['(Q)7]|
S Jo = o] (o] + [3]) (Q* 7 + [P~ + 527 S o — o] (o] + [3]).
Using this inequality for N = N — N, where N is defined in (I8), and (@0), we obtain
IN|'< (1Yo + [aa]) (Yolar| + Yolan| + |ua| + [aa]) -

Using the Cauchy-Schwarz inequality and again (@), we find ||N||2 < 6(|ay] + |i1]) and
estimate (92)) follows.
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Let
By =03, B-=02, fec= (L, i)+ (i, d).
By (@) and ([©2]) (and the coercivity property (9) for @;) we have, for some K > 0,

Be] 4 1By — 2v0B84 | + 8- + 2006-| < K& (Be + By + ). (93)
For the sake of contradiction, assume that the following holds
U
0 < K3 (Be(0) + B1(0) + - (0)) < 158+ (0). (94)

We introduce the following boostrap estimate

K6 (Be + B+ + B-) < voB4 (95)

Define
T = sup{t > 0 such that (@5 holds} > 0.

We work on the interval [0,7]. Note that from (O3] and (@5, it holds
By > 2w0By — K6 (B + By + B-) > noP+ (96)

In particular, by standard arguments, (3, is positive and increasing on [0, 7).

Next, by (@3] and (@3,
Be < By < By
and thus, by integration,
Belt) < Bel0) + B (1) — B+ (0) < 6e(0) + B (1)
Therefore, by ([@4]), for 6 small enough,

K6B.(t) < K6(B.(0) + B4(1)) < 2B,(0) + K6B(t) <

— 10
Then, by ([@3) and (@),
B < —2u0B- + voBy,
and so by integration and (94),

t
B_(t) < e 213 (0) + v By (t)e 20! / e*08ds < B_(0) + %m(t).

0

Therefore, for 4 small enough,
KB (t) < KO(B-(0) + (1) < T2B4(0) + KO8 (t) < 2 (1),

Last, it is clear that for § small, it holds K63, < 24,
Therefore, we have proved that, for all ¢ € [0, 7],

K8 (Bt) + B+ (1) + B (1)) < S0 (1).

By a continuity argument, this means that 7' = 4+o00. By the exponential growth (@6]) and
B+(0) > 0, we obtain a contradiction with the global bound ([@0) on |b.|.
Since estimate ([@4]) is contradicted, and since it holds

e=u(0)+b_(0)Y., &=au(0)+b_(0)Y_ with (u(0),Y.)= (a(0),Y. )=0,
we have proved (89). O
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